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Abstract. We study the global linear convergence of policy gradient (PG) methods for finite-horizon
continuous-time exploratory linear-quadratic control (LQC) problems. The setting includes stochastic LQC
problems with indefinite costs and allows additional entropy regularisers in the objective. We consider a
continuous-time Gaussian policy whose mean is linear in the state variable and whose covariance is state-
independent. Contrary to discrete-time problems, the cost is noncoercive in the policy and not all descent
directions lead to bounded iterates. We propose geometry-aware gradient descents for the mean and
covariance of the policy using the Fisher geometry and the Bures-Wasserstein geometry, respectively. The
policy iterates are shown to satisfy an a-priori bound, and converge globally to the optimal policy with a
linear rate. We further propose a novel PG method with discrete-time policies. The algorithm leverages
the continuous-time analysis, and achieves a robust linear convergence across different action frequencies.
A numerical experiment confirms the convergence and robustness of the proposed algorithm.

Key words. Continuous-time linear-quadratic control, policy optimisation, relative entropy, geometry-
aware gradient, global linear convergence, mesh-independent convergence

AMS subject classifications. 68Q25, 93E20

1 Introduction

In recent years, the policy gradient (PG) method and its variants have become an effective tool in seeking
optimal polices to control stochastic systems (see e.g., [19, 28, 17, 24, 25]). These algorithms parametrise
the policy as a function of the system state, and update the policy parametrisation based on the gradient
of the control objective. Most of the progress, especially the convergence analysis of PG methods, has
been in discrete-time Markov decision processes (MDPs) (see e.g., [5, 12, 20, 35, 18]). However, most
real-world control systems, such as those in aerospace, the automotive industry and robotics, are naturally
continuous-time dynamical systems, and hence do not fit in the MDP setting.

One of the most fundamental stochastic control problems is the finite-horizon linear-quadratic control
(LQC) problem. It aims to control a linear stochastic differential equation over a given time horizon, subject
to a quadratic cost. This problem is important as it provides a reasonable approximation of many nonlinear
control problems, and has been used in a wide range of applications, including portfolio optimisation [37, 32],
algorithmic trading [4] and production management of exhaustible resources [9]. Moreover, the optimal
policy of an LQC problem admits a natural parameterisation as a (time-dependent) linear function of the
state, and hence it suffices to determine the coefficients of this linear function. All these properties make
the LQC problem an important theoretical benchmark for studying learning-based control.

Issues and challenges from continuous-time models. It is insufficient and improper to rely solely
on the analysis and algorithms for discrete-time MDPs to solve continuous-time problems, including LQC
problems. There is a mismatch between the algorithm timescale for the former and the underlying systems
timescale for the latter. This model mismatch can make conventional discrete-time algorithms very sensitive
to the discretisation stepsize. For instance, the empirical studies in [21, 22] suggest that standard PG

∗Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK (michael.giegrich@maths.ox.ac.uk,
christoph.reisinger@maths.ox.ac.uk)
†Department of Mathematics, Imperial College London, London, UK (yufei.zhang@imperial.ac.uk)

1



methods exhibit degraded performance as the agent’s action frequency increases (see Section 4 for more
details). Similar performance degradation has been observed in [30] for Q-learning methods. Recently,
[14] and [15] extend PG and Q-learning methods, respectively, to continuous-time problems without time
discretisation, in order to develop algorithms that are robust across different timescales. Nevertheless, the
convergence of these algorithms has not been studied, even for LQC problems.

There are technical reasons behind the limited theoretical progress of PG methods for continuous-time
LQC problems. The objective of a LQC problem is typically nonconvex with respect to the policies (see
Proposition 2.4), analogous to its discrete-time counterpart [5, 35]. This links the convergence analysis
of PG methods to the analysis of gradient search for nonconvex objectives, which has always been one
of the formidable challenges in optimisation theory. The time-dependent nature of the optimal policy for
finite-horizon LQC problems poses new challenges. It requires analysing the optimisation landscape over a
suitable infinite-dimensional policy space, instead of in a finite-dimensional parameter space.

One significant new feature of LQC problems with continuous-time policies, in contrast to discrete-time
policies, is the noncoercivity of the cost function (see Proposition 2.4). Coercivity of the cost means that
each sublevel set of the cost is bounded, and this implies that the iterates of a discrete-time algorithm
remain bounded as long as the cost decreases along the iteration. This can be ensured by updating the
policies along any descent direction of the cost with a sufficiently small stepsize. The lack of coercivity
of the continuous-time cost function complicates the analysis of PG methods, since for a given descent
direction, there may not exist a constant stepsize such that the iterates remain bounded as the algorithm
proceeds.

Our contributions. This paper proposes convergent PG methods to solve finite-horizon exploratory LQC
problems, which generalise classical LQC problems by allowing an entropy regulariser in the objective.

• We reformulate the exploratory LQC problem into a minimisation over Gaussian polices. Each
Gaussian policy is parameterised by two time-dependent functions (K,V ): the mean is linear in the
state with the coefficient K, and the covariance is the function V . The policy gradient of the cost
is characterised by the Pontryagin optimality principle. The cost is shown to satisfy a non-uniform
 Lojasiewicz condition and a non-uniform smoothness condition (Propositions 2.2 and 2.3). We then
prove that the cost is neither coercive nor quasiconvex in K, even in a one-dimensional deterministic
setting (Proposition 2.4).

• We propose a geometry-aware PG method to solve the LQC problem in continuous time. The gradient
for K adapts to the geometry induced by the Fisher information metric (also known as the natural
gradient), while the gradient for V adapts to the geometry induced by the Bures-Wasserstein metric.
These geometry-aware gradient directions are proved to enjoy an implicit regularisation property, i.e.,
they preserve an L2-bound of K, and pointwise upper and lower bounds of V without an explicit
projection step (Proposition 2.5). This allows for exploiting the local regularity of the cost, and
proving the PG method converges globally to the optimal policy with a linear rate (Theorem 2.6).

• By leveraging the continuous-time analysis, we propose practically implementable PG methods that
take actions at discrete time points, and achieve a linear convergence guarantee independent of the
action frequency. Our analysis shows that scaling the discrete-time gradients linearly with respect to
action frequency is critical for a robust performance of the algorithm in different timescales (Remark
2.4). The theoretical property is verified through a numerical experiment on an exploratory LQC
problem arising from mean-variance portfolio selection problems. This shows that the number of
required iterations for conventional PG methods grows linearly in the number of action time points,
while the proposed PG methods achieve a robust linear convergence rate over a wide range of action
frequencies.

Our approaches and related works. Most existing theoretical works of PG methods for LQC problems
consider the setting of infinite horizon and deterministic dynamics (see e.g., [5, 2]). For the case with noisy
dynamics, existing works focus on discrete-time problems. This includes the setting of infinite horizon and
additive noise [16, 35], finite horizon and additive noise [12], and infinite horizon and multiplicative noise
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[10]. We further refer the reader to [11, 33, 36] for LQ games. In all of these settings, the optimal policy
admits a finite-dimensional parameterisation.

Compared to existing works, our technical difficulties are three-fold. First, analysing the optimisation
landscape over infinite-dimensional continuous-time policies requires continuous-time control theory. For
instance, the policy gradient is derived via Pontryagin’s maximum principle. The cost regularity (such as
 Lojasiewicz and smoothness conditions) is proved by using partial differential equation techniques. The
lack of cost coercivity also adds complexity to the choice of appropriate descent directions, as discussed in
Remark 2.3. Notably, the noncoercivity of the cost function in this context primarily stems from the fact
that a policy can have an infinite number of changes in values, occurring at arbitrary time points. This
characteristic distinguishes our problem from aforementioned discrete-time scenarios, in which policies
change solely at predetermined time points.

Second, the finite-horizon continuous-time setting requires more advanced techniques for the nonde-
generacy of the state covariance than the discrete-time setting. In [12, 35], the state covariance is lower
bounded by the minimum eigenvalue of the covariance of system noises, uniformly over all policies. This
bound vanishes as the time discretisation stepsize tends to zero, as the covariance of noise increment typi-
cally scales linearly to the stepsize. Moreover, in the present setting, the system noise can degenerate due
to a controlled diffusion coefficient. We overcome this difficulty by establishing the positive definiteness of
the state covariance along the policy iterates. This is possible by a) first estimating the state covariance
explicitly using the magnitude of policies, but independent of the system noise (Lemma 3.7), and b) then
proving that the geometry-aware gradient directions induce a uniform bound of the iterates. This approach
is different from the contraction argument in [23] for problems with uncontrolled diffusion coefficients.

Finally, the possible degeneracy of cost matrices requires sharper estimate of the cost regularity. All
existing works assume a running cost of the form f(x, a) = x>Qx+ a>Ra, with positive definite matrices
Q and R, and estimate optimisation landscape using minimum eigenvalues of Q and R. However, for many
applications of stochastic LQC problems, the cost can involve the product of state and control variables [4],
or an indefinite weight R [37, 32]. Here, we derive tighter  Lojasiewicz and smoothness bounds of the cost
using solutions to Lyapunov equations, instead of the cost coefficients. This allows us to consider a general
setting where both the drift and diffusion coefficients of the state are controlled, and all cost weights can
be negative definite.

Notation. For each Euclidean space E, we denote by 〈·, ·〉 its usual inner product and | · | the norm
induced by 〈·, ·〉. For each A ∈ Rn×m, we denote by A> the transpose of A, by tr(A) the trace of A, and by
‖A‖2 the spectral norm of A. For each n ∈ N, we denote by In the n×n identity matrix, by Sn, Sn+ and Sn+
the space of n × n symmetric, symmetric positive semidefinite, and symmetric positive definite matrices,
respectively, and by λmax(A) and λmin(A) the largest and smallest eigenvalues of A ∈ Sn, respectively. We
equip Sn with the Loewner (partial) order such that for each A,B ∈ Sn, A � B if A− B ∈ Sn+. For every

measurable functions F,G : [0, T ]→ Sn, F � G stands for F (t)−G(t) ∈ Sn+ for a.e. t ∈ [0, T ].
For each T > 0, filtered probability space (Ω,F ,F,P) satisfying the usual condition (of right continuity

and completeness) and Euclidean space (E, | · |), we introduce the following spaces:
• B(0, T ;E) is the space of Borel measurable functions φ : [0, T ]→ E.
• Lp(0, T ;E), p ∈ [1,∞], is the space of Borel measurable functions φ : [0, T ] → E satisfying ‖φ‖Lp =

(
∫ T

0
|φt|p dt)1/p <∞ if p ∈ [1,∞) and ‖φ‖L∞ = ess supt∈[0,T ] |φt| <∞.

• C([0, T ];E) is the space of continuous functions φ : [0, T ]→ E endowed with the norm ‖ · ‖L∞ .
• S2(0, T ;E) is the space of F-progressively measurable càdlàg processes X : Ω × [0, T ] → E satisfying
‖X‖S2 = E[ess supt∈[0,T ] |Xt|2]1/2 <∞;

• M(E) is the set of measures on E, P(E) is the set of probability measures on E, and P2(E) is the set
of square integrable probability measures on E endowed with the 2–Wasserstein distance.

For each µ ∈ Rn and Σ ∈ Sn+, we denote by N (µ,Σ) the Gaussian measure on Rn with mean µ and
covariance matrix Σ. We also write N0 = N ∪ {0} for notation simplicity.
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2 Problem formulation and main results

This section introduces exploratory LQC problems, proposes a class of geometry-aware PG algorithms
to seek the optimal policy, and presents their convergence properties.

2.1 Regularised stochastic LQ control problems with indefinite costs

This section recalls the regularised LQC problem introduced in [31, 32] and its optimal feedback controls.
Let T > 0 be a finite time horizon, (Ω,F ,P) be a complete filtered probability space on which a d-
dimensional standard Brownian motion W = (Wt)t≥0 is defined, and F = (Ft)t≥0 be the natural filtration
of W augmented by an independent σ-algebra F0.

We first introduce the admissible controls and the associated state dynamics. Let A be the set of
(relaxed) controls m : Ω → M([0, T ] × Rk) such that mt(dt, da) = mt(da)dt for a.e. t ∈ [0, T ], where

mt : Ω → P(Rk) is Ft-measurable for all t ∈ [0, T ] and E[
∫ T

0

∫
Rk |a|

2mt(da)dt] < ∞. For each m ∈ A,
consider the following controlled dynamics:

dXt = Φt(Xt,mt) dt+ Γt(Xt,mt) dWt, t ∈ [0, T ]; X0 = ξ0, (2.1)

where ξ0 ∈ L2(Ω;Rd) is a given F0-measurable random variable, and the functions Φ : [0, T ]×Rd×P2(Rk)→
Rd and Γ : [0, T ]× Rd × P2(Rk)→ Sd+ satisfy for all (t, x,m) ∈ [0, T ]× Rd × P2(Rk),

Φt(x,m) =

∫
Rk

(Atx+Bta)m(da), Γt(x,m) =

(∫
Rk

(Ctx+Dta)(Ctx+Dta)>m(da)

) 1
2

, (2.2)

where (·) 1
2 : Sd+ → Sd+ is the matrix square root such that M

1
2 (M

1
2 )> = M for all M ∈ Sd+, and A,B,C,D

are measurable functions such that (2.1) admits a unique strong solution Xm ∈ S2(0, T ;Rd) (see (H.1) for
precise conditions).

The state dynamics (2.1) is commonly referred to as an exploratory dynamics (see, e.g., [31, 32, 26]). It
models interacting with the system by repeatedly sampling random actions according to a given measure-
valued control m. As a consequence of these random actions, the system’s state evolves with the aggregated
coefficients (2.2), which indicates that the infinitesimal change of the state at t has a mean and variance
integrated with respect to the sampling distribution mt. In the special case where mt(dt,da) = δαt(da)dt
for some αt : Ω× [0, T ]→ Rk, with δa being the Dirac measure on a ∈ Rk, (2.1) simplifies into

dXt = (AtXt +Btαt) dt+ (CtXt +Dtαt) dWt, t ∈ [0, T ]; X0 = ξ0, (2.3)

which is the dynamics studied in the classical LQC problem [34]. See the end of Section 2.4 for more details
on the connection between an exploratory state dynamics and controlling (2.3) with random actions.

We now consider minimising the following cost functional over all m ∈ A, which is known as the
exploratory/entropy-regularised control problem [31, 32, 26, 14, 15]:

E
[ ∫ T

0

∫
Rk

(
1

2

〈(
Qt S>t
St Rt

)(
Xm
t

a

)
,

(
Xm
t

a

)〉
mt(da) + ρH(mt‖mt)

)
dt+

1

2
(Xm

T )>GXm
T

]
, (2.4)

where Xm satisfies the state dynamics (2.1). Here Q,S,R are given matrix-valued functions of proper
dimensions, G ∈ Rd×d and ρ ≥ 0 are given constants, (mt)t∈[0,T ] are given measures on Rk, and for each

t ∈ [0, T ], H(·‖mt) : P(Rk)→ [0,∞] is the relative entropy with respect to mt such that for all m ∈ P(Rk),

H(m‖mt) =

{∫
R ln

( m(da)
mt(da)

)
m(da), m is absolutely continuous with respect to mt,

∞, otherwise.

Note that the cost (2.4) is aggregated with respect to the control distribution mt from which the random
actions are sampled. The entropy H(·‖mt) serves as a regularisation term to encourage the minimiser of
(2.4) to be close to the provided reference measures (mt)t∈[0,T ], and the weight parameter ρ ≥ 0 controls
the strength of this regularisation.
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The entropy-regularised control problem (2.4), initially introduced in [31], represents a natural extension
of the well-established regularised MDPs (see e.g., [7, 20]) into the continuous domain. Common choices of
(mt)t∈[0,T ] in the existing literature include Gibbs measures [26] and the Lebesgue measure [31, 32, 6].

The following assumptions on the coefficients of (2.1)-(2.4) are imposed throughout this paper.

H.1. (1) T > 0, ξ0 ∈ L2(Ω;Rd), A ∈ L1(0, T ;Rd×d), B ∈ L2(0, T ;Rd×k), C ∈ L2(0, T ;Rd×d), D ∈
L∞(0, T ;Rd×k), Q ∈ L1(0.T ;Sd), S ∈ L2(0.T ;Rk×d), R ∈ L∞(0, T ;Sk) and G ∈ Sd.

(2) ρ > 0, mt = N (0, V̄t) for all t ∈ [0, T ], V̄ ∈ L∞(0, T ;Sk+) and V̄ � δIk for some δ > 0.

Remark 2.1. Condition (H.1(1)) ensures that for all m ∈ A, (2.1) admits a unique strong solution in
S2(0, T ;Rd) (see Proposition A.2 in the arXiv version [8]), and the associated regularised cost is well-
defined. Note that (H.1(1)) allows the coefficients Q,S,R and G to be indefinite or even negative definite
(provided that (H.2) holds). Such a control problem is often called indefinite stochastic LQ problem (see
e.g. [27] and the references therein) and has important applications in optimal liquidation [4] and mean-
variance portfolio selection [37] in finance.

Condition (H.1(2)) assumes that for each t ∈ [0, T ], the reference measure mt in (2.4) is a Gaussian
measure. This ensures that the optimal strategy of (2.1)-(2.4) is Gaussian (see (2.6)), which in turn
implies that (2.1)-(2.4) can be reformulated as an optimisation problem over Gaussian policies. A similar
reformulation also holds if mt is the Lebesgue measure [31, 32, 6], and our proposed policy descent algorithm
and its convergence analysis can be naturally extended to this case.

We also impose the following well-posedness condition of the corresponding Riccati equation for the
closed-loop solvability of the (possibly indefinite) control problem (2.1)-(2.4).

H.2. There exists P ? ∈ C([0, T ];Sd) satisfing the following Riccati equation: for a.e. t ∈ [0, T ],
( d

dtP )t +A>t Pt + PtAt + C>t PtCt +Qt

− (B>t Pt +D>t PtCt + St)
>(D>t PtDt +Rt + ρV̄ −1

t )−1(B>t Pt +D>t PtCt + St) = 0;

PT = G,

(2.5)

and D>P ?D +R+ ρV̄ −1 � δ̃Ik for some δ̃ > 0.

Remark 2.2. Condition (H.2) is called the strongly regular solvability of (2.5) in [27] and ensures that
(2.1)-(2.4) admits an optimal feedback control. Note that it suffices to assume the existence of a strongly
regular solution, as the uniqueness of a strongly regular solution to (2.5) follows directly from Gronwall’s
inequality (see [27] and also [34, Proposition 7.1, p. 319]). One can easily show that (H.2) holds if the
unregularised (2.5) is strongly regular solvable, i.e., (2.5) with ρ = 0 admits a solution P ?,0 ∈ C([0, T ];Sn)

and D>P ?,0D + R � δ̃Ik. This is due to the fact that P ? � P ?,0 (see [27, Theorem 5.3]), and hence
D>P ?D +R+ ρV̄ −1 � D>P ?,0D +R by (H.1(2)).

Moreover, by virtue of the regularisation term ρV̄ −1, (H.2) may hold even when the unregualised LQ
problem (with ρ = 0) is not closed-loop solvable. This indicates that the entropy term ρH(·‖mt) indeed
regularises the cost landscape. Such a regularisation effect may not hold if the reference measure mt,
t ∈ [0, T ], is chosen as the Lebesgue measure Lk on Rk. In fact, as shown in [31, 32, 6], if mt = Lk
for all t ∈ [0, T ], then the closed-loop solvability of the regularised problem is equivalent to that of the
unregularised problem, and the entropy term will not modify the cost landscape over policies.

Under (H.1) and (H.2), standard verification arguments (see, e.g., [34]) show that the optimal control
m? ∈ A of (2.4) is of the form m?t = ν?t (Xm?

t ), where ν? : [0, T ] × Rd → P2(Rk) satisfies for all (t, x) ∈
[0, T ]× R, ν?t (x) = N (K?

t x, V
?
t ) and

K?
t = −(D>t P

?
t Dt +Rt + ρV̄ −1

t )−1(B>t P
?
t +D>t P

?
t Ct + St),

V ?t = ρ(D>t P
?
t Dt +Rt + ρV̄ −1

t )−1.
(2.6)

By (H.1) and (H.2), K? ∈ L2(0, T ;Rk×d), V ? ∈ L∞(0, T ;Sk+) and V ? � εIk for some ε > 0. Note that
the optimality of m? in A implies that the policy ν? is optimal among all Markovian feedback controls
ν : [0, T ]×Rd → P2(Rk) for which the resulting open-loop control m· = ν·(X

ν
· ) is square integrable. Here,

Xν denotes the state dynamics controlled by ν, as defined in (2.8).
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2.2 Optimisation over Gaussian policies and landscape analysis

Motivated by the optimal Gaussian policy ν? in (2.6), this section reformulates (2.1)-(2.4) as an equiva-
lent minimisation problem over Gaussian policies, and presents key properties of the optimisation landscape
C : Θ→ R. The proofs of these properties will be given in Section 3.1.

Policy optimisation. Let Θ be the following parameter space

Θ :=
{
θ = (K,V ) ∈ B(0, T ;Rk×d × Sk+)

∣∣∣ ‖K‖L2 <∞, εIk � V � 1
εIk for some ε > 0

}
,

and V be the space of Gaussian policies parameterised by Θ:

V :=
{
νθ : [0, T ]× Rd 3 (t, x) 7→ N (Ktx, Vt) ∈ P(Rk)

∣∣∣ θ = (K,V ) ∈ Θ
}
.1 (2.7)

We shall identify νθ ∈ V with its parameter θ = (K,V ) ∈ Θ. For each νθ ∈ V, consider the associated
controlled dynamics (cf. (2.1)):

dXt = Φt(Xt, ν
θ
t (Xt)) dt+ Γt(Xt, ν

θ
t (Xt)) dWt, t ∈ [0, T ]; X0 = ξ0, (2.8)

with Φ and Γ defined in (2.2), and let Xθ ∈ S2(0, T ;Rd) be the unique solution to (2.8) (see Proposition
A.2 of the arXiv version [8]). Then we consider minimising the following cost functional:

C(θ) :=E
[ ∫ T

0

∫
Rk

(
1

2

〈(
Qt S>t
St Rt

)(
Xθ
t

a

)
,

(
Xθ
t

a

)〉
νθt (Xθ

t ; da) + ρH(νθt (Xθ
t )‖mt)

)
dt

+
1

2
(Xθ

T )>GXθ
T

] (2.9)

over all θ ∈ Θ, or equivalently all νθ ∈ V. It is clear that the cost C is minimised at θ? = (K?, V ?) defined
in (2.6), and the minimum value infθ∈Θ C(θ) is the minimum cost of (2.1)-(2.4).

Optimisation landscape. To investigate the regularity of the map C : Θ → R, we introduce two
important quantities: for each θ = (K,V ) ∈ Θ, let P θ ∈ C([0, T ];Sd) be the solution to following (backward)
Lyapunov equation:

( d
dtP )t+(At +BtKt)

>Pt + P>t (At +BtKt) + (Ct +DtKt)
>Pt(Ct +DtKt)

+K>t (Rt + ρV̄ −1
t )Kt + S>t Kt +K>t St +Qt = 0, a.e. t ∈ [0, T ]; PT = G,

(2.10)

and let Σθ ∈ C([0, T ];Sd+) be the solution to the following Lyapunov equation: for a.e. t ∈ [0, T ],

( d
dtΣ)t =(At +BtKt)Σt + Σt(At +BtKt)

> + (Ct +DtKt)Σt(Ct +DtKt)
> +DtVtD

>
t ,

Σ0 =E[ξ0ξ
>
0 ].

(2.11)

Under (H.1), P θ and Σθ are well-defined by standard well-posedness results of linear differential equations.
Note that P θ depends only on K and is independent of V . Moreover, let Xθ be the state process governed
by (2.8), then Σθt = E[Xθ

t (Xθ
t )>] for all t ∈ [0, T ],2due to a straightforward application of Itô’s formula to

t→ Xθ
t (Xθ

t )> and the definition (2.2) (see also Lemma 3.1).
Based on the notation P θ and Σθ, the following proposition characterises the Gateaux derivatives of C

at each θ ∈ Θ. The proof relies on first reformulating the minimisation problem (2.9) into a deterministic
control problem for Σθ, and then applying the Pontryagin optimality principle.

1 As ρ > 0, we require the Gaussian policies in V to have nondegenerate covariances. If ρ = 0, one can restrict admissible
policies to be νθt (x) = N (Ktx, 0). Our analysis and results can be naturally extended to this setting.

2 Given a state variable Xt, the second-moment matrix Σt = E[XtX>t ] is often referred to as the state covariance matrix
in the reinforcement learning literature (see e.g., [5, 12]). We follow this convention throughout this paper.
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Proposition 2.1. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ]; Sd) satisfy (2.10), and let

Σθ ∈ C([0, T ];Sd+) satisfy (2.11). Then for all θ, θ′ ∈ Θ,

d

dε
C(K + εK ′, V )

∣∣∣
ε=0

=

∫ T

0

〈DK(θ)tΣ
θ
t ,K

′
t〉dt,

d

dε
C(K,V + ε(V ′ − V ))

∣∣∣
ε=0

=

∫ T

0

〈DV (θ)t, V
′ − V 〉dt,

where for a.e. t ∈ [0, T ],

DK(θ)t := B>t P
θ
t +D>t P

θ
t (Ct +DtKt) + St + (Rt + ρV̄ −1

t )Kt, (2.12)

DV (θ)t :=
1

2
(D>t P

θ
t Dt +Rt + ρ(V̄ −1

t − V −1
t )). (2.13)

We then estimate the regularity of C : Θ → R by using the gradient terms DK(θ) and DV (θ). The
following proposition proves that the functional C satisfies a non-uniform  Lojasiewicz condition in θ. As
C is typically nonconvex in K (see Proposition 2.4), such a  Lojasiewicz condition is critical for the global
convergence of gradient-based algorithms.

Proposition 2.2. Suppose (H.1) and (H.2) hold. Let θ? ∈ Θ be defined by (2.6). For each θ ∈ Θ, let

P θ ∈ C([0, T ];Sd) satisfy (2.10), let Σθ ∈ C([0, T ];Sd+) satisfy (2.11), and let DK(θ) and DV (θ) be defined
by (2.12) and (2.13), respectively. Then for all θ ∈ Θ,

C(θ)− C(θ?) ≤
∫ T

0

(
1

2
〈(D>t P θt Dt +Rt + ρV̄ −1

t )−1DK(θ)t,DK(θ)tΣ
θ?

t 〉

+
1

ρ
max(‖V ?t ‖22, ‖Vt‖22)|DV (θ)t|2

)
dt.

(2.14)

The next proposition proves that for any θ, θ′ ∈ Θ, the cost difference C(θ′)−C(θ) can be upper bounded
by the first and second order terms in θ′−θ. Such a property is often referred to as the “almost smoothness”
condition in the literature on PG methods (see e.g., [5, 12, 35]).

Proposition 2.3. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10), let Σθ ∈
C([0, T ];Sd+) satisfy (2.11), and let DK(θ) and DV (θ) be defined by (2.12) and (2.13), respectively. Then
for all θ, θ′ ∈ Θ,

C(θ′)− C(θ) ≤
∫ T

0

(
〈K ′t −Kt,DK(θ)tΣ

θ′

t 〉+
1

2
〈K ′t −Kt, (D

>
t P

θ
t Dt +Rt + ρV̄ −1

t )(K ′t −Kt)Σ
θ′

t 〉

+ 〈DV (θ)t, V
′
t − Vt〉+

ρ

4

|V ′t − Vt|2

min(λ2
min(Vt), λ2

min(V ′t ))

)
dt.

Note that the  Lojasiewicz condition in Proposition 2.2 and the smoothness condition in Proposition
2.3 are local properties. The estimates therein depend explicitly on P θ and Σθ, which admit no uniform
bound over the unbounded parameter set Θ. For PG methods with finite-dimensional parameter spaces,
this difficulty is often overcome by first proving the sublevel set {θ ∈ Θ | C(θ) < β} is bounded for any
β > 0, and then designing algorithms whose iterates remain in a fixed sublevel set (see e.g., [5, 10, 12]).
However, the following example shows that in the setting with continuous-time policies, the cost is typically
noncoercive,3 and hence the above argument cannot be applied. The proof follows from a straightforward
computation, and is given in Appendix A of the arXiv version [8].

Proposition 2.4. Let C : L2(0, 1;R)→ R be such that for all K ∈ L2(0, 1;R),

C(K) :=

∫ 1

0

(KtXt)
2

dt, with Xt = 1 +

∫ t

0

KsXs ds, t ∈ [0, 1]. (2.15)

Then C : L2(0, 1;R) → R is neither coercive nor quasiconvex. In particular, let Kε ∈ L2(0, 1;R), ε > 0,
be such that Kε

t = −(1 + ε − t)−1 for all t ∈ [0, 1]. Then limε→0 ‖Kε‖L1 = ∞ and supε>0 C(Kε) = 1.
Moreover, there exists ε0 > 0 such that for all ε ∈ (0, ε0], C(0.5Kε) > max{C(0), C(Kε)}, with 0 being the
zero function.

3 Let (X, ‖ · ‖) be a normed space. A function f : X → R is called coercive if lim‖x‖→∞ f(x) =∞.
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2.3 Policy gradient method and its convergence analysis

This section proposes a geometry-aware PG method for (2.6) that preserves an a-priori bound, and
proves its global linear convergence based on the landscape properties in Section 2.2.

Geometry-aware policy gradient method. For each initial guess θ0 = (K0, V 0) ∈ Θ and stepsize
τ > 0, consider (θn)n∈N ⊂ B(0, T ;Rk×d × Sk) such that for all n ∈ N0,

Kn+1
t = Kn

t − τDK(θn)t, V n+1
t = V nt − τDbw

V (θn)t, a.e. t ∈ [0, T ], (2.16)

with
Dbw
V (θn)t = DV (θn)tV

n
t + V nt DV (θn)t,

4 (2.17)

where DK(θ) and DV (θ) are defined by (2.12) and (2.13), respectively. Here we update K and V with
the same stepsize τ for the clarity of presentation, but the results can be naturally extended to the setting
where different constant stepsizes are adopted to update K and V .

Algorithm (2.16) normalises the (Fréchet) derivatives of θn (cf. Proposition 2.1) to incorporate the local
geometry of the parameter space. Specifically, it updates (Kn)n∈N by the steepest descent on the manifold
of Gaussian policies endowed with the Fisher information metric (also known as the natural gradient). To
see this, for each n ∈ N0, consider the following natural gradient update for Kn (see [17]):

Kn+1
t = Kn

t − τI(θn)−1
t ∇KC(θn)t,

5 a.e. t ∈ [0, T ], (2.18)

where ∇KC(θn) = DK(θn)Σθ
n

is the derivative in Kn, I(θn)t ∈ Rkd×kd is the Fisher information matrix
satisfying for all i, i′ ∈ {1, . . . , k} and j, j′ ∈ {1, . . . , d},

(I(θn)t)ij,i′j′ := E
[∫

Rk

[
∂(Kn

t )ij ln
(
ν̂θ

n

t (Xθn

t ; a)
)
∂(Kn

t )i′j′
ln
(
ν̂θ

n

t (Xθn

t ; a)
)]

ν̂θ
n

t (Xθn

t ; a) da

]
,

and ν̂θ
n

t (Xθn

t ; ·) is the density ofN (Kn
t X

θn

t , Ik). Then by a similar computation as in [5, 11], I(θn)−1
t ∇KC(θn)t =

∇KC(θn)t(Σ
θn

t )−1 = DK(θn)t.
On the other hand, (2.16) updates (V n)n∈N by the steepest descent on the matrix manifold Sk+ endowed

with the Bures-Wasserstein metric [13]. It corresponds to the geometry induced by the 2-Wasserstein
metric over the space of centered nondegenerate Gaussian measures. By normalising DV according to V ,
the Riemannian gradient Dbw

V in (2.17) preserves a pointwise upper and lower bound of (V n)n∈N without
the use of projection (see Remark 2.3).

Convergence analysis. The key challenge in the convergence analysis of (2.16) is to establish a uniform
bound for the corresponding (P θ

n

)n∈N and (Σθ
n

)n∈N, as shown in Proposition 2.5. This is achieved by
proving a uniform bound of the iterates (θn)n∈N and quantifying the explicit dependence of Σθ on θ. The
proof is given in Section 3.2 (Propositions 3.5, 3.6, and 3.8).

Proposition 2.5. Suppose (H.1) and (H.2) hold. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10) and

let Σθ ∈ C([0, T ]; Sd+) satisfy (2.11). Let θ0 ∈ Θ and λ0 > 0 such that λ0Ik � D>P θ
0

D + R + ρV̄ −1. For
each τ > 0, let (θn)n∈N ⊂ B(0, T ;Rk×d × Sk) be defined in (2.16). Then

(1) There exists C̃, λV , λV > 0 such that for all τ ∈ (0, 1/λ0], n ∈ N0, ‖Kn‖L2 ≤ C̃ and λV Ik � V n �
λV Ik.

(2) For all τ ∈ (0, 2/λ0], n ∈ N0, P θ
n � P θn+1 � P ?, with P ? ∈ C([0, T ];Sd) in (H.2),

(3) Assume further that E[ξ0ξ
>
0 ] � 0. Then there exists λX , λX > 0 such that for all τ ∈ (0, 1/λ0] and

n ∈ N0, λXId � Σθ
n � λXId.

4 For an arbitrary stepsize τ > 0, (V n)n∈N may not be positive definite and hence may not be invertiable. In this case,
DV is defined by replacing V −1

t in (2.13) with the (symmetric) Moore-Penrose inverse of Vt. We prove that (θn)n∈N ⊂ Θ for
all sufficiently small stepsizes (see Proposition 2.5).

5 For each A ∈ Rkd×kd and B ∈ Rk×d, indexed by Aij,i′j′ and Bij with i, i′ ∈ {1, . . . , k} and j, j′ ∈ {1, . . . , d}, we

define AB ∈ Rk×d with (AB)ij =
∑
k,l Aij,klBkl. This is equivalent to reshaping B (with row-major ordering) into a vector,

performing the standard matrix-vector multiplication, and reshaping the result into a matrix.
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Remark 2.3 (Implicit regularisation). The uniform bounds of (Kn)n∈N and (V n)n∈N are achieved by
an implicit regularisation feature of the geometry-aware gradient directions DK and Dbw

V . Here, “implicit
regularisation” means that the iterates preserve certain constraints without an explicit projection step.
Note that applying projection to enforce a pointwise lower bound for minimum eigenvalues of (V n)n∈N
is computationally expensive. It requires performing an eigenvalue decomposition of V nt for every time
t ∈ [0, T ] and iteration n ∈ N.

A similar implicit regularisation property holds if (Kn)n∈N is updated by a preconditioned natural
gradient descent: for all n ∈ N0,

Kn+1
t = Kn

t − τHn
t DK(θn)t, with 1

LIk � H
n � LIk for some L > 0 independent of n.

This includes the Gauss-Newton method with Hn =
(
D>PnD +R+ ρV̄ −1

)−1
as a special case (see [5, 10]).

However, due to the noncoercivity of C, it is unclear whether an implicit regularisation holds for an arbitrary
descent direction of C in K (e.g., the vanilla gradient direction ∇KC(θ) = DK(θ)Σθ), in contrast with PG
methods for discrete-time problems [5, 11]; see the discussion above Proposition 2.4.

It is noteworthy that an implicit regularisation feature of natural policy gradient algorithms was observed
in [35]. In their study, an agent optimises over stationary linear policies to stablise a linear system with
additive noise over an infinite horizon while adhering to robustness constraints on the sup-norm of the
input-output transfer matrix. They show that a natural policy gradient algorithm naturally preserves the
transfer matrix’s sup-norm throughout the iterations, eliminating the need for explicit projection.

The challenges faced in the current setting differ from those in [35]. Firstly, as Proposition 2.4 shows,
the cost of a finite-horizon continuous-time LQC problem is already noncoercive without any robustness
constraints. This is primarily because a policy can have an infinite number of changes in values, occurring
at arbitrary time points. Such a feature is not present in the scenarios studied in [35], where stationary
policies are considered. Secondly, instead of optimising a deterministic policy, we optimise both the mean
and covariance of a Gaussian policy, for which we derive natural gradient updates with respect to different
geometries. Our result implies that Wasserstein gradient descent of negative entropy preserves a-priori
bounds on the variance of Gaussian measures, which is novel and of independent interest. Lastly, the
possible degeneracy of the system noise and the cost coefficients (Remark 2.1) necessitates a more precise
quantification of the desired implicit regularisation within appropriate function spaces.

Proposition 2.5 implies that the functional C satisfies uniform  Lojasiewicz and smoothness conditions
along the iterates (θn)n∈N. Based on this local regularity, the following theorem establishes the global linear
convergence of (2.16) for all sufficiently small stepsizes τ . The proof is given in Section 3.3.

Theorem 2.6. Suppose (H.1) and (H.2) hold, and E[ξ0ξ
>
0 ] � 0. Let θ0 ∈ Θ, and for each τ > 0, let

(θn)n∈N ⊂ B(0, T ;Rk×d × Sk) be defined in (2.16). Then there exists τ0, C1, C2 > 0 such that for all
τ ∈ (0, τ0] and n ∈ N0,

(1) C(θn+1) ≤ C(θn) and C(θn+1)− C(θ?) ≤ (1− τC1)(C(θn)− C(θ?)), with θ? defined in (2.6),

(2) ‖Kn −K?‖2L2 + ‖V n − V ?‖2L2 ≤ C2(1− τC1)n.

The precise expressions of the constants τ0, C1 and C2 can be found in the proof of the statement.
These constants depend on the regularisation weight ρ in (2.4), the constant δ̃ in (H.2), the initial guess
θ0, and the a-priori bounds λX , λX , λV , λV in Proposition 2.5. Achieving more precise dependencies in
terms of model parameters is challenging. It would entail deriving precise a-priori bounds of solutions to
(2.5) and (2.10) in terms of the coefficients given in (H.1(1)). This remains an open problem, particularly
when the diffusion coefficient is controlled (D 6= 0) and when cost coefficients Q, R, and G are not positive
definite.

2.4 Mesh-independent linear convergence with discrete-time policies

By leveraging Theorem 2.6, this section proposes PG methods that take actions at discrete time points
and achieve a robust convergence behaviour across different mesh sizes. Our analysis shows that a proper
scaling of the discrete-time gradients in terms of mesh size is critical for a robust performance of the
algorithm.

9



More precisely, let P[0,T ] be the collection of all partitions of [0, T ]. For each π = {0 = t0 < · · · <
tN = T} ∈ P[0,T ], let |π| = maxi=0,...,N−1(ti+1 − ti) be the mesh size of π, and let Θπ ⊂ Θ be the set of
piecewise constant policies on π:

Θπ = {θ ∈ Θ | θt = θti , a.e. t ∈ [ti, ti+1) and all i ∈ {0, . . . , N − 1}} . (2.19)

Then define the minimum cost C over Θπ:

C?π = inf
θ∈Θπ

C(θ). (2.20)

Note that by Θπ ⊂ Θ, C?π ≥ infθ∈Θ C(θ) = C(θ?) > −∞.
We now introduce a family of gradient descent schemes for (2.20). Let θπ,0 ∈ Θπ be an initial guess and

τ > 0 be a stepsize. Consider the following sequence (θπ,n)n∈N0
⊂ Θπ (cf. (2.16)) such that for all n ∈ N0,

Kπ,n+1
t = Kπ,n

t − τDπK(θπ,n)t, V π,n+1
t = V π,nt − τDπV (θπ,n)t, a.e. t ∈ [0, T ], (2.21)

where (DπK ,DπV ) : Θπ → Θπ approximates the gradient operators (DK ,Dbw
V ) in (2.16) as |π| → 0; see (H.3)

for the precise condition.
The convergence behaviour of (2.21) is measured by the number of required iterations Nπ(ε) to achieve

a certain accuracy ε > 0: let (θπ,n)n∈N0
be generated by (2.21) (with some θπ,0 ∈ Θπ and τ > 0), and for

each ε > 0, define

Nπ(ε) := min

{
n ∈ N0

∣∣∣ C(θπ,n)− inf
θ∈Θπ

C(θ) < ε

}
∈ N0 ∪ {∞}. (2.22)

Note that Nπ is defined for a fixed mesh π, and hence the residual is defined using the minimum cost C?π
over piecewise constant policies Θπ. Similarly, let (θn)n∈N0

be a sequence generated by (2.16) (with some
θ0 ∈ Θ and τ > 0), and for each ε > 0, define

N(ε) := min

{
n ∈ N0

∣∣∣ C(θn)− inf
θ∈Θ
C(θ) < ε

}
∈ N0 ∪ {∞}. (2.23)

The main result of this section shows that if the gradient operators (DπK ,DπV )π in (2.21) satisfy the
consistency condition (H.3), then for all sufficiently fine grids π, Nπ(ε) is essentially equal to N(ε).

H.3. For every θ ∈ L2(0, T ;Rk×d)×C([0, T ];Sk+), every sequence (πm)m∈N ⊂P[0,T ] such that limm→∞ |πm| =
0, and every (θm)m∈N ⊂ Θ such that θm ∈ Θπm for all m ∈ N and limm→∞ ‖θm − θ‖L2×L∞ = 0, we have

lim
m→∞

‖DπmK (θm)−DK(θ)‖L2 = 0, and lim
m→∞

‖DπmV (θm)−Dbw
V (θ)‖L∞ = 0.

Theorem 2.7. Suppose (H.1), (H.2) and (H.3) hold, E[ξ0ξ
>
0 ] � 0, D ∈ C([0, T ];Rd×k), R ∈ C([0, T ];Sk)

and V̄ ∈ C([0, T ];Sk+). Let θ0 ∈ L2(0, T ;Rk×d) × C([0, T ];Sk+), let (πm)m∈N ⊂ P[0,T ] be such that
limm→∞ |πm| = 0 and let (θπm,0)m∈N ⊂ Θ be such that θπm,0 ∈ Θπm for all m ∈ N and limm→∞ ‖θπm,0 −
θ0‖L2×L∞ = 0. Then there exists τ0 > 0 such that for all τ ∈ (0, τ0) and ε > 0, there exists m ∈ N such
that

N(ε)− 1 ≤ Nπm(ε) ≤ N(ε), ∀m ∈ N ∩ [m,∞). (2.24)

The proof of Theorem 2.7 is given in Section 3.4.
Theorem 2.7 indicates that (2.21) achieves linear convergence uniformly across different timescales.

Indeed, by Theorem 2.6, there exists τ0, C1 > 0 such that for all τ ∈ (0, τ0] and n ∈ N0, C(θn+1)− C(θ?) ≤

(1 − τC1)n(C(θ0) − C(θ?)). This implies that N(ε) ≤
ln
(

ε
C(θ0)−C(θ?)

)
ln(1−τC1) for all ε > 0. By the identity that

limx→0
ln(1+x)

x = 1, Nπm(ε) ≈ 1
C1τ

ln
(
C(θ0)−C(θ?)

ε

)
for all m ≥ m and sufficiently small τ and ε.

To design a concrete gradient methods satisfying (H.3), for each π = {0 = t0 < · · · < tN = T} ∈P[0,T ],

we identify Θπ with (Rk×d × Sk+)N by the natural parameterisation:

(Rk×d × Sk+)N 3 (Ki, Vi)
N−1
i=1 7→

(
N−1∑
i=0

Ki1[ti,ti+1)(t),

N−1∑
i=0

Vi1[ti,ti+1)(t)

)
t∈[0,T ]

∈ Θπ, (2.25)
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and by abuse of notation, write C : (Rk×d × Sk+)N → R as the cost of a Gaussian policy induced by the
parameterisation (2.7) and (2.25). Then for each θπ,0 ∈ Θπ and τ > 0, consider the following sequence
(θπ,n)n∈N0 ⊂ Θπ such that for all n ∈ N0 and i ∈ {0, . . . , N − 1}, θπ,n+1

t = (Kπ,n+1
i , V π,n+1

i ) for all
t ∈ [ti, ti+1), with

Kπ,n+1
i = Kπ,n

i − τ

∆i
∇KiC(θπ,n)

(
Σθ

π,n

ti

)−1

,

V π,n+1
i = V π,ni − τ

∆i
(V π,ni ∇ViC(θπ,n) +∇ViC(θπ,n)V π,ni ) ,

(2.26)

where ∆i = ti+1 − ti, Σθ
π,n

ti = E[Xθπ,n

ti (Xθπ,n

ti )>], and ∇KiC (resp. ∇ViC) is the partial derivative of C with
respect to the matrix Ki (resp. Vi). The practical implementation of the algorithm is further discussed at
the end of this section.

The following corollary shows that (2.26) satisfies (H.3), whose proof is given in Section 3.4.

Corollary 2.8. Suppose (H.1) and (H.2) hold, E[ξ0ξ
>
0 ] � 0, D ∈ C([0, T ];Rd×k), R ∈ C([0, T ];Sk) and

V̄ ∈ C([0, T ];Sk+). Then Theorem 2.7 holds for (2.26).

Remark 2.4 (Scaling hyper-parameters with timescales). It is critical to scale the stepsize τ in (2.26)
with respect to ∆i for the robustness of (2.26) for all small mesh sizes. Indeed, standard discrete-time
natural PG methods correspond to setting ∆i = 1 in (2.26) for all grids. For sufficiently fine grids,

this is equivalent to adopting a vanishing stepsize τ∆i in (2.16), as ∇KiC(θ)
(
Σθti
)−1 ≈ DK(θ)ti∆i and

∇ViC(θπ,n) ≈ DV (θ)ti∆i (see Proposition 2.1). This explains the degraded performance of conventional
discrete-time PG methods for small mesh sizes. In contrast, by normalising the stepsize with ∆i, (2.26)
admits a continuous-time limit (2.16) as the time stepsize |π| vanishes., and achieves mesh-independent
convergence; see Section 4 for more details.

Remark 2.5 (Extensions to discrete-time models). Corollary 2.8 can be extended to incorporate time
discretization of the underlying system. Here we provide a heuristic explanation of such an extension.
Consider a sequence of time grids (πm)m∈N with limm→∞ |πm| = 0. For each m ∈ N, let Xm be the
discrete-time state dynamics resulting from the Euler–Maruyama discretization of (2.8) on the grid πm,
and let Cπm : Θπm → R be the associated cost functional (2.9). Introduce an analogue of (2.26), where
∇KiC(θπ,n) and ∇ViC(θπ,n) are replaced by ∇KiCπm(θπ,n) and ∇ViCπm(θπ,n), respectively, and Σθ

π,n

ti is
replaced by the covariance of the discrete-time state Xm controlled by θπm,n. If the coefficients in (H.1(1))
are sufficiently regular in time, one can show that these discrete-time gradients converge to the continuous-
time gradients in (2.16) as m → ∞, due to the weak convergence of the Euler–Maruyama scheme. This
would verify Condition (H.3), which along with Theorem 2.7 implies that these discrete-time algorithms
achieve mesh-independent linear convergence uniformly in m.

Similar analyses can be carried out for various time discretizations of the state system. Making these
arguments precise for general time discretizations would require accurately quantifying the regularity con-
ditions of the coefficients for the weak convergence of the discretization, and is left for future work.

We end this section by describing a possible practical implementation of the algorithm (2.26) which
allows for unknown coefficients in (2.8) and (2.9). Recall that, as shown in [29], for a given Gaussian policy
νθ, the aggregated dynamics (2.8) and the associated cost (2.9) can be approximated by interacting with
the linear dynamics (2.3) with random actions. More precisely, let π̃ = {0 = t̃0 < · · · < t̃M = T} be a time
mesh at which random actions are sampled. Consider Xθ,ζ governed by the following dynamics:

dXt = (AtXt +Btφ
θ
t (Xt)) dt+ (CtXt +Dtφ

θ
t (Xt)) dWt, t ∈ [0, T ]; X0 = ξ0, (2.27)

where

φθt (x) = Ktx+ V
1/2
t ϑt, with ϑt :=

M−1∑
i=0

ζi1[t̃i,t̃i+1)(t),

and (ζi)
M−1
i=0 are mutually independent standard normal vectors that are independent of ξ0 and W . The

associated cost with fixed realisations of ϑ, ξ0 and W is defined as:

Ĉ(θ) :=

∫ T

0

(
1

2

〈(
Qt S>t
St Rt

)(
Xθ,ζ
t

φt(X
θ,ζ
t )

)
,

(
Xθ,ζ
t

φt(X
θ,ζ
t )

)〉
+ ρH(νθt (Xθ,ζ

t )‖mt)
)

dt+
1

2
(Xθ,ζ

T )>GXθ,ζ
T ,

(2.28)
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where by mt = N (0, V̄t) (see Lemma 3.1),

H(νθt (Xθ,ζ
t )‖mt) =

1

2

(
tr
(
K>t V̄

−1
t KtX

θ,ζ
t (Xθ,ζ

t )> + V̄ −1
t Vt

)
− k + ln

(
det(V̄t)

det(Vt)

))
.

In (2.27), the linear dynamics (2.3) is controlled by sampling actions from νθ
π

using the injected noises
(ζi)

M−1
i=0 , and (2.28) is the quadratic cost induced by these random actions. Then, by arguments similar

to those in [29, Theorem 2.2], |E[Xθ,ζ
t (Xθ,ζ

t )>]− Σθt | ≤ C|π̃| for all t ∈ [0, T ], and |E[Ĉ(θ)]− C(θ)| ≤ C|π̃|,
with a constant C independent of π̃. One can also establish an error bound of the order O(

√
|π̃|) in the

high-probability sense with respect to the noise process ϑ.
The above observation suggests that, at each iteration of (2.26), the gradients ∇KiC(θπ,n), ∇ViC(θπ,n)

and the state covariance Σθ
π,n

ti at all grid points of π can be estimated using Monte Carlo methods without
relying on knowledge of the coefficients in (2.8) and (2.9). By choosing a sufficiently fine randomisation grid
π̃, the covariance Σθ

π,n

ti can be estimated by the empirical covariance of Xθπ,n,ζ corresponding to different
realisations of ϑ, W and ξ0. The gradients of the cost C(θπ,n) can be approximated by suitable zero-order
optimisation methods based on trajectories of the cost (2.28) (see e.g., [5, 12, 1]). It would be interesting
to quantify the precise sample efficiency of such a model-free implementation of (2.26). This would entail
estimating the approximation errors of ∇KiC(θπ,n), ∇ViC(θπ,n) and Σθ

π,n

ti in terms of the sample frequency
|π̃|−1 and the sample size, and quantifying the precise error propagation through the gradient descent
iteration. We leave a rigorous analysis of such a model-free algorithm for future research.

3 Proofs

3.1 Analysis of optimisation landscape

This section proves the regularity of the cost functional C in (2.9) given in Section 2.2.
We start by proving several technical lemmas. The following lemma expresses the coefficients of (2.8)

and the cost function (2.9) in terms of θ = (K,V ). The proof follows from a straightforward computation
and hence is omitted.

Lemma 3.1. Suppose (H.1) holds. Then for all νθ ∈ V and (t, x) ∈ [0, T ]× Rd,

Φt(x, ν
θ
t (x)) = (At +BtKt)x,

Γt(x, ν
θ
t (x)) =

(
(Ct +DtKt)xx

>(Ct +DtKt)
> +DtVtD

>
t

) 1
2 ,∫

Rk

〈(
Qt S>t
St Rt

)(
x
a

)
,

(
x
a

)〉
νθt (x; da) =

〈(
Qt S>t
St Rt

)(
x
Ktx

)
,

(
x
Ktx

)〉
+ tr(RtVt),

H(νθt (x)‖mt) =
1

2

(
(Ktx)>V̄ −1

t Ktx+ tr(V̄ −1
t Vt)− k + ln

(
det(V̄t)

det(Vt)

))
.

The next lemma represents the cost C(θ) in terms of P θ defined in (2.10).

Lemma 3.2. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ]; Sd) satisfy (2.10), let ϕθ ∈
C([0, T ];Rd) satisfy for a.e. t ∈ [0, T ],

( d
dtϕ)t+

1
2 tr
(
(D>t P

θ
t Dt +Rt + ρV̄ −1

t )Vt
)

+ ρ
2

(
−k + ln

(
det(V̄t)
det(Vt)

))
= 0; ϕT = 0,

and let uθ : [0, T ] × Rd → R be such that uθt (x) = 1
2x
>P θt x + ϕθt for all (t, x) ∈ [0, T ] × Rd. Then for all

θ ∈ Θ and x ∈ Rd,

( d
dtu

θ)t +
1

2
tr
(
Γt(x, ν

θ
t (x))Γt(x, ν

θ
t (x))>(∇2

xu
θ)t(x)

)
+ Φt(x, ν

θ
t (x))>(∇xuθ)t(x)

+
1

2

(
x>Qtx+ x>S>t Ktx+ (Ktx)>Stx+ (Ktx)>RtKtx+ tr(RtVt)

)
+
ρ

2

(
(Ktx)>V̄ −1

t Ktx+ tr(V̄ −1
t Vt)− k + ln

(
det(V̄t)

det(Vt)

))
= 0, a.e. t ∈ [0, T ],

(3.1)
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and uθT (x) = 1
2x
>Gx, where ∇xuθ and ∇2

xu
θ are the gradient and Hessian of uθ in x, respectively. Moreover,

it holds that C(θ) = E[uθ0(ξ0)].

Proof. Let Xθ ∈ S2(0, T ;Rd) be the solution to (2.8). For notational simplicity, we omit θ in the super-
scripts of all variables.

By Lemma 3.1 and the definition of u, for all (t, x) ∈ [0, T ],

Φt(x, ν
θ
t (x))>(∇xuθ)t(x) = 1

2x
> ((At +BtKt)

>Pt + Pt(At +BtKt)
)
x,

tr
(
Γt(x, ν

θ
t (x))Γt(x, ν

θ
t (x))>(∇2

xu
θ)t(x)

)
= tr

((
(Ct +DtKt)xx

>(Ct +DtKt)
> +DVtD

>)Pt) .
Then one can easily see from the definitions of P and ϕ that u satisfies (3.1) for a.e. t ∈ [0, T ] and all
x ∈ Rd, and uT (x) = 1

2x
>Gx.

Now applying Itô’s formula to t 7→ ut(Xt) implies that

uT (XT ) = u0(X0) +

∫ T

0

(
( d

dtu)t(Xt) +
1

2
tr
(
Γt(Xt, νt(Xt))Γt(Xt, νt(Xt))

>(∇2
xu)t(Xt)

)
+ Φt(Xt, νt(Xt))

>(∇xu)t(Xt)

)
dt+

∫ T

0

(∇xu)t(Xt)
>Γt(Xt, νt(Xt)) dWt.

(3.2)

By the identity ∇xut = Ptx and the integrability of C,D, θ and X,
∫ ·

0
(∇xu)t(Xt)

>Γt(Xt, νt(Xt)) dWt is a
martingale. Hence taking expectations on both sides of (3.2) and using (3.1) give that

E[u0(ξ0)] = E
[

1

2
X>T GXT

]
+ E

[ ∫ T

0

{
1

2

(〈(
Qt S>t
St Rt

)(
Xt

KtXt

)
,

(
Xt

KtXt

)〉
+ tr(RtVt)

)
+
ρ

2

(
(KtXt)

>V̄ −1
t KtXt + tr(V̄ −1

t Vt)− k + ln

(
det(V̄t)

det(Vt)

))}
dt

]
,

(3.3)

which along with Lemma 3.1 leads to the desired identity C(θ) = E[u0(ξ0)].

The following lemma quantifies the difference of value functions for two policies.

Lemma 3.3. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ]; Sd) satisfy (2.10), and let Σθ ∈
C([0, T ];Sd+) satisfy (2.11). Then for all θ, θ′ ∈ Θ,

C(θ′)− C(θ) =

∫ T

0

(
〈K ′t −Kt,DK(θ)tΣ

θ′

t 〉+
1

2
〈K ′t −Kt, (D

>
t P

θ
t Dt +Rt + ρV̄ −1

t )(K ′t −Kt)Σ
θ′

t 〉

+ `t(V
′
t , P

θ
t )− `t(Vt, P θt )

)
dt,

where DK(θ)t is defined by (2.12), and ` : [0, T ]× Sk+ × Rd×d → R is given by

`t(V,Z) =
1

2

(
〈D>t ZDt +Rt + ρV̄ −1

t , V 〉 − ρ ln(det(V ))
)
∀(t, V, Z) ∈ [0, T ]× Sk+ × Rd×d. (3.4)

Proof. Throughout this proof, let θ, θ′ ∈ Θ be given, let (P,Σ) = (P θ,Σθ), (P ′,Σ′) = (P θ
′
,Σθ

′
), u = uθ

and u′ = uθ
′
, where for each θ ∈ Θ, uθ : [0, T ] × Rd → R is defined as in Lemma 3.2. By (3.1), for all

x ∈ Rd, (u′ − u)T (x) = 0,

( d
dt (u

′ − u))t +
1

2
tr
(

Γt(x, ν
θ′

t (x))Γt(x, ν
θ′

t (x))>(∇2
x(u′ − u))t(x)

)
+ Φt(x, ν

θ′

t (x))>(∇x(u′ − u))t(x) + Ft(x) = 0, a.e. t ∈ [0, T ],

(3.5)
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where F : [0, T ]× Rd → R is given by

Ft(x) =
1

2
tr
(

Γt(x, ν
θ′

t (x))Γt(x, ν
θ′

t (x))>(∇2
xu)t(x)

)
+ Φt(x, ν

θ′

t (x))>(∇xu)t(x)

−1

2
tr
(
Γt(x, ν

θ
t (x))Γt(x, ν

θ
t (x))>(∇2

xu)t(x)
)
− Φt(x, ν

θ
t (x))>(∇xu)t(x)

+
1

2

[ (
x>Qtx+ x>S>t K

′
tx+ (K ′tx)>Stx+ (K ′tx)>RtK

′
tx+ tr(RtV

′
t )
)

−
(
x>Qtx+ x>S>t Ktx+ (Ktx)>Stx+ (Ktx)>RtKtx+ tr(RtVt)

) ]
+
ρ

2

[ (
(K ′tx)>V̄ −1

t K ′tx+ tr(V̄ −1
t V ′t )− ln (det(V ′t ))

)
−
(
(Ktx)>V̄ −1

t Ktx+ tr(V̄ −1
t Vt)− ln (det(Vt))

) ]
.

Applying Itô’s formula to t 7→ (u′ − u)t(X
θ′

t ) (recall the definition of uθ in Lemma 3.2) and using (3.5)
yield that

E[(u′ − u)T (Xθ′

T )]− E[(u′ − u)0(Xθ′

0 )] = E

[∫ T

0

−Ft(Xθ′

t ) dt

]
,

which along with C(θ) = E[uθ0(ξ0)] (see Lemma 3.2) and (u′ − u)T = 0 implies that

C(θ′)− C(θ) = E

[∫ T

0

Ft(X
θ′

t ) dt

]
. (3.6)

We now simplify the expression of Ft(x) for any given (t, x) ∈ [0, T ]×Rd. To this end, let H : [0, T ]×Rd×
Rk × Rd × Rd×d → R be a modified Hamiltonian such that (t, x, a, y, z) ∈ [0, T ]× Rd × Rk × Rd × Rd×d,

Ht(x, a, y, z) = 1
2 tr
(
(Ctx+Dta)(Ctx+Dta)>z

)
+ 〈Atx+Bta, y〉

+ 1
2

(
x>Qtx+ x>S>t a+ a>Stx+ a>(Rt + ρV̄ −1

t )a
)
,

and let ` : [0, T ]×Sk+×Rd×d → R be defined as in (3.4). Recall that (∇xu)t(x) = Ptx and (∇2
xu)t(x) = Pt.

Hence by Lemma 3.1,

Ft(x) = Ht(x,K
′
tx, Ptx, Pt)−Ht(x,Ktx, Ptx, Pt) + `t(V

′
t , Pt)− `t(Vt, Pt). (3.7)

Observe that for all (t, x, y, z) ∈ [0, T ]×Rk ×Rd× Sd, a 7→ Ht(x, a, y, z) is a quadratic function, and hence
Taylor’s expansion shows that for all a, a ∈ Rk,

Ht(x, a
′, y, z)−Ht(x, a, y, z) = 〈a′ − a, ∂aHt(x, a, y, z)〉+

1

2
〈a′ − a, ∂2

aHt(x, a, y, z)(a
′ − a)〉,

where ∂aHt(x, a, y, z) and ∂2
aHt(x, a, y, z) are given by

∂aHt(x, a, y, z) = D>t z(Ctx+Dta) +B>t y + Stx+ (Rt + ρV̄ −1
t )a,

∂2
aHt(x, a, y, z) = D>t zDt +Rt + ρV̄ −1

t .

Substituting the above identities into (3.7) yields

Ft(x) = `t(V
′
t , Pt)− `t(Vt, Pt)

+ 〈(K ′t −Kt)x,D
>
t Pt(Ctx+DtKtx) +B>t Ptx+ Stx+ (Rt + ρV̄ −1

t )Ktx〉

+
1

2
〈(K ′t −Kt)x, (D

>
t PtDt +Rt + ρV̄ −1

t )(K ′t −Kt)x〉,

which along with (3.6), the definition of DK(θ) in (2.12), and Σ′t = E[Xθ′

t (Xθ′

t )>] leads to the desired
conclusion.
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Proof of Proposition 2.1. For each θ ∈ Θ, by (3.3),

C(θ) =
1

2

∫ T

0

(
tr
(
(Qt +K>t St + S>t Kt +K>t (Rt + ρV̄ −1

t )Kt)Σ
θ
t

)
+ tr(RtVt) + ρ

(
tr(V̄ −1

t Vt)− k + ln

(
det(V̄t)

det(Vt)

)))
dt+

1

2
tr(GΣθT ),

(3.8)

where Σθ ∈ C([0, T ];Sd+) satisfies (2.11). We then apply [3, Corollary 4.11] to characterise the Gateaux

derivatives. Let H : [0, T ]× Sd+ ×Rk×d × Sk+ ×Rd → R be the Hamiltonian of (3.8)-(2.11) such that for all

(t,Σ,K, V, Y ) ∈ [0, T ]× Sd+ × Rk×d × Sk+ × Rd×d,

Ht(Σ,K, V, Y ) = 〈(At +BtK)Σ + Σ(At +BtK)> + (Ct +DtK)Σ(Ct +DtK)> +DtV D
>
t , Y 〉

+
1

2

{
tr
(
(Qt +K>St + S>t K +K>(Rt + ρV̄ −1

t )K)Σ
)

+ tr(RtV )

+ ρ

(
tr(V̄ −1

t V )− k + ln

(
det(V̄t)

det(V )

))}
,

and for each θ ∈ Θ, let Y θ ∈ C([0, T ];Rd×d) be the adjoint process satisfying

( d
dtY )t = −∂ΣHt(Σ

θ
t ,Kt, Vt, Yt), a.e. t ∈ [0, T ]; YT = 1

2G.

Then by [3, Corollary 4.11], for all θ, θ ∈ Θ,

d

dε
C(K + εK ′, V )

∣∣∣
ε=0

=

∫ T

0

〈∂KHt(Σ
θ
t ,Kt, Vt, Y

θ
t ),K ′t〉dt,

d

dε
C(K,V + ε(V ′ − V ))

∣∣∣
ε=0

=

∫ T

0

〈∂VHt(Σ
θ
t ,Kt, Vt, Y

θ
t ), V ′t − Vt〉dt.

Observe that Y θ = 1
2P

θ ∈ C([0, T ];Sd), and for all (t,Σ,K, V, Y ) ∈ [0, T ]× Sd+ × Rk×d × Sk+ × Sd,

∂KHt(Σ,K, V, Y ) =
(
2B>t Y + 2D>t Y (Ct +DtK) + St + (Rt + ρV̄ −1

t )K
)

Σ,

∂VHt(Σ,K, V, Y ) = D>t Y Dt + 1
2 (Rt + ρ(V̄ −1

t − V −1)).

This proves the desired claims.

Proof of Proposition 2.2. Observe from a direct computation that for all Z,Γ ∈ Rk×d, Σ ∈ Sk+ and M ∈ Sk+,

〈Z,ΓΣ〉+
1

2
〈Z,MZΣ〉 =

1

2

〈
Z +M−1Γ,M

(
Z +M−1Γ

)
Σ
〉
− 1

2
〈M−1Γ,ΓΣ〉

≥ −1

2
〈M−1Γ,ΓΣ〉,

(3.9)

where the last inequality uses the fact that tr(AB) ≥ 0 if A,B ∈ Sd+. Hence for all θ ∈ Θ and t ∈ [0, T ],

substituting (3.9) with Z = K?
t −Kt, Γ = DK(θ)t, Σ = Σθ

?

t and M = D>t P
θ
t Dt +Rt + ρV̄ −1

t yields that∫ T

0

(
〈K?

t −Kt,DK(θ)tΣ
θ?

t 〉+
1

2
〈K?

t −Kt, (D
>
t P

θ
t Dt +Rt + ρV̄ −1

t )(K?
t −Kt)Σ

θ?

t 〉
)

dt

≥ −1

2

∫ T

0

〈(D>t P θt Dt +Rt + ρV̄ −1
t )−1DK(θ)t,DK(θ)tΣ

θ?

t 〉dt.
(3.10)
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Then by Lemma 3.3 and (3.10):

C(θ?)− C(θ)

=

∫ T

0

(
〈K?

t −Kt,DK(θ)tΣ
θ?

t 〉+
1

2
〈K?

t −Kt, (D
>
t P

θ
t Dt +Rt + ρV̄ −1

t )(K?
t −Kt)Σ

θ?

t 〉

+ `t(V
?
t , P

θ
t )− `t(Vt, P θt )

)
dt

≥
∫ T

0

(
−1

2
〈(D>t P θt Dt +Rt + ρV̄ −1

t )−1DK(θ)t,DK(θ)tΣ
θ?

t 〉+ `t(V
?
t , P

θ
t )− `t(Vt, P θt )

)
dt.

(3.11)

Now by (3.4), for all (t, Z) ∈ [0, T ]× Rd×d and V, V ′ ∈ Sk+,

`t(V
′, Z)− `t(V,Z)

= 〈∂V `t(V,Z), V ′ − V 〉+

∫ 1

0

(
d
ds`t(V + s(V ′ − V ), Z)− 〈∂V `t(V,Z), V ′ − V 〉

)
ds

= 〈∂V `t(V,Z), V ′ − V 〉+

∫ 1

0

〈∂V `t(V + s(V ′ − V ), Z)− ∂V `t(V,Z), V ′ − V 〉ds.

Recall that ∂V `t(V,Z) = 1
2 (D>t ZDt + Rt + ρV̄ −1

t − ρV −1), and A−1 − B−1 = B−1(B − A)A−1 for all
A,B ∈ Sk+. Then for all (t, Z) ∈ [0, T ]× Rd×d and V, V ′ ∈ Sk+,

`t(V
′, Z)− `t(V,Z)

= 〈∂V `t(V,Z), V ′ − V 〉+
ρ

2

∫ 1

0

〈V −1
(
s(V ′ − V )

)
(V + s(V ′ − V ))−1, V ′ − V 〉ds.

(3.12)

Hence for all θ, θ′ ∈ Θ and t ∈ [0, T ], by using (2.13), the fact that tr(AB) ≥ 0 for all A,B ∈ Sd+, and (3.9)
(with Z = V ′t − Vt, Γ = DV (θ)t, Σ = Ik, M = ρ

2 Λ(V ′t , Vt)
2Ik),

`t(V
′
t , P

θ
t )− `t(Vt, P θt )

= 〈∂V `t(Vt, P θt ), V ′t − Vt〉+
ρ

2

∫ 1

0

〈V −1
t

(
s(V ′t − Vt)

)
(Vt + s(V ′t − Vt))−1, V ′t − Vt〉ds

≥ 〈DV (θ)t, V
′
t − Vt〉+

ρ

4
Λ(V ′t , Vt)

2〈V ′t − Vt, V ′t − Vt〉 ≥ −
1

ρΛ(V ′t , Vt)
2
|DV (θ)t|2,

(3.13)

with Λ(V ′t , Vt) > 0 defined as

Λ(V ′t , Vt) := min
s∈[0,1]

λmin

(
(Vt + s(V ′t − Vt))−1

)
=

1

maxs∈[0,1] λmax (Vt + s(V ′t − Vt))

=
1

max(λmax(Vt), λmax(V ′t ))
=

1

max(‖Vt‖2, ‖V ′t ‖2)
,

due to the convexity of [0, 1] 3 s 7→ λmax (Vt + s(V ′t − Vt)) ∈ R, and ‖V ‖2 = λmax(V ) for all V ∈ Sk+.
Substituting (3.13) with V ′ = V ? and using (3.11) yield the desired estimate (2.14).

Proof of Proposition 2.3. By (2.13) and (3.12), for all θ, θ′ ∈ Θ and t ∈ [0, T ],

`t(V
′
t , P

θ
t )− `t(Vt, P θt )

= 〈∂V `t(Vt, P θt ), V ′t − Vt〉+
ρ

2

∫ 1

0

〈V −1
t

(
s(V ′t − Vt)

)
(Vt + s(V ′t − Vt))−1, V ′t − Vt〉ds

≤ 〈DV (θ)t, V
′
t − Vt〉+

ρ

4
Λ(V ′t , Vt)

2〈V ′t − Vt, V ′t − Vt〉,
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where Λ(V ′t , Vt) > 0 is given by

Λ(V ′t , Vt) := max
s∈[0,1]

λmax

(
(Vt + s(V ′t − Vt))−1

)
=

1

mins∈[0,1] λmin (Vt + s(V ′t − Vt))

=
1

min(λmin(Vt), λmin(V ′t ))
.

Combining this and Lemma 3.3 yields the desired estimate.

3.2 Proof of Proposition 2.5

The following lemma compares solutions to (2.10) for different θ, θ′ ∈ Θ.

Lemma 3.4. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10). Then for all
θ, θ′ ∈ Θ, ∆P := P θ

′ − P θ satisfies for a.e. t ∈ [0, T ],

( d
dt∆P )t + (At +BtK

′
t)
>∆Pt + ∆P>t (At +BtK

′
t) + (Ct +DtK

′
t)
>∆Pt(Ct +DtK

′
t)

+ (K ′t −Kt)
>DK(θ)t +DK(θ)>t (K ′t −Kt)

+ (K ′t −Kt)
>(D>t P

θ
t Dt +Rt + ρV̄ −1

t )(K ′t −Kt),= 0; ∆PT = 0,

where DK(θ)t is defined in (2.12).

Proof. By (2.10), ∆PT = 0 and for a.e. t ∈ [0, T ],

( d
dt∆P )t + (At +BtK

′
t)
>∆Pt + ∆P>t (At +BtK

′
t) + (Ct +DtK

′
t)
>∆Pt(Ct +DtK

′
t)

+ qt(K
′
t)− qt(Kt) = 0,

where for all K ∈ Rk×d,

qt(K) := (At +BtK)>P θt + (P θt )>(At +BtK) + (Ct +DtK)>P θt (Ct +DtK)

+ S>t K +K>St +K>(Rt + ρV̄ −1
t )K.

Observe that for any K1,K2 ∈ Rk×d and P ∈ Sd,

K>1 PK1 −K>2 PK2 = (K1 −K2)>PK2 +K>2 P (K1 −K2) + (K1 −K2)>P (K1 −K2).

Thus for a.e. t ∈ [0, T ],

qt(K
′
t)− qt(Kt) = (K ′t −Kt)

> (B>t P θt +D>t P
θ
t (Ct +DtKt) + St + (Rt + ρV̄ −1

t )Kt

)
+
(
B>t P

θ
t +D>t P

θ
t (Ct +DtKt) + St + (Rt + ρV̄ −1

t )Kt

)>
(K ′t −Kt)

+ (K ′t −Kt)
>(D>t P

θ
t Dt +Rt + ρV̄ −1

t )(K ′t −Kt),

which along with the definition of DK(θ)t leads to the desired identity.

Based on Lemma 3.4, we establish a uniform bound of (P θ
n

)n∈N and (Kn)n∈N.

Proposition 3.5. Suppose (H.1) and (H.2) hold. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10). Let

θ0 ∈ Θ, λ0 > 0 be such that λ0Ik � D>P θ
0

D+R+ρV̄ −1, and for each τ > 0, let (Kn)n∈N ⊂ B(0, T ;Rd×k)
be defined in (2.16). Then

(1) for all τ ∈ (0, 2/λ0] and n ∈ N0, P θ
n � P θ

n+1 � P ?, and δ̃Ik � D>P θ
n

D + R + ρV̄ −1 � λ0Ik, with

P ? ∈ C([0, T ];Sd) and δ̃ > 0 in (H.2);

(2) there exists C̃(θ0) ≥ 0 such that for all τ ∈ (0, 1/λ0] and n ∈ N0, ‖Kn‖L2 ≤ C̃(θ0).

17



Proof. We write Pn = P θ
n

for notational simplicity. For each n ∈ N, applying (2.16) and Lemma 3.4 with
θ′ = θn and θ = θn−1, ∆P := Pn − Pn−1 ∈ C([0, T ]; Sd) satisfies ∆PT = 0, and for a.e. t ∈ [0, T ],

( d
dt∆P )t + (At +BtK

n+1
t )>∆Pt + ∆P>t (At +BtK

n+1
t ) + (Ct +DtK

n+1
t )>∆Pt(Ct +DtK

n+1
t )

= −(Kn+1
t −Kn

t )>DK(θn)t −DK(θn)>t (Kn+1
t −Kn

t )

− (Kn+1
t −Kn

t )>(D>t P
n
t Dt +Rt + ρV̄ −1

t )(Kn+1
t −Kn

t )

= 2τDK(θn)>t
(
Ik − τ

2 (D>t P
n
t Dt +Rt + ρV̄ −1

t )
)
DK(θn)t.

Now suppose that τ ∈ (0, 2/λ0], then Ik − τ
2 (D>t P

0
t Dt +Rt + ρV̄ −1

t ) � 0, which implies that P 1 � P 0 (see
e.g., [34, Lemma 7.3, p. 320]), and hence

Ik − τ
2 (D>P 1D +R+ ρV̄ −1) � Ik − τ

2 (D>P 0D +R+ ρV̄ −1) � 0.

An induction argument shows that Pn � Pn+1 for all n ∈ N0. Moreover, observe from (2.5) and (2.6) that
DK(θ?) = 0 and P ? = P θ

?

. By applying Lemma 3.4 with θ′ = θn and θ = θ?, one can deduce from similar
arguments that Pn � P θ? for all n ∈ N0. Consequently, by (H.2),

λ0Ik � D>P 0D +R+ ρV̄ −1 � D>PnD +R+ ρV̄ −1 � D>P ?D +R+ ρV̄ −1 � δ̃Ik.

This proves Item (1).

Item (1) implies that there exists C̃(θ0) > 0 such that ‖Pn‖L∞ ≤ C̃(θ0) for all n ∈ N0. Then for all
n ∈ N0, by (2.12) and (2.16),

|Kn+1
t | =

∣∣Kn
t − τ

(
(B>t P

n
t +D>t P

n
t Ct + St) + (D>t P

n
t Dt +Rt + ρV̄ −1

t )Kn
t

)∣∣
≤ |Ik − τ(D>t P

n
t Dt +Rt + ρV̄ −1

t )||Kn
t |+ τ |B>t Pnt +D>t P

n
t Ct + St|.

Thus for all τ ∈ (0, 1/λ0] and n ∈ N0,

‖Kn+1‖L2 ≤ (1− τλ0)‖Kn‖L2 + τ‖B>Pn +D>PnC + S‖L2

≤ ‖K0‖L2 + sup
n∈N0

1

λ0

‖B>Pn +D>PnC + S‖L2 <∞,

where the last inequality follows from a straightforward induction argument.

The next proposition proves a uniform upper and lower bound of (V n)n∈N.

Proposition 3.6. Suppose (H.1) and (H.2) hold. Let θ0 ∈ Θ, and for each τ > 0, let (θn)n∈N ⊂
B(0, T ;Rk×d × Sk) be defined in (2.16). Let λ0 > 0 be such that λ0Ik � D>P θ

0

D +R + ρV̄ −1 with P θ0 ∈
C([0, T ];Sd) defined in (2.10), let λV = min

(
mint∈[0,T ] λmin(V 0

t ), ρ
λ0

)
, and let λV = max

(
maxt∈[0,T ] λmax(V 0

t ), ρ
δ̃

)
.

Then for all τ ∈ (0, 1/λ0] and n ∈ N0, λV Ik � V n � λV Ik.

Proof. For each n ∈ N0, let Mn = D>P θ
n

D +R+ ρV̄ −1. By (2.13), for each n ∈ N0 and a.e. t ∈ [0, T ],

V n+1
t = V nt − τ

(
1

2

(
Mn
t − ρ(V nt )−1

)
V nt + V nt

1

2

(
Mn
t − ρ(V nt )−1

))
=

1

2
(Ik − τMn

t )V nt +
1

2
V nt (Ik − τMn

t ) + ρτIk.

Let τ ∈ (0, 1/λ0]. By Proposition 3.5 Item (1), for all n ∈ N0, δ̃Ik � Mn � λ0Ik, and hence 0 �
(1− τλ0)Ik � Ik − τMn � (1− τ δ̃)Ik. Thus for all n ∈ N0 and a.e. t ∈ [0, T ],

λmin(V n+1
t ) ≥ λmin (Ik − τMn

t )λmin(V nt ) + ρτ ≥
(
1− τλ0

)
λmin(V nt ) + ρτ.

Setting vnt = λmin(V nt ) for all n ∈ N0. An induction argument shows that

vnt ≥
(
1− τλ0

)n
v0
t + ρτ

n−1∑
i=0

(
1− τλ0

)i
=

(
v0
t −

ρ

λ0

)(
1− τλ0

)n
+

ρ

λ0

≥ min

(
v0
t ,

ρ

λ0

)
.
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Similarly, for all n ∈ N0 and a.e. t ∈ [0, T ],

λmax(V n+1
t ) ≤ λmax (Ik − τMn

t )λmax(V nt ) + ρτ ≤
(

1− τ δ̃
)
λmax(V nt ) + ρτ,

which implies that λmax(V nt ) ≤ max
(
λmax(V 0

t ), ρ
δ̃

)
.

The following lemma establishes an upper and lower bounds of the state covariance matrices for any
θ ∈ Θ, which is crucial for the convergence analysis of (2.16).

Lemma 3.7. Suppose (H.1) and (H.2) hold. For each θ ∈ Θ, let Σθ ∈ C([0, T ];Sd+) satisfy (2.11). Then

there exists C̃ > 0 such that for all θ ∈ Θ,

λmin(E[ξ0ξ
>
0 ]) exp

(
−C̃(1 + ‖K‖2L2)

)
Id � Σθ � C̃ (|Σ0|+ ‖V ‖L1) exp

(
C̃(1 + ‖K‖2L2)

)
Id.

Proof. Let θ ∈ Θ be fixed. We omit the superscript of Σθ to simplify the notation. To estimate λmax(Σt),
by (2.11), for all t ∈ [0, T ],

‖Σt‖2 ≤ ‖Σ0‖2 +

∫ t

0

(
(2‖Ãs‖2 + ‖C̃s‖22)‖Σs‖2 + ‖Ds‖22‖Vs‖2

)
ds,

where Ãt = At + BtKt and C̃t = Ct + DtKt. Then by (H.1(1)) and Gronwall’s inequality, ‖Σ‖L∞ ≤
C̃ (|Σ0|+ ‖V ‖L1) exp

(
C̃(1 + ‖K‖2L2)

)
for some C̃1 > 0.

Now we obtain a lower bound of λmin(Σt). As (C +DK)Σ(C +DK)>+DVD> � 0, by (2.11), Σ � Σ̃,

where Σ̃ ∈ C([0, T ];Sd+) satisfies for a.e. t ∈ [0, T ],

( d
dtΣ)t =(At +BtKt)Σt + Σt(At +BtKt)

>; Σ0 = E[ξ0ξ
>
0 ]. (3.14)

Note that for all t ∈ [0, T ], Σ̃t = Ψ>t E[ξ0ξ
>
0 ]Ψt, where Ψ ∈ C([0, T ];Rd×d) satisfies Ψ0 = Id and for

a.e. t ∈ [0, T ], dΨt = ΨtÃ
>
t dt, with Ã = A+BK ∈ L1(0, T ;Rd×d). For each t ∈ [0, T ], let xt ∈ Rd be such

that |xt| = 1 and λmin(Σ̃t) = x>t Σ̃txt, and let yt = Ψtxt. Then

λmin(Σt) ≥ λmin(Σ̃t) = x>t
(
(Ψt)

>E[ξ0ξ
>
0 ]Ψt

)
xt =

y>t E[ξ0ξ
>
0 ]yt

|yt|2
|yt|2 ≥

λmin(E[ξ0ξ
>
0 ])∥∥Ψ−1

t

∥∥2

2

,

where the last inequality uses 1 = |xt| ≤ ‖(Ψt)
−1‖2|yt|, with the spectral norm ‖ · ‖2. Observe that

Ψ−1 ∈ C([0, T ];Rd×d) be such that Ψ−1
0 = Id and for a.e. t ∈ [0, T ], dΨ−1

t = −Ã>t Ψ−1
t dt. Hence for all

t ∈ [0, T ],

‖Ψ−1
t ‖2 ≤ 1 +

∫ t

0

‖Ãs‖2‖Ψ−1
s ‖2 ds ≤ 1 +

∫ t

0

|Ãs|‖Ψ−1
s ‖2 ds,

which along with Gronwall’s inequality shows that ‖Ψ−1
t ‖L∞ ≤ exp

(
‖Ã‖L1

)
. Consequently, inft∈[0,T ] λmin(Σt) ≥

λmin(E[ξ0ξ
>
0 ]) exp

(
−2‖Ã‖L1

)
, which along with (H.1(1)) leads to the desired lower bound of λmin(Σt).

A direct consequence of Proposition 3.6 and Lemma 3.7 are the following uniform bounds of the state
covariance matrices along the iterates (θn)n∈N generated by (2.16).

Proposition 3.8. Suppose (H.1) and (H.2) hold, and E[ξ0ξ
>
0 ] � 0. For each θ ∈ Θ, let P θ ∈ C([0, T ]; Sd)

satisfy (2.10), and let Σθ ∈ C([0, T ];Sd+) satisfy (2.11). Let θ0 ∈ Θ, let λ0 > 0 be such that λ0Ik �
D>P θ

0

D + R + ρV̄ −1, and for each τ ∈ (0, 1/λ0], let (θn)n∈N ⊂ Θ be defined in (2.16). Then there exists
λX , λX > 0, depending on θ0, such that for all τ ∈ (0, 1/λ0] and n ∈ N0, λXId � Σθ

n � λXId.

Proof. By Proposition 3.5, for all τ ∈ (0, 1/λ0], supn∈N0
‖Kn‖L2 ≤ C̃(θ0) for some C̃(θ0) > 0. The uniform

lower and upper bounds of (Σθ
n

)n∈N0
follow from Proposition 3.6 and Lemma 3.7.
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3.3 Proof of Theorem 2.6

The following proposition compares the value functions of two consecutive iterates.

Proposition 3.9. Suppose (H.1) and (H.2) hold, and E[ξ0ξ
>
0 ] � 0. Let θ0 ∈ Θ, and λ0 > 0 be such

that λ0Ik � D>P θ
0

D + R + ρV̄ −1 with P θ0 ∈ C([0, T ]; Sd) defined in (2.10). For each τ ∈ (0, 1/λ0],
let (θn)n∈N ⊂ Θ be defined in (2.16), let λV , λV > 0 be such that λV Ik � V n � λV Ik for all n ∈ N0

(cf. Proposition 3.6), and let λX , λX > 0 be such that λXIk � Σθ
n � λXIk for all n ∈ N0 (cf. Proposition

3.8). Then for all τ ∈ (0, 1/λ0] and n ∈ N0,

C(θn+1)− C(θn) ≤ −τ
∫ T

0

((
λX −

τ

2
λ0λX

)
|DK(θn)t|2 +

(
2λV −

ρτλ
2

V

λ2
V

)
|DnV (θn)t|2

)
dt.

Proof. For each n ∈ N0, let Σn = Σθ
n

, Pn = P θ
n

, ∆Kn = Kn+1−Kn, ∆V n = V n+1−V n, DnK = DK(θn),
and DnV = DV (θn). By using Proposition 2.3 and the fact that λV Ik � V n � λV Ik for all n ∈ N0,

C(θn+1)− C(θn) ≤
∫ T

0

(
〈∆Kn

t ,DnK,tΣn+1
t 〉+

1

2
〈∆Kn

t , (D
>
t P

n
t Dt +Rt + ρV̄ −1

t )(∆Kn
t )Σn+1

t 〉

+ 〈DnV,t,∆V nt 〉+
ρ

4λ2
V

|∆V nt |2
)

dt

≤
∫ T

0

(
〈−τDnK,t,DnK,tΣn+1

t 〉+
τ2

2
〈DnK,t, (D>t Pnt Dt +Rt + ρV̄ −1

t )DnK,tΣn+1
t 〉

− τ
[
〈DnV,t, {DnV,tV nt }S〉 −

ρτ

4λ2
V

|{DnV,tV nt }S |2
])

dt

with {DnV,tV nt }S := DnV,tV nt +V nt DnV,t, where the last inequality used (2.16). Recall that for all S1, S2 ∈ Sk+,

λmin(S1)tr(S2) ≤ tr(S1S2) ≤ λmax(S1)tr(S2). Hence 〈DnV,t, {DnV,tV nt }S〉 ≥ 2λV |DnV,t|2, and |{DnV,tV nt }S |2 ≤
4λ

2

V |DnV,t|2. Hence for all n ∈ N0,

C(θn+1)− C(θn) ≤
∫ T

0

(
− τ

(
λmin(Σn+1

t )− τ

2
λmax((D>t P

n
t Dt +Rt + ρV̄ −1

t ))λmax(Σn+1
t )

)
|DnK,t|2

− τ

(
2λV −

ρτλ
2

V

λ2
V

)
|DnV,t|2

)
dt.

The desired inequality then follows from Propositions 3.5 and 3.8.

The next proposition establishes a uniform  Lojasiewicz property of the cost C : Θ→ R along the iterates
(2.16).

Proposition 3.10. Suppose (H.1) and (H.2) hold, and E[ξ0ξ
>
0 ] � 0. Let θ? ∈ Θ be defined in (2.6). For

each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10), and let Σθ ∈ C([0, T ];Sd+) satisfy (2.11). Let θ0 ∈ Θ and

λ0 > 0 such that λ0Ik � D>P θ
0

D + R + ρV̄ −1. For each τ ∈ (0, 1/λ0], let (θn)n∈N0
⊂ Θ be defined in

(2.16). Then for all τ ∈ (0, 1/λ0] and n ∈ N0,

C(θn)− C(θ?) ≤ max

(
λ
?

X

2δ̃
,

max(λV , λ
?

V )2

ρ

)∫ T

0

(
|DK(θn)t|2 + |DV (θn)t|2

)
dt,

where δ̃ > 0 is the same as in (H.2), λ
?

X > 0 satisfies Σθ
? � λ

?

XId, λ
?

V > 0 satisfies V ? � λ
?

V Ik, and
λV > 0 satisfies V n � λV Ik for all n ∈ N0.

Proof. Let λ
?

V > 0 be such that V ? � λ
?

V Ik. For each n ∈ N0, let Σn = Σθ
n

, Pn = P θ
n

, DnK = DK(θn),
and DnV = DV (θn). Recall that there exists λV , λV > 0 such that λV Ik � V n � λV Ik for all n ∈ N0. Then
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for all n ∈ N0, Proposition 3.5 shows that D>t P
n
t Dt +Rt + ρV̄ −1

t � δ̃Ik, which along with Proposition 2.2
shows that

C(θn)− C(θ?) ≤
∫ T

0

(
1

2
〈(D>t Pnt Dt +Rt + ρV̄ −1

t )−1DnK,t,DnK,tΣθ
?

t 〉+
max(λV , λ

?

V )2

ρ
|DnV,t|2

)
dt

≤
∫ T

0

(
λ
?

X

2δ̃
|DnK,t|2 +

max(λV , λ
?

V )2

ρ
|DnV,t|2

)
dt,

with λ
?

X > 0 such that Σθ
? � λ?XId (cf. Lemma 3.7). This proves the desired estimate.

Proof of Theorem 2.6. Let λ0 > 0 be such that λ0Ik � D>P θ
0

D + R + ρV̄ −1, where P θ0 ∈ C([0, T ]; Sd)
satisfies (2.10) with θ = θ0. Then by Proposition 3.9, for all τ ∈ (0, 1/λ0] and n ∈ N0,

C(θn+1)− C(θn) ≤ −τ
∫ T

0

((
λX −

τ

2
λ0λX

)
|DK(θn)t|2 +

(
2λV −

ρτλ
2

V

λ2
V

)
|DnV (θn)t|2

)
dt,

with the constants λX , λX > 0 in Proposition 3.8. Hence by setting C̃1 = max(λ0,
2ρλ

2
V

3λ3
V
, λ0λX
λX

), it holds for

all τ ∈ (0, 1/C̃1] and n ∈ N0,

C(θn+1)− C(θn) ≤ −τ
∫ T

0

(
λX
2
|DK(θn)t|2 +

λV
2
|DV (θn)t|2

)
dt

≤ −τ 1

2
min(λX , λV )

∫ T

0

(
|DK(θn)t|2 + |DV (θn)t|2

)
dt

≤ −τC1 (C(θn)− C(θ?)) , with C1 :=
min(λX , λV )

2 max
(
λ
?
X

2δ̃
,

max(λV ,λ
?
V )2

ρ

) ,

where the last inequality used Proposition 3.10. Thus, for all τ ∈ (0, τ0] with τ0 > 0 satisfying

1

τ0
≥ max

(
λ0,

2ρλ
2

V

3λ3
V

,
λ0λX
λX

,
min(λX , λV )

2 max
(
λ
?
X

2δ̃
,

max(λV ,λ
?
V )2

ρ

)),
we have for all n ∈ N0, C(θn+1) ≤ C(θn) and

C(θn+1)− C(θ?) ≤ C(θn+1)− C(θn) + C(θn)− C(θ?) ≤ (1− τC1)
(
C(θn)− C(θ?)

)
. (3.15)

To prove Item (2), observe that DK(θ?) = 0 and DV (θ?) = 0. Hence by Lemma 3.3 and (3.13), for all
n ∈ N0,

C(θn)− C(θ?)

≥
∫ T

0

(
1

2
〈Kn

t −K?
t , (D

>
t P

?
t Dt +Rt + ρV̄ −1

t )(Kn
t −K?

t )Σθ
n

t 〉+
ρ

4

|V nt − V ?t |2

max(‖V nt ‖22, ‖V ?t ‖22)

)
dt

≥
∫ T

0

(
1

2
δ̃λX |Kn

t −K?
t |2 +

ρ

4λ
2

V

|V nt − V ?t |2
)

dt,

where the last inequality used (H.2), Proposition 3.8 and V ?, V n � λV Ik. This along with Item (1) proves

Item (2) with C2 = 1/min
(

1
2 δ̃λX ,

ρ

4λ
2
V

)
.

3.4 Proofs of Theorem 2.7 and Corollary 2.8

The following lemma proves the optimal costs of piecewise constant policies converges to the optimal
cost of continuous-time policies as |π| → 0.
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Lemma 3.11. Suppose (H.1) and (H.2) hold. Let (πm)m∈N ⊂P[0,T ] be such that limm→∞ |πm| = 0. Then
limm→∞ C?πm = infθ∈Θ C(θ).

Proof. For eachm ∈ N, by Θπm ⊂ Θ, C?πm = infθ∈Θπm C(θ) ≥ infθ∈Θ C(θ), which implies that lim infm→∞ C?πm ≥
infθ∈Θ C(θ). On the other hand, let θ? = (K?, V ?) be defined in (2.6), and for each m ∈ N, let θm,? =

(Km,?, V m,?) be the L2 projection of θ? onto Θm such that Km,?
t =

∑Nm−1
i=0 K

?

ti1[ti,ti+1)(t) and V m,?t =∑Nm−1
i=0 V

?

ti1[ti,ti+1)(t) for a.e. t ∈ [0, T ], where

K
?

ti =
1

ti+1 − ti

∫ ti+1

ti

K?
t dt, V

?

ti =
1

ti+1 − ti

∫ ti+1

ti

V ?t dt, ∀i ∈ {0, . . . , Nm − 1}.

A standard mollification argument shows that limm→∞ ‖θm,? − θ?‖L2 = 0. Moreover, the fact that εIk �
V ? � 1

εIk for some ε > 0 implies that εIk � V m,? � 1
εIk for all m ∈ N. By the uniform L2-bound of

(Km,?)m∈N and the L∞-bound of (V m,?)m∈N, there exists C ≥ 0 such that Σθ
m,? � CId for all m ∈ N due

to Lemma 3.7. Then by Proposition 2.3, for all m ∈ N,

C(θm,?)− C(θ?) ≤
∫ T

0

(
1

2
〈Km,?

t −K?
t , (D

>
t P

θ?

t Dt +Rt + ρV̄ −1
t )(Km,?

t −K?
t )Σθ

m,?

t 〉

+
ρ

4

|V m,?t − V ?t |2

min(λ2
min(V ?t ), λ2

min(V m,?t ))

)
dt,

which along with limm→∞ ‖θm,? − θ?‖L2 = 0 and V m,? � εIk, Σθ
m,? � CId for all m ∈ N implies that

limm→∞ C(θm,?) = infθ∈Θ C(θ). As C?πm ≤ C(θ
m,?) for all m ∈ N,

inf
θ∈Θ
C(θ) ≤ lim inf

m→∞
C?πm ≤ lim sup

m→∞
C?πm ≤ lim sup

m→∞
C(θm,?) = inf

θ∈Θ
C(θ).

This leads to the desired convergence result.

The following proposition proves that when the mesh size |π| are sufficiently small, the policies from
(2.21) have similar costs as those from (2.16).

Proposition 3.12. Suppose (H.1), (H.2) and (H.3) hold. Assume further that D ∈ C([0, T ];Rd×k), R ∈
C([0, T ];Sk) and V̄ ∈ C([0, T ]; Sk+). Let θ0 ∈ L2(0, T ;Rk×d)× C([0, T ];Sk+), let (πm)m∈N ⊂P[0,T ] be such
that limm→∞ |πm| = 0, and let (θπm,0)m∈N ⊂ Θ be such that θπm,0 ∈ Θπm for all m ∈ N, limm→∞ ‖θπm,0−
θ0‖L2×L∞ = 0. Let λ0 > 0 be such that λ0Ik � D>P θ

0

D + R + ρV̄ −1, with P θ0 ∈ C([0, T ];Sd) defined
in (2.10), and for each τ > 0, let (θn)n∈N and (θπm,n)m,n∈N be defined in (2.16) and (2.21), respectively.
Then for all τ ∈ (0, 1/λ0] and N ∈ N0,

lim
m→∞

sup
n=0,...,N

|C(θπm,n)− C(θn)| = 0.

Proof. For each L > 0, define ΘL =
{
θ = (K,V ) ∈ Θ

∣∣∣ 1
LIk � V � LIk

}
. Let τ ∈ (0, 1/λ0] be fixed. By

Proposition 3.6, there exists λV , λV > 0 such that λV Ik � V n � λV Ik for all n ∈ N0. Moreover, by the
continuity of D, R and V̄ , and the expressions (2.13) and (2.16), a straightforward induction argument
shows that V n ∈ C([0, T ];Sk+) for all n ∈ N0.

We first prove by induction that for all n ∈ N0, there exists L > 0,m0 ∈ N such that

lim
m→∞

‖θπm,n − θn‖L2×L∞ = 0, and θπm,n ∈ ΘL ∩Θπm , ∀m ≥ m0. (3.16)

Note that as θ0 ∈ Θ and limm→∞ ‖V πm,0 − V 0‖L∞ = 0, there exists L > 0 such that 1
LIk � V πm,0 � LIk

for all large m ∈ N. This proves (3.16) for n = 0. Now suppose that the induction statement (3.16)
holds for some n ∈ N0. As V n ∈ C([0, T ];Sk+), by (2.16) and (H.3), the triangle inequality shows that
limm→∞ ‖θπm,n+1 − θn+1‖L2×L∞ = 0, which subsequently implies that there exists L > 0 such that
1
LIk � V

πm,n+1 � LIk for all sufficiently large m. This proves the statement (3.16) for n+ 1.
By (3.16), for each n ∈ N, supm∈N ‖Kπm,n‖L2 <∞ and lim supm∈N ‖V πm,n‖L∞ <∞. Thus by Lemma

3.7, there exists C ≥ 0 such that 0 � Σθ
πm,n � CId for all m ∈ N. Then limm→∞ |C(θπm,n) − C(θn)| = 0

follows from Proposition 2.3 and limm→∞ ‖θπm,n − θn‖L2×L∞ = 0. This implies the desired convergence
result for any given N ∈ N.
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Proof of Theorem 2.7. Let C? = infθ∈Θ C(θ) = C(θ?), and for each τ > 0 and m ∈ N, let (θn)n∈N
and (θπm,n)n∈N be defined by (2.16) and (2.21) with stepsize τ , respectively. Then by Theorem 2.6
and Proposition 3.12, there exists τ0 > 0 such that for all τ ∈ (0, τ0] and n ∈ N0, C(θn+1) ≤ C(θn),
C(θn+1)− C? ≤ η(C(θn)− C?) for some η ∈ [0, 1) (independent of n), and limm→∞ |C(θπm,n)− C(θn)| = 0.

Moreover, for all ε > 0, N(ε) = C̃
τ log( C̃ε ) for some C̃ > 0 independent of τ and ε.

We first prove for all τ ∈ (0, τ0] and all ε, γ > 0, there exists mε,γ ∈ N such that for all m ≥ mε,γ ,

N(ε+ γ) ≤ Nπm(ε) ≤ N(ε). (3.17)

To prove Nπm(ε) ≤ N(ε), by Lemma 3.11 and the choice of τ0, for all n ∈ N0, limm→∞(C(θπm,n)−C?πm) =
C(θn) − C?. Hence, for all ε > 0 and n ∈ N0, if C(θn) − C? < ε, then there exists mε ∈ N such that
for all m ≥ mε, C(Kπm,n) − C?πm < ε, which implies Nπm(ε) ≤ N(ε) for all m ≥ mε. We then prove
N(ε+ γ) ≤ Nπm(ε) with a given γ > 0. The convergence of (C(θn))n∈N implies that N(ε+ γ) ∈ N0, which
along with Lemma 3.11 and Proposition 3.12 shows that

lim
m→∞

max
0≤n≤N(ε+γ)

∣∣(C(θπm,n)− C?πm)− (C(θn)− C?)
∣∣ = 0. (3.18)

The definition of N(ε+ γ) implies that C(θn)−C? ≥ ε+ γ for all n < N(ε+ γ). Moreover, by (3.18), there
exists mγ ∈ N such that for all m ≥ mγ ,

max
0≤n<N(ε+γ)

∣∣(C(θπm,n)− C?πm)− (C(θn)− C?)
∣∣ ≤ γ.

Hence for all m ≥ mγ and n < N(ε+ γ),

C(θπm,n)− C?πm = (C(θπm,n)− C?πm)− (C(θn)− C?) + (C(θn)− C?)
≥ (C(θn)− C?)−

∣∣(C(θπm,n)− C?πm)− (C(θn)− C?)
∣∣

≥ (C(θn)− C?)− max
0≤n<N(ε+γ)

∣∣(C(θπm,n)− C?πm)− (C(θn)− C?)
∣∣ ≥ ε.

This implies that Nπm(ε) ≥ N(ε+ γ) for all m ≥ mγ . Taking mε,γ = max(mε,mγ) completes the proof of
(3.17).

Now we are ready to establish (2.24) for fixed τ ∈ (0, τ0] and ε > 0. By the choice of τ0, there exists
η ∈ [0, 1), independent of ε, such that for all n ∈ N0, C(θn+1)−C? ≤ η(C(θn)−C?). Then, by the definition
of N(ε), C(θn)− C? ≥ ε for all n < N(ε), which yields the estimate

ηN(ε)−1−n(C(θn)− C?) ≥ C(θN(ε)−1)− C? ≥ ε, ∀n < N(ε)− 1.

This implies that C(θn)−C? ≥ ε
η > ε for all n < N(ε)−1. Now let γε := min{C(θn)−C?−ε | n < N(ε)−1}.

Note that γε > 0 as N(ε) < ∞. By the definition of γε, for all n < N(ε) − 1, C(θn) − C? ≥ ε + γε, which
implies that N(ε+ γε) ≥ N(ε)− 1. Hence, by (3.17), there exists mε ∈ N such that

N(ε)− 1 ≤ N(ε+ γε) ≤ Nπm(ε) ≤ N(ε), ∀m ≥ mε.

This proves the desired estimate (2.24).

Proof of Corollary 2.8. By Proposition 2.1 and (2.25), for all π ∈P[0,T ], θ ∈ Θπ and i ∈ {0, . . . , N − 1},

∇KiC(θ) =

∫ ti+1

ti

DK(θ)tΣ
θ
t dt, ∇ViC(θ) =

∫ ti+1

ti

DV (θ)t dt,

where DK(θ) and DV (θ) are defined by (2.12) and (2.13), respectively. Hence (DπK ,DπV ) : Θπ → Θπ in
(2.26) satisfies for all θ ∈ Θπ, and a.e. t ∈ [0, T ],

DπK(θ)t =

N−1∑
i=0

(
1

ti+1 − ti

∫ ti+1

ti

DK(θ)tΣ
θ
t dt

)(
Σθti
)−1

1[ti,ti+1)(t),

DπV (θ)t =

N−1∑
i=0

(
1

ti+1 − ti

∫ ti+1

ti

(VtiDV (θ)t +DV (θ)tVti) dt

)
1[ti,ti+1)(t).

(3.19)
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To simplify the notation, for each Euclidean space E, let PCπ(E) be the space of piecewise constant
functions f : [0, T ] → E on π, let Ππ : L2(0, T ;E) → PCπ(E) be such that for all f ∈ L2(0, T ;E),

Ππ(f)t :=
∑N−1
i=0

(
1

ti+1−ti

∫ ti+1

ti
ft dt

)
1[ti,ti+1)(t) for all t ∈ [0, T ], and let T π : C([0, T ];E) → PCπ(E) be

such that for all f ∈ C([0, T ];E), T π(f)t :=
∑N−1
i=0 fti1[ti,ti+1)(t) for all t ∈ [0, T ]. Note that Ππm is the

orthogonal projection with respect to the ‖ · ‖L2 norm, and hence is 1-Lipschitz continuous with respect to
the ‖ · ‖L2 norm. Moreover, by (3.19), for all θ ∈ Θπ,

DπK(θ) = Ππ
(
DK(θ)Σθ

(
T π
(
Σθ
))−1

)
, DπV (θ) = Ππ (T π(V )DV (θ) +DV (θ)T π(V )) . (3.20)

The definition of (DπK ,DπV ) in (3.20) can be naturally extended to all θ ∈ L2(0, T ;Rk×d) × C([0, T ]; Sk+).
Note that Σθ is pointwise invertible due to E[ξ0ξ

>
0 ] � 0 (see Lemma 3.7).

We are now ready to verify (H.3) for (3.20). Let θ ∈ L2(0, T ;Rk×d) × C([0, T ];Sk+), (πm)m∈N ⊂
P[0,T ] be such that limm→∞ |πm| = 0, and (θm)m∈N ⊂ Θ be such that θm ∈ Θπm for all m ∈ N and
limm→∞ ‖θm − θ‖L2×L∞ = 0. Then for all m ∈ N, by the Lipschitz continuity of Ππm ,

‖DπmK (θm)−DK(θ)‖L2

≤ ‖DπmK (θm)−Ππm (DK(θ)) ‖L2 + ‖Ππm (DK(θ))−DK(θ)‖L2

≤
∥∥∥∥DK(θm)Σθ

m
(
T πm

(
Σθ

m))−1

−DK(θ)

∥∥∥∥
L2

+ ‖Ππm (DK(θ))−DK(θ)‖L2 . (3.21)

The density of (PCπ(Rk×d))m∈N in L2(0, T ;Rk×d) shows that the second term of (3.21) tends to zero as
m→∞. Standard stability results of (2.10) and (2.11) (see, e.g., Lemma 3.4) show that limm→∞ ‖P θ

m −
P θ‖L∞ = 0 and limm→∞ ‖Σθ

m−Σθ‖L∞ = 0. Thus by (H.1) and (2.12), limm→∞ ‖DK(θm)−DK(θ)‖L2 = 0.

Moreover, as inft∈[0,T ] λmin(Σθt ) > 0 (see Lemma 3.7), Σθ
m (T πm(Σθm))−1

tends to the identity func-
tion in L∞ as m → ∞. Consequently, the first term of (3.21) tends to zero as m → ∞, which proves
limm→∞ ‖DπmK (θm)−DK(θ)‖L2 = 0.

We then prove the convergence of (DπmV (θm))m∈N. Note that for each m ∈ N and Euclidean space E,
‖Ππm(f)‖L∞ ≤ ‖f‖L∞ if f ∈ L∞(0, T ;E), and limm→∞ ‖Ππm(f)−f‖L∞ = 0 if f ∈ C([0, T ];E). The same
property also holds for the operator T πm . Then for all m ∈ N,

‖DπmV (θm)−Dbw(θ)‖L∞

≤ ‖DπmV (θm)−Ππm(Dbw
V (θ))‖L∞ + ‖Ππm(Dbw

V (θ))−Dbw
V (θ)‖L∞ .

(3.22)

By the continuity of D, R, V̄ and V , Dbw
V (θ) ∈ C([0, T ];Sk+) (cf. (2.13) and (2.17)), and hence the second

term in (3.22) tends to zero as m→∞. To show the first term tends to zero, by (2.17) and (3.20), it suffices
to prove limm→∞ ‖DV (θm) − DV (θ)‖L∞ = 0. This follows directly from the facts that limm→∞ ‖P θ

m −
P θ‖L∞ = 0, limm→∞ ‖V m − V ‖L∞ = 0 and V ∈ C([0, T ];Sk+). This verifies (H.3) for (3.20).

4 Numerical experiments

In this section, we test the theoretical findings through a numerical experiment on an exploratory
LQC problem arising from mean-variance portfolio selection. Our experiments confirm that the proposed
iteration (2.26) converges linearly to the optimal policy. They also show that conventional PG methods
exhibit a degraded performance for small timesteps in the policy updates, while our algorithm demonstrates
robustness across different step sizes.

Problem setup. We minimise the following cost C : Θ→ R (cf. (2.9)):

C(θ) = E

[
1

2
µ (Xθ

T )2 + ρ

∫ T

0

H(νθt (Xθ
t )‖mt) dt

]
, (4.1)
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where mt = N (0, V̄ ) with V̄ ∈ S3
+, and for each θ ∈ Θ, Xθ ∈ S2(0, T ;R) satisfies for all t ∈ [0, T ],

dXt =

∫
R3

(
Bta ν

θ
t (Xt; da)

)
dt+

(∫
R3

3∑
j=1

(
D(j)a

)2

νθt (Xt; da)

) 1
2

dWt, X0 = ξ0, (4.2)

for some B : [0, T ] → R1×3 and D(j) ∈ R1×3, j = 1, 2, 3. The coefficients are chosen as follows: T = 1,
µ = 0.5, ρ = 0.01, V̄ = 0.1I3, ξ0 ∼ N (0.5, 0.01), Bt = (0.4, 0.8, 0.4) + 0.2 sin(2πt)13 for all t ∈ [0, T ], and

D =

(
D(1)

D(2)

D(3)

)
with D>D =

(
0.5 0.25 −0.125
0.25 1 −0.25
−0.125 −0.25 0.5

)
. Note that D>D ∈ S3

+, and hence (H.2) holds for all ρ ≥ 0

(see [37] and Remark 2.2).
The problem (4.1)-(4.2) arises from an exploratory mean-variance portfolio selection problem, where

the agent allocates their wealth among three risky assets by sampling from the policy νθ (see [32]). Indeed,
as illustrated at the end of Section 2.4, for each θ = (K,V ) ∈ Θ, C(θ) can be approximated by replacing
(4.2) with the following dynamics: X0 = ξ0, and for all t ∈ [0, T ],

dXt = Bt

(
KtXt + V

1
2
t ξt

)
dt+

3∑
j=1

D(j)
(
KtXt + V

1
2
t ξt

)
dW

(j)
t (4.3)

with ξt =
∑n
i=1 ζi1[ti,ti+1)(t), where (W (j))3

j=1 are independent Brownian motions, (ζi)
n
i=1 are independent

standard normal random vectors, and (ti)
n
i=1 is a sufficiently fine time mesh.

Linear convergence. We first implement (2.26) on the uniform time mesh πc with mesh size 1/128, and
examine its convergence. The scheme is initialised with K0 ≡ (1/3, 1/3, 1/3) and V 0 ≡ 0.1D>D. For each
n ∈ N0, given θn ⊂ Θπc , we simulate 105 independent trajectories of (4.3) (with θ = θn) using the Euler–

Maruyama method on the mesh πc, evaluate the approximate value Ĉ(θn) and state covariance Σ̂n using

the empirical distribution of these sample paths, and compute an approximate gradient (∇̂θni C)
127
i=0 using

automatic differentiation. The iterate θn is updated by (2.26) with Σ̂n, ∇̂θnC and the stepsize τ = 0.01.

The performance of the scheme is measured by the errors (Ĉ(θn)−C?)n∈N0
, where C? is the optimal cost of

(4.1) obtained by Riccati equations. Further implementation details are given in Appendix B of the arXiv
version [8].

Figure 1 (left) exhibits the decay of (Ĉ(θn) − C?)n∈N0
with respect to the number of iterations, where

the solid line and the shaded area indicate the sample mean and the spread over 10 repeated experiments,
respectively. It clearly shows the linear convergence of (2.26), as indicated in Theorems 2.6 and 2.7. The
seemingly higher noise for larger iteration numbers results from the small errors in this case, so that the
fluctuations appear larger on the log scale. The variance could be reduced by increasing the number of
samples.

Robustness in action frequency. We then compare the performance of (2.26) with a standard PG
method for different policy discretisation timescales. The former (termed “scaled PG”) scales the gradients
with the discretisation mesh size, while the latter (termed “unscaled PG”) updates the policy with unscaled
gradients. More precisely, let θ0 = (K0, V 0) be a fixed initial guess given as above, and πm = {i 1

m}
m
i=0,

m ∈ {8, 16, 32, 64, 128} be a family of time meshes. For each m ∈ {8, 16, 32, 64, 128}, the scaled PG method
generates the iterates (θπm,n)n∈N0 ⊂ Θπm according to (2.26) with τ = 0.01 and ∆i = 1/m, where the
required gradients for each iteration are computed as above. The unscaled PG method follows (2.26) with
τ = 0.08 and ∆i = 1 for all m. Here, a larger stepsize has been adopted for the unscaled PG method so
that the two algorithms coincide for the coarsest mesh π8.

Figure 1 (right) compares, for different discretisation timescales, the numbers of required iterations
Nπm(0.01) for both schemes to achieve an accuracy of ε = 0.01 (cf. (2.22)). One can observe clearly that
the number of required iterations for the unscaled PG method exhibits a linear growth in the number of
action time points. In constrast, the number of iterations for the scaled PG method remains constant for
all meshes. This confirms the theoretical result in Theorem 2.7, and shows that the scaled PG method
outperforms conventional PG methods for fine meshes.
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Figure 1: Convergence and robustness of the PG method (2.26).
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[26] D. Šǐska and  L. Szpruch, Gradient flows for regularized stochastic control problems, arXiv preprint
arXiv:2006.05956, (2020).

[27] J. Sun, X. Li, and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic
optimal control problems, SIAM Journal on Control and Optimization, 54 (2016), pp. 2274–2308.

[28] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, Policy gradient methods for rein-
forcement learning with function approximation, Advances in neural information processing systems,
12 (1999).

[29] L. Szpruch, T. Treetanthiploet, and Y. Zhang, Optimal scheduling of entropy regulariser for
continuous-time linear-quadratic reinforcement learning, arXiv preprint arXiv:2208.04466, (2022).

[30] C. Tallec, L. Blier, and Y. Ollivier, Making Deep Q-learning methods robust to time discretiza-
tion, arXiv preprint arXiv:1901.09732, (2019).

[31] H. Wang, T. Zariphopoulou, and X. Y. Zhou, Reinforcement learning in continuous time and
space: A stochastic control approach, Journal of Machine Learning Research, 21 (2020), pp. 1–34.

27



[32] H. Wang and X. Y. Zhou, Continuous-time mean–variance portfolio selection: A reinforcement
learning framework, Mathematical Finance, 30 (2020), pp. 1273–1308.

[33] W. Wang, J. Han, Z. Yang, and Z. Wang, Global convergence of policy gradient for linear-
quadratic mean-field control/game in continuous time, in International Conference on Machine Learn-
ing, PMLR, 2021, pp. 10772–10782.

[34] J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, vol. 43,
Springer Science & Business Media, 1999.

[35] K. Zhang, B. Hu, and T. Basar, Policy optimization for H2 linear control with H∞ robustness
guarantee: Implicit regularization and global convergence, SIAM Journal on Control and Optimization,
59 (2021), pp. 4081–4109.

[36] K. Zhang, X. Zhang, B. Hu, and T. Basar, Derivative-free policy optimization for linear risk-
sensitive and robust control design: Implicit regularization and sample complexity, Advances in Neural
Information Processing Systems, 34 (2021), pp. 2949–2964.

[37] X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ frame-
work, Applied Mathematics and Optimization, 42 (2000), pp. 19–33.

28


	Introduction
	Problem formulation and main results
	Regularised stochastic LQ control problems with indefinite costs
	Optimisation over Gaussian policies and landscape analysis
	Policy gradient method and its convergence analysis
	Mesh-independent linear convergence with discrete-time policies

	Proofs
	Analysis of optimisation landscape
	Proof of Proposition 2.5
	Proof of Theorem 2.6
	Proofs of Theorem 2.7 and Corollary 2.8

	Numerical experiments

