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Abstract

This thesis investigates local realism in quantum indistinguishable particle systems,

focusing on bosonic, fermionic, and 2D non-abelian anyonic systems. The local realism

of quantum indistinguishable particle systems is asserted. It proves annihilation operators

represent the local ontic states in these systems. It closes the literature gap on obtaining

Deutsch-Hayden descriptors in indistinguishable particle systems. The prima facie

paradox of action at a distance using fermionic annihilation operators as descriptors

is resolved. The work provides examples of using and interpreting the annihilation

operators as local ontic states. It contains the novel construction and characterisation

of the annihilation operators for 2 D non-abelian anyonic systems. The explicit form

of Fibonacci anyon annihilation operators is provided, and their usefulness is shown

in expressing the anyonic Hubbard model Hamiltonian algebraically. By studying

the indistinguishable particle systems’ local realistic structure, the thesis showcases

the relevance of the choice of subsystem lattice and exotic possible compositions of

subsystems.

Keywords— Local realism - Fermions - Anyons - Ontic states



Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Local realism 6

2.1 Bell’s notion of local realism . . . . . . . . . . . . . . . . . . . . 8

2.2 Einstein’s principle of locality . . . . . . . . . . . . . . . . . . . 13

2.3 Local realism formalised . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Realistic theories . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Local-realistic theories . . . . . . . . . . . . . . . . . . . 20

2.3.3 Local ontic states . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Qubit networks as a no-signalling operational theory . . . 29

2.4.2 Descriptors of a qubit network . . . . . . . . . . . . . . . 31

2.4.3 One descriptor per qubit . . . . . . . . . . . . . . . . . . 34

2.4.4 Physicality of qubit descriptors . . . . . . . . . . . . . . . 35

2.5 Descriptors as local elements of reality . . . . . . . . . . . . . . . 36

2.5.1 Ontic operations for descriptors . . . . . . . . . . . . . . 40

2.5.1.1 Ontic group action . . . . . . . . . . . . . . . . 40

2.5.1.2 Ontic-phenomenal epimorphisms . . . . . . . . 40

2.5.1.3 Ontic projections . . . . . . . . . . . . . . . . 43

2.5.1.4 Ontic join product . . . . . . . . . . . . . . . . 43

2.5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Fermions and bosons 50

i



University of Oxford Balliol College

3.1 Fermions as an operational theory . . . . . . . . . . . . . . . . . 52

3.1.1 Kinematical space . . . . . . . . . . . . . . . . . . . . . 53

3.1.2 Parity SSR . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.3 Embedding of local observables . . . . . . . . . . . . . . 60

3.1.4 Partial trace . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.5 No-signalling . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.6 Local-tomography . . . . . . . . . . . . . . . . . . . . . 65

3.2 Fermionic descriptors . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Ontic group action . . . . . . . . . . . . . . . . . . . . . 68

3.2.2 Ontic-phenomenal epimorphisms . . . . . . . . . . . . . 69

3.2.3 Ontic projections . . . . . . . . . . . . . . . . . . . . . . 70

3.2.4 Ontic join product . . . . . . . . . . . . . . . . . . . . . 71

3.2.4.1 Faithfulness of splitting operation . . . . . . . . 71

3.2.5 The fermionic action at a distance paradox . . . . . . . . 73

3.2.6 Are fermionic descriptors physical? . . . . . . . . . . . . 75

3.3 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Mach-Zehnder interferometer . . . . . . . . . . . . . . . . . . . . 81

3.4.1 Bosonic Mach-Zehnder . . . . . . . . . . . . . . . . . . . 82

3.4.2 Fermionic Mach-Zehnder . . . . . . . . . . . . . . . . . 86

3.4.3 Phase localisation using the current density observable . . 89

4 Anyons 92

4.1 Anyon formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 Fusion, splitting, F-moves and exchanging . . . . . . . . 96

4.1.1.1 Example: Fibonacci anyons . . . . . . . . . . . 100

4.1.2 Superselection rule . . . . . . . . . . . . . . . . . . . . . 101

4.1.2.1 Fibonacci SSR . . . . . . . . . . . . . . . . . . 103

4.1.3 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

ii



University of Oxford Balliol College

4.1.4 Local operators . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.4.1 Embedding of physical local operators . . . . . 109

4.1.4.2 Fibonacci local unitaries . . . . . . . . . . . . . 110

4.1.4.3 Extended local operators? . . . . . . . . . . . . 111

4.1.5 Partial trace . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.1.6 No-signalling . . . . . . . . . . . . . . . . . . . . . . . . 113

4.1.7 Local tomography . . . . . . . . . . . . . . . . . . . . . 115

4.2 Anyonic annihilation operators . . . . . . . . . . . . . . . . . . . 118

4.2.1 Fibonacci annihilation operators . . . . . . . . . . . . . . 124

4.2.2 Fibonacci physical observables in terms of the anyonic

creation and annihilation operators . . . . . . . . . . . . . 127

4.2.3 Hubbard anyon model . . . . . . . . . . . . . . . . . . . 129

4.3 Anyonic descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.1 Ontic group action . . . . . . . . . . . . . . . . . . . . . 134

4.3.2 Ontic-phenomenal epimorphisms . . . . . . . . . . . . . 135

4.3.3 Ontic projections . . . . . . . . . . . . . . . . . . . . . . 136

4.3.4 Ontic join product . . . . . . . . . . . . . . . . . . . . . 137

4.3.4.1 Faithfulness of splitting operation . . . . . . . . 137

5 Discussion 139

5.1 Heisenberg and Leibniz . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Are annihilation operators physical? . . . . . . . . . . . . . . . . 142

5.2.1 The relevance of local tomography . . . . . . . . . . . . . 144

5.2.2 Bilocal tomography . . . . . . . . . . . . . . . . . . . . . 145

5.3 The importance of subsystem lattices . . . . . . . . . . . . . . . . 146

5.4 Anyonic subtleties . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.1 Non-physical operator embedding . . . . . . . . . . . . . 150

5.4.2 Anyonic commutation relations and Fock space . . . . . . 151

iii



5.4.3 Anyonic Hamiltonians . . . . . . . . . . . . . . . . . . . 152

5.5 Possible extensions of the work . . . . . . . . . . . . . . . . . . . 153

Appendix A Mathematical details of Chapter 2 169

Appendix B Mathematical details of Chapter 3 173

Appendix C Mathematical details of Chapter 4 182

C.1 General annihilation operators . . . . . . . . . . . . . . . . . . . 182

C.2 Creation and annihilation operators theorem . . . . . . . . . . . . 185

C.3 3-anyon Fibonacci observables . . . . . . . . . . . . . . . . . . . 192

C.4 Fibonacci commutation relations . . . . . . . . . . . . . . . . . . 194

C.5 Fibonacci Fock states . . . . . . . . . . . . . . . . . . . . . . . . 195

C.6 Local realism proofs . . . . . . . . . . . . . . . . . . . . . . . . 196

iv



List of Abbreviations and Notation

EPR . . . . . . . . . . . Einstein-Podolsky-Rosen

PR . . . . . . . . . . . . Popescu-Rohrlich

SSR . . . . . . . . . . . Superselection rule

RR . . . . . . . . . . . . Raymond-Robichaud

+ h.c. . . . . . . . . . . And adding the Hermitian conjugation of the previous terms

QFT . . . . . . . . . . Quantum field theory

2 + 1 D . . . . . . . . Two spatial dimensions and one temporal dimension.

The following is the standard notation we use:

AB . . . . . . . . . . . Composite system of the two subsystems A and B

A|B . . . . . . . . . . . Set bipartition, where A and B are disjoint subsets

σ̂µ . . . . . . . . . . . . Pauli matrices σ̂0 = I, σ̂x = ( 0 1
1 0 ), σ̂y = ( 0 −i

i 0 ) & σ̂z = ( 1 0
0 −1 )

q̂j . . . . . . . . . . . . . Lowering ladder operator for the j’th qubit in a qubit network.

|Ω⟩ . . . . . . . . . . . . Fermionic vacuum state

|0⟩ . . . . . . . . . . . . Bosonic vacuum state

f̂ j . . . . . . . . . . . . . Fermionic annihilation operator in mode j

b̂j . . . . . . . . . . . . . Bosonic annihilation operator in mode j
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1 | Introduction

The sole path to attain the universal lies within the

realms of the ultra-local.

L’única manera d’arribar a allò universal és a

través de l’ultra local.
—Salvador Dalí

1.1 Motivation

Locality, particularly local realism, is a highly desired feature of any physical

theory. The ability to explain complex global behaviour in terms of the individual

behaviour of the subparts of physical reality is incredibly advantageous and intu-

itive. The program of classical field theory for electromagnetism and the theory of

general relativity are perfect examples of the success and beauty of local theories.

They provide excellent and accurate explanations of the physical phenomena they

characterise.

However, most physicists agree that John S. Bell [1, 2] proved quantum theory

cannot possess this quality. Some suggest that the lack of local realism in quantum

theory prevents us from having a successful complete theory of quantum grav-

ity. Having a local-realistic picture of quantum mechanics would improve our

understanding and explanations of the quantum phenomena we observe.

Such a picture does exist. Deutsch-Hayden and Raymond-Robichaud [3–5] provide

a framework on which quantum theory can be seen as a local-realistic theory.

However, their work focuses on distinguishable quantum systems, where a tensor

product structure is used for subsystem composition. We aim to extend their

analysis to indistinguishable particle systems.

1
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We want to do so for several reasons. First and foremost, indistinguishable particle

systems are the basis of our fundamental quantum theories of reality. A local-

realistic structure would improve our explanations of the physical behaviour of the

fundamental theories of reality.

The second is to understand the Deutsch-Hayden and Raymon-Robichaud con-

structions better. Applying their ideas to new domains forces us to scrutinise

their assumptions and deeply understand their arguments’ underlying reasons and

mechanics. Understanding these constructions better is important to construct

better explanations when using them.

The third reason is that indistinguishable quantum particle systems are more

nuanced, in general, than distinguishable systems. They display interesting features

not showcased in the usual simple quantum distinguishable scenarios. We want

to use the exploration of the local realism of these theories to dive deep into these

nuances and understand why they arise and how to treat them. We desire to explore

all the capabilities, structures and behaviour quantum theory offers rather than stay

at the surface level of toy simple theories.

We believe that exploring the full range of theories the quantum framework can

offer is necessary to ground the expected principles of any general theory of physics.

Only by fully exploring the known theories can we assert what behaviours and

structures we should expect in the general case.

As part of the quantum foundations program, we are interested in learning about

other possible physics theories. Ideally, we would have a general faithful charac-

terisation of all possible physical theories. Then, we could explore the landscape,

search for new physical theories, and then find experimental regimes where these

theories may apply.

In our analysis, we explore the fermionic and bosonic 3 + 1 D indistinguishable

2
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particle systems and the local realism properties of 2 + 1 D anyons. There are

several reasons for this choice. First, they are a valid fundamental theory of

indistinguishable particles. Second, they have very unusual, interesting properties

regarding subsystem composition. Third, their topological nature poses unique

problems to the local-realistic program. Fourth, they are the basis of topological

quantum computing. We believe that studying a physical system used as the basis

of fault-tolerant quantum computation from a quantum foundations perspective is

of the utmost importance. The quantum foundations perspective may add elements

to advance our understanding of these systems.

All these reasons are fundamental to our personal motivation to undergo the

presented analysis. Moreover, the possibility to meaningfully contribute to such

relevant fields is a great opportunity. We hope to close literature gaps with our

analysis and increase the overall physics knowledge of reality a tiny bit.

1.2 Aim and Objectives

The main objective of the thesis is to analyse the quantum systems of indistinguish-

able particles’ local realism properties. Concretely, to identify their local realistic

structure and express it conveniently and effectively.

We want to navigate the subtleties of quantum indistinguishable particle systems.

We aim to provide an exhaustive analysis of their notions of locality and establish

the connections and differences among them and quantum distinguishable systems.

To do so, we introduce the different particle formalisms, and we study them under

the connection of the Raymond-Robichaud formalism [6] with the Deutsch-Hayden

descriptors [3].

The main claim of this thesis is that annihilation operators can be used as represen-

3
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tations of the local ontic states of all quantum indistinguishable particle systems.

To prove such a strong claim, we must navigate the nuances of superselection

rules. We resolve the prima facie paradox in fermionic theory where an a priori

violation of the no action at a distance principle appears when considering fermionic

annihilation operators as representatives of the fermionic local ontic states.

In the anyonic case, we derive the existence of 2 D non-abelian anyonic annihilation

operators to prove our thesis. We characterise their properties and behaviour. We

also aim to showcase the usefulness of these annihilation operators for the study of

anyonic systems per se.

The second main goal of this thesis is to bring closer the nuances of quantum

indistinguishable particle systems to the quantum foundations’ community. We

want to remark on the striking properties some of these systems portray, being

the perfect test ground for general axiom testing and a source of inspiration for

possible generalisations on the behaviour of general physical theories.

1.3 Thesis Outline

This thesis is organised into three main chapters, a discussion chapter and the

appendices.

Chapter 2 introduces the relevant literature on the different notions of local realism

in the context of quantum mechanics. We introduce RR’s formalism [4] as a for-

malisation of Einstein’s local realism that we use throughout the thesis. Moreover,

we explain the established connection between RR’s formalism and the notion

of descriptors introduced in [3]. We reproduce the qubit networks case analysis,

concluding that we can use the qubit annihilation operators as qubit descriptors.

In Chapter 3, we study local realism for bosonic and fermionic systems. In the

4
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fermionic case, we have resolved the prima facie paradox of having no action at a

distance when the fermionic annihilation operators represent the local ontic states.

We conclude that bosons and fermions are local-realistic, and their annihilation

operators represent their local-realistic structure. We exemplify these properties by

analysing the bosonic and fermionic Mach-Zehnder interferometers in Section 3.4.

After analysing local realism for 3 + 1 D indistinguishable particles, Chapter 4

examines 2 + 1 D anyonic particle systems. We prove that anyonic annihilation

operators can represent the local ontic states of the local-realistic structure of

anyonic systems.

To derive this result, we first discover the existence of anyonic annihilation op-

erators. We characterise their construction and behaviour. We express the 2 D

Fibonacci Hubbard model Hamiltonian using the anyonic creation and annihilation

operators.

Finally, in the discussion, Chapter 5, we tie up some loose ends, provide an

extensive review of the obtained results throughout the thesis, and comment on

their significance and future directions.

The relevant original contributions by the author are found in Subsubsection 4.1.4.3,

Subsections 2.4.3, 2.4.4, 4.1.6 & 4.1.7, Sections 3.2, 3.4, 4.2 & 4.3, and Chapters

5, A, B & C. The last three are the appendices.
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2 | Local realism

Locality is a crucial concept for physics. This notion has played a central role in

several physics revolutions. For example, Newton’s gravitational laws appeared to

be non-local [7]. This tension grew until classical physics developed the notion

of field, which, after the developments of Maxwell [8], was incorporated into the

representation of physical reality, providing a clean solution to the problem of

locality in the law of gravitation.

The current state of affairs in physics echoes Newton’s case. Quantum theory

and general relativity are the best theories in their respective domains. While

general relativity is generally understood as a theory that is local [9], the general

perception of quantum theory is that it is non-local [10, 11]. Some have suggested

that reconciling general relativity and quantum theory requires addressing the issue

of non-locality [12].

We should investigate the role of locality in quantum theory for more reasons than

the compatibility of quantum theory with general relativity. Similar to Newton’s

example, research into the role of locality can deepen our understanding of the

theory as a whole. It can bring forward new ideas, methods and concepts that

enrich our understanding and add new observations, phenomena, and explanations

of the physical world around us.

One of the problems with the treatment of locality in physics is that it is an

incredibly intuitive concept used as a term for different but related properties of a

physical theory. The intuition of locality comes from macroscopic classical physics,

where we perceive common objects existing in space. However, the classical

characterisation makes many assumptions about the physical world. When we

turn to quantum theory, some assumptions no longer hold. As a result, various

6
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characterisations of this intuition are proposed and given the same label: locality.

This chapter examines how quantum theory can be regarded as a local theory. More

precisely, as a local realistic theory. That is, identifying elements of the physical

theory with the outside objective physical reality locally and respecting locality.

Section 2.1 introduces Bell’s notion of local realism [1, 2] and critically examines

its assumptions. It is important to note that most authors adopt this notion when

referring to quantum theory as a non-local theory. In Section 2.2, we present an

alternative formulation of local realism given by Einstein [13, 14]. Section 2.3

examines the development of Einstein’s local realism in the Raymond-Robichaud

equivalence class formalism [4, 5]. Section 2.4 presents Deutsch and Hayden’s

notion of descriptors in quantum theory [3] for qubit networks. Lastly, Section

2.5 examines the relationship between descriptors and the notion of local realism

proposed by Einstein and modelled by Raymond-Robichaud, while highlighting

their convenience as a tool to engage with local realism in quantum theory.

Throughout the chapter, we provide arguments in favour of adopting Einstein’s

notion of local realism and its adaptation to the quantum theory proposed by

Raymond-Robichaud, as opposed to Bell’s notion. We introduce the idea of local

elements of reality and their relevance for using a physical theory that respects

locality and realism. We explain how descriptors are a compact way of representing

quantum theory’s local elements of reality.

On this note, we motivate the remaining chapters of this thesis, which focus on

identifying and analysing the properties of descriptors—those compact representa-

tions of the local elements of reality—for quantum systems of indistinguishable

particles.
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2.1 Bell’s notion of local realism

Alain Aspect, John F. Clauser and Anton Zeilinger received the Nobel Prize in

Physics in 2022 "for experiments with entangled photons, establishing the violation

of Bell inequalities and pioneering quantum information science" [15]. Such is the

scope and importance of the work by John Bell [1, 2]. His work has profoundly

influenced the development of quantum information and quantum foundations.

Moreover, the testing of Bell inequalities has brought about a wide range of

experimental techniques [10, 16–19].

Such a profound effect is justified: Bell’s was a deep conceptual non-trivial idea.

As such, Bell’s theorem has elicited extensive discussion on its assumptions,

meaning, significance and implications [20–27]. Although there is no consensus

in the literature on the misconceptions surrounding Bell’s theorem, the common

understanding is that it proves that quantum mechanics is not a local-realistic

theory and that a local hidden variable model for quantum theory cannot exist.

This section aims to present the notion of local realism employed by Bell [1] in a

simple, concise way. The sources cited throughout the section provide great insight

into other aspects of Bell’s work, the discussion of which would be out of the scope

of this thesis.1

One cannot fully grasp Bell’s theorem without understanding the 1935 paper by

Einstein-Podolsky-Rosen (EPR) [28]. Arguably, Bell’s argument is a continuation

of EPR [23]. EPR argue that quantum mechanics is incomplete and suggest includ-

ing additional, local deterministic hidden variables to complete it. Their argument

establishes a contradiction between the local realism of quantum mechanics and

its completeness. They argue that any reasonable theory should be local-realistic,

1We especially recommend [23].
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therefore discarding the completeness of quantum theory.

Bell expands on the results from EPR. Bell’s theorem models all local deterministic

hidden variable models that can complete quantum mechanics and deduces a

contradiction with the observations of quantum theory. Bell’s theorem gives bounds

from the conditional probabilities of measurement outcomes and settings of local

deterministic hidden variable models. Bell observes that such bounds are violated

with quantum mechanical predictions. The quantum mechanical predictions have

been successfully verified through the so-called tests of Bell inequalities [10, 16–

19].

In refuting the possibility of a local hidden variable model for quantum theory,

Bell thought he disproved local realism in quantum theory because of the EPR

argument. The impossibility of completing quantum theory with local hidden

variables implies that the false condition in the EPR contradiction should be the

local realism of quantum mechanics assumption.

Let us present this notion of local realism that Bell disproved and inherited from

the EPR paper. In EPR, there is a distinction between the elements in the physical

theory and the elements of physical reality. This alludes to an objective reality of

the physical world, thus realism. To provide a working basis, one needs a criterion

of what constitutes an element of such physical reality. The EPR criterion [28] is

the following:

"If, without in any way disturbing a system, we can predict with

certainty (i.e. with probability equal to unity) the value of a physical

quantity, then there exists an element of physical reality corresponding

to this physical quantity."

After establishing this sufficient condition for a physical quantity having a corre-

sponding element of physical reality, EPR describes the physical quantities and
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their values for quantum theory.

EPR claims that, in quantum theory, the physical quantities correspond to the

observables Â given by Hermitian linear operators over the Hilbert space of states

ψ. They say such quantities take definite real values a when the state of the system

ψ is an eigenstate of the associated observable Â, so we have Âψ = aψ. When

ψ is not an eigenstate of Â, they claim one can no longer speak of the physical

quantity Â having a particular value.

Crucially, they consider the eigenvalues of observables as the possible values of the

physical quantities. Therefore, these physical quantities taking these real values are

susceptible to having an element of physical reality associated with them according

to the EPR criterion.

For them, the elements of reality should specify the values of physical quanti-

ties. Specifically, the elements of reality should specify which eigenvalue the

observable is taking. In other words, the outcomes of measurements should have a

corresponding element of reality that specifies it.

Having clarified the notion of reality, let us focus on the concept of locality Bell

uses. Bell illustrates his reasoning using the simple system of two spin-1
2

particles,

acting as two qubits, sent away from each other towards Stern-Gerlach magnets

oriented at directions a⃗, b⃗, respectively measuring the quantum observables A and

B for the first and second particle. The eigenvalues of the relevant observables are

A = ±1 = B. Thus, there must be elements of physical reality λ that complete

quantum theory in determining the physical reality of the system, such that, together

with a⃗, b⃗ can determine the value of the physical quantities A,B.

Regarding locality, Bell focuses on the condition that:

" (...) if two measurements are made at places remote from one another

10
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the orientation of one magnet does not influence the result obtained

with the other."

Bell models this requirement, that we name no action at a distance, for the hidden

variables as the measurement settings for one particle cannot affect the other, which

is remotely far away. Therefore A(⃗a, λ) = ±1 and B(⃗b, λ) = ±1. Bell also

mentions that one could demand λ to be split between variables associated with the

first particle and the second but does not insist on doing so out of lack of necessity.

In summary, Bell’s notion of local realism is based on the EPR criterion of reality,

the position that physical quantities in quantum theory are observables that can take

as values their eigenvalues and that the measurement settings of 1 cannot influence

the individual measurement outcomes of 2.

After the schematic presentation of local realism in Bell’s theorem, let us make

relevant comments that will be useful in the following section. In EPR and Bell’s

framework, albeit not explicit, there is a subtle distinction between reality and

measurable properties. The completing variables λ are precisely named hidden

by some authors due to the impossibility of measuring their value. However, their

existence in physical reality is still affirmed.

One of the key features of EPR and Bell’s local realism is that it assumes only

one of the measurement values as real or realised. Such condition precludes [23]

this notion of local realism to be satisfied in Everett’s interpretation of quantum

mechanics [29], where all values of a measurement are realised by coupling to the

quantum mechanical behaviour of the measuring devices.

Instead of reconsidering the reality of the single-valued measurement processes,

Bell prefers to discard the principle of locality and, thus, to allow remote measure-

ment settings to affect each other’s measurement outcomes. Other resolutions to

save the locality principle have been proposed upon posterior analysis, such as
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superdeterminism [24].

As we have explained, Bell models the condition of locality as the impossibility that

the measurement settings of 1 can directly influence the reality of 2 instantaneously.

We refer to this characterisation as the condition of no action at a distance. One

must distinguish such a condition from the no-signalling condition, which is known

to be satisfied in quantum theory [30] (see Section 2.2 for an explicit comparison).

Bell’s notion of no action at a distance, in terms of measurement settings and

outcomes, is relatively theory-independent. Although presented for quantum

mechanical systems of distinguishable particles, this notion directly applies to

quantum mechanical systems of indistinguishable particles. Since the algebraic

properties of observables would change, the bounds obtained in Bell inequalities

might also change. Bell’s formalisation of no action at a distance would still directly

apply to theories with composite systems, measurement settings and outcomes,

even non-quantum theories.

Furthermore, Bell’s formalisation of the principle of no action at a distance is

general enough to be applied abstractly even in physical systems where the different

subsystems A,B are not separated in space but are still independent. We end up

having a notion that refers to the dependency of measurement outcomes with

respect to measurement settings and state specifications. Such generality allows us

to discover configurations that, without violating the no-signalling principle, are

maximally non-local and do not have a quantum or classical theory behind them,

like Popescu-Rohrlich (PR) boxes [31].

12
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2.2 Einstein’s principle of locality

Despite Einstein being one of the three authors of the EPR paper, he was not

satisfied with how the publication turned out. Over the following years, he refined

a different argument for the incompleteness of quantum mechanics specifying in

detail the notions of local realism he uses [13, 14, 32].

In this section, we summarise the main arguments of various analyses of Einstein’s

notion of local realism [9, 33–36]. We broaden and generalise this notion of local

realism to encompass general physical theories. In doing so, we pay close attention

to [33]. We advise the reader to consult the references cited throughout this section

for in-depth analysis and faultless exposition.

We address Einstein’s notion of locality more methodically than Bell’s 2.1. We

follow a more general approach and establish the principles of local realism without

discussing their application to the incompleteness of quantum mechanics.

First, let us introduce the idea of ontic states. The ontic, real or noumenal states in

a realistic theory are the states that fully characterise all aspects of the constitution

of the reality of the system. Such states specify all the properties that make the

system be and constitute it as it is. This concept is distinct from the notion of a

phenomenal or observable state of a system. The phenomenal state of a system is

the configuration of all the system’s observable properties. Most physics is done

assuming Leibniz’s rule of the identity of indiscernibles [37], which imposes that

the ontic states are the phenomenal states. In other words, since only observations

should allow us to discern differences between physical systems, all the constitutive

properties of a system must be observable.

According to [33], Einstein’s notion of local realism is based on two principles
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"The first, which I call the ’separability principle’, asserts that any

two spatially separated systems possess their own separate real states.

The second, the ’locality principle’ asserts that all physical effects are

propagated with finite, subluminal velocities, so that no effects can be

communicated between systems separated by a space-like interval."

The locality principle in Einstein’s local realism, also known as no action at

a distance, corresponds to Bell’s notion of locality. It is the impossibility of

immediate influence by distant physical systems. The principle of no action at a

distance can be demanded at both ontic and phenomenal levels. When required at

both, no action occurring at system A can immediately affect any feature of the

physical description of the remote system B, even if such feature is observable

or not. Even at the phenomenal level, it is a stronger requirement than the no-

signalling principle.

The no-signalling principle establishes the impossibility of local observations in the

system A being able to discern if an action has occurred in the remote independent

system B. Notice that this principle allows B to influence A as long as the action

in B is not discernable by A. Therefore we can see how the requirement of no

action at a distance is stronger than the no-signalling principle.

Within Bell’s scenario, Bell would claim that the no-signalling condition is satisfied,

but no action at a distance is not. The maximal characterisation of A one can

do using local observations in quantum mechanics is to establish the reduced

density operator ρA. It is known that ρA captures the expected values of the local

observables of A and that it is left invariant under any remote action in B [30].

Nevertheless, Bell would say no action at a distance is violated since he would

expect, in general, that the action of changing the measurement settings in B would

influence the individual measurement outcome inA. However, due to the stochastic
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nature of the collapse, no average effect would be witnessed, even though remote

influence would have occurred in each individual measurement.

Let us now focus on the separability condition, which, according to Einstein, was

the main source of contradiction with quantum theory. The separability condition

introduces a desired structure at the level of ontic states. If one follows the

Leibniz rule in assigning a one-to-one correspondence between ontic states and

phenomenal states, and if the phenomenal states do not possess such structure, then

the separability condition fails. If that were the case, one might want to drop the

Leibniz rule to retain the separability principle and local realism by selecting a new

set of ontic states with the desired structure.

The separability condition stated in the quote above is less strong than the version

referred to by Einstein and us. The stronger separability condition states, in

addition, that the parts’ local ontic states can recover the composite system’s

complete ontic state. Not only is the whole separable into independent parts, but

the combined parts also make the whole. The whole is not more than the union of

the parts.

The separability principle is a natural principle to demand for several reasons.

It is natural to demand that physical subsystems may be isolated and treated

independently of the larger environment, so they may be considered to have their

own independent reality. To fully state that A is a subsystem of AB, we must first

consider A to be a system in and of itself, independent from the rest of AB.

Because it captures qualitative features from field theory and the theories of special

and general relativity, Einstein’s notion of locality is deeply rooted in the notion of

space. Spatial separation appears in both no action at a distance and separability

principles. We can, however, extend these two principles to general subsystems.

We want to consider any two independent subsystems A,B that together form
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a composite system AB and apply the separability and no action at a distance

principles to them without referring to their position in space in any way. For A

andB to be proper subsystems, they must be independent. Given this independence,

it is natural to demand the separability of the local ontic states. It is also natural

to infer that no action at a distance should apply; since a local action in one

such independent system should not influence or be influenced by a different

independent system. Any interaction between such independent parts must occur

necessarily at the global level of composition AB.

Similarly to Bell’s locality, with this extension to general subsystems, it is clear

that Einstein’s locality applies not only to quantum mechanical systems but to any

physical theory with notions of independent subsystems. Nevertheless, Einstein’s

local realism is conditional on the structure of the ontic states and transformations

that the theory allows. It is less focused than Bell’s on measurements, preparations,

settings and outcomes. It enables one to work fully within the abstract framework

of the physical theory, expanding the range of possible descriptions of the reality

of physical systems.

Precisely because of this freedom, we can consider Everettian quantum mechanics

[29] within Einstein’s local realism. We can model measurement apparatuses

getting coupled with the measured physical systems, and all values of the measure-

ments being part of the extended reality.

As we have seen, Bell’s local realism excludes this possibility. Such flexibility

results from not committing to a particular criterion of what the elements of

physical reality must be and, instead, only specifying some structures they must

have on top of describing the constituting properties of the theory’s observable

physical situations.

Works that discuss the notion of separability and composition [38–43] in physics
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are particularly relevant to apply and understand Einstein’s notion, providing new

tools and perspectives that can be used in the formalisation of Einstein’s local

realism. Although Bell’s locality is still preferred by the communities of quantum

information and foundations, Einstein’s ideas are hinted at, for example, in the

research programme of algebraic quantum field theory [44, 45].

Subsystem locality refers to Einstein’s position. Meanwhile, Bell or quantum

non-locality refers to the failure to satisfy Bell’s notion. We adhere to Einstein’s

notion throughout the thesis for its flexibility, generality, and compatibility with

field theory frameworks; thus, when we refer to local realism in the thesis, we refer

to Einstein’s local realism.

2.3 Local realism formalised

This section concisely explains the formalisation of local-realistic theories de-

veloped in [4, 5]. This formalisation of local-realistic theories provides a useful

conceptual and mathematical framework to study Einstein’s local realism for gen-

eral physical theories. In particular, we can see how the no action at a distance,

separability and no-signalling principles are mathematically expressed for general

physical theories.

We remind the reader that our main goal is to discuss whether indistinguishable

quantum systems are Einstein local-realistic and, if so, identify the best way to

represent the local elements of reality for such systems. The Raymond-Robichaud

(RR) formalism enables us to achieve this goal.

The RR construction includes an important and beneficial result. In [4], the theorem

that every theory with reversible dynamics that respects the no-signalling principle

is local-realistic is stated and proved constructively.
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The following subsections present the theorem and various elements of the RR

formalism that are required to state the theorem and work with it. This material is

used throughout the thesis.

2.3.1 Realistic theories

To define a realistic physical theory, we use a triad of sets (P ,R, T ) that have

additional structure.

The set P is the set of elements of the physical theory that describe the phenomenal

properties of the theory - i.e., the properties that are empirically accessible. In other

words, an element ρ ∈ P describes all the properties that can be observed for a

specific configuration of a physical system.

The set T is the set of operations that describe the allowed physical transformations.

The theorem focuses on theories in which the set of physical transformations forms

a group under composition ◦. The group structure provides the physical theory with

reversible dynamics. The physical theories under consideration satisfy the property

that any transformation of the physical system must be reversible by applying a

different allowed physical transformation. The group of transformations T acts on

the phenomenal state space P , defining a group action · given by

T × P → P

(U, ρ) 7−→ U · ρ (2.1)

For clarity of exposition, we use the concept of "operational theory" employed

in the first version of the RR construction [6]. The group T under ◦, the set P

and the group action · compose an operational theory. These constituents are the

minimal ingredients required by all physical theories, the characterisation of the
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observational properties of the system and the possible transformations it may

undergo.

Further structure is required for an operational theory to be a realistic theory. So

far, the system has been described at the observational level. A realistic theory

should link the observational features of a physical system with some underlying

constituent features of the physical reality. It should also describe the elements that

intrinsically constitute the reality of the existence of the physical system.

The set R is the set of states of a physical system that describe all properties

that entirely specify the configuration of that physical system rather than just its

observational properties. The set R is the ontic state space. The ontic states r ∈ R

can also be named real or noumenal states, referring to the Kantian notion [46].

The distinction between phenomenal and ontic states may be challenging to grasp

intuitively. One of the reasons may be the widely assumed by physicists realism

under Leibniz’s rule of the identity of indiscernibles [37, 47]. This principle can

be summarised as follows: ontic states coincide with phenomenal states. In other

words, all existence-defining properties of a physical system are given by their

observable properties. According to the Leibniz rule, constitutive properties not

discernable by observation cannot exist.

Despite this rule, exploring the full range of structures that a clear distinction

between the ontic and the phenomenal state spaces provide may be interesting,

especially for expressing Einstein’s principle of locality.

The ontic state space R requires further structure. The group of transformations T

must also act on R. A physical transformation can alter the constituent properties

of the system. Since P and R may be completely different sets, the group action

19



University of Oxford Balliol College

from T to R may also be different. We denote the ontic group action with ⋆.

T ×R → R

(U, r) 7−→ U ⋆ r (2.2)

Let us consider a familiar example to illustrate the meaning of the ontic state.

Consider a two-qubit composite system in the state |ψ⟩ = 1√
2
(|01⟩ − |10⟩). We

apply a local rotation applied to one of the qubits. We already know that the

Schrödinger state |ψ⟩ will remain unchanged. In this case, one can imagine that the

phenomenal state is |ψ⟩ since it provides the observational properties of the system.

However, the fact that we have applied a rotation is relevant to the constitutive

properties of the system. Despite this rotation having no observational effect, it

may have altered the physical reality of the qubit. In that case, the Leibniz rule

does not apply.

Given the definitions of ontic and phenomenal, the phenomenal state must be

completely characterised by the ontic state of the system. In the RR formalism,

this observation is enforced by the requirement of an epimorphism φ from R to P .

We require φ (R) = P , where for every ρ ∈ P exists an r ∈ R such that φ(r) = ρ.

Moreover, φ has to be faithful with respect to the two group actions · and ⋆, having

φ(U ⋆ r) = U · φ(r).

2.3.2 Local-realistic theories

Having presented the notions and formalisation of realistic theories in the RR

construction, we now introduce the formalisation of local-realistic theories.

Local-realistic theories are a subset of realistic theories. In order to specify if a

theory is local-realistic, we need to introduce further structure to the formalism.
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We require tools to capture the notion of locality.

The original notion of Einstein’s local realism, as presented in Section 2.2, refers

directly to regions of space. The notion of locality in the RR construction is a

generalisation of Einstein’s local realism. Its defining characteristics are the no

action at a distance and separability principles. However, it applies to general

partitions into subsystems and has spacetime regions as a particular choice of

partition. Despite coinciding in using agents or subsystems, the notion of locality

in the RR construction is not an extension of Bell’s. Opposite to Bell’s, no condi-

tional probabilities, measurement outcomes, preparations, or random variables are

invoked. Instead, RR focuses on the structural properties of the physical theory. It

can be considered a general formulation of the concept of locality implemented in

algebraic quantum field theory [44, 45]. From now on, when we talk about locality,

we mean being localised in a subsystem of the global system in consideration.

To capture locality, we need a lattice of subsystems. We must specify which

systems our states and transformations refer to and act on. To specify the lattice,

we consider a maximal system S and the set of all subsystems S of the maximal

system S. By denoting AB ∈ S , we denote the subsystem that is the composition

of the disjoint subsystems A,B ∈ S . We also denote A ⊑ C to say the subsystem

A ∈ S is also a subsystem of C ∈ S . We always have A ⊑ AB. Every subsystem

A ∈ S is a physical system in itself. Thus, it has a phenomenal state space PA and

a group of transformations TA associated with it.

Throughout this thesis, we concentrate on systems where the maximal system is

S = A1A2 . . . AN . This notation indicates that the order of composition of the

elemental subsystems is irrelevant and that the maximal system is the composition

of a finite set of elemental subsystems Aj . In such cases, studying the bipartite case

is enough. We need mathematical structural properties that establish the relation of
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A,B ⊑ AB. The first important relations are the group monomorphisms of the

local transformations.

ϕA : TA → TAB ϕB : TB → TAB

UA 7→ U ext
A UB 7→ U ext

B (2.3)

The global set of transformations TAB has two distinct subgroups T ext
A , T ext

B that

are isomorphic to the groups of local transformations in A and B. Physically, this

means that the structure of local operations in subsystems A,B must be the same

when they are regarded as global transformations in AB.

The second structural feature is the projections of phenomenal global states to

phenomenal local states. Intuitively, this relation determines how from all the obser-

vational properties of the composite system AB, we can deduce the observational

properties of the subsystems A or B alone.

πP
A : PAB → PA πP

B : PAB → PB

ρAB → ρA ρAB → ρB (2.4)

The phenomenal projections πP
A , π

P
B need to be faithful with respect to the group of

local transformations monomorphisms. Given ρAB such that πP
A(ρAB) = ρA and

πP
B(ρAB) = ρB, then πP

A (U ext
A · ρAB) = UA · ρA and πP

B (U ext
B · ρAB) = UB · ρB.

We have all the primary ingredients to describe subsystem locality in an operational

theory. We want to specify the notion of a local-realistic theory. First, we need a

realistic theory. Then, for a realistic theory to be local for a lattice of subsystems,

it must satisfy the two Einstein locality conditions presented in Section 2.2. The

group actions on the ontic state spaces RS of the subsystems are also required to

be faithful with respect to the monomorphisms ϕS .
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To formalise Einstein’s local realism principles, we need to introduce projection

maps at the level of the ontic state spaces, such as πR
A : RAB → RA and πR

B :

RAB → RB . The projection map sends composite ontic states to local ontic states.

We require that the ontic projections and the phenomenal projections act in parallel.

Moreover, we require the ontic projections to be faithful to the group of local

transformations monomorphism. In other words, we need the following diagrams

to commute.

RAB RAB

RA RA

ϕA(UA)

πRA πRA

UA

RAB PAB

RA PA

φAB

πRA πPA

φA

(2.5)

Under these well-behaved projections, we can consider local ontic state spaces.

We are in a position to formalise the separability principle. The separability

principle can be broadly stated as independent local ontic states exist, and knowing

the collection of ontic states of the parts is the ontic state of the whole. More

specifically, together with the ontic projection map, we want to be able to define

the map ⊙ : RA × RB → RAB that assigns the global ontic state from its

local counterparts. Consider a phenomenal state ρAB ∈ PAB such that it has an

underlying ontic state rAB ∈ RAB, with φ(rAB) = ρAB. Having the local ontic

states rA = πR
A (rAB), rB = πR

B (rAB), we require that we can assign rA⊙rB = rAB

uniquely. Intuitively, this condition tells us that the whole is not more than the

parts at the ontic state level. There is enough information in the local ontic states to

recover the global ones. It states that the global physical reality is just the collection

of the local physical realities.

Furthermore, we need to formalise the principles of no-signalling and no action at

a distance. No-signalling states that given a global system AB, a transformation
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local on a subsystemA cannot immediately affect the local observational properties

of B. Since the condition is on observable properties, it constrains the structure

of phenomenal state spaces. Thus, we can have operational theories that satisfy

the no-signalling principle; there is no need to refer to realism. Concretely, the

no-signalling condition is formalised as follows:

∀ ρAB ∈ PAB, ∀ UB ∈ TB πP
A

(
U ext
B · ρAB

)
= πP

A (ρAB) (2.6)

Let us consider the ontic no action at a distance principle, which applies to the ontic

structures. It can be expressed as, given a composite system AB, under a local

transformation in B, the elements of the physical reality (the ontic states) of A

should be left unchanged. The following expression gives the natural formalisation

in the RR construction:

∀ rAB ∈ RAB, ∀ UB ∈ TB πR
A

(
U ext
B ⋆ rAB

)
= πR

A (rAB) (2.7)

Given such formal definitions, we can see the following interesting proposition

holds

Proposition 1. In a realistic physical theory with a lattice of subsystems, the

no-signalling condition follows from the no action at a distance principle.

Proof. If we have a realistic physical theory with a lattice of subsystems that satis-

fies the no action at a distance principle, applying to Equation 2.7 the epimorphism

φ, we obtain

∀ rAB ∈ RAB, ∀ UB ∈ TB φ
(
πR
A

(
U ext
B ⋆ rAB

))
= φ

(
πR
A (rAB)

)
⇒

∀ rAB ∈ RAB, ∀ UB ∈ TB πP
A

(
U ext
B · φ (rAB)

)
= πP

A (φ (rAB)) (2.8)
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by applying the faithfulness of φwith respect to the group actions and the projection

maps πR
A & πP

A (Equation 2.5) we deduce the implication above. Given that the

conditions hold ∀rAB ∈ RAB and φ is an epimorphism, then all ρAB ∈ PAB

can be written as ρAB = φ(rAB) for some rAB. Therefore, the conditions hold

∀ ρAB ∈ PAB, thus recovering the expression of the no-signalling condition in

Equation 2.6.

Subsequent works [39, 40] to Raymond-Robichaud’s paper [4] have pointed out

that the construction of the lattice of subsystems may already imply the condition

of no-signalling. In [39], a deep analysis is done to discern what a subsystem is

and what structural properties a lattice of subsystems may have. In [40], the author

recovers the tensor product structure from structural properties of the lattice of

subsystems, making use of the diagrammatic formulation of quantum theory [41,

48].

The demanded structural condition that the embedded groups T ext
A , T ext

B commute

with each other implies the no-signalling condition. This commutation property,

however, can be justified only on the ground of requiring that the subsystems are

independent of each other, thus entering the argumentation of why it is reasonable

to demand the no-signalling condition. For our purposes, which assumption is first

or primordial is quite irrelevant. We are interested in theories that satisfy both the

structural properties of the lattices of independent subsystems and the phenomenal

no-signalling principle.

Thus, in order to see an operational theory with a lattice of subsystems such is

local-realistic, we need to check that it satisfies the no-signalling principle and find

ontic state spaces (RS, ⋆), ontic projectors πR
S , epimorphisms φ that satisfy the

faithfulness conditions, be able to define a unique join operation ⊙ for local ontic

states that satisfy the no action at a distance condition.
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2.3.3 Local ontic states

The RR construction is a compelling framework not only because it can formalise

Einstein’s notion of local realism but also because of the central theorem of the

construction.

Theorem 2. Every no-signalling operational theory with reversible dynamics is

local-realistic.

The proof that any no-signalling operational theory is a local-realistic theory is

constructive [4]. However, first, let us define what a no-signalling operational

theory is.

A no-signalling operational theory is given by a lattice of systems, with associated

operational theories at each subsystem, with transformations groups TS , phenome-

nal state spaces PS , with the associated group actions · and projection operators

πP
S . On top of these structures, two key conditions must be met.

The first is that the no-signalling principle is satisfied for every bipartite composite

system in the no-signalling operational theory. The second is that if W ext
AC = T extBC

in the system ABC, then W ext
AC = T extBC = SextC . In other words, if a transformation

is local in AC and BC, it is necessarily a local transformation in C. This structural

property of the lattice of subsystems is directly demanded in the RR construction via

Postulate 4.1 (Separation), so the notion of disjoint subsystems is well-represented.

Raymond-Robichaud constructs the ontic state spaces RS , the ontic group action

⋆, the epimorphism φ, the ontic projection operators πR
S and the join product ⊙.

For convenience, let us restrict ourselves to the case where we consider the maxi-

mal system S to be S = A1A2 . . . AN and the lattice of subsystems all the different

compositions one can do with the elemental subsystems Aj . In this scenario, a
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subsystem A is given by the collection of elemental subsystems Aj . The comple-

ment of the subsystem A will be a disjoint subsystem Ā given by collecting all the

elemental systems that are part of S but not part of A.

Raymond-Robichaud constructs the local-realistic structures by defining an equiva-

lence relation ∼A on the group of transformations of the maximal system S. Two

transformations U, V ∈ TS are equivalent in a subsystem A, U ∼A V if and only if

exists a transformation WĀ local on the subsystem Ā, such that U = WĀV .

The equivalence classes [U ]A under this equivalence relation together with a refer-

ence phenomenal state ρ0, which specifies the orbit or sector to which the system’s

phenomenal state is associated, are the ontic states of the subsystem A. ρ0 is fixed

by convention for each orbit of the group action of TS on PS.

One of the postulates chosen in [4], Postulate 4.4, is the global transitivity of the

phenomenal state space. It posits that the phenomenal space has a single orbit

under the action of the group of transformations. However, we have found such

postulates to fail in some examples we present in the thesis (see Subsections 3.1.2

& 4.1.2). We present the reformulated RR construction relaxing this postulate.

The only effect it plays is that ρ0 has more physical content indicating among

which orbit the observable properties of the systems are and that it allows ρ0 not

to be a pure state in quantum theories. A convention can be chosen to state the

representative for each orbit, but it cannot be said, as in the original construction,

that ρ0 can be fixed by convention only. Nevertheless, ρ0 remains a fixed property

of the system’s ontic state and needs to be fixed by convention.

The elements ([U ]A, ρ0) form the ontic state space RA with all the desired proper-

ties. It is enough to specify the bipartite case, which generalises naturally.

The group action of TA on RA is given by VA ⋆ ([U ]A, ρ0) = ([V ext
A ◦ U ]A, ρ0) for

VA ∈ TA and ([U ]A, ρ0) ∈ RA.
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The ontic projections πR
A from RAB to RA are given by πR

A (([U ]AB, ρ0)) =

([U ]A, ρ0). Projections from RABC to RA can be seen as a composition of two

bipartite projections, for example, the first being from (AB)C to AB and the

second from AB to A.

Notice that the ontic state space of the maximal system RS is given by the elements

(U, ρ0). The epimorphism φ from RS to PS is given by φ ((U, ρ0)) = U · ρ0.

The subsequent epimorphisms φA for strict subsystems A between the local

ontic state spaces RA and the local phenomenal state spaces PA are given by

φA (([U ]A, ρ0)) = πP
A (U · ρ0). It is precisely the fact that the no-signalling princi-

ple is satisfied that ensures that the above definition is independent of the represen-

tative of the equivalence class.

The join product ⊙ is defined for compatible states only. That means we need

to have a global ontic state that we separate in two to join it. Consider a global

ontic state for a bipartite composite system, ([U ]AB, ρ0), the projections to the local

ontic states are ([U ]A, ρ0) and ([U ]B, ρ0). It is possible to define the join product

uniquely ([U ]A, ρ0)⊙ ([U ]B, ρ0) = ([U ]AB, ρ0) uniquely and independently of the

representative of the equivalence classes.

The independence of the representative of the equivalence classes follows from

the transitive property of the equivalence relation. The uniqueness condition is

guaranteed by seeing that if U ∼A V and U ∼B V , then U ∼AB V . One can prove

that is the case for no-signalling operational theories due to the condition that if

W ext
AC = T extBC in the system ABC, then W ext

AC = T extBC = SextC .

The local realistic theory given by the RR equivalence class construction for any

no-signalling operational theory satisfies the no action at a distance principle. For

a bipartite composite system AB, the ontic states are [U ]AB . Their local projection

onA is πR
A ([U ]AB) = [U ]A. Acting on the ontic state with a local unitary onB, VB ,
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and then projecting on A is given by πR
A (V ext

B ⋆ [U ]AB) = πR
A ([V ext

B ◦ U ]AB) =

[V ext
B ◦U ]A. By the definition of the equivalence relation on A, [V ext

B ◦U ]A = [U ]A.

Therefore, the no action at a distance principle is satisfied by any no-signalling

operational theory.

2.4 Descriptors

In this section, we explain the notion of descriptors present in the literature [3,

49–54], and we explain the connection with the equivalence class formalism for

ontic states that we have explained in Section 2.3. This section selects the relevant

notions from the literature that will be expanded on and used throughout the

following thesis chapters.

The notion of descriptors is built within the usual quantum formalism by exploring

the foundational consequences of the Heisenberg picture of quantum mechanics.

All the literature refers to distinguishable quantum mechanics, where the ten-

sor products give system composition. Descriptors are defined in [3] for finite-

dimensional qubit networks. In this section, we follow the review presented in [51]

that establishes the connection between the equivalence class formalism of ontic

states and descriptors for the qubit networks scenario.

2.4.1 Qubit networks as a no-signalling operational theory

Consider a qubit network system. In particular, an ordered lattice of N qubits.

We name the set of all lattice sites as N = {1, . . . , N}. The global observables

of the system O are Hermitian operators that act on the complex Hilbert space

H = H1 ⊗ . . . ,HN = C2⊗N .

The subsets of qubit lattice sites give the lattice of subsystems. The local observ-
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ables for a subset of lattice sites M = {m1, . . . ,mM} ⊆ M are given by Hermi-

tian operators that act on the Hilbert space HM = Hm1 ⊗ · · · ⊗HmM
= C2⊗M .

The embedding of the local observables ÂM ∈ OM to the global observables O is

the canonical extension, by setting ÂM ⊗ IN \M = ÂextM ∈ O.

This lattice of the local algebras of observables provides the required lattice of

subsystems we need in order to define a local realistic theory. We will see how

descriptors focus on the minimal elements to track the evolution of the local algebra

instead of focusing on the whole algebra.

The sets of local phenomenal states are given by PM = {ρ ∈ OM|Tr(ρ) = 1, ρ ≥

0̂}, where the trace is the usual one for operators acting on a Hilbert space. The

groups of local transformations are given by TM = {eiÂ|Â ∈ OM}/U(1). The

quotient on U(1) refers to the global phase redundancy of quantum mechanics. 2

Throughout the thesis, we use Û ∈ TM as a shortcut for saying that Û is one of the

representatives of its associated equivalence class in TM. We deal with the global

phase redundancy of the representatives a posteriori.

In general, in a quantum mechanical system, fixing the lattice of the algebras

of observables with their embedding is enough to provide the local phenomenal

state spaces and the local transformation groups. Notice that the local observables

embedding guarantees that the local groups of transformations are subgroups of

the global transformation group.

It is also necessary for a lattice of subsystems to have a projection operation πP
M.

In the case of a quantum mechanical system, such projection is given by the partial

tracing operation. Concretely, we see that projecting at the phenomenal level to a

subsystem given by the lattice sites M corresponds to partial tracing the modes

2We need to make such redundancy explicit here, so later we can apply the RR construction
and Postulate 4.3 of [4] is satisfied.
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in N \M. The operation of partial tracing is also inherited from the local net

of observables by requiring that the embedded local observables on the global

state and the local observables on the reduced state give the same observational

properties. In the case of quantum mechanics, this corresponds to having the same

expectation values, which are given by the total trace of the observables and the

state.

Tr
(
ÂextM ρ

)
= Tr

(
ÂMπP

M (ρ)
)

∀ÂM ∈ OM (2.9)

The partial trace is the unique linear operation that satisfies these equations. Asso-

ciating the partial trace to the algebra of observables is a common way to analyse

constrained quantum systems [55, 56].

2.4.2 Descriptors of a qubit network

The notion of descriptors arises from recognising the importance and the central

role that the local algebras of observables play in describing quantum mechanics. In

particular, we have already said that the observable content of quantum mechanical

systems is in the expectation values of the observables given by a state, provided

by the expression Tr
(
Ôρ
)

.

The usual picture of quantum mechanical systems in the context of quantum

foundations and information is the Schrödinger picture. That is, it is interpreted

that ρ corresponds to the system’s state, which provides the system’s configuration

in the current instant. However, it may change; it may evolve with time. An

evolution in time is described by a unitary Û ∈ T and the Schrödinger state has

evolved to Û · ρ · Û †. In the Schrödinger picture we take the observables Ô not to

evolve. They act like references that we use to calculate the updated expectation

values by the time evolution Tr
(
Ô · Û · ρ · Û †

)
.

However, we can use the Heisenberg picture. The state ρ remains invariant under
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the transformation Û and acts as a reference. The observables Ô evolve under the

transformation given by the unitary Û as Ô′ = Û † · Ô · Û . Since the observables of

the system have evolved and ρ has not, it is reasonable to assume that we could find

a framework where the observables are the ones that determine the configuration

of the system and not ρ.

In order to do so, it is helpful to find which observables we can track to determine

any Û † · Ô · Û . Remember that the product of Pauli observables σ̂µ1 ⊗ · · · ⊗ σ̂µN

is a basis of the global algebra of operators that act on the Hilbert space C2⊗N .

Since any global observable Ô is a global operator, it is possible to decompose any

observable in the Pauli basis:

Ô =
∑

k1,...,kN

αk1,...,kN σ̂k1 ⊗ · · · ⊗ σ̂kN (2.10)

where αk1,...,kN ∈ R. We use this decomposition to notice that since the action

of time evolution is linear on the observables, given the action of the unitary on

the product of Pauli observables, one can know the action of the unitary on any

observable. Thus, it is enough to track the products of Pauli observables to keep

track of the whole set of observables.

Û † · Ô · Û =
∑

k1,...,kN

αk1,...,kN Û
† · (σ̂k1 ⊗ · · · ⊗ σ̂kN ) · Û =

=
∑

k1,...,kN

αk1,...,kN

(
Û † · σ̂extk1

· Û
)
· · · · ·

(
Û † · σ̂extkN

· Û
)

(2.11)

On the second line, we have used the canonical extension of observables applied to

Pauli observables as σ̂extkj
=
⊗j−1

l=1 I⊗ σ̂kj
⊗N

r=j+1 I, and introduced identities of

the form I = Û Û † between each lattice site contribution. From the second line of

the equation, we can read that by using unitarity to know the unitary evolution of
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all the products of Pauli operators. Knowing the evolution of the extended Pauli

operators individually is enough to deduce the evolution of any global observable.

This point is exciting. The mathematical treatment is simple; it is used to prove that

qubit networks satisfy the notion of local tomography. There is enough information

on the evolution of the extension of the local Pauli operators to deduce the evolution

of any global observables. A different way to phrase it might be that we have

seen that specifying the evolution of all local observables of the lattice sites is

enough to specify the evolution of all global observables. We can interpret that

in the Heisenberg picture, the time evolution of observables gives the properties

of a quantum system. We have seen that specifying all the local properties of a

quantum mechanical system is enough to specify all the global properties exactly

what one would expect in a local-realistic theory.

The qubit network descriptors are usually given as the extended Pauli observables

on each lattice site. Notice that the first Pauli operator, the identity, remains

invariant under unitary evolution. Thus, it is not necessary to specify its evolution.

In most literature qubit descriptors are denoted by {
(
qxj , q

y
j , q

z
j

)
}Nj=1. Such notation

indicates that these operators satisfy the Pauli algebra but are global operators and

do not necessarily have a fixed matrix representation since these can evolve and

different basis may be chosen. We did the decomposition in the concrete Pauli

basis, but any set of local observables that satisfies the Pauli algebra could have

done the same trick. This representation would give us 3N descriptors for an N

qubit network.

Nevertheless, there is still some redundancy. Given that the individual qubit

descriptors are generators of the lie algebra su(2) and are given by the algebraic

relations

qrj · qsj = iϵrstq
s
j + δrsI (2.12)
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Given these algebraic relations, deducing one of the three lattice site descriptors is

always possible using the other two. Without loss of generality, we exemplify it by

considering the qyj descriptor. We can see that i qxj · qzj = qyj . Given the unitarity of

evolution, indeed Û † · qyj · Û = i
(
Û † · qxj · Û

)
·
(
Û † · qzj · Û

)
. So, we can say that

qyj is redundant in our description. This redundancy is disposed of in some parts of

the literature but not others. When disposed of, we require 2N descriptors for a

system of N qubits, two descriptors per each qubit.

2.4.3 One descriptor per qubit

This subsection contains the main original idea of this Section 2.4. We show that

we can reduce the number of descriptors even further.

We need to relax the requirement that descriptors are themselves observables. We

can have a single extended local operator to deduce each lattice site’s extended

local observables qxj , q
z
j . Mathematically, this local operator can be written as

q̂j =
1
2

(
qxj + iqyj

)
.

First, let us observe that we can deduce the evolution of q̂†j from the evolution

of q̂j by taking the Hermitian conjugation. Indeed, Û † · q̂†j · Û =
(
Û † · q̂j · Û

)†
.

Furthermore, we can deduce qxj and qzj from q̂j and q̂†j .

qxj = q̂j + q̂†j qzj = q̂j · q̂†j − q̂†j · q̂j (2.13)

Since these relations are polynomial on q̂j, q̂
†
j it is straightforward to observe

that the unitary evolution of q̂j specifies the unitary evolution of both qxj and qzj .

Therefore, the unitary evolutions of the N elements q̂j specify the unitary evolution

of any observable of the N -qubit network.

By knowing the initial state of the system ρ0 and knowing the expression of

34



University of Oxford Balliol College

(
Û † · q̂1 · Û , . . . , Û † · q̂N · Û

)
one can recover all the expectation values of any

observable in the current state of the system. In the Schrödinger picture, such

phenomenal state would be given by Ûρ0Û †. A few things to note are that each

Û † · q̂j · Û is a global N qubit operator so that it can have contributions in its

expression from other lattice sites j ̸= i. Nevertheless, the "updated" descriptors

satisfy the qubit algebra of observables. In the sense of Equation 2.12.

However, even though having a single descriptor per qubit site is mathematically

elegant, we may wonder if we are physically justified in using the operators q̂j

them not being physical observables of the qubit network.

We are for two main reasons. First, the goal of descriptors is to describe, minimally,

the evolution of the algebra of observables referring to the local properties of the

qubit network. Though they are not observables, each q̂j is an element of each

qubit’s local algebra of operators extended to the global algebra of operators. In

particular, when fixing the Pauli basis for qxj and qzj , the descriptors q̂j become

q̂j =

j−1⊗
k=1

I⊗

0 1

0 0

 N⊗
r=j+1

I (2.14)

2.4.4 Physicality of qubit descriptors

Using q̂j , we can describe the global system referring to local elements in a minimal

way, needing only one single algebraic element per qubit site. Physically, it is

very relevant that the local observables of site j can be deduced using only the

descriptors j as we have seen in Eq.2.13. It is straightforward to see that, in fact,

the local observables of any subset of sites M can be specified by the collection

{q̂j}j∈M. Another factor that may convince the reader that we should allow

operators that are not observables to be descriptors is the fact that such operators
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can be expressed as a complex linear combination of observables, as we have seen

in the definition of q̂j = 1
2

(
qxj + iqyj

)
.

In order to motivate more the physical relevance and nature of q̂j , we want to point

out to the reader that such operators are nothing else than the lowering ladder

operators for a qubit system. In other words, they correspond to the annihilation-

like operators for a qubit network of the mode associated with the lattice site j.

One can note this from the definition and Equation 2.14. Such operators are widely

used in qubit network systems. They allow us to interpret a qubit network system

from a perspective more in connection with condensed matter and systems of

indistinguishable particles. Therefore, such a view is precious for the interests and

goals of this thesis.

We want to note that the commutation relations of the qubit network annihilation

operators q̂j are exactly the same as an N mode strict hard-core boson lattice [57].

[q̂j, q̂k] = 0 [q̂†j , q̂k] = δjk

(
2q̂†j q̂j − I

)
(q̂j)

2 = 0 (2.15)

Such observation provides a stronger case for using the q̂j as descriptors as physi-

cally relevant. The point becomes that tracking the local annihilation operators for

sites j of the strict hard-core boson system is enough to specify all the properties

of the global system. This perspective lays the foundation for the whole thesis,

where we will find matching results for bosons, fermions and 2D anyons.

2.5 Descriptors as local elements of reality

The curious reader may wonder how descriptors relate to the notion of local

realism we have introduced in Section 2.3. The answer is inspired by the work of

Bédard [51]. We can apply the RR construction specified in Subsection 2.3.3 to
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the no-signalling operational theory framework for a qubit network described in

Subsection 2.4.1. Two conditions must be checked that the operational theory with

the subsystem lattice meets. The first is the no-signalling principle. It has been long

known [30, 58] that the no-signalling principle is satisfied for finite-dimensional

quantum mechanical systems bipartite by a tensor product. Such property is critical

in understanding the EPR paper [13, 28, 59, 60] and for any analysis of quantum

communications limitations [61].

The second is the well-posedness of the lattice of subsystems. The group of

transformations must satisfy that if Û ∈ ABC is local on the subsystem AC and

is local on BC, then it is necessarily local on C alone. Note that Û is an operator.

We can decompose Û in terms of the extended generators of the local algebras of

observables, the local descriptors q̂A, q̂B, q̂C and their Hermitian conjugates. We

note that Û being local on AC is equivalent to saying that there is a decomposition

where only q̂A, q̂C , q̂
†
A, q̂

†
C appear. Similarly, being local on BC is equivalent to

saying that there is a decomposition where only q̂B, q̂C , q̂
†
B, q̂

†
C appear. Thus, if

both claims are true, only the terms containing q̂C , q̂
†
C can have non-zero weights.

Therefore, it does imply that Û is local on C, as desired.

Having both conditions met, we can apply the construction of the local ontic states

or local elements of reality. Therefore doting qubit networks with a local-realistic

structure. The local ontic states on the qubit j are given by
(
[Û ]j, ρ0

)
. One

wonders, though, how does this structure relate to descriptors?

We claim that the set of evolved descriptors together with the initial Heisenberg

state
({

Û † · q̂j · Û
}
j∈M

, ρ0

)
is a compact way to represent the local ontic states.

Theorem 3 gives the crucial connection between qubit descriptors and their local

ontic states provided by the equivalence classes.

Theorem 3. The following equivalence holds for any subset of lattice sites M of
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an N qubit network.

Û ∼M V̂ ⇐⇒ Û † · q̂j · Û = V̂ † · q̂j · V̂ ∀j ∈ M (2.16)

Thus, [Û ]M =
{
V̂ ∈ T1,...,N

∣∣∣ Û † · q̂j · Û = V̂ † · q̂j · V̂ ∀j ∈ M
}

.

Proof. The last statement follows directly from the definition of an equivalence

class, so the equation that needs to be proven is Equation 2.16:

"⇒": Remember N = {1, . . . , N}. Û ∼M V̂ implies Û = ŴN \M · V̂ for

some ŴN \M being a unitary, local on the set of lattice sites that excludes all the

sites j ∈ M. Thus, since ŴM\M is an operator that does not contain any terms

involving q̂j, q̂
†
j for j ∈ M, is straightforward to check that [ŴN \M, q̂j] = 0 for all

j ∈ M. Therefore: Û † · q̂j · Û = V̂ † · Ŵ †
N \M · q̂j · ŴN \M · V̂ = V̂ † · q̂j · Ŵ †

N \M ·

ŴN \M · V̂ = V̂ † · q̂j · V̂ .

"⇐": We have that Û † · q̂j · Û = V̂ † · q̂j · V̂ for all j ∈ M. To see that Û ∼M V̂

we need to see that Û = ŴN \M · V̂ . Equivalently, since we have a group structure

where transformations are unitaries, proving that Û · V̂ † = ŴN \M is enough to

prove that Û ∼M V̂ .

From Û † · q̂j · Û = V̂ † · q̂j · V̂ for all j ∈ M is straightforward to deduce that then

q̂j · (Û · V̂ †) = (Û · V̂ †) · q̂j for all j ∈ M. Naming Û · V̂ † = Ŵ , noticing Ŵ

is a unitary and taking the dagger of the previous equation, we have that the two

following equalities hold:

Ŵ · q̂j = q̂j · Ŵ Ŵ · q̂†j = q̂†j · Ŵ ∀j ∈ M (2.17)

Moreover, now since Ŵ is a priori a general unitary, it is not difficult to see that

we can decompose it as Ŵ = Ô0 + q̂j1Ô1 + q̂†j1Ô2 + q̂j1 q̂
†
j1
Ô3 for j1 ∈ M. Where
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Ô0, Ô3, Ô1, Ô2 are local operators on the set of lattice sites N \{j1}. Using this

decomposition of Ŵ in the first condition of Equation 2.17 and commuting the

q̂j1 , q̂
†
j1

terms with the Ôk operators we obtain that:

q̂j1(Ô0 + Ô3)− q̂j1 q̂
†
j1
Ô2 + Ô2 = q̂j1Ô0 + q̂j1 q̂

†
j1
Ô2

Implying that Ô2 = 0̂ and Ô3 = 0̂. Then, using that Ŵ = Ô0+ f̂j1Ô1 and replacing

in the second condition of Equation 2.17 we obtain:

q̂†j1Ô0 + q̂j1 q̂
†
j1
Ô1 = q̂†j1Ô0 + Ô1 − q̂j1 q̂

†
j1
Ô1

Therefore, Ô1 = 0̂. Thus, we have seen that the conditions imply that Ŵ = Ô0,

thus being a local unitary on the set of modes N \{j1}. Because each of the

conditions of Equation 2.17 for each j ∈ M is independent, the same reasoning

can be followed exactly with the other lattice sites in M that are not j1. Therefore

the conditions imply that none of the sites in M appears in the decomposition of

Ŵ in terms of qubit creation and annihilation operators. Therefore Ŵ = ŴN \M

is a local operator in the lattice sites N \M, and therefore we have proven that

Û ∼M V̂ .

With Theorem 3, we have obtained a direct connection between the qubit de-

scriptors and the equivalence classes of the local ontic states. We can define the

equivalence classes that are the local elements of reality in terms of properties

satisfied by the descriptors. Moreover, we can determine the equivalence class that

gives the local ontic state in a subsystem in terms of the descriptors associated with

that subsystem and the Heisenberg state, which plays the same reference role as

the one in the local ontic states.
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2.5.1 Ontic operations for descriptors

We want to identify the qubit descriptors with the Heisenberg state as an equivalent

representation of the local ontic states. Such a presentation may be more convenient

since it uses the evolution of the qubit annihilation operators as part of the local

ontic states instead of abstract equivalence classes. This gives the local-realistic

structure a more manageable and natural way to interpret local ontic states. Using

descriptors, one can draw connections to quantum field theory, as we do in Chapter

3, and interpret the local ontic states as positing the realism of the creation operators

of a quantum field.

To fully see how qubit descriptors and the Heisenberg state can represent local

ontic states, we need to specify how the several operations at the ontic state space

level operate on them.

2.5.1.1 Ontic group action ⋆

The action ⋆ of the groups of transformations TM on the ontic state spaces RM,

ŴM ⋆ ([U ]M, ρ0) from 2.3 in the descriptor representation is given by

ŴM ⋆

({
Û † · q̂j · Û

}
j∈M

, ρ0

)
=

=

({(
IN \M ⊗ Ŵ †

M

)
· Û † · q̂j · Û ·

(
IN \M ⊗ ŴM

)}
j∈M

, ρ0

)
(2.18)

2.5.1.2 Ontic-phenomenal epimorphisms φM

In order to analyse how the epimorphisms φM act on descriptors, it is instructive

to see what are the orbits of the group action of TN on PN . Since any unitary

acting on the qubit network is a possible transformation of the system, given any

phenomenal state ρ can be transformed to its diagonal form σρ = B̂ρ · ρ · B̂†
ρ by
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using physical transformations B̂ρ ∈ TN .

Thus, we can fix the convention for the representatives of the orbits. Given

the canonical computational basis {|0 · · · 00⟩ , |0 · · · 01⟩ , |0 · · · 10⟩ , . . . } of a qubit

network, the representatives of the orbits are diagonal mixtures in the computational

basis with non-increasing eigenvalues. They are given by the following matrices,

which are associated with the computational basis:

ρ0 =


λ1

. . .

λ2N

 λj−1 ≥ λj ∀j ∈ {2, . . . , 2N} (2.19)

Consider the critical case where the global state of the system is pure. Then, the

pure states have a single orbit, and the representative is the first element of the

computational basis, the phenomenal state ρ0 = |0 · · · 0⟩⟨0 · · · 0|. We see that

for qubits, considering the global state of the network being pure allows us to

completely fix by convention the reference state ρ0 in the ontic states. The exact

same reasoning is applied when using the regular Heisenberg picture in qubit

networks [3, 51, 53, 62].

Being aware of the orbit structure of the phenomenal state space allows us to

present Theorem 4, which is vital to understand the completeness of the descriptor

picture and its relationship with Theorem 3, the group of transformations TN and

its equivalence classes. Theorem 4 also helps to understand the definition of the

epimorphism φN for a complete set of descriptors.

Theorem 4. Using the complete set of descriptors
(
Û † · q̂1 · Û , . . . , Û † · q̂N · Û

)
it

is possible to uniquely find the Û ∈ TN that has evolved them from their canonical

form (q̂1, . . . , q̂N).

Notice that the result is consistent with Theorem 3, considering that the equivalence
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class [Û ]N consists of the single transformation group element with representative

Û . The proof of this result is entirely algebraic. The idea is to decompose the

unitary on an operator basis and see each basis element as a polynomial of the

qubit descriptors and their adjoints. The complete proof is in Appendix A.

The construction of the global epimorphism φN is straightforward from this theo-

rem.

φN

((
Û † · q̂1 · Û , . . . , Û † · q̂N · Û

)
, ρ0

)
= Û · ρ0 · Û † (2.20)

Consider a strict subsystem of the N qubit network, given by a subset of lat-

tice sites M = {j1, . . . , jM}. We now present how from the ontic local state((
Û †q̂j1Û . . . , Û

†q̂jM Û
)
, ρ0

)
we associate the phenomenal state ρM, which is

local density operator on M. The idea is the same as for the proof of Theorem 4,

which uses the local map between the Heisenberg and Schrödinger pictures. We

can see that the local state ρM can be written as:

ρM =
∑
k

Tr
(
Ô

(k)
M · ρM

)
Ô

(k)
M =

=
∑
k

Tr
(
Û † · Ô(k)

M ⊗ IN \M · Û · ρ0
)
Ô

(k)
M (2.21)

Since, Û † · Ô(k)
M ⊗ IN \M · Û can be calculated from the set of local descriptors((

Û † · q̂j1 · Û , . . . , Û † · q̂jM · Û
)
, ρ0

)
, we can assign from our ontic local states

the phenomenal local states through the epimorphism φM given by:

φM

((
Û † · q̂j1 · Û , . . . , Û † · q̂jM · Û

)
, ρ0

)
=

=
∑
k

Tr
(
Û † · Ô(k)

M ⊗ IN \M · Ûρ0
)
Ô

(k)
M (2.22)

The complete details of the decomposition we use are in the proof of Theorem 4 in

Appendix A.
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2.5.1.3 Ontic projections πR
M

At the ontic state space in the RR formalism to define the ontic projection mappings

of the equivalence classes, the ontic projections are given by πR
A ([U ]AB) = [U ]A.

It is straightforward to see that it follows from theorem 3 that the ontic projections

on a subsystem given by M = {j1, . . . , jM} for qubit descriptors are:

πR
M

((
Û † · q̂1 · Û , . . . , Û † · q̂N · Û

)
, ρ0

)
=

=
((
Û † · q̂j1 · Û , . . . , Û † · q̂jM · Û

)
, ρ0

)
(2.23)

2.5.1.4 Ontic join product ⊙

Consider A ⊂ M and the associated bipartition A|B, with B = M\A, of the

qubit network subsystem. Consider an ontic state of subsystem A represented with

qubit descriptors,
((
Û † · q̂a1 · Û , . . . , Û † · q̂aS · Û

)
, ρ0

)
and an ontic state of the

disjoint subsystem B
((
V̂ † · q̂b1 · V̂ , . . . , V̂ † · q̂bM−S

· V̂
)
, σ0

)
Then, we say that such a pair of local states are compatible if a global state((
Ŵ † · q̂j1 · Ŵ , . . . , Ŵ † · q̂jM · Ŵ

)
, τ0

)
of the system M = AB exists, such

that, when projected to subsystems A and B, it equals the states mentioned above.

Note that this means that for two states to be compatible, they have to have the

same Heisenberg state and that there must exist a unitary transformation Ŵ such

that [Ŵ ]A = [Û ]A and [Ŵ ]B = [V̂ ]B. The ontic join product ⊙ is defined for

compatible local ontic states. For the descriptor form, the ontic join product looks

like this:

(
Û † · (q̂a1 , . . . , q̂aS ) · Û , ρ0

)
⊙
(
V̂ † · (q̂b1 , . . . , q̂bM9S ) · V̂ , ρ0

)
=

=
((

Ŵ †q̂a1Ŵ , . . . , Ŵ †q̂aSŴ , Ŵ †q̂b1Ŵ , . . . , Ŵ †q̂bM9SŴ
)
, ρ0

)
(2.24)
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Of course, we can repeat the bipartition process until we reach the point of indi-

vidual lattice sites forming subsystems. This ontic join product can be defined

properly due to the demanded Separation property of the group of transformations

(see Subsection 2.3.3 for more details).

Subsystem projections and the ontic-phenomenal epimorphism commute, see

Figure 2.1. This is a particularly interesting result obtained from the representation

of ontic states of a qubit network with descriptors.

Theorem 5. The diagram of Figure 2.1 commutes. In other words:

πP
A

(
φM

(((
Û † · q̂j1 · Û , . . . , Û † · q̂jM · Û

)
, ρ0

)))
=

= φA

(
πR
A

(((
Û † · q̂j1 · Û , . . . , Û † · q̂jM · Û

)
, ρ0

)))
(2.25)

The proof of the theorem is algebraic. We apply the form of the epimorphism φM

for descriptors that we have on Equation 2.22. We also use the definition of ontic

projection πR
M that consists in forgetting the descriptors for the lattice sites that

are not in M. Furthermore, finally, we use the properties of πP
M being the usual

partial trace for tensor product systems. The complete proof is in Appendix A.

2.5.2 Example

We consider the following circuits to exemplify the use of qubit descriptors and their

interpretation. We have a 3-qubit network initialised at the reference phenomenal

state |000⟩⟨000|. Such a state is unitarily evolved in two different ways that yield

the same phenomenal output 1√
2
(|00⟩ |ϕ⟩+ |10⟩ |−ϕ⟩), see Figure 2.2. The single

qubit pure states |ϕ⟩ , |−ϕ⟩ stand for 1√
2

(
|0⟩ ± eiϕ |1⟩

)
respectively. The phase ϕ

is arbitrary, and we use it to track how the information of which phase has been

applied flows and spreads throughout the network.
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Figure 2.1: Commuting diagram that represents taking the projection into subsys-
tems and the ontic-phenomenal epimorphism. Diagram a) represents the spaces,
and diagram b) represents the action of the mappings in the descriptor picture.

Since the phenomenal state is the same at the end, all measurable physical system

properties are identical for both situations. Nevertheless, we show how these

correspond to two different ontic states. The fact that the phase gate RZ(ϕ) =(
1 0
0 eiϕ

)
has been applied to two different qubits ensures that the constitutional

properties of these two setups might differ.

We can give a local-realistic account of the physical behaviour encoded in these

two circuits. We use the Heisenberg picture and interpret the descriptors as local

ontic states.

We first need to fix a system of references [63]. First, we need to fix a point in

the phenomenal state space. For us, this is the state |000⟩⟨000|, which is the initial

phenomenal state of the circuit. For pure states, it can be chosen by convention

to be always |000⟩⟨000|. However, if we have a circuit initialised differently, we

need to make an arbitrary choice of how |000⟩⟨000| is unitarily evolved into such

phenomenal state.

This choice would then be reflected in the second element of our system of ref-
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Figure 2.2: Circuit diagrams that yield the same pure entangled state in a 3-qubit
network. The phase gate is applied in diagram a) to the second qubit and in diagram
b) to the first.

erences, the representation of our initial descriptors. For convenience, we fix the

initial representation of the three qubit descriptors to be the operators q̂1, q̂2, q̂3

in the computational basis. However, any three operators that satisfy the same

algebraic relations of generating the local and global qubit algebra can be chosen

as initial representations.

For the situations described in Figure 2.2, our systems of reference are the specifica-

tion of the origin point |000⟩⟨000| and the initial values of the descriptors q̂1, q̂2, q̂3.

Their matrix representation in the computational basis is:

R|C = {q̂1, q̂2, q̂3, |000⟩⟨000|} =


0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,


0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,


0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

 ,


1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




(2.26)

These can be loosely imagined as fixing an origin and the three axes of rotation

for three-dimensional space. However, we also choose the computational basis to
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represent them in matrix form.

Once we have set up the reference system, we can see how the initial descriptors

evolve and compare them to their original form. We remind the reader that the ori-

gin phenomenal state reference |000⟩⟨000| remains invariant under time evolution.

The chosen reference descriptors evolve as
(
Û †q̂1Û , Û

†q̂2Û , Û
†q̂3Û

)
.

By construction, we see that local unitaries only affect the form of the local

descriptors. One might be worried by the order of application of the unitaries.

Nevertheless, the issue is resolved when writing the unitaries as functions of the

descriptors. See [51] for the detailed practicalities of using descriptors.

Considering that the unitaries evolve the descriptors locally, we now restrict our

attention to the final form of the evolved qubit descriptors. We are interested

in seeing if the form of the descriptors is meaningfully different and how the

parameter ϕ has spread over the system.

For circuits a) and b) from Figure 2.2, the ontic state of the systems with the

descriptor formalism using the initial reference system is given by the following

expressions, respectively. For diagram a):


1

2



0 −i sin(ϕ) 0 0 1 cos(ϕ) 0 0
−i sin(ϕ) 0 0 0 cos(ϕ) 1 0 0

0 0 0 i sin(ϕ) 0 0 1 cos(ϕ)
0 0 i sin(ϕ) 0 0 0 cos(ϕ) 1
1 − cos(ϕ) 0 0 0 i sin(ϕ) 0 0

− cos(ϕ) 1 0 0 i sin(ϕ) 0 0 0
0 0 1 − cos(ϕ) 0 0 0 −i sin(ϕ)
0 0 − cos(ϕ) 1 0 0 −i sin(ϕ) 0


,



0 0 0 cos(ϕ) 0 0 0 i sin(ϕ)
0 0 cos(ϕ) 0 0 0 i sin(ϕ) 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 i sin(ϕ) 0 0 0 cos(ϕ)
0 0 i sin(ϕ) 0 0 0 cos(ϕ) 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,
1

2


0 1 0 0 0 1 0 0
1 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 −1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
−1 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 1
0 0 1 0 0 0 1 0

 ,


1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




(2.27)
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For diagram b):


1
2



0 −i sin(ϕ) 0 0 1 cos(ϕ) 0 0
−i sin(ϕ) 0 0 0 cos(ϕ) 1 0 0

0 0 0 −i sin(ϕ) 0 0 1 cos(ϕ)
0 0 −i sin(ϕ) 0 0 0 cos(ϕ) 1
1 − cos(ϕ) 0 0 0 i sin(ϕ) 0 0

− cos(ϕ) 1 0 0 i sin(ϕ) 0 0 0
0 0 1 − cos(ϕ) 0 0 0 i sin(ϕ)
0 0 − cos(ϕ) 1 0 0 i sin(ϕ) 0


,


0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,

1

2


0 1 0 0 0 1 0 0
1 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 −1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
−1 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 1
0 0 1 0 0 0 1 0

 ,


1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


 (2.28)

We can observe how the descriptors of the third qubit have evolved in the same

way for the two situations. We also observe that such evolution is not trivial since

it involves factors present in the sector of qubits 1 and 2. By commuting the phase

gate RZ(ϕ) in a) with the CNOT between qubits 2 and 3, we can see that up to the

CNOT that interacts with the third qubit, both circuits are the same. All posterior

evolution from that point on is local on qubits 1 and 2. Thus, the elements of reality

of qubit 3 are left invariant.

This picture allows us to understand the flow of interactions within the circuits.

Both qubits 1 and 2 influence qubit 3. The descriptors of qubit 3 are the same for

both circuits. It is not the case for the descriptors of qubits 1 and 2. Qualitatively,

the two circuits are meaningfully different at the ontic level. We see how the phase

gate parameter ϕ does not influence the elements of reality of qubit 2 in diagram

b). However, it does so in diagram a).

Such considerations and analyses are impossible if we stay at the phenomenal level,

where both final states are identical. Moreover, we see that the representation of

the final Schrödinger state could suggest that the phase information encoded in ϕ

has been transferred to the third qubit, from which it can be retrieved. Nevertheless,

using the descriptor representation of the local-realistic structure, we have seen
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that the phase information in both diagrams has not flown towards qubit 3. Instead,

it has remained within qubits one and two, localised in qubit 1 for circuit b).

This example showcases the use of descriptors as ontic states, providing key

insights and further understanding of the physical reality of quantum theory.
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3 | Fermions and bosons

The contents of this Chapter 3 are an explanation of the publications [64, 65] done

in collaboration with Chiara Marletto and Vlatko Vedral.

The standard model of particle physics consists of two main particle types, bosons

and fermions. Fermions constitute matter, and bosons are force carriers. Notorious

fermions include electrons and quarks, the matter constituents of atoms. Notorious

bosons include the photon or the Higgs boson. In three spatial dimensions, boson

and fermion statistics are the only particle statistics possible [66].

Quantum field theory formalises the notion of fermion and boson as a type of

quantum field [67]. The quantum field is decomposed in creation and annihilation

operators that satisfy either completely anticommuting or completely commuting

commutation relations, thus discerning between fermions and bosons.

Fermions and bosons are also characterised as fundamental indistinguishable

particles that have strict semi-integer and integer spin, respectively. The notorious

spin-statistics theorem [68] gives the connection between the two notions. However,

the characterisation of the commutation properties is better for our interests.

In this thesis, we analyse what representation the local elements of reality can

have for indistinguishable particle systems and how to interpret and manipulate

them. We see in Chapter 2 how these local elements can be represented by the

qubit annihilation operators for qubit networks. Qubit networks are systems with

very nice algebraic properties: finite-dimensional spaces, tensor products for

composition and commutativity between lattice sites. We wonder if the excellent

result is a consequence of these nice algebraic properties or has a deeper cause

present in more exotic systems of indistinguishable particles.
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In this chapter, we show how fermion and boson annihilation operators represent

their respective local elements of reality. We do so by showing that fermionic

and bosonic annihilation operators can be considered the fermionic and bosonic

descriptors, respectively. Then we link the descriptors with the local ontic states of

the RR formalism.

We find it crucial to study the local realism within these systems since fermionic

and bosonic theories are the fundamental theories that explain phenomena in the

laboratory. Concretely they are widely used in quantum optics to describe photons

and in quantum chemistry and atomic physics to explain the electronic levels and

interactions. These models deserve to showcase their local-realistic structure.

Furthermore, many results where Bell non-locality is shown [10, 16–19] are per-

formed with single photons, whose description is given by the bosonic formalism

we will treat. Thus, if we provide an Einstein local account of fermions and bosons,

we will provide an Einstein local account of the Bell non-locality experiments.

Even though the conclusion is essentially the same for fermions and bosons, the

path to reaching this significant result is quite different. Because fermions are more

nuanced algebraically than bosons, we must tread carefully through the arguments,

and we focus more on them throughout the chapter.

We study fermions and bosons in the context of quantum field theory in a discrete fi-

nite lattice. For fermions, their anticommutation relations have significant physical

consequences. The most basic is that when two fermions are exchanged, a phase π

is gathered, resulting in a eiπ = −1 factor. This has important repercussions for

locality.

In particular, a paradox appears: when applying a local transformation in A,

UA = f̂A + f̂ †
A, to a local annihilation operator in B, it does not leave it invariant,

U †
Af̂BUA = −f̂B ̸= f̂B. Therefore, in fermions, a change would happen in Bob’s
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local operators by Alice applying a local transformation. We would have action at

a distance.

To resolve this paradox, we explain that to satisfy the no-signalling principle, it is

necessary to impose the fermionic parity superselection rule (SSR) [69]. In Section

3.1, we showcase the fermionic formalism as an operational no-signalling theory

from Subsection 2.3.1. We show how the parity SSR restricts the fermionic algebra

of observables, the group of physical unitaries and the set of physical states of all

fermionic systems.

These restrictions force us to delve deeper into the concepts of kinematical and

physical spaces. In Section 3.2, we resolve the paradox and prove that fermionic

annihilation operators represent the local elements of reality of fermionic systems.

Interestingly, we conclude that the descriptors cannot be obtained through fermionic

observables, which sparks a debate.

In Section 3.3, we briefly present the boson formalism. Without entering the

mathematical details due to pedagogical reasons, we provide the rationale for why

their annihilation operators represent their local elements of reality.

In Section 3.4, we use fermionic descriptors to explain interferometry through a

fully local mechanism. We explain how phase acquisition can be fully tracked and

described locally. We also show how, in the fermionic case, the full Dirac field

observables can be used in an interferometer to represent the local features of phase

acquisition.

3.1 Fermions as an operational theory

There are several formalisms for fermionic systems, which depend on one’s area

of work within theoretical physics. There is the Grassman variable approach [70]
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for quantum field theory methods that use a path-integral approach. The canonical

quantum field theoretic approach imposes conditions on quantum fields that solve

the Dirac equation. Anticommutation relations are imposed on the Dirac field,

and spinors are introduced and discussed together with the γµ matrices to obtain a

relativistic fermionic field [71, 72].

In this work, we adopt the general information-theoretic formalism for fermions.

This formalism is a simplified version of the canonical quantum field theoretic

formalism but without considering the spinor component, the continuous space

and the relativistic nature of fermions. This formalism captures all the relevant

structural aspects of fermionic systems. Thus, it is ideal to discuss the information-

theoretic and structural properties of the system. The formalism is used when

discussing fermions in the fields of atomic physics, quantum many-body physics,

quantum information and quantum foundations [56, 64, 73–96]

3.1.1 Kinematical space

In this thesis, we use the general information-theoretic formalism for fermions. We

adhere to the position of studying locality in fermionic systems in terms of modes

[56, 73–83], not particles [89–96]. We choose the mode perspective because it

generalises the particle picture. It is based on the second quantisation and quantum

field theory, generalising the first quantisation approach.

Within this approach, a fermionic system consists of a set of modes I . For sim-

plicity, we take I = {1, . . . , N}. Each mode i ∈ I has fermionic creation and

annihilation operators f̂ †
i , f̂i. The vacuum state |Ω⟩ is defined by the requirement

that f̂i |Ω⟩ = 0. The fermionic operator algebra is given by the creation and an-

nihilation operators of all modes i ∈ I obeying the following anticommutation
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relations:

{f̂i, f̂j} = 0̂ {f̂i, f̂ †
j } = δij Î where {Â, B̂} := Â · B̂ + B̂ · Â (3.1)

To define a quantum system as a no-signalling operational theory, as in Subsection

2.4.1, we first need to identify the set of allowed physical observables O. The set of

allowed reversible physical transformations (unitaries) and the set of phenomenal

states can be generated from O. The form they take is T = {eiÂ|Â ∈ O}/U(1)

and P = {ρ ∈ O|Tr(ρ) = 1, ρ ≥ 0̂}. The quotient of U(1) is a consequence

of the global phase redundancy of quantum mechanics. This will be disregarded

throughout the thesis because, for all practical purposes, we can work as if we have

fixed a representative of the equivalence classes.

The usual presentation of fermionic systems relies on using the Fock space [75, 97].

The fermionic Fock space is generated by acting with all the possible combinations

of creation operators on the vacuum state |Ω⟩. Given that the anticommutation

relations for fermionic modes imply (f̂ †
i )

2 = 0 and f̂ †
i f̂

†
j = −f̂ †

j f̂
†
i , for a system of

N fermionic modes, we can find a fermionic Fock space spanned by 2N number

states:

FI =
〈
f̂ †
i1
. . . f̂ †

in
|Ω⟩
〉N
n=0,ik∈I

such that i1 < · · · < in, (3.2)

Such Fock space is constructed as the direct sum of the fixed number subspaces,

FI =
⊕N

n=0 F
(n)
I . The spaces F (n)

I =
〈
f̂ †
i1
. . . f̂ †

in
|Ω⟩
〉
ik∈I

are of dimension
(
n
N

)
and correspond to the spaces spanned by the states that contain n fermions. It is

straightforward to check that all the fermionic Fock states are normalised using

the anticommutation relations. We can easily see that if we construct the number

operator N̂ =
∑

i∈I f̂
†
i f̂i, we obtain that N̂ |ψn⟩ = n |ψn⟩ for all |ψn⟩ ∈ F (n)

I .

We want the reader to notice that the Fock space is a Hilbert space, where the

field over which it is a vector space is the complex numbers; thus, it contains any
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superposition of the 2N number states, which form an orthonormal basis of the

Hilbert space.

We can identify the set of all linear operators that are endomorphisms of FI as the

set of linear operators that are sums and products of the creation and annihilation

operators f̂ †
i , f̂i. This claim becomes straightforward once one notices that the

linear map on FI , |Ω⟩⟨Ω|, can be expressed as |Ω⟩⟨Ω| = f̂N . . . f̂1f̂
†
1 . . . f̂

†
N .

Let us name the algebra of linear operators spanned by the creation and annihilation

operators as AI . We know AI is the set of linear endomorphisms in our Hilbert

space. The algebra of operators AI is in itself a Hilbert space, with the scalar

product ⟨Â, B̂⟩ = Tr
(
Â† · B̂

)
. The trace is derived from the scalar product of the

original Hilbert space by Tr (|a⟩⟨b| · |c⟩⟨d|) = ⟨b|c⟩ ⟨d|a⟩.

As we explain in Chapter 2, RR considers a lattice of subsystems as part of a

no-signalling operational theory. A subsystem in our N mode fermionic lattice

corresponds to choosing a subset M of M out of the N modes. A fermionic

system is considered over the modes M. Therefore, we construct the local algebra

of operators AM for the set of modes M as the algebra over C spanned from

polynomials of the creation and annihilation operators {f̂i, f̂ †
i }i∈M.

From the definition of AM, we can choose the lattice of local algebras of observ-

ables OM in M, being a local observable a local operator ÔM ∈ AM such that

ÔM = Ô†
M. We identify this trivial choice as the notion of the kinematical space

of observables, where every Hermitian local operator is considered a physical

observable.

Under this choice, the set TM of local transformations in M is given by the local

operators ÛM ∈ AM such that ÛM · Û †
M = IM up to a global complex phase eiϕ,

where IM is the product identity of the local algebra of operators AM.
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The set PM of local states in M is given by the local kinematical observables

ρ̂M ∈ OM such that ρ̂M ≥ 0 and Tr(ρ̂M) = 1. Thus, every unitary transformation

is a valid physical transformation. Every density operator is an allowed physical

phenomenal state.

These sets PM, TM, the associated usual group action of the unitaries on density

operators Û · ρ · Û †, the fermionic partial trace (explained in Subsection 3.1.4)

and the embedding of local observables (see Subsection 3.1.3) constitute the

kinematical operational theory with a subsystem lattice for fermions.

3.1.2 Parity SSR

The kinematical operational theory would be a sensible choice for a no-signalling

operational theory of fermions. Unfortunately, such a theory violates the no-

signalling principle. The fermionic violation of the no-signalling principle was first

pointed out by Wick and Wigner [69] and subsequently studied in the literature

[56, 75, 76, 89]. See Subsection 3.1.5 for an explanation of why the kinematical

observables may be used to violate no-signalling.

A minimal constraint is imposed on the fermionic observables to have a no-

signalling operational theory of fermions. The restriction of observables then

affects the physically allowed states and transformations. Such constraint is the

parity superselection rule (SSR).

There are several superselection rules applied to different areas of physics. The

name derives from the concept of selection rules that forbid transitions between

energy levels in atomic theory [98]. The term "super" is added to emphasise

that the constraint imposed is not due to the specific dynamics of the model

under consideration (e.g. the system having a specific Hamiltonian that forbids

states). It is a structural a priori constraint independent of specific dynamics. It is

56



University of Oxford Balliol College

necessary to define the structural features of the system being studied. In this case,

the superselection rule is introduced to have fermions satisfy the no-signalling

principle.

First introduced by Wick and Wigner [69], we apply the fermionic parity superse-

lection rule. Parity does not refer to the parity symmetry (P symmetry) involving

left and right-handedness that is usually discussed in quantum field theory. Rather,

it refers to the parity of the number of fermions in a phenomenal state (if the

number of fermions is even or odd). As an example, the vacuum state |Ω⟩ has the

same parity as any 2k particle states such as f̂ †
1 f̂

†
2 |Ω⟩ or f̂ †

1 f̂
†
3 f̂

†
4 f̂

†
5 |Ω⟩. However, a

different parity than any 2k+1 particle state such as 1√
2
(f̂ †

1+ f̂
†
3) |Ω⟩ or f̂ †

1 f̂
†
2 f̂

†
3 |Ω⟩.

We introduce the parity observable P̂ = eiπN̂ and unitary. P̂ is a Hermitian operator

that can be diagonalised by the number states basis, with eigenvalue +1 for number

states with an even number of particles and −1 for number states with an odd

number of particles.

The parity SSR is implemented by restricting the set of states, observables and

unitaries to produce the corresponding set of physically allowed states, observables

and unitaries for a given subsystem:

Ophys
M =

{
Ô
∣∣∣ Ô ∈ AM, Ô = Ô†,

[
P̂, Ô

]
= 0

}
⊂ OM (3.3)

T phys
M =

{
Û
∣∣∣ Û ∈ AM, Û · Û † = I,

[
P̂, Û

]
= 0

}
/U(1) =

=
{
eiÔ
∣∣∣ Ô ∈ Ophys

M

}
/U(1) ⊂ TM (3.4)

Pphys
M =

{
ρ
∣∣∣ ρ ∈ Ophys

M , Tr(ρ) = 1, ρ ≥ 0
}
⊂ PM (3.5)

Using the physical observables to generate the set of local transformations and

phenomenal states yields the expressions above. Notice that the resulting sets of

states, observables and transformations are strict subsets of the kinematical sets
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we previously defined with the usual definitions in standard quantum mechanics.

One could check that T phys
M is a subgroup of TM and Ophys

M is a subalgebra of OM.

Nevertheless, Pphys
M is just a subset of its kinematical counterpart. The boundary

of the convex sets Pphys
M are pure states that are rays of the Hilbert space FM.

However, it is worth noting that the physically allowed pure states that are the

boundary of Pphys
M are not the rays of a subvector space of the kinematical Hilbert

space. Throughout the chapter, we use Û ∈ T phys
M as a shortcut for saying that Û

is one of the representatives of its associated equivalence class in T phys
M . We deal

with the global phase redundancy of the representatives a posteriori.

A physically allowed pure state |ψ⟩ under the parity SSR takes the form of either

being a normalised linear combination of even number states
{
f̂ †
k1
. . . f̂ †

k2r
|Ω⟩
}

or odd number states
{
f̂ †
k1
. . . f̂ †

k2t+1
|Ω⟩
}

(where kl ∈ M, 0 ≤ 2r ≤ M , 1 ≤

2t + 1 ≤ M with r, t ∈ N). The pure physical states are either even states or

odd states. The physical transformations T phys
M cannot change such property. An

even state remains even, and an odd state remains odd. The conservation of parity

has the effect that the pure states in a fermionic physical theory have two orbits.

This is a significant difference from the qubit case in Section 2.4. Because of this

fermionic property, we dropped the RR postulate of global phenomenal transitivity

in Subsection 2.3.3.

The physical observables, transformations and phenomenal states are local al-

gebraic operators. They can be expressed as a polynomial of the creation and

annihilation operators. The effect of the parity SSR is to label as non-physical the

polynomial expressions with any monomial with an odd degree. As a result, all

physical operators are polynomials with all monomials of an even degree.

We define the reordered number state basis as the number state basis with the even

states shifted. The first 2N−1 elements are even states, and the last 2N−1 are odd.
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For a single mode i, in the reordered number state basis {|Ω⟩ , f̂ †
i |Ω⟩} the local

matrix representations1 of the parity and even operators is

P̂ =

1

−1

 Â =

a
b

 where a, b ∈ C (3.6)

For two modes, i, j, in the reordered number state basis {|Ω⟩ , f̂ †
i f̂

†
j |Ω⟩ , f̂

†
i |Ω⟩ ,

f̂ †
j |Ω⟩} the local matrix representations of the parity and even operators is

P̂ =

(
1 0
0 1

−1 0
0 −1

)
Â =

( a1 a2
a3 a4

b1 b2
b3 b4

)
where al, bt ∈ C (3.7)

This block-diagonal structure appears for any mode number. Although the kine-

matical Hilbert space of an N mode fermionic system is isomorphic to the Hilbert

space of an N qubit network, the spaces of physical operators differ significantly,

with the block diagonal structure appearing. Imposing the parity SSR so that

fermions satisfy the no-signalling principle has profound structural consequences.

Physically, the meaning of the parity SSR is that it only allows superpositions of

states with the same number parity. Let us provide more intuition for the parity

SSR. Recall that fermions are systems of particles of semi-integer spin; in other

words, the spin of a fermion is 2m−1
2

. Consider a number of states of n fermions.

We can now wonder what type of effective particle this global system would behave

as if we looked from very far away. If n is even, the spin of the global configuration

of fermions will be an integer, behaving like a boson. Nevertheless, if n is odd, the

total spin of the global configuration will be a semi-integer, thus behaving like a

fermionic particle.

In this context, the parity SSR may be interpreted in the sense that superpositions

1All empty entries are zeros
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between bosons and fermions cannot exist. Moreover, it precludes the transforma-

tion of a globally bosonic fermion configuration to a globally fermionic fermion

configuration and vice-versa. This perspective shows that the parity SSR is natural

since we only forbid coherence and transmutation between different particle types.

This view also allows us to see the fermionic parity SSR as a particular case of the

anyonic SSR introduced in Section 4.1.

The action of T phys
M onto Pphys

M is the usual Û · ρ · Û †. A no-signalling operational

theory requires that the notion of phenomenal projection, the embedding of the local

transformations onto the global transformation space, the no-signalling principle

and the separation property be satisfied. After describing fermions’ structural

properties, we will see how SSR observables allow the no-signalling principle to

be satisfied, whereas the kinematical observables do not.

3.1.3 Embedding of local observables

The lack of a tensor product structure for fermions raises a question. How are

the local observables and local transformations of M embedded into a larger

subsystem M′ that contains it M ⊂ M′?

Let us remind ourselves that AM is the algebra over C generated by the creation

and annihilation operators {f̂j, f̂ †
j }j∈M. A local operator in M is a polynomial

ÂM = p
(
{f̂j, f̂ †

j }
)

for j ∈ M. The same polynomial p({f̂j, f̂ †
j }) also represents

an operator local in the larger system of modes M′. Thus, we have ÂextM =

p
(
{f̂j, f̂ †

j }
)

since all j ∈ M are in M′ also. Therefore, this is the natural

embedding of local operators and, thus, of observables and transformations for

both the kinematical and SSR choice of observables.

Despite seeming a remarkably trivial embedding, it is not so much when operators

are expressed as linear maps of the kinematical Hilbert space. Let us show a local
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operator in M and its extension to M′ = M∪{j⋆}, decomposed in the reordered

number state basis:

ÂM =
∑
r⃗,s⃗

ar⃗,s⃗

(
f̂ †
m1

)s1
. . .
(
f̂ †
mM

)sM
|Ω⟩⟨Ω| f̂ rMmM

. . . f̂ r1m1
(3.8)

ÂextM =
∑
r⃗,s⃗

ar⃗,s⃗

(
f̂ †
m1

)s1
. . .
(
f̂ †
mM

)sM
|Ω⟩⟨Ω| f̂ rMmM

. . . f̂ r1m1
+

+
∑
r⃗,s⃗

ar⃗,s⃗

(
f̂ †
m1

)s1
. . .
(
f̂ †
mM

)sM
f̂ †
j⋆
|Ω⟩⟨Ω| f̂j⋆ f̂ rMmM

. . . f̂ r1m1
(3.9)

where si, rj ∈ {0, 1} and ar⃗,s⃗ ∈ C.

The expression looks contradictory with the trivial extension until one notices that

the terms |Ω⟩⟨Ω| are not the same in both expressions 3.8 & 3.9. The operator

|Ω⟩⟨Ω| contains the information of the modes that are part of its system. In the

first expression |Ω⟩⟨Ω| = f̂mM
. . . f̂m1 f̂

†
m1
. . . f̂ †

mM
. Meanwhile, in the second

|Ω⟩⟨Ω| = f̂j⋆ f̂mM
. . . f̂m1 f̂

†
m1
. . . f̂ †

mM
f̂ †
j⋆

. These operators differ since one is local

in M and the other is not.

Equation 3.9 can also be related to the usual extension given in systems with

a tensor product. The extension can be seen as the sum of the local operator

tensor2 each orthonormal basis state density operator of the ancillary system (i.e.

ÂextM =
∑

i Â ⊗ |i⟩⟨i| ). This comparison shows that the trivial extension makes

sense physically.

3.1.4 Partial trace

For any no-signalling operational theory, we need phenomenal projection maps

πP
M : PM′ → PM for M ⊂ M′. In quantum theories, these maps are given by

partial tracing the subsystems M′\M.

2For fermions there is a different, antisymmetrised tensor product [75]
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Given the kinematical and SSR choices of sets of local observables, states and

transformations, we could expect two different partial tracing procedures. The

partial trace can be defined uniquely as the unique linear map TrM′\M : Pphys
M′ →

Pphys
M such that for any local observable ÔM ∈ Ophys

M and its unique extension

to the global space Ôext
M ∈ Ophys

M′ and for any global state ρ ∈ Pphys
M′ it obeys the

equation

Tr
(
Ôext

M · ρ
)
= Tr

(
ÔM · TrM′\M (ρ)

)
(3.10)

In this case, it has been shown [75] that for both fermionic SSR and kinematical

choices, the partial tracing procedure is the same. The partial trace is given by

tracing out each mode individually, and for each fermionic mode, the procedure is

as follows:

Trmi

((
f̂ †
1

)s1
. . .
(
f̂ †
mi

)smi

. . .
(
f̂ †
N

)sN
|Ω⟩⟨Ω| f̂ rNN . . . f̂

rmi
mi . . . f̂ r11

)
=

= δsmirmi
(−1)k

(
f̂ †
1

)s1
. . .
(
f̂ †
N

)sN
|Ω⟩⟨Ω| f̂ rNN . . . f̂ r11 , (3.11)

where k =
∑N−1

j=mi
sjsj+1 + rjrj+1 and si, rj take the value 0 or 1. In the second

line, the creation and annihilation operators of the mode mi do not appear.

Notice that due to the anticommutation of the fermionic operators, some terms

gather a −1 phase. Such a phase has serious consequences. It is shown in [56] that

despite an N fermionic kinematical Hilbert space being isomorphic to a N qubit

network, the isomorphism cannot be faithful with respect to the partial tracing

procedures. Therefore, fermions and qubits are truly different systems. Fermionic

systems must be considered in their own right, not within a qubit network system.
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3.1.5 No-signalling

We are ready to showcase that the choice of kinematical observables violates the

no-signalling principle. We need to showcase an example where signalling can

occur by using fermionic kinematical transformations, observables, and states.

Consider a two-mode fermionic system 12. Consider the phenomenal pure global

state |ψ⟩ = 1√
2

(
I+ f̂ †

1

)
|Ω⟩. We apply the fermionic partial trace of mode 2 to

this pure phenomenal state |ψ⟩. We obtain the local phenomenal state for mode 1

being the pure state 1√
2

(
I+ f̂ †

1

)
|Ω⟩. Consider that in mode 2 the local kinematical

unitary Û = f̂2+ f̂
†
2 is applied. We obtain the pure phenomenal global transformed

state Û |ψ⟩ = 1√
2

(
f̂ †
2 + f̂ †

2 f̂
†
1

)
|Ω⟩. The local state for mode 1 is the pure state

1√
2

(
I− f̂ †

1

)
|Ω⟩, taking now the fermionic partial trace over mode 2 . This local

state is orthogonal to the original local state for mode 1 by performing only a local

transformation on mode 2. Thus, mode 2 could signal to mode 1 by performing

only a local transformation. Information could be transmitted instantaneously

without mode 1 and mode 2 interacting.

The above is a kinematical fermionic protocol that violates the no-signalling prin-

ciple. It shows that the following equations do not hold when using kinematical

fermionic observables, transformations and phenomenal states. Consider a subsys-

tem of a set of fermionic modes M ⊂ M′, the fermionic no-signalling principle

is that the following equations are satisfied:

TrM

(
ÛM · ρM′ · Û †

M

)
= TrM (ρM′) (3.12)

Due to the failure to satisfy the above equations, the kinematical choice of observ-

ables cannot provide a no-signalling operational theory for fermions.

It has been shown [75] the necessity to restrict the set of physically allowed
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observables, states and transformations to the parity SSR-respecting operators to

avoid violating the no-signalling principle. If we choose parity SSR observables,

we can provide a no-signalling operational theory of fermions.

Observe that SSR observables that are local in disjoint sets of modes A and B,

ÔA, L̂B, commute. The observables can be expressed as polynomials on the

creation and annihilation operators of the disjoint sets of modes, with all the

monomial terms of even degrees.

Thus, when applying the anticommutation relations for disjoint modes, we always

get an even number of accumulated −1 phases due to the anticommutation of the

individual creation and annihilation operators. An even number of accumulated

−1 phases is always a total phase of +1, thus making the disjoint observables

commute.

Having all disjoint observables commute (i.e. microcausality in field theory [88])

is the reason behind the no-signalling principle being satisfied for parity SSR

observables [75]. The detailed proof that parity SSR observables lead to the

satisfaction of the no-signalling principle is in Appendix B.

The second crucial condition to be met is the Separation property of the lattice of

subsystems transformation groups T phys
M . It is required that for any three disjoint

composable subsystems A,B,C, the local transformations and their embeddings

respect that if V = UAC is a local physical transformation on AC and V = WBC

is also a local physical transformation on BC, then necessarily V = TC is a local

transformation in C. Fermionic transformations in mode subsystems satisfy this

property.

A transformation V̂ in ABC is local on AB if it can be expressed as a polynomial

of creation and annihilation operators ofA andB alone. Therefore the conditions of
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being local in AC and in BC imply that V̂ = p
(
{f̂ai , f̂ †

ai
}i, {f̂ck , f̂ †

ck
}k
)

and V̂ =

q
(
{f̂bj , f̂

†
bj
}j, {f̂ck , f̂ †

ck
}k
)

. Equating the two and considering that the annihilation

and creation operators are independent of each other algebraically, one concludes

that necessarily the components in p() that contain A terms must vanish or can be

grouped to form the identity operator I. I can be expressed in terms of modes in C

alone via f̂ck f̂
†
ck
+ f̂ †

ck
f̂ck = I.

Therefore, we have seen how choosing the parity SSR observables for fermionic

theory can be regarded as a no-signalling operational theory. Thus, we can apply

the RR formalism described in Chapter 2 to find the local ontic states that make

fermions a local-realistic theory.

3.1.6 Local-tomography

By imposing the parity SSR, we have succeeded in describing fermionic systems

as no-signalling operational theories. Nevertheless, such constraint breaks some

properties we are used to having in distinguishable quantum mechanics.

One such property is local tomography. Local tomography has been regarded as a

key property of quantum systems [43, 99, 100] in the program of reconstructing

quantum theory from informational principles. Local tomography is the property

by which measuring only local observables in coordination between the parties is

enough to characterise the global phenomenal state of the system fully. In other

words, given an N -partite quantum system, knowing all ⟨Ô1 . . . ÔN⟩ for all the Ôj

local observables, it is enough to characterise the phenomenal state completely.

For fermionic systems under the parity SSR, local tomography is not satisfied. A

simple example of this failure is a two-mode fermionic system 1 2.

Consider the global phenomenal pure states |ψ1⟩ = 1√
2

(
|Ω⟩+ f̂ †

1 f̂
†
2 |Ω⟩

)
and

65



University of Oxford Balliol College

|ψ2⟩ = 1√
2

(
|Ω⟩ − f̂ †

1 f̂
†
2 |Ω⟩

)
. The SSR local observables can all be written as Â =

a1f̂1f̂
†
1 + a2f̂

†
1 f̂1 and B̂ = b1f̂2f̂

†
2 + b2f̂

†
2 f̂2; as seen in Equation 3.7. Calculating

⟨Â · B̂⟩ψ1 =
a1b1+a2b2

2
and ⟨Â · B̂⟩ψ2 =

a1b1+a2b2
2

. Since all expectation values are

the same for all local observables, it is impossible to locally distinguish the states

|ψ1⟩ and |ψ2⟩. This violates local tomography.

In the following sections, we explore how to define fermionic descriptors consider-

ing the superselected fermionic system, and we explore the interpretation subtleties

that arise due to the parity SSR. In particular, we will see how the violation of local

tomography will play an important role in interpreting fermionic descriptors in

Subsection 3.2.6.

3.2 Fermionic descriptors

In this Section 3.2, we analyse what mathematical objects represent the fermionic

descriptors and how they are representatives of the local ontic states of the RR

construction [4]. We obtain results analogous to the qubit case described in Section

2.5. In this section 3.2, we adapt the main results published in [65] in collaboration

with Chiara Marletto and Vlatko Vedral.

The first goal of the section is to find the notion of fermionic descriptors with the

same equivalences to the RR formalism. The other goals consist in characterising

the behaviour and properties of fermionic descriptors.

In the previous Section 3.1, we have seen how fermions are a no-signalling opera-

tional theory when applying the parity SSR. The transformations groups are T phys
M .

The phenomenal state spaces are Pphys
M . The group action is the usual Û · ρ · Û †.

The phenomenal projections are the fermionic partial traces. The extension of

local transformations in global spaces is the trivial expression when expressing the
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transformations as polynomials of creation and annihilation operators.

As we have explained in Section 2.5, the paper [51] shows how for qubit networks,

descriptors from [3] and the equivalence class formalism from [4, 5] are equivalent.

Section 2.3 shows that the equivalence classes [U ]A are the core of the local ontic

states. The equivalence relation ∼A is over TS and given by U ∼A V if and only if

exists a transformation WĀ local on the subsystem Ā = S\A, such that U = WĀV .

The set of all the equivalence classes [U ]A is the local ontic state space RA, with

the maximal space RS = TS.

Section 2.5 shows that qubit descriptors {q̂j}Nj=1 satisfy that Û ∼j V̂ iff Û † · q̂j ·Û =

V̂ † · q̂j · V̂ . Such a property provides a different characterisation of the equivalence

classes since it provides a different mechanism to understand that U and V are

equivalent in j.

The key reason that qubit ladder operators are qubit descriptors is that q̂j, q̂
†
j are the

generators of the local operator algebra. Following the exact same argument, the

fermionic annihilation operators are fermionic descriptors (see Appendix B for the

full details). Knowing the unitary evolution of {f̂j}j∈M guarantees to know the

evolution of any SSR observable within M.

We claim that, similarly to the qubit network case, the set of evolved descriptors

together with the initial Heisenberg state
({

Û † · f̂j · Û
}
j∈M

, ρ0

)
is a compact

way to represent the local ontic states.

The fermionic analogue of Theorem 3, Theorem 6 gives us the same crucial

connection between fermionic descriptors and fermionic local ontic states.

Theorem 6. The following equivalence holds for any subset of modes M of an N
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mode fermionic system.

Û ∼M V̂ ⇐⇒ Û † · f̂j · Û = V̂ † · f̂j · V̂ ∀j ∈ M, Û , V̂ ∈ T phys
N (3.13)

Thus, [Û ]M =
{
V̂ ∈ T phys

N

∣∣∣ Û † · f̂j · Û = V̂ † · f̂j · V̂ ∀j ∈ M
}

.

Given the commuting properties the parity SSR dotes disjoint observables, the

proof of Theorem 6 is analogous to the proof of Theorem 3, up to some very minor

subtleties. The complete fermionic proof is in Appendix B.

With Theorem 6, we obtain a direct connection between the fermionic descrip-

tors and the ontic states of the equivalence class formalism. The set of evolved

descriptors with the initial Heisenberg state
({

Û † · f̂j · Û
}
j∈M

, ρ0

)
is a compact

representation of the local ontic states. We express all the ontic operations of

Subsection 2.3.3 in terms of the fermionic descriptors.

3.2.1 Ontic group action ⋆

The action ⋆ of the groups of transformations T phys
M on the ontic state spaces Rphys

M ,

in the fermionic descriptor representation is the following.

ŴM ⋆
((
Û †f̂j1Û , . . . , Û

†f̂jM Û
)
, ρ0

)
=

=
((
Ŵ †

MÛ †f̂j1ÛŴM, . . . , Ŵ †
MÛ †f̂jM ÛŴM

)
, ρ0

)
(3.14)

where ŴM in the second line is the extended local fermionic operator on the

maximal system N . We remind that such extension is trivial when expressing the

operator as a polynomial of fermionic annihilation and creation operators.
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3.2.2 Ontic-phenomenal epimorphisms φM

The phenomenal state space’s orbit representatives can be diagonal in the reordered

number state basis. Exactly as in the qubit networks case exposed in Subsubsection

2.5.1.2. In matrix representation, the representatives are of the form:

ρ0 =


λ1

. . .
λ
2N91

µ1

. . .
µ
2N91

 λj−1 ≥ λj, µj−1 ≥ µj ∀j ∈ {2, . . . , 2N−1}

(3.15)

Nevertheless, the orbit structure is significantly different from the qubit network

scenario. The parity SSR restriction of unitaries does not allow transformations

from the even sector to the odd sector. Concretely, this implies we have two distinct

orbits in the pure case. We can fix the convention up to the global sector. Thus, by

convention, when the global phenomenal state is pure, it is either |Ω⟩⟨Ω| if even, or

f̂ †
1 |Ω⟩⟨Ω| f̂1 if odd.

After discussing the orbit structure of the phenomenal state space, we are ready to

introduce the fermionic analogue of Theorem 4: Theorem 7. Theorem 7 allows

one to understand better the definition of the fermionic epimorphisms φM.

Theorem 7. Using
(
Û † · f̂1 · Û , . . . , Û † · f̂N · Û

)
, the complete set of fermionic

descriptors, it is possible to uniquely find the transformation Û ∈ T phys
N that has

evolved them from their canonical form
(
f̂1, . . . , f̂N

)
.

Notice that the result is consistent with Theorem 6, considering that the equivalence

class consists of the single element Û . The proof of this result is entirely algebraic

and analogous to the qubit case, up to the fermionic and parity SSR subtleties. The

complete proof is in Appendix B.
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From Theorem 7, the definition of φN follows naturally.

φN

((
Û † · f̂1 · Û , . . . , Û † · f̂N · Û

)
, ρ0

)
= Û · ρ0 · Û † (3.16)

Let us focus on the strict subsystem mappings φM. The strategy is to use the local
map between the Heisenberg and Schrödinger pictures. We use the decomposition
of the Schrödinger state ρM:

ρM =
∑
r⃗,s⃗

cr⃗,s⃗

(
f̂†
j1

)r1
. . .
(
f̂†
jM

)rM
|Ω⟩⟨Ω|

(
f̂jM

)sM
. . .
(
f̂j1

)s1
(3.17)

cr⃗,s⃗ = Tr
(
Û† ·

(
f̂†
j1

)r1
. . .
(
f̂†
jM

)rM
f̂jM . . . f̂j1 f̂

†
j1
. . . f̂†

jM

(
f̂jM

)sM
. . .
(
f̂j1

)s1
· Û · ρ0

)

where the components of r⃗, s⃗ are either 0 or 1. The number of ones in r⃗ equals

the number in s⃗ modulus 2, summing over even operators only. In the first line,

|Ω⟩⟨Ω| = f̂jM . . . f̂j1 f̂
†
j1
. . . f̂ †

jM
. It is precisely this decomposition that ensures that

from the descriptor evolution, one can deduce the coefficients cr⃗,s⃗. Since the ontic

state representation also holds ρ0, we can make the assignment:

φM

((
Û † · f̂j1 · Û , . . . , Û † · f̂jM · Û

)
, ρ0

)
=

=
∑
r⃗,s⃗

cr⃗,s⃗

(
f̂ †
j1

)r1
. . .
(
f̂ †
jM

)rM
|Ω⟩⟨Ω|

(
f̂jM

)sM
. . .
(
f̂j1

)s1
(3.18)

where again

cr⃗,s⃗ = Tr
(
Û† ·

(
f̂†
j1

)r1
. . .
(
f̂†
jM

)rM
f̂jM . . . f̂j1 f̂

†
j1
. . . f̂†

jM

(
f̂jM

)sM
. . .
(
f̂j1

)s1
· Û · ρ0

)

3.2.3 Ontic projections πRM

It follows from Theorem 6 that the ontic projections for fermionic descriptors are:

πR
M

((
Û † · f̂1 · Û , . . . , Û † · f̂N · Û

)
, ρ0

)
=
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=
((
Û † · f̂j1 · Û , . . . , Û † · f̂jM · Û

)
, ρ0

)
(3.19)

Completely equivalent to the qubit case in Subsubsection 2.5.1.3.

3.2.4 Ontic join product ⊙

Let us consider A ⊂ M and the associated bipartition A|B of the fermionic

subsystem with B = M\A. Consider the two compatible fermionic ontic states of

subsystems A and B:

((
Û † · f̂a1 · Û , . . . , Û † · f̂aS · Û

)
, ρ0

) ((
V̂ † · f̂b1 · V̂ , . . . , V̂ † · f̂bM9S · V̂

)
, ρ0

)
(3.20)

Since they are compatible local ontic states, there must be a maximal unitary

Ŵ ∈ T phys
N such that Ŵ = R̂ext

N \AÛ and Ŵ = T̂ extN \BÛ . For two compatible ontic

states, we define the fermionic ontic join product ⊙ as:

(
Û † ·

(
f̂a1 , . . . , f̂aS

)
· Û , ρ0

)
⊙
(
V̂ † ·

(
f̂b1 , . . . , f̂bM9S

)
· V̂ , ρ0

)
=

=
((

Ŵ †f̂a1Ŵ , . . . , Ŵ †f̂aSŴ , Ŵ †f̂b1Ŵ , . . . , Ŵ †f̂bM9SŴ
)
, ρ0

)
(3.21)

The uniqueness of this product is guaranteed by the Separation property satis-

fied by the groups of transformations TS . Fermionic unitaries under the parity

superselection rule satisfy the Separation property, as it is seen in Subsection 3.1.5.

3.2.4.1 Faithfulness of splitting operation

Of course, we can repeat the bipartition process until we reach the point of in-

dividual modes forming subsystems. We see how the local and global states are

on the same footing. A particular excellent result that one can obtain from the

representation of ontic states with descriptors is that splitting into subsystems is a
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faithful operation. Concretely, the diagram in Figure 3.1 commutes. Theorem 8

condenses the information in Figure 3.1.

Figure 3.1: Commuting diagram that represents taking the projection into subsys-
tems and the ontic-phenomenal epimorphism. Diagram a) represents the spaces,
and diagram b) represents the action of the mappings in the descriptor picture.

Theorem 8. The diagram of Figure 3.1 commutes. In other words:

πP
A

(
φM

(((
Û † · f̂j1 · Û , . . . , Û † · f̂jM · Û

)
, ρ0

)))
=

= φA

(
πR
A

(((
Û † · f̂j1 · Û , . . . , Û † · f̂jM · Û

)
, ρ0

)))
(3.22)

The proof of the theorem is algebraic. We apply the form of the epimorphism φA

for descriptors that we have on Equation 3.18. We also use the definition of ontic

projection πR
A that consists in forgetting the descriptors for the modes that are not

in A. Furthermore, finally, we use the properties of πP
A being the fermionic partial

trace. Moreover, we use some algebraic properties of fermionic systems under the

parity superselection rule derived in previous works [75]. The complete proof is in

Appendix B.

Having seen all the ontic operations, we can claim that fermions under the parity
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SSR have a local-realistic structure. We have found a neat representation of the

fermionic ontic states explicitly using the widely known Heisenberg picture of

quantum mechanics. Furthermore, we have seen that tracking the creation or

annihilation operators is enough to have a complete description of the ontic states

of the fermionic system.

3.2.5 The fermionic action at a distance paradox

We have shown that fermionic annihilation operators are the fermionic descriptors

that can represent the local ontic states, seeing that fermionic theory is local-

realistic.

If one is not careful, though, when presented with this claim may come up with the

following prima facie paradox:

Paradox. Fermionic action at a distance. Consider the fermionic annihilation as

the fermionic descriptors that represent the local ontic states (or local elements of

reality). Consider two fermionic position modes A and B representing two distant

space points. The local ontic state in A is given by
(
f̂A, ρ0

)
. We see that if in

mode B the local unitary ÛB = f̂B + f̂ †
B is applied, then the local ontic state in A

becomes

(
Û †
B · f̂A · ÛB, ρ0

)
=
((

f̂B + f̂ †
B

)
· f̂A ·

(
f̂B + f̂ †

B

)
, ρ0

)
=
(
−f̂A, ρ0

)
(3.23)

Therefore, the local elements of reality in A have changed instantaneously when

applying a local unitary in B. Therefore we have a local-realistic theory that

portrays action at a distance.

This prima facie paradox is natural to appear when just analysing the statement

that fermionic annihilation operators act as descriptors and represent the local ontic

states.
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Let us introduce two points to resolve this confusion. First, a fermionic theory is

only expected to be local-realistic if it is no-signalling. RR’s theorem (explained

in 2.3.3) applies only to no-signalling operational theories. It does not apply to

theories that portray signalling.

The second and final point is to observe that the local unitary ÛB = f̂B + f̂ †
B

in B is a unitary that violates the parity SSR restriction. It is straightforward to

check since, in its polynomial decomposition, the monomials are all of degree 1.

Therefore it is, in fact, an odd unitary and not an even unitary.

The fact that ÛB is not an allowed physical transformation under the parity SSR is

relevant since we had to impose the parity SSR to guarantee that fermions satisfy

the no-signalling principle. Thus, using ÛB to show no action at a distance is not

surprising since we expect that we can have signalling by using it.

Therefore the prima facie paradox resolves by simply stating that the unitary used

is not physically allowed since it allows fermions to signal. Moreover, in the

following lines, we show that if one uses any allowed local physical transformation

in B, the fermionic descriptors in A are left invariant, as expected.

The initial local ontic state in A is
(
f̂A, ρ0

)
, applying a parity SSR unitary V̂B

local in B, we obtain the updated local ontic states in A being
(
V̂ †
B · f̂A · V̂B, ρ0

)
.

However, V̂B and f̂A commute. Since V̂B is even, the accumulated phase of

anticommuting f̂A throughout all the terms of V̂B is always +1.

Thus, the updated local ontic state in A becomes
(
V̂ †
B · V̂B · f̂A, ρ0

)
=
(
f̂A, ρ0

)
.

Proving that no action at a distance can occur under the parity SSR and considering

fermionic annihilation operators as descriptors and representatives of the local

ontic states.
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3.2.6 Are fermionic descriptors physical?

This chapter shows how fermionic annihilation operators can be used as representa-

tives of the local ontic states, doting fermionic theory of a convenient local-realistic

structure. The use of the annihilation operators is inspired by the use of qubit

ladder operators as qubit network descriptors.

To have no-signalling and thus local realism in fermions, we have seen the impor-

tance of imposing the parity SSR. This rule restricts being physical or physically

allowed to even operators. Nevertheless, we observe that the fermionic annihilation

operators are not even operators. They are odd fermionic operators. Therefore, due

to the parity SSR, we cannot find the annihilation operators as a physical fermionic

observable, any linear combination of them, or any physical unitary or phenomenal

state.

Considering this impossibility, one can question whether fermionic annihilation

operators are physical. We discuss our thoughts on this challenging question in the

fermionic case.

The first point we want to raise is the impossibility of any set of even observables

to be fermionic descriptors, thus representing local ontic states. Consider two sets

of local operators {d̂(j)A }j, {d̂(k)B }k in A and B, being disjoint subsystems. To be

descriptors, they need to fulfil the condition that knowing their evolution in time is

enough to retrieve the evolution of any global observable. This requirement is to

encode global observations as features of the local parts.

Such a simple condition cannot be met. The violation of local tomography (seen in

Subsection 3.1.6) in fermionic SSR systems impedes any subsets of local observ-

ables from tracking all global observables. The parity SSR restricts the physicality

of local observables too much, so there are global features that coordinated local
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measurements cannot capture. In any theory that violates local tomography, the

descriptors cannot be sets of local observables.

The second point is that the term physical may have two different meanings when

applying the Leibniz rule [37, 47] become one. The term "physical" may refer to

the ontic level, as there is a physical embodiment in the objective outside reality of

the mathematical element being considered. The second meaning may refer to the

observable properties in the physical objective outside reality of the mathematical

element being considered. If one assumes the Leibniz rule to be true, it is not

meaningful to discern the two since one expects all physical embodiment to have

an observable effect.

If we wonder whether fermionic annihilation operators are physical in the observ-

able sense, the answer is no. These operators are not needed in the operational

theory, so they are considered non-physical. The observables (f̂j + f̂ †
j ), i(f̂j − f̂ †

j )

that could retrieve the annihilation operators are also deemed unphysical by the

parity SSR. Nevertheless, this does not prevent us from thinking there is an ontic

embodiment of the annihilation operator in physical reality. Such embodiment

happens when referring to the reality of the fermionic Dirac field and its conjugate.

By believing that quantum fields exist in physical reality, one could hold the posi-

tion that annihilation operators have an indirect physical embodiment; moreover,

they embody the local-realistic structure of fermionic theory in physical reality.

This is a reasonable possibility, allowing for unification when considering the status

of the quantum electromagnetic fields.

These arguments and claims might not convince the reader. The reader could

contend that to consider annihilation operators physical, they need a corresponding

element in the operational theory. In such a case, we could point out that one needs

fermionic annihilation operators in fermionic information theory to act as Kraus

76



University of Oxford Balliol College

operators [75]. Kraus operators could not be applied to all parity SSR-allowed

quantum channels without fermionic annihilation operators.

The reader could reply that interpreting Kraus operators in correspondence with

physical reality poses too many challenges. Then, the reader can take the local ontic

state descriptor representation as a convenient compact mathematical representation

of the local ontic states given by the equivalence classes in the RR formalism.

The equivalence classes are defined only in terms of physically allowed parity SSR

operators, concretely parity SSR unitaries. The grouping of physical elements

should be deemed as physical. Thus, despite not being convinced that fermionic an-

nihilation operators are physical, we hope to convince the reader that, at minimum

are mathematical representations of a structure of physical operators.

3.3 Bosons

After thoroughly examining the fermionic case, let us briefly introduce the boson

formalism. We do not conduct the extensive analysis we did in the fermionic case.

The main reason is that the bosonic case has no substantial complications. It is

equivalent to the qubit network scenario explained in detail in Sections 2.4 & 2.5.

We introduce bosons in a finite lattice setting. This setting is commonly used in

quantum many-body systems and quantum information. Similarly to fermions,

we follow the mode perspective on bosonic systems and work within second

quantisation.

Consider a bosonic system with a finite set of modes I = {1, . . . , N}. Each

mode j has associated bosonic creation and annihilation operators b̂†j, b̂j . There

is a bosonic vacuum state |0⟩, defined as the only state that all the annihilation

operators annihilate b̂j |0⟩ = 0.

77



University of Oxford Balliol College

The defining commutation relations of bosonic creation and annihilation operators

are

[b̂j, b̂k] = 0̂ [b̂j, b̂
†
k] = δjkI (3.24)

where [Â, B̂] = Â · B̂ − B̂ · Â. These commutation relations are similar to those

in the qubit network case and correspond with hard-core bosons in Equation 2.15.

The only difference is that bosons do not satisfy
(
b̂j

)2
= 0̂ nor [b̂†j, b̂j] = 2b̂†j b̂j − I.

These two conditions are added to bosons to transform them into hard-core bosons.

This is done in order to have a bosonic system that portrays a Pauli exclusion

principle.

Such constraints are sometimes desirable to model more realistically massive

bosonic systems. Another good reason is to avoid working with an infinite dimen-

sional Hilbert space. The infinite dimensionality is a consequence of being able to

generate orthogonal states by applying b̂†j indefinitely. More precisely, the bosonic

Hilbert space is given by the bosonic Fock space.

The bosonic Fock space is the span of the states obtained by applying the bosonic

creation operators to the vacuum state |0⟩. Following this construction, the com-

mutation relations give 3

FI =

〈(
b̂†1

)n1

. . .
(
b̂†N

)nN

√
n1! · · ·

√
nN !

|0⟩

〉
n1...nN∈N

(3.25)

These Fock states constitute an orthonormal basis of the Hilbert space. NT =

n1 + · · ·+ nN is the number of bosons in each Fock basis state.

Because of the infinite dimensionality of the Hilbert space, there are some mathe-

matical subtleties in the scalar’s product convergence. We will not concentrate on

3Here, we consider N to have 0 as an element.
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them, as they are not interesting for our purposes. Instead, we shall only consider

states that are finite sums of elements in the Fock space. This allows us to work

with systems with a finite maximum total number of particles.

We can now focus on the boson operators that provide the bosonic observables

and unitaries. The bosonic operator algebra on the set of modes I , AI , can be

seen as generated by the bosonic creation and annihilation bosonic operators. The

bosonic algebra of observables OI can be defined as the self-adjoint elements of

AI . Correspondingly, the group of transformations TI is given by 4 the operators

AI that are unitary. The system’s phenomenal states PI can be considered finite

probabilistic mixtures of finite superpositions of elements in the bosonic Fock

basis.

Extending the bosonic operators into a larger set of modes is trivial. They retain

their form when expressed in terms of the bosonic creation and annihilation opera-

tors. Similarly, the associated partial tracing procedure has no complications, as

indicated by the equation:

Trj


(
b̂1

)n1

· · ·
(
b̂N

)nN

|0⟩⟨0| b̂mN
N · · · b̂m1

1
√
n1! · · ·nN !m1! · · ·mM !

 =

= Tr


(
b̂j

)nj

|0⟩⟨0| b̂mj

j√
nj!mj!


(
b̂1

)n1

· · ·
(
b̂N

)nN

|0⟩⟨0| b̂mN
N · · · b̂m1

1
√
n1! · · ·nN !m1! · · ·mM !

(3.26)

On the right-hand side of the equality, the terms j have disappeared. To trace out a

given set of modes, we can apply the formula above to trace out each individual

mode from the set in succession.

It follows from the boson commuting properties at different modes that any local

4Up to a global phase factor eiϕ.
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unitary in M commutes with any local observable in M′ if M ∩M′ = ∅. As we

have mentioned in the fermionic case, this is why the no-signalling condition is

satisfied.

The Separation property is also satisfied. The reason is the algebraic independence

of the bosonic annihilation operators. Being a local operator on AC requires being

generated solely by the creation and annihilation operators of A and C. If the

operator is local on BC, then the creation and annihilation operators of B and C

generate it. Since the generators are independent algebraic entities, it follows that

elements of C alone generate the operator. This makes it a local operator on C.

Therefore, bosons per se are a no-signalling operational theory. According then to

the reasoning in Subsection 2.3.3, bosons are a local-realistic theory. We need not

restrict the bosonic algebra of observables in any way. The lack of restrictions in

the set of kinematical transformations ensures the global transitivity of the pure

phenomenal state space. Starting from any pure phenomenal state |ψ⟩, one can

evolve to an arbitrary |η⟩ by performing an allowed transformation Ûψ,η. Therefore

the pure phenomenal state space has a single orbit. We choose the canonical

representative to be the pure state b̂†1 |0⟩.

Because the bosonic creation and annihilation operators are generators of the

local and global algebras of observables, the bosonic annihilation operators can

be considered the bosonic descriptors. The reasoning is that bosonic creation and

annihilation operators generate the local and global algebra of observables.

Therefore, knowing the evolution of {b̂j}j∈M is enough to know the evolution

of any bosonic observable local in M. We can see from the trick described in

Subsection 2.4.3 that knowing the evolution of b̂j is enough to know the evolution

of b̂†j . The trick consists in pointing out that Û † · b̂†j · Û =
(
Û † · b̂j · Û

)†
.

These properties ensure that the bosonic analogues of Theorems 6, 7 & 8 hold. As
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a result, we can consider bosonic annihilation operators as the representations of

the local ontic states of a bosonic subsystem M. We denote them as:

((
Û † · b̂j1 · Û , . . . , Û † · b̂jM · Û

)
, ρ0

)
(3.27)

The ontic operations are analogous to the fermionic case. In the epimorphisms φM,

one just needs to substitute the fermionic Fock states with the bosonic Fock states.

We have seen that the commutation properties of bosonic systems do not pose any

problems when analysing locality. One could say that it is precisely because of the

commuting properties that such systems do not pose a problem. The commutation

negates the necessity of imposing any superselection rule in order to satisfy the

no-signalling principle. Therefore, the kinematical space can be used directly. Its

structure resembles a lot the structure from (ℓ2)
⊗N . Then it is natural to expect the

same behaviour as distinguishable quantum systems regarding local realism.

We conclude by reiterating that bosons are local-realistic and that the bosonic

annihilation operators can represent their local ontic states. We obtain the same

result as in the fermionic case without the nuance of including the parity SSR.

Since bosons satisfy local tomography, we expect the bosonic descriptors to be

able to be expressed in terms of bosonic observables.

3.4 Mach-Zehnder interferometer

This section reproduces an adaptation of the main findings published in [64] in

collaboration with Chiara Marletto and Vlatko Vedral.

In this section, we examine the physical scenario of single-particle interference.

We consider bosonic and fermionic Mach-Zehnder interferometers. Without loss

of generality, we consider the self-interfered fermion a spinless electron and the
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boson a structureless photon, i.e. we disregard their spinorial and polarisation

components. We identify two separated extended spatial regions as two bosonic or

fermionic modes. The two regions are the Mach-Zehnder interferometer’s left and

right arms. For a more detailed and accurate modelling of the physical situation, we

should have discretised space and consider the regions L and R as sets of discrete

position points. However, such a level of detail would only muddle the analysis

without adding additional insight.

Figure 3.2: Circuit diagram of a single-particle Mach-Zender interferometer.

3.4.1 Bosonic Mach-Zehnder

Let us first consider the bosonic interferometer. A single-photon passing through a

Mach-Zehnder interferometer has been a popular way of thinking about interference

in quantum information and computation [61]. It is analogous to the double-slit

experiment, which, in the words of Feynman, contains “the only mystery" in

quantum physics [101].

We consider the standard quantisation procedures of the electromagnetic field

Âµ(x), which leads to the introduction of two bosonic annihilation operators

âL, âR [67]. The âj satisfy the properties for bosonic annihilation operators b̂j

described in Section 3.3.
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The evolution under consideration is depicted in Figure 3.2, except for the initial

state, where the fermionic operator f̂ †
L needs to be replaced by the bosonic creation

operator â†L.

In the Schrödinger picture, the photon’s quantum state evolves after the first beam

splitter (BS). Then, it acquires the additional phase in the left arm via P (ϕ)L.

Lastly, it undergoes another transformation at the final beamsplitter (BS). The

dynamical evolution of the photon is given by:

â†L |0⟩
BS−−→ 1√

2

(
â†L + â†R

)
|0⟩ P (ϕ)L−−−→ 1√

2

(
â†R + eiϕâ†L

)
BS−−→

BS−−→ 1√
2

(
|+⟩+ eiϕ |−⟩

)
=

(
sin

(
ϕ

2

)
â†L + cos

(
ϕ

2

)
â†R

)
|0⟩ (3.28)

where |±⟩ = 1√
2
(â†L ± â†R) |0⟩ are equally weighted superpositions of the left and

right path.

We can locally describe the interferometry process using the Heisenberg picture

and the bosonic annihilation operators as boson descriptors.

At the start, let the photon descriptors be

t0 : ((âL, âR) , |Ψ0⟩⟨Ψ0|) (3.29)

where the Heisenberg state is the pure state |Ψ0⟩ = â†L |0⟩.

The unitary beam splitter BS applied at time t acts as Bogoliubov transformations

on the creation and annihilation operators evolving them as âL
BS−−→ 1√

2
(âL + âR)

and âR
BS−−→ 1√

2
(âL − âR).

The photon field operator descriptors after the first beam splitter, expressed as

functions of the initial descriptors, are:

83



University of Oxford Balliol College

t1 :

((
1√
2
(âL + âR) ,

1√
2
(âL − âR)

)
, |Ψ0⟩⟨Ψ0|

)
(3.30)

The phase shift P (ϕ)L(t1) only acts on the left arm. That is, it is a local operator,

and thus a function of the local operators âL(t1) at the time it is applied. Hence,

it only affects the left modes: âL
P (ϕ)L−−−→ eiϕâL and âR

P (ϕ)L−−−→ âR. Given all of the

above, the new field operators after the phase shift are:

t2 :

((
eiϕ√
2
(âL + âR) ,

1√
2
(âL − âR)

)
, |Ψ0⟩⟨Ψ0|

)
(3.31)

The property of no-action at a distance is the crux of quantum field theory in the

Heisenberg picture: changes caused by a phase shift acting locally on one mode do

not affect operators of other modes. In our example, only the left mode descriptors

contain the phase, while the right mode field operators do not. As a result, we can

determine where the phase shift was applied by inspecting the descriptors of the

two modes.

Note also that a state-tomography of the left mode would not at this stage reveal

the phase (the expected value of the number operator of the left mode does not

depend on the phase). At this stage, the phase is encoded in the left mode, but it is

locally inaccessible.

The final beam splitter combines the modes’ descriptors making the phase accessi-

ble. The descriptors at the output of the interferometer are as follows:

t3 :

((
cos

(
ϕ

2

)
âL + i sin

(
ϕ

2

)
âR, cos

(
ϕ

2

)
âR − i sin

(
ϕ

2

)
âL

)
, |Ψ0⟩⟨Ψ0|

)
(3.32)

The interference is manifested when we take the expected value of the local number

operator N̂x = â†xâx at time t3, using the descriptors to express the evolved number

operators and the Heisenberg state |Ψ0⟩ = â†L |0⟩. For the output left mode, we
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obtain the following:

⟨N̂L(t3)⟩Ψ0 = cos2
ϕ

2
(3.33)

The expected value of the output mode R could be calculated similarly. It would

yield the value of sin2 ϕ/2. The expected values at the end of the interferometry

are empirically equivalent and thus the same in the Heisenberg and Schrödinger

pictures.

The key difference in the explanation for the interference is that, in using descrip-

tors, the phase introduced by the phase shift on one mode is only locally manifested

in that mode and not others. This would not be the case in the Schrödinger pic-

ture: the wavefunction does not allow for a separable description, and the phase

difference due to the beam splitter acting on mode L could just as well have been

introduced by a beam splitter acting on mode R.

In the Heisenberg picture, any bosonic field (e.g. a field of Bose condensate of

atoms) has the same description as above. We can interfere condensates by applying

this Mach-Zehnder interferometer implementation, and the operator description of

this interference would be identical to the one presented above.

We have used the annihilation operators as descriptors. However, in the bosonic

case, the abovementioned situation can be described using two observables per

mode instead. The vector potential operator Âx = âx + â†x and the conjugate field

π̂x = i
(
âx − â†x

)
can be used as bosonic descriptors. It is clear from the fact that

bosonic annihilation operators are a linear combination of the two: âx = Âx−iπ̂x
2

.

We can use two observables per mode as bosonic descriptors. This property is

possible because bosons satisfy local tomography. It contrasts with the fermionic

context, where such a possibility is ruled out, as seen in Subsection 3.1.6.

85



University of Oxford Balliol College

3.4.2 Fermionic Mach-Zehnder

We have a system with two electron annihilation operators f̂L and f̂R. The first an-

nihilates an electron in the left region, and the second in the right region. The effect

of an electron evolving freely through the localised regions of the interferometer is

modelled as the identity evolution.

Consider the basis for this two-mode system: |Ω⟩ , f̂ †
Lf̂

†
R |Ω⟩ , f̂ †

L |Ω⟩ , f̂
†
R |Ω⟩. The

beam splitters in the interferometer are modelled in our setup as the gate BS. The

phase gate on the left arm is denoted by P (ϕ)L. Their matrix representations and

algebraic effects on annihilation operators are as follows:

BS =
1√
2



√
2 0

0
√
2

1 1

1 −1

 P (ϕ)L =


1 0

0 eiϕ

eiϕ 0

0 1


BS

(
f̂L, f̂R

)
BS =

1√
2

(
f̂L[f̂R, f̂

†
R] + f̂R[f̂L, f̂

†
L] , f̂L[f̂R, f̂

†
R]− f̂R[f̂L, f̂

†
L]
)

P (ϕ)†L

(
f̂L , f̂R

)
P (ϕ)L =

(
eiϕf̂L , f̂R

)
(3.34)

The initial global phenomenal state is the pure state |ψ0⟩ = f̂ †
L |Ω⟩. The evolution

it undergoes in the Mach-Zehnder interferometer according to the Schrödinger

picture is BS |ψ0⟩ = 1√
2

(
f̂ †
L |Ω⟩+ f̂ †

R |Ω⟩
)

, then applying the phase gate we

obtain P (ϕ)L · BS |ψ0⟩ = 1√
2

(
eiϕf̂ †

L |Ω⟩+ f̂ †
R |Ω⟩

)
. Finally, recombining the

two interferometer arms up to a global phase results in BS · P (ϕ)L · BS |ψ0⟩ =

cos
(
ϕ
2

)
f̂ †
L |Ω⟩+ i sin

(
ϕ
2

)
f̂ †
R |Ω⟩.

We can set the phenomenal reference state as the conventional |ψ0⟩ = f̂ †
L |Ω⟩ for

the orbit of odd pure states. Then we set ρ0 = |ψ0⟩⟨ψ0|. The expressions give the
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evolution of the ontic state in the descriptor representation:

t0 :
(
f̂L, f̂R, ρ0

)
(3.35)

t1 :

(
1√
2

(
f̂L[f̂R, f̂

†
R] + f̂R[f̂L, f̂

†
L]
)
,
1√
2

(
f̂L[f̂R, f̂

†
R] 9 f̂R[f̂L, f̂

†
L]
)
, ρ0

)
(3.36)

t2 :

(
eiϕ√
2

(
f̂L[f̂R, f̂

†
R] + f̂R[f̂L, f̂

†
L]
)
,
1√
2

(
f̂L[f̂R, f̂

†
R] 9 f̂R[f̂L, f̂

†
L]
)
, ρ0

)
(3.37)

t3 :

(
eiϕ + 1

2
f̂L +

eiϕ − 1

2
f̂R ,

eiϕ − 1

2
f̂L +

eiϕ + 1

2
f̂R , ρ0

)
(3.38)

Algebraically specifying the evolution allows us to study the dependency of the

local ontic states on the information about the local phase without referring to

their matrix representations individually. The qubit network example in Subsection

2.5.2 specifies the computational basis and displays the evolution in matrix form.

We could specify the qubit case algebraically, but we opt for presenting both

possibilities.

We observe from the algebraic evolution that when the local phase is introduced,

the parameter ϕ appears only in the descriptor of the left interferometer arm. When

both arms interact with each other again by the recombining beam-splitter, the

dependency on the parameter ϕ flows to the right arm. We know that, at t2, the

parameter ϕ has no locally observable effect. However, in the later stage t3, ϕ has

locally observable consequences in both the left and right arms.

To demonstrate that these two claims are true, we calculate if ϕ appears in the

expression of the evolved physical fermionic local observables at t2 and t3. The

local observables in a single mode j all have the form Ôj = af̂j f̂
†
j + bf̂ †

j f̂j with

a, b ∈ R. It is clear that at t2, no dependency on ϕ can appear on any local
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observable. On the left arm, the exponentials cancel in each term. On the right arm,

the parameter does not appear at all.

In contrast, the expressions of the local observables at t3 are of the form:

ÔL = a f̂Lf̂
†
Lf̂Rf̂

†
R + b f̂ †

Lf̂Lf̂
†
Rf̂R +

(
a sin2

(
ϕ

2

)
+ b cos2

(
ϕ

2

))
f̂ †
Lf̂Lf̂Rf̂

†
R+

+

(
b sin2

(
ϕ

2

)
+ a cos2

(
ϕ

2

))
f̂Lf̂

†
Lf̂

†
Rf̂R +

i

2
sin (ϕ) (b− a)

(
f̂ †
Lf̂R + f̂Lf̂

†
R

)
(3.39)

ÔR = a f̂Lf̂
†
Lf̂Rf̂

†
R + b f̂ †

Lf̂Lf̂
†
Rf̂R +

(
b sin2

(
ϕ

2

)
+ a cos2

(
ϕ

2

))
f̂ †
Lf̂Lf̂Rf̂

†
R+

+

(
a sin2

(
ϕ

2

)
+ b cos2

(
ϕ

2

))
f̂Lf̂

†
Lf̂

†
Rf̂R +

i

2
sin (ϕ) (a− b)

(
f̂ †
Lf̂R + f̂Lf̂

†
R

)
(3.40)

We see that they are highly dependent on the parameter ϕ. Therefore, ϕ has local

observable effects in t3. It is well known that the relative frequency of electron

counts in the local arms is given by cos2
(
ϕ
2

)
and sin2

(
ϕ
2

)
respectively.

Notice that despite having different algebraic evolutions, qualitatively, the under-

lying locality explanation of the fermionic and bosonic cases is the same. This

should not be surprising since we have used the same circuit, the same model, just

interpreted in the bosonic or fermionic setting.

In this example, we have seen that using electron physical observables makes

locating and tracking the phase ϕ impossible. We can conveniently express the

ontic states using fermionic annihilation operators as fermionic descriptors. This

allows us to localise and track the dependency of the phase parameter ϕ within the

interferometric system. This property is not unique to the fermionic Mach-Zehnder.

The fermionic descriptor picture can be used to analyse any fermionic physical

process, including those that do not conserve the particle number.
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3.4.3 Phase localisation using the current density observable

In this subsection, we highlight how observables can be used to locate the phase

and track some of its effects in the specific setup of the fermionic Mach-Zehnder.

The trick is to use Dirac field physical observables. The Dirac field contains both

electron and positron modes. The positron vacuum is intended to act as a phase

reference for the electrons.

Let us focus on a more quantum field theoretic (QFT) approach to fermionic theory.

The proper second-quantised Dirac field is described by the four-spinor operator

(see [67])

ψ̂(x) = f̂x + p̂†x . (3.41)

This field involves the electron annihilation operator f̂x and the positron creation

operator d†x at point x. We deliberately omit the spinor details and momentum

representation, as they are irrelevant to the following argument – see e.g.[102].

This fermionic Dirac field operator is not Hermitian; thus, it is not an observable.

Furthermore, the superselection rules prohibit odd operators from being observ-

ables. Therefore, no linear combination of creation and annihilation operators is

allowed to represent a physical variable.

However, consider the charge density observable of each arm mode ĵ0(L) ĵ0(R),

where ĵ0(x) = −e : ψ̂(x)†ψ̂(x) := −e(f̂ †
xf̂x − f̂xp̂x + f̂ †

xp̂
†
x − p̂†xp̂x) (we would,

in general, have to use the 4-vector also including the current density, but, in this

case, the other 3 components do not add to our analysis). The normal ordering of

the fermionic operators Â and B̂ is represented by : ÂB̂ :. Even though p̂x, f̂x are

spinors with some orthogonality properties imposed, all four terms are generally

non-zero. For the sake of simplicity, we also assume that the Heisenberg state is

|Ψ⟩ep =
1√
2

(
f̂R + f̂L

)
|Ω⟩, so we describe the interferometry just after applying
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the first beam splitter. |Ω⟩ is the vacuum for the two electron and two positron

modes.

We follow the time-evolution of the local density operators ĵ0(L), ĵ0(R) in the

Heisenberg picture. We can see that a phase rotation applied on the left arm mode

now manifests itself in the quantum observables of the Dirac field by modifying

the charge density operator!

Consider that the Dirac field at t1 is given by f̂x + p̂†x. The Dirac field transforms

under the phase rotation P (ϕ)L at time t2 as eiϕb̂L + e−iϕp̂†L and f̂R + p̂†R. After

applying the phase rotation P (ϕ)L, at t2, the charge density of the Dirac field in

the left mode is:

ĵ0(L) = −e
(
f̂ †
Lf̂L + e−2iϕf̂ †

Lp̂
†
L − e2iϕf̂Lp̂L − p̂†Lp̂L

)
, (3.42)

while the right mode charge density remains unchanged.

After applying the phase shift, we see that the phase is present in the charge density

operator of the left mode. Therefore, even under superselection rules, a perfectly

valid observable can keep track of the phase locally to each mode of the Dirac field.

The positronic component of the Dirac field provides a phase reference for the

electron field. The phase shift’s different action on the electron and positron field

operators allows us to keep track of the phase. It accomplishes this by providing a

local phase reference to the left arm between the fermionic and positronic fields.

We emphasise that if, as in the case of the interferometer under consideration, the

Heisenberg state consists of an electron superposed across the left and right modes

and no positrons, then the expected value of ĵ0 will still be phase independent. That

is, the phase will be locally inaccessible via empirical observation. In the absence

of superposed positrons or another superposed electron acting as a reference, the
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phase is unobservable (all we can observe is whether the electron is in the mode L

or mode R).

However, when considering the Dirac field as a q-number [103], the local picture

of quantum field theory in the Heisenberg picture reveals that the phase has been

applied on one mode and not the other. Moreover, we can see this in the Mach-

Zehnder case by tracking a physical observable rather than the Dirac field itself.
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4 | Anyons

The contents of this Chapter 4 contain an explanation of the publication [104]

written with the collaboration of Lucia Vilchez-Estevez.

In regular 3+1 D, bosons and fermions are the only indistinguishable particles

possible [66]. However, in 2+1 D, exotic types of indistinguishable particles can

exist: anyons. Anyons are indistinguishable particles with fractional non-semi-

integer spin value [105]. They are generalisations of bosons and fermions with

more complex factors appearing as a result of particle type exchange. Anyons

are classified into two types: abelian and non-abelian. Non-abelian anyons are

more exotic and much harder to realise in the lab. Nevertheless, their fascinating

properties deserve our attention.

Anyon properties are inextricably linked to topology. Anyonic particle systems

emerge from the non-trivial topological properties of the configuration space of the

particles [106].

Anyon theory has a long history and has evolved in several directions. Following

their initial proposal in the 1980s [105], some works focused on analysing the

possible values of spin particles with methods based on group representation theory

and topology. Most research used the first quantisation perspective. The wave-

functions over configuration spaces of particles were analysed under the braiding

and permutation groups. Concrete models in the path-integral formalism were

developed where anyons could emerge, making use of Chern-Simons potentials

[107–110]. These allowed for regime candidates in condensed matter systems

where anyons could be detected. The most promising were the fractional quantum

hall effect [111] and Josephson junctions [112–114].

Recent claims have been made on having detected non-abelian anyons, specifically
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Majorana fermions [115–122]. Nonetheless, as of July 2023, there has yet to be a

consensus on whether non-abelian anyons have ever been detected.

In the 1990s, there was a shift in how anyon theories were described. The notion

of exclusion statistics developed by Haldane [123], mathematical physicists’ use

of category theory, and the explosion of quantum computation and information

all contributed to this reorientation. The diagrammatic categorical approach was

introduced [124] to understand better a quantum computer’s computational capa-

bilities based on non-abelian anyons [125]. The promise of naturally occurring

fault tolerance [125] due to topological protection in these topological quantum

computers sparked much interest, which prompted the expression of this area of

condensed matter in quantum information language [126–128].

It is an illuminating lesson on how careful study of a fundamental concept may

open further avenues for fundamental research. In this case, it led to substantial

advances in condensed matter and quantum computation, concretely in quantum

error correction.

Our primary goal in including anyons in this thesis is to study local realism in

a relevant type of indistinguishable quantum system. Our secondary goal is to

divulge the theory to a quantum foundations audience. We believe that quantum

foundations would benefit from considering nuanced condensed matter systems to

test some of its assumptions and understandings of quantum theory.

The anyonic formalism in 2 + 1 dimensions lacks the notion of creation and

annihilation operators. Instead, it is studied using either representation theory or

a categorical diagrammatic approach. This thesis employs the latter since it is

complete and facilitates the identification of structural features of subsystems.

The concept of superselection rules is naturally incorporated into the formalism.

Moreover, it treats the abelian and non-abelian cases in a unified form. We are
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more interested in the more challenging non-abelian case, in which embedding

the non-physical operators in a composite system is difficult to define consistently.

The complications arise from the possibility that different compositions of systems

are not given by a unique tensor product, as in distinguishable quantum systems.

This chapter aims to use Einstein’s notion of local realism introduced in Section 2.3

and used throughout this thesis to identify the descriptors of non-abelian anyons.

In particular, we seek to identify descriptors we can consider annihilation operators.

In the bosonic and fermionic cases, descriptors could be identified as annihilation

operators. We must now reverse the process. In wondering about local realism

in anyons, we obtain an excellent result: identifying the anyonic creation and

annihilation operators.

Since the treatment of anyon theory tends to be focused on its topological properties,

having a clear notion of the anyonic local elements of reality may be useful.

Exploring this different perspective of locality could lead to advances in finding

these elusive particles, better understanding how they form, and how to manipulate

them. It might also help study the computational advantages of using these particles

as the building blocks of a quantum computer.

In Section 4.1, we present the diagrammatic anyon formalism in detail. In Section

4.3, we are able to describe the local-realistic structure of anyonic systems using

the anyonic annihilation operators we discover in Section 4.2. We discuss the

model of Fibonacci anyons to exemplify the concepts throughout the chapter.

4.1 Anyon formalism

Some parts of this section are adapted from the publication [104], written with the

collaboration of Lucia Vilchez-Estevez.
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Anyons are postulated quasiparticle excitations in two-dimensional systems [105,

129]. Their topological nature and exotic exchange statistics [105, 106, 123,

129, 130] differentiate them from bosons and fermions. They are referred to as

topological particles because the geometry of space-time or the distance between

them does not affect the result of the relevant operations. These topological

properties make anyon systems a promising platform for quantum information

processing [124, 125, 127, 131, 132]. Topological quantum computing seeks to

exploit these features to attain a robust computation against errors produced by

local perturbations and environment noise.

Information processing with topological systems has been one of the main attrac-

tions to the study of anyonic theories. We build on recent information-theoretic

perspectives on anyons [126, 128, 133–137].

On the other hand, anyons can be very intriguing from a more foundational stand-

point. The notion of subsystems and locality in quantum information theory is

crucial to understand interactions between systems. As an example, in a qubit

network, we use the tensor product structure to describe systems composed of

multiple subsystems. Two non-abelian anyons can merge (fuse) together to differ-

ent anyonic charges depending on the fusion channel. Therefore, to describe an

anyonic quantum system completely, we need to know all the charges that make up

the system and how they fuse. Since we need that extra bit of information on the

overall charge of the composed system, there is no such thing as a tensor product

between two subsystems.

There is a gap in the literature regarding creation and annihilation operator algebra

for non-abelian anyons in 2D. Bosons and fermions have well-defined annihilation

operators, so it is natural to look for them in anyon theories too. For anyons in one

spatial dimension, the creation and annihilation operators have already been found
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[138–140]. The main reasons for its absence in the 2D case may be the difficulty

in defining modes (or subsystems) and the topological charge superselection rule.

The latter is an interesting characteristic of anyon theories that ensures operators

will only be physical observables when the total topological charge is conserved.

The formalism we consider is diagrammatic. Category theory notions heavily

influence it. It is similar to the applied category theory formalism of resource

theories and the ZX calculus but with twists [41, 48, 141]. Concretely, an anyon

theory is given by a modular tensor category [124, 134]. We follow the formalisa-

tion, convention and notation of [126, 142]. Following the physics’ normalisation

rather than the isotopy invariant normalisation of the diagrams is preferable for our

purposes.

4.1.1 Fusion, splitting, F -moves and exchanging

To describe the anyonic formalism, let us imagine anyons as particles that live in a

2-dimensional manifold. There are different particle types in an anyon theory. We

label the anyon particle types as a, b, c, . . . .

Two anyons can be combined to form a new particle. This process is known as

fusion. Two particles a and b can fuse to produce particle c. We can describe this

process by writing a× b = b× a = c. However, in the case of non-abelian anyons,

two anyons a, b can fuse to multiple types of particles. In this case, we write:

a× b = b× a =
∑
c

N c
ab c (4.1)

where N c
ab are the fusion multiplicities. They indicate the different ways in which

a and b can fuse to c. There is a trivial anyon e known as the vacuum or the identity.

This particle satisfies the property N b
ea = δab for any particle type. Every particle a
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also has its own unique antiparticle ā such that N e
ab = δbā. The fusion rules dictate

which particles make up the anyon theory and which fusions (fusion channels) are

physically allowed within the theory.

Splitting is the reverse process (going from one particle to two). Both processes

are shown diagrammatically [126, 128, 142] in Figure 4.1.

Figure 4.1: Splitting (left) and fusion
(right)

When employing the diagrammatic algebra,

we will always set the time direction verti-

cally and going upwards and assume that

all particles move forward in time. We can

interpret a particle going back in time as its

antiparticle moving forward in time.

If N c
ab > 1, there are two distinct processes

by which a, b fuse to c. Usually, the fusion vertex diagram labels each of these

processes by a term µ in the vertex. Throughout this thesis, we assume, for practical

purposes, that all fusion multiplicities N c
ab are either 0 or 1. Therefore, the label µ

is unnecessary. Our procedures and conclusions can be easily extended to anyon

theories where fusion multiplicities are larger than one.

We can write an orthonormal complete set of pure phenomenal states for n anyons

as a fusion tree as in Figure 4.2. If any of the Nai+1
ai−1ai = 0, then the fusion is not

allowed, and the diagram is zero. The corresponding bras ⟨ψi| are obtained with

the Hermitian conjugate, equivalent to flipping the diagram along a horizontal axis.

The diagrams in Figure 4.2 represent that in order to specify an n-anyonic state,

it is not enough to establish the charges (particle types) of each of the n anyons.

Because two anyon charges a, b may fuse to two distinct particle types c or d,

a× b = c+d+ ...; it is necessary to establish their fusion channel. Also, the fusion

channel of the resulting particle type with other remaining unfused anyons in the

97



University of Oxford Balliol College

Figure 4.2: Basis |ψi⟩ and its conjugate ⟨ψi| of an n-anyon system. All vertices are
allowed fusion channels.

system, successively until all n anyons are split from the global overall anyonic

charge. The grouping of the n anyons can be done in different orders. The states

where a × b = c or a × b = d are considered completely orthogonal. Thus, we

need the specification to discriminate the two distinct states.

Figure 4.3: The F -matrix defines
a change of basis

One can choose a different order to combine

the anyons while still specifying the same state.

The F -matrices are the unitary matrices that

can be used for such a change of basis. Their

factors are specified by each anyon theory to-

gether with the fusion rules. They determine

how to change from the fusion tree given by the

grouping ((ab)c) to the grouping (a(bc)). See Figure 4.3.

To define the case where a, c are grouped first, and then with b, we need to establish

how c crosses b to get to a. The diagram’s line with charge c can go in front or

behind line b. For an anyon theory, these are at least two different ways of joining

a and c.

As we have explained, two-particle lines can cross over or underneath each other,

representing the exchange of two anyons. When working with the exchange of

anyons, it is necessary to define the R-matrices components as in Figure 4.4.
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As we can see, the information on the phase of exchange of two particle types is

encoded in these matrices. In general, the factors Rab
c are phases eiθcab . When a = e

or b = e, then the phase gathered is 2π, thus Rea
a = 1. The R-matrices are the

last piece of information an anyonic theory requires. To have a concrete anyonic

theory, we need the particle types, the fusion rules, and the F and R matrices.

Figure 4.4: The phase resulting
after exchanging two anyon par-
ticles counterclockwise.

In Figure 4.5, we show the grouping of a, c

happening behind b. The factor that appears is

[Babc
g ]dh =

∑
f

[
F bac
g

]∗
fd
Rab
f

[
F abc
g

]
fh

. We can

get it by combining F and R matrices.

The kinematical Hilbert space Hn to consider

is the span of the orthonormal states of the fu-

sion trees in Figure 4.2, fixing the number of

anyonic particles n. Their orthonormality con-

dition induces the scalar product in the vector space. We consider anyon theories

with a finite number of particles and fusion rules, thus giving finite-dimensional

Hilbert spaces Hn.

We can define Hg
n as the subspace of Hn such that the global charge of the n anyon

system is g. The n anyons can be seen as having split from a common unique

particle type g. We have Hn =
⊕

gHg
n.

Figure 4.5: A change of basis be-
hind b.

Let us now point out the dimensions of the

kinematical Hilbert spaces. dim (H1) = nT

being the total number of particle types or

anyon charges in our theory. dim (H2) =∑nT

abc=1N
c
ab, is natural since we have an element

basis per each fusion channel. dim (H3) =∑nT

abcdg=1N
d
bcN

g
ad. Notice that the growth of the
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kinematical size depends on each anyon theory; generally, it is not strictly expo-

nential.

We can naturally consider the linear operators that map the kinematical Hilbert

space Hn to Hm. A diagram with kets stacked on bras can represent a linear

operator. A general linear anyonic operator is written as in Figure 4.6. All operators

we will consider satisfy m = n, thus kinematical operators of the kinematical

Hilbert space Hn. For a fixed n, we denote the algebra of all anyonic linear

operators as An.

Figure 4.6: General operator with n inputs and m outputs. θa1...a2m−1

b1...b2n−1
∈ C.

4.1.1.1 Example: Fibonacci anyons

Let us exemplify the following formalism by focusing on a non-abelian anyon

family: Fibonacci anyons [143]. The Fibonacci model is perhaps the simplest

non-abelian example and has only two particle types, the vacuum or trivial anyon e

and the Fibonacci anyon τ . The only non-trivial fusion rule of this theory reads

τ × τ = e+ τ. (4.2)
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One can convert between bases associated with different fusion trees using the F -

matrices shown in Figure 4.3. In the Fibonacci theory, the only nontrivial F -matrix

is F τττ
τ =

 ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

. ϕ−1 is the inverse golden ratio, ϕ−1 =
√
5−1
2

.

We have explained that exchanging two anyons results in a phase factor that

depends on the overall charge. For Fibonacci anyons, there are two non-trivial

R-matrix factors: (i) when two τ anyons fuse to the identity, and (ii) when two τ

anyons fuse to τ . Their respective phases are Rττ
e = e−4πi/5 and Rττ

τ = e3πi/5.

The name of Fibonacci anyons comes from the fact that the dimensions of the

subspaces of global charge e and τ are Fibonacci numbers Fk. Thus, the total

dimension of the kinematical Hilbert space is always a Fibonacci number. We

have dim (He
1) = dim (Hτ

1) = 1, so dim (H1) = 2. From the fusion rules,

dim (He
2) = 2 and dim (Hτ

2) = 3, so dim (H2) = 5. Observe 5 > 22. In general,

we have dim (He
n) = dim

(
He
n−1

)
+dim

(
Hτ
n−1

)
and dim (Hτ

n) = dim
(
He
n−1

)
+

2 · dim
(
Hτ
n−1

)
. This ensures that all the relevant dimensions are always Fibonacci

numbers. Obtaining dim (He
n) = F2n91 and dim (Hτ

n) = F2n.

4.1.2 Superselection rule

The general kinematical operators we have defined in Figure 4.6 are rarely defined

or used in anyon theory. The reason is that anyon theory includes an anyonic

superselection rule (SSR). It can be seen as a generalisation of the fermionic parity

SSR seen in Subsection 3.1.2. Usually, only the physical operators are included

when presenting the anyon formalism.

The anyonic SSR can be stated as follows: operators will only be physical when

the total anyonic charge is conserved. In Figure 4.6, this would mean that a2m−1 =

b2n−1. Therefore, we could connect the ket with the bra in the diagram [144].
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The super selection rule is that it is not possible to implement an operator that

changes the overall topological charge of the system. When looking at topological

charges as particle types, the anyonic SSR rule impedes the transmutation of a

single particle type on its own. If one has a single anyonic particle, there is no

operation to change its particle type. We show that the parity SSR for fermionic

systems can be interpreted in a similar fashion in Subsection 3.1.2.

Given the anyon superselection rule, the physical operators for an arbitrary 4-anyon

system are shown in Figure 4.7. The physicality condition can be seen in the

diagram as there is no break in the middle, indicating that the overall topological

charge is conserved. In the usual Dirac vector notation, we would construct a

charge observable Ĉ to provide the anyon SSR. Its eigenvectors are the elements

of the orthonormal tree fusion basis. The associated eigenvalues change only

and necessarily with the overall global charge g of the eigenvectors. With such

observable, the condition for a linear operator Ô to be a physical operator is that

[Ô, Ĉ] = 0. We denote the algebra of all physical operators for a fixed number of

anyons n as Aphys
n .

Figure 4.7: Physical operators of a four-anyon system.

Such a condition implies that, when representing a physical operator with a matrix

representation on the global charge-ordered orthonormal fusion tree basis, it has a
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Figure 4.8: Identity operator diagram

block diagonal form. The blocks separate the subspaces of the partition given by

Hn =
⊕nT

g=1 Hg
n.

Under the anyon SSR, we can already consider our set of physical observables and

unitaries.

Ophys
n =

{
Ô
∣∣∣ Ô ∈ Aphys

n & Ô = Ô†
}

(4.3)

T phys
n =

{
eiÔ
∣∣∣ Ô ∈ Aphys

n & Ô = Ô†
}
/U(1) =

=
{
Û
∣∣∣ Û ∈ Aphys

n & Û Û † = In
}
/U(1) (4.4)

The identity operator In is, of course, the identity matrix in the matrix representation

of an orthonormal basis. The diagrammatic form is shown in Figure 4.8. It is both

a physical unitary and observable.

4.1.2.1 Fibonacci SSR

Let us consider Fibonacci anyons presented in Subsubsection 4.1.1.1. For n = 1

we choose the basis B1 = {|e⟩ , |τ⟩}. For n = 2 we choose the basis B2 =

{|e, e; e⟩ , |τ, τ ; e⟩ , |τ, e; τ⟩ , |e, τ ; τ⟩ , |τ, τ ; τ⟩}. Given this basis, the matrix repre-
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sentation of the Fibonacci physical operators is the following.

Ô1 =

a1
b1

 Ô2 =

( a1 a2
a3 a4

b1 b2 b3
b4 b5 b6
b7 b8 b9

)
(4.5)

4.1.3 Trace

We need a trace on the physical operators to define the phenomenal states as density

operators. We also need the notion of trace to take expectation values of physical

observables.

As usual, the trace in the kinematical operator space is inherited from the scalar

product of the kinematical Hilbert space Hn. Remember that we have defined the

fusion tree diagram basis as orthonormal. Let us label the fusion tree diagram basis

as {|i⟩}dim(Hn)
i=1 . The trace in An is given by the rule Tr(|i⟩⟨j|) = ⟨j|i⟩ = δij .

Diagrammatically, the trace is represented by joining all external anyon lines, as

shown in Figure 4.9. Notice that the global charges’ external lines have also been

connected. These closed loops can be evaluated in terms of Kronecker deltas on

the particle types aj, a′k. The evaluation is just a diagrammatic representation of

the orthonormality of the fusion tree diagram basis. Sometimes, F and R matrices

must be applied to untangle the diagram. The result will then depend on these F

and R matrices.

The global trace we use for physical operators is the same as the kinematical trace.

Therefore, we can now define the physical density operators of an n-anyon system

using the trace operation. These are the phenomenal states we consider in the

operational anyonic setting.

Pphys
n = {ρ

∣∣ ρ ∈ Ophys
n , ρ ≥ 0̂ , Tr(ρ) = 1

}
(4.6)
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Figure 4.9: Left: Evaluation of a bubble diagram. Right: Diagrammatic trace.

4.1.4 Local operators

In this subsection, we start to address the concept of subsystem locality in anyonic

theories. Firstly, we must clarify the notion of subsystem we will use for any anyon

theory.

There is a strong debate in the literature on fermionic correlations regarding

alternative notions of subsystem. There are proponents of understanding the

subsystems as sets of fermionic modes [56, 73–83]. In this picture, the minimal

subsystem is a single mode. This choice falls naturally from the second quantisation

perspective of fermions and can describe any fermionic configuration and evolution.

On the other hand, there are proponents of the particle picture, in which the minimal

subsystem is a fermionic particle [89–96]. This formulation falls naturally from

the description of fermions in the first quantisation. It provides exciting results

for configurations and evolutions of a fixed number of particles. These results are
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concrete and can be tested and interpreted in the lab.

For anyons, a similar debate can be presented; however, given the fusion rules,

particles can change particle type by fusing and not preserving the number of

particles. Arguably, the mode perspective is more general and fundamental than

the particle picture. We believe that it is closer to the essence of quantum field

theory and provides necessary fundamental insights. When the number and type of

anyonic particles are fixed and only exchanging operations are performed, a particle

picture may be insightful. Nevertheless, we have the intuition from fermions that

the particle perspective can be deduced from the mode perspective results [80].

Figure 4.10: Partition of the
plane in mode subregions. The
union of regions 1, 2, 3, 4, 6, 7, 8
& 9 is not simply-connected. It
is not a valid subsystem.

Let us now focus on the mode perspective

for anyon theories. In 2 + 1 D anyon theo-

ries, anyons can be at any point of the two-

dimensional manifold. The changes in their

configurations are tracked in the time direction.

The set of anyonic modes that we will refer to

throughout the paper are the positions of the

modes in the two-dimensional space.

We identify a simply connected sub-region with

boundaries of our 2D space as a single mode

where the different anyon types can be excited. The complete system consists of

a finite number N of regions glued along their boundaries; see Figure 4.10. We

prefer to keep the number of anyonic modes finite. Therefore, we use a finite 2D

lattice populated by the different anyon particle types of the theory.

It is worth noting that the mode picture is justified by the presence of particle type

e in all anyon theories. e can be interpreted as the vacuum particle. If a mode has

the associated charge e, we claim no relevant anyons are populating such mode.
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Within the mode anyon picture, we are enforcing a Pauli exclusion principle. We

require that any mode is only populated by a single anyon particle type. If we wish

to fine-tune the model and allow more anyons to populate for a certain region, we

will change the partition of the manifold in terms of more modes.

We want to understand how to map the subsystem structure at the level of simply

connected regions in the 2D manifold to planar diagrams. Notice that there are

different ways to glue the boundaries between the regions to compose them into

larger, simply connected regions. Even given a canonical ordering of the modes to

represent them in planar diagrams, each glueing scheme has an associated planar

representation (see Figure 4.11). These different planar representations correspond

to different partitions of the systems given by the planar canonical basis of the

anyon theory.

When defining a partition into subsystems, we are not only specifying the subre-

gions of each mode. We are also required to show how they are connected. In

any of our decompositions, there will be the elemental modes as subsystems and

the collection of all modes as the global unique system. However, the lattice of

subsystems we consider only has some of the possible unions of modes. We fix the

ordering of the modes. We establish that all the possible unions of modes happen

either in front of all the modes that are not being joined or completely behind them.

This choice allows us to work within the RR formalism. In Chapter 5, we discuss

the possibility of relaxing this constraint and include alternative paths.

Having identified the anyonic mode subsystems we will work with, we must assign

them an algebra of physical observables. The total system of N anyonic modes

is N . We fix the order of the N anyon modes. Given a subset of in-front or

behind joined modes M ⊂ N , their local associated algebra of observables is

Ophys
M = Ophys

|M| . With this association, the local transformations and phenomenal
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Figure 4.11: Planar representations for different compositions of regions. Sub-
figure (a1) indicates that we are first fusing anyon 1 (blue) with anyon 4 (green)
and anyon 2 (red) with anyon 3 (orange). In (a2), we express such a system
in the diagrammatic form. The diagrammatic form is equivalent to the planar
representation in sub-figure (a3). In the right column, we maintain everything but
fuse anyon 1 with anyon 2 and anyon 3 with anyon 4.

states are straightforward. We have T phys
M = T phys

|M| and Pphys
M = Pphys

|M| . Similarly,

all local physical operators can be set Aphys
M = Aphys

|M| .

We want to distinguish the cases where the subsystem M is considered to be joined

in front or behind the rest of the modes. To do so, we introduce the behindness

property. We say an operator has behindness in-front or behind, referring to which

direction its modes are joined with respect to others. Behindness is a property that

the local observables inherit from the subsystem notion. We may introduce some

concepts using behindness in-front only, but one needs to keep in mind that behind

is also a possibility.
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4.1.4.1 Embedding of physical local operators

The local physical operators of M must be embedded in the local physical operators

of M′ if M ⊂ M′. Let us do it in two steps.

Figure 4.12: Embedding of an arbitrary physical operator local in 1, . . . ,M .

First, consider a local physical operator Â1...M on modes 1, . . . ,M , and we want

to embed it to N . The embedding of Â1...M is shown in Figure 4.12. It can be seen

as the way to embed is to split Â1...M into its ket and bra part, then fuse the overall

local charge of Â1...M with any possible state of the rest of the N −M modes, and

sum over all the possibilities keeping the same coefficients.

This procedure is analogous to extending a local operator ÔA on HA to
∑

i Ô⊗|i⟩⟨i|

on HA ⊗HB in distinguishable quantum systems. However, in anyonic systems,

it is only defined consistently for physical operators.

Once the embedding from local operators on modes 1, . . . ,M is clear; we need to

explain the general case of any subset of modes M = {s1, . . . , sM}. We consider

the subsystems where the joining of all the anyonic modes happens in front of the

non-joined modes. Thus, by only exchanging the anyonic modes counterclockwise,

we can bring a local observable in 1, . . . ,M to a local observable in s1, . . . , sM .

Concretely, we use the unitary U =
∏M91

i=0

∏sM9i
j=M9i+1R

†
j91 j . Where Rj91 j is the

counterclockwise exchange of the anyons in modes j 9 1 and j, given by the R-
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matrix [126, 142]. Using the following transformation, we transform any extended

local observable in 1 . . .M to a local observable in s1, . . . , sM .

Âs1,...,sM = U † · Â1,...,M · U (4.7)

It is straightforward to check that s1, . . . , sM have been joined in front of the modes

N \M. The explained procedure describes the extension of a local observable in

s1, . . . , sM . First, extend its local representation as it was local on 1, . . . ,M . Then,

exchange the modes to ’put the observable to the right place’. This process gives us

the necessary embeddings of the local unitaries, providing us with the mechanism

that allows us to see T phys
M in correspondence with a subgroup of T phys

N .

We can embed the local physical operator to be a behind operator as well. We do

so by constructing a similar ˆ̃U using R†
j91 j instead.

4.1.4.2 Fibonacci local unitaries

Let us provide a simple example of how embedded simple local unitaries look

in the matrix representation of Fibonacci anyons. Imagine a simple two-mode

Fibonacci anyon system. The local unitaries in mode 1 and mode 2 are extremely

simple. We use the matrix representations described in Subsubsection 4.1.2.1. The

anyon SSR restrictions impose that the most general form they take is: 1

Û1 =
(
1
eiϕτ,1

)
Û2 =

(
1
eiϕτ,2

)
(4.8)

And their embedding into the two-mode Fibonacci system is:

Û ext
1 =

 1 0
0 eiϕτ,1

eiϕτ,1 0 0
0 1 0
0 0 eiϕτ,1

 Û ext
2 =

 1 0
0 eiϕτ,2

1 0 0
0 eiϕτ,2 0
0 0 eiϕτ,2

 (4.9)

1We have fixed the global phase redundancy to cancel the e phase.
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4.1.4.3 Extended local operators?

The reader might wonder why we have restricted the extension to physical operators.

Why not use the same strategy for embedding all local operators?

First, notice that the extension procedure shown in Figure 4.12 necessarily provides

a global physical operator. Provided a local non-physical operator cannot be repre-

sented by an extended physical operator, we would need to modify the procedure

per se. Let us focus on a natural modification one could do. Let us extend any local

linear operator by fusing their tree components with any possible ancillary state,

summing over all the possibilities. Given the usual tensor product procedure and

our interpretation of the anyonic physical embedding, such a procedure is natural.

In this case, important problems emerge. Consider the non-physical Fibonacci

local unitary in mode 1 given by the creation of a τ anyon from the vacuum and

the annihilation of a τ anyon to the vacuum. Its local matrix representation and the

matrix representation of its extension are:

Û1 =

0 1

1 0

 Û ext
1 =

(
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 1
0 0 0 1 0

)
(4.10)

We can see that the extended operator is not unitary. Thus, the local structure is not

faithfully represented. Trying to renormalise the extension does not help. We need

to find a deeper, non-trivial algebraic structure to capture the local non-physical

properties on the global space.

There is no known extension of local non-physical operators, rendering the use

of the kinematical space practically useless. Nevertheless, restricting to physical

operators is enough for the development of topological quantum computing and

anyonic theory since only observational features are important.
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4.1.5 Partial trace

We define the partial trace of a subsystem of anyons only for physical operators.

The diagrammatic procedure is similar to the total trace. To partial trace a set of

anyonic modes, we connect the outgoing and incoming lines corresponding to such

anyons. Given the choice of in-front observables, the associated partial tracing

procedure is to loop the traced modes behind the non-traced modes.

The procedure is exemplified in Figure 4.13. The procedure is justified by ex-

pressing the consistency conditions of the partial trace in diagrammatic form. The

consistency conditions define the partial tracing operation as the unique linear op-

eration that satisfies the following equations for all ÔM local physical observables

and all physical states ρN :

Tr
(
Ôext

M ρN

)
= Tr

(
ÔM TrN \M (ρN )

)
(4.11)

Figure 4.13: Behind partial trace of modes 1, 3 of an n-anyon physical operator
component.

Figure 4.14 shows how the consistency conditions lead to the diagrammatic defini-
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tion of the anyonic partial trace for in-front physical operators. The local operator

given by behind partial tracing modes 2 & 4 satisfies the equality with the elements

in the right-hand side of the figure.

Figure 4.14: Left-hand side expression of the consistency condition of the in-front
partial trace of anyonic modes 2, 4 of a 4-anyon system.

4.1.6 No-signalling

Physical operators, the operators under the SSR, satisfy that local operators in

disjoint subsystems commute. Commuting disjoint local operators under the SSR

is also a feature in fermionic systems, as we show in Subsection 3.1.2. Proposition

9 formalises this commuting property.

Proposition 9. For any two disjoint sets of modes M ∩M′ = ∅, their respective

in-front and behind physical anyon local operators commute.

Proof. The proof follows easily from the diagrammatic rules of representing phys-

ical local operator extensions. It can be summarised by the diagram equality of

Figure 4.15. One can also painfully calculate the algebraic equality using a fusion

tree basis decomposition of the embedded local operators.
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Figure 4.15: diagram showing
the commutation of local disjoint
physical operators.

In Figure 4.16, we introduce handy notation for

physical operators in bipartite systems. A and

B denote sets of disjoint modes. The vector

notation a⃗, b⃗ takes care of all the charge speci-

fications for these subsets of modes. Moreover,

the modes A and B are not necessarily ordered.

Since we can assume all modes of one subset

always cross behind the modes in the other sub-

set, we can denote them separately. One should imagine that the vector represents

a fusion tree on its own. Such fusion trees may exchange positions of the strands,

always one behind the other in the same direction in both the top and bottom parts

of the diagram.

Figure 4.16: notation for opera-
tors in bipartite systems.

Proposition 9 leads to the no-signalling prin-

ciple being satisfied for anyon theories. Con-

sider a system being the composition of two

disjoint sets of anyonic modes M ∪M′. The

no-signalling principle for anyon systems is that

the following equations are satisfied for any

ÛM ∈ T phys
M and any ρM∪M′ ∈ Pphys

M∪M′ .

TrM
(
Û ext
M · ρM∪M′ · Û †, ext

M

)
= TrM (ρM∪M′)

(4.12)

Proof. Notice that the partial trace being considered must be associated with the

behindness of the physical operators in M. In other words, if the physical operators

in M are all behind operators, the physical operators in M′ are all in-front.

Therefore, if we express the consistency conditions of the partial trace, we obtain
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that the no-signalling conditions are equivalent to the following set of equations.

∀ÔM′ ∈ Ophys
M′ : Tr

(
Ôext

M′ · Û ext
M · ρM∪M′ · Û †,ext

M

)
= Tr

(
Ôext

M′ρM∪M′

)
(4.13)

Using the cyclic nature of the total trace and the commutation properties of Propo-

sition 9, we obtain that; indeed, the conditions hold.

Tr
(
Ôext

M′ · Û ext
M · ρM∪M′ · Û †, ext

M

)
= Tr

(
Û †, ext
M · Ôext

M′ · Û ext
M · ρM∪M′

)
=

= Tr
(
Ôext

M′ · Û †, ext
M · Û ext

M · ρM∪M′

)
= Tr

(
Ôext

M′ρM∪M′

)
∀ÔM′ ∈ Ophys

M′

(4.14)

Therefore, anyonic systems satisfy the no-signalling principle.

We conjecture that, similarly to the fermionic case, the anyonic SSR is necessary

to satisfy the no-signalling principle. Unfortunately, since we do not know of a

faithful embedding of local non-physical operators to larger mode systems, we

cannot postulate the unique partial tracing procedure for general anyonic operators.

Henceforth, we cannot establish the violation or not of the no-signalling principle

in these unrestricted systems.

4.1.7 Local tomography

Our main goal in this chapter is to identify which mathematical elements can be

considered anyonic descriptors. The second is to expose how these can be used to

represent the local-realistic structure of anyonic theory.

We have seen how anyonic systems have a diagrammatic formulation which inher-

ently incorporates a particle-type superselection rule. The first place to look for

anyonic descriptors would be the anyonic physical local observables.
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In Section 3.1.6, we show we cannot use local physical observables as descriptors

in fermionic systems. One hopes that the extra fusion structure of non-abelian

anyons will remedy such a pathological case. In the following lines, we show that

this is not the case. As fermions, any general anyonic theory does not satisfy local

tomography.

The principle of local tomography is widely used in the reconstructing program of

quantum theory [99, 100]. It is one of its axioms to derive quantum theory from

first principles. Nevertheless, this property is not generally satisfied in constrained

quantum systems or physical indistinguishable quantum particle systems.

A theory satisfies local tomography if the coordinated measurement of local ob-

servables can fully describe the global phenomenal state of the system. In quantum

theories, the condition is given by stating that in a bipartite system AB, ρAB can be

deduced from Tr
(
Ôext
A · Ôext

B · ρAB
)

for any ÔA ∈ Ophys
A and any ÔB ∈ Ophys

B .

Let us show that any anyon theory violates local tomography. We introduce

the standard notation where a dashed anyon line in a diagram represents that its

associated particle type is the identity particle e. In a bipartite 2-mode anyon

system, AB, consider the following two orthogonal distinguishable physical pure

anyon states:
a e a

aa

e

±|ψ⟩± = 1√
2
( )

(4.15)

where a ̸= e. Building the general form of the embedded local observables in
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modes 1 and 2 respectively, yields:

Ôext
A =

∑
a,b,c

oa

b

c

a

a b

, Ôext
B =

∑
a,b,c

ob

b

c

a

a b

, Ôext
A · Ôext

B =
∑
a,b,c

oaob

b

c

a

a b

(4.16)

Calculating Tr
(
Ôext
A · Ôext

B · |ψ±⟩⟨ψ±|
)

, we obtain:

∑
a′,b,c

oa′ob
2

Tr(

b

c

a′

a′ b

e

a

a

a

(

e

e

a

a

ae

+ ±

e

a

a

ae

±

e

a

a

a e

)) =

=
oa′ob
2

(δaa′δbe + δabδa′e) (4.17)

All the obtained values are the same without depending on the ± factor. Therefore,

local observations cannot discriminate the two orthogonal states |ψ±⟩. Henceforth,

local tomography is not satisfied in any anyonic system.

The culprit is again the superselection rule. It restricts the local observables to such

an extent that there are not enough parameters in all the physical local observables

to recover the parameters from the global physical observables.

The violation of local tomography impedes us from taking the anyonic descriptors

to be any set of local observables. Thus, we need to find the mathematical structure

that can represent anyonic descriptors elsewhere.
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4.2 Anyonic annihilation operators

This section finds the mathematical expressions for annihilation operators for

any 2+1 D anyon theory, even non-abelian anyons. The contents of this section

are original work presented in [104] written in collaboration with Lucia Vilchez-

Estevez.

We want anyonic annihilation operators to use them as anyonic descriptors. Un-

fortunately, the current anyonic formalism does not include annihilation operators.

The main reason is the lack of a faithful embedding of local non-physical operators.

Drawing connections with the fermionic case in Section 3.2, we expect anyonic

annihilation operators to be local non-physical operators.

We use the properties of local realism to find candidates for anyonic annihilation

operators. We expect the annihilation operator of mode i to be invariant under local

transformations on N \{i}. We want such property because we expect no action at

a distance. We expect the anyonic annihilation operator to be an element of the

local reality of i, and these, if no action at a distance holds, should not vary under

a local remote transformation.

If our system consists of modes M = {1, . . . ,m}, we can say that an in-front

candidate local operator in mode i ∈ M is an extended operator Ô ∈ AM such

that is invariant under the action of all behind local unitaries in the modes M\{i}.

In equation form that reads as: Ô is an in-front candidate local operator on mode

i ∈ M if and only if

Û †, ext
M\{i} · Ô · Û ext

M\{i} = Ô (4.18)

for all ÛM\{i} ∈ T phys
M being behind.
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It is not difficult to check that the conditions in Figure 4.18 give that the collection

of all in-front candidate extended local operators in i form an algebra under the

usual sum and operator multiplication, and C as scalars. So, we can say that

we have an abstract definition of the algebra of in-front candidate extended local

operators in mode i.

Figure 4.17: Basis elements of the in-front local operator algebra for the first mode.

Using the diagrammatic approach for anyons, we can characterise the allowed

local unitaries and explore the candidate local operators for any given mode and

behindness. We solve Equation 4.18 that defines candidate local operators using the

diagrammatic formalism, and we find the general form of a candidate local operator

on an anyonic mode. We show it here for the first mode 2. We express the general

form of a candidate local operator on mode 1 in terms of linear combinations of

the elements of a canonical basis:

Ô1 =
∑
a,a′,b0

d=a×b0,d′=a′×b0

ca,a′,b0,d,d′ A
aa′b0
dd′ (4.19)

where ca,a′,b0,d,d′ ∈ C and the canonical basis of the candidate local operator algebra

2In mode 1 both behindness yield the same expression
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for mode 1 given by the terms Aaa
′b0

dd′ can be seen in Figure 4.17 as planar diagrams.

We use these basis elements to identify components where the first mode is trans-

formed to the vacuum, as an annihilation operator component would. Only one

anyon type can be in the same mode in anyon diagrams. Therefore, the components

of the anyonic annihilation operators should consist only of terms that send anyon

particle types to the vacuum and not any other particle type. In Figure 4.18, one

can observe that if we fix the particle type a ̸= e in mode 1 bra and the vacuum e

in the mode 1 ket, the basis components then depend only on the global charge of

the rest of the system b0 and the term a× b0, since e is an abelian particle and then

e× b0 is always b0.

Figure 4.18: Annihilating elements of the basis of local operators for mode 1.

Thus, we realise that the number of annihilation elements that a particle type a

has associated in a mode is the number of fusion channels that such particle type

has associated with it. This result comes directly from the explicit dependency of

having the different annihilating components from a′ × b0, being b0 any particle

type. Thus, all fusion channels of a′ will have an associated annihilating element.

For notation, we label each of these annihilation elements of the canonical basis

ab0,a×b01 = Aeab0b0a×b0 (where 1 expresses the fact they are annihilating on the first
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mode, b0 and a× b0 specify the fusion channel and annihilating term, and a is the

particle type being annihilated). In all the above and the following expressions,

one must remember that a ̸= e.

We will refer to the Hermitian conjugate of such annihilating elements as the

creating elements. By direct calculation, we find two exciting results. First, the

annihilating and creating elements of mode j with some behindness are generators

of the candidate local algebra of mode j for such behindness. It follows from the

fact that any element of the basis in Figure 4.17 can be written in terms of the

local creating and annihilating elements. The second is that the collection of all

in-front or behind annihilating and creating elements are generators of the global

kinematical operator algebra.

Let us remark on this crucial point. We have seen that the annihilating elements

of Figure 4.18, together with their adjoints, are generators of the candidate local

operator algebra. Having obtained these results, we now naturally wonder if the

annihilation operators we seek are these annihilating elements.

We think they are not. However, annihilation operators must be concrete linear

combinations of these annihilating elements. In other words, we find that the

annihilating elements are components of the annihilation operators, and now we

have to decide the right way to combine them.

We have these insights by analysing the annihilation operators of spinless fermionic

theory in a finite lattice presented in Section 3.1. Let us fix the simple setting of

having two spinless fermionic modes in 2 + 1 D.

We have a vacuum |Ω⟩ and two annihilation operators f̂1, f̂2 that anticommute. We

can represent this theory as an abelian anyon theory with two particle types: a

fermion ψ and the vacuum e [126]. The non-trivial fusion rule is to specify the

fermion as its antiparticle type ψ × ψ = e. One needs to understand these particle
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types as the fermionic parity charge. e represents the system being even and ψ

being odd. The only non-trivial R-matrix component is Rψψ
e = −1.

It is straightforward to see that if we associate each annihilating element with an

annihilation operator, we find that instead of a single annihilation operator f̂i per

mode, we have two annihilation operators per mode: ψe,ψi and ψψ,ei (see Figure

4.18 when replacing a = ψ and summing over the two particle types e and ψ).

Therefore, this assignment cannot be the correct one. However, by using matrix

representations, we can observe that

f̂1 = ψe,ψ1 + ψψ,e1 f̂2 = ψe,ψ2 − ψψ,e2 (4.20)

These relations imply that the fermionic annihilation operators are linear combina-

tions of the annihilation components. In the following lines, we derive which exact

linear combinations can be taken to get the annihilation operators.

Concretely, we are proposing that the annihilation operators will be of the form:

α
(j)
k =

∑
b0,c0=a×b0

C
(j)
b0,c0,k

ab0,c0k (4.21)

where C(j)
b0,c0,k

∈ C. The term α refers to the fact of being the annihilation operator

of the particle type a. The label (j) indicates that we may need more than one

annihilation operator per particle type, given that we have an annihilating element

per fusion channel.

To constrain the coefficients C(j)
b0,c0,k

we consider three conditions that the annihi-

lation operators α(j)
k need to satisfy. The first is that {α(j)

k1
, . . . , α

(j)
km
}j,α and their

adjoints generate the local algebra of observables in the modes k1, . . . , km with

heir associated behindness.
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Figure 4.19: In-front annihilating elements of the basis of local operators for the
k + 1th-mode.

Second, we require that to obtain α(j)
k we only need to know α

(j)
1 and exchange

our way through to k. This requirement comes from the intuition that if one wants

to annihilate a particle in k, it should be equivalent to bringing that particle to

1, annihilating it there and then undoing the path we have taken. Figure 4.19

shows that the concrete path we take is the chain of simple counterclockwise

exchanges. One could pose different paths giving different annihilation operators.

The annihilation operators under this in-front path are obtained when imposing the

condition of Equation 4.18, for behind unitaries in M\{k}.

Concretely, the path taken guarantees that the physical observables we will obtain

will all be in-front local physical observables. We can obtain different annihilation

operators that give behind local observables by exchanging clockwise instead. Each

notion of subsystem lattice will have an associated different set of local annihilation

operators. We specify the in-front case in the following lines.
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The braiding condition imposes the following recursive relation to constrain the

coefficients C(j)
b0,c0,k

α
(j)
k = Rk−1k · α(j)

k−1 ·R
†
k−1k (4.22)

In the fermionic example that we pose in Equation 4.20, we can see how the −1

term in f̂2 arises from the R-matrix element
(
Rψψ
e

)−1.

The third requirement is that for every b0, j, k, there is at least one term C
(j)
b0,c0,k

that

is non-zero. It ensures that the annihilation operators α(j)
k have support on any total

charge value for modes other than k. It explicitly prevents situations where the

annihilating terms can be considered annihilation operators and have redundancy.

We have found a solution to these three constraints. Thus we have found a way

to define annihilation operators in anyonic systems. For the solution we propose,

the C(j)
b0,c0,1

∈ C we set them to be either 0 or 1. However, one could modify our

presented solution, including different non-zero factors to the terms that are 1.

The number of annihilating elements in a mode for the anyon type a is na =∑n
bc=1N

c
ab. Following our general construction, the number of annihilation opera-

tors associated with this anyon type a for a given mode will be J = na − n + 1,

where n is the total number of particle types in the theory. Notice that with this

scheme, we find that for an abelian anyon particle type a, there is a single an-

nihilation operator, since for abelian anyon types na = n because there are no

multiplicities in the fusion channels associated with a.

4.2.1 Fibonacci annihilation operators

We show how to construct the J annihilation operators for any anyon theory in

Appendix C.1. To make the main text of the thesis not extremely lengthy, we show

here the construction for the simplest non-abelian case: Fibonacci anyons.
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We order the Fibonacci particle types as e, τ of the different allowed fusion channels.

We label cb0,j the j’th particle type such that cb0,j = τ×b0. For the first annihilation

operator of τ , we set the terms C(0)
b0,cb0,1,1

= 1 and the rest, C(0)
b0,cb0,j ,1

, vanish. This

implies that α(0)
1 is given by the coefficients being C(0)

e,τ,1 = 1, C(0)
τ,e,1 = 1, and

C
(0)
τ,τ,1 = 0.

To define α(1)
1 , we look at the first b0 with more than one compatible c0. In this case,

this is b0 = τ . Now all coefficients remain the same as in α(0)
1 except for setting

C
(1)
τ,cb0,2,1

= 1 and C(1)
τ,cb0,1,1

= 0. Implying that α(1)
1 is given by the coefficients

being C(1)
e,τ,1 = 1, C(1)

τ,e,1 = 0, and C(1)
τ,τ,1 = 1.

Figure 4.20: In-front annihilation elements acting on the first (τ b0,c01 ) and second
mode (τ b0,c02 ) of a three Fibonacci anyon system.

We would follow the construction to find α(2)
1 by applying the same changes but

with cτ,3. However, there is no such valid fusion channel. Then we would proceed

to the next b0 following the ordering for which cb0,2 exists and follow the same
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procedure. In the Fibonacci case, there is no next b0. Thus the construction has

been completed.

We obtain for the Fibonacci case that τ has J = 2 annihilation operators. See Figure

4.20 for a diagrammatic representation of the Fibonacci annihilating elements for a

three-anyon Fibonacci space. The two Fibonacci annihilation operators are:

α
(0)
k = τ e,τk + τ τ,ek α

(1)
k = τ e,τk + τ τ,τk (4.23)

Theorem 10 shows the desired properties of anyonic annihilation operators. From

it, we obtain that the annihilation and creation operators for a set of modes generate

the local algebra of in-front observables for such a set of modes. As a corollary, we

obtain that collecting all in-front annihilation and creation operators for all modes

can generate the global algebra of operators and observables in particular.3

Theorem 10. Consider a general anyon theory with n particle types and N

lattice sites. Consider a set of lattice sites M = {s1, . . . , sM} and the subsystem

bipartition where the selected sites are always in front of the other N −M sites.

Under this bipartition, any local observable in these M sites can be written as a

polynomial of these lattice sites’ creation and annihilation operators.

The complete general proof can be found in Appendix C.2. Its idea is first to prove

the case M = {1, . . . ,M} using the following equality:

Ôa⃗,d⃗,g =
M∏
j=2

 ∑
bM9j+2
cM9j+2

[
F dM−jaM9j+2bM9j+2
g

]∗
dM9j+1cM9j+2

(aM9j+2)
bM9j+2,cM9j+2

M9j+2

 ·

·
∑
b1

(a1)
b1,g
1 (4.24)

3There is a corresponding theorem for behind operators as well.
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Figure 4.21: Operators that generate the local observables in 1, . . . ,M

where Ôa⃗,d⃗,g are shown in Figure 4.21 and generate the local algebra of physical

observables. Then, the proof uses the in-front exchange R-matrix properties to

extend it to a general subset of modes M.

4.2.2 Fibonacci physical observables in terms of the anyonic

creation and annihilation operators

We have defined the anyonic creation and annihilation operators. We are ready

to showcase their uses. We focus on the Fibonacci example for pedagogical

convenience.

We start by looking at the annihilating elements for three Fibonacci anyons. Figure

4.20 shows the three in-front annihilating elements for a Fibonacci anyon τ in the

left lattice site 1 and central lattice site 2. Note that the operators acting on the site

2, τ b0,c02 , can be obtained from τ b0,c01 by counterclockwise exchanging the anyons

on modes 1 and 2. We express all the operators in the canonical basis by using the

F and R matrices.
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In Fibonacci anyons, we have to define two in-front annihilation operators α(1)
k ,α(0)

k

for the Fibonacci τ particle type. Both operators use the term τ e,τk . To have better

algebraic properties, we choose to add a factor of 1√
2

in front of the repeated terms.

We call these two unnormalised annihilation operators: αk and βk. We use them

throughout the rest of the text.

αk =
1√
2
τ e,τk + τ τ,ek , βk =

1√
2
τ e,τk + τ τ,τk . (4.25)

In Figure 4.22, we see how some in-front local observables in modes 1 & 2 can be

expressed in terms of the in-front local creation and annihilation operators of such

modes. Appendix C.3 contains an exhaustive list of all observable terms.

Figure 4.22: Expression of Fibonacci observables regarding anyonic creation and
annihilation operators.

A straightforward application of anyonic creation and annihilation operators is to

express Hamiltonians more conveniently. By expressing Hamiltonians using anni-

hilation operators, we hope to showcase the similarities and differences between

Fibonacci anyons and other particle types such as fermions and bosons. Second,

we hope to provide tools for the simulation of such Hamiltonian systems, allowing

the application of tensor-networks methods [145], explore mapping for applying

the Bethe ansatz [146] and other methods already used in the 1 + 1 D case where

the notion of annihilation operators is exploited [138–140].
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4.2.3 Hubbard anyon model

We focus on the Hubbard anyon Hamiltonian described in [147]. We have a

2 × N square lattice with the ordering shown in Figure 4.23. This ordering is

chosen to guarantee that physical in-front operators can describe all the two-mode

interactions.

Figure 4.23: Lattice of model and
chosen ordering for a 2×N lat-
tice.

The Hamiltonian has two contributions. First,

a hopping contribution between nearest neigh-

bours, where a τ -anyon can jump to the nearest

neighbour if it is unoccupied. The second term

is a self-energy term for when there is a τ in

some site. For simplicity and conciseness, we

take the same coupling strength for longitudinal

and transverse hopping t⊥ = t∥ = t [147].

Figure 4.24: Hubbard Hamiltonian for Fibonacci anyons.

The unnormalised annihilation operators αk, βk allow us to express the Hamiltonian

more compactly. It can be expressed without using the unnormalised annihilation

operators, but the expression obtained is not as clean and clear as the one obtained
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using them, which is:

Ĥ = −t
2N−1∑
i=1

(
α†
i+1αi + β†

i+1βi

)
− t

N−1∑
i=1

(
α†
2N−i+1αi + β†

2N−i+1βi

)
+ h.c.

−µ
2N∑
i=1

(
α†
iαi + β†

i βi

)
(4.26)

We can see how the Hamiltonian has the same terms as in the 2D Fermi-Hubbard

model with the same lattice ordering but with two different types of annihilation

operators. This expression was not found by directly replacing the fermionic anni-

hilation operators with anyonic annihilation operators. It was found by expressing

the Hamiltonian in diagrammatic form in Figure 4.24 and expressing the diagram-

matic observables in terms of the unnormalised anyonic creation and annihilation

operators we defined.

We want to remark that there is nothing in particular of the Hamiltonian in Figure

4.24 which makes it expressable in terms of the creation and annihilation operators.

Any physically allowed Hamiltonian can be expressed as a polynomial of the

creation and annihilation operators we have defined. It is a matter of convenience

to use the unnormalised annihilation operators. These can be described in terms of

the original normalised annihilation operators as αj = 1√
2
α
(1)
j α

(0)
j

†
α
(0)
j + α

(0)
j −

α
(1)
j α

(0)
j

†
α
(0)
j and βj = α

(1)
j α

(0)
j

†
α
(0)
j + α

(1)
j − α

(1)
j α

(0)
j

†
α
(0)
j .

Nevertheless, there is an important subtlety. One needs to pick specific lattices and

orderings to express the desired notion of subsystem locality. In order to express

the correct notion of nearest neighbour locality in terms of the in-front annihilation

operators we defined, we need to pick the ordering such that the connection happens

in front of all the in-between modes of the connection.

We want to explore this further in future works and be able to prove the conjecture
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that for any 2 D lattice, one can find an ordering such that all the two-mode

interactions that form a planar graph can be made to happen either completely

behind the in-between modes or completely in front. Thus, it would make any

nearest neighbour Hamiltonian expressable with creation and annihilation operators

of the neighbouring terms alone.

4.3 Anyonic descriptors

This section analyses the use of the anyonic annihilation operators we define in

Section 4.2 as anyonic descriptors. It showcases how the anyonic annihilation

operators can represent the local ontic states of anyonic theories, thus clearly

representing local realism in anyon systems. The results presented in this section

are original and unpublished.

We want to express anyon theory as a no-signalling operational theory, as defined

in Section 2.3. We have identified in Section 4.1 all the necessary elements: the

subsystem lattice with their associated Pphys
M and T phys

M , the embeddings of local

transformations, and the phenomenal projections as the anyonic behind partial

trace. We have shown in Subsection 4.1.6 that anyons satisfy the no-signalling

principle. All that is left is to check that the Separation property of the local groups

of transformations is satisfied.

The Separation property requirement is that in any tripartite system ABC, if a

transformation ÛABC is local in AC and BC, then it is necessarily local on C

alone4. To be local inAC and in BC, ÛABC needs to equal extended local unitaries

V ext
AC and W ext

BC .

The proof of the Separation property does not require the existence of anyonic

4The global phase factor is irrelevant, here.
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annihilation operators, as it is a property of the physical anyon transformations.

Nevertheless, we use the annihilation operators to have a simpler proof, analogous

to the proof of the fermionic case, in Subsection 3.1.5.

A physical transformation V̂ in ABC is local on AB if and only if it can be

expressed as a polynomial of creation and annihilation operators of A and B alone.

We need to take the collection of all multiple annihilation operators for the multiple

particle types.

Therefore, the condition of the physical operator V̂ being local in AC is equivalent

to V̂ = p

({
α
(j)
ai ,
(
α
(j)
ai

)†}
ijα

,

{
α
(j)
ck ,
(
α
(j)
ck

)†}
kjα

)
and for being local in BC

is equivalent to V̂ = q

({
α
(j)
bj′
,
(
α
(j)
bj′

)†}
j′jα

,

{
α
(j)
ck ,
(
α
(j)
ck

)†}
kjα

)
. Equating the

two and considering that the annihilation and creation operators are independent of

each other algebraically, one concludes that necessarily the components in p() that

contain A terms must vanish or can be grouped to form the identity operator I. I

can always be expressed in terms of modes in C alone, see Appendix C.2. Thus V̂

ends up containing C terms alone.

Therefore, we obtain that anyons are an operational no-signalling theory. Hence-

forth, we can apply the RR formalism to anyonic theory. Similarly to the fermionic

case shown in Section 3.2, we want to find anyonic descriptors to represent the

local ontic states, showcasing the local-realistic structure of anyons.

We have seen that qubit ladder operators are qubit descriptors (in Section 2.5) and

fermionic annihilation operators are fermionic descriptors (in Section 3.2). The

key reason is that they generate, together with their Hermitian conjugates, the local

and global algebras of observables. Since the anyonic annihilation operators satisfy

these properties, we know they can be considered anyonic descriptors. Knowing

the unitary evolution of {α(j′)
j }j∈M,α,j′ guarantees to know the evolution of any
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anyonic physical observable within M.

For anyons, we must consider the subtlety of the in-front and behind possible

system partitions. Each partition has different associated equivalence relations, as

the partition in position or momentum modes would. The partitions we consider

rely only on having in the subsets either completely in-front or completely behind

physical operators.

Thus, Û ∼M V̂ is equivalent to Û = ŴN \M · V̂ where ŴN \M is a completely in-

front or completely behind local unitary in N \M. It has the opposite behindness

than the observables in M in the subsystem chosen partition. In the subsequent

analysis, we refer to α(j′)
j as the normalised anyonic j′th annihilation operator of

the particle type a (associated with its Greek counterpart α) in the j’th mode. The

behindness of α(j′)
j depends on the subsystem partition chosen and which role plays

j in the subsystem M in consideration. In all cases, the behindness of operators

associated with N \{j} is the opposite of j. We consider that both orientations

of α(j′)
j can be chosen. In the discussion chapter, Section 5.3, we navigate the

behindness subtleties of the subsystem lattice.

Similarly to the qubit network and fermionic cases, the set of evolved descrip-

tors together with the initial Heisenberg state
({

Û † · α(j′)
j · Û

}
j∈M,α,j′

, ρ0

)
is a

compact way to represent the local ontic states.

We obtain Theorem 11, the anyonic analogue of Theorems 3 & 6. This theorem

ensures the representation of local ontic states by anyonic descriptors.

Theorem 11. The following equivalence holds for any subset of in-front joining

modes M of an N mode anyonic system of n particle types.

Û ∼M V̂ ⇐⇒ Û † · α(j′)
j · Û = V̂ † · α(j′)

j · V̂ (4.27)
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∀j ∈ M, j′ ∈ {1, . . . , Jα}, α and ∀Û , V̂ ∈ T phys
N where Jα =

∑
b,cN

c
ab − n+ 1

and α is associated to the particle type a.

Thus,

[Û ]M =
{
V̂ ∈ T phys

N

∣∣∣ Û † · α(j′)
j · Û = V̂ † · α(j′)

j · V̂ ∀j ∈ M, α, j′ ∈ {1, . . . , Jα},
}

(4.28)

The proof of Theorem 11 consists in applying the commutation properties inherited

from the definition of the annihilation operators and direct calculation of the local

properties of a unitary given it commutes with local annihilation operators. The

proof is in Appendix C.6.

Theorem 11 establishes a direct connection between the anyonic annihila-

tion operators and the local ontic states of the RR construction. The set

of evolved anyonic annihilation operators with the initial Heisenberg state({
Û † · α(j′)

j · Û
}
j∈M,j′,α

, ρ0

)
is a compact representation of the local ontic

states. We describe the ontic operations using this representation in the rest of

this section. We use the notation
((
Û †α

(j′)
j1
Û , . . . , Û †α

(j′)
jM
Û
)
, ρ0

)
to indicate the

representations. The notation also represents the collection over all particle types

α and over all annihilation operators j′.

4.3.1 Ontic group action ⋆

In the anyonic descriptor representation, the action ⋆ of the groups of transforma-

tions T phys
M on the ontic state spaces Rphys

M is given by:

ŴM ⋆
((
Û † · α(j′)

j1
· Û , . . . , Û † · α(j′)

jM
· Û
)
, ρ0

)
=

=
((
Ŵ † ext

M · Û † · α(j′)
j1

· Û · Ŵ ext
M , . . . , Ŵ † ext

M · Û †α
(j′)
jM

· ÛŴ ext
M

)
, ρ0

)
(4.29)
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4.3.2 Ontic-phenomenal epimorphisms φM

The global phenomenal state space’s orbit representatives can be diagonal in the

canonical fusion tree basis. Exactly as in the qubit networks and fermion cases

exposed in Subsubsection 2.5.1.2 & Subsection 3.2.2. By ordering the fusion tree

basis to showcase the block-diagonal form given by the global charge SSR, the

matrix representations of the phenomenal orbit representatives are of the form:

ρ0 =



λ
a1
1

. . .
λ
a1

dim(Ha1
N

)

. . .
λan1

. . .
λan
dim(Han

N
)


(4.30)

where a1, . . . , an are the n particle types in the theory and λakj−1 ≥ λakj ∀j ∈

{2, . . . , dim(Hak
N )} and ∀k ∈ {1 . . . , n}.

The orbit structure is like the fermionic case but with n sectors instead of 2. We

have n different orbits corresponding to each block in the pure case. We can fix the

convention up to the global sector. By convention, when the global phenomenal

state is pure, the orbit representative corresponds to mode 1 having a particle type

ak and the other N − 1 modes the vacuum particle type e. These choices fix the

state uniquely due to the trivial fusion rules for the vacuum.

We are ready to introduce the ontic-phenomenal epimorphisms φM. We use

the local map between the Heisenberg and Schrödinger pictures. We use the

decomposition of the Schrödinger state ρM:

ρM =
∑
k

Tr
(
Û † · Ô(k) ext

M · Û · ρ0
)
Ô

(k)
M (4.31)
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where Ô(k)
M are the local physical operator components of M. The chosen order

is left to right and up to down in the matrix representation in the local canonical

fusion tree basis. These operators can be expressed as polynomials of all the

anyonic annihilation operators associated with the modes j ∈ M. We use the

physical operator extension presented in Subsection 4.1.4.

It is precisely the polynomial decomposition that ensures that from the descriptor

evolution, one can deduce the coefficients Tr
(
Û † · Ô(k) ext

M · Û · ρ0
)

. Since the

ontic state representation also holds ρ0, we can make the assignment:

φM

((
Û † · α(j′)

j1
· Û , . . . , Û † · α(j′)

jM
· Û
)
, ρ0

)
=

=
∑
k

Tr
(
Û † · Ô(k) ext

M · Û · ρ0
)
Ô

(k)
M (4.32)

We point out that, to implement the epimorphism, we need some canonical ref-

erence of the annihilation operators; we need to specify which are the original

operators we are tracking as descriptors, not only their evolution.

4.3.3 Ontic projections πRM

Theorem 11 implies that the ontic projections for anyonic descriptors are:

πR
M

((
Û † · α(j′)

1 · Û , . . . , Û † · α(j′)
N · Û

)
, ρ0

)
=

=
((
Û † · α(j′)

j1
· Û , . . . , Û † · α(j′)

jM
· Û
)
, ρ0

)
(4.33)

Completely equivalent to the qubit and fermionic cases in Subsubsection 2.5.1.3

and Subsection 3.2.3.
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4.3.4 Ontic join product ⊙

Consider A ⊂ M and a valid associated bipartition A|B of the anyonic subsystem,

being part of the anyonic subsystem lattice, thus being well-behaved in behindness.

We denote B = M\A. Consider the following two compatible anyonic ontic

states of subsystems A and B: 5

((
Û † · α(j′)

a1 · Û , . . . , Û † · α(j′)
aS

· Û
)
, ρ0

) ((
V̂ † · α(j′)

b1
· V̂ , . . . , V̂ † · α(j′)

bM9S
· V̂
)
, ρ0

)
(4.34)

Being compatible local ontic states implies there must be a maximal unitary

Ŵ ∈ T phys
N such that Ŵ = R̂ext

N \AÛ and Ŵ = T̂ extN \BÛ . Under these circumstances,

we define the anyonic ontic join product ⊙ as:

(
Û † ·

(
α
(j′)
a1 , . . . , α

(j′)
aS

)
· Û , ρ0

)
⊙
(
V̂ † ·

(
α
(j′)
b1

, . . . , α
(j′)
bM9S

)
· V̂ , ρ0

)
=

=
((

Ŵ †α
(j′)
a1 Ŵ , . . . , Ŵ †α

(j′)
aS Ŵ , Ŵ †α

(j′)
b1

Ŵ , . . . , Ŵ †α
(j′)
bM9S

Ŵ
)
, ρ0

)
(4.35)

The uniqueness of this product is guaranteed by the Separation property satisfied

by the groups of transformations TS , seen at the beginning of this section.

4.3.4.1 Faithfulness of splitting operation

When the anyonic subsystem lattice allows it, we can repeat the bipartition process

until we reach the point of individual modes forming subsystems. For anyonic

systems, the diagram in Figure 4.25 commutes. Theorem 12 establishes this fact.

Theorem 12. The diagram of Figure 3.1 commutes. In other words:

πP
A

(
φM

(((
Û † · α(j′)

j1
· Û , . . . , Û † · α(j′)

jM
· Û
)
, ρ0

)))
=

5Here, the aj are mode labels, not the particle types of the theory.
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= φA

(
πR
A

(((
Û † · α(j′)

j1
· Û , . . . , Û † · α(j′)

jM
· Û
)
, ρ0

)))
(4.36)

Figure 4.25: Commuting diagram that represents taking the projection into subsys-
tems and the ontic-phenomenal epimorphism. Diagram a) represents the spaces,
and diagram b) represents the action of the mappings in the descriptor picture.

The complete proof is in Appendix C.6. The idea is to use the consistency condi-

tions that define the anyonic partial trace.

After seeing all the ontic operations, we can assert that anyons have a local-

realistic structure. We have found anyonic annihilation operators that act as anyonic

descriptors. Thus, annihilation operators can explicitly represent the anyonic ontic

states using the Heisenberg picture. We have seen how the topological nature of

non-abelian anyonic systems poses some hurdles, but these can be overcome to

expose the inherent local-realistic nature of the theory.
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5 | Discussion

We have thoroughly examined quantum indistinguishable particle systems satisfy

Einstein’s notion of local realism. We now delve deeper into discussing the

implications of our findings and tie up any loose ends we may have left in previous

chapters.

In Chapter 2, we have introduced relevant literature on the different notions of local

realism in the context of quantum mechanics. We have justified our preference for

Einstein’s general formulation of local realism over Bell’s. We have introduced

RR’s formalism [4] as a formalisation of Einstein’s local realism and its connection

with the concept of descriptors introduced in [3]. Lastly, we have explored the case

of qubit networks to uncover how qubit annihilation operators can be used as qubit

descriptors. Therefore, we may use the qubit annihilation operators to represent

the local ontic states of a qubit network.

In Chapter 3, we have found analogous results for bosonic and fermionic systems,

revealing their local-realistic structure. In the fermionic case, we have resolved

the prima facie paradox of having no action at a distance when the fermionic

annihilation operators represent the local ontic states. We have done so by pointing

out the need to restrict the allowed transformations using the parity SSR to satisfy

the no-signalling principle. In Section 3.4, we have provided the local-realistic

interpretation of the bosonic and fermionic Mach-Zehnder interferometers by using

the annihilation operators of the system.

After analysing local realism for 3 + 1 D indistinguishable particles, we have

considered 2 + 1 D anyonic particle systems in Chapter 4. We have proved

that anyonic annihilation operators can represent the local ontic states of the local-

realistic structure of anyonic systems, which is a fundamental point of this thesis. To
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derive this result, we first discovered the existence of anyonic annihilation operators.

We have characterised the construction and behaviour of these key elements within

anyonic theory. Subsequently, we have expressed the 2 D Fibonacci Hubbard

model Hamiltonian in a compact expression (Equation 4.26) using the anyonic

creation and annihilation operators.

This collection of results provides an in-depth and comprehensive analysis of the

local realism of quantum indistinguishable particle systems. We believe that this

work significantly contributes to determining whether quantum indistinguishable

particle systems are local-realistic and how to realise their local-realistic structure.

Furthermore, it fills a gap in the literature regarding the existence and definition of

non-abelian anyonic annihilation operators. In doing so, it opens up new avenues

for further research into these exotic indistinguishable particle systems, which are

the basis of the topological quantum computing scheme for fault-tolerant quantum

computation.

In the following sections, we discuss our results’ significance, consequences,

limitations and future directions for further research.

5.1 Heisenberg and Leibniz

One criticism that could be levelled at this thesis is that we are just using the

well-known and widely used Heisenberg model. Although we are indeed using the

Heisenberg picture, there is a conceptual leap in how we interpret the Heisenberg

picture.

First, we emphasise the relevance and necessity of having local objects associated

with each indistinguishable particle mode. Second, we propose interpreting the

dynamical evolution of the annihilation operators as a representation of local ontic
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states in our system. This consistent interpretation is a novel element with respect

to the usual Heisenberg picture.

Moreover, the widespread use of the Heisenberg picture does not include the

operators in the theory’s ontology. Instead, it is generally used only for calculation

purposes. When using it, the general belief appears to be that the ontology of

quantum mechanics is dictated by the quantum state and its measurable properties.

Generally, the theory’s observables are associated with measurement apparatus

rather than intrinsic, real properties attached to the system.

Having clarified this first point, let us now discuss whether our description satisfies

Leibniz’s rule of the identity of indiscernibles [37]. In a formal sense, this rule is

violated. The ontic states we consider are not in isomorphism with the phenomenal

states. Nevertheless, the global ontic state is given by the unitary that has been

applied to the system. A physical process gives such a unitary. Given enough

measurements and the ability to modify the initial state, one could perform process

tomography on such a physical process and retrieve the measurement. Therefore,

in this broader sense, the global ontic states are discernible by measurement.

This argument should be approached with caution. We require a large supply of

initial states undergoing the same process to perform state tomography. However,

to perform process tomography, we must also be able to modify the initial state.

Thus, we need the ability to modify the overall process. To measure different

observables, we must couple the system in different ways to probes, essentially

modifying the overall process as well. As a result, we can conclude that it is

equally possible for an all-powerful agent to perform process tomography or state

tomography.

The crucial point is that we have not considered such a possibility when describing

the phenomenal state space. We have not stated explicitly that the unitaries in
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quantum theory can, in principle, be retrieved from observation. Thus, we have not

considered unitaries as phenomenal. We have specified that the density operator

of the system provides all measurable properties of a quantum system. Given that

such a possibility was not considered at the outset of the discussion, it would be

contradictory to now claim that unitaries are observable.

We can either consider the density operators as the amalgamation of all observable

properties in the theory, thus violating the Leibniz rule, or start a new analysis

considering the unitaries as phenomenal in the first place. In the latter case, we

expect the Leibniz rule to be respected despite having yet to work out the details.

5.2 Are annihilation operators physical?

In Subsection 3.2.6, we have discussed whether fermionic descriptors are physical.

We have stressed that we believe they are or, at the very least, should be considered

representations of a physical entity: the RR unitary equivalence classes.

Bosonic annihilation operators should be considered on the same footing as the

fermionic operators. We have seen how bosonic annihilation operators can be

retrieved from bosonic observables b̂j =
(b̂j+b̂

†
j)−i(i(b̂j−b̂

†
j))

2
in Subsection 3.4.1.

Proposing the physicality of the annihilation operators solves the problem of

interpreting the descriptors in a local-realistic setting. Nevertheless, it raises some

questions in other regards.

Let us examine this postulate from a quantum field theory perspective. In proposing

the physicality of the annihilation operators, we are essentially proposing the

physicality of the Dirac and photonic fields ψ̂(x) & Âµ(x).

The position of considering ψ̂(x) & Âµ(x) as physical, i.e. real, can be postulated

in the context of the discussions on the Aharonov-Bohm effect [148–152]. In
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the Ahoronov-Bohm context, such a choice can be attacked from the perspective

of gauge dependence [151]. Without entering this debate, the situation we are

analysing substantially differs from the gauge dependence problem in the Aharonov-

Bohm effect.

The main difference is that in the case that concerns us, one can discern between

two ontic states that yield the same phenomenal state using process tomography.

One could a priori characterise the process and the Heisenberg state through

process and state tomography. A posteriori, one would be able to perfectly and

uniquely describe the system’s local and global ontic states, having obtained all

the information through direct evidence. Nevertheless, we acknowledge that the

philosophical problems raised by the Aharonov-Bohm effect, associated with the

physicality of the quantum fields, remain unsolved. More specific, in-depth, and

targeted work in this direction is required. We intend to engage with this discussion

fully in the not-so-distant future, considering the complete details of the quantum

field theory setup.

The anyonic case can be considered to lay on the same grounds as the fermionic

case. The similarities with the presence of the superselection rule, the violation of

local tomography, and the phenomenal state space orbit structure suggest that the

physicality of the anyonic annihilation operators should be at the same level as that

of the fermionic case.

Nonetheless, there may be additional caveats. The first is the lack of overwhelming

experimental evidence of non-abelian 2 D anyons. One cannot assert the physicality

of an element whose theory has not been confirmed experimentally.

Even if we were to consider a scenario in which non-abelian anyons have been

experimentally verified, we would still need to address the lack of notion of fields

to which such annihilation operators can refer. One could draw connections with

143



University of Oxford Balliol College

topological quantum field theories. However, that may be a highly speculative

program.

Despite these hurdles, we claim the physicality of the annihilation operators in

all three cases. Our main justification for making such a claim is that we have

shown how these elements showcase the physical structure of local realism. We

have seen how natural the behaviour of these ontic states’ representations is. It is

clear that the local ontic states of the theory are physical. These objects are the

best candidates for the local ontic states. Therefore, we should not disregard them

as such.

5.2.1 The relevance of local tomography

We want to emphasise the importance of local tomography in the debate about the

physicality of annihilation operators.

In Subsections 3.1.6 & 4.1.7, we have seen how fermions and anyons do not

satisfy local tomography due to their imposed superselection rules. We have

discussed how, in both cases, the failure of local tomography prevents any set of

local observables from being descriptors.

As a result, in theories where local tomography is not satisfied but the no-signalling

principle is, we must either relinquish the search for elements within the theory

that represent the local ontic states or use elements that are not local observables.

Both cases imply using elements not canonically agreed to be physical as local

ontic states. In such cases, having annihilation operators as local ontic states is

reassuring. They are not observables but possess a powerful physical meaning and

associated intuition.
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5.2.2 Bilocal tomography

It is important to note that, while fermions and anyons are not local tomographic,

fermions are bilocal tomographic [153]. Bilocal tomography is the property that any

global observable in a tripartite system ABC can be obtained through measuring

observables local on pairs of the elemental subsystems. In other words, if KA is

the number of linearly independent observables in subsystem A, we say a theory is

bilocal iff [43]

KABC ≤ KABKC +KACKB +KBCKA − 2KAKBKC (5.1)

Real quantum theory is also a superselected theory that is also bilocal and not

locally tomographic [153]. Nonetheless, we prove that Fibonacci anyons are not.

Solving the recurrence relations from Subsubsection 4.1.1.1, the number of states

of global charge e in an n-mode Fibonacci system is F2n−1. With global charge

τ is F2n. Therefore, in an n-mode subsystem there are Kn = F 2
2n−1 + F 2

2n =

ϕ4n−1+ϕ1−4n
√
5

linearly independent observables. Using the Kn formula, it is straight-

forward to check that in a 3n-mode Fibonacci tripartite system K3n > 3K2nKn −

2 (Kn)
3. Therefore making Fibonacci anyons not bilocal tomographic.

Some readers may object here. The conditions in Equation 5.1 for bilocal tomogra-

phy are derived assuming that the individual subsystems can only be paired in one

way. However, as previously discussed, in non-abelian anyons, joining the modes

in front or behind the others may lead to different subsystems. In fact, some local

in-front observables are linearly independent of all the behind local observables

for the same pair of subsystems.

Regardless, if we consider three sets of n modes in sequence, then the in-front

and behind observables of AB and BC will coincide. This is because they are
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not really going either behind or in front of C and A, respectively. Now, even

considering AC in-front and behind observables all linearly independent of each

other, still the modified1 bilocal inequality is violated:

KABC ≤ KABKC +KBCKA +KACf
KB +KACb

KB − 3KAKBKC (5.2)

because K3n > 4K2nKn − 3 (Kn)
3. Fibonacci anyons are thus not bilocal to-

mographic. More sophisticated alternating behind and in-front paths could be

considered. However, because we have not considered them throughout the anal-

ysis, we feel it would be cheating, and many of the concepts we have discussed

would be very unclear. We wonder whether all non-abelian anyon systems are not

bilocal tomographic. We hope such characterisation is provided in the future.

5.3 The importance of subsystem lattices

In this section, we emphasise that the lattice of subsystems of a theory is an extra

layer of the structure that the particle system observable algebra alone does not

determine. Chiribella has also pointed this out [39].

More concretely, in the qubit, bosonic and fermionic case, the lattice of systems

is determined by the chosen notion of modes. In non-abelian anyons, the extra

structure of in-front and behind observables must be specified.

Moreover, the local ontic states can be assigned under the system mode partition.

Yet, the choice of modes is not unique. For fermions and bosons, we could perfectly

define a different set of modes by applying a unitary Bogoliubov transformation

â′k =
∑

j ujkâj , where ujk are the components of an N ×N unitary matrix. This

would define a different partitioning of the global system in terms of subsystems.

1ACf for in-front observables of A and C. ACb for behind.
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In this other partition, we would be able to identify the associated local ontic states.

Therefore, even though we can uniquely identify the local elements of reality given

a notion of subsystem locality, the subsystem locality is not unique for a group of

physical transformations.

The specification of the lattice of subsystems becomes even more crucial in the

anyonic scenario. We have seen how we can specify different ways to fuse the

anyonic modes depending on their paths relative to the non-fused modes.

In the planar representation, we identify two main ways to fuse a given set of

modes that do not follow the mode order. The in-front and behind options consist

of the chosen modes passing in front of or behind all the non-selected modes to

fuse together. With these two minimal options, we can split the set of modes in

such a way that in a bipartition A|B, we can define in-front observables in A and

behind observables in B, ensuring that these will commute. The commutation

property is key in order to satisfy no signalling.

One can prove that if such a distinction is not made and one considers any observ-

able local in the modes A (regardless of being in-front or behind), then the partial

trace consistency conditions have no solution. Suppose we insist on fixing a single

behindness. In that case, the complementary system of A will either not exist or

consist in the set of local observables in B that have the same behindness as A.

These would not commute. Therefore, the no-signalling principle would not be

guaranteed, and one could prove its violation.

Therefore we are forced to consider both possibilities separately. As in Af |Bb is a

different partition of the modes than Ab|Bf . 2

It would be interesting to explore the possibility and necessity of defining more

2The f and b subscripts mean in-front and behind, respectively.
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enriched subsystem lattices, in which alternating in-front and behind paths and

their complements may be considered in their own right. Since we have not needed

to do so, we have preferred to keep the minimal choice.

By doing so, we have defined a consistent subsystem lattice where partial tracing

can be defined uniquely. It satisfies both the no-signalling and the Separability

postulate. Moreover, we have proved that under a consistent subsystem lattice

partition, local realism will apply.

Let us provide a minimal example of a consistent subsystem lattice parti-

tion. Consider a 3-mode system, the subsystem lattice given by the partitions

ABC,AB|C,A|BC,ACb|Bf , A|Bf |C is well-posed. Where A ⊏ ACb, AB ⊏

ABC, and B ⊏ AB,BC ⊏ ABC, and C ⊏ ACb, BC ⊏ ABC. This lattice is

not boolean, but it does work for the use we give it in the chapter.

To calculate the local ontic states of the subsystem ACb, we need the behind annihi-

lation operators for A and C. We will need the in-front annihilation operators if we

choose a different subsystem lattice with the subsystem ACf instead. Therefore,

we must consider that each mode holds both the in-front and the behind annihilation

operators as descriptors.

We have expressed physically meaningful Hamiltonians as the anyon Hubbard

model as a polynomial of in-front only annihilation operators. We are severely

restricted if we only use in-front interactions. However, our capabilities increase

substantially when using both in-front and behind annihilation operators.

By analysing the graph properties of two-mode interactions in a plane, we introduce

the following conjecture, which we expect to hold.

Conjecture 1. For any 2 D lattice where the two-mode interactions form a planar

graph, an ordering of the modes exists such that all two-mode interactions are
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completely in-front or behind.

Proving this conjecture would imply that any reasonable two-mode interaction

Hamiltonian may be expressed using the anyonic in-front and behind annihilation

operators. For example, the non-abelian anyonic Mach-Zehnder interferometer

proposed in [126, 127] could be modelled by a Hamiltonian that includes both

interactions that are in front and behind. These are needed to close the loop of one

anyon going behind another.

5.4 Anyonic subtleties

This Section contains a detailed discussion of the anyonic results we have obtained.

Some part of this Section is adapted from [104], written with the collaboration of

Lucia Vilchez-Estevez.

For non-abelian anyon particles, we observe that the number of in-front annihilation

operators per lattice site is J = na−n+1, where na is the total number of allowed

fusion channels associated with that particle type. In the Fibonacci case, for the τ

particle na = 3, we have τ × e = τ and τ × τ = e+ τ , and n = 2 because there

are two particle types in Fibonacci anyons, therefore J = 2. Including in a single

mode both in-front and behind annihilation operators, we obtain a total of 2J = 4

annihilation operators per mode in Fibonacci anyons.

The construction applies to all non-abelian anyon theories. We have exemplified it

with Fibonacci anyons to be concise. Still, it is important to note that annihilation

operators can be defined for Ising anyons [132] or any other non-abelian anyon

theory. In future work, we would like to explore the connections between the

annihilation operators defined using this method for Ising anyons and those for

Majorana fermions.
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5.4.1 Non-physical operator embedding

In Subsection 4.1.4.3, we have introduced the problem that non-abelian non-

physical anyonic operators do not have a consistent embedding on larger mode

systems. One might hope that by finding the anyonic annihilation operators, this

problem might be solved. Unfortunately, this has not been the case, or at least not

yet.

Despite identifying the anyonic annihilation operators in a fixed n-mode anyonic

system, the definition lacks faithful embedding into larger systems. A canonical

extension could be used in which only the N th mode splits into all the fusion-

allowed possibilities.

However, using the Fibonacci anyon example, it is straight-forward to see that

such embedding does not work for the in-front mode 2 annihilation operator when

extending from a 2-mode system to a 3-mode system. For example, consider the

term in modes 1, 2 where the two τ particles fuse to the vacuum, and then the

vacuum splits into two vacuum particles.

This observable term can be expressed using the 2-mode annihilating elements

as: (Rττ
e )∗τ e,τ1 τ τ,e2 . However, when replacing this expression with the 3-mode

annihilating elements, we do not obtain the local observable of two τ annihilating

into the vacuums in modes 1, 2. Instead, we obtain one of the components of such

an observable term.

Nonetheless, the opposite process does work. Consider the expression for the local

observable embedded in the 3-mode system in terms of the anyonic annihilation

operators in the 3-mode system. In the 2-mode system, replacing the expression

with the 2-mode anyonic annihilation operators yields the correct local observable.

We hope that a full algebraic characterisation of the anyonic system, using only
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algebraic rules involving the creation and annihilation operators, may help with

this problem by providing universal expressions for the local observables. Unfortu-

nately, obtaining such characterisation is very challenging.

5.4.2 Anyonic commutation relations and Fock space

This thesis presents annihilation operators in the diagrammatic formalism for non-

abelian 2D anyons. We aim to describe the algebraic properties of the anyonic

creation and annihilation operators in commutation-like relations to have a com-

plete algebraic characterisation of the anyonic theory. This allows for manipulations

using annihilation operators directly without computing any diagram.

A complete characterisation at the algebraic level might be very challenging. Deter-

mining algebraically whether a polynomial of creation and annihilation operators

is superselection-respecting is quite cumbersome. Check Appendix C.4 for some

derived algebraic relations of the Fibonacci creation and annihilation operators.

In the general case, let us refer to the fusion tree where all the components are

the vacuum particle type as |0⟩. Take note that α(j)
k |0⟩ = 0 for all j and k. |0⟩ is

unique under this property. Any canonical fusion tree basis state can be expressed

as a well-ordered sequence of creation operators acting on |0⟩. Therefore, we

are providing a Fock space construction of anyonic systems. We have calculated

concrete expressions for 3-mode Fibonacci anyons, included in Appendix C.5.

These expressions may be useful to find Jordan-Wigner mappings for 2 + 1 D

anyons. Using the algebraic characterisation to explore Bogoliubov-like transfor-

mations for the non-abelian anyonic annihilation operators would also be very

interesting. Specifically, performing Bogoliubov transformations would allow us to

change the mode notion. Seeing and interpreting these new anyonic modes not tied

to simply-connected regions of the manifold would be fascinating and facilitate
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some tasks.

5.4.3 Anyonic Hamiltonians

The ability to express the Hubbard-like anyonic Hamiltonian in terms of local

annihilation operators may have implications in the simulation of the model. Until

recently, the community lacked good numerical techniques to simulate non-Abelian

anyons systems. The main difficulty arises from the need for a tensor product

structure and the growth of the Hilbert space with the number of modes. There have

been some recent efforts to generalise the tensor network formalism to anyonic

lattices [154–156]. We expect that having access to the local annihilation operators

of an anyonic theory will facilitate the numerical simulation in some cases. In this

way, we can exploit the parallelism between the anyonic Hubbard Hamiltonian and

its bosonic or fermionic counterpart, for instance.

The Hamiltonian in Equation 4.26 contains terms with long-range interactions.

These highly long-range terms (with respect to the ordering) can make the simula-

tions time-inefficient. The ordering of Figure 4.23 is deliberately chosen to require

only in-front annihilation operators.

Using in-front annihilation operators only, we restrict ourselves to a non-local

expression of behind-only interactions. Therefore, we choose the lattice ordering

so that no two-mode interaction is a behind term.

Of course, we can think of a more natural (and short-range) ordering, e.g. ladder

ordering. In such ordering, the Hamiltonian is either expressed using both in-

front and behind annihilation operators, or the Hubbard Hamiltonian will contain

products of several operators local in not only the nearest-neighbour interacting

sites.

In conclusion, if we want to avoid long-range terms (with respect to the ordering) in

152



University of Oxford Balliol College

our Hamiltonian, we need to sacrifice the simplicity of the current expression. We

believe that the study of the similarities and differences between these approaches

is a promising future direction to follow.

We hope that the expressions found for the 2 + 1 D non-abelian anyon creation

and annihilation operators will advance the study and understanding of this topic,

especially by allowing us to apply known techniques to the study of topological

quantum computing and the experimental detection of the particles described.

5.5 Possible extensions of the work

Regarding the local realism and the quantum foundation’s aspect of the thesis,

there are several exciting directions in which this work can be extended.

Firstly, the natural extension to the full quantum field theory case. The mathemati-

cal subtleties of infinite modes will have to be taken into account. However, the

expected results are the same as the ones presented in this thesis.

Secondly, working out the details of the relative descriptors program [52, 54] for

the indistinguishable particle cases. The program consists in defining the relative

descriptors upon measuring an outcome in a projective measurement. It can be

seen as an Everett relative state construction for descriptors. Such a program is

necessary to provide a more in-depth account of the Bell scenario.

Thirdly, considering anyonic systems as a possibility can have significant con-

sequences when modelling general physical theories. Axioms such as bilocal

tomography or unique subsystem composition should be abandoned. We want to

make sure that general probabilistic theories [39, 141] are not overly restrictive in

their assumptions and can include anyonic features.

We intend to study the quantum information aspects of non-abelian anyonic systems
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next. The notions of separability and entanglement characterisation. They may

display striking behaviour that advances our understanding of information systems

and their relation to their physical underpinnings.

We want to establish if anyons are the only systems that exhibit this set of nuanced

conditions or if these can also be found in other constrained quantum systems. The

latter should be the case. We expect that there are constrained systems without an

indistinguishable particle interpretation that behave as strikingly as non-abelian

anyons regarding subsystem composition and, thus, information capabilities.
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A | Mathematical details of Chapter 2

In this appendix, we include the mathematical details we do not specify in the main

text of Chapter 2. These include the proof of Theorem 4 and Theorem 5.

(Theorem. 4) Using the full set of descriptors
(
Û † · q̂1 · Û , . . . , Û † · q̂N · Û

)
it is

possible to uniquely find the Û ∈ TN that has evolved them from their canonical

form (q̂1, . . . , q̂N).

Proof. First, note that the unitary conjugation action is up to a global phase.

Keeping this in mind, considering the unitary Û as an operator, we can regard

it as a vector on the vector space of operators. We can consider in the global

operator algebra an orthonormal basis, where the scalar product between two

operators Â, B̂ is given by Tr
(
Â† · B̂

)
. It is straightforward to see that for the

qubit network operators if one labels the computational basis as {|k⟩}2Nk=1, then

|k⟩⟨l| is an orthonormal basis of the operator vector space with scalar product given

by Tr
(
Â† · B̂

)
.

Considering this, now Û can be written as Û =
∑2N

k,l=1 Tr
(
Û |k⟩⟨l|

)
|k⟩⟨l|. So, if

we know Tr
(
Û · |k⟩⟨l|

)
we know the unitary. |k⟩⟨l| is a polynomial of {q̂j, q̂†j}Nj=1.

Using this, having at our disposal (q̂1, . . . , q̂N) and
(
Û † · q̂1 · Û , . . . , Û † · q̂N · Û

)
we can construct |k⟩⟨l| and Û † · |k⟩⟨l| · Û , where to construct the second we have

replaced the q̂j, q̂
†
j in the decomposition of |k⟩⟨l| by Û † · q̂j · Û , Û † · q̂†j · Û . This

works due to the linearity and the fact that in the products, it can be applied that

Û · Û † = I. Let us denote
∣∣k̄〉 = Û † |k⟩.

We take the scalar product of any two of these objects. In other words, consider

Tr
(∣∣k̄〉〈l̄∣∣ · |m⟩⟨n|

)
= Tr

(
Û † · |k⟩⟨l| · Û · |m⟩⟨n|

)
. Now, if we insert the decom-

position of Û found above and we use the linearity properties of the trace, we
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obtain that

Tr
(∣∣k̄〉〈l̄∣∣ |m⟩⟨n|

)
=

=
2N∑

o,p,q,r=1

Tr
(
Û † |o⟩⟨p|

)
Tr
(
Û |q⟩⟨r|

)
Tr (|p⟩⟨o| |k⟩⟨l| |r⟩⟨q| |m⟩⟨n|) =

=
2N∑

o,p,q,r=1

Tr
(
Û † |o⟩⟨p|

)
Tr
(
Û |q⟩⟨r|

)
δokδlrδqmδnp =

= Tr
(
Û † · |k⟩⟨n|

)
Tr
(
Û · |m⟩⟨l|

)
where we have used the orthonormality of the computational basis and the proper-

ties of the Kronecker delta. Using the cyclic properties of the trace and complex

conjugation, we obtain Tr
(
Û † |k⟩⟨n|

)
Tr
(
Û |m⟩⟨l|

)
= Tr

(
Û |n⟩⟨k|

)∗
Tr
(
Û |m⟩⟨l|

)
.

By knowing all the values of Tr
(∣∣k̄〉〈l̄∣∣ |m⟩⟨n|

)
, which we obtain from (q̂1, . . . , q̂N)

and
(
Û † · q̂1 · Û , . . . , Û † · q̂N · Û

)
alone, we can retrieve Tr

(
Û · |m⟩⟨l|

)
. Notice

that Tr
(
Û · |m⟩⟨l|

)
is a complex number, so knowing its polar form is enough.

We see that Tr
(∣∣l̄〉〈l̄∣∣ |m⟩⟨m|

)
=
∣∣∣Tr(Û · |m⟩⟨l|

)∣∣∣2. Thus, we obtain the modulus

of the complex number.

We can see now that Tr
(
Û · |m⟩⟨l|

)
=
√

Tr
(∣∣l̄〉〈l̄∣∣ · |m⟩⟨m|

)
eiϕm,l . So only the

phases are left to determine. Here is where the issue of the freedom of a global

phase intervenes. Since Û is unitary, we know they must exist m0, l0 such that∣∣∣Tr(Û · |m0⟩⟨l0|
)∣∣∣2 = Tr

(∣∣l̄0〉〈l̄0∣∣ · |m0⟩⟨m0|
)
> 0. Due to the overall phase

redundancy, we can fix the phase ϕm0,l0 = 0.

In other words, we could always choose a global phase to cancel the phase ϕm0,l0

so it is set to 0. Now, we can see that if we consider

Tr
(∣∣l̄0〉〈l̄∣∣ · |m⟩⟨m0|

)
= Tr

(
Û · |m0⟩⟨l0|

)∗
Tr
(
Û · |m⟩⟨l|

)
=
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=
√

Tr
(∣∣l̄0〉〈l̄0∣∣ · |m0⟩⟨m0|

)√
Tr
(∣∣l̄〉〈l̄∣∣ · |m⟩⟨m|

)
eiϕml

Thus, we obtain that

Tr
(
Û · |m⟩⟨l|

)
=

Tr
(∣∣l̄0〉〈l̄∣∣ · |m⟩⟨m0|

)√
Tr
(∣∣l̄0〉〈l̄0∣∣ · |m0⟩⟨m0|

)
Therefore, indeed we can retrieve the unitary Û .

The next theorem’s proof is Theorem 5.

(Theorem. 5) The diagram of Figure 2.1 commutes. In other words:

πP
A

(
φM

(((
Û † · q̂j1 · Û , . . . , Û † · q̂jM · Û

)
, ρ0

)))
=

= φA

(
πR
A

(((
Û † · q̂j1 · Û , . . . , Û † · q̂jM · Û

)
, ρ0

)))
(A.1)

Proof. We begin by expanding the right-hand side of the equation by applying the

definition of the ontic projection operator, obtaining:

φA

(((
Û † · q̂a1 · Û , . . . , Û † · q̂aS · Û

)
, ρ0

))
Applying now the definition of φA of Equation 2.22, we obtain:

1

2S

∑
p⃗

Tr
(
Û † (σ̂p1a1 ⊗ · · · ⊗ σ̂pSaS ⊗ IN \A

)
Ûρ0

)
σ̂p1a1 ⊗ · · · ⊗ σ̂pSaS

where we have chosen as orthonormal basis for the local operator space of the

reduced qubit network system with lattice sites A = {a1, . . . , aS} the basis given

by the renormalised product of Pauli operators {2−S
2 σ̂p1a1 ⊗ · · · ⊗ σ̂pSaS}, with the

labels pk ∈ {0, x, y, z}.
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We now turn to expand the left-hand side of the initial equation by applying the

definition of the ontic-phenomenal epimorphism and choosing the same basis as

before but for the larger set of lattice sites M = {j1, . . . , jM}, we obtain:

πP
A

(
φM

(((
Û † · q̂j1 · Û , . . . , Û † · q̂jM · Û

)
, ρ0

)))
=

= πP
A

 1

2M

∑
d⃗

Tr
(
Û †
(
σ̂j1d1 ⊗ · · · ⊗ σ̂dMjM ⊗ IN \M

)
Ûρ0

)
σ̂d1j1 ⊗ · · · ⊗ σ̂dMdM


The main difference with the expanded version of the right-hand side is the length

of the vectors d⃗ versus p⃗ and the normalisation factor.

Now, let’s take the partial trace of the lattice sites that are in M but not in A. Since

TrB
(
σaA ⊗ σbB

)
= 2δb0σ

a
A, the expression of the left hand side becomes

TrM\A

 1

2M

∑
d⃗

Tr
(
Û †
(
σ̂j1d1 ⊗ · · · ⊗ σ̂dMjM ⊗ IN \M

)
Ûρ0

)
σ̂d1j1 ⊗ · · · ⊗ σ̂dMdM

 =

=
1

2M

∑
d⃗

Tr
(
Û †
(
σ̂j1d1 ⊗ · · · ⊗ σ̂dMjM ⊗ IN \M

)
Ûρ0

)
σ̂
da1
a1 ⊗ · · · ⊗ σ̂aSdaS

2M−Sδb10 . . . δbM−S0 =

=
1

2S

∑
p⃗

Tr
(
Û † (σ̂p1a1 ⊗ · · · ⊗ σ̂pSaS ⊗ IN \A

)
Ûρ0

)
σ̂p1a1 ⊗ · · · ⊗ σ̂aSpS

which exactly coincides with the expression on the right-hand side.
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B | Mathematical details of Chapter 3

This appendix includes the mathematical details and laborious proofs of statements

we could not show in the main text.

Proposition 13. Fermionic annihilation operators are fermionic descriptors. From

Û †f̂jÛ for all j ∈ M one can get Û †Ô
(k)
M Û for any local operator Ô(k)

M ∈ AM.

Proof. Given any Ô(k)
M ∈ AM, by definition it can be written as a polynomial of

the creation and annihilation operators of the modes j ∈ M. Therefore we can

write Ô(k)
M = p

({
f̂j, f̂

†
j

}
j∈M

)
= a1f̂j1 + a2f̂

†
j1
+ a3f̂

†
j1
f̂j1 + a4f̂j1 f̂

†
j1
+ ..., with

a maximum of 2M+1 monomials. Now, we can see that due to the linearity of the

unitary action, from all Û †m

({
f̂j, f̂

†
j

}
j∈M

)
Û one can retrieve Û †Ô

(k)
M Û , where

m(−) is a monomial of its arguments.

Any monomial of degree bigger than one is either of the formm

({
f̂j, f̂

†
j

}
j∈M

)
=

f̂j⋆m⋆

({
f̂j, f̂

†
j

}
j∈M

)
or m

({
f̂j, f̂

†
j

}
j∈M

)
= f̂ †

j⋆m⋆

({
f̂j, f̂

†
j

})
where j⋆ ∈

M and m⋆

({
f̂j, f̂

†
j

})
is a monomial of a lesser degree than the degree of m().

Since Û is unitary, then either

Û †m

({
f̂j, f̂

†
j

}
j∈M

)
Û = Û †f̂j⋆Û · Û †m⋆

({
f̂j, f̂

†
j

}
j∈M

)
Û

or Û †m

({
f̂j, f̂

†
j

}
j∈M

)
Û = Û †f̂ †

j⋆Û · Û †m⋆

({
f̂j, f̂

†
j

}
j∈M

)
Û

Applying recursively such decomposition and trivially for monomials of degree

one, we get that any unitary evolution of any monomial can be retrieved from all

the unitary evolutions Û †f̂j (̂U) and Û †f̂ †
j (̂U) for all j ∈ M.

Finally, observe that
(
Û †f̂ †

j (̂U)
)†

= Û †f̂j (̂U). It follows that from all Û †f̂j (̂U)
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one can retrieve all Û †Ô
(k)
M Û

Theorem 14. Given the parity SSR applied on observables, states and transfor-

mations, the no-signalling principle is satisfied in fermionic systems. Given a

bipartition A|B of M, it is satisfied

TrB

(
ÛB · ρM · Û †

B

)
= TrB (ρM) (B.1)

for any ÛB ∈ T phys
B , ρM ∈ Pphys

M .

Proof. The crucial property that we will use to prove the statement is that if

Tr
(
ÔA · P̂A

)
= Tr

(
ÔA · Q̂A

)
for all local parity SSR observables ÔA, and

P̂A, Q̂A are local parity SSR observables, then P̂A = Q̂A. This result follows

from seeing the parity SSR observables as a subvector space of the finite Hilbert

space of operators under the trace scalar product.

We need to see that for any local even unitary ÛB and any phenomenal state

ρM ∈ PM we have TrB

(
ÛB · ρM · Û †

B

)
= TrB (ρM).

The property that uniquely identifies the partial trace operation is the fulfilment

of the consistency conditions in Equation 3.10. By applying the consistency

conditions of the partial trace to the state ÛB · ρM · Û †
B we obtain

∀ÔA ∈ OA Tr
(
ÔA · TrB

(
ÛB · ρM · Û †

B

))
= Tr

(
ÔA · ÛB · ρM · Û †

B

)
=

= Tr
(
Û †
B · ÔA · ÛB · ρM

)
(B.2)

Now, using that ÛB, ÔA are disjoint even fermionic operators, we see that they

commute. By applying the anticommutation relations, due to the fact that all

monomials have an even degree, the gathered phase in each term is the same and
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equal to +1, therefore being commuting operators. Therefore

∀ÔA ∈ OA Tr
(
ÔA · TrB

(
ÛB · ρM · Û †

B

))
= Tr

(
Û †
B · ÛB · ÔA · ρM

)
=

= Tr
(
ÔA · ρM

)
= Tr

(
ÔA · TrB (ρM)

)
(B.3)

Applying the property described at the beginning of the proof, we obtain that,

indeed, TrB (ρM) = TrB

(
ÛB · ρM · Û †

B

)
.

(Theorem. 6) The following equivalence holds for any subset of modes M of an

N mode fermionic system.

Û ∼M V̂ ⇐⇒ Û † · f̂j · Û = V̂ † · f̂j · V̂ ∀j ∈ M, Û , V̂ ∈ T phys
N

Thus, [Û ]M =
{
V̂ ∈ TN

∣∣∣ Û † · f̂j · Û = V̂ † · f̂j · V̂ ∀j ∈ M
}

.

Proof. The last statement follows directly from the definition of an equivalence

class, so the equation that needs to be proven is Equation 3.13:

"⇒": Remember N = {1, . . . , N}. Û ∼M V̂ implies Û = ŴN \M · V̂ for

some ŴN \M being a parity SSR unitary, local on the set of lattice sites that

excludes all the sites j ∈ M. Thus, since ŴM\M is an even operator that does

not contain any terms involving q̂j, q̂
†
j for j ∈ M, is straightforward to check

that due to having all the monomials of the polynomial expression of the unitary

an even degree, [ŴN \M, f̂j] = 0 for all j ∈ M. Therefore: Û † · f̂j · Û =

V̂ † · Ŵ †
N \M · f̂j · ŴN \M · V̂ = V̂ † · f̂j · Ŵ †

N \M · ŴN \M · V̂ = V̂ † · f̂j · V̂ .

"⇐": We have that Û † · f̂j · Û = V̂ † · f̂j · V̂ for all j ∈ M. To see that Û ∼M V̂ we

need to see that Û = ŴN \M · V̂ . Or, equivalently, since we have a group structure,

where transformations are parity SSR unitaries, proving that Û · V̂ † = ŴN \M is

enough to prove that Û ∼M V̂ .
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From Û † · f̂j · Û = V̂ † · f̂j · V̂ for all j ∈ M is straightforward to deduce that then

f̂j · (Û · V̂ †) = (Û · V̂ †) · f̂j for all j ∈ M. Naming Û · V̂ † = Ŵ , noticing Ŵ

is a unitary and taking the dagger of the previous equation, we have that the two

following equalities hold:

Ŵ · f̂j = f̂j · Ŵ Ŵ · f̂ †
j = f̂ †

j · Ŵ ∀j ∈ M (B.4)

Moreover, now since Ŵ is a priori a general parity SSR unitary, it is not difficult to

see that we can decompose it as Ŵ = Ô0 + f̂j1Ô1 + f̂ †
j1
Ô2 + f̂j1 f̂

†
j1
Ô3 for j1 ∈ M.

Where Ô0, Ô3 are even local operators and Ô1, Ô2 are odd local operators, both

on the set of lattice sites N \{j1}. Using this decomposition of Ŵ in the first

condition of Equation B.4 and commuting/anticommuting the f̂j1 , f̂
†
j1

terms with

the Ôk operators we obtain that:

f̂j1(Ô0 + Ô3) + f̂j1 f̂
†
j1
Ô2 − Ô2 = f̂j1Ô0 + f̂j1 f̂

†
j1
Ô2

Implying that Ô2 = 0̂ and Ô3 = 0̂. Then, using that Ŵ = Ô0+ f̂j1Ô1 and replacing

in the second condition of Equation B.4 we obtain:

f̂ †
j1
Ô0 − f̂j1 f̂

†
j1
Ô1 = f̂ †

j1
Ô0 + f̂ †

j1
f̂j1Ô1

Therefore, Ô1 = 0̂. Thus, we have seen that the conditions imply that Ŵ = Ô0,

thus being a local unitary on the set of modes N \{j1}. Because each of the

conditions of Equation B.4 for each j ∈ M is independent, the same reasoning can

be followed exactly with the other lattice sites in M that are not j1. Therefore the

conditions imply that none of the sites in M appears in the decomposition of Ŵ

in terms of fermionic creation and annihilation operators. Therefore Ŵ = ŴN \M
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is a local operator in the lattice sites N \M, and therefore we have proven that

Û ∼M V̂ .

(Theorem. 7) Using
(
Û † · f̂1 · Û , . . . , Û † · f̂N · Û

)
, the complete set of fermionic

descriptors, it is possible to uniquely find the transformation Û ∈ T phys
N that has

evolved them from their canonical form
(
f̂1, . . . , f̂N

)
.

Proof. First, note that the unitary conjugation action is up to a global phase.

Keeping this in mind, considering the unitary Û as an operator, we can regard it as

a vector on the vector space of operators. We can consider in the operator algebra

an orthonormal basis, where the scalar product between two operators Â, B̂ is

given by Tr
(
Â†B̂

)
. It is straightforward to see that for the fermionic operators if

one labels the orthonormal Fock basis as {|k⟩}2Nk=1, then |k⟩⟨l| is an orthonormal

basis of the operator vector space with scalar product given by Tr
{
Â†B̂

}
. Let us

rename
∣∣k̄〉 = Û † |k⟩. Then, we denote ˆ̄fi = Û †f̂iÛ .

Û can be written as Û =
∑2N

k,l=1Tr
(
Û |k⟩⟨l|

)
|k⟩⟨l|. So, if we know Tr

(
Û |k⟩⟨l|

)
we know the unitary. |k⟩⟨l| is a product of creation and annihilation operators,

since |k⟩ = f̂ †
i1
. . . f̂ †

in
|Ω⟩ and |Ω⟩⟨Ω| = f̂N . . . f̂1f̂

†
1 . . . f̂

†
N . Using this fact, having

at our disposal
(
f̂1, . . . , f̂N

)
and

(
ˆ̄f1, . . . ,

ˆ̄fN

)
we can construct |k⟩⟨l| and

∣∣k̄〉〈l̄∣∣,
where to construct the second we have replaced the f̂i, f̂

†
i in the decomposition of

|k⟩⟨l| by Û †f̂iÛ , Û
†f̂ †
i Û . We can see easily that

∣∣k̄〉〈l̄∣∣ = Û † |k⟩⟨l| Û .

We take the scalar product of any two of these objects. In other words, consider

Tr
(∣∣k̄〉〈l̄∣∣ |m⟩⟨n|

)
= Tr

(
Û † |k⟩⟨l| Û |m⟩⟨n|

)
. Now, if we insert the decomposition

of Û found above and we use the linearity properties of the trace, we obtain that

Tr
(∣∣k̄〉〈l̄∣∣ |m⟩⟨n|

)
equals

2N∑
o,p,q,r=1

Tr
(
Û † |o⟩⟨p|

)
Tr
(
Û |q⟩⟨r|

)
Tr (|p⟩⟨o| |k⟩⟨l| |r⟩⟨q| |m⟩⟨n|) =
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2N∑
o,p,q,r=1

Tr
(
Û † |o⟩⟨p|

)
Tr
(
Û |q⟩⟨r|

)
δokδlrδqmδnp = Tr

(
Û † |k⟩⟨n|

)
Tr
(
Û |m⟩⟨l|

)

where we have used the orthonormality of the Fock basis and the properties of

the Kronecker delta. Using the cyclic properties of the trace and complex conjuga-

tion we obtain that Tr
(
Û † |k⟩⟨n|

)
Tr
(
Û |m⟩⟨l|

)
= Tr

(
Û |n⟩⟨k|

)∗
Tr
(
Û |m⟩⟨l|

)
.

The question that now arises is that if knowing all the values of Tr
(∣∣k̄〉〈l̄∣∣ |m⟩⟨n|

)
(that we can obtain since we only use (f1, . . . , fN) and

(
f̄1, . . . , f̄N

)
), we can

retrieve Tr
(
Û |m⟩⟨l|

)
. We can. We need to notice that Tr

(
Û |m⟩⟨l|

)
is a complex

number, so knowing its polar form is enough. We see that Tr
(∣∣l̄〉〈l̄∣∣ |m⟩⟨m|

)
=∣∣∣Tr(Û |m⟩⟨l|

)∣∣∣2. Thus, we obtain the modulus of the complex number.

We can see now that Tr
(
Û |m⟩⟨l|

)
=
√

Tr
(∣∣l̄〉〈l̄∣∣ |m⟩⟨m|

)
eiϕm,l . So only the

phases are up to determination. Here is where the issue of the overall phase

redundancy intervenes. Since Û is unitary, we know they must exist m0, l0 such

that
∣∣∣Tr(Û |m0⟩⟨l0|

)∣∣∣2 = Tr
(∣∣l̄0〉〈l̄0∣∣ |m0⟩⟨m0|

)
> 0. We have the freedom to fix

the phase ϕm0,l0 = 0 due to the overall phase redundancy.

In other words, we could always choose a global phase in Û ’s equivalence class

in T phys
N to cancel the phase ϕm0,l0 so it is set to 0. Now, we can see that if

we consider Tr
(∣∣l̄0〉〈l̄∣∣ |m⟩⟨m0|

)
= Tr

(
Û |m0⟩⟨l0|

)∗
Tr
(
Û |m⟩⟨l|

)
which equals√

Tr
(∣∣l̄0〉〈l̄0∣∣ |m0⟩⟨m0|

)√
Tr
(∣∣l̄〉〈l̄∣∣ |m⟩⟨m|

)
eiϕml . Thus, we obtain that

Tr
(
Û |m⟩⟨l|

)
=

Tr
(∣∣l̄0〉〈l̄∣∣ |m⟩⟨m0|

)√
Tr
(∣∣l̄0〉〈l̄0∣∣ |m0⟩⟨m0|

)
Therefore, indeed we can retrieve uniquely the unitaries that relate the descriptors(
ˆ̄f1, . . . ,

ˆ̄fN

)
to
(
f̂1, . . . , f̂N

)
.
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(Theorem. 8) The diagram of Figure 3.1 commutes. In other words:

πP
A

(
φM

(((
Û † · f̂j1 · Û , . . . , Û † · f̂jM · Û

)
, ρ0

)))
=

= φA

(
πR
A

(((
Û † · f̂j1 · Û , . . . , Û † · f̂jM · Û

)
, ρ0

)))
Proof. We begin by expanding the right-hand side of the equation by applying the

definition of the ontic projection operator, obtaining:

φA

(((
Û † · f̂a1 · Û , . . . , Û † · f̂aS · Û

)
, ρ0

))
Applying now the definition of φA of Equation 3.18, we obtain:

∑
r⃗,s⃗

cr⃗,s⃗

(
f̂ †
a1

)r1
. . .
(
f̂ †
aS

)rS
|Ω⟩⟨Ω|

(
f̂aS

)sS
. . .
(
f̂a1

)s1
where

cr⃗,s⃗ = Tr
(
Û† ·

(
f̂†
a1

)r1
. . .
(
f̂†
aS

)rS
f̂aS

. . . f̂a1 f̂
†
a1

. . . f̂†
aS

(
f̂aS

)sS
. . .
(
f̂a1

)s1
· Û · ρ0

)

We now turn to expand the left-hand side of the initial equation by applying the

definition of the ontic-phenomenal epimorphism and choosing the same basis as

before but for the larger set of lattice sites M = {j1, . . . , jM}, we obtain:

πP
A

(
φM

(((
Û † · f̂j1 · Û , . . . , Û † · f̂jM · Û

)
, ρ0

)))
=

= πP
A

∑
q⃗,⃗t

cq⃗,⃗t

(
f̂ †
j1

)q1
. . .
(
f̂ †
jM

)qM
|Ω⟩⟨Ω|

(
f̂jM

)tM
. . .
(
f̂j1

)t1
where

cq⃗,⃗t = Tr

(
Û† ·

(
f̂†
j1

)q1
. . .
(
f̂†
jM

)qM
f̂jM . . . f̂j1 f̂

†
j1
. . . f̂†

jM

(
f̂jM

)tM
. . .
(
f̂j1

)t1
· Û · ρ0

)
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The main difference with the expanded version of the right-hand side is the lengths

of the vectors r⃗, s⃗ versus q⃗, t⃗. Let’s take the fermionic partial trace of the fermionic

modes that are in M but not in A. Following the fermionic partial trace procedure

in Equation 3.11, the expression of the left-hand side becomes

∑
q⃗,⃗t

cq⃗,⃗tTrM\A

((
f̂ †
j1

)q1
. . .
(
f̂ †
jM

)qM
|Ω⟩⟨Ω|

(
f̂jM

)tM
. . .
(
f̂j1

)t1)
=

=
∑
q⃗,⃗t

cq⃗,⃗t

(
δg⃗, l⃗(−1)k(q⃗,⃗t)

)(
f̂ †
a1

)r1
. . .
(
f̂ †
aS

)rS
|Ω⟩⟨Ω|

(
f̂aS

)sS
. . .
(
f̂a1

)s1

where q⃗/t⃗ are the concatenation in the mode order of the vectors r⃗ ∪ g⃗/s⃗ ∪ l⃗.
r⃗, s⃗ refer to the modes in A and g⃗, l⃗ refer to the modes in M\A. The factor
k(q⃗, t⃗) =

∑M9S
n=1

∑M91
i=bn

qiqi+1 + titi+1 tracks the number of anticommutations that
have happened to bring all the creation and annihilation operators of modes in
B = M\A towards the center, near |Ω⟩⟨Ω|. We see the operators agree with
the right-hand side, we just need to prove the coefficients are the same. Observe
that because of the definition of k(q⃗, t⃗) we have the property, that if inside the
coefficient cq⃗,⃗t we anticommute all the modes of B towards the center as in the
partial tracing procedure we cancel the phase since (−1)2k = 1, leaving:

(−1)k(q⃗,⃗t) cq⃗,⃗t = Tr
(
Û† ·

(
f̂†
a1

)r1
. . .
(
f̂†
aS

)rS (
f̂†
b1

)g1
. . .
(
f̂†
bM9S

)gM9S

·

·f̂jM . . . f̂j1 f̂
†
j1
. . . f̂†

jM

(
f̂bM9S

)lM9S

. . .
(
f̂b1

)l1 (
f̂aS

)sS
. . .
(
f̂a1

)s1
· Û · ρ0

)

The sum
∑

q⃗,⃗t can be seen as
∑

r⃗,s⃗,g⃗,⃗l. Incorporating now the other terms, the sums
over g⃗, l⃗ and the Kronecker delta, we obtain:

∑
g⃗,⃗l

δg⃗,⃗l(−1)k(q⃗,⃗t) cq⃗,⃗t =
∑
g⃗

Tr
(
Û† ·

(
f̂†
a1

)r1
. . .
(
f̂†
aS

)rS (
f̂†
b1

)g1
. . .
(
f̂†
bM9S

)gM9S

·

·f̂jM . . . f̂j1 f̂
†
j1
. . . f̂†

jM

(
f̂bM9S

)gM9S

. . .
(
f̂b1

)g1 (
f̂aS

)sS
. . .
(
f̂a1

)s1
· Û · ρ0

)
=

= Tr
(
Û† ·

(
f̂†
a1

)r1
. . .
(
f̂†
aS

)rS
f̂aS

. . . f̂a1
f̂†
a1

. . . f̂†
aS

(
f̂aS

)sS
. . .
(
f̂a1

)s1
·

·
∑
g⃗

(
f̂†
b1

)g1
. . .
(
f̂†
bM9S

)gM9S

f̂bS9M . . . f̂b1 f̂
†
b1
. . . f̂†

bM9M

(
f̂bM9S

)gM9S

. . .
(
f̂b1

)g1
· Û · ρ0

 =

180



University of Oxford Balliol College

= Tr
(
Û† ·

(
f̂†
a1

)r1
. . .
(
f̂†
aS

)rS
f̂aS

. . . f̂a1
f̂†
a1

. . . f̂†
aS

(
f̂aS

)sS
. . .
(
f̂a1

)s1
· Û · ρ0

)

where in the last equality, we have applied the resolution of the identity operator

in terms of local operators on B alone. Notice that the expression of the last line is

exactly equal to the coefficient cr⃗,s⃗ that we had in the expansion of the right-hand

side of the initial equality we wanted to prove. Since the coefficients are equal and

the algebraic terms are also, we can conclude the theorem is proven.
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C | Mathematical details of Chapter 4

This Appendix presents the detailed proofs and mathematical subtleties that could

not be included in Chapter 4. Some of the content in this Appendix is adapted

contents from the publication [104] done in collaboration with Lucia Vilchez-

Estevez.

C.1 General annihilation operators

We show how to construct the J annihilation operators for any anyon theory.

As we discussed in the main text, we have identified the annihilating elements for

the first mode ab0,a×b01 (see Figure 4.18). We have also seen that for a general mode

k, we define the in-front annihilating elements according to the notion of mode

locality where we exchange the first mode in front of all the k − 1 others until k

(see Figure 4.19).

Now, to make the annihilation operators, we have seen in the text that we need to

take linear combinations of the annihilating elements as an analogy to the known

fermionic annihilation operators. This is without messing with the properties of

spanning the local algebra of observables. We want to construct the normalised

annihilation operators by specifying the coefficients C(j)
b0,c0,k

∈ C of the linear

combinations of the annihilating terms:

α
(j)
k =

∑
b0,c0=a×b0

C
(j)
b0,c0,k

ab0,c0k (C.1)

As we explain in the text, under braiding in front of the other modes, C(j)
b0,c0,k

is determined by C
(j)
b0,c0,1

. Without loss of generality, we are interested in the
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normalised annihilation operators where C(j)
b0,c0,1

is either 0 or 1; the following

arguments can be repeated in general because the relevance is on which C(j)
b0,c0,1

need to vanish.

If we try to have a single annihilation operator, for α(0)
1 to be able to generate

the whole algebra of observables, no coefficient must vanish. We see here a big

difference between abelian and non-abelian particles. For particles that are abelian

(there is a single possible value for c0 = a × b0 for any b0), it is straightforward

to see that all coefficients |C(0)
b0,c0,1

| = 1 then α(0)
1 α

(0)
1

†
and α(0)

1

†
α
(0)
1 generate the

local algebra of observables for mode 1.

However, considering that the particle a is not abelian, two fusion channels are

compatible for a× b0 = c0+ c
′
0 for some b0. Now when taking α(0)

1

†
α
(0)
1 , terms that

violate the superselection rule appear. Specifically, terms that convert total charge

c0 to total charge c′0 and vice versa. It is straightforward to observe that one cannot

eliminate these terms while keeping the relevant terms necessary to have the local

observable, the projector of the a particle type in mode 1, by adding more terms in

the monomial. The only way to make these undesired terms go away is by either

setting C(0)
b0,c0,1

= 0 or C(0)

b0,c′0,1
= 0. Let us consider, without loss of generality, we

have done the second. We now need at least another annihilation operator with a

vanishing C(j)
b0,c0,1

and a non-vanishing C(j)

b0,c′0,1
such that the terms with total charge

c′0 that appear in the projector of particle type a in mode 1 can be generated.

We have seen that for each "extra" fusion channel, we need at least one annihilation

operator that contains such a term. The general construction we provide guarantees

such property. However, there might be better options. There may be a different

grouping of the terms such that the total number of annihilation operators per

non-abelian particle is smaller. We know that at least the number of annihilation

operators needs to be J ′ = maxk(
∑

lN
al
aak

). In the construction we present, we
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obtain J =
∑

k,lN
al
ajak

− n+ 1 annihilation operators. For the two most relevant

non-abelian anyon families, Fibonacci and Ising anyons, we have that J ′ = J ;

therefore, our construction is optimal for these important cases.

The construction is as follows. First, we fix an order in the particle types of

the anyon theory. We choose to bring all abelian particles at the beginning of

the ordering. This fixed order defines a preferred basis for the n × n matrices

for each particle type aj defined as (Aj)kl = Nal
ajak

. Now to construct the J =∑
k,lN

al
ajak

− n + 1 annihilation operators for aj we label cak,i the i’th particle

type such that cal,k = aj × ak. For the first annihilation operator of aj , we set the

terms C(0)
ak,cak,1,1

= 1 and the rest, C(0)
ak,cak,i,1

for i > 1, vanish. This is analogous to

selecting the first fusion channel in each row of Aj . The choice of the coefficients

defines the first annihilation operator.

If aj is abelian, our work is over since then J = 1, and there are no C(0)
ak,cak,i,1

for

i > 1. However, if aj is non-abelian, we must construct the other annihilation

operators. To do so, we go to the first ak0 in the ordering such that exists a cak0 ,2;

so, that has more than one allowed fusion channel when fusing aj with ak0 . Once

identified, we set C(1)
ak,cak,1,1

= 1 for k ̸= k0, C(1)
ak0 ,cak0 ,2,1

= 1, and making all others

coefficients vanish. This specification would fix the second annihilation operator.

To produce a third annihilation operator for aj , we would first check if there exists

a cak0 ,3, if it does we would set C(2)
ak,cak,1,1

= 1 for k ̸= k0, C
(2)
ak0 ,cak0 ,3,1

= 1, and

making all others coefficients vanish. Thus setting the third annihilation operator.

If cak0 ,3 does not exist, though, we then go to the next ak1 in the ordering such that

cak1 ,2 exists, and we would set C(2)
ak,cak,1,1

= 1 for k ̸= k1, C
(2)
ak1 ,cak1 ,2,1

= 1, and

making all others coefficients vanish. Therefore we would have specified the third

annihilation operator.

To produce the mth annihilation operator, one can see the recursive strategy we
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are following. Given the special ak′ we have identified in the m− 1th annihilation

operator for which we have set C(m−1)
ak,cak′ ,i

,1 = 1 for i > 1, then either cak′ ,i+1 exists

or not. If it does we set C(m)
ak,cak,1,1

= 1 for k ̸= k′, C(m)
ak′ ,cak′ ,i+1,1

= 1, and make all

others coefficients zero. However, if it does not exist, we find the next ak′′ from ak′

in the ordering such that cak′′ ,2 exists. Then, we specify C(m)
ak,cak,1,1

= 1 for k ̸= k′′,

C
(m)
ak′′ ,cak′′ ,2

,1 = 1, and make all others coefficients zero.

The process terminates when cak′ ,i+1 does not exist and there is no ak′′ further

down the ordering than ak′ such that cak′′ ,2 exists. It is straightforward to check

that this will happen for the J th term.

The above procedure fixes the annihilation operators for each particle type aj in the

first lattice site. For the other lattice sites, we exchange the annihilation operators

in position, bringing the first lattice site in front of the others into the kth lattice

site.

We want to make a technical remark where the identity particle e can also be

considered to have an annihilation operator per mode (being an abelian particle).

However, the identity annihilation operator can always be expressed in terms of

the other annihilation operators of the theory. Concretely, any (αl)
(j)
k (αl)

(j)†
k will

give such annihilation operator.

C.2 Creation and annihilation operators theorem

Using the construction of the anyonic annihilation operators specified in Appendix

C.1, we can prove the desirable properties of the anyonic annihilation operators. In

particular, we want to ensure that with this construction, it is possible to express

any local observable in a set of lattice sites in terms of the creation and annihilation

operators of such lattice sites.
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Concretely the theorem we prove is the following.

(Theorem. 10) Consider a general anyon theory with n particle types and N

lattice sites. Consider a set of lattice sites M = {s1, . . . , sM} and the subsystem

bipartition where the selected sites are always in front of the other N −M sites.

Under this bipartition, any local observable in these M sites can be written as a

polynomial of these lattice sites’ creation and annihilation operators.

Proof. To prove this general theorem, we first prove that the statement is true

for the sets of lattice sites {1, . . . ,M}, and then we prove that that implies the

statement holds for any set of lattice sites.

Figure C.1: Local observables in 1, . . . ,M . With ca⃗
′,d⃗′

a⃗,d⃗
= ca⃗,d⃗

a⃗′,d⃗′

∗
∈ C.

Given the set of lattice sites {1, . . . ,M}, a local observable for the chosen bi-

partition has the general form shown in Figure C.1. Under this bipartition of

1 . . .M |M + 1 . . . N , we can find the elements of the candidate local algebra of

operators following the same procedure as in the main paper. We see that any local

observable will be an element of the candidate local algebra of operators since it is

left invariant by local unitaries acting on the complement of 1, . . . ,M . We define

the operators Ôa⃗,d⃗,g as in Figure C.2. Notice that any local observable in 1, . . . ,M

can be written as a linear combination of Ô†
a⃗,d⃗,g

Ôa⃗′,a⃗′,g.
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Figure C.2: Operators that generate the local observables in 1, . . . ,M

Suppose polynomials of the local creation and annihilation operators of the lattice

sites 1, . . . ,M can express the operators Ôa⃗,d⃗,g. In such case, they can express any

physical local observable in these lattice sites.

Consider the annihilation operators (αl)
(j)
k for one of the non-abelian particle types

al. Notice that due to the particle type being non-abelian, there is strictly more

than one annihilation operator associated with this particle type. Note that we can

compute (αl)
(j)
k − (αl)

(j)
k(αl)

(0)†
k(αl)

(0)
k = (al)

bj ,cj
k , where cj = al × bj such

that is not the first in the ordering for the fusion of al and bj . With this calculation,

we see that we can retrieve from polynomials of the creation and annihilation

operators all the annihilating terms that do not appear in (αl)
(0)

k. Moreover, by

now calculating (αl)
(0)

k − (αl)
(j)
k + (al)

bj ,cj
k = (al)

bj ,c0
k where c0 = al × bj is the

first allowed fusion channel between al and bj under the fixed ordering. We can

also calculate (αl)
(0)

k −
∑

bj
(al)

bj ,c0
k =

∑
br
(al)

br,al×br
k where the sum over bj is

over the particle types bj that have more than one allowed fusion channel with al,

and the sum over br is over the particle types br that have only one allowed fusion

187



University of Oxford Balliol College

channel with al: al × br.

For every br that is not an abelian particle, we have that there will exist some particle

type as such that there is more than one allowed fusion channel ct = as× br. Thus,

the terms (as)
br,ct
k can be expressed as polynomials of the creation annihilation

operators for the particle type as as we have shown before. It is easy to see that

(as)
br,ct
k (as)

br,ct
k

†∑
br′

(al)
br′ ,al×br′
k = (al)

br,al×br
k .

After all these calculations, we can conclude that we can express any annihilating

term (aj)
b0,c0
k in terms of local creation and annihilation operators on k, for b0

being a non-abelian particle type. For the abelian terms, we know we can express∑
b (al)

b,b×al
k where the sum runs over b being abelian particle types, in terms of

the creation and annihilation operators.

Once we have these results, we are ready to see how we can express Ôa⃗,d⃗,g in terms

of (aj)
b0,c0
k and

∑
b (al)

b,b×al
k , for b0 non-abelian and b abelian and k ≤ M . Thus,

implying that we can express Ôa⃗,d⃗,g in terms of the local creation and annihilation

operators in the modes 1, . . . ,M .

We can see with direct computation the following expression:

Ôa⃗,d⃗,g =
M∏
j=2

 ∑
bM9j+2
cM9j+2

[
F dM−jaM9j+2bM9j+2
g

]∗
dM9j+1cM9j+2

(aM9j+2)
bM9j+2,cM9j+2

M9j+2

 ·

·
∑
b1

(a1)
b1,g
1 (C.2)

where d0 = a1. We can express each term of the product in terms of the local

creation and annihilation operators. Let us start with the term
∑

b1
(a1)1

b1,g we

can decompose the sum between the sum over abelian particles plus the sum over

non-abelian particles. Each term of the non-abelian sum can be expressed in terms
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of the creation and annihilation operators in mode 1, so the sum of such terms is

also. Moreover, we have seen how the sum over the abelian terms is expressable in

terms of the creation and annihilation operators.

Similarly, we do the same decomposition of the sum for the terms in the product

involving the F -matrices components. For the non-abelian particles bM−j+2, each

term (aM−j+2)
bM−j+2,cM−j+2

M−j+2 is expressable in terms of the creation and annihilation

operators, thus the linear combinations of such terms can be expressed in terms

of such local operators. For abelian particles, it should be noted that if bM−j+2

is abelian, [F dM−jaM−j+2bM−j+2
g ]∗dM−j+1cM−j+2

equals δcM−j+2,aM−j+2×bM−j+2
. This

follows from the fact that the F-moves for abelian particles are trivial.

Therefore, we obtain that the sum over the abelian particles ends up becoming∑
bM−j+2

(aM−j+2)
bM−j+2,aM−j+2×bM−j+2

M−j+2 . Thus, expressable in terms of the local

creation and annihilation operators of the mode M − j + 2.

This concludes that Ôa⃗,d⃗,g can be expressed in terms of the creation and annihilation

operators. Therefore, any local observable in 1, . . . ,M can be expressed using the

1, . . . ,M creation and annihilation operators. Concretely, as a polynomial of such

operators. Moreover, note that our proof is constructive and that by using it, one

could find a closed expression of any observable in terms of our local creation and

annihilation operators.

All we have left now to prove the general theorem is to use the fact that we know

the theorem holds for the set of modes 1, . . . ,M to extend it to any set of modes

s1, . . . , sM (si < si+1). Notice that i ≤ si always. We will see that we can find a

good map between the local observables in a general set of modes s1, . . . , sM and

the local observables 1, . . . ,M .

Remember that the notion of locality is such that the relevant modes move in front
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of the ancillary modes. It is straightforward to observe that applying the unitary

transformation U =
∏M91

i=0

∏sM9i
j=M9i+1R

†
j91 j we transform any local observable in

the modes s1, . . . , sM to a local observable in 1 . . .M .

UÂs1,...,sMU
† = Â1,...,M (C.3)

Remember that we proved that Â1,...,M = p((αl)
(j)
k , (αl)

(j′)†
k′), where p(·) is a

polynomial, and k, k′ ∈ {1, . . . ,M}. Hence, by linearity and unitarity, Âs1,...,sM =

U †Â1,...,MU equals p(U †(αl)
(j)
k U,U †(αl)

(j′)†
k′U). Moreover, notice that U † =∏M

i=1

∏si91
j=i Rsi919j+i si9j+i. The annihilation operators in k are left invariant by

unitaries local in the set of modes that excludes k, and that (αl)
(j)
k = V (αl)

(j)
1 V †

by definition, where V =
∏k92

j=0Rk919j k9j . Now, it is easy to see that

U †(αl)
(j)
k U =

k∏
i=1

si91∏
j=i

Rsi919j+i si9j+i

M∏
i=k+1

si91∏
j=i

Rsi919j+i si9j+i ·
(
(αl)

(j)
k

)
·

·

(
M∏

i=k+1

si91∏
j=i

Rsi919j+i si9j+i

)†( k∏
i=1

si91∏
j=i

Rsi919j+i si9j+i

)†

, (C.4)

Moreover, the unitary
∏M

i=k+1

∏si91
j=i Rsi919j+i si9j+i is local on the set of modes

that do not include k, so it leaves any creation operator invariant. Thus,

U †(αl)
(j)
k U =

k91∏
i=1

si91∏
j=i

Rsi919j+i si9j+i

(
sk91∏
j=k

Rsk919j+k sk9j+k

)
·
(
(αl)

(j)
k

)
·

·

(
sk91∏
j=k

Rsk919j+k sk9j+k

)†(k91∏
i=1

si91∏
j=i

Rsi919j+i si9j+i

)†

(C.5)

By the definition of (αl)
(j)
k , we see that applying the unitary action of the operator
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(∏sk91
j=k Rsk919j+k sk9j+k

)
to it it gives us (αl)

(j)
sk

, giving:

U †(αl)
(j)
k U =

k91∏
i=1

si91∏
j=i

Rsi919j+i si9j+i

(
(αl)

(j)
sk

)(k91∏
i=1

si91∏
j=i

Rsi919j+i si9j+i

)†

(C.6)

The only thing that is just left to check is that
(∏k91

i=1

∏si91
j=i Rsi919j+i si9j+i

)
is local

on the set of modes that do not include sk. We observe that the largest mode

in the expression is sk91, which we know is strictly smaller than sk. Therefore,

all modes appearing in the expression are strictly smaller than sk, making the

unitary local on the modes that exclude sk. Thus the unitary action leaves
(
(αl)

(j)
sk

)
invariant, giving U †(αl)

(j)
k U = (αl)

(j)
sk

. This also proves it for the creation operators

U †(αl)
(j′)†

k′U = (αl)
(j′)†

s′k
. Therefore, we indeed see that any local observable

Âs1,...,sM in any set of modes s1, . . . , sM can be written as a polynomial of the

local creation and annihilation operators for such set of modes, since Âs1,...,sM =

Âs1,...,sM = U †Â1,...,MU = p(U †(αl)
(j)
k U,U †(αl)

(j′)†
k′U) = p((αl)

(j)
sk
, (αl)

(j′)†
s′k
).

This concludes the proof of the theorem.

A corollary of the theorem is that I can always be expressed in terms of only

creation and annihilation operators of a single anyonic mode. To prove it, we just

need to establish that the identity I is a local physical observable in any mode. This

follows from the identity decomposition, using Figure C.2:

I =
∑
ag

Ô†
a gÔa g (C.7)

A consequence of the construction is the algebraic independence of the annihilation

operators of different modes. When decomposing any physical operator ÔAB

local in AB as a polynomial of creation and annihilation operators, we can always
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choose to represent the operator as: ÔAB = ÔA + ÔB + ĈAB. All three being

physical operators, with ÔA, ÔB being local on A and B, respectively, and thus

polynomials of the creation and annihilation operators of A or B alone. ĈAB

is a physical operator neither local on A nor B. ĈAB decomposition includes

non-reducible factors involving creation and annihilation operators of both A and

B necessarily.

The algebraic independence of the annihilation operators in different modes implies

the Separation property. Imagine V̂ being local on AC and local on BC. We

would have V̂AC = ÛA + ÛC + ĈAC = ÔAC = V̂B + V̂C + L̂BC . Thus, algebraic

independence implies necessarily that V̂B = ÛA = L̂BC = ĈAC = 0̂ and V̂C =

ÛC = V̂AC , thus making V̂AC a local physical operator on C.

Figure C.3: Local observable terms in 1, 2 with global charge e, up to hermitian
conjugation

C.3 3-anyon Fibonacci observables

We present a complete list of all observable terms local in the 1, 2 modes of a

three-mode Fibonacci anyons model. Up to hermitian conjugation, there are nine
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Figure C.4: Local observable terms in 1, 2 with global charge τ , up to hermitian
conjugation

linearly independent terms. We show all of them in Figures C.3 & C.4.

Notice that the expressions we show in Figures C.3 & C.4 are more compressed

than the expressions obtained through the reasoning in the proof of the general

theorem. We present these expressions because we think it is more convenient to

work with them, especially when investigating Hamiltonians.
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C.4 Fibonacci commutation relations

We have defined the Fibonacci creation and annihilation operators in terms of the

diagrammatic formalism we have for non-abelian anyons. A future avenue for

research is to give a completely algebraic characterisation of Fibonacci anyons.

To do so, we need to specify the algebraic relations the Fibonacci creation and

annihilation operators follow and which operators one can specify as polynomials

of the creation and annihilation operators are observables.

Such a goal is quite ambitious and difficult, being out of the scope of this publica-

tion. Nevertheless, presenting some algebraic relations satisfied by the Fibonacci

creation and annihilation operators may be helpful to provide initial insight into

such a task and help in becoming familiar with manipulating expressions where

the creation and annihilation operators are present.

We can find the following relations for the operators of a single mode:

(αS)
2 = 0 αSβS = βSαS = 0 αSα

†
S = βSβ

†
S (C.8)

αSβ
†
SβS = αSβ

†
SαS = βSα

†
SαS = βSα

†
SβS (C.9)

αSα
†
SαS = αS − βSα

†
SαS (C.10)

βSβ
†
SβS = βS − αSβ

†
SβS (C.11)

β†
SβS + α†

SαS + αSα
†
S + αSβ

†
SαSβ

†
S = I (C.12)

Thanks to the relations above, we can see that any single-mode annihilation and

creation operator polynomial reduces to a fourth-degree polynomial at most. The

algebraic relations between creation and annihilation operators at different lattice

sites are much more difficult to express in simple algebraic equations. It is exciting

to see that the annihilation operators do not satisfy equations of the form αAαB =
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qαBαA where q ∈ C. In fact, αAαB and αBαA have disjoint support.

C.5 Fibonacci Fock states

Figure C.5: Canonical basis as a Fock basis, applying the renormalised anyonic
creation operators α, β to the vacuum.

We can define the |0⟩ state as the global state where all the anyon particle types are

the vacuum in the whole fusion tree. It satisfies the physical notion of being the

vacuum state and the mathematical property of being the unique pure state that all
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the anyonic annihilation operators annihilate.

We can now express any state of the canonical basis as a well-ordered sequence

of creation operators acting on |0⟩. We present the concrete expressions for three-

mode Fibonacci anyons. The expressions for the canonical basis are in Figure

C.5.

C.6 Local realism proofs

In this section, we prove the theorems and results that lead to the ability to use

anyonic annihilation operators as representations of the local ontic states.

(Theorem. 11) The following equivalence holds for any subset of in-front joining

modes M of an N mode anyonic system of n particle types.

Û ∼M V̂ ⇐⇒ Û † · α(j′)
j · Û = V̂ † · α(j′)

j · V̂ (C.13)

∀j ∈ M, j′ ∈ {1, . . . , Jα}, α and ∀Û , V̂ ∈ T phys
N where Jα =

∑
b,cN

c
ab − n+ 1

and α is associated to the particle type a.

Thus,

[Û ]M =
{
V̂ ∈ T phys

N

∣∣∣ Û † · α(j′)
j · Û = V̂ † · α(j′)

j · V̂ ∀j ∈ M, α, j′ ∈ {1, . . . , Jα},
}

(C.14)

Proof. The last statement follows directly from the definition of an equivalence

class, so the equation that needs to be proven is Equation 4.27:

"⇒": Remember N = {1, . . . , N}. Û ∼M V̂ implies Û = ŴN \M · V̂ for some

ŴN \M being a physical in-front or behind unitary, local on the set of lattice sites

N \M with the opposite behindness than M. Any such ŴN \M commutes with the
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annihilation operators with opposite behindness α(j′)
j ∀j ∈ M, α, j′ ∈ {1, . . . , Jα}.

This is a direct consequence of the defining feature of the annihilating terms

expressed in Equation 4.18.

Therefore, we obtain α(j′)
j ŴN \M = ŴN \Mα

(j′)
j . Using ŴN \M = Û · V̂ †, and

manipulating the equality we end up obtaining ∀j ∈ M, α, j′ ∈ {1, . . . , Jα} that

Û † · α(j′)
j · Û = V̂ † · α(j′)

j · V̂ just as desired.

"⇐": We have that Û † ·α(j′)
j · Û = V̂ † ·α(j′)

j · V̂ for all j ∈ M, α, j′ ∈ {1, . . . , Jα}.

To see that Û ∼M V̂ we need to see that Û = ŴN \M · V̂ and that it is of opposite

behindness than the observables in M. Since we have a group structure where

transformations behindness definite physical unitaries, proving that Û · V̂ † =

ŴN \M with opposite behindness to α(j′)
j is enough to prove that Û ∼M V̂ .

From Û † · α(j′)
j · Û = V̂ † · α(j′)

j · V̂ for all j ∈ M is straightforward to deduce that

then α(j′)
j · (Û · V̂ †) = (Û · V̂ †) · α(j′)

j for all j ∈ M, α, j′ ∈ {1, . . . , Jα}. Naming

Û · V̂ † = Ŵ , we have that the following equality holds:

Ŵ · α(j′)
j = α

(j′)
j · Ŵ (C.15)

Without loss of generality, let us assume M has in-front behindness. The proof is

analogous in the opposite case.

We use a different basis for each mode j ∈ M. The matrix basis change is given

by the unitary B =
∏M91

i=0

∏sM9i
j=M9i+1R

†
j91 j defined in Appendix C.2. Using this

basis, the unitary Ŵ takes the form shown in Figure C.6.

We can express Equation C.15 in these diagrammatic bases and see the restriction

to the coefficients wa
′b⃗′c0
a′′b⃗′′c0

. The equality implies that the coefficients must satisfy
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Figure C.6: Ŵ in the basis associated to j.

the following:

w
a′b⃗′(a′×b′0)j

′

ab⃗′′(a′×b′0)j
′ = δa′aδb′0b′′0 w̃

b⃗′

b⃗′′
(C.16)

where a is the particle type associated with the annihilation operator label α.

Since these conditions hold for all α & j′ ∈ {1, . . . , Jα}, we obtain that it holds

for all the terms of Ŵ , thus, we obtain that Ŵ is a behind only local unitary in

N \{j}. This is because the Kronecker delta terms in the coefficients imply that Ŵ

has the form of a local unitary as in Figure 4.12, with a single mode and exchanged

positions using B.

Given that this holds for all j ∈ M, we obtain that for each j ∈ M, Ŵ is an

extended behind only physical unitary local in N \{j}. We use the Separation

property to see that this implies it must be a behind local unitary on N \M

necessarily. Therefore, concluding our proof.

We move to the next and last proof of this Appendix:
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(Theorem. 12) The diagram of Figure 3.1 commutes. In other words:

πP
A

(
φM

(((
Û † · α(j′)

j1
· Û , . . . , Û † · α(j′)

jM
· Û
)
, ρ0

)))
=

= φA

(
πR
A

(((
Û † · α(j′)

j1
· Û , . . . , Û † · α(j′)

jM
· Û
)
, ρ0

)))
(C.17)

Proof. Let us first develop the right-hand side of the equation.

φA

(
πR
A

(((
Û † · α(j′)

j1
· Û , . . . , Û † · α(j′)

jM
· Û
)
, ρ0

)))
=

= φA

(((
Û † · α(j′)

a1
· Û , . . . , Û † · α(j′)

aS
· Û
)
, ρ0

))
=

=
∑
k

Tr
(
Û † · Ô(k) ext

A · Û · ρ0
)
Ô

(k)
A (C.18)

where we have applied Equation 4.32 in the second equality.

Let us now develop the left-hand side of the initial equation we want to prove it

holds.

πP
A

(
φM

(((
Û † · α(j′)

j1
· Û , . . . , Û † · α(j′)

jM
· Û
)
, ρ0

)))
=

= TrB

(∑
k′

Tr
(
Û † · Ô(k′) ext

M · Û · ρ0
)
Ô

(k′)
M

)
(C.19)

We can use the consistency conditions that define the partial tracing procedure

uniquely. They are presented in the main text in Equation 4.11. Let us name L̂A

the local observable given at the left-hand side of the original equation, and name

its right-hand side counterpart as R̂A. L̂A = R̂A if and only if, for any physical

observable P̂A local in A, Tr
(
P̂AL̂A

)
= Tr

(
P̂AR̂A

)
. Let us choose the canonical

orthonormal basis {Ô(k′′)
A }k′′ of the local physical operators in A. If we see the

equality holds for every element of the basis, it implies that it holds for any local

observable P̂A.
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We develop Tr
(
Ô

(k′′)
A L̂A

)
using the orthonormality of the basis under the trace

scalar product in the operator space.

Tr

(
Ô

(k′′)
A

∑
k

Tr
(
Û † · Ô(k) ext

A · Û · ρ0
)
Ô

(k)
A

)
=

=
∑
k

Tr
(
Û † · Ô(k) ext

A · Û · ρ0
)
Tr
(
Ô

(k′′)
A Ô

(k)
A

)
=

=
∑
k

Tr
(
Û † · Ô(k) ext

A · Û · ρ0
)
δkk′′ =

= Tr
(
Û † · Ô(k′′) ext

A · Û · ρ0
)

(C.20)

To develop the right-hand side, we use the consistency conditions of the

partial trace. The extended observables are extended in the canonical be-

hindness of A. We use the notation Ô
(k) extM
A for the extension of the lo-

cal observable in A to M alone. We use the decomposition Ô
(k) extM
A =∑

k′ Tr
(
Ô

(k) extM
A Ô

(k′)
M

)
Ô

(k′)
M . Moreover, the global extension of this decomposi-

tion, as Ô(k) ext
A =

∑
k′ Tr

(
Ô

(k) extM
A Ô

(k′)
M

)
Ô

(k′) ext
M .

Thus, we prove the theorem since Tr
(
Ô

(k′′)
A R̂A

)
is

Tr

(
Ô

(k′′)
A TrB

(∑
k′

Tr
(
Û † · Ô(k′) ext

M · Û · ρ0
)
Ô

(k′)
M

))
=

= Tr

(
Ô

(k′′) extM
A

∑
k′

Tr
(
Û † · Ô(k′) ext

M · Û · ρ0
)
Ô

(k′)
M

)
=

=
∑
k′

Tr
(
Û † · Ô(k′) ext

M · Û · ρ0
)
Tr
(
Ô

(k′′) extM
A Ô

(k′)
M

)
=

= Tr

(
Û † ·

(∑
k′

Tr
(
Ô

(k′′) extM
A Ô

(k′)
M

)
Ô

(k′) ext
M

)
· Û · ρ0

)
=

= Tr
(
Û † ·

(
Ô

(k′′) ext
A

)
· Û · ρ0

)
(C.21)
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