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Abstract

This thesis studies the complexity of join processing on interval data. It defines

a class of queries, called Conjunctive Queries with Intersections Joins (IJQs). An

IJQ is a query in which the variables range both over scalars and intervals with

real-valued endpoints. The joins are expressed through intersection predicates; an

intersection predicate over a multi-set that consists of both scalars and intervals is a

true assertion, if the elements in the multi-set intersect; otherwise, it is false. The

class of IJQs includes queries that are often asked in practice.

This thesis introduces techniques for obtaining reductions from the problem of

evaluating IJQs to the problem of evaluating Conjunctive Queries with Equality Joins

(CQs). The key idea is the rewriting of an intersection predicate over a set of intervals

into an equivalent predicate with equality conditions. This rewriting is achieved by

building a segment tree where the nodes hierarchically encode intervals using bit-

strings. Given a multi-set of intervals, their intersection is captured by certain equality

conditions on the encoding of the nodes. Following that, it turns out that the problem

of evaluating an IJQ on an input database containing intervals can be reduced to the

problem of evaluating a union of CQs on a database containing scalars and vice

versa. Such reductions lead to upper and lower bounds for the data complexity of

Boolean IJQs, given upper and lower bounds for the data complexity Boolean CQs.

The upper bounds are obtained using a reduction called forward reduction, which

reduces any Boolean IJQ to a disjunction of Boolean CQs. The lower bounds are
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obtained by a reduction called backward reduction, in which any Boolean CQ from

the aforementioned disjunction is reduced to the input Boolean IJQ. Overall, the two

findings suggest that a Boolean IJQ is as difficult as the forward disjunctions’ most

difficult Boolean CQ. Last but not least, this thesis identifies an interesting subclass

of Boolean IJQs that admit quasi-linear time computation in data complexity. They

are referred to as ι-acyclic IJQs.
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Chapter 1

Introduction

The amount of spatio-temporal data produced by various sources, such as phones,

cars, and user-based applications, has increased significantly in recent years [14, 26].

Large spatio-temporal databases have also emerged as a result of advancements in

mapping and navigation technologies [14]. Complex data from such sources are typi-

cally represented and approximated by intervals [6, 57].

This thesis studies the complexity of join query processing on interval data. In the

literature, the join operation on intervals is referred to by a variety of names, including

spatial join, intersection join, temporal join, and interval join [34, 40, 27]. In this

thesis, the term intersection join is used to refer to any of the terms mentioned above.

Furthermore, a database is considered to be an extension of a relational database

that stores both scalars and intervals with real-valued endpoints. A Conjunctive

Query with Intersection Joins (IJQ) applied on a database returns the tuples from the

database which satisfy the intersection join predicates in the query. An intersection

join predicate over a multi-set consisting of intervals is a true assertion if the elements

in the multi-set intersect; otherwise, it is false. IJQs are often asked in spatio-temporal

databases [6, 57], because such databases store objects that can be represented or

approximated by intervals, such as road networks, hydrography, woodland areas,
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urban areas, timestamps, or time intervals. An IJQ applied on a spatio-temporal

database asks for tuples that describe objects that intersect in terms of space, or they

co-occur in terms of time.

This thesis investigates the complexity of IJQs by introducing techniques for ob-

taining reductions from the problem of evaluating IJQs to the problem of evaluating

Conjunctive Queries with Equality Joins (CQs). The main idea is the rewriting of

an intersection predicate over a multi-set of intervals into an equivalent predicate

with equality conditions. This rewriting is achieved by building a segment tree whose

nodes hierarchically encode intervals using bit-strings. Given a set of intervals, their

intersection is captured by certain equality conditions on the encoding of the nodes.

Following that, it turns out that the problem of evaluating an IJQ on a database

which contains intervals can be reduced to the problem of evaluating a union of CQs

on a database which contains scalars. Using the equivalence of the two predicates as

building block, one can derive upper and lower bounds on the complexity of IJQs by

reducing the intersection join problem to an equality join problem and vice versa.

1.1 Motivation

The motivation for this thesis stems from the lack of theoretical understanding on

the complexity of Boolean IJQs, as well as the substantial progress in understanding

the complexity of CQs.

Lack of General and Efficient Approaches

The class of IJQs includes queries that are often asked in databases and have prac-

tical applications. There exists a variety of intersection join algorithms developed in

the context of temporal [27], and spatial databases [40, 34]. Most of them compute

two-way intersection joins, whereas others compute multi-way intersection joins by
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combining two-way intersection joins [41]. Two-way intersection join algorithms can

be classified into the following categories: plane-sweep algorithms [7, 50]; index-based

algorithms [42, 38, 17, 24], and partitioning-based algorithms [47, 39, 37]. Combining

two-way joins to solve a multi-way intersection join, has the drawback of producing

large intermediate results in certain database instances, leading to sub-optimal run-

ning times. This is analogous to the suboptimal complexity of combining two-way

equality joins to solve queries with multi-way equality joins [45]. A multi-way in-

tersection join algorithm that avoids producing large intermediate results have been

developed recently by Hu et al. [33], who investigated a special case of the IJQ prob-

lem, taking into account CQs with a single multi-way intersection join that involves

every relation in the database. They proposed an approach based on worst-case opti-

mal join algorithms [45]. However, this approach is not general enough to be used for

solving IJQs with arbitrary intersection joins, as they are defined later in this thesis.

Another approach that provides an efficient solution for IJQs is to express inter-

section joins as inequalities, and then use efficient algorithms that solve CQs with

inequalities. In particular, an IJQ can be rewritten as a disjunction of CQs with

inequalities, where the non-empty intersection of two intervals can be determined

by comparing their starting and ending points. In particular, given two intervals

[x.start, x.end] and [y.start, y.end] one can check if they intersect by using the ex-

pression (x.start ≤ y.start ≤ x.end) ∨ (y.start < x.start ≤ y.end). This observation

is formally expressed and expanded for more than two intervals in Section 4.2, Re-

mark 4.2.11. The drawback of this approach is that there are certain IJQs for which

even efficient algorithms for solving queries with inequality joins, such as FAQ-AI [2],

do not guarantee optimality. To provide evidence, this thesis introduces an algorithm

that solves the Boolean Triangle IJQ in sub-quadratic data complexity in the worst

case, whereas FAQ-AI, using the above encoding with inequalities, solves the same

query in quadratic data complexity times a polylogarithmic factor [36].
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Progress on Understanding the CQ Complexity

Despite the significant progress in understanding the complexity of CQs in recent

decades, the data complexity of IJQs is still not fully understood. A few findings

that improved our understanding of the data complexity of CQs are reviewed in the

following. The α-acyclic Boolean CQs are decidable in linear time, and the α-acyclic

full CQs can be computed in linear time preprocessing, followed by a constant delay

enumeration of the tuples in the output [58]. Boolean CQs Q can be computed

in Õ(N subw(Q)) time, where subw(Q) denotes the sub-modular width of Q [5]. Full

CQs can be computed in Õ(N fhtw(Q)) time preprocessing, where fhtw(Q) denotes

the fractional hypertree width of Q, followed by a constant delay enumeration of

the tuples in the output [31, 9, 12]. The developments mentioned above for CQs

raise questions about the complexity of IJQs: what is the analogous of sub-modular

width and fractional hypertree width for IJQs; moreover, what is the analogous of

α-acyclicity for IJQs.

1.2 Research Questions

The research questions answered by this thesis are the following.

Research Question 1. The segment tree data structure is used to index sets of

intervals [15, 22]. Can one use the properties of segment trees to divide the inter-

section join computation problem into sub-problems involving queries with equality

joins? Could such an approach lead to non-trivial data complexity bounds for the

intersection join computation?

Research Question 2. What is the data complexity of Boolean IJQs? Is it possible

to find upper and lower bounds for the computation? Can the upper bounds be

extended for non-Boolean IJQs?
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Research Question 3. Is it possible to define a dichotomy between Boolean IJQs

that admit quasi-linear time computation in data complexity, and those that do

not, based on their syntax? Such a characterisation would provide a simple way to

distinguish the IJQs that are easy to compute.

1.3 Summary of Contributions

This thesis establishes data complexity bounds for the computation of IJQs, based

on known bounds for the data complexity of CQs. Those bounds are based on the

idea of reducing the problem of evaluating an IJQ to the problem of evaluating a

union of CQs, and vice versa. The segment tree is a building block in all algorithms

introduced by this thesis.

1.3.1 Using Segment Trees for Solving IJQs

Chapter 4 describes two fundamental algorithms: (1) an enumeration algorithm that

computes the intersection join of k sets of intervals of size N using O(k2 ·N ·log(k ·N))

preprocessing time and constant delay enumeration of the tuples in the output; and

(2) a simple reduction from the problem of evaluating any IJQ, to the problem of

evaluating a union of CQs, called Intersection Join Decomposition (IJDec). Inter-

estingly, this reduction reveals that the Boolean Triangle IJQ can be computed in

time Õ(N3/2) in data complexity, and the set of the all tuples that satisfy the Trian-

gle IJQ (full Triangle IJQ) can be computed in Õ(N3/2) preprocessing time followed

by constant delay enumeration of the tuples. The IJDec reduction is improved in

Chapter 5, to get more precise upper bounds in data complexity. Nevertheless, the

IJDec reduction has an advantage over its refinement; it generates fewer CQs, which

is useful in practice.
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Q(D) Q̃(1)(D̃) ∨ · · · ∨ Q̃(`)(D̃)
≡

(a) Forward Reduction

Q̃(i)(B̃)Q(B)
≡

(b) Backward Reduction

Figure 1.1: Forward and backward reductions. The query Q is a Boolean IJQ, and the queries
Q̃(1), . . . , Q̃(`) are Boolean CQs. The databases D,B, D̃ and B̃ match the structures of the corre-
sponding queries.

1.3.2 The Data Complexity of Boolean IJQs

Chapter 5 investigates the data complexity of Boolean IJQs. It establishes a reduction

of any Boolean IJQ to a disjunction of Boolean CQs, called forward reduction, and

a reduction from any Boolean CQ from the disjunction mentioned above, back to

the input Boolean IJQ, called backward reduction, cf. Figure 1.1. The forward and

backward reductions allow for solving Boolean IJQs using existing algorithms for

solving Boolean CQs, as well as expressing the complexity of Boolean IJQs using

known complexity upper and lower bounds for Boolean CQs.

Forward Reduction — Upper Bounds

The forward reduction takes as an input a Boolean IJQ Q, and a database D, which

matches the structure of Q. It reduces the input query Q to a disjunction of Boolean

CQs, denoted by Q̃, and the input database D to a new database, denoted by D̃,

which matches the structure of Q̃. The problem of evaluating Q on D is equivalent

to the problem of evaluating Q̃ on D̃ (Proposition 5.2.12). Both the number and the

size of the generated CQs only depend on the size of Q, therefore, they are considered

to be constants (Proposition 5.2.11). The size of the new database D̃ is Õ(|D|). The

forward reduction enables using efficient algorithms for the computation of Boolean

CQs, to solve IJQs (Theorem 5.2.14).
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Figure 1.2: The hierarchy of acyclicity notions for hypergraphs. ι-acyclicity is a novel notion of
acyclicity introduced by this thesis.

Backward Reduction — Lower Bounds

The backward reduction takes as an input a Boolean CQ Q̃(i), whose structure

matches the structure of one of the Boolean CQs in Q̃, obtained by the forward

reduction of Q, and an arbitrary database B̃ with scalars, chosen independently from

D̃ and D mentioned above. The query Q̃(i) is reduced to a Boolean IJQ Q, whose

structure matches that of the input Boolean IJQ, and the database B̃ is reduced to

some database B, whose structure matches the structure of Q, and its size is O(|B|).

The problem of evaluating Q̃(i) on B̃, is equivalent to the problem of evaluating Q on

D (Proposition 5.3.2). The backward reduction shows that the lower bound of any

Boolean CQ constructed by the forward reduction can be used as a lower bound for

the input Boolean IJQ (Theorem 5.3.4).

Conclusion

The findings mentioned above suggest that any Boolean IJQ is as difficult as the

most difficult Boolean CQ generated by the forward reduction. As a result, using

the forward reduction, one can obtain optimal algorithms for Boolean IJQs, given

optimal algorithms for Boolean CQs.
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1.3.3 Iota Acyclicity

Chapter 6 establishes a new notion of acyclicity, called ι-acylicity (Figure 1.2). An

IJQ is ι-acyclic if and only if its hypergraph includes no Berge-cycle of length greater

than or equal to three (Theorem 6.1.2). It is proven that Boolean IJQs that are

ι-acyclic are decidable in quasi-linear time. Furthermore, the Boolean IJQs that are

not ι-acyclic are not decidable in linear time, assuming that the 3-SUM hypothesis

is true [48] (Theorem 6.2.1). Last but not least, it is proven that ι-acyclicity is a

tractable property (Theorem 6.3).

1.4 Thesis Outline

The remainder of the thesis is outlined as follows. Chapter 2 formally defines the IJQ

evaluation problem. Chapter 3 summarizes the background and the related work.

Chapters 4-6 describe the main results. Chapter 7 concludes and suggests future

research directions.
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Chapter 2

Problem Statement

This chapter describes formally the IJQ evaluation problem. Section 2.1 introduces

the main notations and terminology. Additional notations and terminology are given

at the beginning of each of the following chapters whenever is needed. Section 2.2

gives the definition of Conjunctive Queries with Intersection Joins (IJQ). Finally,

two example IJQs are discussed in Section 2.3, which are used to illustrate concepts

thorough the thesis.

2.1 Notation and Terminology

Consider a finite set U of variables. Variables are denoted by lowercase possibly

subscripted letters, for example u, ui. Variables range over, or in other words represent

values from a domain.

Consider a finite set R of relations, where R is disjoint from U . Relations are

denoted with upper case possibly subscripted letters, for example R,Ri. A relation

Ri is associated with a non-empty finite set of variables ei = {u1, . . . , um} ⊆ U .

The expression Ri(ei) is called the schema of the relation Ri. Sometimes, in order

to be clear about the variables included, the relation schema is written explicitly as

Ri({u1, . . . , um}) or by an abuse of notation as Ri(u1, . . . , um) to avoid the clutter that
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the set notation may introduce. The names of the variables in a relation schema are

considered to be part of the corresponding relation to indicate the names of different

columns of the relation, hence, they can be used by a query language. However, the

order of the variables does not play any role. In standard databases this approach is

called named perspective [1].

In the context of a relation Ri(ei), each variable u ∈ ei is assigned to a domain

domRi
(u), which is either a set of intervals [x, y] with scalar endpoints, or a set of

scalars. In the case where the domain consists of intervals, u is an interval variable,

or in other words it has interval type in Ri. In the case where the domain consists of

scalars, u is a scalar variable, or in other words it has scalar type in Ri. It is possible

that a variable u is in the schemas of two different relations Ri and Rj, where in Ri

it has interval type, whereas in Rj it has scalar type. In order to indicate its type,

the variable is written as [u] in the schema of Ri, and as is in the schema of Rj. For

example, given two relation schemas R1([u], w), and R2(u,w), u and [u] refer to the

same variable, but the key difference is that u has interval type in R1, while it has

scalar type in R2.

Consider a finite set of variables e ⊆ U . A tuple t of a relation R with schema R(e)

is a function that maps each variable u ∈ e to a value from domR(u). As mentioned

before, the variable u in R has interval or scalar type, that is domR(u) can be either

a domain with intervals or a domain with scalars respectively. In practice this means

that a tuple in a relation has both interval and scalar values. Since t is defined as a

mapping, t(u) is used to denote the value of u in t. For a subset a ⊆ e, t[a] denotes

the tuple s over a where s(u) = t(u) for each u ∈ a. A tuple t in R may be written in

a linear syntax as a sequence, for example t = (t1, . . . , tm), where it is assumed that

the order of the values corresponds to the order in which the variables appear in the

explicit schema R({u1, . . . , uk}) or R(u1, . . . , um) of R. An instance of the relation R

with schema R(e) is a finite set which consists of tuples over e. Therefore, a relation
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stores intervals in the columns that correspond to interval variables, and respectively

scalars in the columns that correspond to scalar variables. Considering a relation R

with schema R(e), and a subset a ⊆ e, the projection of R on a, denoted by πa(R),

is the set {t[a] | t ∈ R}.

A database schema is a set of relation schemas. A database D over a schema

{R1(e1), . . . , Rn(en)}, where e1, . . . , en are finite sets of variables, is a finite non-

empty set of relation instances {R1, . . . , Rn}. Each relation instance in a database

corresponds to a relation schema in the corresponding database schema. From the

above definitions it follows that the databases considered by this thesis are extensions

of the standard relational databases, that store both scalars and intervals with scalar

endpoints, rather that just scalars.

Considering an integer k, an intersection predicate on a multi-set {x1, . . . , xk} of

intervals is the assertion ( ⋂
1≤i≤k

xi

)
6= ∅.

In this thesis intersection predicates are applied on multi-sets that include both scalars

and intervals with scalar endpoints. In this context, scalars are viewed as intervals

with coinciding endpoints. In general, an interval and a scalar intersect if and only

if the scalar is contained in the interval, and two scalars intersect if and only if they

are equal.

2.2 Conjunctive Queries with Intersection Joins

The formal definition of an IJQ follows.
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2.2.1 Syntax

An IJQ is an expression of the form

Q = 〈e, R1(e1) ∧ · · · ∧Rn(en)〉, (2.1)

where Ri(ei) for each 1 ≤ i ≤ n is a relation schema, and e ⊆
⋃

1≤i≤n ei, is the set

of free variables of the query. The main body of an IJQ consists of the set of free

variables and a conjunction of relation schemas. As mentioned earlier the type of a

variable in a relation is indicated in the corresponding relation schema by enclosing

the variable in brackets or not. Since relation schemas are used in the query syntax,

this notation is inherited in the query syntax as well. However, this does not mean

that the query determines the types of variables; those are determined in the database

on which this query is executed. The bracket notation in the query syntax can be

thought as a reminder of the types of the variables in the relations in the database.

The following definitions will be used to assist the analysis in the subsequent

sections. Define free(Q) = e be the set of free variables in the query, vars(Q) =⋃
1≤i≤n ei be the set of all variables in the query, and schema(Q) = {Ri(ei) | 1 ≤ i ≤ n}

be the set of all relation schemas in the query. The latter set is called the schema of

the query. Lastly, define ind(Q, u) = {i | u ∈ ei, 1 ≤ i ≤ n}.

A hypergraph H is a tuple (V , E), where V is a finite set of vertices, and E is a

finite multi-set of non-empty subsets of V , called hyperedges. Hypergraphs provide

an abstract way to describe the structure of a query; the relation schemas in the

query correspond to the hyperedges of the hypergraph and the variables of the query

correspond to vertices of the hypergraph. In particular, the hypergraph of the query Q

is defined by H(Q) = (V(Q), E(Q)), where V(Q) = vars(Q), and E(Q) = {e1, . . . , en}.

Because any two relation schemas in the query can be defined over the same set of

variables we have that E(Q) is a multi-set. Furthermore, the set of vertices V(Q)
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equals to the set of variables in the query therefore vertex is another term for variable

and a the term hyperedge is used to refer to the set of variables in the schema of

some relation in the query. Whenever it is clear form the context the hypergraph for

an IJQ Q is just denoted by H = (V , E) for simplicity.

2.2.2 Semantics

The notion of semantics of a query refers to the meaning or the interpretation of the

query when applied on a database. In other words, it refers to results the supposed

to produce. Consider a database D. The result of the query Q applied on D, denoted

by Q(D), is a set of tuples

{
(t1[e], . . . , tn[e])

∣∣∣∣∣ti ∈ Ri(ei) for each 1 ≤ i ≤ n, and

for each u ∈ vars(Q) :

 ⋂
i∈ind(Q,u)

ti(u)

 6= ∅}. (2.2)

One way to obtain an intuition of the above semantics, is to think that the multi-

ple occurrences of the same variable, no matter what its type is, in different relation

schemas in the query indicates an intersection predicate. The above evaluation prob-

lem is Boolean, or in other words a decision problem, if the set of free variables in

the query is empty, hence, e = free(Q) = ∅. In this case, Q(D) is true if and only

if there exists at least one tuple (t1, . . . , tn) ∈ R1 × · · · × Rn that satisfies tha query,

in other words, the set from Equation (2.2) is non-empty. In the following, in order

to simplify the syntax of Boolean IJQs, the empty set of free variables together with

the “〈”, and “〉” are omitted, therefore, the IJQ is written just as a conjunction of

relation schemas, that is Q = R1(e1) ∧ · · · ∧Rn(en).

A consequence of the above definitions, is that the IJQ problem subsumes the CQ
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problem, where the latter problem is the result of applying a CQ on a database. In

particular, the CQ problem is a special case of an IJQ problem where all the variables

in all of their occurrences in relations are of scalar type. In this case, the intersection

join predicate  ⋂
i∈ind(Q,u)

ti(u)

 6= ∅ (2.3)

in the expression of Equation (2.2) is equivalent to the statement “ti(u) = ξ for

each i ∈ ind(Q, u), where ξ is a scalar”. As a result, CQs are special cases of IJQs.

Note that in the case of a CQ evaluation problem, the proposed representation of

the output (Equation (2.2)) is non-standard [1]; the standard way is to represent the

output Q(D) as a relation over the free variables of the query free(Q) or e. Although

the representations are different, in practice, they represent the same result; there is

a one to one correspondence between the tuples in the standard representation and

the tuples in the representation from Equation (2.2). In particular, each tuple t′ from

the relational representation of the output would correspond to a tuple t from the set

of Equation (2.2), and t′ can be obtained by assigning to t′(u) the value ξ, for each

u ∈ free(Q). In general, it is more practical to use the relational representation of the

output when a CQ evaluation problem in encountered [1]. In the following, whenever

the relational representation of the output is employed, it is stated explicitly.

Naive Evaluation

The naive approach to evaluating an IJQ Q on a database examines all possible com-

binations of tuples that satisfy the query. This approach does not take advantage

of any indexing or optimization techniques, and can be highly inefficient for large

databases. Assuming that N is the size of each relation in the database, the naive

approach can be implemented using nested loops ([51]), and requires O(N |schema(Q)|)

steps. In combined complexity, that is an exponential number of steps, and it is

14



natural to wonder whether there exists a subclass that admits polynomial time com-

putation. In data complexity, that is a polynomial in the size of the data number

of steps. In this case, a reasonable goal is to make the exponent lower. Because the

query is often much smaller than the database, data complexity is widely seen more

relevant to database research [46].

2.3 Examples

Two running example queries are introduced next. They are also used to explain the

newly introduced theory in the following chapters.

Example 2.3.1 (The Triangle IJQ). Consider the full Triangle IJQ

a

b c

Q4 = 〈{a, b, c}, R1([a], [b]) ∧R2([b], [c]) ∧R3([a], [c])〉

The query Q4 has three intersection joins on a, b, and c. Furthermore, it has a

hypergraph H(Q) = (V(Q), E(Q)) with V(Q) = {a, b, c}, and E(Q) = {{a, b}, {b, c},

{c, a}}, which is illustrated above. Consider a database D = {R1, R2, R3}, where

R1 stores intervals in both columns a and b, R2 stores intervals both columns b and

c, and R3 stores intervals in both columns a and c. An example database, together

with the result of the query are illustrated in Figure 2.1. By the semantics of IJQs

(Section 2.2), the result Q4(D) is a set of tuples such that (r, s, t) ∈ Q4(D) if and

only if (r, s, t) ∈ R1 × R2 × R3 and (r(a) ∩ t(a)) 6= ∅; and (r(b) ∩ s(b)) 6= ∅; and

(s(c) ∩ t(c)) 6= ∅.

Example 2.3.2 (A Generic IJQ). Consider the Boolean IJQ
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R1

a b

r1: [1, 5] [1, 8]
r2: [5, 7] [2, 8]
r3: [5, 8] [1, 8]

R2

b c

s1: [3, 4] [5, 6]
s2: [4, 4] [8, 10]
s3: [4, 8] [10, 11]
s4: [10, 12] [2, 6]

R3

a c

t1: [2, 6] [1, 6]
t2: [6, 10] [11, 15]

Result

r1 s1 t1
r2 s1 t1
r2 s3 t2
r3 s1 t1
r3 s3 t2

Figure 2.1: A database instance for the Triangle IJQ.

a b c

Q = R1(a, [b], [c]) ∧R2(a, [b]) ∧R3(b, [c])

The query Q is Boolean, and has three intersection joins on a, b, and c. Further-

more, it has a hypergraph H(Q) = (V(Q), E(Q)) with V = {a, b, c}, and E(Q) =

{{a, b, c}, {a, b}, {b, c}}, which is illustrated above. Consider a database D = {R1,

R2, R3}, where R1 stores scalars in column a, and intervals in both columns b and

c, R2 stores scalars in column a and intervals in column b, and R3 stores scalars

in column b and intervals in column c. By the semantics of IJQs (Section 2.2), the

result Q(D) is true if and only if there exists a tuple (r, s, t) ∈ R1×R2×R3 such that,

r(a) = s(a), since a ranges over scalars in both R1 and R2; t(b) ∈ (r(b)∩ s(b)), since

b ranges over scalars in R3 and over intervals in R2 and R2; and (r(c) ∩ t(c)) 6= ∅,

since c ranges over intervals in both R1 and R3.
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Chapter 3

Background & Related Work

This chapter provides a summary of the background materials used in the thesis, and

the related work.

Notation. The symbol Õ means O with hidden logarithmic factors. Given an

interval i, its left endpoint is denoted by i.start and its right endpoint is denoted by

i.end. Given any tree T , V (T ) is used to denote the set of nodes in the tree, and

root(T ) is used to denote the root of the tree. Given any node u of a binary tree,

parent(u) denotes the parent of u; anc(u) denotes the set of ancestors of u, including

u, lc(u) (respectively rc(u)) denotes the left child (respectively right child) of u.

Terminology. When one studies the complexity of database queries, it is critical

to specify whether the combined or data complexity is being considered. In combined

complexity, both the query and the database sizes are considered as parameters in

the complexity. On the other hand, in data complexity, the size of the query is

assumed to be constant, therefore only the size of the database is considered as a

parameter in the complexity [46]. An algorithm runs in quasi-linear time if T (N) =

O(N · logkN) for some positive constant k. An enumeration algorithm for query

evaluation consists of two phases, preprocessing, and enumeration. The algorithm
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performs some preprocessing on the query and the database during the preprocessing

phase. The algorithm enumerates all tuples in the result during the enumeration

phase [12]. The 3SUM conjecture states that it cannot be determined if a given set of

N real numbers contains three elements that sum to zero, in time O(N2−ε), for some

ε ≥ 0 [48].

Organisation. Section 3.1 reviews existing acyclicity notions for CQs or hyper-

graphs, such as, alpha (α); gamma (γ); and Berge acyclicity, and width measures,

such as the fractional hypertree width (fhtw); and the sub-modular width (subw).

Section 3.2 reviews algorithms for the evaluation of CQs. The definition of the seg-

ment tree and its properties are given in Section 3.3. Section 3.4 provides a literature

review on algorithms for the evaluation of join on interval data.

3.1 Hypergraphs

Hypergraphs are widely considered in studies on query evaluation [25, 10, 58, 8, 31,

29], because they provide a simple means of describing the structure of a query. The

formal definition of a hypergraph follows.

Definition 3.1.1 (Hypergraph). A (multi-)hypergraph H is a tuple (V , E), where

V is a finite set of vertices and E is a multi-set of non-empty subsets of V called

hyperedges, in other words, E ⊆ 2V \ {∅}, where 2V is the power set of V.

A query or a database schema is associated with a hypergraph in the following way:

each variable is associated to a vertex of the hypergraph, and each relation schema

is associated to a hyperedge of the hypergraph. As a result, certain properties of a

query or a database schema can be studied by taking into account the properties of

its hypergraph. For example, acyclicity and width are two important properties that

can be studied using hypergraphs.
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3.1.1 Acyclicity

An acyclic hypergraph corresponds to a schema without cyclic dependencies between

relations. The absence of cycles can simplify query processing and optimization,

making it easier to find efficient query evaluation strategies. A query or database

schema is acyclic if its associated hypergraph is acyclic. Several types of acyclicity

relevant to this thesis are defined in the following, including alpha (α), gamma (γ),

and Berge. Figure 1.2 illustrates their relationship.

Alpha

The class of α-acyclic CQs has been found to admit efficient evaluation algorithms,

both in combined and in data complexity [1]. Previous work achieved several charac-

terizations of α-acyclicity [1, 16, 25]. Definition 3.1.8 includes those that are relevant

to this thesis. However, before moving on to the definition, it is necessary to define

some preliminary concepts and describe how they lead to those characterizations.

Consider a hypergraphH = (V , E). The induced sub-hypergraph ofH on S ⊆
⋃
E

is obtained by removing from H the vertices in V \ S.

Definition 3.1.2 (Induced Sub-hypergraph [16]). Consider a hypergraph H = (V , E).

The induced hypergraph of H on S ⊆
⋃
E is a hypergraph, denoted by H[S], whose

multi-set of hyperedges, denoted by E [S], is defined by {e ∩ S | e ∈ E} \ {∅}.

Furthermore, the minimization of the hypergraph H is obtained by removing from H

the hyperedges that are included in another hyperedge.

Definition 3.1.3 (Minimisation of a Hypergraph [16]). Consider a hypergraph H =

(V , E). The minimization of H is a hypergraph, denoted by M(H), whose set of

hyperedges, denoted by M(E), is defined by {e ∈ E | @f ∈ E(e ⊂ f)}.
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A

B C

(a) ¬ conformal ∧ ¬ cycle-free

A

B C

D

(b) ¬ conformal ∧ cycle-free

A

B C

(c) conformal ∧ cycle-free

A B

C D

(d) conformal ∧ ¬ cycle-free

Figure 3.1: This figure exemplifies the properties of conformal and cycle-free hypergraphs (origi-
nally presented in [16]). Figure 3.1a shows a hypergraph that is ¬ conformal ∧ ¬ cycle-free. Fig-
ure 3.1c shows a hypergraph that is conformal ∧ cycle-free. Figure 3.1b shows a hypergraph that is
¬ conformal ∧ cycle-free. Figure 3.1d shows a hypergraph that is conformal ∧ ¬ cycle-free.

Definition 3.1.4 (Conformal Hypergraph [16]). A hypergraph H = (V , E) is confor-

mal if there is no subset S ⊆ V, with cardinality ≥ 3 such that

M(E [S]) = {S \ {x} | x ∈ S}. (3.1)

Definition 3.1.5 (Cycle-Free Hypergraph [16]). A hypergraph H = (V , E) is cycle-

free if there is no subset S = {v1, . . . , vn} ⊆ V with n ≥ 3 such that:

M(E [S]) = {{vi, vi+1} | 1 ≤ i < n} ∪ {{vn, v1}}. (3.2)

Figure 3.1 illustrates four example hypergraphs which explain the properties of con-

formity and cycle-freedom. Both properties lead to a characterization for α-acyclicity,

which is, a hypergraph is α-acyclic if it is both conformal and cycle-free. This char-

acterization is due to Brault-Baron [16].

The Gyo reduction takes as an input a hypergraph and modifies it iteratively [28].

The definition of Gyo-reducible hypergraph is given next.
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Definition 3.1.6 (Gyo-reducible Hypergraph [16]). A hypergraph H = (V , E) is

Gyo reducible if by repeatedly applying the following steps it can be transformed to

the empty hypergraph: (1) if a vertex v ∈ V occurs in only one hyperedge e ∈ E, then

remove v from e; and (2) if two distinct edges e, f ∈ E satisfy e ⊂ f , then remove e.

The Gyo reduction is used in another characterization for α-acyclicity, in partic-

ular, a hypergraph is α-acyclic if and only if it is Gyo-reducible [16].

Another characterisation is the following: a hypergraph is α-acyclic CQ if and

only if it has a join tree [1]. In the evaluation of a α-acyclic CQ, the join tree can be

also used as a form of a join plan for the corresponding CQ [58]. The definition of

the join tree of a hypergraph follows.

Definition 3.1.7 (Join Tree of a Query). A join tree of a CQ Q with hypergraph

H = (V , E) is a tuple (T , χ) where T is a tree and χ is a bijection of the form

χ : V (T ) → E, where for every vertex v ∈ V, the set {t | t ∈ V (T ), v ∈ χ(t)} is a

non-empty connected sub-tree of T .

The following are the characterizations of α-acyclicity mentioned above.

Definition 3.1.8 (α-acyclic Hypergraph [16, 1]). Consider a hypergraph H. The

following statements are equivalent:

• The hypergraph H is α-acyclic;

• The hypergraph H has a join-tree (Definition 3.1.7);

• The hypergraph H is Gyo-reducible.

• The hypergraph H is conformal and cycle-free (Definition 3.1.4 and 3.1.5).

Free-connexity

Free-connexity is a property of α-acyclic CQs that is related to the existence of

efficient evaluation algorithms that use linear time preprocessing and constant delay
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enumeration of the tuples in their output [52].

Definition 3.1.9 (Free-connex α-acyclic CQ [52]). Consider an α-acyclic CQ Q over

the hypergraph H = (V , E). The query Q is free-connex if the hypergraph whose set

of hyperedges is E ∪ {free(Q)} is α-acyclic as well.

Gamma

The notion of γ-acyclicity which is defined next, implies α-acyclicity, and is implied

by Berge-acyclicity, cf. Figure 1.2.

Definition 3.1.10 (γ-acyclic Hypergraph [16]). Consider a hypergraph H = (V , E).

H is γ-acyclic if and only if H is cycle-free and there exist no distinct vertices x, y, z ∈

V such that {{x, y}, {x, z}, {x, y, z}} ⊆ E [{x, y, z}].

Berge

The class of Berge-acyclic hypergraphs is a subset of the class of γ-acyclic hypergraphs

cf. Figure 1.2. Berge-acyclicity is defined next using the notion of a Berge cycle [25].

Definition 3.1.11 (Berge Cycle [25]). Consider a hypergraph H = (V , E). A Berge

cycle in H is a sequence (e1, v1, e2, v2, . . . , en, vn, en+1) such that:

• v1, . . . , vn are distinct vertices in V;

• e1, . . . , en are distinct hyperedges in E and en+1 = e1;

• n ≥ 2, that is, there are at least 2 hyperedges involved; and

• vi is in ei and ei+1 for each i ∈ [1, n].

Definition 3.1.12 (Berge Acyclic Hypergraph [25]). A hypergraph is Berge-acyclic

if it has no Berge cycle.
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3.1.2 Width Measures

This section presents two notions of width that are used to express the data complexity

of CQs. Those are the fractional hypertree width [31], and the sub-modular width [43].

We start by introducing some initial concepts, and then proceed to formally define

the notions of width mentioned above.

Definition 3.1.13 (Fractional Edge Cover Number [8]). Let H = (V , E) be a hyper-

graph. The fractional edge covers of S ⊆ V are the feasible solutions (xe)e∈E for the

following linear program

minimise
∑

e∈E xe

subject to
∑

e:v∈e xe ≥ 1 ∀ v ∈ S

xe ≥ 0 ∀ e ∈ E.

and the fractional edge cover number, ρ∗E(S), is the cost
∑

e∈E xe of the optimal solu-

tion. The minimum exists, and it is rational.

Definition 3.1.14 (Polymatroid [5]). Consider the vertex set V. A function f : 2V →

R+ is a (non-negative) set function on V. A set function f on V is

• monotone if f(X) ≤ f(Y ) whenever X ⊆ Y ; and

• submodular if f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for all X, Y ⊆ V.

A monotone, submodular set function h : 2V → R+ with h(∅) = 0 is a polymatroid.

ΓV denotes the set of all polymatroids h : 2V → R+ over the set V .

Definition 3.1.15 (Edge Dominated Set Functions [43, 5]). Consider a hypergraph

H = (V , E). The set of edge-dominated set functions is defined as follows

ED(H) = {h | h : 2V → R+, h(S) ≤ 1,∀S ∈ E}. (3.3)

23



Definition 3.1.16 (Hypertree Decomposition [29]). The hypertree decomposition of

a hypergraph H is a pair (T , χ), where T is a tree whose set of vertices is denoted by

V (T ), and χ : V (T )→ 2V maps each node t of the tree T to a subset χ(t) of vertices

such that the following properties hold:

1. every hyperedge e ∈ E is a subset of a set χ(t) for some t ∈ V (T ), and

2. for every vertex v ∈ V, the set {t | t ∈ V (T ), v ∈ χ(t)} is a non-empty connected

subtree of T .

The sets χ(t) are called the bags of the hypertree decomposition. Let TD(H) denote

the set of hypertree decompositions of a given hypergraph H.

Fractional Hypertree Width

The fractional hypertree width was introduced by Grohe and Marx [31]. It can

be computed by combining the concepts of the hypertree decomposition and the

fractional edge cover number.

Definition 3.1.17 (Fractional Hypertree Width [31]). Consider a hypergraph H =

(V , E). The fractional hypertree width of H is defined by:

fhtw(H) = min
(T ,χ)∈TD(H)

max
t∈V (T )

ρ∗E(χ(t)). (3.4)

The following is an alternative characterization for fhtw(H), originally derived in [5]:

fhtw(H) = min
(T ,χ)∈TD(H)

max
h∈ED(H)∩ΓV

max
t∈V (T )

h(χ(t)). (3.5)

Sub-modular Width

The sub-modular width was introduced subsequently by Marx [43].
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Definition 3.1.18 (Sub-modular Width [43]). Given a hypergraph H = (V , E), the

sub-modular width of H is defined by:

subw(H) = max
h∈ED(H)∩ΓV

min
(T ,χ)∈TD(H)

max
t∈V (T )

h(χ(t)), (3.6)

where ED(H) denotes the set of edge dominated set functions over H, and ΓV denotes

the set of polymatroids over V.

It has been proven that subw(H) ≤ fhtw(H) for any hypergraph H [43, 5]. Addi-

tionally, there are classes of CQs with bounded sub-modular width and unbounded

fractional hypertree width [43].

3.2 Conjunctive Queries

The class of Conjunctive queries (CQs) is fundamental in database theory. CQs

are specific types of logical queries that can be expressed using a conjunction and

existential quantification, which makes them highly expressive and useful for appli-

cations. They may also appear as parts of other more complex first order queries.

The definition of CQs and in general the CQ evaluation problem is given implicitly

in Section 2.2 by explaining that CQs are special cases of IJQs. More information

about CQs can be found in the seminal article about CQs [19], and also in database

theory textbooks [1]. This section reviews algorithms for the evaluation of CQs and

the complexity bounds that are associated with them.

3.2.1 Complexity Bounds

The complexity of CQs is an important topic of research, as it has implications for

the efficiency and scalability of query processing algorithms. CQs are NP-complete in

terms of the combined complexity [19], whereas their data complexity is polynomial.
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Concepts related to data complexity bounds for CQs are discussed in the following.

The AGM Bound

Consider a CQ Q with hypergraph H = (V , E). In the case where Q is a full CQ,

the fractional edge cover number of H is associated with a bound on the worst-case

answer size of Q for any database [8, 31]. In particular, for any database D, the size

of Q(D) is at most O(Nρ∗E(V)), where N is the size of the database. This bound is

known as the AGM bound [8].

Fixed-parameter Tractability

The subclass of Boolean CQs is fixed-parameter tractable with parameter |Q|, if

there exists an algorithm that computes every Boolean CQ in that subclass in time

f(|Q|) ·N c for some fixed constant c, where f is any computable function, |Q| is the

number of symbols in Q, and N is the size of the database [43, 32]. A sub-class of

Boolean CQ is fixed-parameter tractable with parameter |Q|, and thus can be solved

in polynomial time if and only if every Boolean CQ in this sub-class has a bounded

sub-modular width (subw(Q)) [43].

3.2.2 Evaluation Algorithms

A review of known algorithms that match the above-mentioned bounds follows.

Yannakakis’s Algorithm

An α-acyclic Boolean CQ can be evaluated in time linear in the size of the input

database. Furthermore, a full CQ with the same schema can be evaluated in time

linear in the input plus output size. The α-acyclic CQs, which are also free-connex,

can be evaluated by an enumeration algorithm which uses linear time preprocessing
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in the size of the data, followed by constant delay enumeration of the tuples in the

output. All the above can be achieved using Yannakakis’s algorithm [58].

Proposition 3.2.1 (Combined Complexity for α-acyclic CQs [1]). Consider an

α-acyclic CQ Q, and a matching input database D. There exists an algorithm that

evaluates Q on D in time polynomial in the size of the query, the input, and the

output.

Proposition 3.2.2 (Data Complexity for α-acyclic CQs [52]). Consider a CQ Q

over the hypergraph H = (V , E), and a matching input database D. If the 3SUM

conjecture holds, then Q is α-acyclic free-connex if and only if Q can be evaluated

by an enumeration algorithm that uses linear time preprocessing, and constant delay

enumeration of the tuples in the output.

Worst-case Optimal Join Algorithms

In the case of a full, not necessarily α-acyclic CQ, there exist join algorithms whose

worst-case runtime matches the AGM bound up to a log factor [44, 55]. One of them is

called Leapfrog Triejoin [55]. Those algorithms are called worst-case optimal because

their runtime is linear in the size of the maximum output. Consider a Boolean CQ

Q. By combining Yannakakis’s algorithm with worst-case optimal algorithms one can

obtain an algorithm with Õ(N fhtw(H)) runtime. This algorithm first materializes each

bag of the hypertree decomposition of Q (Definition 3.1.16) by computing the full

CQ associated with the bag, using a worst-case optimal algorithm, and then, applies

Yannakakis’s algorithm [58] on the α-acyclic Boolean CQ, using the join tree obtained

as a result of the materialisation of the bags.

The Panda algorithm, introduced by Khamis et al. [5], computes any Boolean

CQ in time Õ(N subw(H)). It has also been extended to handle CQs with inequalities

(FAQ-AI) [2].
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Figure 3.2: An example segment tree. This segment tree is built over a multi-set of intervals with
endpoints {1, 3, 4}.

3.3 The Segment Tree

The segment tree is a data structure that serves as an index of a multi-set of inter-

vals [11]. The following definition of a segment tree is similar to the definitions given

in [15, 22].

Definition 3.3.1 (Segment Tree [22]). Let I be a multi-set of n intervals. Let

p1, . . . , pm be the sequence of the distinct endpoints of the intervals in ascending or-

der (m ≤ 2n). Consider the following disjoint intervals called elementary segments:

(−∞, p1), [p1, p1], (p1, p2), [p2, p2], . . . , (pm−1, pm), [pm, pm], (pm,+∞). The segment

tree TI for I is a complete binary tree with the following properties.

• The leaves of TI correspond to the elementary segments created by ordering the

endpoints of the intervals in I: the leftmost leaf corresponds to the leftmost ele-

mentary segment, and so on. The elementary segment corresponding to a leaf v is

denoted by segI(v).

• Each internal node u of TI is associated with a set of segments which is the union

of elementary segments of the leaves of the subtree rooted by u: the segment segI(u)
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corresponding to an internal node u is the union of the elementary segments segI(v)

at the leaves v in the subtree rooted at u.

• Each node v is associated with a multi-set of intervals called canonical subset, de-

fined as

Iv = {i ∈ I | segI(v) ⊆ i, segI(parent(v)) 6⊆ i}. (3.7)

• Each node of a segment tree is uniquely identified by a bit-string. The root corre-

sponds to the empty bit-string, its left child is the bit-string ’0’, its right child has

the bit-string ’1’, and so on.

Given an interval or scalar x, leafI(x) denotes the leaf that corresponds to the left

endpoint of the interval x, namely x.start, or corresponds to x, in case x is a scalar.

Since TI is a complete binary tree with 2 ·m + 1 = O(n) leaves, the size of V (TI)

is O(n), and the height of the tree is O(log n). The overall construction time of the

segment tree is O(n · log n) [22].

Example 3.3.2 (Canonical Subsets). Consider the segment tree in Figure 3.2. The

interval [1, 4] is contained in the canonical subsets of the nodes 001, 01, and 10. The

interval [3, 4] is contained in the canonical subsets of the nodes 011 and 10.

Property 3.3.3 (Ancestor Inclusion). Let u, v ∈ V (TI). It holds that u ∈ anc(v) if

and only if segI(u) ⊇ segI(v). Equivalently, it holds that u ∈ anc(v) if and only if u

is a prefix of v.

3.3.1 Canonical Partition

This subsection defines the notion of an interval’s canonical partition [15].

Definition 3.3.4 (Canonical Partition of an Interval [15]). Let I be a set of intervals
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and x ∈ I. The Canonical Partition of x with respect to I is a set defined by:

cpI(x) = {u ∈ V (TI) | x ∈ Iu}. (3.8)

The nodes in cpI(x) are represented by bit-strings, hence cpI(x) can be considered as

a set of bit-strings.

The canonical partition of an interval x is a set of nodes cpI(x) such that the

segments associated to the nodes in cpI(x) are pairwise disjoint, and by taking the

union of those segments one can “reconstruct” x. Furthermore, any path that starts

from the root and ends up in a leaf that corresponds to a value in x contains exactly

one node from cpI(x).

Example 3.3.5 (Canonical Partition). Consider the segment tree from Figure 3.2.

The canonical partition of the interval [1, 4] is the set of nodes {001, 01, 10}.

Property 3.3.6. For any interval x ∈ I, there cannot be two distinct nodes in cpI(x)

that are ancestors of one another.

Proof. Assume that there exist two distinct nodes u, v ∈ cpI(x) such that u is an

ancestor of v. By Property 3.3.3, we have segI(u) ⊇ segI(v). This is a contradiction

because the segments in {segI(v) | v ∈ cpI(x)} do not overlap.

Property 3.3.7 (Canonical Partition Size [15]). For any interval x ∈ I, its canonical

partition cpI(x) has O(log n) size.

Proof. This proof is based on arguments originally introduced in [22]. Given an

interval x ∈ I, there are no three nodes in cpI(x) that are at the same depth. For

contradiction, suppose that the nodes v1, v2, v3 are at the same depth, numbered

from left to right. Suppose v1, v2, v3 ∈ cpI(x). It follows that x covers the entire

interval from the left endpoint of segI(v1) to the right endpoint of segI(v3). Since v2
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is between v1 and v3, segI(parent(v2)) must be contained in x. Hence, v2 /∈ cpI(x).

Contradiction. Since cpI(x) includes at most 2 nodes from each level of the segment

tree, its size is O(log n).

Property 3.3.8 (Canonical Partition Construction Time [15]). For any interval x ∈

I, the canonical partition of x can be constructed in O(log n) time.

3.3.2 Query

Consider a point p and a segment tree TI . The procedure Query(TI , p) (Algorithm 1)

returns the leaf whose elementary segment contains the point p. The algorithm visits

one node at each level of the segment tree, therefore, its runtime is O(log n).

Algorithm 1 Segment Tree Query

1: procedure Query(TI : segment tree, p: point)
2: v = root(T);
3: while v is not a leaf do
4: if p ∈ segI(lc(v)) then
5: v = lc(v);
6: else
7: v = rc(v);
8: end if
9: end while

10: return v;
11: end procedure

3.4 Literature Review

Algorithms for intersection joins have been developed in the context of temporal [27]

and spatial databases [40, 34]. In temporal databases, the tuples are associated with

intervals that represent the valid periods of the tuples. Temporal or interval joins are

used to combine tuples that are valid at overlapping/intersecting time periods [27,

23]. In spatial databases, the tuples are associated with multi-dimensional objects
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that are approximated by intervals in the multi-dimensional space called Minimum

Bounding Rectangles (MBRs). Spatial joins are used to find pairs of tuples associated

with objects with overlapping MBRs as a filtering step, and then compute the pairs

of tuples whose objects intersect as a refining step [40, 54, 34]. According to the

definition of IJQs in Section 2.2, temporal and spatial joins in the stage of filtering

are special cases of IJQs.

3.4.1 Two-way Joins

The nested-loop join is an algorithm for computing the join of two relations and can be

generalised in the case of more than two relations in a simple way. It can be used with

any predicates, for instance, equality, intersection, and distance predicates [51, 40].

Hence, it is suitable for the computation of IJQs. The drawback of the nested-loop

join is that its runtime is upper bounded by the size of the Cartesian product of

the two relations. For this reason, several attempts have been made to optimize its

performance using indexes [51].

Consider the simplified problem of having two sets of axis-parallel rectangles, for

example MBRs, and the goal of reporting all the pairs of rectangles, from the cross-

product of the two sets that intersect. Algorithms that solve this problem in the con-

text of spatiotemporal databases are usually classified as partition-based algorithms,

and index-based algorithms [40, 34]. Examples of partition-based algorithms are the

partition based spatial-merge join [47], the spatial hash join [39], the size separation

spatial join [37], and the scalable sweeping-based spatial join [7]. Partition-based

algorithms can be naturally used in parallel and distributed settings [54]. Examples

of index-based algorithms are the R-tree join [17], the seeded-tree join [38], and re-

lational interval tree join [24]. The majority of the work listed above is focused on

external-memory evaluation, which is becoming less interesting because in-memory

data management is becoming more available. However, by applying modifications,
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for example storing indexes in main memory for faster retrieval data, the external-

memory algorithms under consideration in the following, can be used for in-memory

computation [40, 34].

The plane-sweep approach, that stems from computational geometry, provides

another way to solve the above problem [50]. It is based on the idea of employing a

vertical line that moves across the plane; if two rectangles intersect with the sweep

line at the same time, it suggests that they might intersect with each other. Several

variations of the sweep-line were developed later on, such as the endpoint based

intersection [49], and the scalable sweeping based spatial join [7], which are both

focused on the join of two sets of intervals instead of rectangles. Those algorithms

compute two-way interval intersection joins in O(N · logN +out), where out is the

output size and N is the input size. Plane-sweep based algorithms are designed to run

in main memory, hence, they are frequently used as building blocks to improve the

main memory performance of algorithms which run in external memory. Modern main

memory data management and the availability of distributed systems that process the

data in main memory has motivated research to further optimise and parallelise the

plane-sweep method [49, 13].

3.4.2 Multi-way Joins

Multi-way joins involve the join of more than two input tables. Algorithms for multi-

way intersection joins have seen less progress than algorithms for two-way intersection

joins. A simple approach to solve multi-way intersection joins is to employ two-

way joins [41], and focus on the optimisation of the join ordering. However, this

approach can produce intermediate results that are much larger than the final result

on certain database instances, leading to sub-optimal running time [33]. As mentioned

previously in Section 1.1, this is an issue for CQs as well [45]. Hu et al. [33] studied a

special case of the IJQ problem; they considered CQs with one interval variable that
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occurs in all relation schemas in the query. That is, the query has a single multi-

way intersection join. They proposed an approach based on worst-case optimal join

algorithms [45], which avoids producing large intermediate results.
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Chapter 4

Prelude: Using Segment Trees for

Solving IJQs

This chapter presents novel methods for effectively solving IJQs by utilizing the seg-

ment tree data structure. Two key algorithms are introduced, (1) an enumeration

algorithm, called SetIJ, that computes the intersection join of k sets of intervals of

size N using O(k2 ·N · log(k ·N)) preprocessing time, and constant delay enumeration

of the tuples in the output; and (2) a simple reduction from the problem of evalu-

ating any IJQ to the problem of evaluating a union of CQs, called Intersection Join

Decomposition (IJDec). Interestingly, the IJDec reduction shows that the Boolean

Triangle IJQ can be computed in Õ(N3/2) time in data complexity, and the full Trian-

gle IJQ can be computed in Õ(N3/2) pre-processing and constant delay enumeration

of the tuples in the output. The IJDec reduction is refined in Chapter 5, to lead to

more efficient algorithms for the computation of Boolean IJQs, with respect to data

complexity. It also leads to the derivation of lower bounds.

Organization. The SetIJ algorithm is described in Section 4.1. The IJDec re-

duction is described in Section 4.2.

35



Notation. Given a sequence s of elements, the ith element in the sequence is de-

noted by si, that is s = (s1, . . . , sk) for some integer k. The sequence (s1, . . . , sk) is

also denoted by (s1)1≤i≤k, and the same sequence with the jth element omitted is

denoted by (si)1≤i≤k,i6=j. Given an integer k, the expression [1, k] is used to denote

the set of all integers from 1 to k.

Terminology. Given a variable v, the set of all v-values in a database consists of all

the values of all columns named v in the database. Linked lists are used instead of sets

or multi-sets to indicate that the elements of the set or multi-set can be structured

in such a way using pointers so that given a pointer that points one element from the

set, the rest of the elements can be accessed one after the other with constant delay.

Given a hypertree decomposition of a CQ (Definition 3.1.16), the materialisation of a

bag in the decomposition is a relation which is the result of the full CQ which arises

by projecting all the relations of the input CQ on the variables which are included in

the bag.

4.1 Set Intersection Join

This section describes an enumeration algorithm, called SetIJ, which computes the

intersection join of N multi-sets of intervals of size N . This algorithm uses O(k2 ·

N · log(k · N)) preprocessing time, and constant delay enumeration of the output.

It is inspired by Chazzelle’s approach to counting the number of intersecting pairs

between two sets of intervals in two dimensions [20]. The set intersection join problem

is a special case of the general IJQ evaluation problem addressed by this thesis. As

a result, the above complexity result is implied by the developments that follow in

Section 4.2, and also in Chapter 5. Nonetheless, the description of this algorithm

is included in this thesis because it is simple and contains key ideas that led to the

results presented in the following.
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Figure 4.1: This figure illustrates a part of a segment tree over three sets of intervals: a red, a
green, and a blue. The leaf v, then, is associated with three linked lists, one for each one of the sets.
Each linked list consist of the intervals from the corresponding set, that cover the segment of v.

4.1.1 The Algorithm

Before moving on to the description of the algorithm, it is essential to make a few

adjustments to the segment tree (Section 3.3). Consider k multi-sets of intervals

S1, . . . , Sk, and a segment tree over the multi-set I =
⋃

1≤i≤k Si. The first adjustment

is that each node u is associated with k canonical subsets I iu for each i ∈ [1, k], such

that I iu ⊆ Si and Iu =
⋃

1≤i≤k I iu. Recall that Iu is defined in Equation (3.7). The

second adjustment is that each leaf v is associated with k linked lists Liv, for each

i ∈ [1, k], where each linked list is constructed as follows: starting from the empty

linked list, append to it all the linked lists that represent the canonical subsets of

the nodes that lie along the path from v towards the root. Appending two linked

lists takes O(1). Therefore, this can be done in O(k ·N · log(k ·N)) by traversing all

the paths that start from a leaf and end up at the root. The linked lists associated

with the leaves do not occupy extra space; this becomes obvious by checking the

illustration in Figure 4.1. Furthermore, by construction, the multi-set represented by

Liv contains all the intervals from Si that cover the segment segI(v).

Algorithm 2 receives as an input k multi-sets S1, . . . , Sk of intervals. It returns as

an output S, which is a data structure that one can use to enumerate the tuples of
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Algorithm 2 Set Intersection Join — Preprocessing

1: procedure SetIJ(S1, . . . , Sk: k lists of intervals)
2: Construct a segment tree TI over I =

⋃
i∈[k] Si.

3: Set S = {};
4: for each 1 ≤ i ≤ k do
5: for each si ∈ Si do
6: u = Query(root(TI), si.start)
7: if Lju 6= ∅ for each 1 ≤ j ≤ k, i 6= j then
8: Insert the tuple (si, (Lju)1≤j≤k,j 6=i) to S;
9: end if

10: end for
11: end for
12: return S;
13: end procedure

intersecting intervals from S1 × · · · × Sk. The steps to construct S are described as

follows. For each interval si ∈ Si collect all the intervals from all the multi-sets other

than Si that contain the left endpoint of si, which is si.start, using as a subroutine

Algorithm 1. Let Lju be the linked list that consists of all the intervals in Sj that

contain si.start, for each j ∈ [1, k], j 6= i. If Lju 6= ∅ for each j ∈ [1, k], j 6= i, which

means at least one interval from each list is collected, then the tuple (si, (Lju)1≤j≤k,j 6=i)

is inserted to S. Note that in this context Lju represents a pointer to the corresponding

linked list and not the entire list. The procedure described above is repeated for each

i ∈ [1, k]. The algorithm returns the data structure S.

Algorithm 3 Set Intersection Join — Enumeration

1: procedure Enumeration(S: output from Algorithm 2)
2: for each tuple in S do
3: Report the tuples from Equation (4.1);
4: end for
5: end procedure

Using the data structure S, which was constructed during the preprocessing phase

(Algorithm 2), one can enumerate all the tuples of intersecting intervals in S1×· · ·×Sk

(Algorithm 3). This can be done by iterating through each tuple (si, (Lju)1≤j≤k,j 6=i)
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in S, and reporting all the tuples in

(
×

1≤j<i
Lju

)
× {si} ×

(
×
i<j≤k

Lju

)
. (4.1)

For each si at least one tuple from the output is reported. Additionally, the next

tuple can be accessed with a constant delay, enabling the enumeration of all tuples

in the output one after the other with constant delay.

4.1.2 Correctness

This subsection provides a proof of the algorithm’s correctness (Proposition 4.1.2),

which relies on the following crucial property.

Property 4.1.1 (Starting Point of an Intersection). Given any tuple of intersecting

intervals (s1, . . . , sk) ∈ S1 × · · · × Sk, the starting endpoint of their intersection coin-

cides with the starting endpoint si.start of the interval with the rightmost left endpoint

among s1, . . . , sk. The point si.start is called the starting point of the intersection of

the intervals s1, . . . , sk.

Proposition 4.1.2 (Set Intersection Correctness). A tuple (s1, . . . , sk) ∈ S1×· · ·×Sk

is reported by Algorithm 3 if and only if the intervals in the tuple intersect. Further-

more, each tuple of intersecting intervals is reported only once.

Proof. “ ⇐= ”: Assume there exists a tuple of intersecting intervals (s1, . . . , sk) ∈

S1 × · · · × Sk. According to Property 4.1.1, the starting endpoint of the interval⋂
1≤i≤k si coincides with the starting endpoint si.start for some i ∈ [1, k]. During

the preprocessing phase, Algorithm 2, takes the interval si ∈ Si and collects all the

subsets Lju ⊆ Sj, such that if si.start ∈ sj then sj ∈ Lju, for each j ∈ [1, k], j 6= i. In

the enumeration phase (Algorithm 3), takes the interval si and reports all the tuples

in the Cartesian product of Equation (4.1). Therefore, the tuple (s1, . . . , sk) will be

reported by Algorithm 3.
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In case any two intervals xi, xj in (x1, . . . , xk) have coinciding left endpoints, the

tuple of intersecting intervals (x1, . . . , xk) will be found in two iterations, one that

collects all intervals that cover xi.start, and one that collects all the intervals that

cover xj.start. To ensure that each intersection is reported once, one can apply the

following adjustment: on the i-th iteration, the left endpoints of the intervals of the

lists Sj for each j ∈ [1, k], i < j are considered to be open. Assume that xi, xj in

(x1, . . . , xk) have coinciding left endpoints and i < j, then the tuple (x1, . . . , xk) will

be found only in the j-th iteration.

“ =⇒ ”: Consider a tuple (s1, . . . , sk) ∈ S1 × · · · × Sk that is reported by Algo-

rithm 3. Let si be the interval with the leftmost right endpoint. Since the tuple is

reported, it means that sj ∈ Lju for each j ∈ [1, k], i 6= j. All the intervals included

in the linked lists Lju for each j ∈ [1, k], i 6= j have a point in common, that is the

point si.start. Hence, the intervals sj for each j ∈ [1, k], i 6= j have the point si.start

in common. Therefore, it holds that
(⋂

1≤i≤k si

)
6= ∅.

4.1.3 Complexity Analysis

Proposition 4.1.3 (Set Intersection Join Complexity). Algorithms 2 and 3 can be

used to report all the tuples of intervals in S1 × · · · × Sk that intersect, using O(k2 ·

N · log(k ·N)) preprocessing time, and constant delay enumeration.

Proof. The preprocessing and enumeration phases are considered separately. Con-

sider the preprocessing phase. Consider an integer i ∈ [1, k]. For every interval

si ∈ Si and for each j ∈ [1, k] where i 6= j, Algorithm 2 collects all intervals in Sj

such that they cover the start of si. This can be achieved in O(k ·log(k ·N)) time using

Algorithm 1. Therefore, the time complexity for i will be O(k ·N · log(k ·N)). The

above procedure is repeated for each i ∈ [1, k]. Therefore, the overall time complexity

will be O(k2 ·N · log(k ·N)).

Turning to the enumeration phase, the structure of S ensures that Algorithm 3
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yields at least one tuple per iteration. Therefore, the output tuples can be enumerated

with constant delay.

4.2 Intersection Join Decomposition

This section introduces a simple reduction, called Intersection Join Decomposition

(IJDec), that reduces the problem of evaluating an IJQ on a database to the equiva-

lent problem of evaluating a union of CQs on a new database. This reduction makes

it possible to use algorithms that were originally developed for CQs to solve IJQs.

The derived bounds are based on the data complexity where it is assumed that the

query size is fixed and that the data size is the only parameter in the complexity.

In order to make the analysis that follows clear, it is necessary to slightly modify

the IJQ syntax. The modification of the syntax only applies to this chapter, hence, the

original syntax is used in the next chapters. According to the syntax and semantics

of IJQs, which are presented in Section 2.2, an IJQ Q is a conjunction of relation

schemas, where the multiple occurrences of the same variable in different relation

schemas imply an intersection join, or in other words, imply the existence of an

intersection predicate over those variables. In the following, the syntax of an IJQ is

modified in a way such that the intersection joins are expressed using intersection

predicates explicitly. In particular, all the variables in vars(Q) are renamed to have

unique names. For each relation schema Ri(ei) in schema(Q), for each variable v in

ei rename v to vi. The intersection joins are then represented explicitly by using

intersection predicates, as defined formally in the following.

Definition 4.2.1 (Intersection Predicate). Consider a multi-set of intervals S =

{x1, . . . , xm}. An intersection predicate over S is the assertion
(⋂

1≤i≤m xi
)
6= ∅.

The above modification results in an IJQ that can be expressed as a conjunction

of relation schemas with disjoint sets of variables, and a conjunction of intersection
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predicates. In particular, it can be written as

Q = 〈e, conj ∧ ij〉, (4.2)

where conj denotes a conjunction of relation schemas with disjoint sets of variables,

and ij denotes a conjunction of intersection predicates. The set e, also denoted by

free(Q), consists of the new variables that correspond to each free variable in the

original syntax. The new set of variables in Q is denoted by vars(Q) and the new

schema of Q is denoted by atoms(Q). It must be noted that the above syntax allows

the same variable to occur in multiple intersection predicates in the query, whereas

the original syntax of an IJQ does not (Section 2.2, Equation (2.1)). Since the purpose

of the above modification is to establish an equivalent syntax, this restriction is also

applied in Q from Equation (4.2). Every variable is restricted so that it occurs in at

most one intersection predicate.

The following example explains the usage of predicates in the modified syntax.

Example 4.2.2 (The full Triangle IJQ with Predicates). Consider the full Triangle

IJQ from Example 2.3.1. Following the syntax introduced in Equation (4.2), the query

Q4 is rewritten as

Q4 = 〈{a1, a2, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ ((a1 ∩ a3) 6= ∅) ∧ ((b1 ∩ b2) 6= ∅) ∧ ((c2 ∩ c3) 6= ∅)〉.

The new set of free variables is free(Q4) = {a1, a3, b1, b2, c2, c3}. The new schema of

the query is schema(Q) = {R1([a1], [b1]), R2([b2], [c2]), R3([a3], [c3])}.

The key idea of the IJDec reduction is the efficient decomposition of the materi-

alised predicates in the query. In reality, the reduction never replaces an intersection

predicate by its materialisation because this would be inefficient. Instead, an inter-
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section predicate will be replaced by the decomposition of its materialisation, which

is efficient to compute and store. The concept of a predicate’s materialisation is

introduced in the following in order to effectively define its decomposition later.

Definition 4.2.3 (Materialised Intersection Predicate). Consider an IJQ Q follow-

ing the syntax in Equation (4.2) and a database D. Consider also an intersection

predicate
(⋂

1≤i≤m xi
)
6= ∅ in ij, where {x1, . . . , xm} ⊆ vars(Q). Let X be the set of

all xi-intervals in D. The materialisation of the intersection predicate is a relation

predX ([x1], . . . , [xm]) which is defined as

{
(t1, . . . , tm)

∣∣∣∣∣(t1, . . . , tm) ∈ Xm,

( ⋂
1≤i≤m

ti

)
6= ∅

}
. (4.3)

Definition 4.2.4 (Rewriting with Materialised Predicates). Consider an IJQ Q fol-

lowing the syntax in Equation (4.2) and a database D. Define a query Q+ as

Q+ = 〈e, conj ∧ ij+〉, (4.4)

where ij+ consists of all the relation schemas that correspond to the materialisation of

each intersection predicate in ij from Definition 4.2.3. Define a database D+ as the

union of D with the set of the relation instances that correspond to the materialised

intersection predicates in the query Q+.

The following example is a continuation of Example 4.2.2, which explains the

usage of materialised predicates introduced above.

Example 4.2.5 (The full Triangle IJQ with Materialised Predicates). According to

Definition 4.2.4 the query Q4 from Example 4.2.2 can be rewritten as

Q+
4 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ predA([a1], [a3]) ∧ predB([b1], [b2]) ∧ predC([c2], [c3])〉,
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where A is the set of a1 and a3-intervals; B is the set of b1 and b2-intervals; and C is

the set of c2 and c3-intervals in the database D. The set of free variables is the same

as before, that is free(Q4) = free(Q+
4). The database D+ is defined by D ∪ {predX |

X ∈ {A,B, C}}, where the new relations that correspond to the materialised predicates

are defined according to Definition 4.3.

4.2.1 Predicate Rewriting

Given that N is the size of each relation in D, a materialised intersection predicate

(Definition 4.2.3) over m variables can be computed in O(Nm) time and requires

analogous space, leading to high complexity. The key observation on which IJDec is

based, is that the relation that represents a materialised intersection predicate ad-

mits an efficient decomposition into a set of binary relations of size O(N · logN).

These “helper” relations are classified and referred to as index and seek relations (see

Definitions 4.2.7 and 4.2.6). By “combining” those relations appropriately one can

reconstruct the corresponding materialised predicate (Lemma 4.2.10).

Helper Relations

An index relation associates an interval from the set of intervals X , to the nodes of

the segment tree on X , which maximally cover that interval (see Definition 3.3.4).

As a remainder, X is the set of all xi-intervals in D.

Definition 4.2.6 (Index Relation). Consider a set of intervals X and a segment tree

on X . Define a relation idxX ([x], v), called index relation with respect to X , as

idxX = {(t1, t2) | t1 ∈ X , t2 ∈ cpX (t1)}.

A seek relation associates any interval from a set of intervals X to the nodes of a

segment tree on X that belong to the root-to-leaf path that ends up in the leaf that
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contains the starting endpoint of that interval.

Definition 4.2.7 (Seek Relation). Consider a set of intervals X and a segment tree

on X . Define a relation seekX ([x], v), called seek relation with respect to X , as

seekX = {(t1, t2) | t1 ∈ X , t2 ∈ anc(leafX (t1))}

Lemma 4.2.8 (Size of Index and Seek relations). The size and construction time of

both idxX and seekX is O(N · logN).

Proof. According to Definition 4.2.6, the relation idxX maps each interval x from X

to each one of the nodes in the canonical partition cpX (x) (Definition 3.3.4). By

Property 3.3.7, the size and construction time of cpX (x) is O(logN). Therefore, the

size and construction time of idxX is O(N · logN). According to Definition 4.2.6, the

relation seekX maps each interval x from X to each one of the nodes in the path that

starts from the root of the segment tree on X to the leaf that corresponds to the left

endpoint of x. By construction, the segment tree on X has a height of O(logN), and

the nodes within any path from a leaf to the root can be retrieved in analogous time.

Therefore, the size and construction time of seekX is O(N · logN).

Each interval in the relation is paired with at most logarithmic, in the size of data,

nodes from the segment tree for both the index and seek relations. As will be shown

in Subsection 4.2.2, the above mentioned property is useful when arguing about the

complexity of the reduced problem.

Property 4.2.9 (Degrees of Values). Consider any relation constructed by Defini-

tions 4.2.7 and 4.2.6. The following statements hold.

• Every value in π{x}(seekX ([x], v)) has degree of O(logN).

• Every value in π{x}(idxX ([x], v)) has degree of O(logN).
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Proof. By Property 3.3.7, for each x-interval there can be at most O(logN) nodes in

cpX (x). Therefore, by the construction of idxX ([x], v) each x-value corresponds to at

most O(logN) v-values. By Definition 3.3.1, a segment tree on X is a complete binary

tree of height O(logN). Hence, for each x-interval there can be at most O(logN)

nodes in the set anc(leafX (x)). Therefore, by the construction of seekX ([x], v) each

x-value corresponds to at most O(logN) v-values.

Predicate Rewriting

The expression in the following lemma yields the materialised intersection predicate

from Definition 4.2.3

Lemma 4.2.10 (Rewriting of the Materialised Predicate). The materialised predicate

predX ([x1], . . . , [xm]) from Definition 4.2.3 can be rewritten as

∨
1≤i≤m

 ∧
1≤j≤m
i 6=j

∃xij (seekX ([xi], xij) ∧ idxX ([xj], xij))

 , (4.5)

where the corresponding relation instances for seekX and idxX are defined according

to Definitions 4.2.7 and 4.2.6 respectively.

Proof. “ =⇒ ”: Consider a tuple (x1, . . . , xm) ∈ predX . It follows that the intervals

in (x1, . . . , xm) intersect. Furthermore, the starting endpoint of their intersection

coincides with the starting endpoint of the interval with the rightmost left endpoint

among x1, . . . , xm. Let xi be the interval with the rightmost left endpoint. It holds

that xi.start ∈ xj for each j ∈ [1,m], i 6= j. By the construction of the segment tree,

every interval xj for each j ∈ [1,m], i 6= j, covers a segment that corresponds to

a node within the path that starts from the root and ends up at leafX (xi). Hence,

for each xj where j ∈ [1,m], i 6= j, there exists a node xij ∈ cpX (xj) such that

xij ∈ anc(leafX (xi)). Therefore, by the Definitions 4.2.7 and 4.2.6, there exists an
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integer i ∈ [1,m] and nodes xij for each j ∈ [1,m], j 6= i such that the inner

conjunction of Equation (4.5) is satisfied.

“ ⇐= ”: Assume that there exists an integer i ∈ [1,m], a tuple of intervals (x1,

. . . , xm), and nodes xij for j ∈ [1,m], j 6= i, that satisfy Equation (4.5). By the

Definitions 4.2.7 and 4.2.6, it follows that the intervals xj for j ∈ [1,m], i 6= j, cover

the segment of some node that falls within the path anc(leafX (xi)). Hence, by the

construction of the segment tree, the intervals in (x1, . . . , xm) have a point in common,

which is xi.start. Therefore, (x1, . . . , xm) ∈ predX .

Remark 4.2.11. An intersection join query can be rewritten equivalently as a dis-

junction of CQs with inequality joins (≤, <,≥, >). Consider an IJQ following the syn-

tax with intersection predicates described previously. Each intersection predicate can

be replaced by its equivalent predicate that includes inequalities. Consider a multi-set

{x1, . . . , xm} of intervals. The intersection predicate from Definition 4.2.1 is equiva-

lent to ∨
1≤i≤m

 ∧
1≤j≤m
j 6=i

(xj.start ≤ xi.start ≤ xj.end)

 . (4.6)

Notice that there is a bijection between the conjuncts in the intersection predicate de-

composition (Lemma 4.2.10) and the equivalent predicate using inequalities in Equa-

tion 4.6. This gives an insight for the correspondence between the conjuncts in Equa-

tion (4.5), with the conjuncts in Equation (4.6).

Disjointness

For the correct computation of the tuples in output, it is essential to make an adjust-

ment so that for each tuple of intersecting intervals (x1, . . . , xm), there exists exactly

one i ∈ [1,m] that satisfies the right-hand side in Lemma 4.2.10. Otherwise, the same

tuple will be reported multiple times. In other words, it must hold that the intervals

(x1, . . . , xm) intersect if and only if exactly one of the conjuncts is true. Notice that
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currently, this is not guaranteed. Consider the case where two intervals xa, xb, where

a, b ∈ [1,m] and a < b, have coinciding left endpoints then the expression on the

right-hand side is true for both i = a and i = b.

Definition 4.2.12 (Index Relation with Left-open Intervals). Consider a multi-set

of intervals X , and a segment tree on X . Define a relation idx′X ([x], v), called the

index relation (with left-open intervals) over the set of variables X as

idx′X = {(t1, t2) | t1 ∈ X , t2 ∈ cpX ((t1.start, t1.end])}.

To ensure that at most one conjunct is true, one can apply the following adjust-

ment: on the i-th iteration if i < j, the relation idxX ([xj], xij) is replaced with the

corresponding relation idx′X ([xj], xij).

Property 4.2.13 (Decomposition Functional Dependency). Consider the material-

ized predicate decomposition from Definition 4.2.10, and a tuple of intervals (x1, . . . ,

xm) that intersect. Given an i ∈ [1,m], there is precisely one tuple (xi1, . . . , xim) that

satisfies the predicate.

Proof. We prove that for any j ∈ [1,m], j 6= i, there exists no x′ij 6= xij such that

both seekX (xi, xij) ∧ idxX (xj, xij) and seekX (xi, x
′
ij) ∧ idxX (xj, x

′
ij) are true. Assume

for contradiction that for some j ∈ [1,m], j 6= i, there exists such nodes x′ij 6= xij.

Then, by Definition 4.2.6, we have that xij, x
′
ij ∈ cpX (xj). By Definition 4.2.7, we

have that both xij and x′ij belong to the path from the root to leafX (xi), which means

that they are ancestors of one another. By Property 3.3.6, this is a contradiction.

4.2.2 Reduction and Evaluation

By Lemma 4.2.10, a materialised intersection predicate can be equivalently rewritten

as a disjunction of expressions, where each expression is a conjunction of seek and
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index relations. This equivalence is fundamental as it enables us to transform the

problem of evaluating an IJQ to the problem of evaluating a union of CQs.

Definition 4.2.14 (IJDec Reduction). Consider an IJQ with materialised predicates

Q+ (Definition 4.2.4) and a database D. Define Qdec as

Qdec = 〈e, conj ∧ ijdec〉,

where ijdec consists of all the equivalent predicates that correspond to the intersection

predicates in ij+ according to Definition 4.2.10. By writing the query Qdec in dis-

junctive normal form, one can obtain a union of CQs. The set of free variables is

free(Qdec) = free(Q+). Define Ddec as the union of D and the set of the helper relation

instances corresponding to the intersection predicates.

Proposition 4.2.15 (Correctness). Consider an IJQ Q and a database D. It holds

that Q(D) = Qdec(Ddec).

Proof. The proof follows immediately from Lemma 4.2.10.

Proposition 4.2.16. Consider an IJQ Q and a database D. The following state-

ments hold.

• The size of Qdec is within a polynomial factor from the size of Q.

• Given that each relation in D is of size N , the size of each relation in Ddec is

O(N · logN) and its construction time is proportional to its size.

Proof. Each mry materialised intersection predicate in Q+ generates m conjuncts

— one for each variable in the predicate (Lemma 4.2.10). The number m is at

most |atoms(Q)|. Furthermore, there are at most |vars(Q)| predicates in the query.

Therefore, the number of generated CQs are |rels(Q)| · |vars(Q)|. Each CQ in the

reduction consists of at most 2 · |rels(Q)| · |vars(Q)| additional relations. The second

statement in Proposition 4.2.16 is justified by Lemma 4.2.8.
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The rewriting eliminates all intersection join predicates in the input query. Fur-

thermore, given any query in the union Qdec, all the joins in the query are equality

joins. This is justified by the fact that only the newly added scalar variables are join

variables. Therefore, the query Qdec is a union of CQs. Notice that the set of free

variables in the query is the same, i.e. free(Q+) = free(Qdec), and also that, if the the

set of free variables is empty, then this union becomes a disjunction, and hence the

queries in Qdec are Boolean CQs. The key takeaway is that the reduction breaks down

the computation required to obtain the result of the query into disjoint sub-tasks that

are expressible as CQs. Each CQ “contributes” independently to the computation of

different parts of the output. This enables the concurrent computation of the CQs.

Upper Bounds

The reduction of any IJQ to a union of CQs provides a way for obtaining upper bounds

for the runtime of the IJQ, using known upper bounds for the runtime of CQs. In

particular, the upper bound for the runtime an IJQ is the same as the upper bound

for the CQ with the maximum runtime in the union constructed by the reduction.

4.2.3 The Triangle

The IJDec reduction leads to an interesting result in data complexity: an algorithm

that computes the Boolean Triangle IJQ on any database of size N in Õ(N3/2) time,

and any full IJQ, in Õ(N3/2) preprocessing time and constant delay enumeration of

the tuples in the output.

Consider the Triangle Q4 introduced in Example 2.3.1 and its rewriting obtained

in Examples 4.2.2 and 4.2.5. By replacing each materialised intersection predicate in
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the modified query by its decomposition (Lemma 4.2.10), the query is rewritten as

Qdec
4 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ (seekA([a1], a13) ∧ idxA([a3], a13)) ∨ (seekA([a3], a31) ∧ idxA([a1], a31))

∧ (seekB([b1], b12) ∧ idxB([b2], b12)) ∨ (seekB([b2], b21) ∧ idxB([b1], b21))

∧ (seekC([c2], c23) ∧ idxC([c3], c23)) ∨ (seekC([c3], c32) ∧ idxC([c2], c32))〉.

The above query can be further rewritten in disjunctive normal form as Qdec
4 =∨

1≤i≤8Qi, where

Q1 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ (seekA([a1], a13) ∧ idxA([a3], a13)) ∧ (seekB([b1], b12) ∧ idxB([b2], b12))

∧ (seekC([c2], c23) ∧ idxC([c3], c23))〉

Q2 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ (seekA([a1], a13) ∧ idxA([a3], a13)) ∧ (seekB([b1], b12) ∧ idxB([b2], b12))

∧ (seekC([c3], c32) ∧ idxC([c2], c32))〉

Q3 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ (seekA([a1], a13) ∧ idxA([a3], a13)) ∧ (seekB([b2], b21) ∧ idxB([b1], b21))

∧ (seekC([c2], c23) ∧ idxC([c3], c23))〉
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Q4 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ (seekA([a1], a13) ∧ idxA([a3], a13)) ∧ (seekB([b2], b21) ∧ idxB([b1], b21))

∧ (seekC([c3], c32) ∧ idxC([c2], c32))〉

Q5 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ (seekA([a3], a31) ∧ idxA([a1], a31)) ∧ (seekB([b1], b12) ∧ idxB([b2], b12))

∧ (seekC([c2], c23) ∧ idxC([c3], c23))〉

Q6 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ (seekA([a3], a31) ∧ idxA([a1], a31)) ∧ (seekB([b1], b12) ∧ idxB([b2], b12))

∧ (seekC([c3], c32) ∧ idxC([c2], c32))〉

Q7 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ (seekA([a3], a31) ∧ idxA([a1], a31)) ∧ (seekB([b2], b21) ∧ idxB([b1], b21))

∧ (seekC([c2], c23) ∧ idxC([c3], c23))〉

Q8 = 〈{a1, a3, b1, b2, c2, c3}, R1([a1], [b1]) ∧R2([b2], [c2]) ∧R3([a3], [c3])

∧ (seekA([a3], a31) ∧ idxA([a1], a31)) ∧ (seekB([b2], b21) ∧ idxB([b1], b21))

∧ (seekC([c3], c32) ∧ idxC([c2], c32))〉
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Analysis of Q4

Consider the Q4 conjunct. Due to symmetry, the analysis of the rest of the conjuncts

is similar. Construct a relation S1([a1], a13, [b1], b21) as

S1 = {(t1, t2, t3, t4) | (t1, t3) ∈ R1, (t1, t2) ∈ seekA, (t3, t4) ∈ idxB}. (4.7)

By Property 4.2.9 for each a1-value in S1 there are at most O(logN) a13-values in

seekA, and for each b1-value in S1 there are at most O(logN) b21-values idxB. Hence,

the size of S1 is O(N log2N). Construct a relation S2([b2], b21, [c2], c32) as

S2 = {(t1, t2, t3, t4) | (t1, t3) ∈ R2, (t1, t2) ∈ seekB, (t3, t4) ∈ idxC}. (4.8)

By Property 4.2.9 for each b2-value in S2 there are at most O(logN) b21-values in

seekB, and for each c2-value and there are at most O(log n) c32-values idxC. Hence,

the size of S2 is O(N log2N). Construct a relation S3([a3], a13, [c3], c23) as

S3 = {(t1, t2, t3, t4) | (t1, t3) ∈ R3, (t1, t2) ∈ idxA, (t3, t4) ∈ seekC}. (4.9)

By Property 4.2.9, for each a3-value in S3 there are at most O(logN) a13-values in

idxA, and for each c3-value and there are at most O(logN) c23 values seekC. Hence,

the size of S3 is O(N log2N). Define the query

W4 = 〈{a1,a3, b1, b2, c2, c3},

S1([a1], a13, [b1], b21) ∧ S2([b2], b21, [c2], c32) ∧ S3([a3], a13, [c3], c32)〉,

where free(W4) = free(Q4). Define a database that contains the relations S1, S2, and

S3 defined by Equations (4.7), (4.8), and (4.9) respectively.
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Boolean Case. Assume that the input query has no free variables. It holds that

free(W4) = ∅. Hence, the non-join variables (i.e., a1, a3, b1, b2, c2, and c3) are ignored

by taking into account the projections of S1, S2, and S3 on the join variables (i.e.,

a13, b21, and c23). The projections are S ′1 = π{a13,b21}(S1), S ′2 = π{b21,c32}(S2), and

S ′3 = π{a13,c23}(S3) respectively. The result of the query can be obtained by computing

the query

W ′
4 = S ′1(a13, b21) ∧ S ′2(b21, c32) ∧ S ′3(a13, c23). (4.10)

This is the Triangle CQ, which can be computed in O((N · log2N)
3/2

) = O(N3/2 ·

log3N).

Full case. Assume that all the variables in the input query are free. In practice,

this means that all the tuples that satisfy the input query must be reported in full

(Subsection 2.2). By Definition 4.2.14 and the construction of W4, we have that

free(W4) = {a1, a3, b1, b2, c2, c3}. Consider the hypertree decomposition of W4 with

the following bags {a13, b21, c32}, {a1, a13, b1, b21}, {b2, b21, c2, c32}, and {a3, a13, c3, c32},

which are visually represented as follows.

{a1, a13, b1, b21}

{b2, b21, c2, c32}

{a3, a13, c3, c32}

a13

b21 c32

More details about hypertree decompositions can be found in Section 3.1. The above

hypertree decomposition consists of four bags — a central bag consisting of the vari-
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ables {a13, b21, c32}, and three more bags, where each one of them is connected to

the central bag only. The central bag is covered by projections S ′1 = π{a13,b21}(S1),

S ′2 = π{b21,c32}(S2) and S ′3 = π{a13,c23}(S3). Each one of those projections has size of

O(N · log2N) and can be computed in time analogous to its size. Hence, the materi-

alisation of the central bag requires the computation of the full version of the Triangle

CQ W ′
4 (Equation 4.10), which is

W ′′
4 = 〈{a13, b21, c32}, S ′1(a13, b21) ∧ S ′2(b21, c32) ∧ S ′3(a13, c23)〉.

This can be done in O((N · log2N)
3/2

) = O(N3/2 · log3N), by employing a worst-

case optimal algorithm. Hence, the upper bound for the runtime of its computation is

Õ(N3/2). The resulting query, which is the query where the central bag is materialised

is α-acyclic. According to Property 4.2.13, each pair of intervals a1 and a3 that

intersect, functionally determine the scalar a13; each pair of intervals b1 and b2 that

intersect, functionally determine the scalar b21; and each pair of intervals c2 and c3

that intersect, functionally determine the scalar c32. Therefore, the variables a13, b21,

and c32 can be treated as if they were free. Hence, one can evaluate the full W4, and

then remove the values for those variables from the result, without affecting the size

of the output. The full W4 is α-acyclic free-connex, and thus admits constant delay

enumeration of the tuples in the output [9]. The rest of the CQ conjuncts admit a

similar analysis.

In conclusion, the above analysis showed that the Boolean Triangle IJQ can be

computed in Õ(N3/2) time, and the full Triangle IJQ can be computed using Õ(N3/2)

preprocessing time and constant delay enumeration of the tuples in the output.
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4.3 Discussion

This chapter is called prelude because it presents concepts and preliminary research

that directly led to the results reported in the following chapters. Two contributions

are made. The first is an enumeration algorithm that computes the intersection join of

k sets of intervals of size n using O(k2 ·N · log(k ·N)) preprocessing time, and constant

delay enumeration of the tuples in the output. The second is a simple reduction from

the problem of evaluating any IJQ to the problem of evaluating a union of CQs,

called Intersection Join Decomposition (IJDec). Interestingly, this reduction shows

that the Boolean Triangle IJQ can be evaluated in time Õ(N3/2) in data complexity,

and the full Triangle IJQ can be evaluated in Õ(N3/2) preprocessing time, followed

by constant delay enumeration of the tuples in the output.

Both IJDec and the reduction introduced in the following chapter are based on

the segment tree and the equivalent rewriting of the intersection predicate into a

predicate involving equalities. The primary difference is that the reduction from the

following chapter captures the intersection of a set of intervals using more cases, by

accounting for all potential interval permutations. Although this method produces

additional conjuncts in the reduction, it also results in refined upper bounds and the

derivation of lower bounds. Consider for example the Boolean IJQ Q = R1([a], [b]) ∧

R2([a], [b]) ∧ R3([a], [b]). Using the reduction presented in the next chapter one can

obtain an upper bound of Õ(N) on any input database, whereas using IJDec this

is not possible. On the other hand, while IJDec lags behind in terms of asymptotic

complexity, it is significantly simpler for certain queries and has a greater chance of

becoming practical.
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Chapter 5

The Complexity of Boolean IJQs

This chapter establishes the data complexity of Boolean IJQs, using a forward and a

backward reduction.

The forward reduction takes as input a Boolean IJQ Q and a database D. It

constructs a disjunction Q̃ of Boolean CQs, and a new database D̃ that matches the

structure of Q̃ where the size of D̃ is within a poly-logarithmic factor from the size

of D. Furthermore, it holds that Q(D) if and only if Q̃(D̃). The forward reduction

shows that one can use existing runtime upper bounds for Boolean CQs to derive

an upper bound on the runtime of any IJQ. Specifically, the runtime of Q is upper

bounded by the runtime of the Boolean CQ in Q̃ with the maximum runtime.

The backward reduction does the reverse; it takes as input any Boolean CQ Q̃(i)

from the disjunction Q̃ constructed by the forward reduction of Q, and an arbitrary

database B̃ that matches the structure of Q̃(i). It shows that there exists a bijection

from the tuples in B̃ to the tuples of a database B, where B matches the structure

of Q, such that Q̃(i)(B̃) if and only if Q(D). The backward reduction shows that the

lower bound for Q(i) can be used as a lower bound for Q.

Taking into account both reductions (Figure 1.1) one can conclude that any

Boolean IJQ is as difficult as the most difficult Boolean CQ in the disjunction con-
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structed by the forward reduction.

The results presented in this chapter are based on the results reported in [36] and

its full version [35]. This chapter extends the work mentioned above by considering

queries with intersection joins that include also variables that range over scalars.

Organisation. Section 5.1 introduces an equivalent rewriting for the intersection

join predicate from Section 2.2. This equivalence is required to establish the correct-

ness of the forward reduction. The forward reduction is established in Section 5.2.

In particular, Section 5.2.1 introduces the one-step forward reduction, which is a

building-block of the full forward reduction, introduced immediately after, in Sec-

tion 5.2.2. The backward reduction is established in Section 5.3. Section 5.4 examines

the extension of the forward reduction to non-boolean IJQs. Section 5.5 illustrates

the performance of the forward reduction in practice. All omitted proofs are included

in Section 5.7.

Notation. Given a multi-set S, a permutation of S is an ordered sequence that

consists of the elements in S. The set of all the permutations of S is denoted by

perms(S). Considering the bit-strings b1, . . . , bk, their concatenation is denoted by

b1 ◦ · · · ◦ bk. Given two bit-strings, or in other words sequences of bits, a and b, the

expression a � b means that a is a prefix of b. Consider a multi-set of intervals S.

The subset of S which consists of the intervals in S with coincident left and right

endpoints, i.e., scalars, is denoted by Ṡ. Respectively, the subset of S which consists

of the intervals in S with non-coincident left and right endpoints is denoted by S̄.

Consider an IJQ and its hypergraph H(Q) = (V(Q), E(QS)). Given a vertex

u ∈ V(Q), define the subset Eu(Q) = {e | e ∈ E(Q), u ∈ e} ⊆ E(Q). In addition,

define two sets Ėu(Q) ⊆ Eu(Q) and Ēu(Q) ⊆ Eu(Q), where Ėu(Q) is the set of all the

hyperedges which correspond to relation schemas in which the variable u is a scalar

variable, and Ēu(Q) is the set of all the hyperedges which correspond to relation
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schemas in which the variable u is an interval variable. Recall that there is a one

to one correspondence between the hyperedges in E(Q) and the relation schemas in

schema(Q). The subsets of hyperedges defined above are used in the analysis that

follows to keep the extra information about the types of the variables. For a variable

u ∈ V(Q), let nu = |Eu(Q)| be the number of relation schemas that contain u, and

n̄u = |Ēu(Q)| be the number of relation schemas in which u has interval type. Let

µ : E(Q)→ [1, n] be a mapping that maps each hyperedge e ∈ E(Q) to an integer in

i ∈ [1, n] that corresponds to the subscript of the relation that corresponds to that

hyperedge e.

It is said that a database matches the structure of the query when the schema

of the database is superset or has the same schema with the query. Essentially this

means that the query is valid and can be executed on this particular database.

5.1 Intersection Predicate Rewriting

Consider a multi-set of intervals S = {x1, . . . , xk} ⊆ I. The intersection predicate

over S is an assertion of the following form

( ⋂
1≤i≤k

xi

)
6= ∅. (5.1)

The above predicate is equivalent to the predicate in Equation (2.2), Section 2.2,

which constitutes the core of IJQ evaluation. The goal is to further rewrite it into an

equivalent predicate, which is expressed as a disjunction of equality conditions. This

rewriting will aid the forward reduction in two ways: it will aid in the understanding

of the forward reduction, and it will be used as an argument in the proof of the

forward reduction’s correctness.

A first step towards obtaining a rewriting with equalities is to consider two cases,

depending on whether the set Ṡ is empty or not. If Ṡ is not empty, then one can
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obtain a refined condition that checks whether the elements in Ṡ are equal, and then

check if they are contained in the intervals in S̄. On the other hand, if the set Ṡ is

empty, then the intersection predicate remains unchanged.

Lemma 5.1.1 (Intersection Predicate). Consider the multi-set of intervals S = {x1,

. . . , xk}. Let Ṡ = {xc+1, . . . , xk}, where 0 ≤ c ≤ k, and respectively S̄ = {x1, . . . , xc}1.

The predicate of Definition 4.2.1 can be equivalently rewritten as follows.

• Case Ṡ 6= ∅:

(xc+1 = · · · = xk) ∧

[
xc+1 ∈

( ⋂
1≤i≤c

xi

)]
(5.2)

• Case Ṡ = ∅: ( ⋂
1≤i≤k

xi

)
6= ∅. (5.3)

Consider a segment tree TI on I ⊇ S (Definition 3.3.1). Recall the following

two properties: (1) since the elementary segments corresponding to the leaves form

a partition of the interval that starts from the leftmost endpoint and ends at the

rightmost endpoint in I, for any point p that falls in that interval, there is precisely

one leaf v such that p ∈ segI(v); and (2) all the segments that correspond to the

nodes in the path from v to the root contain p. The second property is implied by

Property 3.3.3. It follows that checking the truth of the predicate in Equation (5.2),

is equivalent to finding a tuple of nodes (n1, . . . , nc+1) ∈ anc(leafI(xc+1))c+1 such that

nc+1 = leafI(xc+1) and ni ∈ cpI(xi) for each 1 ≤ i ≤ c (Definition 3.3.4). Furthermore,

checking the truth of the predicate in Equation (5.3), is the same as finding an interval

xi ∈ S, and a tuple of nodes (n1, . . . , nc) ∈ anc(leafI(xi))
c such that ni = leafI(xi),

and nj ∈ cpI(xj) for each 1 ≤ j ≤ c, i 6= j. In other words, the intervals in S intersect

if and only if there is an interval xi ∈ S such that the canonical partition of each

other interval in S contains an ancestor of leafI(xi).

1If c = 0, then Ṡ = S and S̄ = ∅. If c = k, then Ṡ = ∅ and S̄ = S.
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Lemma 5.1.2 (Predicate Rewriting 1). The predicate in Lemma 5.1.1 can be equiv-

alently rewritten as follows.

• Case Ṡ 6= ∅:

(xc+1 = · · · = xk) ∧

 ∨
(n1,...,nc+1)∈anc(nc+1)c+1

nc+1=leafI(xc+1)

( ∧
1≤j≤c

nj ∈ cpI(xj)

) (5.4)

• Case Ṡ = ∅: ∨
1≤i≤c

 ∨
(n1,...,nc)∈anc(ni)

c

ni=leafI(xi)

 ∧
1≤j≤c
j 6=i

nj ∈ cpI(xj)


 (5.5)

In the following it is shown next that the predicate introduced by Lemma 5.1.4

can be satisfied by at most one tuple of nodes.

Property 5.1.3 (Unique Tuple of nodes). Consider a set of intervals that intersect

and the predicate introduced in Lemma 5.1.2. There is precisely one tuple of nodes

that satisfies the predicate.

Proof. Assume that Ṡ 6= ∅ and there exist two distinct tuples of nodes (n1, . . . , nc+1)

and (n′1, . . . , n
′
c+1) that satisfy the predicate in Lemma 5.1.2. Since xc+1 is fixed, the

nodes from both tuples are within the path from the root to leafI(xc+1) = nc+1 = n′c+1.

Therefore, there exists some j ∈ [1, c] such that nj 6= n′j and nj, n
′
j ∈ cpI(xj). By

Property 3.3.6, there cannot be distinct nodes in cpI(xj) that belong to the same

root-to-leaf path. Contradiction. Assume that Ṡ = ∅. Since xi is fixed, the nodes

from the two tuples are within the same path from the root to leafI(xi) = ni = n′i.

Therefore, there exists some 1 ≤ j ∈ c, j 6= i such that nj 6= n′j and nj, n
′
j ∈ cpI(xj).

Similarly as above, by Property 3.3.6 there cannot be distinct nodes in cpI(xj) that

belong to the same root-to-leaf path. Contradiction.
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The expression in Lemma 5.1.2 can be further rewritten by considering an or-

dering of the nodes that satisfy the predicate (Lemma 5.1.4). Consider the set

of permutations perms({x1, . . . , xc}). There exists at least one permutation σ ∈

perms({x1, . . . , xc}) that corresponds to the ordering of the nodes n1, . . . , nc. This

ordering suggests that n1 ∈ cpI(σ1), . . . , nc ∈ cpI(σc) where n1 is ancestor of n2, . . . ,

and nc−1 is ancestor of nc.

Lemma 5.1.4 (Predicate Rewriting 2). The predicate in Lemma 5.1.1 can be equiv-

alently rewritten as follows.

• Case Ṡ 6= ∅:

(xc+1 = · · · = xk) ∧


∨

σ∈perms(S̄)


∨

(n1,...,nc+1)∈anc(nc+1)c+1

nc+1=leafI(xc+1)
∀i∈[c]:ni∈anc(ni+1)

∧
j∈[c]

nj ∈ cpI(σj)





(5.6)

• Case Ṡ = ∅:

∨
σ∈perms(S̄)


∨

(n1,...,nc)∈anc(nc)c

nc=leafI(σc)
∀i∈[c−1]:ni∈anc(ni+1)

 ∧
j∈[c−1]

nj ∈ cpI(σj)


 (5.7)

Notice that disjunction over σ ∈ perms({x1, . . . , xc}) in Equation (5.7), subsumes

the disjunction over 1 ≤ i ≤ c in Equation (5.5).

Example 5.1.5. The following examples explain the rewriting obtained by Lem-

mas 5.1.2 and 5.1.4.

• Consider the multi-set of intervals S = {x1, x2, x3, x4} ⊆ I illustrated in Fig-

ure 5.1a. The predicate in Equation (5.5) is satisfied by the nodes in (n1, n2, n3,
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n4

n2

n3

n1

x2

x3

x1

x4

(a) Figure 5.1a illustrates four intersecting intervals {x1, x2, x4, x4}. The leaf n1 = leafI(x1) corresponds to the left
endpoint of x1, which is the interval with the rightmost left endpoint among {x1, x2, x4, x4}. The nodes n2, n3 and
n4 belong to the canonical partition of the x2, x3 and x4 interval respectively.

n2

n3

n1

x2

x3

x1

x4

(b) Figure 5.1b illustrates four intersecting intervals {x1, x2, x4} where x1 and x4 have the same right and left
endpoints, i.e., they are scalars. The leaf n1 = leafI(x1) = leafI(x4) corresponds to the left endpoint of x1, which is
the interval with the rightmost left endpoint among {x1, x2, x4}. The nodes n2, n3 belong to the canonical partition
of the x2, and x3 interval respectively.

Figure 5.1: This figure illustrates how to use the segment tree to check the non-empty intersection
of four intervals.
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n4), where n1 ∈ leafI(x1) and ni ∈ cpI(xi) for each i ∈ {2, 3, 4}. The predicate

in Equation (5.7) is satisfied by the permutation (x1, x2, x3, x4) of the intervals

and the corresponding tuple (n1, n2, n3, n4) of nodes, where n1 ∈ leafI(x1), and

ni ∈ cpI(xi) for each i ∈ {2, 3, 4}.

• Consider the multi-set of intervals S = {x1, x2, x3, x4} ⊆ I, illustrated in Fig-

ure 5.1b. In fact, both x1 and x4 have the same right and left endpoints,

hence, they are scalars. The predicate in Equation (5.4) is satisfied by the

nodes in (n1, n2, n3), where n1 ∈ leafI(x1) = leafI(x4) and ni ∈ cpI(xi) for

each i ∈ {2, 3}. The predicate in Equation (5.7) is satisfied by the permutation

(x2, x3) of the non-scalar intervals, and the tuple of nodes (n1, n2, n3), where

n1 ∈ leafI(x1) = leafI(x4), and ni ∈ cpI(xi) for each i ∈ {2, 3}.

5.1.1 Disjointness

Consider a set of intersecting intervals S = {x1, . . . , xk} ⊆ I. Since the intervals

in S intersect, they satisfy the predicate in Lemma 5.1.4. By Property 5.1.3, given

a permutation σ ∈ perms({x1, . . . , xc}) that satisfies the predicate in Lemma 5.1.4,

there exists precisely one tuple (n1, . . . , nc) (respectively (n1, . . . , nc+1)) that satisfies

the conjunction in Equation (5.7) (respectively Equation (5.6)). Suppose that there

exists j such that nj = nj+1. That is, a different the permutation σ′, obtained by

swapping σj and σj+1 in σ, together with (n1, . . . , nc) (respectively (n1, . . . , nc+1))

satisfy the predicate as well.

It is possible to restrict the permutations further such that each tuple of segment

tree nodes that satisfies the predicate in Lemma 5.1.4, corresponds to precisely one

permutation. This can be done by modifying the bit-strings that encode the nodes of

the segment tree as follows: the root is the empty bit-string, its left child is the bit-

string 0k (i.e. 0 repeated k times), its right child has the bit-string 1k, (i.e. 1 repeated

k times), the left child of the node 0k is the bit-string 0k0k, its right child is the bit-
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string 0k1k, and so on. Then, consider the following modification in the definition of

the canonical partition of an interval xi where 1 ≤ i ≤ k (Definition 3.3.4):

cpI(xi) = {u′ ∈ V (TI) | xi ∈ Iu},

where u′ is the bit-string obtained by removing the last k−i bits from the bit-string u.

It can be shown that the statements in Properties 3.3.3, and 3.3.6, and Lemma 5.1.4

still hold after the modification. The following property also holds.

Property 5.1.6 (Unique Permutation). After applying the modification mentioned

above, there exists precisely one permutation satisfying the predicate in Lemma 5.1.4.

Proof. Consider any permutation σ of the intervals in {x1, . . . , xc} and a tuple (n1,

. . . , nc) (respectively (n1, . . . , nc+1)) that satisfy the predicate in Lemma 5.1.4. By

the above modification, all the elements in the tuple are unique. Hence, one cannot

obtain another permutation σ′ that also satisfies the predicate in Lemma 5.1.4, by

swapping nj with nj+1 for some j.

5.1.2 From Intersections to Equalities

The predicate in Lemma 5.1.4 can be further rewritten to an equivalent predicate,

which is a disjunction of equalities, using the bit-string encodings of the nodes in

the segment tree. They key to achieve this is Property 3.3.3, which states that

nj ∈ anc(nj+1) if and only if “nj is a prefix of nj+1”.

Lemma 5.1.7 (Predicate with Equalities). The predicate in Lemma 5.1.1 can be

equivalently rewritten as follows.

• Case Ṡ 6= ∅: There exists a permutation σ ∈ perms(S̄) and a tuple of bit-strings

(b1, . . . , bc+1) such that:

(b1 ◦ · · · ◦ bi) ∈ cpI(σi), for each 1 ≤ i ≤ c

65



(b1 ◦ · · · ◦ bc+1) = leafI(xi), for each c < i ≤ k

• Case Ṡ = ∅: There exists a permutation σ ∈ perms(S̄) and a tuple of bit-strings

(b1, . . . , bc) such that:

(b1 ◦ · · · ◦ bi) ∈ cpI(σi), for each 1 ≤ i < c

(b1 ◦ · · · ◦ bc) = leafI(σc)

The following property states that given a multi-set of intersecting intervals, there

is precisely one permutation and one tuple of bit-strings that satisfy the predicate in

Lemma 5.1.7.

Property 5.1.8 (Unique Permutation and Tuple of Bit-strings). Consider a multi-set

of intervals S = {x1, . . . , xk} ⊆ I that intersect. There is precisely one permutation

σ ∈ perms(S̄) and one tuple of bit-strings (b1, . . . , bc) (respectively (b1, . . . , bc+1)) that

satisfy the predicate in Lemma 5.1.7.

Proof. The property follows directly from Properties 5.1.3 and 5.1.6.

The above property is crucial because it guarantees that the forward reduction

presented in the next section produces a disjunction of queries with disjoint solutions.

This is a necessary condition for efficiently enumerating the tuples in the output or

for correctly computing the number of tuples in the output. However, it is not a

mandatory requirement for the Boolean case. Thus, it is not necessary to include the

adjustment suggested in Subsection 5.1.1 in the Boolean case, as its omission does

not impact the accurate computation of the output.
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5.2 Forward Reduction

This section describes the forward reduction algorithm. The forward reduction algo-

rithm takes a Boolean IJQ Q and a database D as input. It outputs a disjunction

of Boolean CQs denoted by Q̃, and a new database D̃ that matches the structure

of Q̃. This reduction guarantees that Q(D) is equivalent to Q̃(D̃), allowing the use

of existing algorithms for solving Boolean CQs to solve Q. The most difficult CQ

conjunct in Q̃ determines the upper bound for the computation of Q.

5.2.1 One-step Forward Reduction

The forward reduction is described as an algorithm that iterates through each join

variable in the query. Each iteration corresponds to a reduction, called one-step

forward reduction. Consider a join variable v ∈ vars(Q). The computation of the join

on v requires the computation of the predicate in Equation (5.1), over a multi-set of

intervals, i.e., one input interval for each relation involved in the join. Lemma 5.1.7

introduces an equivalent rewriting of the intersection predicate into a disjunction of

equalities. The one-step forward reduction is driven by the equivalence introduced in

Lemma 5.1.7 to construct a new query Q̃(v) and a new matching database D̃(v), such

that Q̃(v)(D̃(v)) if and only if Q(D).

One-step Query Transformation

Consider the Boolean IJQ Q and its hypergraph H(Q) = (V(Q), E(Q)). Given a

permutation σ = (σ1, . . . , σn̄v) ∈ perms(Ēv(Q)), each relation schema Rµ(σi)(σi) in-

duces a new relation schema Rµ(σi)(σ̃
(v,σ)
i ) in which the variable v is replaced by the

new interval variable ṽ(µ(σi)), and the new scalar variables ṽ1, . . . , ṽi. The set σ̃
(v,σ)
i is

defined by

σ̃
(v,σ)
i = {σi \ {v}} ∪ {ṽ1, . . . , ṽi} ∪ {ṽ(µ(σi))}. (5.8)
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Furthermore, each relation schema Rµ(e)(e) where e ∈ Ėv(Q) is replaced by a new

relation schema Rµ(e)(ẽ
(v,σ)), in which the variable v is replaced by the new scalar

variable ṽ(µ(e)), and the new scalar variables ṽ1, . . . , ṽn̄v+1. The set ẽ(v,σ) is defined by

ẽ(v,σ) = {e \ {v}} ∪ {ṽ1, . . . , ṽn̄v+1} ∪ {ṽ(µ(e))}. (5.9)

The variables ṽ1, . . . , ṽi are scalar variables in all of their occurrences, whereas the

variables in {ṽ(µ(e)) | e ∈ Ev(Q)} are singleton variables whose type is the same as the

type of the variable that they replace in the corresponding relation schema. Finally,

each relation schema Rµ(f)(f) where f ∈ E(Q) \ Ev(Q) remains unchanged.

The input Boolean IJQ is transformed into a disjunction Q̃(v) of Boolean IJQs.

In particular, for each permutation σ ∈ perms(Ēv(Q)) the one-step forward reduction

algorithm generates a new Boolean IJQ Q̃(v,σ). The new query has equality joins and

possibly remaining intersection joins. The query Q̃(v) is defined as their disjunction.

The formal definition of Q̃(v,σ) and Q̃(v) is as follows.

Definition 5.2.1 (One-step Query Trasformation). Consider a Boolean IJQ Q, a

permutation σ ∈ perms(Ēv(Q)), and a variable v ∈ V(Q). Define Q̃(v,σ) as

Q̃(v,σ) =

( ∧
1≤i≤n̄v

R̃µ(σi)(σ̃
(v,σ)
i )

)
∧

 ∧
e∈Ėv(Q)

R̃µ(e)(ẽ
(v,σ))

 ∧
 ∧
f∈E(Q)\Ev(Q)

R̃µ(f)(f)

 .

Define Q̃(v) as

Q̃(v) =
∨

σ∈perms(Ēv(Q))

Q̃(v,σ).

One can make some general observations about the newly constructed IJQs. First

of all, the variables of the form ṽ(i) do not affect the Boolean IJQ evaluation because

they are not join variables in Q̃(v). They are only applicable in the computation

of non-Boolean IJQs, which are discussed in Section 5.4. In addition, the relation

schemas in Q̃(v,σ) are constructed by modifying the relation schemas in Q, establishing
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Figure 5.2: Figures 5.2b and Figure 5.2c illustrate the hypergraphs that correspond to the Boolean
IJQs Q̃(v,σ) and Q̃(v,σ′), respectively, from the Example 5.2.2.

a one-to-one correspondence between the relation schemas in Q̃(v,σ) and those in Q.

Furthermore, the number of conjuncts in the disjunction Q̃(v) is the same as the

number of permutations of the hyperedges in Ēv(Q), hence it is n̄v!.

The following example explains the one-step query transformation for the Boolean

IJQ from Example 2.3.2.

Example 5.2.2. Consider the Boolean IJQ from Example 2.3.2. Consider the one-

step query transformation for the intersection join variable b (Definition 5.2.1). Con-

sider the permutations σ = ({a, b, c}, {a, b}) and σ′ = ({a, b}, {a, b, c}). The query

Q̃(b) is defined as the disjunction of the following Boolean IJQs.

Q̃(b,σ) = R̃1(a, b̃1, [b̃
(1)], [c]) ∧ R̃2(a, b̃1, b̃2, [b̃

(2)]) ∧ R̃3(b̃1, b̃2, b̃3, b̃
(3), [c])

Q̃(b,σ′) = R̃1(a, b̃1, b̃2, [b̃
(1)], [c]) ∧ R̃2(a, b̃1, [b̃

(2)]) ∧ R̃3(b̃1, b̃2, b̃3, b̃
(3), [c])

The variables b̃1, b̃2, b̃3 are scalar variables in all of their occurrences, and the type of

the variables b̃(1), b̃(2) and b̃(3) is the same as the type of the original variable b in the

corresponding relation. Because the queries are Boolean, the variables b̃(1), b̃(2) and

b̃(3), which occur in only one relation, do not affect the evaluation.
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One-step Hypergraph Transformation

The subsequent analysis presents a definition of the hypergraphs that correspond to

the Boolean IJQs in the disjunction resulting from the one-step query transformation.

Although this definition is not necessary, because the hypergraphs can be computed

directly from the Boolean IJQs, it can provide insights into the structure of the

reduction. Additionally, Chapter 6 highly depends on the arising hypergraphs to

study the properties of the corresponding queries.

The one-step hypergraph transformation with respect to the join variable v is

defined in the following.

Definition 5.2.3 (One-step Hypergraph Transformation). Consider the hypergraph

H = (V , E), a vertex v ∈ V, and a permutation σ ∈ perms(Ēv). The hypergraph

H̃(v,σ) = (Ṽ(v), Ẽ (v,σ)) is defined as follows.

• If Ėv 6= ∅

Ṽ(v) = (V \ {v}) ∪ {ṽ1, . . . , ṽn̄v+1} ∪ {ṽ(µ(e)) | e ∈ Ev}

Ẽ (v,σ) = (E \ Ev) ∪ {σ̃(v,σ)
i | 1 ≤ i ≤ n̄v} ∪ {ẽ(v,σ) | e ∈ Ėv}

• If Ėv = ∅

Ṽ(v) = (V \ {v}) ∪ {ṽ1, . . . , ṽn̄v} ∪ {ṽ(µ(e)) | e ∈ Ev}

Ẽ (v,σ) = (E \ Ev) ∪ {σ̃(v,σ)
i | 1 ≤ i ≤ nv}

where σ̃
(v,σ)
i and ẽ(v,σ) are defined in Equations (5.8) and (5.9) respectively. Define

the set of hypergraphs H̃(v) = {H̃(v,σ) | σ ∈ perms(Ēv)}.

The following example explains the one-step hypergraph transformation using the

Boolean IJQ from Example 5.2.4.
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Example 5.2.4. Consider the Boolean IJQ from Example 2.3.2, which is associated

with the hypergraph H = (V , E) where V = {a, b, c}, E = {{a, b, c},{a, b}, {b, c}},

Ėa = {{a, b, c}, {a, b}}, Ėb = {{b, c}}, Ēb = {{a, b, c}, {a, b}} and Ēc = {{a, b, c},

{b, c}}. Consider the one-step hypergraph transformation with respect to the join

variable b (Definition 5.2.3). Let perms(Ēb) = {σ = ({a, b, c}, {a, b}), σ′ = ({a, b},

{a, b, c})}. Let e = {b, c}. The set H̃(b) consists of the hypergraphs H̃(b,σ), and H̃(b,σ′),

which are defined as follows:

• H̃(b,σ) = (Ṽ(b), Ẽ (b,σ)) where Ṽ(b) = {a, b̃1, b̃2, b̃2, b̃
(1), b̃(2), b̃(3), c} and Ẽ (b,σ) =

{{a, b̃1, b̃
(1)c}, {a, b̃1, b̃2, b̃

(2)}, {b̃1, b̃2, b̃3, b̃
(3), c}}; and

• H̃(b,σ′) = (Ṽ(b), Ẽ (b,σ′)) where Ṽ(b) = {a, b̃1, b̃2, b̃3, b̃(1), b̃(2), b̃(3), c} and Ẽ (b,σ′) =

{{a, b̃1, b̃2, b̃(1), c}, {a, b̃1, b̃
(2)}, {b̃1, b̃2, b̃3, b̃

(3), c}}.

The hypergraphs defined above are illustrated in Figures 5.2b and 5.2c alongside the

input hypergraph in Figure 5.2a. In the figures, the vertices that correspond to single-

ton variables are omitted for simplicity.

One-step Database Transformation

The one-step forward reduction requires the transformation of both the query and

the database. In the following, the focus shifts on the transformation of the database.

The one-step forward reduction transforms the database D to a new database D̃(v),

which can be expressed as a union of databases

⋃
σ∈perms(Ēv(Q))

D̃(v,σ),

in a way such that the schema of each new database D̃(v,σ) matches the schema of the

query Q̃(v,σ). Consider a segment tree over the set of v-values in the active domain of

the variable v. Let

I = {t(v) | t ∈ Rµ(e)(e), e ∈ Ev(Q)},

71



and TI be a segment tree on I. The definition of the one-step database transformation

is the following.

Definition 5.2.5 (One-step Database Transformation). Consider an IJQ Q and a

database D. Consider also a vertex v ∈ V(Q), and a permutation σ ∈ perms(Ēv(Q)).

The database D̃(v,σ) is constructed from the database D as follows:

• Case Ėv(Q) 6= ∅

– ∀i ∈ [1, n̄v] ∀t ∈ Rµ(σi)(σi) construct the tuples t̃ ∈ R̃µ(σi)(σ̃i), where

R̃µ(σi)(σ̃i) ∈ D̃(v,σ), such that:

∗ t[σi \ {v}] = t̃[σ̃i \ {ṽ1, . . . , ṽi}];

∗ t(ṽ(µ(σi))) = t̃(v); and

∗ t̃(ṽ1) ◦ · · · ◦ t̃(ṽi) ∈ cpI(t(v)).

– ∀e ∈ Ėv(Q) ∀t ∈ Rµ(e)(e) construct the tuples t̃ ∈ R̃µ(e)(ẽ), where R̃µ(e)(ẽ) ∈

D̃(v,σ), such that:

∗ t[e \ {v}] = t̃[ẽ \ {ṽ1, . . . , ṽn̄v+1}];

∗ t(ṽ(µ(e))) = t(v); and

∗ t̃(ṽ1) ◦ · · · ◦ t̃(ṽn̄v+1) = leafI(t(v)).

• Case Ėv(Q) = ∅

– ∀i ∈ [1, n̄v − 1] ∀t ∈ Rµ(σi)(σi), construct the tuples t̃ ∈ R̃µ(σi)(σ̃i), where

R̃µ(σi)(σ̃i) ∈ D̃(v,σ), such that:

∗ t[σi \ {v}] = t̃[σ̃i \ {ṽ1, . . . , ṽi}];

∗ t(ṽ(µ(σi))) = t̃(v); and

∗ t̃(ṽ1) ◦ · · · ◦ t̃(ṽi) ∈ cpI(t(v)).

– ∀t ∈ Rµ(σn̄v )(σn̄v), construct the tuples t̃ ∈ R̃µ(σn̄v )(σ̃n̄v), where R̃µ(σn̄v )(σ̃n̄v) ∈

D̃(v,σ), such that:
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∗ t[σn̄v \ {v}] = t̃[σ̃n̄v \ {ṽ1, . . . , ṽn̄v}];

∗ t(ṽ(µ(σn̄v ))) = t̃(v); and

∗ t̃(ṽ1) ◦ · · · ◦ t̃(ṽn̄v) = leafI(t(v)).

Each relation whose schema does not contain v is copied from D to D̃(v,σ). The

database D̃(v) is defined by

D̃(v) =
⋃

σ∈perms(Ēv(Q))

D̃(v,σ). (5.10)

In Definition 5.2.5 the same relation name can be used for a relation in D̃(v,σ)

and D̃(v,σ′) for σ, σ′ ∈ perms(Ēv(Q)), σ 6= σ′. Hence, D̃(v) may contain two relation

instances with the same name, i.e. R̃µ(σi) and R̃µ(σ′j) for some i 6= j. However, by

construction, those relations are over different schemas (Definition 5.2.1). Recall that

a relation is uniquely identified by its schema, which consists of a relation name and a

set of variables (Section 2.2). As a result, it is guaranteed that the relation instances

in D̃(v) are distinct. This above can be observed in Example 5.2.2.

Example 5.2.6 gives the details of the one-step database transformation that cor-

responds to the one-step query transformation from Example 5.2.2.

Example 5.2.6. Consider the Boolean IJQ from Example 5.2.2. Consider the one-

step forward reduction on the intersection join variable b. The following is an expla-

nation of how the one-step database transformation is derived.

Construct a segment tree on the b-values coming from R1, R2 and R3, following

Definition 3.3.1. A segment tree on O(n) values can be constructed in O(n · log n)

time and has a height O(log n). The nodes of the segment tree represent intervals

called segments. Recall that the segment associated with a node, includes the segments

associated with its descendants and is partitioned by the segments associated with its

children. A property of a segment tree is that each input interval can be expressed as

the disjoint union of at most O(log n) segments. In particular, by Definition 3.3.4, the
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canonical partition of an interval consists of a set of segments, corresponding to nodes

of the segment tree, whose disjoint union covers the interval. Consider three tuples

r ∈ R1, s ∈ R2 and t ∈ R3. The problem of checking whether a point t(b) and two

intervals r(b), s(b) intersect becomes the problem of checking if the point is contained

in both intervals. This relationship can be captured, by three nodes nr, ns and nt on

the segment tree, and either of the following: (1) nt is the leaf that corresponds to

the point, ns is ancestor of nt and belongs to the canonical partition of s(b) and nr

is ancestor of ns and belongs to the canonical partition of r(b); (2) nt is the leaf that

corresponds to the point, nr is ancestor of nt and belongs to the canonical partition

of the interval r(b) and ns is ancestor of nr and belongs to the canonical partition of

the interval s(b).

The two conditions described above, can be expressed using equality joins. By

Property 3.3.3, given three nodes ni and nj, where ni is an ancestor of nj, the bit-

string for ni, is a prefix of that for nj. Based on that, one can use three variables

b1, b2, b3 and express the two conditions as follows: (1) b1 represents the bit-string of

nr and is also a prefix of the bit-string of ns and nt; b1 ◦ b2 represents the bit-string of

ns and is also a prefix of nt, and b1 ◦ b2 ◦ b3 represents the bit-string of nt; and (2) b1

represents the bit-string of ns and is also a prefix of the bit-string of nr and nt; b1 ◦ b2

represents the bit-string of nr and is also a prefix of nt, and b1 ◦ b2 ◦ b3 represents the

bit-string of nt. Each such case can be expressed using the Boolean IJQs Q̃(b,σ) and

Q̃(b,σ′) from Example 5.2.2. Each one of the queries is evaluated on a database D̃(v,σ)

and D̃(v,σ′) respectively, where:

D̃(b,σ′) = {R̃1(a, b̃1, b̃
(1), c), R̃2(a, b̃1, b̃2, b̃

(2), c), R̃3(b̃1, b̃2, b̃3, b̃
(1), c)};

D̃(b,σ) = {R̃1(a, b̃1, b̃2, b̃
(1), c), R̃2(a, b̃1, b̃

(2)), R̃3(b̃1, b̃2, b̃3, b̃
(3), c)}.

It holds that Q(D) is satisfied if and only if at least one of the following is satisfied
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Q̃(b,σ)(D̃(b,σ)) or Q̃(b,σ′)(D̃(b,σ′)). The correctness of the latter statement is formally

stated in the following.

Correctness

The transformations in Definitions 5.2.1 and 5.2.5 preserve the equivalence to the

original evaluation problem.

Lemma 5.2.7 (One-step Forward Reduction Correctness). Consider a Boolean IJQ

Q and a database D. Consider also a variable v ∈ V(Q). It holds that Q(D) is

equivalent to Q̃(v)(D̃(v)), where Q̃(v) and D̃(v) are constructed by Definitions 5.2.1

Complexity

The following lemma states the size and construction time of each relation in D̃(v), as

well as their number. Consequently, by employing it one can determine the size and

construction time of the new database D̃(v).

Lemma 5.2.8 (One-step Forward Reduction Complexity). The size of the query Q̃(v)

which is constructed by Definition 5.2.1 is O(1). The size of each new relation in the

database D̃(v) which is constructed by Definition 5.2.5 is the following.

• Case Ėv(Q) 6= ∅

– |R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)| · logi|D|) ∀i ∈ [1, n̄v];

– |R̃µ(e)(ẽ)| = O(|Rµ(e)(e)| · logi−1|D|) ∀e ∈ Ev(Q).

• Case Ėv(Q) = ∅

– |R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)| · logi|D|) ∀i ∈ [1, n̄v − 1];

– |R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)| · logi−1|D|) i = n̄v.

The construction time of each new relation is proportional to its size.
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5.2.2 Full Forward Reduction

The forward reduction transforms any Boolean IJQ into a disjunction of Boolean

CQs. Hence, all the intersection joins are replaced by equality joins. Furthermore, the

database is transformed accordingly. Those transformations are achieved by applying

the one-step forward reduction, described in Section 5.2.1, on a join variable and then

apply it iteratively to the result of the previous step for the remaining join variables.

The algorithm presented below describes the full forward reduction procedure, which

involves transforming both the query and the database.

Algorithm 4 Full Forward Reduction

1: procedure Forward-Reduction(Q : query, D : database)
2: Q = {Q};
3: for each join variable v in V do
4: Q0 = Q; Q = ∅;
5: for each Q ∈ Q0; do
6: for each σ ∈ perms(Ēv(Q)) do
7: Q = Q ∪ {Q̃(v,σ)}; . Definition 5.2.1
8: end for
9: end for

10: D̃ = D̃(v);D = D̃; . Definition 5.2.5
11: end for
12: return (Q, D̃)
13: end procedure

Definition of the Forward Reduction

The output of Algorithm 4 is a tuple consisting of a set of Boolean CQs Q, and a

database D̃. The full forward reduction of the problem of evaluating a Boolean IJQ

Q on D is formally defined as follows.

Definition 5.2.9 (Full Forward Reduction). Consider a Boolean IJQ Q and a database

D. Define the query

Q̃ =
∨
Q∈Q

Q, (5.11)
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where Q is the set of Boolean CQs returned by Algorithm 4. Define D̃ be the database

returned by Algorithm 4.

Example 5.2.10 explains the full forward reduction for the Boolean Triangle IJQ

(Example 2.3.1).

Example 5.2.10 (The Boolean Triangle IJQ — Forward Reduction). Consider the

Boolean Triangle IJQ

Q4 = R1([a], [b]) ∧R2([b], [c]) ∧R3([a], [c]),

where Ēa(Q4) = {{a, b}, {a, c}}, Ēb(Q4) = {{a, b}, {b, c}} and Ēc(Q4) = {{b, c},

{a, c}}. The query has three intersection joins on a, b and c. The forward reduction

transforms the Boolean IJQ Q4 to the disjunction of the following Boolean CQs.

Q̃1 = R̃1(ã1, ã2, ã
(1), b̃1, b̃2, b̃

(1)) ∧ R̃2(b̃1, b̃
(2), c̃1, c̃2, c̃

(2)) ∧ R̃3(ã1, ã
(3), c̃1, c̃

(3))

Q̃2 = R̃1(ã1, ã2, ã
(1), b̃1, b̃2, b̃

(1)) ∧ R̃2(b̃1, b̃
(2)c̃1, c̃

(2)) ∧ R̃3(ã1, ã
(3), c̃1, c̃2, c̃

(3))

Q̃3 = R̃1(ã1, ã2, ã
(1), b̃1, b̃

(1)) ∧ R̃2(b̃1, b̃2, b̃
(2), c̃1, c̃2, c̃

(2)) ∧ R̃3(ã1, ã
(3)c̃1, c̃

(3))

Q̃4 = R̃1(ã1, ã2, ã
(1), b̃1, b̃

(1)) ∧ R̃2(b̃1, b̃2, b̃
(2), c̃1, c̃

(2)) ∧ R̃3(ã1, ã
(3), c̃1, c̃2, c̃

(3))

Q̃5 = R̃1(ã1, ã
(1), b̃1, b̃2, b̃

(2)) ∧ R̃2(b̃1, b̃
(2), c̃1, c̃2, c̃

(2)) ∧ R̃3(ã1, ã2, ã
(3), c̃1, c̃

(3))

Q̃6 = R̃1(ã1, ã
(1), b̃1, b̃2, b̃

(1)) ∧ R̃2(b̃1, b̃
(2), c̃1, c̃

(2)) ∧ R̃3(ã1, ã2, ã
(3), c̃1, c̃2, c̃

(3))

Q̃7 = R̃1(ã1, ã
(1), b̃1, b̃

(1)) ∧ R̃2(b̃1, b̃2, b̃
(2), c̃1, c̃2, c̃

(2)) ∧ R̃3(ã1, ã2, ã
(3), c̃1, c̃

(3))

Q̃8 = R̃1(ã1, ã
(1), b̃1, b̃

(1)) ∧ R̃2(b̃1, b̃2, b̃
(2), c̃1, c̃

(2)) ∧ R̃3(ã1, ã2, ã
(3), c̃1, c̃2, c̃

(3))

Complexity

The forward reduction’s complexity is measured by the time and space required to

transform both the query and the database. Recall that this transformation is accom-

plished by Algorithm 4. The complexity of the forward reduction is formally stated
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in the following.

Proposition 5.2.11 (Forward Reduction Complexity). Consider a Boolean IJQ Q

and a database D. The size of Q̃ is O(1). Furthermore, the new database D̃ has size

Õ(|D|), and can be constructed in time proportional to its size.

Proof. The number of the CQ conjuncts in Q̃ is
∏

v∈V(Q) n̄v!, hence, it only depends

on the size of the input query. Moreover, the size of each one of the CQ conjuncts

depends only on the size of the input query. Therefore, we have that |Q̃| = O(1).

Let us analyse the construction time of the relation R̃µ(e), which is based on the

relation Rµ(e). According to Lemma 5.2.8, by replacing a variable v ∈ e, one ends

up with a relation whose size and construction time is O(|Re| · logn̄v |D|). Hence, the

replacement of the rest of the variables, namely the variables in e \ {v}, will result in

a size and computation time of

O(|Re| · logn̄v |D| ·
∏

u∈e\{v}

logn̄u|D|) = Õ(|D|).

The number of the CQ conjuncts in the disjunction Q̃ is at most |E(Q)|!|V(Q)|.

The worst case occurs when all the hyperedges include all the variables, and all the

variables are of interval type wherever they occur.

Correctness

The correctness of the forward reduction is formally stated in the following.

Proposition 5.2.12 (Correctness). Consider a Boolean IJQ Q and a database D. It

holds that Q(D) is equivalent to Q̃(D̃), where Q̃ and D̃ are defined by Definition 5.2.9.
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5.2.3 Upper Bounds

The upper bounds for the computation of Boolean IJQs are established using known

upper bounds for the computation of Boolean CQs. In particular, the upper bound

for the computation of an IJQ Q, is the upper bound for the computation of the

most difficult CQ in the forward reduction of Q. Existing upper bounds for Boolean

CQs [4, 8] use the sub-modular width (Definition 3.1.18) or the fractional hypertree

width (Definition 3.1.17) of the query as an exponent. In the following, those two

notions of width are extended to be used as width measures for Boolean IJQs.

Definition 5.2.13 (Extended Width Measures). Consider a Boolean IJQ Q. Let Q

be the set that consists of the Boolean CQs returned by Algorithm 4. Define

subwij(Q) = max
q∈Q

subw(q),

fhtwij(Q) = max
q∈Q

fhtw(q),

where subw(q) is the sub-modular width of q (Definition 3.1.18), and fhtw(q) is the

fractional hypertree width of q (Definition 3.1.17).

The following statement provides the upper bounds on the runtime for computing

Boolean IJQs, based on the extended width measures introduced above.

Theorem 5.2.14 (Upper Bounds for Boolean IJQs). Consider a Boolean IJQ Q and

a database D. The runtime upper bound of Q on D is Õ(|D|subwij(Q)).

Proof. By Proposition 5.2.12, we have Q(D) if and only if
∨
q∈Q q(D̃), where

(Q, D̃) = Forward-Reduction(Q,D).

Therefore, the upper bound for the computation of Q(D) is given by the upper

bound of the query with the maximum upper bound among the CQ conjuncts in the
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ã1, ã2, b̃1, b̃2

ã1, b̃1, c̃1

b̃1, c̃1, c̃2

(a)

ã1, ã2, b̃1, b̃2

ã1, b̃1, c̃1

ã1, c̃1, c̃2

(b)

ã1, ã2, b̃1
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b̃1, b̃2, c̃1, c̃2

(c)

ã1, ã2, b̃1

ã1, b̃1, c̃1

b̃1, b̃2, c̃1

ã1, c̃1, c̃2

(d)

ã1, b̃1, b̃2

ã1, b̃1, c̃1

b̃1, c̃1, c̃2

ã1, ã2, c̃1

(e)

ã1, b̃1, b̃2

ã1, b̃1, c̃1

ã1, ã2, c̃1, c̃2

(f)

ã1, ã2, c̃1

ã1, b̃1, c̃1

b̃1, b̃2, c̃1, c̃2

(g)

b̃1, b̃2, c̃1

ã1, b̃1, c̃1

ã1, ã2, c̃1, c̃2

(h)

Figure 5.3: The hypertree decompositions of the eight queries in Q̃4. All decompositions have a

bag {ã1, b̃1, c̃1}, whose materialisation requires the computation of a full Triangle CQ.

disjunction of Equation (5.11) (Definition 5.2.9). That is the one whose hypergraph

has the maximum sub-modular width [5]. Hence, the runtime of evaluating Q on D

is upper bounded by Õ((|D|)maxq∈Q subw(q)). By Definition 5.2.13 we have

Õ((|D|)maxq∈Q subw(q)) = Õ((|D|)subw
ij(Q)).

Hence, Q(D) can be computed in time Õ(|D|subwij(Q)).

The sub-modular width of a CQ is less or equal than its fractional hypertree

width [5]. Therefore, another valid upper bound for the runtime of the Boolean IJQ

computation is Õ(|D|fhtwij(Q)).

Example 5.2.15 revisits Example 5.2.10 and analyze the upper bound for the

Boolean Triangle IJQ. This is done by utilizing the upper bounds for the Boolean

CQs obtained during its reduction.
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Example 5.2.15 (The Complexity of the Boolean Triangle IJQ). The hypergraph of

each one of the eight Boolean CQs from Example 5.2.10 admits a hypertree decom-

position in the form of a star with a central bag {a1, b1, c1} (see Figure 5.3). In each

of these decompositions, the materialisation of the central bag requires solving the full

Triangle CQ

〈{a1, b1, c1}, S̃1(a1, b1) ∧ S̃2(b1, c1) ∧ S̃3(a1, c1)〉,

where S̃1 is the projection of R̃1 on a1, b1, S̃2 is the projection of R̃2 on b1, c1, and S̃3

is the projection of R̃3 on c1, a1. The new relations and their projections have size

O(n · log2 n). Hence, the materialisation of the join takes time O((n · log2 n)
3/2

) =

O(n3/2 · log3 n) using existing worst-case optimal join algorithms [44]. Checking if

any of the eight CQs is true takes time linear in the maximum size of the bags of its

decomposition. This gives an overall computation time O(n3/2 · log3 n) for Q̃4 and as

a result for Q4.

5.3 Backward Reduction

The previous section showed that any Boolean IJQ has as an upper bound the max-

imum runtime upper bound of the queries in its forward reduction up to a polylog-

arithmic factor in the size of data. This section does the reverse; it shows that the

runtime of any Boolean IJQ has as a lower bound the maximum lower bound of the

Boolean CQs in its forward reduction. This is achieved using a backward reduction,

cf. Figure 1.1.

In computational complexity, a reduction is an algorithm that transforms one

problem into another. By showing that there exists a sufficiently efficient reduction

from one problem to another, one can prove that the latter problem is at least as

hard as the first. Consider a Boolean IJQ Q, a Boolean CQ Q̃(i), whose schema is the

same as the schema of one of the conjuncts in Q̃, and a database B̃, which matches
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Figure 5.4: This figure illustrates an example of the segment tree that visualises the backward
mapping function.

the schema of Q̃(i). The backward reduction reduces the decision problem Q̃(i)(B̃) to

the decision problem Q(B), where B is a database that matches the schema of Q.

The reduction is based on a bijection from the tuples of B̃ to the tuples of B.

Remark 5.3.1. By the above description, it follows that the database B̃ contains

scalars only, whereas B contains intervals (and scalars).

Proposition 5.3.2 (Backward Reduction Correctness). Consider a Boolean IJQ Q,

a Boolean CQ Q̃(i) from the forward reduction of Q, and a database B̃ that matches

the structure of Q̃(i). There exists a bijection that maps each tuple from B̃ to a tuple

from a database B that matches the structure of Q, such that Q̃(i)(B̃) is equivalent to

Q(B).

The following example explains the backward reduction for the Boolean Triangle

Intersection Join.

Example 5.3.3 (The Boolean Triangle IJQ — Backward Reduction). Consider the

Boolean IJQ Q4 from Example 5.2.10, and the Boolean CQ Q̃
(3)
4 resulting from the

reduction of Q4:

Q̃
(3)
4 = R̃1(ã1, ã2, b̃1) ∧ R̃2(b̃1, b̃2, c̃1, c̃2) ∧ R̃3(ã1, c̃1)
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Let B̃ = {R̃1, R̃2, R̃3} be a database with a matching schema. Define a bijective func-

tion F , called backward mapping, which maps each bit-string in
⋃m
i=0 {0, 1}

i, where

m is a constant, to an interval [x, y) where x, y ∈ [0, 1], as follows: F (ε) = [0, 1),

F (“0”) = [0, 1/2), F (“1”) = [1/2, 1), F (“00”) = [0, 1/4) and so on. For any given

bit-string b, the intervals F (b ◦ “0”) and F (b ◦ “1”) correspond to the first and second

half of the interval F (b) respectively. The function F can be explained graphically

using a segment tree TI, as defined in Definition 3.3.1, build over the elementary

segments:

I = {[0, 1/2m), [1/2m, 2/2m), . . . , [(2m − 1)/2m, 1)}.

The function F maps each node to its corresponding segment, hence, F = segI.

Figure 5.4 depicts this segment tree for m = 3. Using the segment tree one can easily

see that two bit-strings are ancestors of each other if and only if their corresponding

segments intersect.

The decision problem Q̃
(3)
4 (B̃) can be reduced to the decision problem Q4(B), where

B = {R1, R2, R3} constructed as follows:

R1 = {(F (a1 ◦ a2), F (b1)) | (a1, a2, b1) ∈ R̃1},

R2 = {(F (b1 ◦ b2), F (c1 ◦ c2)) | (b1, b2, c1, c2) ∈ R̃2},

R3 = {(F (a1), F (c1)) | (a1, c1) ∈ R̃3}.

It holds that Q4(B) is equivalent to Q̃
(3)
4 (B̃). Furthermore, it holds that |B̃| = |B|.

Therefore, solving Q4 is at least as difficult as solving Q̃3. In similar way, one can

obtain that for every Q̃i ∈ {Q̃1, . . . , Q̃8} it holds that Q4(b) is at least as difficult as

solving Q̃i. Notice that the forward reduction shows that Q4 is at most as difficult

as solving the most difficult query among {Q̃1, . . . , Q̃8}. Hence, overall, it holds that

Q4 is as difficult as the most difficult query among Q̃1, . . ., and Q̃8, meaning that

given an optimal algorithm for solving Q̃1, Q̃2, . . ., and Q̃8, one can obtain an optimal
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algorithm for solving Q4.

5.3.1 Lower Bounds

Theorem 5.3.4. Consider a Boolean IJQ Q. Let Q̃(i) be any Boolean CQ that cor-

responds to a conjunct in Q̃. For any database B̃, let Ω(T (|B|)) be a lower bound

on the time complexity for computing the query Q̃(i)(B̃). Then, there cannot be an

algorithm that computes Q(B) in time o(T (|B|)) for any database B.

Proof. For contradiction, assume that there is such an algorithm AQ. That is, there

exists an algorithm AQ that decides Q(B) in time o(T (|B|)) for any database B. By

Proposition 5.3.2, one can construct a bijection from the tuples in B̃ to the tuples

of a database B, that matches the structure of Q. Furthermore, it holds that Q(D)

is equivalent to Q̃(B̃). Notice that it holds |B| = |B̃|. As a result, one can use

the algorithm AQ as an oracle to compute Q̃(i)(B̃) in time o(T (|B̃|)). This is a

contradiction since Q̃(B̃) has a lower bound of Ω(T (|B̃|)).

5.4 Beyond Boolean IJQs

This section explains how to compute the answer of a non-Boolean IJQ using the

previously described forward reduction (Subsection 5.4.1). This observation might be

useful for investigating the enumeration complexity of non-Boolean IJQs in the future.

In light of this, a complexity statement is made about the enumeration complexity

for full IJQs is made in this thesis (Subsection 5.4.2). In particular, it is stated that

there exists an enumeration algorithm that computes Q(D) by using Õ(|D|fhtwij(Q))

preprocessing and constant delay enumeration of the tuples in the output.
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5.4.1 Non-Boolean IJQs

Consider an IJQ Q and a matching database D. Assume that the IJQ is non-Boolean,

therefore, it holds that free(Q) 6= ∅. According to Section 2.2, the answer Q(D) is a

set of tuples

{
(t1[e], . . . , tn[e])

∣∣∣∣∣ti ∈ Ri(ei) for each 1 ≤ i ≤ n, and

for each u ∈ vars(Q) :

 ⋂
i∈ind(Q,u)

ti(u)

 6= ∅}.
The forward reduction replaces a variable v ∈ V(Q) in the query with the variables

{ṽ1, . . . , ṽi} ∪ {ṽ(µ(e)) | e ∈ Ev(Q)}, where the former variables in the union are new

join variables, and the latter variables in the union are singleton variables, whose

purpose is to preserve the original data when evaluating the reduced problem, i.e.,

when evaluating the new query Q̃ on the new database D̃. Consider any conjunct

Q̃(j) in Q̃. It is natural to define the free variables of Q̃(j) as a set free(Q̃(j)) obtained

from the set free(Q), by replacing each variable v ∈ free(Q) with its corresponding

newly created singleton variables ṽ(µ(e)) for each e ∈ Ev(Q). The result Q(D) can

be obtained by the result Q̃(D̃), by associating each tuple in the latter result to a

tuple in the former result. In particular, by the construction of the query Q̃, and the

database D̃ (Algorithm 4, and Proposition 5.2.12), given a tuple (t̃1, . . . , t̃n) which

belongs to Q̃(D̃), one can construct a tuple (t1, . . . .tn) which belongs to Q(D) by

assigning tµ(e)(v) = t̃µ(e)(ṽ
(µ(e))) for each v ∈ free(Q) for each e ∈ Ev. By applying the

above procedure to all the tuples in the result of the reduced problem one can obtain

all the tuples in the result of the input problem.
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5.4.2 Full IJQs and Constant Delay Enumeration

The CQ evaluation has been extensively studied in the enumeration setting, where

the tuples in the output of a query are reported one after the other and maximum

delay between reporting two tuples is measured. In this case the target is to achieve

enumeration with constant delay, which means that the time between reporting two

consecutive tuples depends solely on the query size and not on the data size [12]. Let

us consider full CQs. It is well understood that α-acyclic full CQs can be computed

in linear time and with constant delay enumeration (Proposition 3.2.2). As a result,

for full CQs in general, one can build a hypertree decomposition of the query (Defi-

nition 3.1.16), and materialise its bags with the appropriate amount of preprocessing

time. Therefore, the full CQ is transformed to an α-acyclic CQ, hence, it is possible

to enumerate the tuples in its output with constant delay (Subsection 3.2.2).

Full IJQs are special cases of non-Boolean IJQs, where all the variables in the query

belong to the set of free variables. For the full IJQs, aside from how to compute the

result of the input problem using the result of the reduced problem (Subsection 5.4.1),

a specific statement is made for the amount of preprocessing needed for the enumer-

ation of the tuples in the output in constant delay (Proposition 5.4.1). We have that

free(Q) = vars(Q), which means that the input query is a full IJQ. Recall that the

set of the free variables of Q̃(j), which is a CQ conjunct in Q̃, consists of the singleton

variables {ṽ(µ(e)) | e ∈ Ev(Q)} for each v ∈ vars(Q). The result Q̃(D̃) can be computed

as explained in Subsection 5.4.2. For ease of description, since Q̃(i) is a CQ, the rela-

tional representation of the result Q̃(i)(D̃) is adopted; that is the result is a relation

over free(Q̃(i)) (see Section 2.2). By Property 5.1.8, it holds that for each v ∈ vars(Q),

and for each satisfying assignment of values for the variables {ṽ(µ(e)) | e ∈ Ev(Q)}

there is a uniquely satisfying assignment of values for the variables ṽ1, . . . , ṽi. This is

important for the efficient enumeration of the tuples in the result Q(D), as one can

enumerate the tuples in the result of the full query Q̃(i) and then remove the values
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assigned to the the variables ṽ1, . . . , ṽi without affecting the size of the output. In

other words, one can add the variables ṽ1, . . . , ṽi in the set of free variables of Q̃(i),

and compute the query as all the variables are free without affecting the asymptotic

complexity of the preprocessing and the enumeration.

Proposition 5.4.1. Consider a full IJQ Q and a database D. There exists an enu-

meration algorithm that computes Q(D) using Õ(|D|fhtwij(Q)) preprocessing and con-

stant delay enumeration of the tuples in the output.

The above complexity is justified by the fact that, by Definition 5.2.13, fhtwij(Q)

is the fractional hypertree width (Definition: 3.1.17) of the CQ with the maximum

fractional hypertree width among the CQs in the union generated by the reduction.

The tuples of the result of that particular full CQ can be enumerated with constant

delay after Õ(|D|fhtwij(Q)) of preprocessing [12]. The preprocessing for this conjunct

dominates the entire preprocessing phase for Q̃. After this amount of preprocessing

the tuples of Q can be enumerated with constant delay.

5.5 Illustrative Experimental Evaluation

This section illustrates the forward reduction’s performance on synthetic databases.

The goal is not to provide an in-depth experimental evaluation, but to highlight the

efficiency of the reduction in practice as well as its limitations.

5.5.1 Setup

The following experiments were run on a machine with an Intel Xeon Platinum 8268

CPU @2.90 GHz, with 48 cores, 392 GB of RAM, and CentOS Linux 8.1 operating

system. This machine belongs to the Advanced Research Computing (ARC) cluster,

which is a collection of high-performance computing resources, available to researchers
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within the University of Oxford. All the datasets are synthetic. The original imple-

mentation of the forward reduction (Algorithm 4) in C++, is developed in [21], which

is also based on [35, 36]. This is an in-memory implementation of the forward reduc-

tion. The code is adapted appropriately in the context of this thesis to support also

variables that range over scalars (Section 2.2).

5.5.2 Benchmarks

The databases used for the experiments are randomly generated. All tables within a

database consist of the same number of tuples. The tables consist of columns (three

at maximum), where each column is of interval or scalar type. The columns within

a table are independent, and intervals are randomly generated using two alternative

methods: (1) both the endpoints of the intervals are chosen uniformly at random

from a domain; or (2) the left endpoint of each interval is chosen uniformly at random

from a domain, and the length of the interval is chosen with respect to the Zipfian

distribution with skew parameter α = 1.6. The right endpoint must be within the

domain. The first method is referred to as random, and the second as Zipf-based. The

Zipf-based method may produce more realistic database instances in comparison to

the random method, because the intervals do not span a wide range in the domain.

Three full IJQs are considered, namely Q1,Q2, and Q3, which are detailed in the

following. Intersection joins produce large results; hence, reporting the tuples in the

output dominates the computation time. For this reason, it is meaningful to consider

counting the tuples in the output rather than listing them. The evaluation algorithm,

called Ijq, runs in main memory and consists of two stages, the reduction and the

join evaluation. The former stage is based on Algorithm 4; it generates a union of

CQs, and a matching database. It must be noted that for the IJQs Q1, Q2, and Q3,

all the CQs in their reduction are α-acyclic. The latter stage is based on Yannakaki’s

algorithm (Subsection 3.2.2). The Ijq algrorithm is compared with two PostgreSQL
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#Tuples
Time (secs)

Red. Time (secs) Count
Ijq Rangess Inequalities

5K 3.7 3.2 3.4 0.4 ∼11M
10K 9.1 11.8 12.5 0.8 ∼44M
50K 71.1 361.7 403.7 5.8 ∼1B
100K 182.2 656.4 692.7 13.0 ∼4B

Table 5.1: This table summarises the experimental findings for the running time of the query Q1

on five databases with a varied number of tuples per table. The reported running times correspond
to three different approaches, namely Ijq, Ranges and Inequalities. The table also includes the
reduction time for Ijq, as well as the number of tuples in the output.

implementations; one that uses inequality conditions (e.g. a.start ≤ b ≤ a.end), and

one that uses range conditions (e.g., check if the point b is within the the interval a).

Both implementations are based on the rewriting from Remark 4.2.11, hence, they are

similar to each other. The PostgreSQL queries are written in disjunctive form and the

conjuncts are executed in parallel, using multiple threads. For applying the queries

with inequalities the intervals are stored in two columns, one for the left endpoint and

one for the right endpoint. All columns are indexed by B-trees (similarly to [23]). For

applying the queries with ranges the intervals are stored in one column of type range,

which is provided by the PostGIS extension for PostgreSQL. All such columns are

indexed using spatial indexes. Note that PostgreSQL is disk-based engine; although

there is enough main memory so that the query is executed in main memory, there

may exist overhead caused it implements advanced features and extra data structures

to support disk-based computation.

5.5.3 Runtime Experiments

The performance of the IJQs Q1, Q2, and Q3 is tested in the following.

Query Q1

Consider the IJQ Q1 = R1([a], [b]) ∧ R2([a], [b]). In this query, the variables a and b

in all their occurrences, both in R1 and R2 range over intervals. To understand what
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Figure 5.5: This figure graphs the experimental findings for the running time of the query Q1 on
five databases with a varied number of tuples per table. The reported running times correspond to
three different approaches, namely Ijq, Ranges and Inequalities. The result are also summarised
in Table 5.1.

this query asks in practice, consider two sets of rectangles in two dimensions, and the

task of counting pairs of the overlapping rectangles in the cross-product of the two

sets. For this particular query, the reduction generates a union of 4 CQs.

This set of experiments uses 5 databases with a varied number of tuples per

relation ranging from 5000 to 100000. Recall that every relation the database has the

same number of tuples. The data are generated according to the random method. The

running times are summarised in Table 5.1, together with the reduction time for the

Ijq approach and the number of tuples in the output. The times are also illustrated

in Figure 5.5, showing that for Q1, the Ijq approach outperforms both PostgreSQL

approaches. In particular, the increase in the performance gap is noticeable, at least

for the sizes from 5000 to 50000.

Query Q2

Consider the IJQ Q2 = R1([a])∧R2([a])∧R3([a]). This query is a set intersection join

over 3 sets of intervals, and it is the simplest query that can be used to demonstrate
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Table 5.2: This table summarises the experimental findings for Q2’s running time on four databases
with varying numbers of tuples per relation, where the intervals are generated using both the random
and the Zipf-based method. The results correspond to four different approaches, namely Ijq, SetIJ,
Ranges and Inequalities. The table includes the reduction time for the Ijq approach, as well as
the count of the tuples in the output.

(a) Random

#Tuples
Time (secs)

Red. Time (secs) Count
Ijq SetIJ Ranges Inequalities

100 0.02 0.006 0.1 0.01 0.003 ∼393K
500 0.2 0.04 6.4 13.0 0.02 ∼48M
1K 0.4 0.09 47.3 38.3 0.04 ∼399M
5K 3.3 0.6 >600 >600 0.3 ∼50B

(b) Zipf-based

#Tuples
Time (secs)

Red. Time (secs) Count
Ijq SetIJ Ranges Inequalities

1K 0.4 0.07 1.2 0.8 0.04 ∼767K
5K 2.8 0.4 13.9 20.2 0.2 ∼12M
10K 6.7 1.0 58.6 79.5 0.4 ∼37M
50K 49.6 6.2 >600 >600 2.6 ∼772M

the effectiveness of the approaches introduced by this thesis for queries with multi-way

intersection joins. For this query, the reduction generates a union of 6 CQs.

Two sets of experiments are conducted. The first set uses 5 databases with varied

tuple counts per relation, ranging from 100 to 1000, generated in the random method.

A graphic representation of the running times is shown in Figure 5.6a and summarised

in Table 5.2b. The results show that SetIJ and Ijq outperform both PostgreSQL

approaches. The second set of experiments uses 5 databases, with a varied number of

tuples per relation, ranging from 100 to 1000, created using the Zipf-based method. A

graphic representation of the running times is shown in Figure 5.6b and summarised

in Table 5.2b. The same observation holds; however, the performance gap with the

PostgreSQL approaches is reduced. This happens because the intervals do not cover a

wide range of the domain; therefore the tuples produced by joining any two out of the

three tables are less than if the intervals were generated randomly. The performance

gap between SetIJ and the IJQ approach is justified by the fact that the latter
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(a) (b)

Figure 5.6: This figure graphs the running times that correspond to three different approaches,
namely SetIJ, IJQ, Ranges, and Inequalities, against the number of tuples per relation. Figure 5.6a
illustrates the running times for databases where the intervals are constructed using the random
method, whereas Figure 5.6a illustrates the running times for databases where the intervals are
constructed using the Zipf-based method. The results are also summarised in Table 5.2b.

approach incurs extra logarithmic factors in the data size.

Query Q3

Consider the IJQ Q3 = R1(a, b, c) ∧R2([a], [b]) ∧ R3([b], [c])∧R4([a], [c]), where all the

variables in R1 range over scalars, whereas the variables in the rest of the relations

range over intervals. The databases are randomly generated using the Zipf-based

method, and the Random methods and each relation consists of 100 tuples. As

mentioned earlier, the reduction transforms an IJQ evaluation problem to a union

of CQ evaluation problems, which are independent of each other, i.e., the input of

one CQ does not require the output from another CQ in the union. In this case,

the number of CQs generated by the reduction is 8. Hence, the union of CQs can

be computed in parallel. This set of experiments is carried out to demonstrate the

speedup of the Ijq when varying the number of parallel threads from 2 to 8. Figure 5.7

illustrates the speedup ratio of the computation time for the sequential algorithm to
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(a) Random (b) Zipf-based

Figure 5.7: This figure graphs the ratio of the compute time for the sequential algorithm to the
time for the parallel algorithm.

the time for the parallel algorithm. The speedup runtime scales with the number of

threads.

5.6 Discussion

The data complexity of Boolean IJQs is established in this chapter by employing a re-

duction to Boolean CQs. The complexity of a Boolean IJQ, in particular, is precisely

that of the most difficult Boolean CQ in the disjunction generated by the reduction.

Hence, given optimal algorithms for Boolean CQs, one can acquire optimal algorithms

for Boolean IJQs. Furthermore, it is shown this reduction can be extended so that

it can be applied to non-Boolean IJQs. Last but not least, the overall approach, in-

cluding the reduction and the CQ evaluation, is compared with standard PostgreSQL

implementations on synthetic databases, showing the potential to be practical.

93



Experimental Evaluation

Section 5.5 provides us with some illustrative performance experiments for IJQs ap-

plied on synthetic databases. It illustrates the efficiency of the IJQ reduction, how-

ever, it does not provide an in-depth evaluation and comparison. In the future, it

would be useful to test the performance of the IJQ reduction on realistic use cases,

where the data distributions differ from the ones used in the context of this thesis.

Further, an in-depth evaluation, taking into account the space requirements would

help us to assess the performance more accurately. Furthermore, existing database

systems rely on statistics and specialised algorithms to generate efficient query plans

for queries; thus, outperforming such algorithms may be difficult [51]. Such a task

would require further optimisations on the reduction and, ideally removing the aris-

ing polylogarithmic factors in the data size. Last but not least, another aspect of

this thesis that could be improved is the collection of existing in-memory systems

and implementations to serve as competitors; a as mentioned in Section 5.5 the Ijq

algorithm is compared to a disk-based database systems and this comparison may be

unfair due to the overhead caused by the implementation of advanced features.

Theoretical Aspects

Section 5.4 explains briefly how the forward reduction can be used to solve non-

Boolean IJQs. It would be interesting to investigate the enumeration complexity

of IJQs in the presence of free variables in greater depth [12]. In particular, the

intriguing question would be to identify the class of IJQs that admit quasi-linear time

preprocessing, followed by constant delay enumeration of the tuples in the output.

This can be accomplished by utilising existing results for the enumeration of CQs and

unions of CQs [18, 9, 52].

As a future work, it would also be interesting to consider queries with inequal-

ities and try to understand their complexity by utilising reductions to queries with

94



equality joins, as in the case of intersection joins. Can such an approach recover or

even improve the results obtained by [56, 2]? For instance, the Boolean query with

inequalities

Q = R(a, b) ∧ S(b, c) ∧ T (c, d) ∧ a ≤ c (5.12)

can be evaluated in Õ(N
3
2 ) [2]. The same complexity can be achieved by rewriting

the query from Equation (5.12) in the form of an IJQ as follows:

Q′ = R(a, b) ∧ S(b, c) ∧ T (c, [a]) (5.13)

where the variable d is replaced by [a] which ranges ove the intervals (−∞, d]. Note

that the database is modified to accommodate the interval (−∞, d] for each value

d. The problem of evaluating the query in Equation (5.13) on the corresponding

database can be further reduced to the problem of evaluating the Boolean CQ

Q′′ = R(ã1, ã2, b) ∧ S(b, c) ∧ T (c, ã1),

on a new database, as suggested by Definition 5.2.9. The complexity of the lat-

ter evaluation problem is Õ(N
3
2 ). It is therefore interesting to identify queries with

inequalities for which the above approach has lower asymptotic complexity than com-

monly used techniques.

5.7 Proofs

5.7.1 Proof of Lemma 5.1.7

Lemma 5.1.7 (Predicate Rewriting — Equalities). The predicate in Lemma 5.1.1

can be equivalently rewritten as follows.

• Case Ṡ 6= ∅: There exists a permutation σ ∈ perms(S̄) and a tuple of bit-strings
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(b1, . . . , bc+1) such that:

(b1 ◦ · · · ◦ bi) ∈ cpI(σi), for each 1 ≤ i ≤ c

(b1 ◦ · · · ◦ bc+1) = leafI(xi), for each c < i ≤ k

• Case Ṡ = ∅: There exists a permutation σ ∈ perms(S̄) and a tuple of bit-strings

(b1, . . . , bc) such that:

(b1 ◦ · · · ◦ bi) ∈ cpI(σi), for each 1 ≤ i < c

(b1 ◦ · · · ◦ bc) = leafI(σc)

Proof. “ =⇒ ”: Assume that Ṡ 6= ∅. Assume that the predicate in Equation (5.2) is

true. By Lemma 5.1.2 and Lemma 5.1.4 Equation (5.2) is equivalent to Equation (5.7).

Hence, the predicate in Equation (5.7) is true. Therefore, there exists a permutation

σ ∈ perms(S̄) and a tuple of nodes (n1, . . . , nc+1) such that: n1 ∈ ancI(n2), . . . , nc ∈

ancI(nc+1), nc+1 = leafI(xc+1), xc+1 = · · · = xk and nj ∈ cpI(σj) for each 1 ≤ j ≤ c.

By Property 3.3.3, it holds that n1 is a prefix of n2 is a prefix of n3 and so on. Hence,

there exists a tuple of bit-strings (b1, . . . , bc+1) such that b1 ◦ · · · ◦ bi ∈ cpI(σi) for each

1 ≤ i ≤ c and b1 ◦ · · · ◦ bc+1 = leafI(xc+1) = · · · = leafI(xk). Assume that Ṡ = ∅.

Assume that the predicate in Equation (5.3) is true. By Lemma 5.1.4, Equation (5.3)

is equivalent to Equation 5.7. Hence, there exists a permutation σ ∈ perms(S̄) and a

tuple of nodes (n1, . . . , nc) such that: n1 ∈ anc(n2), . . . , nc−1 ∈ anc(nc), nc = leafI(σc)

and nj ∈ cpI(σj) for each 1 ≤ j ≤ c. By Property 3.3.3, it holds that n1 is a prefix of

n2 is a prefix of n3 and so on. Therefore, there exists a tuple of bit-strings (b1, . . . , bc)

such that b1 ◦ · · · ◦ bi ∈ cpI(σi) for each 1 ≤ i < c and b1 ◦ · · · ◦ bc = leafI(σc).

“ ⇐= ”: Assume that Ṡ 6= ∅. Assume there exists a permutation σ ∈ perms(S̄)

and a tuple of bit-strings (b1, . . . , bc+1) such that for each 1 ≤ i ≤ c we have b1◦· · ·◦bi ∈
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cpI(σi) and b1 ◦ · · · ◦ bc+1 = leafI(xc+1) = · · · = leafI(xk). Let ni = b1 ◦ · · · ◦ bi for each

1 ≤ i ≤ c and nc+1 = b1 ◦ · · · ◦ bc+1. It holds that ni ∈ cpI(σi) for each 1 ≤ i ≤ c and

nc+1 = leafI(xc+1) = · · · = leafI(xk). By Property 3.3.3, n1 is prefix of n2, n2 is prefix

of n3 and so on. Hence, n1 ∈ anc(n2), n2 ∈ anc(n3), . . . , nc−1 ∈ anc(leafI(xc+1)).

By the construction of the segment tree, this implies that Equation (5.2) is true.

Assume that Ṡ = ∅. Assume there exists a permutation σ ∈ perms(S̄) and a tuple of

bit-strings (b1, . . . , bc) such that for each 1 ≤ i < c we have b1 ◦ · · · ◦ bi ∈ cpI(σi) and

b1◦· · ·◦bc = leafI(σc). Let ni = b1◦· · ·◦bi for each 1 ≤ i ≤ c. It holds that ni ∈ cpI(σi)

for each 1 ≤ i < c and nc = leafI(σc). By Property 3.3.3, n1 is prefix of n2, n2 is

prefix of n3 and so on. Hence, n1 ∈ anc(n2), n2 ∈ anc(n3), . . . , nc−1 ∈ anc(nc). Given

the structure of the segment tree, this implies that Equation (5.3) is true.

5.7.2 Proof of Lemma 5.2.7

Lemma 5.2.7 (One-step Forward Reduction Correctness). Consider a Boolean IJQ

Q and a database D. Consider also a variable v ∈ V(Q). It holds that Q(D) is

equivalent to Q̃(v)(D̃(v)), where Q̃(v) and D̃(v) are constructed by Definitions 5.2.1.

Proof. “ =⇒ ”: Assume that Q(D) is true. By the semantics of IJQs, there exist

tuples (tµ(e))e∈E(Q) ∈
∏

e∈E(Q) Rµ(e), that satisfy
(⋂

e∈Ev(Q) tµ(e)

)
6= ∅, and also satisfy

the rest of the join conditions in the query Q.

• Case Ėv(Q) 6= ∅: By Lemma 5.1.1 it holds that tµ(e)(v) = ξ for some scalar ξ

for each e ∈ Ėv(Q), and ξ ∈
(⋂

e∈Ēv(Q) tµ(e)(v)
)

. Hence, by Lemma 5.1.7 there

exist a permutation σ ∈ perms(Ēv(Q)) and a tuple of bit-strings (b1, . . . , bn̄v+1)

such that:

b1 ◦ · · · ◦ bi ∈ cpI(tµ(σi)(v)) ∀ i ∈ [1, n̄v]

b1 ◦ · · · ◦ bn̄v+1 = leafI(tµ(e)(v)) ∀ e ∈ Ėv(Q)
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By Definition 5.2.5, there exist tuples:

t̃µ(σi) ∈ R̃µ(σi)(σ̃i), where R̃µ(σi)(σ̃i) ∈ D̃(v,σ) ∀ i ∈ [1, n̄v]

t̃µ(e) ∈ R̃µ(e)(ẽ), where R̃µ(e)(ẽ) ∈ D̃(v,σ) ∀ e ∈ Ėv(Q)

t̃µ(f) ∈ R̃µ(f)(f), where R̃µ(f)(f) ∈ D̃(v,σ) ∀ f ∈ E(Q) \ Ev(Q)

where σ̃i and ẽ are defined by Equation (5.8) and (5.9) respectively, such that:

t̃µ(σi)(ṽ1) = b1, . . . , t̃µ(σi)(ṽi) = bi ∀ i ∈ [1, n̄v]

t̃µ(e)(ṽ1) = b1, . . . , t̃µ(e)(ṽn̄v+1) = bn̄v+1 ∀ e ∈ Ėv(Q)

Hence, the above tuples satisfy the equality joins on the variables ṽ1, · · · , ṽn̄v+1

in the query Q̃(v,σ). Furthermore, we have:

t̃µ(σi)[σ̃i \ ({ṽ1, . . . , ṽi} ∪ {ṽ(µ(σi))})] = tµ(σi)[σi \ {v}] ∀ i ∈ [1, n̄v]

t̃µ(e)[ẽ \ ({ṽ1, . . . , ṽn̄v+1} ∪ {ṽ(µ(e))})] = tµ(e)[e \ {v}] ∀ e ∈ Ėv(Q)

t̃µ(f) = tµ(f) ∀ f ∈ E(Q) \ Ev(Q)

Hence, the same tuples satisfy the rest of the join conditions in the query Q̃(v,σ).

Therefore, it holds that Q̃(v)(D̃(v)) is true.

• Case Ėv(Q) = ∅: By Lemma 5.1.1 it holds that
(⋂

e∈Ēv(Q) tµ(e)(v)
)
6= ∅. Hence,

by Lemma 5.1.7, there exists a permutation σ ∈ perms(Ēv(Q)) and a tuple of

bit-strings (b1, . . . , bn̄v) such that:

b1 ◦ · · · ◦ bi ∈ cpI(tµ(σi)(v)) ∀ i ∈ [1, n̄v − 1]

b1 ◦ · · · ◦ bn̄v+1 = leafI(tµ(e)(v)) ∀ i = n̄v
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By Definition 5.2.5, there exist tuples:

t̃µ(σi) ∈ R̃µ(σi)(σ̃i), where R̃µ(σi)(σ̃i) ∈ D̃(v,σ) ∀ i ∈ [1, n̄v]

t̃µ(f) ∈ R̃µ(f)(f), where R̃µ(f)(f) ∈ D̃(v,σ) ∀ f ∈ E(Q) \ Ev(Q)

where σ̃i and ẽ are defined by Equations (5.8), and (5.9) respectively, such that:

t̃µ(σi)(ṽ1) = b1, . . . , t̃µ(σi)(ṽi) = bi ∀ i ∈ [1, n̄v]

Hence, the above tuples satisfy the equality joins on the variables ṽ1, · · · , ṽn̄v+1

in the query Q̃(v,σ). Furthermore, we have:

t̃µ(σi)[σ̃i \ ({ṽ1, . . . , ṽi} ∪ {ṽ(µ(σi))})] = tµ(σi)[σi \ ({v})] ∀ i ∈ [1, n̄v]

t̃µ(f) = tµ(f) ∀ f ∈ E(Q) \ Ev(Q)

Hence, the same tuples satisfy the rest of the join conditions in the query Q̃(v,σ).

Therefore, it holds that Q̃(v)(D̃(v)) is true.

“ ⇐= ”: Assume that Q̃(v)(D̃(v)) is true. That means that there exists a permu-

tation σ ∈ perms(Ēv) and there exist tuples (t̃µ(e))e∈E(Q)
∈
∏

e∈E(Q) R̃µ(e)(ẽ
(v,σ)) that

satisfy all the join conditions in the query Q̃(v,σ).

• Case Ėv(Q) 6= ∅: By the semantics of IJQs, it holds that:

t̃µ(σi)(ṽ1) = b1, . . . , t̃µ(σi)(ṽi) = bi ∀ i ∈ [1, n̄v]

t̃µ(e)(ṽ1) = b1, . . . , t̃µ(e)(ṽn̄v+1) = bn̄v+1 ∀ e ∈ Ėv(Q)
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By Definition 5.2.5, there exist tuples:

tµ(σi) ∈ Rµ(σi)(σi), where Rµ(σi)(σi) ∈ D ∀ i ∈ [1, n̄v]

tµ(e) ∈ Rµ(e)(e), where Rµ(e)(e) ∈ D ∀ e ∈ Ėv(Q)

tµ(f) ∈ Rµ(f)(f) ∀ f ∈ E(Q) \ Ev(Q)

such that:

b1 ◦ · · · ◦ bi ∈ cpI(tµ(σi)(v)) ∀ i ∈ [1, n̄v]

b1 ◦ · · · ◦ bn̄v+1 = leafI(tµ(e)(v)) ∀ e ∈ Ėv(Q)

Hence, the above tuples satisfy the intersection join on variable v in the query

Q. Furthermore, we have:

tµ(σi)[σi \ ({v})] = t̃µ(σi)[σ̃i \ ({ṽ1, . . . , ṽi} ∪ {ṽ(µ(σi))})] ∀ i ∈ [1, n̄v]

tµ(e)[σi \ ({v})] = t̃µ(e)[σ̃i \ ({ṽ1, . . . , ṽi} ∪ {ṽ(µ(e))})] ∀ e ∈ Ėv(Q)

t̃µ(f) = tµ(f) ∀ f ∈ E(Q) \ Ev(Q)

Hence, the above tuples satisfy the rest of the join conditions in the query Q.

Therefore, Q(D) is true.

• Case Ėv(Q) = ∅: By the semantics of IJQs, it holds that:

t̃µ(σi)(ṽ1) = b1, . . . , t̃µ(σi)(ṽi) = bi ∀ i ∈ [1, n̄v − 1]

t̃µ(e)(ṽ1) = b1, . . . , t̃µ(e)(ṽi) = bn̄v+1 i = n̄v
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By Definition 5.2.5, there exist tuples:

tµ(σi) ∈ Rµ(σi)(σi) where Rµ(σi)(σi) ∈ D ∀ i ∈ [1, n̄v]

tµ(f) ∈ Rµ(f)(f) ∀ f ∈ E(Q) \ Ev(Q)

such that:

b1 ◦ · · · ◦ bi ∈ cpI(tµ(σi)(v)) ∀ i ∈ [1, n̄v − 1]

b1 ◦ · · · ◦ bi = leafI(tµ(e)(v)) i = n̄v

Hence, the above tuples satisfy the intersection join on variable v in the query

Q. Furthermore, we have:

tµ(σi)[σi \ ({v})] = t̃µ(σi)[σ̃i \ ({ṽ1, . . . , ṽi} ∪ {ṽ(µ(σi))})] ∀ i ∈ [1, n̄v]

t̃µ(f) = tµ(f) ∀ f ∈ E(Q) \ Ev(Q)

Hence, the same tuples satisfy the rest of the join conditions in the query Q.

Therefore, Q(D).

5.7.3 Proof of Proposition 5.2.1

Lemma 5.2.8 (One-step Forward Reduction Complexity). The size of the query Q̃(v)

which is constructed by Definition 5.2.1 is O(1). The size of each new relation in the

database D̃(v) which is constructed by Definition 5.2.5 is the following.

• Case Ėv(Q) 6= ∅

– |R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)| · logi|D|) ∀i ∈ [1, n̄v];
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– |R̃µ(e)(ẽ)| = O(|Rµ(e)(e)| · logi−1|D|) ∀e ∈ Ev(Q).

• Case Ėv(Q) = ∅

– |R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)| · logi|D|) ∀i ∈ [1, n̄v − 1];

– |R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)| · logi−1|D|) i = n̄v.

The construction time of each new relation is proportional to its size.

Proof. By Definition 5.2.1, the number of queries in the disjunction Q̃(v) is n̄v!, which

is considered to be a constant because it depends only on the query size. Furthermore,

the size of each conjunct only depends on the query size, hence, it is considered to be

a constant as well. Therefore, |Q̃(v)| = O(1).

The size and construction time of the relations in D̃(v) is analyzed next. Given an

node u ∈ V (TI) and an integer i, let break(u, i) = {(x1, . . . , xi) | x1 ◦ · · · ◦ xi = u}.

Claim 5.7.1. It holds that |break(u, i)| = O(|u|i−1).

Proof. The number of i-tuples generated by splitting u in i non-empty substrings is:

(
|u| − 1

i− 1

)
=

(|u| − 1)!

(i− 1)! · (|u| − i)!
=

1 · 2 · · · · · (|u| − i)
(i− 1)!

=
(1 · · · · · (|u| − i)) · ((|u| − i+ 1) · · · · · (|u| − 1))

(1 · · · · · (|u| − i)) · (i− 1)!

=
(|u| − i+ 1) · · · · · (|u| − 1)

(i− 1)!

≤ |u|i−1

(i− 1)!
= O(|u|i−1)

Since u ∈ V (TI), the bit-string u consists of O(log|I|) = O(log|D|) bits. Hence,

|break(u, i)| = O(logi−1|D|). Consider each case separately:

• Case Ėv(Q) 6= ∅.

102



– Let i ∈ [1, n̄v]. The relation R̃µ(σi)(σ̃i) can be constructed by using the fol-

lowing procedure: ∀t ∈ Rµ(σi)(σi) ∀u ∈ cpI(t(v)) ∀(x1, . . . , xi) ∈ break(u, i),

construct the tuple t̃ over the schema σ̃i (Equation 5.8) such that: t̃[σ̃i \

({ṽ1, . . . , ṽi} ∪ {ṽ(σi)})] = t[σi \ {v}], t̃(ṽ(σi)) = t(v), and t̃[{ṽ1, . . . , ṽi}] =

(x1, . . . , xi). Then, insert the tuple t̃ in the relation R̃µ(σi)(σ̃i).

By Property 3.3.7, it holds that |cpI(t(v))| = O(log|I|) = O(log|D|). Fur-

thermore, by Claim 5.7.1 it holds that |break(u, i)| = O(logi−1|D|). There-

fore, |R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)| · log|D| · logi−1|D|) = O(|Rµ(σi)(σi)| ·

logi|D|). Moreover, the above justifies that its construction time is pro-

portional to its size.

– Let e ∈ Ėv(Q). The relation R̃µ(e)(ẽ) can be constructed by using the

following procedure: ∀t ∈ Rµ(e)(e) ∀(x1, . . . , xn̄u+1) ∈ break(u, i), where

u = leafI(t(v)), construct the tuple t̃ over the schema ẽ (Equation 5.9)

such that: t̃[ẽ \ ({ṽ1, . . . , ṽn̄v+1} ∪ {ṽ(e)})] = t[e \ {v}], t̃(ṽ(e)) = t(v), and

t̃[{ṽ1, . . . , ṽn̄v+1}] = (x1, . . . , xn̄v+1). Then, insert the tuple t̃ into R̃µ(e)(ẽ).

By Claim 5.7.1, it holds that |break(u, n̄v + 1)| = O(logn̄v |D|). Therefore,

|R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)| · logn̄v |D|). Moreover, the above justifies that

its construction time is proportional to its size.

• Case Ėv(Q) = ∅.

– Let i ∈ [1, n̄v−1]. The relation R̃µ(σi)(σ̃i) can be constructed using the fol-

lowing procedure: ∀t ∈ Rµ(σi)(σi) ∀u ∈ cpI(t(v)) ∀(x1, . . . , xi) ∈ break(u, i)

construct the tuple t̃ over the schema σ̃i (Equation 5.8), such that t̃[σ̃i \

({ṽ1, . . . , ṽi}∪{ṽ(σi)})] = t[σi\{v}], t̃(ṽ(σi)) = t(v) and t̃({ṽ1, . . . , ṽn̄v−1}) =

(x1, . . . , xn̄v−1). Then, insert the tuple t̃ into R̃µ(σi)(σ̃i).

By Property 3.3.7, it holds that |cpI(t(v))| = O(log|I|) = O(log|D|).

Furthermore, by Claim 5.7.1, it holds that |break(u, i)| = O(logi−1|D|).
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Therefore, |R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)|·log|D|·logi−1|D|) = O(|Rµ(σi)(σi)|·

logi|D|). Moreover, the above justifies that its construction time is pro-

portional to its size.

– Let i = n̄u. The relation R̃µ(σi)(σ̃i) is constructed using the following pro-

cedure: for each tuple in t ∈ Rµ(σi)(σi), for each (x1, . . . , xi) ∈ break(u, i),

where u = leafI(t(v)), construct the tuple t̃ over the schema σ̃i (Equa-

tion 5.8) such that: t̃[σ̃i\({ṽ1, . . . , ṽi}∪{ṽ(σi)})] = t[σi\{v}], t(ṽ(σi)) = t(v)

and t̃[ṽ1, . . . , ṽi] = (x1, . . . , xi). Then, insert the tuple t̃ into R̃µ(σi)(σ̃i).

By Claim 5.7.1, it holds that |break(u, i)| = O(logi−1|D|). Therefore,

|R̃µ(σi)(σ̃i)| = O(|Rµ(σi)(σi)| · logi−1|D|). Moreover, the above justifies that

its construction time is proportional to its size.

5.7.4 Proof of Proposition 5.2.12

Proposition 5.2.12 (Correctness). Consider a Boolean IJQ Q and a database D.

It holds that Q(D) is equivalent to Q̃(D̃), where Q̃ and D̃ are defined by Defini-

tion 5.2.9.

Proof. Without loss of generality, assume that the IJQ Q includes the join variables

vars(Q) = {v1, . . . , vn}, and that Algorithm 4, iterates over them in the listed order.

This is a proof by induction. Let P (j) denote the statement:

Q(D) ≡

(∨
Q∈Q

Q(D̃)

)
after the j-th iteration

Base case. We prove that P (1) is true. The statement P (1) is equivalent to the

statement:

Q(D) ≡

(∨
Q∈Q

Q(D̃)

)
after the 1-st iteration

104



Upon the beginning of the 1-st iteration, it holds that Q0 = {Q},Q = ∅. Hence,

after the 1-st iteration it holds that:

Q =
⋃
Q∈Q0

 ⋃
σ∈perms(Ēv1 (Q))

{Q̃(v1,σ)}

 =
⋃

Q∈{Q}

 ⋃
σ∈perms(Ēv1 (Q))

{Q̃(v1,σ)}


=

⋃
σ∈perms(Ēv1 (Q))

{Q̃(v1,σ)}

where Q̃(v1,σ) is defined by Definition 5.2.1, and D̃ = D̃(v1), where D̃(v1) is defined by

Definition 5.2.5. Hence, it holds that:

∨
Q∈Q

Q(D̃) ≡

 ∨
σ∈perms(Ēv1 (Q))

Q̃(v1,σ)(D̃(v1))

 ≡ Q̃(v1)(D̃(v1))

The second equality is due to Definition 5.2.1. By Lemma 5.2.7, it holds that

Q̃(v1)(D̃(v1)) ≡ Q(D). Hence, P (1) is true.

Inductive step. We prove that:

(P (j) =⇒ P (j + 1)) ∀ j ∈ [n− 1]

Assume P (j) is true. Let Q
0

denote Q0, Q denote Q and D denote D upon the

beginning of the j-th iteration. After the j-th iteration, we have:

Q =
⋃
Q∈Q

0

 ⋃
σ∈perms(Ēvj (Q))

{Q̃(vj ,σ)}


where Q̃

(vj ,σ)
is defined by Definition 5.2.1, and Evj(Q) denotes the set of hyperedges

of the hypergraph associated to Q. We also have D̃ = D̃
(vj)

, where D̃
(vj)

is defined
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by Definition 5.2.5. Since P (j) is true, we have:

∨
Q∈Q

Q(D̃)

 ≡ Q(D) (5.14)

Upon the j + 1-th iteration, we have Q0 = Q, Q = ∅. Hence, after the j + 1-th

iteration it holds that:

Q =
⋃
Q∈Q0

 ⋃
σ∈perms(Ēvj+1 (Q))

{Q̃(vj+1,σ)}


=
⋃
Q∈Q

0

 ⋃
σ∈perms(Ēvj (Q))

 ⋃
σ∈perms(Ēvj+1 (Q))

{J̃ (vj+1,σ)}




(5.15)

where J = Q̃
(vj ,σ)

, and J̃ (vj+1,σ) is defined by Definition 5.2.1. We also have D̃ =

D̃(vj+1), where D̃(vj+1) is defined by Definition 5.2.5. Hence, by Equation (5.15) it

holds that:

∨
Q∈Q

Q(D) ≡
∨
Q∈Q

0

 ∨
σ∈perms(Ēvj (Q))

 ∨
σ∈perms(Ēvj+1 (Q))

J̃ (vj+1,σ)(D̃(vj+1))




≡
∨
Q∈Q

0

 ∨
σ∈perms(Ēvj (Q))

J̃ (vj+1)(D̃(vj+1))


The second equivalence is obtained by Definition 5.2.1. Because it holds that J =

Q̃
(vj ,σ)

, by Lemma 5.2.7, it also holds that J̃ (vj+1)(D̃(vj+1)) ≡ Q̃
(vj ,σ)

(D̃
(vj)

). Hence, we

have:

∨
Q∈Q

Q(D) ≡
∨
Q∈Q

0

 ∨
σ∈perms(Ēvj (Q))

Q̃
(vj ,σ)

(D̃
(vj)

)

 ≡
∨
Q∈Q

Q(D̃)

 ≡ Q(D)

The third equivalence is due to Equation (5.14). Therefore, the statement P (j + 1)
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is true.

Conclusion. Since both the base case and the inductive step have been proven

true, by induction, the statement P (n) is true.

5.7.5 Proof of Proposition 5.3.2

Definition 5.7.2 (Backward Mapping). Consider a finite set of bit-strings B. Let m

be the length of the bit-string in B with maximum length. Define a function F that

maps each bit-string in
⋃m
i=0{0, 1}i to an interval [x, y) where x, y ∈ [0, 1], as follows:

F (ε) = [0, 1), F (“0”) = [0, 1/2), F (“1”) = [1/2, 1), F (“00”) = [0, 1/4) and so on.

Note that for any given bit-string b, the intervals F (b◦“0”) and F (b◦“1”) correspond

to the first and second half of the interval F (b) respectively.

Property 5.7.3 (Backward Mapping Property). Consider a finite set of bit-strings

B and, the function F (Definition 5.7.2). Given two bit-strings u, v ∈
⋃m
i=0{0, 1}i, it

holds that:

(u � v) ∨ (v � u) ⇐⇒ (F (u) ∩ F (v)) 6= ∅,

where a � b means that a is a prefix of b.

Proof. “ =⇒ ”: Assume that u is a prefix of v. By Definition 5.7.2, F (u) and F (v) are

two right-open intervals. Since u is prefix of v it holds that F (u) ⊇ F (v). Therefore,

(F (u)∩ F (v)) 6= ∅. Assume that v is a prefix of u. Using similar arguments, one can

conclude that (F (u) ∩ F (v)) 6= ∅ in this case as well.

“ ⇐= ”: Assume that (F (u) ∩ F (v)) 6= ∅. By the construction of the function

F (see Definition 5.7.2), it holds that for any two intervals in the co-domain of F

are either contained in each other, or they are disjoint. Therefore, we have that

F (u) ⊇ F (v) or F (v) ⊇ F (u). Hence, by Definition 5.7.2 it holds that u � v or

v � u.
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Similar to the forward reduction, the backward reduction has as a building block,

the one-step backward reduction. The one-step backward reduction is defined as

follows.

Definition 5.7.4 (One-step Backward Reduction). Consider a Boolean IJQ Q, a

variable v ∈ V and a permutation σ ∈ perms(Ēv(Q)). Let Q̃(v,σ) be the query resulting

from the one-step query rewriting (Definition 5.2.1), and let B̃ be a database that

matches the structure of the latter query. Define a database B as follows:

• Case Ėv(Q) 6= ∅

– ∀i ∈ [1, n̄v] ∀t̃ ∈ R̃µ(σi)(σ̃i), construct a tuple t ∈ Rµ(σi)(σi) such that:

∗ t[σi \ {v}] = t̃[σ̃i \ {v1, . . . , vi}]; and

∗ t(v) = F (t̃(v1) ◦ · · · ◦ t̃(vi))

– ∀ẽ ∈ Ėv(Q) ∀t̃ ∈ R̃µ(e)(ẽ), construct a tuple t ∈ Rµ(e)(e) such that:

∗ t[e \ {v}] = t̃[ẽ \ {v1, . . . , vn̄v+1}]; and

∗ t(v) = F (t̃(v1) ◦ · · · ◦ t̃(vn̄v+1)).start

• Case Ėv(Q) = ∅

– ∀i ∈ [1, n̄v] ∀t̃ ∈ R̃µ(σi)(σ̃i), construct a tuple t ∈ Rσi(σi) such that:

∗ t[σi \ {v}] = t̃[σ̃i \ {v1, . . . , vi}]; and

∗ t(v) = F (t̃(v1) ◦ · · · ◦ t̃(vi))

The rest of the relations in B̃ are copied directly to the database B.

The correctness of the one-step backward reduction is proven as follows.

Lemma 5.7.5 (One-step Backward Reduction Correctness). Consider a Boolean IJQ

Q. Let v ∈ V(Q) and σ ∈ perms(Ēv(Q)). Let Q̃(v,σ) be the query resulting from the

one-step query rewriting (Definition 5.2.1), and let B̃ be a database that matches the

structure of the latter query. It holds that Q(B) is equivalent to Q̃(v,σ)(B̃).
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Proof. “ =⇒ ”: Assume that there exists a tuple t that satisfies Q(B). By the

semantics of IJQs we have that there exists a tuple (tµ(e))e∈E(Q) ∈
∏

e∈E(Q) Re(e), that

satisfy all the join conditions in the query Q.

• Case Ėv(Q) 6= ∅: By Lemma 5.1.1 it holds that tµ(e) = ξ for each e ∈ Ėv(Q)

and ξ ∈
(⋂

e∈Ēv(Q) tµ(e)

)
. By Property 5.7.3, there exists a tuple of bit-strings

(b1, . . . , bn̄v+1) such that:

b1 ◦ · · · ◦ bi = F (tµ(σi)(v)) ∀ i ∈ [1, n̄v]

b1 ◦ · · · ◦ bn̄v+1 = F (tµ(e)(v)).start ∀ e ∈ Ėv(Q)

By Definition 5.7.4 there exists a set of tuples:

t̃µ(σi) ∈ R̃µ(σi)(σ̃i), where R̃µ(σi)(σ̃i) ∈ B̃ ∀i ∈ [1, n̄v]

t̃µ(e) ∈ R̃µ(e)(ẽ), where R̃µ(e)(ẽ) ∈ B̃ ∀ e ∈ Ėv(Q)

t̃µ(f) ∈ R̃µ(f)(f), where R̃µ(f)(f) ∈ B̃ ∀ f ∈ E \ Ev(Q)

where σ̃i and ẽ are defined in Equations (5.8) and (5.9) respectively, such that:

t̃µ(σi)(ṽ1) = b1, . . . , t̃µ(σi)(ṽi) = bi ∀ i ∈ [1, n̄v]

t̃µ(e)(ṽ1) = b1, . . . , t̃µ(e)(ṽn̄v+1) = bn̄v+1 ∀ e ∈ Ėv(Q)

Hence, the above tuples satisfy the equality joins on the variables ṽ1, . . . , ṽn̄v+1

in the query Q̃(v,σ). Furthermore, we have:

t̃µ(σi)[σ̃i \ {ṽ1, . . . , ṽi}] = tµ(σi)[σi \ {v}] ∀ i ∈ [1, n̄v]

t̃µ(e)[ẽ \ {ṽ1, . . . , ṽn̄v+1}] = tµ(e)[e \ {v}] ∀ e ∈ Ėv(Q)

t̃µ(f) = tµ(f) ∀ f ∈ E(Q) \ Ev(Q)
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Hence, the same tuples satisfy the rest of the join conditions in the query Q̃(v,σ).

Therefore, there exists t̃ that satisfies the query Q̃(v,σ)(B̃).

• Case Ēv(Q) = ∅: By Lemma 5.1.1 it holds that
(⋂

e∈Ēv(Q) tµ(e)

)
6= ∅. By

Property 5.7.3, there exists a tuple of bit-strings (b1, . . . , bn̄v) such that:

b1 ◦ · · · ◦ bi = F (tµ(σi)(v)) ∀ i ∈ [1, n̄v]

By Definition 5.7.4 there exists a set of tuples:

t̃µ(σi) ∈ R̃µ(σi)(σ̃i), where R̃µ(σi)(σ̃i) ∈ B̃ ∀i ∈ [1, n̄v]

t̃µ(f) ∈ R̃µ(f)(f), where R̃µ(f)(f) ∈ B̃ ∀f ∈ E(Q) \ Ev(Q)

where σ̃i and ẽ are defined in Equations (5.8) and (5.9) respectively, such that:

t̃µ(σi)(ṽ1) = b1, . . . , t̃µ(σi)(ṽi) = bi ∀i ∈ [1, n̄v]

Hence, the above tuples satisfy the equality joins on the variables ṽ1, . . . , ṽn̄v+1

in the query Q̃(v,σ). Furthermore, we have:

t̃µ(σi)[σ̃i \ {ṽ1, . . . , ṽi}] = tµ(σi)[σi \ {v}] ∀i ∈ [1, n̄v]

t̃µ(f) = tµ(f) ∀ f ∈ E \ Ev(Q)

Hence, the same tuples satisfy the rest of the join conditions in the query Q̃(v,σ).

Therefore, there exists t̃ that satisfies the query Q̃(v,σ)(B̃).

“ ⇐= ”: Assume that there exists a permutation σ ∈ perms(Ēv(Q)) and tuples

(t̃µ(e))e∈E(Q)
∈
∏

e∈E R̃µ(e)(ẽ
(v,σ)) that satisfy all the join conditions in the query Q̃(v,σ).
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• Case Ev(Q) 6= ∅: By the semantics of IJQs, it holds that:

t̃µ(σi)(ṽ1) = b1, . . . , t̃µ(σi)(ṽi) = bi ∀ i ∈ [1, n̄v]

t̃µ(e)(ṽ1) = b1, . . . , t̃µ(e)(ṽn̄v+1) = bn̄v+1 ∀ e ∈ Ėv(Q)

By Definition 5.7.4, there exist tuples:

tµ(σi) ∈ Rµ(σi)(σi) where Rµ(σi)(σi) ∈ B ∀ i ∈ [1, n̄v]

tµ(e) ∈ Rµ(e)(e) where Rµ(σi)(e) ∈ B ∀ e ∈ Ėv(Q)

tµ(f) ∈ Rµ(f)(f) where Rµ(f)(f) ∈ B ∀ e ∈ E \ Ev(Q)

such that:

b1 ◦ · · · ◦ bi = F (tµ(σi)(v)) ∀ i ∈ [1, n̄v]

b1 ◦ · · · ◦ bn̄v+1 = F (tµ(e)(v)).start ∀ e ∈ Ė(Q)

Hence, by Lemma 5.1.7 the above tuples satisfy the intersection join on variable

v in the query Q. Furthermore, we have:

tµ(σi)[σi \ ({v})] = t̃µ(σi)[σ̃i \ {ṽ1, . . . , ṽi}] ∀ i ∈ [1, n̄v]

tµ(e)[σi \ ({v})] = t̃µ(e)[σ̃i \ {ṽ1, . . . , ṽi}] ∀ e ∈ Ėv(Q)

tµ(f) = t̃µ(f) ∀ f ∈ E(Q) \ Ev(Q)

Hence, there exists a tuple t̃ that satisfies the query Q.

• Case Ev(Q) = ∅: By the semantics of IJQs, it holds that:

t̃µ(σi)(ṽ1) = b1, . . . , t̃µ(σi)(ṽi) = bi ∀i ∈ [1, n̄v]
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By Definition 5.7.4, there exist tuples:

tµ(σi) ∈ Rµ(σi)(σi) where Rµ(σi)(σi) ∈ B ∀i ∈ [1, n̄v]

tµ(f) ∈ Rµ(f)(f) where Rµ(f)(f) ∈ B ∀ e ∈ E(Q) \ Ev(Q)

such that:

b1 ◦ · · · ◦ bi = F (tµ(σi)(v)) ∀ i ∈ [1, n̄v]

Hence, by Lemma 5.1.7 the above tuples satisfy the intersection join on variable

v in the query Q. Furthermore, we have:

tµ(σi)[σi \ ({v})] = t̃µ(σi)[σ̃i \ {ṽ1, . . . , ṽi}] ∀ i ∈ [1, n̄v]

tµ(f) = t̃µ(f) ∀ f ∈ E(Q) \ Ev(Q)

Hence, there exists a tuple t̃ that satisfies the query Q.

Proposition 5.3.2 (Backward Reduction Correctness). Consider a Boolean IJQ Q,

a Boolean CQ Q̃(i) in the forward reduction of Q and a database B̃ that matches the

structure of Q̃(i). There exists a bijection that maps each tuple from B̃ to a tuple from

a database B, that matches the structure of Q, and Q̃(i)(B̃) is equivalent to Q(B).

Proof. By repeatedly applying the one-step backward reduction (Definition 5.7.4)

on the database B̃, one can construct a database B with scalar values only, such

that Q(B) is equivalent to Q̃(B̃). Notice that the reduction implies the existence of a

bijection g from the tuples in B̃ to the tuples in B. Hence, we also have |B| = |B̃|.
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Chapter 6

Acyclicity

Hypergraphs can describe conjunctive Queries (CQs) and their corresponding database

schemas. The CQs that are associated with α-acyclic hypergraphs have some com-

putation advantages. One of the advantages is that, in data complexity, an α-acyclic

Boolean CQ can be computed in linear time [58]. Consider the class of Boolean

IJQs where all the variables in all of their occurrences are interval variables. Such

queries are denoted as IJQs (see Chapter 2). Because all the variables, in all of their

occurrences have the same type, IJQs are described by hypergraphs as well. This

Chapter introduces a new notion of acyclicity, namely ι-acyclcity, that characterizes

the Boolean IJQs that can be computed in quasilinear time; an IJQ is ι-acyclic if

and only if its associated hypergraph includes no Berge cycle of length greater than

or equal to 3.

The findings reported by this Chapter are those reported in [36] and its full ver-

sion [35]. This Chapter extends the work mentioned above by introducing a way to

determine ι-acyclicity in polynomial in the size of the query time (Section 6.3).
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a b c

(a) H = (V, E)

ã1 b̃1 c̃1

b̃3
b̃2

ã2 c̃2

(b) (H̃ = (Ṽ, Ẽ)) ∈ H̃

Figure 6.1: Figure 6.1a illustrates a hypergraph H = (V, E) corresponding to an IJQ. Figure 6.1a
illustrates a hypergraph which is a member of H̃.

Organization

Section 6.1 defines ι-acylicity and introduces a syntactic characterization of ι-acyclicity.

Section 6.2 shows that it is unlikely that a non-ι-acyclic Boolean IJQ can be computed

in quasilinear time. Section 6.3 shows that ι-acyclicity can be checked in polynomial

in the size of query time. Section 6.4 discusses the results.

Notations and Terminology

Consider Boolean IJQ Q with associated hypergraph H = (V , E). Let H̃ denote the

set of hypergraphs corresponding to the CQ conjuncts in Q̃, which is the disjunction

of CQs generated by the forward reduction (Definition 5.2.9). The vertices in V are

denoted by lowercase letters (e.g. u). Let H̃ = (Ṽ , Ẽ) be any member of H̃. The

vertices in Ṽ are denoted by lower case, possibly subscripted letters with tilde (e.g.

ũ, ũi).

6.1 Iota Acyclicity

There is a simple way to tell if a Boolean IJQ Q can be computed in quasilinear

time: take the Boolean CQ conjuncts in the disjunction Q̃, which is constructed

by the forward reduction of Q (Definition 5.2.9). If all of them are α-acyclic, then

Q can be computed in quasilinear time [58]. Notice that the set H̃ consists of the

corresponding hypergraphs; hence, one can equivalently say that, if every hypergraph
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in H̃ is α-acyclic, then Q can be computed in quasilinear time.

6.1.1 Definition

Definition 6.1.1 (Definition of Iota Acyclicity). A hypergraph H is ι-acyclic if and

only if every hypergraph in H̃ is α-acyclic.

To check if H is ι-acyclic, one has to compute the forward reduction of the input

query in advance and then, check α-acyclicity on each hypergraph in the froward

reduction. The size of H̃ is independent of the input database and only depends on

the size of the query.

6.1.2 Syntactic Characterization

Theorem 6.1.2 presents a syntactic characterisation for ι-acyclicity. This character-

isation shows that ι-acyclcity depends on the structure of H, therefore, there is no

need to compute the forward reduction in advance.

Theorem 6.1.2 (Iota Acyclicity Characterisation). A hypergraph is ι-acyclic if and

only if it has no Berge cycle of length greater than or equal to 3.

The notion of a Berge cycle is defined in Definition 3.1.11. The minor Berge

cycle that makes a hypergraph H not ι-acyclic has length three. It is a sequence

(e1, v1, e2, v2, e3, v3, e4), where v1, v2, v3 are distinct vertices in the hypergraph, e1, e2, e3

are distinct hyperedges in the hypergraph, e4 = e1, and vi ∈ ei ∩ ei+1 for 1 ≤ i ≤ 3.

The notion of ι-acyclicity is between γ- and Berge-acyclicity in the hierarchy of

the known notions of acyclicity for hypergraphs [25, 16], cf. Figure 1.2.

Corollary 6.1.3 (Iota Implies Gamma and is Implied by Berge). The class of ι-

acyclic hypergraphs is:

• strict superset of the class of Berge-acyclic hypergraphs; and
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• strict subset of the class of γ-acyclic hypergraphs.

Proof. The statement that Berge-acyclicity strictly implies ι-acyclicity follows imme-

diately from Theorem 6.1.2.

Consider a hypergraph H = (V , E). Next, it is proven that if H is ι-acyclic

then H is γ-acyclic. Assume for a contradiction that H is not γ-acyclic. By Defini-

tion 3.1.10, either H is not cycle-free, or there exist three distinct vertices x, y, z ∈ V

such that {{x, y}, {y, z}, {x, y, z}} ⊆ E [{x, y, z}]. In the former case, by Defini-

tion 3.1.5, there exists a subset S = {v1, . . . , vn} ⊆ V with n ≥ 3 such that:

M(E [S]) = {{vi, vi+1} | 1 ≤ i < n} ∪ {{vn, v1}}. Hence, the hypergraph has a

Berge cycle (e1, v1, . . . , vn−1, en, vn, e1), which has a length greater than or equal to

3. In the latter case, the hypergraph H has a Berge cycle (e1, x, e2, y, e3, z, e1), which

has a length of 3. Therefore, the hypergraph H is not ι-acyclic in both cases. Con-

tradiction.

To confirm the strictness of the inclusion, consider the hypergraph with hy-

peredges: e1 = {x, y, z}, e2 = {x, y, z}, e3 = {x, y, z}. This hypergraph is not ι-

acyclic, since it contains a Berge cycle (e1, x, e2, y, e3, z, e1) of length 3, but it is γ-

acyclic, since it is cycle-free, and the three vertices x, y, z do not satisfy the condition

{{x, y}, {y, z}, {x, y, z}} ⊆ E [{x, y, z}] (Definition 3.1.10).

A result that immediately follows from Corollary 6.1.3 is the following.

Corollary 6.1.4 (Iota Implies Alpha). The class of ι-acyclic hypergraphs is a strict

subset of the class of α-acyclic hypergraphs.

Example 6.1.5. Consider the hypergraph H = (V , E) depicted in Figure 6.1a. This

hypergraph includes the Berge cycle (a, e1, b, e2, c, e3), assuming that e1 = {a, b}, e2 =

{a, b, c} and e3 = {b, c}. Since the Berge cycle is of length 3, the hypergraph H is

not ι-acyclic. The hypergraph H̃ = (Ṽ , Ẽ), depicted in Figure 6.1b is a member of

the set H̃ (Definition 5.2.9). Notice that this hypergraph is not α-acyclic, and there
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(a)
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(b)

a b c
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R3

(c)

a b c

R1

R2

R3

(d)

b

a

c

d e

R1

R2

R3

R4

(e)

a b c

R1 R2

(f)

Figure 6.2: Example hypergraphs. Hypergraphs 6.2a - 6.2c are α-acyclic but not ι-acyclic. Hy-
pergraphs 6.2d - 6.2f are ι-acyclic.

are several ways to see that. The first one is to try to apply the GYO reduction to

it (Definition 3.1.6); the procedure will get stuck in the hypergraph with hyperedges

{{ã1, b̃1, b̃2}, {ã1, b̃1, c̃1}, {b̃1, b̃2, c̃1}}. The second one is to check conformity and cycle-

freedom properties (Definition 3.1.8). Consider the subset {ã1, b̃2, c̃1}. We have that

Ẽ [{ã1, b̃2, c̃1}] = {{ã1, b̃2}, {ã1, c̃1}, {b̃2, c̃1}}, which means that the hypergraph is nei-

ther conformal nor cycle-free. Hence, it is not α-acyclic.

Example 6.1.6. According to Corollary 6.1.3, the class of ι-acyclic hypergraphs is

a strict subset of the class of γ-hypergraphs. Figure 6.2 depicts six α-acyclic hyper-

graphs. The hypergraph in Figure 6.2c is α-acyclic but not γ-acyclic. The hypergraphs

in Figures 6.2a- 6.2b are γ-acyclic but not ι-acyclic. The hypergraphs in Figures 6.2d-

6.2f are ι-acyclic.

6.2 Dichotomy

This section shows that the Boolean IJQs which are not ι-acyclic are at least as hard

as the Triangle CQ, which cannot be solved in linear time, unless the 3SUM conjecture

does not hold [48].
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Theorem 6.2.1 (Dichotomy). Let Q be any Boolean IJQ with hypergraph H and D

be any matching database.

• If H is ι-acyclic, then Q can be computed in O(|D|) time.

• IfH is not ι-acyclic, then there is no algorithm that can compute Q in O(|D|4/3−ε)

time for ε > 0, unless the 3SUM conjecture fails.

Proof. The linear-time complexity in case H is ι-acyclic follows immediately: Since

each hypergraph in H̃ is α-acyclic, its corresponding CQ can be computed in linear

time using Yannakakis’s algorithm [58]. Furthermore, the size of H̃ is independent of

the size of the input database D.

We next prove the hardness in case H is not ι-acyclic. Assume for a contradiction

that there exists an algorithm AQ that can decide Q(D) in time O(|D|4/3−ε), for

some ε > 0, for any database D. Since the hypergraph H is not ι-acyclic, by the

characterisation given in Theorem 6.1.2, it has a Berge cycle of length k ≥ 3. This

means, according to Definition 3.1.11, that there exists a sequence of alternating

hyperedges and vertices (e1, v1, e2, v2, . . . , ek, vk, ek+1 = e1) such that v1, . . . , vk ∈ V

are pairwise distinct vertices, e1, . . . , ek ∈ E are pairwise distinct hyperedges, k ≥ 3,

and for each 1 ≤ i ≤ k we have that vi ∈ ei ∩ ei+1. Let

Q′ = S1(wk, w1) ∧ S2(w1, w2) ∧ · · · ∧ Sk(wk−1, wk),

be the k-cyclic CQ query; all the variables in all of their occurrences range over

scalars. We can construct an algorithm AQ′ based on AQ that can solve Q′(D′) in

time O(|D′|4/3−ε), for any input database instance D′ = {S1, . . . , Sk}. Construct the

following database instance D for the IJQ query Q. Let D = {R1, . . . , Rk}, where

the relations corresponding to the hyperedges e1, . . . , ek are denoted by R1, . . . , Rk

respectively. Furthermore,
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• for every 1 ≤ i ≤ k and for every tuple (a, b) ∈ Si, where Si ∈ D′, include in the

relation Ri ∈ D the tuple where the value of vi−1 is the interval with coincident

endpoints [a, a], the value of vi is the interval with coincident endpoints [b, b],

and the value of each other variable in Ri is the interval (−∞,+∞); and

• every relation R other than R1, . . . , Rk in D consists of one tuple; the tuple

where the value of each variable from R is the interval (−∞,+∞).

Hence, by construction, it holds that |D| = O(|D′|). Since the interval (−∞,+∞)

intersects with any other interval and the intervals [a, a] and [b, b] intersect if and

only if a = b, we have that there is a bijection that maps each satisfying assignment

of the variables w1, . . . , wk for the CQ query Q′(D′) to a satisfying assignment of

the variables in V for the IJQ query Q(D). Therefore, the answer of Q′(D′) is equal

to the answer of Q(D). The algorithm AQ′ first constructs the database D in time

O(|D′|) and then, calls the algorithm AQ on the input D. Since D = O(|D′|), the

runtime of AQ is O(|D|4/3−ε) = O(|D′|4/3−ε|). Therefore, AQ′ solves Q′(D′) in time

O(|D′|4/3−ε). This is a contradiction, because the k-cyclic CQ Q′ cannot be computed

in time O(|D′|4/3−ε) for ε > 0 [3], unless the 3SUM conjecture fails [48].

6.3 Determining Iota-acyclicity in Polynomial Time

This section shows how to derive a polynomial-time algorithm for determining ι-

acyclicity. The goal of finding such an algorithm is met by achieving another charac-

terisation of ι-acyclicity, which reveals a property in the structure of ι-acyclic hyper-

graphs that can be checked using a polynomial number of steps in the hypergraph’s

size. It should be noted that the main goal is to find a polynomial time algorithm, not

necessarily the best algorithm. Finding more efficient, or even optimal, algorithms is

an open question.
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Theorem 6.3.1 (Another Characterisation for ι-acyclicity). The hypergraph H =

(V , E) is ι-acyclic if and only if H is α-acyclic and there exist no three vertices

{x, y, z} ⊆ V such that either of the following hold:

• E [{x, y, z}] ⊇ {{x, y, z}, {x, y, z}, {x, y, z}} (C1);

• E [{x, y, z}] ⊇ {{x, y, z}, {x, y}, {y, z}} (C2);

• E [{x, y, z}] ⊇ {{x, y, z}, {x, y, z}, {x, y}} (C3).

Proof. “ =⇒ ”: Assume that H is ι-acyclic. We prove that H is α-acyclic, and there

exist no {x, y, z} ⊆ V such that C1 or C2 or C3. Assume that there exist such a set

{x, y, z} ⊆ H such that C1 or C2 or C3. In any of those three cases H has a Berge

cycle of length 3 (Definition 3.1.11). For example, if C1 is true, by Definition 3.1.2,

there exists three hyperedges e1, e2, e3 ∈ E such that e1, e2, e3 ⊆ {x, y, z}, which form

the following Berge cycle of length 3: (e1, x, e2, y, e3, z, e1). In both the cases C2 and

C3 a Berge cycle of length 3 can be found similarly. Therefore, H it is not ι-acyclic.

Contradiction. Assume that H is not α-acyclic. By Corollary 6.1.4, the hypergraph

H is not ι-acyclic. Contradiction.

“ ⇐= ”: Assume that H is α-acyclic and there exist no {x, y, z} ⊆ V such that

C1 or C2 or C3. We prove that H has no Berge cycle with length ≥ 3. We use strong

induction in the length of the Berge-cycle. Let us call P (n) the statement:

The hypergraph H has no Berge-cycle with length n.

Next, we prove P (n) for every n ≥ 3.

Base case. We prove P (3) that is:

The hypergraph H has no Berge-cycle with length 3.

For contradiction, assume thatH has a Berge cycle of length 3. Considering any 3 ver-

tices x, y, z ∈ V , there are four different ways to obtain a Berge cycle of length precisely
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3 using those three vertices: having E [{x, y, z}] ⊇ {{x, y, z}, {x, y, z}, {x, y, z}}; or

E [{x, y, z}] ⊇ {{x, y, z}, {x, y}, {y, z}}; or E [{x, y, z}] ⊇ {{x, y, z}, {x, y, z}, {y, z}};

or E [{x, y, z}] ⊇ {{x, y}, {y, z}, {z, x}}. It is straightforward that the first three cases

lead to a contradiction. As for the fourth case, since H is α-acyclic, there should ex-

ist a hyperedge {x, y, z} ∈ E [{x, y, z}] — otherwise, the hypergraph would include

a “Triangle”, hence, it would not be cycle-free. Hence, there exists x, y, z such that

{{x, y, z}, {x, y}, {y, z}, {z, x}} ⊆ H[{x, y, z}]. This leads to a contradiction as well.

Inductive step. We prove that P (i) for each 3 ≤ i < n implies P (n). Assume P (i)

is true for each 3 ≤ i < n. For contradiction, assume ¬P (n), that is:

The hypergraph H has a Berge cycle of length n.

Hence, there exists a sequence (e1, v1, e2, v2, . . . , en, vn, e1), where e1, . . . , en ∈ E and

v1, . . . , vn ∈ V . Let S = {v1, . . . , vn}. Next, we consider three disjoint cases and prove

that each contradicts the inductive hypothesis.

• Assume that ei = {vi, vi+1} for each 1 ≤ i ≤ n, assuming v1 = vn+1, and that

M(E [S]) = {e1, · · · en}. The latter condition means that there is no distinct

hyperedge f in E [S] that includes two non consecutive vertices from (v1, . . . , vn),

otherwise it would belong to M(E [S]). Hence, by Definition 3.1.5, the hyper-

graph H is not cycle-free. Therefore, by Definition 3.1.8, the hypergraph H is

not α-acyclic. Contradiction.

• Assume that ei = {vi, vi+1} for each 1 ≤ i ≤ n, assuming v1 = vn+1, and that

M(E [S]) contains a distinct hyperedge f that includes two non consecutive

vertices from (v1, . . . , vn). This creates a smaller Berge cycle in H. Assume

without loss of generality that f ⊆ {vk, vl}, where 1 ≤ k < l ≤ n. The smaller

Berge cycle will be the following sequence (f, vk, ek+1, . . . , vl−1, el−1, vl, f). Con-

tradiction.

121



• Assume that there exists a hyperedge ei for some 1 ≤ i ≤ n on the Berge cycle,

such that ei ⊇ {vi, vi+1, vj} for some 1 ≤ j ≤ n. This creates a smaller Berge

cycle in H. Assume without loss of generality that j > i + 1. The smaller

Berge cycle will be the following sequence (ei, vj, ej, . . . , vi−1, ei−1, vi, ei).

Contradiction.

In conclusion, we have proven that P (n) holds for every n.

Corollary 6.3.2. The hypergraph H = (V , E) is ι-acyclic if and only if H is cycle-free

and there exist no three vertices {x, y, z} ⊆ V such either of the following hold:

• H[{x, y, z}] ⊇ {{x, y, z}, {x, y, z}, {x, y, z}} (C1);

• H[{x, y, z}] ⊇ {{x, y, z}, {x, y}, {y, z}} (C2);

• H[{x, y, z}] ⊇ {{x, y, z}, {x, y, z}, {x, y}} (C3).

Proof. The proof of this corollary is similar to that of Theorem 6.3.1.

Theorem 6.3.3 (Polynomial Time Algorithm). ι-acyclicity is polynomial-time de-

cidable.

Proof. An algorithm that checks ι-acyclicity on an input hypergraph H = (V , E) can

be build using two building-blocks: (1) an algorithm that checks if the hypergraph H

is α-acyclic; and (2) an algorithm that checks if there exists a structure of the form

C1, or C2, or C3 in the hypergraph H. There exists an algorithm that performs step

(1) in time linear in the size of the hypergraph [53]. Let us analyse step (2). There

are O(|V|3) ways to choose three distinct vertices x, y, z from V . For each triple: (i)

compute E [{x, y, z}] in O(|V| · |E|), and (ii) check Ci for each 1 ≤ i ≤ 3 in O(|E|).

6.4 Discussion

This chapter introduced a novel syntactic notion of acyclicity, called ι-acyclicity, which

characterizes the class of Boolean IJQs that are quasilinear-time decidable. Hence,
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ι-acyclicity for Boolean IJQs is analogous to the notion of α-acyclicity for Boolean

CQs. Iota-acyclicity is strictly implied by Berge-acyclicity and strictly implies γ-

acyclicity. This helps determine how restrictive this class is in comparison to other

acyclicity classes. Notably, the non ι-acyclic Boolean IJQs are at least as hard as the

Boolean triangle CQ, which is widely considered not decidable in linear time. Last

but not least, given a hypergraph, its ι-acyclicity can be checked in polynomial time.

Future Directions

A natural extension of this work is to refine the acyclicity notion for the class of

IJQs, by removing the assumption that all the variables in all of their occurrences

are interval variables. Such a notion of acyclicity would necessarily lie between α-

acyclicity and ι-acyclicity; it would be the former when the IJQ is a CQ, and it would

be the latter when the IJQ is an IJQ.

In previous work, another notion of width known as hypertree width, was devel-

oped to generalise acyclcity; the larger the hypertree, the closer the hypergraph is to

being acyclic [29, 30]. It would be natural to study and extend the hypertree width

for IJQs as well. Investigating the complexity of non ι-acyclic IJQs that satisfy an-

other definition of acyclicity might also be intriguing. Are all the IJQs that are not

ι-acyclic but are α-acyclic decidable in Õ(N3/2), for instance?

6.5 Proofs

Two helper functions are defined in the following. A surjective function that maps

each vertex in Ṽ to some vertex in V ; and a bijective function that maps each hyper-

edge in Ẽ to some hyperedge in E . Both functions follow immediately from Defini-

tions 5.2.3 and 5.2.9.

Definition 6.5.1 (Help Functions). Let H = (V , E) be a hypergraph and H̃ = (Ṽ , Ẽ)
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be any member of the set H̃. Define the following functions:

1. a surjective function νH̃,H : Ṽ → V that maps each vertex ũi ∈ Ṽ to the corre-

sponding vertex u ∈ V; and

2. a bijective function εH̃,H : Ẽ → E that maps each hyperedge ẽ ∈ Ẽ to the

corresponding hyperedge e = {νH̃,H(ũ) | ũ ∈ ẽ} ∈ E.

Whenever it is clear from the context, the subscript in the names of the functions is

omitted.

The following properties follow immediately from Definitions 5.2.3 and 5.2.9 as

well. They are based on the specific structure of the hypergraphs constructed by the

forward reduction. The first property states that any node in H̃ is mapped back to

precisely one node in H and there is a bijection between the hyperedges to which

these two nodes belong respectively. The second property makes the first property

stronger; there is always a node ũ1 in H̃ for every node u in H, and there is a bijection

between the hyperedges to which these two nodes belong, respectively. Finally, the

third property states that whenever we have a node ũj in a hyperedge e in H̃, which

corresponds to a node u in H, we also have all nodes ũ1, . . . , ũj−1 in the hyperedge e.

Property 6.5.2 (Reduction Properties). Let H = (V , E) be a mixed hypergraph and

H̃ = (Ṽ , Ẽ) be any member of H̃. The following properties hold.

1. For each hyperedge ẽ ∈ Ẽ and each vertex ũ ∈ Ṽ, if ũ ∈ ẽ in H̃ then νH̃,H(ũ) ∈

εH̃,H(ẽ) in H.

2. For each hyperedge ẽ ∈ Ẽ and each vertex u ∈ V, ũ1 ∈ ẽ in H̃ if and only if

u ∈ εH̃,H(ẽ) in H.

3. For any two vertices ũi, ũj ∈ Ṽ with i < j and ẽ ∈ Ẽ, we have that if ũj ∈ ẽ

then ũi ∈ ẽ.

124



Lemma 6.5.3. Consider a hypergraph H and any hypergraph H̃ ∈ H̃. If H̃ has a

Berge cycle (ẽ1, ṽ1, ẽ2, ṽ2, . . . , ẽk, ṽk, ẽk+1 = ẽ1) of length k such that ν(ṽ1), . . . , ν(ṽk)

are distinct pairwise vertices from V, then H also has a Berge cycle of length k.

Proof. This is a proof by construction. Assume that the statement is true. Since

(ẽ1, ṽ1, ẽ2, ṽ2, . . . , ẽk, ṽk, ẽk+1 = ẽ1) is a Berge cycle, for each i ∈ [k], we have ṽi ∈ ẽi

and ṽi ∈ ẽi+1. Hence, by Property 6.5.2, part (1), for each i ∈ [k], we get that

ν(ṽi) ∈ ε(ẽi) and ν(ṽi) ∈ ε(ẽi+1). Since ε is a bijection and ẽ1, . . . , ẽk are pairwise

distinct hyperedges of Ẽ , we get that ε(ẽ1), . . . , ε(ẽk) ∈ E are distinct hyperedges.

Therefore, the sequence (ε(ẽ1), ν(ṽ1), . . . , ε(ẽk), ν(ṽk), ε(ẽk+1) = ε(ẽ1)) is a Berge cycle

in H, and it is of length k.

6.5.1 Proof of Theorem 6.1.2

Theorem 6.1.2 (Iota Acyclicity Characterisation). A hypergraph is ι-acyclic if and

only if it has no Berge cycle of length greater than or equal to 3.

Proof. “ =⇒ ”: This is proof by contradiction. Assume H has a Berge cycle of length

strictly greater than two, or equivalently, at least three. Hence, there exists a cyclic

sequence (e1, v1, e2, v2, . . . , ek, vk, ek+1 = e1) such that: k ≥ 3; v1, . . . , vk are pairwise

distinct vertices from V ; e1, . . . , ek are pairwise distinct hyperedges in E ; and for each

i ∈ [k], we have vi ∈ ei and vi ∈ ei+1.

By the structure of the hypergraphs in H̃ (Algorithm 4), there exists a hypergraph

(H̃ = (Ṽ , Ẽ)) ∈ H̃ such that for each i ∈ [k] we have:

{ṽi1, . . . , ṽinvi−1} ⊆ ε−1(ei) and ṽinvi
/∈ ε−1(ei)

and

{ṽi1, . . . , ṽinvi
} ⊆ ε−1(ei+1).
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Since k ≥ 3, the hypergraph H̃ has the following three properties:

1. For each i ∈ [k] the vertex ṽinvi−1 belongs to precisely two hyperedges from Ẽ .

These hyperedges are ε−1(ei) and ε−1(ei+1);

2. For each 1 ≤ i, j ≤ k with |i−j| ≤ 2, the hyperedge ε−1(ei) cannot be contained

in the hyperedge ε−1(ej) because, by (1) the vertex ṽinvi−1 belongs to ε−1(ei) but

cannot belong to ε−1(ej);

3. For each i ∈ [k], the hyperedges ε−1(ei) and ε−1(ei+1) cannot be subset of each

other because by (1) we have:

• ṽi−1
nvi−1−1 belongs to ε−1(ei) but cannot belong to ε−1(ei+1), and

• ṽi+1
nvi+1−1 belongs to ε−1(ei+1) but cannot belong to ε−1(ei).

Let Ṽ ′ = {ṽinvi−1 | 1 ≤ i ≤ k} and Ẽ ′ = {ε−1(ei) | 1 ≤ i ≤ k}. Note that Ṽ ′ ⊆ Ṽ and

Ẽ ′ ⊆ Ẽ . Therefore, no matter what other steps are taken during the runtime of the

GYO reduction on H̃, by (1), no vertex from Ṽ ′ will become candidate for removal,

and by (2) and (3), no hyperedge from Ẽ ′ will become a candidate for removal. Hence,

H̃ cannot be GYO reducible to the empty hypergraph. In other words, the hypergraph

H̃ includes the cycle

{{ṽinvi−1, ṽ
i+1
nvi+1−1} | 1 ≤ i < k} ∪ {{ṽkn

vk
−1, ṽ

1
nv1−1}}, (6.1)

where, by the above property (1), the edge {ṽinvi−1, ṽ
i+1
nvi+1−1} for each 1 ≤ i < k is

included in precisely one hyperedge from Ẽ , that is ε−1(ei+1), and {ṽkn
vk
−1, ṽ

1
nv1−1} is

included in precisely one hyperedge from Ẽ , that is ε−1(e1)(= ε−1(ek+1)). Thus, H̃ is

not α-acyclic. Therefore, by Definition 6.1.1 of ι-acyclicity, H is not ι-acyclic. This

contradicts the initial assumption.

“ ⇐= ”: Assume for a contradiction that H is not ι-acyclic. Hence, by Defi-

nition 6.1.1, there exists H̃ = (Ṽ , Ẽ) ∈ H(H) that is not α-acyclic. Therefore, by
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Definition 3.1.8, H̃ is not conformal or not cycle-free. Next, we prove that each of

the two cases leads to a contradiction.

Case 1. The hypergraph H̃ is not conformal. Therefore, there exists a subset

S ⊆ Ṽ with |S| ≥ 3 such that

M(Ẽ [S]) = {S \ {x} | x ∈ S}.

According to Definition 3.1.2, we have Ẽ [S] = {e ∩ S | e ∈ Ẽ} \ ∅. According to

Definition 3.1.3, we haveM(Ẽ [S]) = {e ∈ Ẽ [S] | @f ∈ Ẽ [S], e ⊂ f}. Let x̃, ỹ, z̃ ∈ S be

distinct vertices from S. Let ẽx̃ = S \ {x̃}, ẽỹ = S \ {ỹ}, and ẽz̃ = S \ {z̃} be distinct

hyperedges from M(Ẽ [S]). Since S ⊆ Ṽ , we also have that x̃, ỹ, z̃ ∈ Ṽ .

We now need the following claim at this point in the proof; its own proof is given

at the end of this section.

Claim 6.5.4. The vertices ν(x̃), ν(ỹ), and ν(z̃) are pairwise distinct vertices of V.

By Definition 3.1.3, we haveM(Ẽ [S]) ⊆ Ẽ [S], hence, ex̃, eỹ, and ez̃ belong also to

Ẽ [S]. By Definition 3.1.2 of the induced set, this means that there exist three distinct

hyperedges c̃x̃, c̃ỹ, c̃z̃ ∈ Ẽ such that ẽx̃ ⊆ c̃x̃, eỹ ⊆ c̃ỹ, and ez̃ ⊆ c̃z̃. Therefore, the

sequence (c̃x̃, z̃, c̃ỹ, x̃, c̃z̃, ỹ, ẽx̃) is a Berge cycle of length 3 in H̃ where, by Claim 6.5.4,

ν(x̃), ν(ỹ), ν(z̃) are pairwise distinct vertices of H. Therefore, by Lemma 6.5.3, H

also has a Berge cycle of length 3. This statement contradicts the initial assumption

that H is ι-acyclic.

Case 2. The hypergraph H̃ is non-cycle-free. Hence, there exist S = {ṽ1, . . . , ṽk} ⊆

Ṽ where k ≥ 3 of pairwise distinct vertices such that

M(Ẽ [S]) = {{ṽi, ṽi+1} | 1 ≤ i < k} ∪ {{ṽk, ṽ1}}.

Let ẽi+1 = {ṽi, ṽi+1} for each 1 ≤ i < k, and ẽ1 = {ṽk, ṽ1}.
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We now need the following claim at this point in the proof; its own proof is given

at the end of this section.

Claim 6.5.5. The vertices ν(ṽ1), . . . , ν(ṽk) are pairwise distinct vertices of V.

By Definition 3.1.3, we have M(Ẽ [S]) ⊆ Ẽ [S], this means ẽi ∈ Ẽ [S] for each 1 ≤

i ≤ k. By Definition 3.1.2, there exist k pairwise distinct hyperedges c̃1, . . . , c̃k ∈ Ẽ

such that ẽi ⊆ c̃i for each 1 ≤ i ≤ k. Since c̃1, . . . , c̃k are distinct hyperedges in Ẽ

and ṽ1, . . . , ṽk are distinct vertices in Ṽ , the sequence (c̃1, ṽ1, c̃2, c̃2, . . . , c̃k, ṽk, c̃1) is

a Berge cycle of length k ≥ 3 in H̃. Moreover, by Claim 6.5.5, ν(ṽ1), . . . , ν(ṽk) are

pairwise distinct vertices of H. Therefore, by Lemma 6.5.3, H has a Berge-cycle of

length k ≥ 3. This statement contradicts the initial assumption that H is ι-acyclic.

Finally, we give the proofs of Claims 6.5.4 and 6.5.5.

Proof of Claim 6.5.4. Assume for contradiction that there are two distinct

vertices ũ, ṽ ∈ {x̃, ỹ, z̃} such that ν(ũ) = ν(ṽ). By Property 6.5.2 (3), this means

that any hyperedge ẽ ∈ Ẽ that contains ũ contains also vertex ṽ (or vice versa).

Note that, since M(Ẽ [S]) ⊆ Ẽ [S] and since ũ, ṽ ∈ S, the property of the previous

statement holds also for the hyperedges of M(Ẽ [S]). This violates the condition

that M(Ẽ [S]) = {S \ {x} | x ∈ S} since in this case the hyperedge S \ {ṽ} (which

contains vertex ũ) would actually need to include vertex ṽ as well. The reverse case

is analogous due to symmetry. Contradiction.

Proof of Claim 6.5.5. Assume for contradiction that there are 1 ≤ i < j ≤ k

such that ν(ṽi) = ν(ṽj). By Property 6.5.2 (3), this means that any hyperedge ẽ ∈ Ẽ

that contains vertex ṽi also contains vertex ṽj (or vice versa). SinceM(Ẽ [S]) ⊆ Ẽ [S]

and since ṽi, ṽj ∈ S, we get that the hyperedges from M(Ẽ [S]) satisfy this property

too. That is, any hyperedge ẽ ∈M(Ẽ [S]) that contains vertex ṽi also contains vertex

ṽj (or vice versa). This violates the condition that M(Ẽ [S]) = {ẽ1, . . . , ẽk} since,

in this case, the hyperedge ẽi = {ṽi−1, ṽi} (in case ṽi−1 6= ṽj) or the hyperedge

ẽi+1 = {ṽi, ṽi+1} (in case ṽi+1 6= ṽj) would also include the vertex ṽj, creating a chord
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in the cycle. The reverse case is analogous due to symmetry. Contradiction.

6.5.2 Proof of Corollary 6.1.4

It is essential to remark that the statement follows immediately from the following

argument. According to Corollary 6.1.3 ι-acyclicity implies γ-acyclicity. Furthermore,

γ-acyclicity implies α-acyclicity. Therefore, ι-acyclicity implies α-acyclicity. Next, a

proof that is based on the join-tree structure is presented.

Corollary 6.1.4 (Iota Implies Alpha). The class of ι-acyclic hypergraphs is a

strict subset of the class of α-acyclic hypergraphs.

Proof. We prove by construction thatH has a join tree, and hence, by Definition 3.1.7,

H is α-acyclic.

Assume that H is ι-acyclic. By Definition 6.1.1 this means that all members of

τ(H) are α-acyclic. Let H̃ = (Ṽ , Ẽ) be a member of τ(H). Since all members of τ(H)

are α-acyclic, then H̃ is α-acyclic, and hence, it has a join tree (T̃ , χ̃) where T̃ is a

tree and χ̃ is a bijection χ̃ : V (T̃ )→ Ẽ such that the connectivity property holds (see

Definition 3.1.7).

It is possible to construct a join tree (T , χ) for H = (V , E) as follows: assign

T = T̃ and for each node t ∈ T assign χ(t) = ε(χ̃(t)). Next, we show that (T , χ)

is a valid join tree, that is (1) χ is a bijection of the from χ : V (T ) → E and (2)

connectivity property holds (see Definition 3.1.7).

1. χ is the composition of the bijections χ̃ : V (T̃ ) → Ẽ and ε : Ẽ → E . Hence,

it is a bijection of the form χ : V (T̃ ) → E . Since T = T̃ , we get that χ is a

bijection of the form χ : V (T )→ E .

2. Let v ∈ V be any vertex of H. By Property (2) of 6.5.2, for each hyperedge

ẽ ∈ Ẽ we have v1 ∈ ẽ if and only if v ∈ ε(ẽ). Since T = T̃ and χ(t) = ε(χ̃(t))

for each node t ∈ T , the set of nodes {t ∈ T̃ | v1 ∈ χ̃(t)} is equal to the set of
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nodes {t ∈ T | v ∈ ε(χ̃(t)) = χ(t)}. Since (T̃ , χ̃) is a join tree, the former set of

nodes is a non-empty connected subtree of T̃ (by Definition 3.1.7). Therefore,

the latter set of nodes is also a non-empty connected subtree of T .
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Chapter 7

Conclusions

This Chapter summarises the overall contributions and identifies the further research

directions related to this thesis.

7.1 Summary

Chapter 4 made two fundamental contributions. The first is an algorithm that com-

putes the intersection join of k sets of intervals of size n using O(k2 · n · log(k · n))

preprocessing time and constant delay enumeration of the tuples in the output. The

second is a simple reduction from the problem of evaluating any IJQ to the problem of

evaluating a union of CQs, called Intersection Join Decomposition (IJDec). Interest-

ingly, the IJDec reduction reveals that the Boolean Triangle IJQ can be evaluated

in time Õ(n3/2) in data complexity, and the full Triangle IJQ can be evaluated in

Õ(n3/2) preprocessing time, followed by constant delay enumeration of the tuples in

the output. This observation led to an in-depth investigation of the data complexity

of IJQs, which is covered in Chapter 5.

Chapter 5 focused on the data complexity of Boolean IJQs. It established the

data complexity of Boolean IJQs by employing a refined reduction to a disjunction of

Boolean CQs. Specifically, it proved that the complexity of any Boolean IJQ is that
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of the most difficult Boolean CQ in the disjunction created by the reduction. This

implies that one can obtain optimal algorithms for the evaluation of Boolean IJQs,

given optimal algorithms for the evaluation of Boolean CQs. Furthermore, it showed

that the reduction can be also applied in the case of non-Boolean IJQs. Last but

not least, the effectiveness of the proposed reduction was illustrated experimentally

using synthetic databases. s Chapter 6 introduced a new notion of acyclicity, called

ι-acyclicity, which is the class of Boolean IJQs that can be computed in quasilinear-

time. Hence, the notion of ι-acyclicity for Boolean IJQs is analogous to the notion

of α-acyclicity for Boolean CQs. It is proven that ι-acyclicity is strictly implied by

Berge-acyclicity and strictly implies γ-acyclicity. This is helpful for determining how

restrictive this class is, in comparison to other acyclicity classes, cf. Figure 1.2. It

was also shown that the Boolean IJQs that are not ι-acyclic are at least as difficult

as the Boolean Triangle CQ, which is widely considered not to be decidable in linear

time [3]. Last but not least, it was proven that given a hypergraph, its ι-acyclicity

can be checked in polynomial time.

7.2 Future Research Directions

This section suggests a number of directions for future research. Several of them are

related to aspects of the IJQ computation that are left uncovered, whereas others

propose the utilisation of the techniques introduced by this thesis to solve various

computational problems.

Practical Aspects

In spatio-temporal databases, the various complex objects can be either represented,

or approximated by intervals [40]. In the future, it would be useful to test the perfor-

mance of the reduction in realistic use cases involving spatiotemporal data, where the
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data distributions differ from those used in this thesis. Existing database systems rely

on statistics and specialised algorithms to generate efficient query plans for queries;

thus, improving the performance of such plans may be difficult. Further optimisations

to the reduction and, ideally, the removal of the arising polylogarithmic factors in the

data size are required for such a task.

The Complexity of non-Boolean IJQs

Chapter 5 is focused on the complexity of Boolean IJQs, and towards the end, in

Section 5.4, it is discussed how one can utilise the forward reduction to solve non-

Boolean IJQs. Furthermore, a complexity statement is made about the preprocessing

time needed to achieve constant delay enumeration of the tuples in the output in

the case of full IJQs (Subsection 5.4.2). It would be interesting to investigate the

enumeration complexity of IJQs in the presence of free variables in greater depth, and

in particular, identify the class of IJQs that admit quasi-linear time preprocessing

followed by constant delay enumeration of the tuples in the output. This can be

accomplished by studying and utilising existing results for the enumeration of CQs

and unions of CQs [18, 9, 52].

Queries with Inequalities

Another idea for future research is to consider queries with inequality joins and try to

understand their complexity by transforming them into queries with equality joins,

possibly by using techniques introduced by this thesis. A useful observation is that an

inequality condition, a < b for example, can be rewritten to an intersection condition

by representing a as an interval a′ = (−∞, a) and asking whether b ∈ a′, or by

representing b with the interval b′ = (b,+∞) and asking whether a ∈ b′. It is worth

exploring if by systematically applying such an approach, one can recover or even

improve results obtained by previous work [56, 2]. Moreover, it would be interesting
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to check if above-mentioned approach leads to lower bounds for Boolean queries with

inequality joins.

Refined Acyclicity

The notion of ι-acyclicity is defined for Boolean IJQs, which is the subset of Boolean

IJQs, where all variables in all of their occurrences range over intervals. As mentioned

before, it is the counterpart of α-acylicity for Boolean IJQs. A natural extension of

Chapter 6 is to refine ι-acyclicity for the class of IJQs, by dropping the assumption

that all variables in all of their occurrences are interval variables. The refined ι-

acyclicity would have to fall somewhere between α-acyclicity and ι-acyclicity; it would

coincide with the former when the IJQ is a CQ, and it would coincide with the latter

when the IJQ is an IJQ.

Hypertree Width

Another notion of width, known as hypertree width, was previously developed to

generalise acyclicity; the larger the hypertree width gets, the closer the hypergraph

is to being α-acyclic [29, 30]. Apart from the counterpart of submodular width and

fractional hypertree width for IJQs (Definition 5.2.13), it would also be interesting

to study the counterpart of the hypertree width for IJQs, and its properties. This

notion of width could be defined as the maximum hypertree width among the CQs

generated by the reduction of the input IJQ. How would the extended width be related

to ι-acyclicity?

Further Complexity Classes

Investigating the complexity of non ι-acyclic IJQs that satisfy another definition of

acyclicity might also be intriguing. Are all the IJQs that are non ι-acyclic but are

α-acyclic decidable in Õ(N3/2), for instance? The reason why this question is being
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asked is because certain representative queries in this class have this property, for

example, the queries in Figures 6.2a, 6.2b, and 6.2c.
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