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Asynchronous ADMM via a Data Exchange
Server

ZhouDan Pan and Mark Cannon

Abstract— With advances in inter-processing-unit com-
munication technology, distributed algorithms are becom-
ing increasingly advantageous. This paper focuses on solv-
ing convex distributed optimisation problems with local
consensus coupling constraints via the alternating direc-
tion method of multipliers (ADMM), by means of an asyn-
chronous methodology allowing for communication delays.
We use a bipartite undirected graph to denote the update
structure of the processing agents that cooperatively per-
form the distributed algorithm without a centralised aggre-
gator. We introduce a data server to exchange the asyn-
chronous consensus data among the processing agents.
Under certain technical assumptions that involve bounded
delays, bounded step sizes, and strong convexities in parts
of the local objectives, the running average of the local it-
erates generated by the proposed asynchronous algorithm
converge to an optimal solution.

I. INTRODUCTION

Recent advances in communication technologies and em-
bedded systems have motivated the development of algorithms
to coordinate intelligent agents in a distributed fashion. In con-
trast to centralised decision-making mechanisms, distributed
optimisation algorithms [1]–[3] feature participating agents
iteratively solving local optimisation problems and sharing
information with neighbouring agents, as specified by an
update and communication protocol. Such protocols can be
designed to facilitate the solution of large-scale problems
with privacy intrinsically protected. The optimal solution of
the global problem is asymptotically obtained from the local
iterates. However challenges may arise as a result of limited
local computational power and communication reliability.

In general, distributed optimisation algorithms are designed
to iteratively approach the optimal solution either by means of
primal or primal-dual iterations. Motivated by [4], a class of
distributed subgradient methods collaboratively estimates the
common primal consensus via weighted averaging of local
objective subgradient updates over a possibly time-varying
network, with the capability to have global or local constraints
[5], delays [6] and asymmetrical communication [7]. As the
problem scales up, to keep a local copy of the entire consensus
vector for every agent becomes prohibitive, hence dual decom-
position algorithms [8] which allow agents to share only local
variables become more advantageous. The alternating direction
method of multipliers (ADMM) [1], [9] empowers the dual
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decomposition with an augmented Lagrangian to enhance the
class of problems that can be tackled. For a convergence rate
analysis we refer to [10]–[13].

As the number of agents increases, with delays becoming
more prevalent due to distantness, packet congestion and
limited availability or capability of processors, synchronous
algorithms may be vitiated by a single straggler. In [14],
the effectiveness of distributed machine learning over a stale
synchronous server was discussed. This motivates us to ex-
plore distributed optimisation algorithms with delays. Instead
of waiting until all agents are synchronised at each iterative
step, each agent uses the most recent information at hand to
compute the next update, hence achieving better efficiency
with respect to the diminishing overall waiting time [15],
[16]. However such optimisation algorithms have a natural
limitation since the outdated data employed at each update step
may cause an undesirable accumulation of error in solution
estimates. The work of [15] shows that in general fixed-point
algorithms such a trade-off can be favourable.

A. Related Work
The works [17], [18] investigate asynchronous optimisation

algorithms applied to a collection of gradient-like methods. In
[19] the authors focus on the delayed sub-gradient method
performed by a centralised coordinator, and in the later work
[20] it is extended with an averaging consensus algorithm.
The work of [21] extends these developments to stochastic
convex optimisation problems. The dual gradient method for
asynchronous distributed optimisation is explored in [22].
A framework for the convergence analyses of asynchronous
fixed-point distributed optimisation algorithms is provided
by [15], [23]. Addressing the need for parallel computing
algorithms in the field of machine learning, [24], [25] study
delay-tolerant gradient algorithms for distributed learning.

In this paper we focus on asynchronous distributed optimi-
sation via ADMM [16], [26]–[37]. The work of [26] studies
ADMM with asynchronous updates and relates the almost sure
convergence property to the case of synchronous ADMM.
Randomised ADMM is introduced in [27] with randomised
Gauss-Seidel iterations and convergence analysis via non-
expansiveness. In [28] the authors propose an asynchronous
ADMM algorithm with a centralised aggregator, and also
provide an intuitive explanation for the convergence of the
respective expected values provided that the agents have equal
probability delivering the updates to the aggregator. Based on
similar theoretical analyses, the works [29], [31], [33] pro-
pose hierarchical communication strategies for asynchronous
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ADMM. The works [16], [34]–[36] explore asynchronous
ADMM with a centralised aggregator, and propose three algo-
rithms whose convergence analyses are based on worst case
bounded delay scenarios, to which our proposed algorithm
is closely related. In [30] the authors propose a proximal
and majorized approximation variant of ADMM, while the
work [37] presents an incremental delayed-gradient variant,
to enable the aggregator to cope with asynchrony and non-
convexity.

Recent studies [38]–[42] investigate the application of dis-
tributed optimization algorithms through ADMM, thus elim-
inating the need for a centralized aggregator. In [38], an
averaging algorithm is used to achieve a consensus of the
global primal residual and dual variable, thereby replacing
the centralized aggregator. [41] presents a different approach,
introducing a pairwise structure that is employed to compute
the bridging copies of local variables for relaxed ADMM.
This method address problems that have a common global
decision variable while also permitting asynchronous updates
with probabilistic convergence. Further, [39] integrates an
inner loop of a directed averaging algorithm. This strategy
allows the distributed computation of the ϵ-consensus of the
global decision variable. Similarly, [40] introduces an inner
loop but for computing the finite-time exact ratio consensus.
Finally, [42] tackles a bipartite optimal power flow problem
with asynchrony via ADMM, utilizing learning algorithms to
create replacements for missing updates.

B. Contribution
In this paper we propose a decentralised asynchronous

communication and update protocol that uses ADMM to
solve a convex optimisation problem comprising two groups
of local cost functions and constraints with local coupling
consensus. The most closely related approach to our algorithm
is [16, Algorithm 4], with the following main difference:
we propose a data server working at its own clock cycles
that handles asynchronous data exchange among agents with
no computation involved, while in [16] the authors use a
centralised aggregator to take charge of data exchange, a part
of the primal variable update and the dual variable update. We
also introduce local consensus blocks instead of a common
consensus, as well as a vectorised augmentation parameter
instead of a scalar one.

The paper is organised as follows. Section II describes a
distributed optimisation problem with local consensus con-
straints and a synchronous ADMM algorithm for its solution.
Section III introduces the concept of a data exchange server
in this context, explains the proposed asynchronous algorithm,
and derives sufficient conditions on the problem and solver
parameters for convergence. Section IV presents a numerical
study illustrating the theoretical results of the paper and
provides a comparison with an alternative approach. Conclud-
ing remarks and directions for future work are provided in
Section V. Relevant proofs are included in the Appendix.

C. Notation
The n × n identity matrix and the n-dimensional column

vector with all elements taking the value 1 are denoted by

In and 1n, respectively. A symmetric positive definite (or
positive semidefinite) matrix is denoted A ≻ 0 (or A ⪰ 0,
respectively). We define ∥x∥2Q

def
= x⊺Qx for Q ⪰ 0. The

indicator function of a nonempty closed convex set C is
denoted IC(x), where IC(x) = 0 for x ∈ C and IC(x) = +∞
otherwise. ∂F (x) indicates the subdifferential of function F
evaluated at x. Rounding to the nearest integer is denoted ⌊·⌉.
Ntr(µ, σ

2, a, b) indicates the truncated normal distribution1.

II. PROBLEM STATEMENT

A. ADMM Formulation
ADMM considers the following convex optimisation prob-

lem:

min
x,y

h1(x) + h2(y), (1a)

subject to Ax+By − c = 0. (1b)

where h1 : Rn1 → R ∪ {+∞}, h2 : Rn2 → R ∪ {+∞} are
convex, closed and proper functions; A,B are matrices of ap-
propriate dimension. We construct the augmented Lagrangian:

Lρ
def
= h1(x)+h2(y)+λ⊺(Ax+By− c)+

1

2
∥Ax+By− c∥2ρ,

(2)
in which ρ ≻ 0 is a penalty parameter.

In order to solve the problem, ADMM iteratively performs
the following updates:

x← min
x
Lρ, (3a)

y ← min
y
Lρ, (3b)

λ← λ+ ρ(Ax+By − c). (3c)

ADMM guarantees [1] that if the problem (1) has a saddle
point (x∗, y∗, λ∗), (i) the objective evaluated at the iterates of
the primal variables (x, y) converge to its optimal value, (ii)
the iterates of the primal residual (Ax+By − c) converge to
zero, and (iii) the iterates of the dual variable λ will converge
to a saddle point.

B. Optimisation with Local Consensus
When the problems (3a) and (3b) are separable, they may

be solved in a distributed manner. Here we propose a splitting
scheme for distributed optimisation with local consensus.
We consider a network of processing agents grouped by (i)
U

def
= {1, 2, 3 . . .MU} that solve separate problems in the

form of (3a), and (ii) V def
= {1, 2, 3 . . .MV } that solve separate

problems in the form of (3b). We assume (1b) has the special
form of local coupling consensus constraints between the
two groups, and use an undirected bipartite graph (bigraph)
G = (U, V,E) to denote these relationships (see for example
the illustration in Fig. 1). Thus the edge set E represents the
local consensus couplings specified by the constraints (1b),
which are formulated as the constraints (4c) below. We refer
readers to [43] for a detailed description of modeling multi-
agent networks using graph theory.

1If a random variable x has the normal distribution N(µ, σ2) and a < b,
then x conditional on a ≤ x ≤ b follows Ntr(µ, σ2, a, b). We specifically
define x ∼ Ntr(µ, σ2, a, a) as P(x = a) = 1.
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Fig. 1. Problem bigraph G = (U, V, E).

We reformulate (1) to obtain the main problem P consid-
ered in this paper:

P : min
{zij ,wij}(i,j)∈E ,

{ui}i∈U , {vj}j∈V

∑
(i,j)∈E

(
Fij(zij) +Gij(wij)

)
(4a)

+
∑
i∈U

fi(ui) +
∑
j∈V

gj(vj), (4b)

subject to:

zij = wij , ∀(i, j) ∈ E, (4c)(
ui, {zij}j∈Ni

)
∈ Ci, ∀i ∈ U, (4d)(

vj , {wij}i∈Nj

)
∈ Cj , ∀j ∈ V, (4e)

where Ni and Nj denote the sets of neighbours connected
to agents i and j respectively. For each i ∈ U , ui ∈ Rpi

is the local (private) decision variable and zij ∈ Rmij is the
local consensus decision variable to be shared with j ∈ Ni.
Similarly, for each j ∈ V , vj ∈ Rpj is the local (private)
decision variable and wij ∈ Rmij is to be shared with i ∈ Nj .
Constraint sets Ci and Cj represent inequality constraints
that apply to ui and vi and their local consensus variables
{zij}j∈Ni

and {wij}i∈Nj
, respectively. Since the graph G is

undirected, j ∈ Ni if and only if i ∈ Nj .

Assumption 1. Problem P has the following properties:

(a). {Fij , Gij : Rmij → R}(i,j)∈E , {fi : Rpi → R}i∈U , and
{gj : Rpj → R}j∈V are convex objectives.

(b). Ci and Cj are convex local inequality constraint sets.

Remark 1. Several applications have the same structure as
problem P . For example, supply-demand pairs [44] in the
scenario of market behavior and individual-regulator pairs
[45] in the scenario of resource allocation.

Problem P in (4) is equivalent to (1) under the assignments:

• h1 =
∑
i∈U

( ∑
j∈Ni

Fij(zij) + fi(ui) + ICi
(ui, {zij}j∈Ni

)
)

• h2 =
∑
j∈V

( ∑
i∈Nj

Gij(wij)+gj(vj)+ICj (vi, {wij}i∈Nj )
)

• (1b) is equivalent to (4c).

A local sub-problem Pi is defined for each i ∈ U as

Pi : min
ui,{zij}j∈Ni

fi(ui) +
∑
j∈Ni

Fij(zij), (5a)

subject to:
(
ui, {zij}j∈Ni

)
∈ Ci, (5b)

and likewise Pj is defined for each agent j ∈ V as

Pj : min
vj ,{wij}i∈Nj

gj(vj) +
∑
i∈Nj

Gij(wij), (6a)

subject to:
(
vj , {wij}i∈Nj

)
∈ Cj . (6b)

By dualising the coupling constraints (4c), we obtain the
augmented Lagrangian of problem P:

LΘ
def
=

∑
i∈U

(
fi(ui) +

∑
j∈Ni

Fij(zij)
)

+
∑
j∈V

(
gj(vj) +

∑
i∈Nj

Gij(wij)
)

+
∑

(i,j)∈E

(
λ⊺
ij(zij − wij) +

1

2
∥zij − wij∥2Θij

)
.

(7)

Here {Θij}(i,j)∈E is a set of penalty parameters that control
the step size, and hence the convergence rate, of the Method
of Multipliers applied to P (see e.g. [1] Sec. 3). Conditions
on {Θij}(i,j)∈E to ensure convergence of the proposed asyn-
chronous ADMM are identified in Section III and investigated
numerically in Section IV. In this section we simply make the
following assumption.

Assumption 2. Θij ≻ 0, ∀(i, j) ∈ E.

We define Li
Θ,∀i ∈ U , and Lj

Θ,∀j ∈ V as:

Li
Θ

def
= fi(ui) +

∑
j∈Ni

(
Fij(zij)

+ λ⊺
ij(zij − wij) +

1

2
∥zij − wij∥2Θij

)
,

(8)

Lj
Θ

def
= gj(vj) +

∑
i∈Nj

(
Gij(wij)

+ λ⊺
ij(zij − wij) +

1

2
∥zij − wij∥2Θij

)
.

(9)

Applying synchronous ADMM (3) to this problem results in
Algorithm 1. Each iteration of this algorithm involves the
following steps:

• In Step 1, each agent i ∈ U solves problem Pi using
{wij , λij}i∈Nj computed at the previous iteration and, for
each j ∈ Ni, sends the updated local consensus variable
zij to agent j.

• Similarly, in Step 2, each agent j ∈ V solves problem Pj

using {zij , λij}i∈Nj
computed at the previous iteration

and sends the updated wij to agent i, for each i ∈ Nj .
• In Step 3, all agents cooperatively update the Lagrange

multipliers {λij}(i,j)∈E ; hence the local iterates λij of i
and j are identical for all (i, j) ∈ E at each iteration.

Assumption 3. Assume that:
(a). The Lagrangian (7) has at least one saddle point
{u∗

i }i∈U , {v∗j }j∈V , {z∗ij , w∗
ij , λ

∗
ij}(i,j)∈E .

(b). All the U and V updates in Algorithm 1 have solutions
for any inputs.

Remark 2. Assumption 3(b) is easily achieved since, for all
∀i ∈ U , Li

Θ is strongly convex in zij under Assumption 2, and
the same reasoning applies to Lj

Θ, ∀j ∈ V .
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Algorithm 1 Solve P via Synchronous ADMM
Initialise: zij , wij , λij , Θij (∀(i, j) ∈ E)
Repeat:

1: U Update (∀i ∈ U in parallel)
Input: {wij , λij}j∈Ni

Output:
ui, {zij}j∈Ni

←
argmin

ui,{zij}j∈Ni

Li
Θ

(
ui, {zij , wij , λij}j∈Ni

)
s.t.

(
ui, {zij}j∈Ni

)
∈ Ci

Each j ∈ Ni communicates {zij}j∈Ni
to the respective j

2: V Update (∀j ∈ V in parallel)
Input: {zij , λij}j∈Ni

Output:
vj , {wij}i∈Nj

←

argmin
vj ,{wij}i∈Nj

Lj
Θ

(
vj , {wij , zij , λij}i∈Nj

)
s.t.

(
vj , {wij}i∈Nj

)
∈ Cj

Each i ∈ Nj communicates {wij}i∈Nj to the respective i

3: E Update (∀i ∈ U and ∀j ∈ V in parallel)
Input: {zij , wij , λij}(i,j)∈E

λij ← λij +Θij(zij − wij)

Until satisfaction of the stopping criterion
Output:

4:
ui, {zij}j∈Ni ∀i ∈ U

vj , {wij}i∈Nj
∀j ∈ V

Theorem 1. Under Assumptions 1, 2, and 3, the iterates ui,
{zij , λij}j∈Ni

, ∀i ∈ U , and vj , {wij , λij}i∈Nj
, ∀j ∈ V of

Algorithm 1 have the following convergence properties:
1) the objective of P evaluated at the local iterates con-

verges to the optimal value;
2) the primal residual

∑
∀(i,j)∈E(zij − wij) evaluated at

the local iterates converges to zero.

Remark 3. Algorithm 1 is required to synchronise commu-
nication between agents twice within each ADMM iteration.
Therefore any unreliable peer-to-peer connections (i, j) ∈ E
will increase the waiting time needed per iteration. To avoid
this problem and allow more flexible inter-agent commu-
nications, an asynchronous ADMM algorithm with a data
exchange server is proposed in the following section.

III. NETWORK MODEL AND PROPOSED ASYNCHRONOUS
ADMM ALGORITHM

We introduce a Data Exchange Server to handle the shared
data among the participating agents. Each agent is directly
connected to the server via a communication link with a
different round-trip time, as illustrated in Fig. 2.

Data Exchange 

Server

Fig. 2. Network graph with a data exchange server.

Algorithm 2 Decentralised Asynchronous ADMM - (1/3)
Data Exchange Server
Initialise: zij , wij , Θij ∀(i, j) ∈ E

k = k0 ≤ −max({τi} ∪ {τj})
1: Send the initial data:
{{wini

ij }j∈Ni
} → ∀i ∈ U

{{ziniij }i∈Nj
} → ∀j ∈ V

Repeat:
2: During clock cycle k:

Receive data from inbound agents:

{zkij}j∈Ni ← {zinij}j∈Ni ∀i ∈ U s.t. a1i (k) = k

{wk
ij}i∈Nj ← {win

ij}i∈Nj ∀j ∈ V s.t. b1j (k) = k

For non-inbound agents:

{zkij}j∈Ni ← {zk−1
ij }j∈Ni ∀i ∈ U s.t. a1i (k) < k

{wk
ij}i∈Nj

← {wk−1
ij }i∈Nj

∀j ∈ V s.t. b1j (k) < k

3: At the end of clock cycle k:
Respond to the inbound agents with the data:

{{wl
ij}j∈Ni

}k
l=a2

i (k)+1
→ i ∀i ∈ U s.t. a1i (k) = k

{{zlij}i∈Nj
}k
l=b2j (k)+1

→ j ∀j ∈ V s.t. b1j (k) = k

4: k ← k + 1

Until k = K, send terminating signal to all agents.

The clock cycles of the data server are indexed by k ∈
{k0, k0 +1, . . . ,−1, 0, 1, . . . ,K}, where k0 < 0. During each
clock cycle the server receives the data from an arbitrary set
of agents. At the end of the clock cycle, the data server sends
to each agent from which it received data in that cycle a set of
data that it has received from the respective coupling agents.
We refer the reader to Algorithm 2 for the details of how the
data exchange server operates. To understand this algorithm:

• As shown in Fig. 3, a1i (k) denotes the most recent clock
cycle before the end of cycle k in which data from agent
i ∈ U arrived at the server, and a2i (k) the next most recent
one. Similarly, b1j (k) denotes the most recent cycle before
the end of cycle k in which data from agent j ∈ V arrived
at the server, and b2j (k) the next most recent one. During
the first few cycles when a2i (k) and b2j (k) are not defined,
a2i (k) and b2j (k) are set to k0, the initial clock cycle.

• The clock cycle counter is initialised as k = k0 ≤
−max({τi} ∪ {τj}), where τi and τj are defined in
Assumption 4 and represent available bounds on com-
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munication delays. This choice ensures that all variables
have been updated at least once before k = 1 (see
Algorithm 5) and also allows the window of a running
average output to be adjusted by tuning k0 and K.

• The algorithm starts when the initial data is sent to the
respective agents in Step 1.

• During each clock cycle k, the server passively collects
the consensus updates from the agents as shown in Step 2.
The server receives consensus updates {zinij}, {win

ij} from
inbound agents, namely i ∈ U such that a1i (k) = k and
j ∈ V such that b1j (k) = k. These saved as the recorded
updates {zkij}, {wk

ij}. For the rest of the (non-inbound)
agents whose consensus updates have not arrived at the
server during clock cycle k, represented by a1i (k) < k or
b1j (k) < k, the server saves duplicates of the consensus
data of the previous cycle as the recorded updates.

• At the end of clock cycle k, the server responds to all
the inbound agents with all the historical recorded updates
of their counterparts, to which they are connected by the
respective edge in E, since the last communication, as
shown in Step 3.

Data
Exchange
Server's
Clock Cycle

Fig. 3. Clock cycles of the data exchange server.

Every agent works responsively and asynchronously. When
it receives data from the server, the agent computes the update
and replies to the server according to Algorithm 3 or 4. In
particular:

• In Step 1, the agent passively receives from the server
a time sequence of recorded consensus updates from
its connected counterparts, which was sent in Step 3 in
Algorithm 2.

• The agent then reconstructs the λij by adding the primal
residuals as shown in Step 2. Note that for ∀i ∈ U and
∀j ∈ V there is a slight difference in such additions.

• In Step 3, the agent updates in the same way as Step 1
or 2 in Algorithm 1.

• The agent responds to the server with the updated con-
sensus data in Step 4.

• In Step 5, the agent records the weights of its historical
iterates, making preparations for the running-average
output in Step 6.

• When the algorithm is terminated, the agent outputs the
weighted running average as in Step 6. The window sizes
Ci and Cj of the running average output are adjustable

Algorithm 3 Decentralised Asynchronous ADMM - (2/3) ∀i ∈
U in parallel
Repeat:

1: Receive data from server: {{wl
ij}j∈Ni}Ll=1

2: λij ← λij +

L−1∑
l=1

Θij(z
c−1
ij − wl

ij)

+ Θij(z
c
ij − wL

ij) ∀j ∈ Ni

3: ui, {zij}j∈Ni
←

argmin
ui,{zij}j∈Ni

Li
Θ

(
ui, {zij , wL

ij , λij}j∈Ni

)
s.t.

(
ui, {zij}j∈Ni

)
∈ Ci

4: Send data to server: {zij}j∈Ni

5: dc ← L
def
= length({{wij}j∈Ni})

c← c+ 1

uc
i , {zcij} ← ui, {zij}j∈Ni

Until receive the terminating signal from the server.
Output:

6:

ūi, {z̄ij}j∈Ni

def
=

∑
c≥Ci

dc{uc
i , {zcij}}∑

c≥Ci
dc

(10)

and could be either set to k0 or set independently (these
choices being equivalent in the limit as K →∞).

Algorithm 5 provides a summary of Algorithms 2, 3 and
4, after simplification by removing the detailed description of
the information that passes through the data exchange server.
To understand this:

• Steps 1 and 2 of Algorithm 5 resemble Steps 1 and 2 of
the synchronous Algorithm 1, but with historical data.

• The local reconstructions of λij (in Step 2 of Algorithms
3 and 4) are equivalent to Step 3 of Algorithm 5.

• The weighted running averages in Step 6 of Algorithms
4 and 5 are equivalent to the arithmetic average in Step
5 of Algorithm 5 since duplicates are recorded in clock
cycles in which no data is received by the data exchange
server.

Assumption 4. We assume the following conditions:

(a). Bounded delay and postponed conflicts ∀k:

1 ≤ a1i (k)− a2i (k) ≤ τi, ∀i ∈ U, (15)

1 ≤ b1j (k)− b2j (k) ≤ τj , ∀j ∈ V. (16)

(b). For all (i, j) ∈ E with τi ̸= 1, Fij is strongly convex
with a generalised modulus ΣU

ij ≻ 0 defined as:

∂Fij(z
†
ij)

⊺(zij − z†ij) +
1

2
∥zij − z†ij∥

2
ΣU

ij

≤Fij(zij)− Fij(z
†
ij), ∀z†ij , zij ∈ Rmij .

(17)

(c). For all (i, j) ∈ E, Gij is strongly convex with a gener-
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Algorithm 4 Decentralised Asynchronous ADMM - (3/3)
∀j ∈ V in parallel
Repeat:

1: Receive data from server: {{zlij}i∈Nj
}Ll=1

2: λij ← λij +
∑L

l=1 Θij(z
l
ij − wc−1

ij ) ∀i ∈ Nj

3: vj , {wij}i∈Nj
←

argmin
vj ,{wij}i∈Nj

Lj
Θ

(
vj , {wij , z

L
ij , λij}i∈Nj

)
s.t.

(
vj , {wij}i∈Nj

)
∈ Cj

4: Send data to server: {wij}i∈Nj

5: dc ← L
def
= length({{zij}i∈Nj

})
c← c+ 1

vcj , {wc
ij} ← vj , {wij}i∈Nj

Until receive the terminating signal from the server.
Output:

6:

v̄j , {w̄ij}i∈Nj

def
=

∑
c≥Cj

dc{vcj , {wc
ij}}∑

c≥Cj
dc

(11)

alised modulus ΣV
ij ≻ 0 defined as:

∂Gij(w
†
ij)

⊺(wij − w†
ij) +

1

2
∥wij − w†

ij∥
2
ΣV

ij

≤ Gij(wij)−Gij(w
†
ij), ∀w†

ij , wij ∈ Rmij .
(18)

∀(i, j) ∈ E, we define τij and αij as

τij
def
= 2τi + 2τj − 4, (19)

αij
def
= 1 +

1

2
(3τij +

√
5τ2ij + 8τij + 4). (20)

(d). ∀(i, j) ∈ E such that τi ̸= 1:

ΣU
ij

αij(4τi − 4)
−Θij ⪰ 0. (21)

(e). ∀(i, j) ∈ E:

ΣV
ij

αij(4τj − 3)
−Θij ⪰ 0. (22)

The convergence of the proposed asynchronous ADMM
can be stated as follows (a proof is provided in the Appendix).

Theorem 2. Let Assumptions 1, 3 and 4 hold. Then
Algorithms 2, 3 and 4 (or equivalently Algorithm 5 in the
limit as K →∞) have the following asymptotic properties:

1) The reconstructed local running averages ūi, {z̄ij}j∈Ni ,
∀i ∈ U in Algorithm 3 and v̄j , {w̄ij}i∈Nj

, ∀j ∈ V in
Algorithm 4 converge as K → ∞ to a saddle point
{u∗

i }, {v∗j }, {z∗ij , w∗
ij}(i,j)∈E of the Lagrangian (7).

2) Equivalently, {ūK
i }, {v̄Kj }, {z̄Kij , w̄K

ij }(i,j)∈E in Algo-
rithm 5 converge to {u∗

i }, {v∗j }, {z∗ij , w∗
ij}(i,j)∈E as

K →∞.

Algorithm 5 Decentralised Asynchronous ADMM - Complete
Picture
Initialise: zij , wij , λij , Θij ∀(i, j) ∈ E
Repeat:

∀i ∈ U , ∀j ∈ V at server’s clock cycle k ≥ 1:

1: U Update ∀i ∈ U

uk
i , {zkij}j∈Ni ←

argmin
ui,{zij}j∈Ni

Li
Θ

(
ui, {zij , w

a2
i (k)

ij , λ
a2
i (k)

ij }j∈Ni

)
(12)

s.t.
(
ui, {zij}j∈Ni

)
∈ Ci

2: V Update ∀j ∈ V

vkj , {wk
ij}i∈Nj ←

argmin
vj ,{wij}i∈Nj

Lj
Θ

(
vj , {wij , z

b2j (k)

ij , λ
b2j (k)−1

ij }i∈Nj

)
(13)

s.t.
(
vj , {wij}i∈Nj

)
∈ Cj

The local reconstruction of λij is equivalent to:

3: E Update ∀(i, j) ∈ E, at server’s clock cycle k

λk
ij ← λk−1

ij +Θij(z
k
ij − wk

ij) (14)

4: k ← k + 1

Until k = K
Output:

5:
ūK
i , {z̄Kij }j∈Ni ∀i ∈ U

v̄Kj , {w̄K
ij }i∈Nj

∀j ∈ V

in which the running average x̄K def
= 1

K

∑K
k=1 x

k

IV. NUMERICAL ANALYSIS AND COMPARISON

This section investigates the convergence properties of
the proposed algorithm through numerical simulations. The
example considered is the following modified Ridge regression
problem (linear regression with ℓ2 regularisation):

min
{zi}i∈U

∑
i∈U

ri∥zi∥22

+
∑
j∈V

(∑
i∈U

(
∥Aijzi − bij∥22 +

∑
k∈U

cj∥zi − zk∥22
))
(23a)

subject to
s.t.

¯
z1n ≤ zi ≤ z̄1n, ∀i ∈ U. (23b)

We assume zi ∈ Rn, ri > 0, ∀i ∈ U ; cj > 0, ∀j ∈ V ;
Aij ∈ Rm×n, bij ∈ Rm, ∀(i, j) ∈ U × V . This problem
can be viewed as |U | independent learning nodes that identify
their respective parameters {zi} via the local data {Aij , bij}
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stored in the |V | data centres, with {ri} being the penalty
terms for ℓ2 regularisation. Data centres may have prior
knowledge that some parameters are related, and this motivates
the inclusion of the penalty terms {cj}. The vectors containing
the elements of the matrices Aij are each drawn from the
normal distribution N(0, Imn); each bij is generated using
bij = Aij ẑi + dij , where the noise vector dij is drawn from
N(0, 0.01Im), and ẑi = zref+ei where each element of zref is
zero with probability 0.5 and otherwise is drawn from N(0, 1),
and the noise ei is drawn from N(0, 0.01In). The remaining
coefficients are |U | = 4, |V | = 4, n = 10,

¯
z = −2, z̄ = 2,

{cj = 10}∀j∈V . We reformulate Problem (23) equivalently as

min
{zi}i∈U ,{wij}(i,j)∈U×V

∑
i∈U

ri∥zi∥22 (24a)

+
∑
j∈V

(∑
i∈U

(∥Aijwij − bij∥22 +
∑
k∈U

cj∥wij − wkj∥22)
)

(24b)

subject to:

¯
z1n ≤ zi ≤ z̄1n, ∀i ∈ U, (24c)
zi = wij , ∀(i, j) ∈ U × V. (24d)

To see the equivalence of this with problem P , note that each
i ∈ U has the decision variable zi with the local cost function
(24a) and the local constraint set (24c), whereas each j ∈ V
has local decision variables {wij}∀i∈U with the local objective
(24b). The realisation of the delay ti, i ∈ U , is modelled as:
ti ∼ ⌊Ntr(

τi+1
2 , ( τi−1

4 )2, 1, τi)⌉, and tj , j ∈ V , is modelled
analogously. The delay upper bounds are identical for all i ∈ U
or j ∈ V , namely {τi = τU}∀i∈U and {τj = τV }∀j∈V .

Fig. 4 displays the convergence behaviour of the proposed
asynchronous ADMM algorithm. We define the residual of
the objective value Robj(k)

def
= |objk−obj∗|

|obj∗| where obj∗ is the
optimal objective value obtained with a centralised solver. The
parameter vector ps

def
= [θ, τU , τV ] summarises the simulation

parameters, where θ is a scalar defining {Θij = θIn}∀(i,j)∈E .
We also compute θr

def
= [θ̂, θ̄], in which θ̂ is the step size

computed using (21) and (22) in Assumption 4, evaluated
using the upper bounds on delays, and θ̄ is the corresponding
step size evaluated at the expected values of the delays.

When the local objective functions of all the agents are
strongly convex, we observe from Fig. 4(a) that the iterations
converge until θ has increased to a critical value, above which
the iterations diverge. In this specific example, the threshold
from the simulation is a factor of 103 higher than θ̂ and 102

higher than θ̄. If the local objectives of the agents in U are
not strongly convex, the simulation result in Fig. 4(b) shows
that (i) the critical value of θ increases as the maximum delays
decrease; (ii) when we interchange the value of τU and τV ,
the case that τU > τV results in larger critical value of θ, even
when θr diminishes to zero due to the loss of strong convexity;
(iii) when τU = τV = 1, the iteration converges even when
θ is increased to 104. Fig. 4(c) presents the results when
local objectives of V are not strongly convex. We observe:
(i) when τV is greater than 1, the iterations diverge no matter
how small θ is; (ii) Lower τU implies higher critical value

2000 4000 6000 8000 10000
10-10

100

1010

R
o
b
j (
k
)

(a) fri = 20g8i2U ; m = 100

ps = [0:05; 4; 4]; 3r = [0:1; 0:37]:
ps = [1; 4; 4]; 3r = [0:1; 0:37]:
ps = [10; 4; 4]; 3r = [0:1; 0:37]:
ps = [50; 4; 4]; 3r = [0:1; 0:37]:
ps = [100; 4; 4]; 3r = [0:1; 0:37]:
Sync, 3 = 100:

1000 2000 3000 4000 5000
10-10

100

1010

R
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j (
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)

(b) fri = 0g8i2U ; m = 100

ps = [100; 1; 4]; 3r = [0:4; 1:5]:
ps = [100; 1; 2]; 3r = [2:8; 7:3]:
ps = [400; 1; 2]; 3r = [2:8; 7:3]:
ps = [400; 2; 1]; 3r = [0; 0]:
ps = [1000; 2; 1]; 3r = [0; 0]:
ps = [10

4; 1; 1]; 3r = [50; 50]:

2000 4000 6000 8000 10000
Iteration #k

10-10

10-5

100
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(c) fri = 20g8i2U ; m = 1

ps = [10
!5; 1; 2]; 3r = [0; 0]:

ps = [0:05; 4; 1]; 3r = [0; 0]:
ps = [0:5; 4; 1]; 3r = [0; 0]:
ps = [100; 2; 1]; 3r = [0; 0]:
ps = [1000; 2; 1]; 3r = [0; 0]:
ps = [1000; 1; 1]; 3r = [0; 0]:

Fig. 4. Convergence with the local objective functions of the agents (a)
all being strongly convex, (b) only being strongly convex in group V , (c)
only being strongly convex in group U .

for θ; (iii) when τU = τV = 1, similar to (b)(iii), the
iteration converges at high θ. To summarise the numerical
analysis: the processing agents in V are more intolerant both
to non-strongly-convex local objectives and larger delays (that
require lower θ values for convergence). These observations
are consistent with Theorem 2 but they also indicate that the
sufficient conditions provided by (21) and (22) in Assumption
4 for the critical value of θ are conservative.

Problem (23) was further explored using the distributed
ADMM approach of [16, Algorithm 4]. In this approach,
a computing aggregator (see Fig. 5) replaces the data ex-
change server previously shown in Fig. 2. This aggregator
is configured to maintain local copies of all the consensus
decision variables {zi}∀i∈U , {wij}∀(i,j)∈U×V , executing up-
dates in concordance with the form in [1, Sec. 7.2]. Owing
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Computing
Aggregator

Fig. 5. Replacing the data exchange server with an aggregator.
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frig8i2U = 20;m = 100; =U = 5; =V = 5
frig8i2U = 0;m = 100; =U = 2; =V = 5
frig8i2U = 0;m = 100; =U = 2; =V = 3
frig8i2U = 0;m = 100; =U = 3; =V = 2

Fig. 6. Convergence when θ → θlim with [16, Algorithm 4].

to the substantial alterations made to the ADMM structure,
the convergence rates of the two algorithms are not directly
comparable. However Fig. 6 provides an indication of the
performance of [16, Algorithm 4] for several different delay
bounds when its penalty parameter θ is set to the empirical
upper limit θlim that has the highest convergence rate.

The plots in Fig. 6 are analogous to those in Fig. 4(a)
(for {ri}∀i∈U = 20) and Fig.4 (for {ri}∀i∈U = 0). In this
comparison, an extra clock cycle must be included in the delay
for [16, Algorithm 4] due to the change from a data exchange
server to a computing aggregator, as depicted in Fig. 7. From
qualitative comparison of Fig. 6 with Fig. 4, we conclude that
the proposed asynchronous ADMM converges rapidly when
applied to the problems for which [16, Algorithm 4] converges
within 5000 iterations, and moreover the proposed algorithm
also converges in one of the two cases shown in Fig. 6 in which
the convergence of [16, Algorithm 4] is impractically slow.
Since it does not require a communication system with OSI
(Open Systems Interconnection [46]) Layer 6 (Presentation)
and Layer 7 (Application), the proposed method using a
computation-free server considerably reduces processing time,
resulting in smaller delays and/or allowing faster clock cycles.
This characteristic potentially facilitates the server’s integra-
tion into existing communication infrastructure.

Moreover, the absence of an encryption/decryption process
in the proposed data exchange server inherently safeguards
peer-to-peer privacy, thereby strengthening its appeal as a
viable alternative to a computing aggregator. The data ex-
change server necessitates larger memory allocation to cache
historical data. Quantitatively, this is approximately p times the
amount employed by the aggregator, where p is proportional
to the average of { 12 (

τi
τj

+
τj
τi
)}(i,j)∈E . However, it is crucial

to recognise that when computational aspects are taken into

account, the aggregator’s memory requirements may signifi-
cantly exceed those of the data exchange server. Regarding
the communication cost, the exchange server maintains a data
transfer rate equivalent to that of the synchronous case (albeit
with fluctuations due to asynchrony), and when compared
with a computing aggregator, it offers bandwidth savings by
eliminating the need to transfer data for dual variable updates.
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Data Exchange
Server

Services up to the OSI Layer 5, resulting in time savings.

May be integrated into the existing communication infrastructure.

Peer-to-peer encryption ensuring the preservation of privacy.

Processing
duration

Processing duration

Fig. 7. Key differences between a computing aggregator and a data
exchange server.

V. CONCLUSION

This paper proposes an asynchronous, distributed ADMM
optimisation algorithm for problems with local consensus cou-
pling constraints, in which a computation-free data exchange
server handles the communication between agents with delays.
Under assumptions of strongly convex local objectives and
upper limits on communication delays, sufficient conditions
are derived on the penalty parameters in the augmented
Lagrangian formulation in order to ensure that the solver
iterations converge asymptotically. In numerical experiments
we observe that the sufficient conditions are conservative
and in practice the algorithm may tolerate delays when local
objectives are not non-strongly convex.

Future work will involve: (i) enabling inter-agent com-
munication within group U or V , via virtual agents (with
affine local constraint sets and zero local objectives), as
described for example in [1, Sec. 7], with the help of the
data exchange server; (ii) investigating acceleration methods
for improving the linear convergence rates that are observed
in simulations; (iii) tightening the sufficient conditions for
algorithm convergence.

APPENDIX
CONVERGENCE ANALYSIS

Lemma 1. Similar to [18, Lemma 4.1], consider h1(x) and
h2(x) are convex functions over the convex domain x ∈ X .
We define Σ ⪰ 0 such that ∂h1(x0)

⊺(x−x0)+
1
2∥x−x0∥2Σ ≤

h1(x) − h1(x0),∀x, x0 ∈ X . If Σ ≻ 0, this implies h1(x)

is strongly convex. We also define x̂
def
= argminx∈X h1(x) +

h2(x).
Therefore we have ∀x ∈ X :

h1(x̂)− h1(x) +
1

2
∥x̂− x∥2Σ + ∂h2(x̂)

⊺(x̂− x) ≤ 0. (25)
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Proof: Since x̂
def
= argminx∈X h1(x) + h2(x), h1, h2,X

being convex, we have:

h1(x̂)− h1(x)− ∂h1(x̂)
⊺(x̂− x) +

1

2
∥x̂− x∥2Σ ≤ 0,

(∂h1(x̂) + ∂h2(x̂))
⊺(x̂− x) ≤ 0.

By combining the two equations we obtain (25). ■

Proof of Theorem 2: Since the results 1) and 2) stated in
the theorem are equivalent, we explicitly prove only 2).

Part 0, we note that a saddle point of our Lagrangian (7):
{u∗

i }, {v∗j }, {z∗ij , w∗
ij , λ

∗
ij}(i,j)∈E has following properties:

z∗ij = w∗
ij ∀(i, j) ∈ E (26)

LΘ({u∗
i }, {v∗j }, {z∗ij , w∗

ij , λ
∗
ij}(i,j)∈E)

≤ LΘ({ui}, {vj}, {zij , wij , λ
∗
ij}(i,j)∈E)

∀{ui}, {vj}, {zij}, {wij} s.t.
⋂
∀(4d)∀(4e)

(27)

Part 1, ∀i ∈ U , ∀k ≥ 1, from (12) and Lemma 1 we have:

fi(u
k
i )− fi(u

∗
i ) +

∑
j∈Ni

[
Fij(z

k
ij)− Fij(z

∗
ij)

+
(
λ
a2
i (k)

ij +Θij(z
k
ij − w

a2
i (k)

ij )
)⊺

(zkij − z∗ij)

+
1

2
∥zkij − z∗ij∥2ΣU

ij

]
≤ 0,

(28)

in which with the arbitrarily chosen {λij}:

λ
a2
i (k)

ij +Θij(z
k
ij − w

a2
i (k)

ij )

= λ
a2
i (k)

ij +Θij(z
k
ij − wk

ij) + Θij(w
k
ij − w

a2
i (k)

ij )

(14)
= λ

a2
i (k)

ij + λk
ij − λk−1

ij +Θij(w
k
ij − w

a2
i (k)

ij )

= λij + (λ
a2
i (k)

ij − λk−1
ij ) + (λk

ij − λij)

+ Θij(w
k
ij − w

a2
i (k)

ij ),

(29)

and: (
Θij(w

k
ij − w

a2
i (k)

ij )

)⊺

(zkij − z∗ij)

= (wk
ij − w

a2
i (k)

ij + wk−1
ij − wk−1

ij )⊺

Θij(z
k
ij − z∗ij + wk

ij − wk
ij)

= (wk
ij − wk−1

ij )⊺Θij(w
k
ij − z∗ij)

+ (wk
ij − wk−1

ij )⊺Θij(z
k
ij − wk

ij)

+ (wk−1
ij − w

a2
i (k)

ij )⊺Θij(z
k
ij − z∗ij)

(26)(14)
= (wk

ij − wk−1
ij )⊺Θij(w

k
ij − w∗

ij)

+ (wk
ij − wk−1

ij )⊺(λk
ij − λk−1

ij )

+ (wk−1
ij − w

a2
i (k)

ij )⊺Θij(z
k
ij − z∗ij).

(30)

Part 2, similar to Part 1, ∀j ∈ V , ∀k, from (13) and Lemma
1 we have:

gj(v
k
j )− gj(v

∗
j ) +

∑
i∈Nj

[
Gij(w

k
ij)−Gij(w

∗
ij)

−
(
λ
b2j (k)−1

ij +Θij(z
b2j (k)

ij − wk
ij)

)⊺
(wk

ij − w∗
ij)

+
1

2
∥wk

ij − w∗
ij∥2ΣV

ij

]
≤ 0,

(31)

in which:

λ
b2j (k)−1

ij +Θij(z
b2j (k)

ij − wk
ij)

= λ
b2j (k)−1

ij +Θij(z
b2j (k)

ij − w
b2j (k)

ij ) + Θij(w
b2j (k)

ij − wk
ij)

(14)
= λ

b2j (k)

ij +Θij(w
b2j (k)

ij − wk
ij)

= (λ
b2j (k)

ij − λk
ij) + (λk

ij − λij) + λij

+Θij(w
b2j (k)

ij − wk−1
ij ) + Θij(w

k−1
ij − wk

ij).

(32)

Part 3, we combine the equations above as well as (26)(14),
sum ∀i ∈ U ∀j ∈ V , and take the average over K steps:

1

K

K∑
k=1

[
∆pk +

∑
(i,j)∈E

(
λ⊺
ij(z

k
ij − wk

ij)

+ (λk
ij − λij)

⊺Θ−1
ij (λk

ij − λk−1
ij ) (33a)

+ 2(wk
ij − wk−1

ij )⊺Θij(w
k
ij − w∗

ij) (33b)

+
1

2
∥zkij − z∗ij∥2ΣU

ij
+

1

2
∥wk

ij − w∗
ij∥2ΣV

ij

+ (λ
a2
i (k)

ij − λk−1
ij )⊺(zkij − z∗ij) (33c)

+ (wk−1
ij − w

a2
i (k)

ij )⊺Θij(z
k
ij − z∗ij) (33d)

+ (λk
ij − λ

b2j (k)

ij )⊺(wk
ij − w∗

ij) (33e)

+ (wk−1
ij − w

b2j (k)

ij )⊺Θij(w
k
ij − w∗

ij) (33f)

+ (λk
ij − λk−1

ij )⊺(wk
ij − wk−1

ij ) (33g))]
≤ 0,

in which:

∆pk
def
=

∑
i∈U

(
fi(u

k
i )− fi(u

∗
i )

)
+

∑
j∈V

(
gj(v

k
j )− gj(v

∗
j )

)
+

∑
(i,j)∈E

(
Fij(z

k
ij)− Fij(z

∗
ij)

+Gij(w
k
ij)−Gij(w

∗
ij)

)
.

(34)

We note that ∥λa
ij − λb

ij∥2Θ−1
ij

= ∥λa
ij∥2Θ−1

ij

+ ∥λb
ij∥2Θ−1

ij

−
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2(λa
ij)

⊺Θ−1
ij λb

ij , therefore:

K∑
k=1

(33a) =
1

2

K∑
k=1

(
∥λk

ij − λij∥2Θ−1
ij

+ ∥λk
ij − λk−1

ij ∥
2
Θ−1

ij

− ∥λk−1
ij − λij∥2Θ−1

ij

)
=

1

2

(
∥λK

ij − λij∥2Θ−1
ij

− ∥λ1
ij − λij∥2Θ−1

ij

+

K∑
k=1

∥λk
ij − λk−1

ij ∥
2
Θ−1

ij

)
.

(35)

Similarly,
K∑

k=1

(33b) = ∥wK
ij − w∗

ij∥2Θij
− ∥w1

ij − w∗
ij∥2Θij

+

K∑
k=1

∥wk
ij − wk−1

ij ∥
2
Θij

.

(36)

We bound the following term:
K∑

k=1

(33c) =
K∑

k=1

k−2∑
l=a2

i (k)

(λl
ij − λl+1

ij )⊺(zkij − z∗ij)

≤
K∑

k=1

k−2∑
l=a2

i (k)

( 1

2αij
∥λl

ij − λl+1
ij ∥

2
Θ−1

ij

+
αij

2
∥zkij − z∗ij∥2Θij

)
≤ (τi − 1)

K∑
k=1

( 1

αij
∥λk

ij − λk−1
ij ∥

2
Θ−1

ij

+ αij∥zkij − z∗ij∥2Θij

)
,

(37)

where αij > 0. To see the 2nd inequality in (37), we count
the maximum possible number of duplicates (λk

ij − λk+1
ij ) ∀k

illustrated in Fig. 8, which is 2τi − 2.

Data

Exchange

Server's

Clock Cycle

Fig. 8. The l → l + 1 couple (∗) is duplicated up to 2τi − 2 times as
k1 ≤ k ≤ k2 when deriving the 2nd inequality in (37).

Similarly:
K∑

k=1

(33d) ≤ (τi − 1)

K∑
k=1

( 1

αij
∥wk

ij − wk−1
ij ∥

2
Θij

+ αij∥zkij − z∗ij∥2Θij

)
, (38)

K∑
k=1

(33e) ≤ 2τj − 1

2

K∑
k=1

( 1

αij
∥λk

ij − λk−1
ij ∥

2
Θ−1

ij

+ αij∥wk
ij − w∗

ij∥2Θij

)
, (39)

K∑
k=1

(33f) ≤ (τj − 1)

K∑
k=1

( 1

αij
∥wk

ij − wk−1
ij ∥

2
Θij

+ αij∥wk
ij − w∗

ij∥2Θij

)
, (40)

K∑
k=1

(33g) ≤ 1

2

K∑
k=1

(βij

αij
∥λk

ij − λk−1
ij ∥

2
Θ−1

ij

+
αij

βij
∥wk

ij − wk−1
ij ∥

2
Θij

)
. (41)

where βij > 0.

Part 4, we re-arrange Part 3 after having substituted (35), (36),
(37), (38), (39), (40) and (41) into (33):

1

K

K∑
k=1

[
∆pk +

∑
(i,j)∈E

(
λ⊺
ij(z

k
ij − wk

ij)

+
2τi + 2τj − 3 + βij − αij

2αij
∥λk

ij − λk−1
ij ∥

2
Θ−1

ij

(42a)

+
2τi + 2τj − 4 + α2

ij/βij − 2αij

2αij
∥wk

ij − wk−1
ij ∥

2
Θij

(42b)

+
1

2
(zkij − z∗ij)

⊺
[
(4τi − 4)αijΘij − ΣU

ij

]
(zkij − z∗ij) (42c)

+
1

2
(wk

ij − w∗
ij)

⊺
[
(4τj − 3)αijΘij − ΣV

ij

]
(wk

ij − w∗
ij)

(42d))]
+

1

2K

∑
(i,j)∈E

(
∥λK

ij − λij∥2Θ−1
ij

− ∥λ1
ij − λij∥2Θ−1

ij

+ ∥wK
ij − w∗

ij∥2Θij
− ∥w1

ij − w∗
ij∥2Θij

)
≤ 0.

We choose βij = αij−(2τi+2τj−3) ≥ 0 to make (42a) = 0.
Solve (42b) ≤ 0 and αij − (2τi + 2τj − 3) ≥ 0 for αij :

αij ≥ 1 +
1

2
(3τij +

√
5τ2ij + 8τij + 4), (43)

where τij
def
= 2τi + 2τj − 4.

Let αij = 1 + 1
2 (3τij +

√
5τ2ij + 8τij + 4). Solve (42c) ≤ 0,

(42d) ≤ 0 for Θij , and we obtain the conditions (a)-(e) in
Assumption 4.

Part 5, with Assumption 4 being imposed, our (42) is therefore
reduced to:

1

K

K∑
k=1

[
∆pk +

∑
(i,j)∈E

λ⊺
ij(z

k
ij − wk

ij)

]

− 1

2K

∑
(i,j)∈E

(
∥λ1

ij − λij∥2Θ−1
ij

+ ∥w1
ij − w∗

ij∥2Θij

)

=
1

K

K∑
k=1

∆pk +
∑

(i,j)∈E

(
λ⊺
ij(z̄

K
ij − w̄K

ij )

− 1

2K

(
∥λ1

ij − λij∥2Θ−1
ij

+ ∥w1
ij − w∗

ij∥2Θij

))
≤ 0,

(44)
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in which x̄K denotes the running average:
∑

k x
k.

Since we have convex cost functions,

1

K

K∑
k=1

∆pk ≥
∑
i∈U

(
fi(ū

K
i )− fi(u

∗
i )

)
+

∑
j∈V

(
gj(v̄

K
j )− gj(v

∗
j )

)
+

∑
(i,j)∈E

(
Fij(z̄

K
ij )− Fij(z

∗
ij)

+Gij(w̄
K
ij )−Gij(w

∗
ij)

)
def
= ∆p̄K .

(45)

From (27), we have:

∆p̄K +
∑

(i,j)∈E

λ∗
ij

⊺(z̄Kij − w̄K
ij ) ≥ 0. (46)

We combine (44) and (45). From the result we subtract (46)
to get:∑

(i,j)∈E

(
(λij − λ∗

ij)
⊺(z̄Kij − w̄K

ij )

− 1

2K

(
∥λ1

ij − λij∥2Θ−1
ij

+ ∥w1
ij − w∗

ij∥2Θij

))
≤ 0.

(47)

Since {λij} are arbitrarily chosen, we choose λij = λ∗
ij +

eij , eij =
z̄K
ij−w̄K

ij

∥z̄K
ij−w̄K

ij∥2
and substitute into (47) to obtain:

∑
(i,j)∈E

∥z̄Kij − w̄K
ij ∥2

≤ 1

K

∑
(i,j)∈E

(
1

2
max

∥eij∥2=1
∥λ1

ij − λ∗
ij − eij∥2Θ−1

ij

+ ∥w1
ij − w∗

ij∥2Θij

)
def
=

C1

K
.

(48)

We also have:

∆p̄K +
∑

(i,j)∈E

λ∗
ij

⊺(z̄Kij − w̄K
ij )

(46)
= |∆p̄K +

∑
(i,j)∈E

λ∗
ij

⊺(z̄Kij − w̄K
ij )|

≥ |∆p̄K | −
∑

(i,j)∈E

|λ∗
ij

⊺(z̄Kij − w̄K
ij )|

≥ |∆p̄K | −
∑

(i,j)∈E

∥λ∗
ij∥∞∥z̄Kij − w̄K

ij ∥1

(∗)
≥ |∆p̄K | −

∑
(i,j)∈E

∥λ∗
ij∥∞

√
dim(λij)∥z̄Kij − w̄K

ij ∥2

(48)
≥ |∆p̄K | − C1C2

K
,

(49)

in which (∗) is due to norm equivalence.

Finally from (49),

|∆p̄K | ≤ C1C2

K
+∆p̄K +

∑
(i,j)∈E

λ∗
ij

⊺(z̄Kij − w̄K
ij )

(44)(45)
≤ 1

2K

(
C3 + ∥λ1

ij − λ∗
ij∥2Θ−1

ij

+ ∥w1
ij − w∗

ij∥2Θij

)
=

C

K
.

(50)

We output the following results: {ūK
i }, {v̄Kj }, {z̄Kij , w̄K

ij }.
Feasibility check: Note that (48) shows as K →∞ the output
satisfies dualised constraints (4c). Since taking the running
average is a convex combination, it also satisfies all the the
local constraints (4d)(4e).

Optimality: (50) shows as K → ∞ the output minimises the
cost function of P , and hence converges to a minimiser of our
problem. ■
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[2] A. Nedić, “Convergence rate of distributed averaging dynamics and
optimization in networks,” Foundations and Trends in Systems and
Control, vol. 2, no. 1, pp. 1–100, 2015.

[3] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K. H. Johansson, “A survey of distributed optimization,”
Annual Reviews in Control, vol. 47, pp. 278–305, 2019.
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[7] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Transactions on Automatic Control, vol. 60,
no. 3, pp. 601–615, 2015.

[8] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies In Linear And Non-
Linear Programming. Stanford mathematical studies in the social
sciences, Stanford University Press, 1972.

[9] R. Glowinski and A. Marroco, “Sur l’approximation, par Éléments
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