

A clinical decision support system

for detecting and mitigating

potentially inappropriate

medications

Guilherme Alfredo Redeker

A thesis submitted for the degree of PhD
at the

University of St Andrews

2024

Full metadata for this item is available in
St Andrews Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Identifier to use to cite or link to this thesis:

DOI: https://doi.org/10.17630/sta/692

This item is protected by original copyright

https://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/sta/

ABSTRACT

Background: Medication errors are a leading cause of preventable harm to patients.
In older adults, the impact of ageing on the therapeutic effectiveness and safety of
drugs is a significant concern, especially for those over 65. Consequently, certain
medications called Potentially Inappropriate Medications (PIMs) can be dangerous
in the elderly and should be avoided. Tackling PIMs by health professionals and
patients can be time-consuming and error-prone, as the criteria underlying the
definition of PIMs are complex and subject to frequent updates. Moreover, the
criteria are not available in a representation that health systems can interpret and
reason with directly.

Objectives: This thesis aims to demonstrate the feasibility of using an
ontology/rule-based approach in a clinical knowledge base to identify potentially
inappropriate medication(PIM). In addition, how constraint solvers can be used
effectively to suggest alternative medications and administration schedules to
solve or minimise PIM undesirable side effects.

Methodology: To address these objectives, we propose a novel integrated
approach using formal rules to represent the PIMs criteria and inference engines
to perform the reasoning presented in the context of a Clinical Decision Support
System (CDSS). The approach aims to detect, solve, or minimise undesirable
side-effects of PIMs through an ontology (knowledge base) and inference engines
incorporating multiple reasoning approaches.

Contributions: The main contribution lies in the framework to formalise PIMs,
including the steps required to define guideline requisites to create inference
rules to detect and propose alternative drugs to inappropriate medications. No
formalisation of the selected guideline (Beers Criteria) can be found in the
literature, and hence, this thesis provides a novel ontology for it. Moreover,
our process of minimising undesirable side effects offers a novel approach that
enhances and optimises the drug rescheduling process, providing a more accurate
way to minimise the effect of drug interactions in clinical practice.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Prof. Juliana Bowles, whose
expertise, encouragement, and unwavering commitment have been instrumental
in shaping my research trajectory. Your guidance has been transformative, and I
am truly grateful for the opportunities to learn under your supervision.

I would also like to thank Martina for her support and invaluable insights, which
have been instrumental in shaping the pharmacist aspects of this work. Many
thanks also to Dr Joan Espasa Arxer and Dr Stephen Brown for their patience and
guidance during the viva. Their invaluable feedback for this thesis is very much
appreciated.

I am deeply grateful to my friends, especially Jordina, Diana, Marco, Thais and
Ricardo, who have enriched my academic experience with insightful discussions
and collaborative efforts and for providing me with moments of respite and
encouragement, reminding me of the importance of balance and laughter amidst
the academic challenges.

Furthermore, I would like to express my gratitude to my family for their belief
in me and continuous support. Your incentive has fueled my determination to
pursue this academic endeavour.

A special thank you goes to my wife, Alice, and our children, João Victor and
Lucas. Your unwavering support has made the challenges of this journey more
manageable, and I am deeply grateful for your presence by my side. João
Victor and Lucas, you have brought joy and inspiration into my life every day.
Finally, I want also to express my gratitude to my cats, Charlie and Mia, for their
companionship and support, without which I would not be where I am today.

v

DECLARATION

Candidate’s declaration

I, Guilherme Alfredo Redeker, do hereby certify that this thesis, submitted for the
degree of PhD, which is approximately 41,000 words in length, has been written by
me, and that it is the record of work carried out by me, or principally by myself in
collaboration with others as acknowledged, and that it has not been submitted in
any previous application for any degree. I confirm that any appendices included
in my thesis contain only material permitted by the ’Assessment of Postgraduate
Research Students’ policy.

I was admitted as a research student at the University of St Andrews in May 2019.

I received funding from an organisation or institution and have acknowledged the
funder(s) in the full text of my thesis.

Date 18 August 2023 Signature of candidate

Supervisor’s declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of PhD in the University of St Andrews
and that the candidate is qualified to submit this thesis in application for that
degree. I confirm that any appendices included in the thesis contain only material
permitted by the ’Assessment of Postgraduate Research Students’ policy.

Date 18 August 2023 Signature of supervisor

vii

PERMISSION FOR PUBLICATION

In submitting this thesis to the University of St Andrews we understand that
we are giving permission for it to be made available for use in accordance with
the regulations of the University Library for the time being in force, subject to
any copyright vested in the work not being affected thereby. We also understand,
unless exempt by an award of an embargo as requested below, that the title and the
abstract will be published, and that a copy of the work may be made and supplied
to any bona fide library or research worker, that this thesis will be electronically
accessible for personal or research use and that the library has the right to migrate
this thesis into new electronic forms as required to ensure continued access to the
thesis.

I, Guilherme Alfredo Redeker, confirm that my thesis does not contain any third-
party material that requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding the
publication of this thesis:

Printed copy

No embargo on print copy.

Electronic copy

No embargo on electronic copy.

Date 18 August 2023 Signature of candidate

Date 18 August 2023 Signature of supervisor

ix

UNDERPINNING RESEARCH DATA OR D IGI-
TAL OUTPUTS

Candidate’s declaration

I, Guilherme Alfredo Redeker, hereby certify that no requirements to deposit
original research data or digital outputs apply to this thesis and that, where
appropriate, secondary data used have been referenced in the full text of my
thesis.

Date 18 August 2023 Signature of candidate

xi

DATA MANAGEMENT

Collection and Transfer

The data was extracted in an ANONYMISED form by the Brazilian hospital and
made available to the researcher in a directory informed by the hospital. Therefore,
no private identifiable patient data is shown. Once available by the hospital, the
data was downloaded directly to the University network (Central file space).

Storage, Backup and Access

The extracted data is stored at the University Research Information System Pure.
Computers used to collate data have limited access measures via usernames
and passwords. The data access is granted to the researcher and supervisor. In
addition, authorised representatives from the University of St. Andrews, host
institution and the regulatory authorities to permit project-related monitoring,
audits and inspections, where this is possible within the policies and regulations
of the data source, are also granted.The study complies with all applicable medical
confidentiality and data protection principles and laws (the Data Protection Act
1998 and GDPR) concerning collecting, storing, processing, and disclosing personal
data.

Sharing and Publication

The data is documented in this PhD thesis, reports to the university, conference
presentations and academic publications always in an ANONYMISED form, which
means that no private identifiable patient data is shown.

Retention and Destruction

The data will be available indefinitely

xiii

FUNDING

The research reported in this thesis has been supported by the University of
St Andrews (School of Computer Science) and partly supported by the SCCH
competence center INTEGRATE (FFG grant no. 892418).

xv

PUBLICATIONS

Some of the work described in this dissertation has been published or is currently
under review for publication. The following list gives an overview of the papers
that have been have been published or are currently in print.

Guilherme Redeker and Juliana Bowles. An Ontology-based Approach for Detect-
ing and Classifying Inappropriate Prescribing. To appear in the 7th International
Joint Conference on Rules and Reasoning (RuleML+RR), Oslo, Norway, September 2023.
InPrint

Guilherme Redeker and Juliana Bowles. Tackling polypharmacy: A multi-source
decision support system. In Digital Personalized Health and Medicine, pages 688–692.
IOS Press, 2020

xvii

CONTENTS

Abstract . iii

Acknowledgements . v

Declaration . vii

Permissions . ix

Underpinning Research Data or Digital Outputs xi

Data Management . xiii

Funding . xv

Publications . xvii

List of Figures . xxv

List of Tables . xxvii

Acronyms . xxxiii

1 Introduction . 1
1.1 Motivation . 1
1.2 Research problem context . 4
1.3 Objectives . 6
1.4 Outline . 8

2 Context . 11
2.1 Background . 11

2.1.1 Clinical Decision Support Systems 11
2.1.1.1 CDSS functions and interventions 11
2.1.1.2 Knowledge and Non-knowledge-based CDSS . . . 12

2.1.2 Knowledge representation and reasoning 14
2.1.2.1 Ontology . 16
2.1.2.2 Semantic Web Rule Language 18

2.1.3 SAT/SMT Solvers . 18

xix

CONTENTS

2.1.3.1 SMT-based optimization 19
2.1.4 Drug Interaction . 20

2.1.4.1 Interaction types . 20
2.1.5 Drugs potentially risky for elderly people 21

2.1.5.1 Beers Criteria . 22
2.2 Related Work . 24

2.2.1 Drug and disease-related problems approaches 25
2.2.2 PIMs CDSS bibliometric analysis 26
2.2.3 PIMs CDSS qualitative analysis 27

2.2.3.1 Clinical decision support systems do detect PIM . . 30
2.2.3.2 Drug recommendations 31
2.2.3.3 Drug scheduling . 32
2.2.3.4 Summary of the analysis 32

2.3 Summary . 34

3 CDSS framework workflow . 35
3.1 CDSS framework . 35

3.1.1 Knowledge base - the Beers Criteria ontology 37
3.1.1.1 PIMs formalisation 38
3.1.1.2 Alternative drugs . 39
3.1.1.3 Drug parameter formalisation for rescheduling . . 40

3.1.2 Inference engines . 41
3.1.2.1 Beers Criteria reasoner 41
3.1.2.2 Drug alternative solver 42
3.1.2.3 Rescheduling Solver 42

3.2 Clinical Decision Support System (CDSS) workflow 43
3.3 Tackling other medical issues . 45
3.4 Summary . 46

4 Ontology for drug interactions . 47
4.1 Beers Criteria Ontology . 47

4.1.1 Knowledge Acquisition . 51
4.1.2 Construction of ontology’s requirements 52
4.1.3 Requirement elicitation . 54
4.1.4 Ontology elements . 55

4.1.4.1 Classes . 56
4.1.4.2 Data properties . 58
4.1.4.3 Object properties . 60
4.1.4.4 Annotation property 62

4.1.5 Ontology conceptual model 62
4.1.6 Ontology Reasoning . 64
4.1.7 Beers Criteria Rules . 65

xx

Contents

4.1.7.1 Potentially Inappropriate Medication Due to Drug-
Disease or Drug-Syndrome Interactions That May
Exacerbate the Disease or Syndrome (DDDS) 65

4.1.7.2 Potentially Clinically Important Drug-Drug Inter-
actions (DDI) . 68

4.1.7.3 Beers Criteria Potentially Inappropriate Medica-
tions (B.PIM) and Drugs To Be Used With Caution
(UWC) . 69

4.1.7.4 Medications That Should Be Avoided or Have Their
Dosage Reduced With Varying Levels of Kidney
Function (VLKF) . 71

4.1.8 Applying the Beers Criteria ontology 72
4.2 Summary . 77

5 Alternative drug recommendations and validation 79
5.1 Beers Criteria Drug alternatives . 79

5.1.1 Alternative drugs knowledge acquisition 80
5.2 Alternative drug recommendation ontology rules 84

5.2.1 Ontology elements . 85
5.2.1.1 Drug alternative classes 85
5.2.1.2 Object and data property 87

5.2.2 Drug alternative rules . 88
5.2.2.1 Applying the ontology alternative rules 90

5.3 Alternative drugs validation by an SMT model 92
5.3.1 Retrieving data from the Beers Criteria ontology 93
5.3.2 Converting rules into SMT 94

5.3.2.1 Drug Declaration . 95
5.3.2.2 Drug constants . 96
5.3.2.3 Mandatory true drugs rules 97
5.3.2.4 Interaction rules . 97
5.3.2.5 Alternative rules . 98
5.3.2.6 Checking prescriptions 99

5.4 Summary . 101

6 Drug scheduling optimisation for minimising drug interactions 103
6.1 Drug administration scheduling . 104
6.2 Ontology pharmacokinetic parameters 106
6.3 Rescheduling measures to minimise the interaction 106
6.4 Rescheduling constraints definition 108
6.5 A SMT model for rescheduling drugs 112

6.5.1 Model constraints . 112
6.5.1.1 Declaring drugs and constraints 113

xxi

CONTENTS

6.5.1.2 Drug interaction Rules 114
6.5.1.3 Maximising the distance between interacting drugs 116

6.6 Example of rescheduling . 116
6.7 Summary . 119

7 Framework development and testing . 121
7.1 Framework development . 121

7.1.1 Beers Criteria ontology . 124
7.1.2 Alternative drug solver . 126
7.1.3 Rescheduling solver . 130

7.2 Inference engine testing . 133
7.2.1 Beers Criteria ontology . 134

7.2.1.1 Ontology consistency 134
7.2.1.2 Completeness of content coverage - inappropriate

medication . 136
7.2.2 Alternative drug solver . 136

7.2.2.1 Completeness of content coverage - alternative drugs136
7.2.2.2 SMT model test - alternative drugs 137

7.2.3 Rescheduling solver . 137
7.3 Summary . 138

8 CDSS Experiments and Evaluation . 141
8.1 Dataset Analysis . 141
8.2 Experiments . 145

8.2.1 Patient journey . 145
8.2.2 Experiments - Patient Case Studies 146

8.2.2.1 Case patient 1 . 146
8.2.2.2 Case patient 2 . 148
8.2.2.3 Case patient 3 . 151

8.3 Results evaluation . 153
8.3.1 Our CDSS Framework versus the Hospital’s CDSS 154
8.3.2 Hospital EMR prescription-screening results 156

8.3.2.1 Results of the Beers Criteria ontology 156
8.3.2.2 Results of the Alternative Drug Solver 159
8.3.2.3 Results of the Rescheduling Solver 161

8.3.3 Our CDSS Framework versus Other Existing Tools 161
8.3.4 Performance Evaluation 165

8.4 Summary . 166

9 Conclusions . 169
9.1 Key Contributions . 171
9.2 Threats to Validity . 172

xxii

Contents

9.3 Future Work . 174

References . 177

Appendix A Ethics Approvals . 198

Appendix B Ontology details . 199
B.1 Accessing ontology files . 199

Appendix C Semantic Web Rule Language (SWRL) rules to detect inap-
propriate drugs . 201

C.1 Potentially Clinically Important Drug-Drug Interactions (DDI) Rules201
C.2 Potentially Inappropriate Medication Due to Drug-Disease or Drug-

Syndrome Interactions That May Exacerbate the Disease or Syndrome
(DDDS) Rules . 206

C.3 Medications That Should Be Avoided or Have Their Dosage Reduced
With Varying Levels of Kidney Function (VLKF) Rules 208

C.4 Potentially Inappropriate Medications (PIMs) rules 213
C.5 Drugs To Be Used With Caution (UWC) rules 213

Appendix D Semantic Web Rule Language (SWRL) rules to find alterna-
tive drugs . 215

D.1 Alternative drugs rules to drugs included in the Potentially Harmful
Drug-Disease Interactions . 215

D.2 Alternative drugs rules to drugs Included in the High-Risk Medications220

Appendix E SPARQL interactions querying 225
E.1 SPARQL interactions querying . 225
E.2 SPARQL alternative querying . 226
E.3 SPARQL drug parameters querying 226
E.4 SPARQL all PIM parameters querying 226

Appendix F Python Code . 229
F.1 Main file . 229
F.2 Inference engine Beers Criteria . 230
F.3 Inference engine Alternative solver 251
F.4 Inference engine Rescheduling Solver 253
F.5 SMT solver - Alternative Drugs . 257
F.6 SMT solver - Rescheduling Drugs 260

Appendix G CDSS database . 265
G.1 CDSS database . 265

Appendix H Input and Output Test Table for the Beers Criteria 269

xxiii

CONTENTS

H.1 Input test tables . 270
H.2 Output test table . 273

Appendix I Hospital CDSS x Framework CDSS - inappropriate drug tables275
I.1 Hospital CDSS x Framework CDSS - inappropriate drug tables . . . 275

xxiv

LIST OF FIGURES

1.1 Approach overview . 7
2.1 Simple user interaction with a knowledge-based CDSS 13
2.2 CDSS Nonknowledge base . 14
2.3 Knowledge representation . 15
2.4 Publication per year . 27
3.1 Overview of our CDSS . 36
3.2 A B.PIM drug example . 38
3.3 Alternative drug example . 39
3.4 Adding Cmax value to class drug . 40
3.5 CDSS workflow . 44
4.1 Ontology’s individuals . 48
4.2 Individuals clustered in classes. 49
4.3 Ontology classes and relations. 50
4.4 The Beers Criteria Table. 52
4.5 Basic semantic triple model. 54
4.6 Semantic triple model multiple relations. 55
4.7 Visualisation of the drug categories hierarchy tree for central nervous

system active drugs. 57
4.8 Class parameters. 58
4.9 Disjoint Classes. 59
4.10 Object property parameters. 61
4.11 Drug label. 62
4.12 Beers conceptual model. 63
4.13 Drug-Disease or Drug-Syndrome Interactions classes hierarchy. 66
4.14 Drug-Disease or Drug-Syndrome Interactions Cardiovascular Rule. . . 67
4.15 Drug-Drug Interactions classes hierarchy. 69
4.16 Beers Criteria classes . 72
4.17 Individual Prescription . 73
4.18 Abox Inferred PIMs for the patient Tom 74
4.19 Abox Drug interaction . 75
5.1 Example of alternative drugs suggested by Hanlon et al. (2015) [63]. . . 81
5.2 Example of alternative drugs suggested by the AGS Health in Aging

Foundation [73]. 82
5.3 Alternative drugs semantic triple . 83
5.4 Main classes for the alternative drugs hierarchy 85
5.5 Alternative drugs hierarchy for High-Risk Medications. 86

xxv

LIST OF FIGURES

5.6 Alternative drugs hierarchy for drug-disease interactions 87
5.7 Alternative drugs ABox example. 91
6.1 CMAX parameter after drug administration. 105
6.2 Prescriptions schedule. 107
6.3 Rescheduling prescriptions. 108
6.4 Drug Scheduling. 117
6.5 Rescheduling prescription result. 119
7.1 The internals of the CDSS framework . 122
7.2 Ontology elements . 125
7.3 Classes and individuals links . 126
7.4 Drug alternatives recommended by the reasoner. 128
7.5 Codeine Tmax data property . 131
7.6 Morphine Tmax data property . 131
7.7 Inconsistent Class example . 134
7.8 Inconsistent class highlighted . 135
7.9 Inconsistent individual . 135
7.10 Inconsistencies explanation . 135
8.1 DataSet tables . 142
8.2 Patient journey . 146
8.3 Patient 1 rescheduled drugs . 150
8.4 Patient 2 rescheduled drugs . 151
8.5 Patient 3 rescheduled drugs . 153

xxvi

LIST OF TABLES

2.1 Technical description and features of the CDSSs developed for PIMs . 29
3.1 Outputs from the CDSS framework . 45
4.1 Ontology Abox . 75
5.1 Semantic triple for alternative drugs . 84
6.1 Rescheduling interaction rule . 116
6.2 Rescheduling solver result . 119
7.1 Rescheduling solver result example . 133
8.1 General characteristics of the considered patients in the dataset 143
8.2 Prescription profile . 143
8.3 Leading administered drugs . 144
8.4 Leading diagnosed diseases . 144
8.5 Patient 1: Inappropriate medications . 147
8.6 Patient 2: Inappropriate medications . 149
8.7 Patient 3: Inappropriate medications . 152
8.8 Patient profile . 154
8.9 Prescription profile . 154
8.10 Inappropriate drug cases . 155
8.11 Comparative results of Hospital x framework CDSS 156
8.12 Summary of Hospital EMR prescription-screening results 156
8.13 Hospital EMR Inappropriate medications by group 157
8.14 Hospital EMR Inappropriate medications by subgroup 158
8.15 The ten most commonly prescribed inappropriate medications 158
8.16 Hospital EMR Inappropriate medications by discharge reason 159
8.17 Mortality rate among patients with inappropriate medication and

patients without inappropriate medication 159
8.18 Summary of Hospital alternative drugs 160
8.19 Drugs with a greater number of alternative drug options 161
8.20 Comparison between prescription-screening tools 163
8.21 Summary of prescription performance evaluation 166
H.1 Patient Information . 270
H.2 Patient previous diseases . 270
H.3 Lab Test Results . 271
H.4 Patient prescriptions . 272
H.5 Drug Interactions . 273
I.1 Framework CDSS Inappropriate drugs 275
I.2 Hospital Inappropriate drugs . 278

xxvii

LISTINGS

7.1 Interaction SWRL rule . 125
7.2 Alternative SWRL rule . 127
7.3 Declaring Drug datatype instances 129
7.4 Declaring drug constraints . 130
7.5 Drug instances declaration . 131
7.6 Declaration of Tmax for drugs . 132
7.7 Rescheduling drug interaction declaration 132
C.1 DDI_CNS_Active_Drugs/CNS_Active_Drugs 201
C.2 DDI_Anticholinergic/Anticholinergic 202
C.3 DDI_Corticosteroids/NSAIDs/Oral 202
C.4 DDI_Corticosteroids/NSAIDs/Parenteral 202
C.5 DDI_Lithium/ACEIs . 202
C.6 DDI_Lithium/Loop_diuretics . 203
C.7 DDI_Opioids/Benzodiazepines . 203
C.8 DDI_Opioids/Gabapentin . 203
C.9 DDI_Opioids/Pregabalin . 203
C.10 DDI_Peripheral_alpha-1_blockers/Loop_diuretics 203
C.11 DDI_Phenytoin/Trimethoprim_sulfamethoxazole 204
C.12 DDI_Potassium-sparing_diuretics 204
C.13 DDI_RAS_inhibitor . 204
C.14 DDI_Theophylline/Cimetidine . 204
C.15 DDI_Theophylline/Ciprofloxacin . 205
C.16 DDI_Warfarin/Amiodarone . 205
C.17 DDI_Warfarin/Ciprofloxacin . 205
C.18 DDI_Warfarin/Macrolides . 205
C.19 DDI_Warfarin/NSAIDs . 205
C.20 DDI_Warfarin/Trimethoprim_sulfamethoxazole 206
C.21 DDDS_NSAIDs_non-COX_and_COX - Cyclooxygenase - Oral . . . 206
C.22 DDDS_NSAIDs_non-COX_and_COX - Cyclooxygenase - Parenteral 206
C.23 DDDS_NSAIDs_non-COX_and_COX - Non_COX-2_selective_-

NSAIDS - Oral . 207
C.24 DDDS_NSAIDs_non-COX_and_COX - Non_COX-2_selective_-

NSAIDS - Parenteral . 207
C.25 DDDS_NSAIDs_non-COX_and_COX - Nonacetylated_salicylates -

Oral . 207

xxix

LIST OF TABLES

C.26 DDDS_NSAIDs_non-COX_and_COX - Nonacetylated_salicylates -
Parenteral . 207

C.27 VLKF_Amiloride . 208
C.28 VLKF_Apixaban . 208
C.29 VLKF_Cimetidine . 208
C.30 VLKF_Ciprofloxacin . 208
C.31 VLKF_Colchicine . 209
C.32 VLKF_Dofetilide . 209
C.33 VLKF_Duloxetine . 209
C.34 VLKF_Edoxaban 15-50 . 209
C.35 VLKF_Edoxaban <15 . 210
C.36 VLKF_Edoxaban >95 . 210
C.37 VLKF_Enoxaparin . 210
C.38 VLKF_Famotidine . 210
C.39 VLKF_Fondaparinux . 210
C.40 VLKF_Gabapentin . 211
C.41 VLKF_Levetiracetam . 211
C.42 VLKF_Nizatidine . 211
C.43 VLKF_Pregabalin . 211
C.44 VLKF_Probenecid . 211
C.45 VLKF_Ranitidine . 212
C.46 VLKF_Rivaroxaban . 212
C.47 VLKF_Spironolactone . 212
C.48 VLKF_Tramadol . 212
C.49 VLKF_Triamterene . 212
C.50 VLKF_Trimethoprim . 213
C.51 PIM_Anti-infective - Creatinine_Clearancee 213
C.52 PIM_Anti-infective- LenghtDrugTherapie 213
C.53 UWC_Trimethoprim_sulfamethoxazole - Angiotensin-Converting_-

Enzyme_Inhibitors . 213
C.54 UWC_Trimethoprim_sulfamethoxazole - Angiotensin_II_Receptor_-

Antagonists . 214
D.1 Alt_DDI_Dementia_Anticholinergic_First-generation_antihistamines215
D.2 Alt_DDI_Dementia_Anticholinergic_First-generation_antihistamines_-

Oral . 215
D.3 Alt_DDI_Dementia_Anticholinergic_Parkinson_Benztropine 216
D.4 Alt_DDI_Dementia_Anticholinergic_Parkinson_Trihexyphenidyl . 216
D.5 Alt_DDI_Dementia_Antipsychotics_Behavioral 216
D.6 Alt_DDI_Dementia_H2Blocker . 216
D.7 Alt_DDI_Dementia_NA-NSAIDs . 216
D.8 Alt_DDI_Dementia_Nonbenzodiazepine_Eszopiclone 217
D.9 Alt_DDI_Dementia_Tricyclic antidepressants - secondary 217
D.10 Alt_DDI_Dementia_Tricyclic antidepressants - tertiary 217
D.11 Alt_DDI_Falls_Anticonvulsants . 217
D.12 Alt_DDI_Falls_Antipsychotics_Behavioral 218

xxx

List of Tables

D.13 Alt_DDI_Falls_Antipsychotics_Delirium 218
D.14 Alt_DDI_Falls_Antipsychotics_Schizophrenia 218
D.15 Alt_DDI_Falls_Benzodiazepines . 218
D.16 Alt_DDI_Falls_Benzodiazepines_Zaleplon 218
D.17 Alt_DDI_Falls_Benzodiazepines_Zolpidem 219
D.18 Alt_DDI_Falls_Nonbenzodiazepine_Eszopiclone 219
D.19 Alt_DDI_Falls_Tricyclic antidepressants - secondary 219
D.20 Alt_DDI_Falls_Tricyclic antidepressants - tertiary 219
D.21 Alt_HRM_Anticholinergic_First-generation_antihistamines 220
D.22 Alt_HRM_Anticholinergic_First-generation_antihistamines_Oral . 220
D.23 Alt_HRM_Anticholinergic_Parkinson _disease_Benztropine 220
D.24 Alt_HRM_Anticholinergic_Parkinson _disease_Trihexyphenidyl . . 220
D.25 Alt_HRM_Antithrombotic/Anti platelets_Dipyridamole 220
D.26 Alt_HRM_Antithrombotic/Anti platelets_Ticlopidine 221
D.27 Alt_HRM_CNS_Barbiturates . 221
D.28 Alt_HRM_CNS_Other_Meprobamate 221
D.29 Alt_HRM_CNS_Other_Thioridazine 221
D.30 Alt_HRM_CNS_Tertiary_TCAs . 221
D.31 Alt_HRM_CNS_Vasodilator_Ergot mesylates 222
D.32 Alt_HRM_CNS_Vasodilator_Isoxsuprine 222
D.33 Alt_HRM_Cardio_Alpha agonists 222
D.34 Alt_HRM_Cardio_Other_Disopyramide 222
D.35 Alt_HRM_Cardio_Other_NIFEdipine 222
D.36 Alt_HRM_Endocrine_Desiccated thyroid 223
D.37 Alt_HRM_Endocrine_Estrogens . 223
D.38 Alt_HRM_Endocrine_Sulfonylureas_chlorproMAZINE 223
D.39 Alt_HRM_Endocrine_Sulfonylureas_glyBURIDE 223
D.40 Alt_HRM_Pain_Opioids_Meperidine 223
D.41 Alt_HRM_Pain_Opioids_Pentazocine 223
D.42 Alt_HRM_Pain_Skeletal muscle relaxants 224
D.43 Alt_HRM_Pain_Skeletal muscle relaxants_Orphenadrine 224
D.44 Alt_HRM_Pain_Specific nonsteroidal antiinflammatory drugs_-

Indomethacin . 224
D.45 Alt_HRM_Pain_Specific nonsteroidal antiinflammatory drugs_-

Ketorolac . 224
E.1 SPARQL group interaction query . 225
E.2 SPARQL group and subgroup interaction query 225
E.3 SPARQL drug-drug interaction query 226
E.4 SPARQL alternative drug query . 226
E.5 SPARQL Tmax query . 226
E.6 SPARQL all PIM parameters query 226
G.1 Table Prescription Processed . 265
G.2 Table Prescription Interaction . 265
G.3 Table Drug-Drug Interaction . 265
G.4 Table Drug Alternative . 266

xxxi

LIST OF TABLES

G.5 Table Prescription Models . 266
G.6 Table Prescription Rescheduled . 266
G.7 Table Patient . 266
G.8 Table Patient Exams . 267
G.9 Table Patient Previous Diseases . 267
G.10 Table Prescription . 267

xxxii

ACRONYMS

ABox Assertion component

AGS American Geriatric Society

B.PIM Beers Criteria Potentially Inappropriate Medications

CDSS Clinical Decision Support System

CMAX Maximum medication concentrations in serum

DDDS Potentially Inappropriate Medication Due to Drug-Disease or Drug-
Syndrome Interactions That May Exacerbate the Disease or Syndrome

DDI Potentially Clinically Important Drug-Drug Interactions

EMR Eletronic Medical Record

FOL First order logic

PIMs Potentially Inappropriate Medications

SMT Satisfiability Modulo Theories

SPARQL Simple Protocol and RDF Query Language

SWRL Semantic Web Rule Language

TBox Terminology component

TMAX Time to peak drug concentration in serum

UWC Drugs To Be Used With Caution

VLKF Medications That Should Be Avoided or Have Their Dosage Reduced With
Varying Levels of Kidney Function

xxxiii

1CHAPTER ONE

INTRODUCTION

This thesis investigates how a variety of computer science-based techniques can
be extended and adapted in the context of medical systems in order to tackle
real clinical needs in novel and efficient ways. We explore different aspects of
knowledge representation, including the use of ontologies and reasoning with
constraint solvers, and how they can best be integrated in order to provide a
valuable setting for medical systems.

The novel contribution this thesis makes is to demonstrate how integrated
inference engines combining formal knowledge representation and reasoning
can be used to obtain a holistic approach — a comprehensive methodology. This
holistic approach takes into account all pertinent elements and their interrelations,
enhancing the resolution of practical and complex problems within the healthcare
domain.

1.1 Motivation

There are many medical problems that deserve our further attention and require a
better understanding of what can be done and how computer science can help.
Efforts to develop effective solutions that can support healthcare professionals
in their decision-making processes across various healthcare fields are currently
on the rise [162, 138, 119, 62, 127, 66, 48]. These fields typically include forming a
diagnosis, detecting potential drug interactions, suggesting alternate medications,
and selecting appropriate therapies and treatments. One of such problem concerns
the use, and often misuse, of medications and their complex consequences.

1

1. INTRODUCTION

Specifically, supporting the decision process associated to prescribing the most
appropriate drugs and administering them safely (e.g., at correct times, in the right
way and dosage) is still a challenge that lacks satisfactory solutions in practice
often relying on staff experience and competence. There are studies [104, 167, 24,
158, 107, 29] that make partial contributions for particular aspects of the problem,
for example, checking the interaction between drugs or diseases. However, an
integrated solution, which supports several kinds of interactions, guides healthcare
professionals in their choice of alternative drugs when an interaction is detected or
when it is detected but cannot be avoided (usually when drugs cannot be removed
as their therapeutic benefit outweighs their risks) and offers ways to minimise
interaction effects, does not exist at present.

According to the WHO[160], medication errors incur a global cost of approximately
US$42 billion annually. In England, more than 237 million medication errors are
made annually, the avoidable consequences of which cost the NHS upwards of
£98 million and more than 1700 lives yearly, according to national estimates[17]. In
Brazil, it is estimated that approximately 5% to 6% of hospitalisations are related
to medication use, particularly affecting the elderly, according to the Brazilian
government[5].

Let us consider situations where computer-based systems could have a real
impact if used to support medical decision-making. It is estimated that 1% of
hospitalisations in the general population and 2-5% of hospitalisations in the
elderly are caused by drug interaction problems [86]. A system that could identify
and solve these interactions could reduce these estimated percentages and help
reduce the burden faced by secondary healthcare providers. Furthermore, during
hospitalisation, patients remain exposed to medication problems which may in
fact be worse when their medical history is not known or considered. For example,
prescribing drugs that interact with other medications or administering drugs
incorrectly and at the wrong time are common types of problems [134, 33]. Further-
more, to be able to consider all the elements and consequences medications can
have on patients at all times is not an easy task, and it is not surprising that some of
these may be missed by physicians [90]. Every year new drugs are discovered; for
example, between 2019 and 2021, the Food and Drug Administration (FDA)(2022)
approved 151 new drugs. Hence, healthcare professionals may be unaware of
the impact of prescribing new drugs, including possible conflicts with current
guidelines, drug interactions and adverse reactions.

2

1.1. Motivation

A particular challenge that could be addressed by computer-based systems is
the identification of different types of drugs which constitute so-called Potentially
Inappropriate Medications (PIMs). PIMs occur due to variations in the absorption,
distribution, metabolism, excretion and physiological effects of the drug [93].
PIMs correspond to prescriptions that should be avoided for older adults in
most situations and for all under certain conditions where the risks outweigh the
benefits [117]. The prescription of PIMs is, however, common in the general older
population and aggravated due to their prevalence of comorbidities. In Brazil,
which is the low and middle-income (LMI) country used throughout this thesis
for comparison, the prescription of PIMs ranges from 20,3% to 54,6% [42].

The abundance of information in a digital age hints at new potential ways to
explore how computer science can perhaps help improve and tackle this situation.
While machine learning has gained attention, it is often perceived as a black box
by doctors [54], leaving them unable to track, and hence trust, the origin of the
information they rely on. In contrast, formal methods offer distinct advantages as
they cater to all necessary requirements, ranging from knowledge representation
to traceability.

Computer-based systems should be used to promote medication safety by fa-
cilitating evidence-informed medication use, reducing the incidence of harmful
medication errors, and improving the efficiency of healthcare systems in practice
[74]. Clinical Decision Support System (CDSS) seems to outperform conventional
tools as an information resource, offering easy access and intuitive handling in
the daily routine, particularly benefiting less-experienced medical practitioners
[104]. In the Brazilian hospital context, a CDSS for managing prescriptions could
change considerably current practice, reducing elderly patients’ exposure to PIMs
and hospitalisations due to adverse drug reactions. In addition, solutions could be
used to facilitate and reduce the load on physicians, and more generally healthcare
providers, helping them by taking into account factors such as drug interactions,
dose, age, gender, ethnicity, etc, that may influence treatment.

Drawing from my 15+ years of professional experience within the Brazilian
hospital environment, it has become evident that prescription errors in Brazil
are often related to poor professional practice, incomplete or inexisting guidelines,
and a lack of automated tools that can be used to aid medical doctors in their
decisions. In addition, pharmacists (for example, in hospitals) also often fail to
double-check whether medication prescriptions issued by doctors are safe. The

3

1. INTRODUCTION

lack of good and helpful computer-based systems across Brazilian healthcare is a
problem that is addressed in the context of this thesis.

The overall problem provides a motivation to explore in which way different
techniques from formal methods and computer science can help, and how
both foundation development and design of better solutions can shape the
improvement of healthcare provision worldwide. This thesis contributes to
research in this area and investigates the integration of various approaches in
novel ways to achieve this goal.

1.2 Research problem context

The prevalence of Potentially Inappropriate Medications PIMs in prescriptions,
globally and specifically in the Brazilian context, highlights the ongoing need
for improvements in the prescription process. This requirement is attributed
to several factors, including the absence of a formal knowledge base, the lack
of dedicated reasoning engines for addressing PIMs, the diverse parameters
associated with each PIM criterion, and frequent guideline updates. Moreover,
not only the identification but also the development of solutions to rectify or
minimise PIM-related issues remains a challenge insufficiently addressed by
automated systems. Consequently, the prescription screening for managing
PIMs by healthcare professionals can be a complex, time-consuming, and error-
prone task, potentially making it unfeasible in daily prescribing practice without
dedicated system support.

The development of an approach that handles a variety of different types of
interaction constraints, for instance, constraints between age x drug x drug, age x
drug x disease and age x drug x gender, that constitute the PIMs rules, might be a
solution to embrace the above-mentioned problems. Furthermore, this approach
should facilitate multiple reasoning by inference engines with a formal knowledge
base in a semantic, readable way by humans and computers alike, which might be
an approach to embrace the above-mentioned problems.

A computer-based system such as a clinical decision support system framework
could be used to detect interactions, supporting health professionals in taking
better decisions. Nevertheless, detecting interactions is just one step of the decision
process. After the interaction is detected, the professional already has a decision
to make: either prescribe the drug with interaction or seek an alternative drug

4

1.2. Research problem context

that would avoid this conflict. Consequently, a framework could support health
professionals in finding other suitable alternative drugs in a knowledge base that
provide an equal or similar therapeutic benefit. Though seeking an alternative
does not sound too complex, finding a drug that matches all the other prescribed
drugs, with patient characteristics and clinical conditions, may involve a series
of complex constraints, which can be very demanding to be accomplished by
humans without the aid of suitable tools.

Sometimes, there are situations where it is not feasible to find alternative drugs that
meet the interaction constraints, and then a different solution needs to be proposed.
One common practice is to adjust the drug schedule to avoid administering
interacting drugs together [121, 53, 38]. Rescheduling medications can, however,
be a time-consuming task, especially when dealing with multiple prescriptions
and other variables like hospital routines and standard administration times. It
can be challenging to schedule prescriptions that meet all the constraints, and
it is often unfeasible to find an optimal, safe solution without the support of an
automated system. Indeed, this is also a task that could be automated.

Considering the aspects mentioned above, there are many challenges in handling
a CDSS framework towards solving complex drug-related issues such as (1) how
to build a shareable knowledge base with inappropriate drugs and alternative
drugs, (2) how to define inference rules that consider the patient and prescription
profile to detect inappropriate drugs and suggest alternative drugs if these are
available, (3) how to minimise the interaction efficiently by rescheduling drugs
when possible and, (4) how to validate and evaluate the framework. Therefore, to
embrace all the aspects of dealing with drug issues (and find a framework that
could be similarly applied to tackle other complex medical issues), we formulated
the following research question:

What formal semantics and structures are required to develop a CDSS frame-
work that can handle potentially inappropriate drug prescribing effectively
through the use of a reliable knowledge base and which supports various
reasoning purposes?

To gain a deeper understanding of the research question, we can break down the
research question into following sub-questions:

• How can we formalise PIMs in a clinical knowledge base for reasoning?

5

1. INTRODUCTION

• Which reasoning methods best support clinical decision-making for PIMs?

• Can the proposed approach be used in practice to identify and solve PIMs in
real scenarios?

These research sub-questions will guide us in defining a framework to formalise
the knowledge captured from PIMs clinical guidelines and perform reasoning
over it. Therefore, we must define a formalisation approach that suits a reasoning
methods that will detect and tackle PIMs. Additionally, we want to check whether
this approach can be applicable to a realistic scenario, integrated with EMR data,
where it can be validated and compared with other approaches.

1.3 Objectives

To address the research question, this thesis aims to demonstrate the capability of
using an ontology/rule-based approach in a clinical knowledge base to identify
potentially inappropriate medication(PIM). Moreover, with an SMT solver, suggest
alternative medications and administration schedules to solve or minimise PIM
undesirable side effects. We investigate the foundations of a formal framework
to support different reasoning tasks over drug interaction constraints. Therefore,
to build the framework, we decomposed the following objectives to structure a
roadmap to achieving the broader objectives outlined by the research questions:

• Define a framework workflow to tackle drug interaction problems;

• Create a knowledge base which adequately formalises PIMs constraints and
relevant data to the solution of drug interactions;

• Develop reasoning mechanisms to provide knowledge for supporting clinical
decision making when dealing with prescriptions for the elderly;

• Validate the completeness of the knowledge base;

• Developing a proof-of-concept tool to evaluate the framework with a real
hospital dataset.

In Figure 1.1, we sketch the proposed approach to outline the overall strategy and
methodology, at a very high level, that incorporates the research questions and

6

1.3. Objectives

the objectives to support health professionals in their decision-making process
concerning patient prescriptions. The approach is composed of three main parts:
the input data provided by health professionals and EMR, the inference engine
developed (with an ontology reasoner and constraint solver) and the knowledge
base built in an ontology.

Figure 1.1: Approach overview

The process starts when the health professional prescribes drugs for a patient, and
the prescription data is sent to the inference engine. Patient data, which include
drugs that the patient has been taking, diagnosed conditions, age and gender,
is also sent to the inference engine. The inference engine initially gathers the
input data and matches it with the knowledge base rules. Thereupon, it infers
and checks whether there are interactions or not. If interactions are found, the
inference engine tries to solve them first by seeking alternative drugs that fit the
constraints. In case no alternatives can be found, the engine tries to reschedule the
drugs to minimise the interaction peaks. As a result, the inference engine returns
to the user alerts with the interactions found, recommendations of alternative
drugs to resolve identified interactions, and/or a revised medication schedule to
minimise the effects of drug interactions.

The above vision combines multiple approaches to solving or minimising interac-
tion problems by combining the inference engine and knowledge base, which will
be explained in detail in the following chapters. Furthermore, to analyse the model
correctness, we will evaluate our approach in a Brazilian hospital EMR database
context. Additionally, we will measure the number of interactions, alternative
drugs, and drug rescheduling and benchmark our findings against the Brazilian

7

1. INTRODUCTION

hospital CDSS, rooted based on the Beers Criteria guideline.

1.4 Outline

In the next chapters, this thesis will go into detail on how we investigate and
address the objectives that we want to achieve. This thesis is organised as follows:

Chapter 2 establishes the context of the research and the related work that sets
the foundations and motivations of our work to solve drug interaction problems.
In this chapter, we first introduce basic concepts of subjects related to this research
to facilitate the understanding of our contribution. Then we detail the related work
to discuss and compare the techniques used to solve drug interaction problems.

Chapter 3 starts by presenting the main concepts and structure of the CDSS. We
describe the framework workflow and explain the tasks that belong to it and their
outputs. Part of this chapter was published in Redeker and Bowles (2020).

Chapter 4 defines the concepts, requirements, features and properties of the
ontology for the CDSS. It explains how the ontology was built, how drug
interaction rules were defined and how the discovered knowledge can be extracted
from the ontology to an external environment.

Chapter 5 describes the implementation of the formal model to define drug
alternatives. This chapter describes the implementation rules defined over the
ontology to provide drug alternatives for the prescribed drugs, the integration
of the ontology results with the SMT solver and finally, the SMT solver based
approach used to check if there are alternative drugs that fit all the prescription
requirements.

Chapter 6 defines how the drugs were rescheduled when the interaction between
drugs could not be avoided. This chapter presents the formalisation of the
SMT-based scheduling rules required to maximise the distance between the
administration of drugs with interaction to minimise their effects.

Chapter 7 details the development and integration of the components that form
the CDSS framework. We demonstrate how the requirements and formalised rules
were implemented in the knowledge base and in the inference engines. Moreover,

8

1.4. Outline

it describes the validation of the adopted approach by executing test cases in order
to consist the correctness and completeness of the framework.

Chapter 8 describes the evaluation of the framework. First, it explains the details
of the hospital dataset used and how it can be integrated with the developed
framework. Then, it describes the experiments done to evaluate the framework,
and compares the developed approach with other existing tools available. It
gives a detailed account of the obtained results and how it compares with current
solutions used by the Brazilian hospital and beyond.

Chapter 9 summarises our findings overall and gives suggestions for further
research directions and future work.

9

2CHAPTER TWO

CONTEXT

2.1 Background

2.1.1 Clinical Decision Support Systems

Clinical knowledge is updated and expanded continuously, quickly leading to
a challenging and very complex environment for health professionals to gather
information and make inferences concerning patient data and their care. Inevitably,
this leads to situations where clinicians may overlook some vital information
or take longer to make a decision [21, 50]. A clinical decision support system
(CDSS) can effortlessly tackle complex tasks and provide accurate information
using patient data generating patient-specific advice, enhancing the decisio-
making process when needed [151]. CDSS are tools that (should) support health
professionals’ decision-making process during clinical tasks for individual patients
considering their current clinical condition [13, 151]. It has been shown that the
incorporation of CDSS can substantially prevent medical errors leading to an
improvement over patient safety and the quality of care [13, 139]. For a CDSS to
be designed to improve the quality of decision-making, it needs to gather accurate
and correct clinical knowledge (e.g. guidelines, ontologies and clinical knowledge
bases), patient information and other evidence-based digital health information
[148].

2.1.1.1 CDSS functions and interventions

There are different directions that CDSS can tackle. For example, they can be
incorporated into medical practice to detect drug-drug, drug-food and drug-

11

2. CONTEXT

allergies interactions, suggesting drug alternatives, drug doses, selecting appropri-
ate therapy, supporting diagnoses and comparing drug and clinical parameters
such as laboratory values [74, 50, 148].

The categorisation of a CDSS is usually based on the approach that the system
was built for, which consists of the system function and system interventions.
The system function has two methods: to assess whether the decision that was
taken is true or not, which may be used to define a patient diagnosis or detect
interactions; and to support the health professional in what to do, for example,
when a diagnosis is defined, which drugs or guidelines are recommended, or
in case of interaction is found, what are the options to avoid or minimise it.
Most of CDSS provide a hybrid solution considering the two methods, assess the
patient data and support the decision [156]. As for the interventions, they are
classified as active or passive. An active intervention supports the user without
the need to ask for it. This kind of intervention works in real-time, and the system
automatically assesses the data supporting the user [81]. However, this kind of
intervention sometimes overwhelms the user due to the excessive number of
alerts or recommendations, driving the user to overlook them. On the other hand,
a passive intervention demands more user effort, as the system will check the
data only when the user considers that the system intervention can be valuable.
This intervention prevents an excessive number of alerts or recommendations.
However, relevant interventions may be left out.

2.1.1.2 Knowledge and Non-knowledge-based CDSS

A CDSS can be seen an intelligent system that provides accurate knowledge to
support health professionals [151]. The intelligence embedded in the system can
be categorised according to the source of knowledge that the system infers from
patient data, and can be knowledge-based or non-knowledge-based [148].

Knowledge-based

A knowledge-based CDSS, supports health professionals through the knowledge
obtained from many databases (e.g. Drugbank [159]), literature-based, practice-
based, or patient-directed evidence. The knowledge is usually extracted and
validated from these sources by professionals, from which logic rules following
the assumptions IF-THEN can be created [148]. The general concept of knowledge-
based CDSS designed by Berner and Lande (2016) consists of three components: a
mechanism to communicate with the user(input/output), a knowledge base, and

12

2.1. Background

an inference engine as shown in Figure 2.1.

Figure 2.1: Simple user interaction with a knowledge-based CDSS

The communication mechanism between users and CDSS happens by sending
and/or receiving data. The process of sending data happens either by entering
patient data directly or by passing data indirectly through a system with EMR,
while receiving data happens by displaying the result from the inference engine in
a front end (e.g., alerts or recommendations).

A CDSS needs a medical knowledge that aligns with the inference engine. The
inference engine is the key component responsible for reasoning through the
contents of the knowledge base. Without this alignment, the CDSS cannot be
effective in providing accurate clinical decision support [9, 75].

The inference engine’s function is to check whether there are alerts or recommen-
dations from the knowledge base and send them back to the user. This process
begins by receiving the patient data, selecting rules from the knowledge base that
matches the data, to finally infer these rules and the data.

The knowledge base compiles and stores rules defined from the knowledge
sources, usually in the form of IF-THEN rules [13]. An example of an IF-THEN
rule to prevent drug interaction prescriptions is: IF a new order is placed for
a drug and this drug interacts with another drug that the patient is already
taking, THEN the system displays an alert, informing the interactions, and might
also recommend another drug with the same therapeutic benefit but without
interactions.

Non-knowledge-based

A non-knowledge-based CDSS is a non–rule-based approach [165]. The creation

13

2. CONTEXT

of knowledge is not based on human perception but done through artificial intel-
ligence, machine learning, or statistical pattern recognition [148]. In knowledge-
based approaches, the user must create rules into the system to build knowledge.
Thus, the system cannot learn from the patient data or previous decisions. In
contrast, a non-knowledge-based approach comes from the system’s ability to
learn from a data source without demanding an external domain knowledge such
as medical expertise [120].

Similar to the knowledge-based CDSS, the non-knowledge-based CDSS has four
components: a mechanism to communicate with the user(input/output), an
algorithm, and an AI inference engine, as shown in Figure 2.2. The mechanism
to communicate with the user has the same functions as the knowledge-based,
which is the interaction between the user and the system, by entering patient
data and getting results from the AI inference engine. The AI inference engine
infers the patient data through the algorithm, generating an output (alert or
recommendation) for the user [148].

Figure 2.2: CDSS Nonknowledge base

Knowledge-based approaches are built in rule-based logic, which easily allows
traceability, a key aspect considered in this research and highlighted in the
motivation. The detection and resolution of the PIMs provided by our approach
must be traced and explained until the information source. In Non-knowledge-
based approaches, traceability can be very complex and imprecise, leading us to
avoid using it.

2.1.2 Knowledge representation and reasoning

Knowledge is defined by Chen, (2010) “as information (which can be expressed
in the form of propositions) from the environment”. According to Bolisani

14

2.1. Background

and Bratianu, (2018), “Knowledge can be obtained only from rational reasoning
grounded in axioms, like in mathematics, and it should be distinguished from
opinion, which is a product of our senses”. Hence, knowledge can be defined
as the reasoning result of a logical structure. Reasoning is one of the primary
forms of simulated thinking process and inferring new conclusions from existing
assumptions[30].

Knowledge representation is how knowledge propositions are formally structured
by symbols[30]. The knowledge formalism provides a means to represent it in
an ambiguity-free and systematic way. [123]. In computer science, there are
several approaches for knowledge representation, such as rule-based systems[163],
semantic nets [136], and epistemic modal logic[77]. In cases of shortages of
formal means for representing knowledge, this can result in misinterpretation,
and, consequently, in poor decision-making [78].

Knowledge representation and reasoning can be defined as manipulating symbols
and encoding propositions to produce representations of new propositions. The
goal is to encode a particular kind of knowledge by a formal language, and infer
new knowledge from it with a reasoner [30, 20].

Figure 2.3: Knowledge representation

For example, in Figure 2.3, we formalise a very basic family genealogy of three
elements, A, B and C, linking them with the property has_parent, in which A has
parent B (say P(A,B)), and B has parent C (say P(B,C)). We also create the object
property is_grandparent_of (say Q) as a transitive property, which means that if
individual x is related to individual y by P, and y is related to individual z by P, then
x will be related to z by Q, which is formulated in general by: ∀x,y,zP(x,y)∧P(y,z)⇒
Q(z,x).

15

2. CONTEXT

In the formula, the elements x, y and z are individual persons, P is the property
has_parent, and Q is the property is_grandparent_of, thus, if x has_parent y

and y has_parent z, it implies that z is_grandparent_of x. The assertion of C
is_grandparent_of A was not defined previously. This straightforward example
demonstrated how the reasoner is able to infer and discover new assumptions
based on previously formalised ones.

2.1.2.1 Ontology

Compared to popular knowledge databases, an ontology can show information
in a logically structured and user friendly way. In the context of our problem
domain, popular drug interaction knowledge databases do not have all the needed
information required, are not available in a structured format and are not able
to provide interoperability with other ontologies [103]. An ontology is useful in
this context because it is a straightforward formalism that enables inserting and
editing medical knowledge from multiple sources [97] and can thus solve semantic
interoperability issues [103].

Ontologies establish a formal definition of concepts used to express either generic
knowledge or knowledge from a particular domain or practice [67, 147]. An
ontology is defined with entities, attributes and relationships that present an
interoperable format understandable by both humans and machines. It can
therefore be used to develop knowledge-based systems. [30]. Schulz and Jansen
(2013) affirm that “Ontological representation of entity types presupposes the
existence of an objective reality about which truths can be discovered by scientific
methods”. As we will see later on, we too assume that the knowledge we capture
and represent is evidence-based and gathered from medical research, clinical
studies, and so on.

An ontology comprises four main components: concepts (classes), instances
(individuals), relations and axioms. Concepts represent a set or class of entities
within a domain and are expressed using formal definitions that capture the
requirements for class membership. Concepts can be organised in superclass/sub-
class hierarchies, known as a taxonomy. For example, Paracetamol and Drug are
two classes. Since Paracetamol is a drug, it also belongs to the class Drug. Thereby,
it is implied that all instances of Paracetamol are Drugs.

Concepts can be defined in two categories:

16

2.1. Background

• Primitive: only has the necessary conditions and is insufficient to fully define
the concept [79, 147, 72]. In other words, a primitive concept does not
have unique relationships sufficient to distinguish it from their parents and
siblings, and therefore do not have any specified equivalent classes. It is
defined by the subsumption operator ⊆.

• Defined: is defined by the equivalence operator ≡ and is specified with
the full set of necessary and sufficient conditions. In other words, defined
concepts have both necessary and sufficient relationships to distinguish them
from their parents and siblings [79, 147, 72].

Instances (individual): represent objects in the domain of interest, they can be
referred to as instances of concepts. An ontology should not contain any instances,
because it is supposed to be a conceptualisation of the domain. The combination
of an ontology with associated instances is what is known as a knowledge base.
However, deciding whether something is a concept of an instance is difficult, and
often depends on the application.

Relations: express relationships between two concepts or objects(e.g. classes or
individuals). For example, a class patient could be represented as a relationship
between the classes person and hospital. There are two common types of relation:
taxonomic and non-taxonomic [149, 80]:

• Taxonomic relations represent direct is-a or sub-classOf relationships be-
tween classes, forming the ontology’s hierarchy of entities. For example,
Paracetamol is sub-classOf Drug.

• Non-taxonomic relations are links that enrich the ontology semantically,
but do not alter its structure. For instance, side effect might not be a non-
taxonomic relation. For instance, Paracetamol hasSideEffect Mouth ulcers.

Axioms: enforce restrictions on classes or instances. These formal definitions
are typically expressed using logic-based languages like first-order logic. They
are categorised based on the role they act. For example, a disjointness axiom
between classes states that instances of one class cannot be instances of another
class (or equivalently, the classes do not share instances). A domain axiom assigns
a domain class to a property (relation), meaning that any instance linked to that

17

2. CONTEXT

property must be from the domain class. Similarly, a range axiom assigns a range
class, such as integer or string, to the values of a property [149, 80].

2.1.2.2 Semantic Web Rule Language

Many health decision process systems, such as a CDSS, are often modelled
by a declarative approach, for example as a rule-based system. Nevertheless,
interoperability among current rule-based systems is restricted. The Semantic Web
Rule Language (SWRL) has emerged as a first-step solution to improve rule-based
systems interoperability [87].

Similar to other rule languages, SWRL rules are written as antecedent-consequent
pairs. The meaning of the rules can be read as: whenever the conditions specified
in the antecedent hold, then the conditions specified in the consequent must also
hold [114]. Furthermore, SWRL provides inferential reasoning capabilities that
can deduce new knowledge from an existing ontology [168].

A simple example [161] of how an SWRL rule can assert that the combination of
the hasParent and hasBrother properties implies the hasUncle property could be
defined as follows (in SWRL notation):

hasParent(?x1,?x2)∧hasBrother(?x2,?x3)⇒ hasUncle(?x1,?x3)

The rule can be read as follows: if x1 has parent x2 and x2 has brother x3 then x1
has an uncle x3. The conditions before the implication symbol form the antecedent
of the rule, whereas what comes after the implication is known as the consequent.

2.1.3 SAT/SMT Solvers

SAT (Boolean Satisfiability) and SMT (Satisfiability Modulo Theories) solvers are
sometimes seen as efficient automatic theorem provers for classical logic [91, 130].
A SAT solver can be used for solving problems encoded in propositional logic (e.g.,
the rules of a game such as Sudoku) by finding a variable assignment (known as
a solution) such that formulae representing the problem are satisfied [106]. An
SMT solver extends SAT by supporting higher-level theories such as arithmetic,
arrays, bit-vectors, sets, and more. In other words, SAT and SMT have similar
purposes, but SAT deals solely with Boolean variables, whereas SMT can capture
more expressive theories and combine their reasoning capabilities.

18

2.1. Background

These solvers have a wide range of applications, such as, planning [18, 52] and
scheduling [133, 131] and formal verification [96]. In health the domain SAT/SMT
have been applied for example, for tackling conflicts in medical guidelines [23],
finding the best solutions for treatment [24], avoiding medication conflicts [83].

Some of the most commonly used SMT solvers include Z3 [40], CVC5 [10] and
Yices [49]. The difference between these solvers lies mainly in built-in first-
order theories that they support, how forthright it is to define the constraint
and performance in solving problems.

Satisfiability checking aims at automated solutions for determining the satisfia-
bility of existentially quantified logical formulas [3]. Such formulas are Boolean
combinations of theory constraints, where the form of the theory constraints
depends on with which theory is instantiated. Most of the SAT/SMT solvers are
based on the DPLL algorithm based on backtracking to decide the satisfiability of
propositional logic formulas. The process of implementing SMT models starts with
the problem formulation in which the problem is expressed in mathematical logic,
such as first-order logic, indicating all necessary conditions and restrictions [59].
Based on this description, the solver translates the restrictions into mathematical
formulas, considering the specific theories related to the problem. Thereafter,
the solver translates the restrictions into mathematical formulas, considering the
specific theories related to the problem.

Next, the solver applies satisfaction techniques to determine whether values are
assigned to variables that satisfy all conditions simultaneously. If a solution
satisfies all the constraints, the solver presents a model with the values. However,
if no value assignment satisfies the constraints and consequently a solution cannot
be found, the solver provides evidence explaining why the constraints cannot be
satisfied simultaneously[41].

2.1.3.1 SMT-based optimization

In addition to determining satisfiability, in some SMT solvers, optimisation
objectives such as maximisation and minimisation can be defined. In the case
of minimisation, it seeks the lowest value; for maximisation, it aims for the
largest. For example, to optimise a schedule, the objective is to maximise schedule
occupancy. On the other hand, a minimisation objective could be applied to
minimise the production costs, operational expenses, or financial risks. When a
maximisation and minimisation objective is defined, the SMT solver continues

19

2. CONTEXT

its exploration until it identifies a solution that satisfies all constraints while
optimising the objective function. The solver gradually adjusts the values of the
variables, using heuristic search techniques or specific optimisation algorithms
aiming to refine the search towards the most promising region of the solution space.
The optimisation process is iterative, with the solver continually updating variable
values to improve the approximation of the optimal solution. In addition to
improving the objective function, the ideal solution also satisfies all the constraints
of the problem [15, 88, 133].

2.1.4 Drug Interaction

Drug interactions can be defined as the act of one drug modifying the effect(s) or
action(s) of another drug, food, alcohol or herbal products [92, 109]. Additionally,
drug interaction can also be caused by the effect that a drug has on a patient
condition, for example, disease, clinical condition or nutritional status [92].
Interactions are not always seen as an unwanted reaction, since they sometimes
represent a therapeutic benefit. Nevertheless, in some cases, they potentially have
life-threatening consequences [68]. Moreover, drug interactions may result in
adverse side effects or reduce or enhance the action of medications. For example,
leading to toxic reactions or impacting the efficacy of the drugs administered [26].

2.1.4.1 Interaction types

Interactions can broadly be classified as pharmacokinetic and pharmacodynamic
[68]. Pharmacokinetics can be defined as what the body does with drug, such
as absorption, distribution, metabolism or excretion of the drug, resulting in a
modification of the drug concentration in the body [92, 43].

The pharmacokinetics process starts with absorption of drug molecules crossing
biological membranes from the administration site into the plasma. An example
of an interaction effect in the absorption process is the binding of drugs that may
change the gastric pH delay absorption of certain drugs in the stomach.

After being absorbed in the distribution process, the drug is delivered from
the plasma to body tissues and organs. An interaction can affect this process,
resulting in a change in drug concentration at the site of action. The metabolism
is the process of converting drug molecules into active metabolites compounds
throughout the body, also called biotransformation, which is mainly carried out

20

2.1. Background

by the liver. An interaction may increase the concentration of some drugs by
decreasing their metabolism.

The excretion process is responsible for the clearance of the drug from the body,
usually eliminated in the urine. An interaction in this process may happen when
drugs compete for the same excretion activity, resulting in the decrease of the
elimination of the drugs and increasing the toxicity in serum concentrations [45,
109, 92, 61, 16].

Pharmacodynamics is defined as what a drug does to the body. It can be defined
as the altered pharmacological effect of a drug by a combination with another
drug through the relationship between the drug concentration and its receptors,
mechanism of action, and therapeutic effect [108, 152]. The interaction happens
when a drug has an antagonistic, additive, synergistic or indirect pharmacological
effect on another [71]. Moreover, it is more challenging to detect pharmacodynamic
interactions in comparison to pharmacokinetics, and it can result in significant
losses to human health. For example, combining drugs with opposing effects can
result in loss of drug effect or intensify drug activity with exaggerated or unusual
effects. [45, 144, 61]

2.1.5 Drugs potentially risky for elderly people

The elderly represent the major consumers of drugs, mainly due to chronic
diseases that require the prescription of multiple drugs, known as polypharmacy.
Polypharmacy is characterised as the concomitant use of multiple medications
[31, 99], and is commonly linked to the treatment of multiple chronic diseases, also
known as multimorbidity, which occurs with a high prevalence in the elderly [154].
The use of multiple medications must be safe and effective [110], and this should be
under scrutiny when the risks of medication combinations outweigh the benefits,
resulting in adverse drug reactions. An adverse drug reaction is defined as any
undesirable medical occurrence caused by a pharmaceutical product. However, it
is not necessarily related to treatment[124], as it may occur for different reasons,
such as wrong drug, dosage or route [35].

Age-related physiology changes renal elimination and liver metabolism, conse-
quently affecting pharmacokinetics and pharmacodynamics. Moreover, factors
such as physiologic changes, decline in functional abilities, reduced homoeostatic
mechanisms, disease associated with ageing and frailty, and polypharmacy are

21

2. CONTEXT

risks associated with developing clinically significant drug-drug interactions.
Hence, older adults are more susceptible to drug interactions than younger ones.
[92, 68, 45, 109, 28]

Concerning hospital admissions, a study [32] revealed that 43.3% of patients
were taking at least one potentially inappropriate medication (PIM) and during
hospitalisation this number increased. Between 22,2% to 61.9% of the patients were
prescribed PIMs throughout the hospitalisation, where on average each patient
took 14,4 different medications [64]. A high rate of patients was observed with
three or more comorbidities and with polypharmacy or high-level polypharmacy.

A strong correlation between polypharmacy and multiple chronic diseases with
PIMs has been established in [89, 27, 141, 166, 100]. To treat multiple chronic dis-
eases, physicians might prescribe multiple drugs [11] and patients are hence more
likely exposed to problems related to over-prescribing and inappropriate use of
concomitant drugs [94], such as adverse drug reactions and drug interactions [112].
For patients who need more than three medications, the risk of therapeutic
problems is more than 50% [90], and is related to adverse drug events [150].
Consequences of such events include an increased risk of hospitalisations, effects
on the quality of life [143], and ultimately a higher risk of morbidity and mortality
[150]. The detection of polypharmacy could reduce adverse outcomes [11] and
improve the patient’s quality of life and life expectancy [143].

2.1.5.1 Beers Criteria

The Beers Criteria 12 is a list of drugs that should be avoided in most circumstances
by patients aged 65 or above. It was first established by Dr Mark Beers and
colleagues in 1991 for long-term care facility residents [12]. Since then, it was
updated by him until 2011, when the American Geriatric Society (AGS) took
over the responsibility for updating and maintaining it. Since 2012, it has been
periodically updated at 3-yearly intervals [140].

The list is divided into five categories:

1. Potentially Inappropriate Medication Use in Older Adults (Table 2);

2. Potentially Inappropriate Medication Use in Older Adults Due to Drug-Disease
or Drug-Syndrome Interactions That May Exacerbate the Disease or Syndrome
1This thesis used the 2019 version of the Beers Criteria [117].
2An updated version of the Beers Criteria has been recently released in 2023. [118].

22

2.1. Background

(Table 3);

3. Potentially Inappropriate Medications: Drugs To Be Used With Caution in
Older Adults (Table 4);

4. Potentially Clinically Important Drug-Drug Interactions That Should Be
Avoided in Older Adults(Table 5);

5. Medications That Should Be Avoided or Have Their Dosage Reduced With
Varying Levels of Kidney Function in Older Adults (Table 6).

For the definition of criteria for each category, drugs are listed according to a
specific hierarchy. The first category of drugs are classified according to Organ
System, Therapeutic Category and Drug; the second in Disease or Syndrome;
the third only in Drugs; the fourth in Object Drug and Class; and the fifth
in Class Medication and Medication. Moreover, each criteria has a Rationale,
Recommendation, Quality of Evidence and Strength of Recommendation, which
is defined based on the reviews conducted by the AGS [117].

The Rationale explains the reasons for the criteria, for example, uncertain
effectiveness, safer alternative drugs or an adverse reaction such as physical
dependence or heart failure. The Recommendation column describes what should
be done on each criteria, which is basically avoid, reduce the dose or avoid in a
specific circumstance (for example, "Avoid for treatment of nocturia or nocturnal
polyuria"). The Quality of Evidence is classified as High-quality, Moderate-quality
and Low-quality rates which are defined by the AGS merging the American
College of Physicians based approach and the Grading of Recommendations
Assessment, Development and Evaluation based approach. Finally, the Strength
of Recommendation is classified either as Strong where the harms, adverse events,
and risks clearly outweigh benefits or Weak where the harms, adverse events,
and risks may not outweigh benefits. These are defined based on the quality of
evidence, the frequency and severity of potential adverse events [117].

It should be remarked that the drug list is a recommendation of drugs, and it
does not mean that the drugs should never be used [46]. The list is developed to
support clinical decisions as a clinical guideline with a clinical recommendation
[65]. Thus, the prescription of listed drugs should always be analysed whether the
risks may outweigh the benefits for each patient [46].

As noticed, the Beers Criteria has a category named Potentially Inappropriate

23

2. CONTEXT

Medication Use in Older Adults (PIM), however PIM is also the main class of
all drugs that are considered inappropriate, including the Beers Criteria ones.
Consequently, it can be confusing/ambiguous to identify to which PIM the drugs
are classified. Therefore, in the text, when referring to the category PIM of the
Beers Criteria, we will use the acronym Beers Criteria Potentially Inappropriate
Medications (B.PIM).

2.2 Related Work

As mentioned earlier in the thesis, medication errors are a leading cause of
preventable harm to patients [157]. According to the World Health Organization
(WHO)[113], these errors are originated from systemic issues and human factors
such as fatigue, suboptimal environmental conditions, or staff shortages, impacting
various stages of the medication process, including prescribing, transcribing,
dispensing, administration, and monitoring. The consequences of such errors can
range from severe harm to disability and, in extreme cases, death.

The WHO launched the third Global Patient Safety Challenge to tackle unsafe
medication practices and medication errors [113]. It emerged from the recognition
that medication errors and associated harm remains a problem worldwide.
Furthermore, strategies for enhancing medication safety and reducing medication
errors commonly make use of CDSS [74, 148]. Therefore, medication management
is a promising target for patient safety measures.

Prescription of PIMs is a worldwide problem, associated with increased adverse
drug reactions, mortality, and healthcare costs [126]. Monteiro et al. (2019) affirms
that there are various approaches to preventing PIMs. For example, the use of
a CDSS may decrease the number of possibly incorrect prescriptions. Comput-
erised interventions have been proposed as a viable technique for improving
prescriptions [36], which can also positively influence and change physicians’
prescribing practice to prevent the prescription of inappropriate drugs [126].
However, according to Sönnichsen et al. (2016), there are limited pieces of evidence
that current approaches improve clinically relevant endpoints. Therefore, more
effective strategies are needed.

This section gets across selected research done in the knowledge representation
and reasoning area/field for CDSS to detect and solve drug-related problems.
First, we analyse some approaches that partially tackle drug and disease related

24

2.2. Related Work

problems, then, we present a bibliometric analysis about CDSS to tackle PIMs.
We then go into detail about the main studies found in the bibliometric analysis
related to CDSS for tackling PIMs. Additionally, we analyse ontologies’ knowledge
base, drug recommendations, conflict recommendation management, and drug
scheduling approaches developed to handle PIMs.

2.2.1 Drug and disease-related problems approaches

Several approaches aim to enhance healthcare clinical decision support systems
(CDSS), each offering distinctive insights and technical methods. For example,
[162] compares patient data with guideline recommendations and displays match-
ing treatments. Moreover, [24],[107] and [158] addressed adverse interactions that
occur when a patient with comorbid diseases is managed according to concurrently
applied clinical practice guidelines, defining the best treatment path. In order to
formalise guidelines, [66] introduces a framework for translating logical segments
of Knowledge Artifacts into Satisfiability Modulo Theory (SMT) models, where
the segments are automatically translated and verified using the Z3 SMT solver.
Apart from [162], all the other approaches were implemented with formal methods
such as SMT [24, 107, 66] and constraint logic programming[158].

A web-based Clinical CDSS was developed by [119], delivering access to essential
clinical documents for pediatric surgery trainees. In the same way, [138] proposes
the integration of Semantic Web technologies into clinical decision support systems
to improve the transparency, explainability, and specificity of clinical decision
support systems by leveraging semantic technologies and ontologies. The focus
of [119] was improving trainees’ access to clinical resources and their confidence
in patient management through web analytics and surveyed trainees. In contrast,
[138] intended to provide healthcare practitioners with more personalized and
evidence-based clinical knowledge.

A predictive model to detect drug-target interactions from diverse biological data
to detect biological process interactions was proposed by [29]. Moreover, [62]
proposed a predictive model to identify the optimal set of biomarkers for sepsis,
while [127] proposed a genetic-type algorithm for anaemia diagnosis, management
and classification.

The proposed studies address some of the drugs and disease-related problems.
If these approaches could be merged, they would provide a powerful tool to

25

2. CONTEXT

support health professionals. However, some gaps have to be addressed when they
are analysed separately. For example, [162], besides checking the compatibility
of guidelines, could check the interactions that may happen. In contrast, [24],
[158] and [158] check the interaction between guidelines and provide alternatives;
however, these approaches do not have a knowledge base that can be modified or
incremented by professionals and share with other CDSS. Additionally, they do
not take into account drugs previously prescribed.

The approach proposed by [119] does not consider patient parameters to provide
precise information. In contrast, [138] aimed to provide personalized and evidence-
based clinical knowledge in an ontology knowledge base that allows it to be
shared with CDSS. However, neither approach solves the interactions by providing
alternatives or minimising them. Likewise, the approaches [29], [62] and [127],
which aim to predict drug-drug interaction sepsis and anaemia, do not support
health professionals in how to tackle the interactions.

2.2.2 PIMs CDSS bibliometric analysis

A bibliometric analysis was conducted to define the Potentially Inappropriate
Medications (PIMs) CDSS related works. The literature search was performed
on Scopus, which is the largest abstract and citation database of peer-reviewed
literature. A query was performed on the database based on keywords terms
related to CDSS for PIMs as follows:

((KEY ({clinical decision support system}) OR KEY ({CDSS})
OR KEY ({decision support system}) OR KEY ({CDS})
OR KEY ({clinical decision system}) OR KEY ({Computer-Assisted}))
AND
(KEY ({Potentially inappropriate medication}) OR KEY ({PIM})
OR KEY ({Inappropriate Prescribing}) OR KEY ({polypharmacy})
OR KEY ({Drug related problem})))

The query result gave 393 documents which matched the above parameters. Figure
2.4 shows the document numbers per year of publication, which indicates an
increase in publications over the years, especially since 2016 when the number of
publications reached more than 40 for the first time. This trend indicates that the
topic has relevance in the scientific field and that gaps still needs to be addressed.
The bibliometric analysis for Potentially Inappropriate Medications (PIMs) CDSS

26

2.2. Related Work

highlighted 11 studies that target similar goals to this research.

Figure 2.4: Publication per year

The selected documents from the query were refined in order to select the ones
that had as a target a CDSS to tackle PIMs. Therefore, an analysis was performed
to select the relevant documents according to the following criteria:

• exclusion of irrelevant documents based on the title;

• exclusion of irrelevant documents based on the abstract;

• exclusion of irrelevant documents based on the full text.

As a result of the analysis, 11 documents which fit the criteria were selected (cf.
column Document in Table 2.1), which are explained in the next section.

2.2.3 PIMs CDSS qualitative analysis

The bibliometric analysis for PIMs CDSS highlighted 11 studies that target similar
goals to this research. Therefore, Table 2.1 was developed to list key elements of
these studies. The analysed elements were defined according to the goals of this
research to investigate gaps that still need to be solved or improved.

27

2.
C

O
N

T
E

X
T

Document Guideline
Knowledge
representation
type

Shareable
knowledge
base

Alternative
drug recom-
mendation

Conflict
manage-
ment

Drug
scheduling
recom-
mendation

Pharmaco-
kinetics
parameters

Input Output

Frutos et al. (2022) BEERS [117]
Proprietary
CDSS

No No No No No
Drug
Patient conditions

Alerts

Mouazer et al. (2022) STOPP&START [111] Ontology Yes No No No No

Disease
Lab values
Drugs
Patient conditions

Alerts

Rogero-Blanco et al. (2020)
BEERS [116]
STOPP&START [111]

Proprietary
CDSS

No No No No No
Drug
Patient conditions

Textual
report

McDonald et al. (2019)

BEERS [116]
STOPP&START [111]
Choosing Wisely
Scientific literature
on deprescribing

Proprietary
CDSS

No

Depres-
cribing
recommen-
dations

No No No
Drugs
Comorbidities
Measure of frailty

Alerts
Textual
report

García-Caballero et al. (2018) STOPP [111]
Excel
spreadsheet

No No No No No Drug Alerts

Verdoorn et al. (2018)
BEERS [116]
STOPP&START [111]

Proprietary
CDSS

No No No No No
Drug
Patient conditions

Alerts

Johansson-Pajala et al. (2018)
BEERS [115]
STOPP&START [111]

Proprietary
CDSS

No No No No No
Drug
Symptom assessments

Alerts
Quality
report

Niehoff et al. (2016)

BEERS [115]
STOPP [111]
Inappropriate
renal dosing [111]

Specialised
software

No

Depres-
cribing
recommen-
dations
Dose
adjustment

No No No
Drugs
Age
Chronic conditions

Alerts

28

2.2.
R

elated
W

ork

Document Guideline
Knowledge
representation
type

Shareable
knowledge
base

Alternative
drug recom-
mendation

Conflict
manage-
ment

Drug
scheduling
recom-
mendation

Pharmaco-
kinetics
parameters

Input Output

Alagiakrishnan et al. (2016)
BEERS [115]
Cockcroft–Gault
formula

Rule
based

No No No No No Drug Alerts

Sönnichsen et al. (2016)

NICE-EBMG
EU(7) PIMs list[129]
SFINX
RENBASE

Rule
based

No

Depres-
cribing
recommen-
dations

No No No

Diagnoses
Drugs
Symptoms
Biometric measurements
Lab values

Alerts
Textual
report

Ghibelli et al. (2013)
BEERS [55]
ACB scale [22]

Proprietary
CDSS

No No No No No Drugs
Textual
report

Table 2.1: Technical description and features of the CDSSs developed for PIMs

29

2. CONTEXT

Afterwards, we will conduct a comparative analysis of the approaches employed
in these studies with those employed in this research. We conducted the qualitative
analysis in three main groups: (1) how PIMs were detected; (2) suggestion
of alternative drugs; and (3) if another approach such as drug scheduling
recommendation was adopted.

2.2.3.1 Clinical decision support systems do detect PIM

The first column corresponds to the study’s reference, sorted according to the
publication date. The studies show that the research of developing computational
mechanisms to tackle Potentially Inappropriate Medications (PIMs) is still an issue
that has been demanding efforts to be solved. The studies were usually applied to
patients aged 65 years or older. However, in some studies (e.g., [7, 76, 146]) only
patients over 75 years were considered. The general aim of those studies consisted
in addressing Potentially Inappropriate Medications (PIMs). These studies used a
variety of approaches to address Potentially Inappropriate Medications (PIMs) in a
different context. Some of them were applied to real scenarios and databases, such
as for community pharmacies [155], primary care [132, 7], general practitioners in
the ambulatory setting [56], hospitals [95, 146, 58] and nursing homes [76, 57].

In the second column, we list the guidelines used for each study. Here, [56] and [101]
focused on one guideline, while all the others used several simultaneously. The
most used PIMs guidelines in the papers were the BEERS Criteria [117, 116, 115]
and the STOPP & START [111] approach. However, some studies did not
consider the whole guidelines. For example, [56] used only three drug classes
(Benzodiazepines, Proton Pump Inhibitors, and Non-steroidal anti-inflammatories)
of the Beers Criteria guideline, [132] omitted the A1 STOPP criterion, [155]
incorporated just some selected clinical rules, and [146] defined a minimum
number of prescribed drugs as inclusion criteria which might exclude patients
affected by only one PIMs drug. In addition to guidelines, some studies also used
specific formulas to detect, for example, inappropriate renal dosing [105] such as
Cockcroft–Gault [7] or particular systems such as RENBASE [146].

In the third and fourth column (Knowledge representation type|Shareable knowl-
edge base), we checked how the knowledge was represented and if the knowledge
base used by these studies was shareable and which architecture was used. The
knowledge base is composed of the rules extracted from the guidelines. For
example, the rules extracted from the Beers Criteria can be translated into a logical

30

2.2. Related Work

form and stored in a knowledge base. There were studies [56, 132, 95, 155, 7, 58]
where the rules had been developed in proprietary CDSS and others [57, 105, 146]
where the rules were programmed in specialised software. In those studies, the
knowledge base was not shareable, therefore, not allowing it to be reused or
integrated with other sources of knowledge. There was, however, one approach
[101] where the knowledge base was shareable. In [101], a framework to formalise
rules in PIMs was proposed and an ontology was developed to formalise the rules.
The framework is based on three main clinical elements: prescriptions, disease
and observations. For example, rules from the guideline STOPP & START [111]
were formalised.

In the Input column, we analysed which kind of data the approaches handled
to detect the interactions. Three studies [57, 7, 58] only assessed the drug input.
Notwithstanding, most studies considered other kinds of relevant data such as
the patient condition, diseases and laboratory exams, which are vital to cover all
the guideline requirements.

In the Output column, we evaluated the outcomes provided by each CDSS. The
most common output was alerts to notify health professionals about the detection
of drug-related problems. In addition, [132, 95, 146, 58] provided textual reports
that consist of a descriptive report of the findings.

2.2.3.2 Drug recommendations

The prescription of potentially inappropriate medications may increase the risk
of harm. Therefore, AGS Health in Aging Foundation [73] and Hanlon et al.
(2015) [63] proposed a list of evidence-based alternative medication treatments to
avoid problems that might be caused by inappropriate drugs, along with some
non-pharmacological approaches when appropriate. These lists of alternative
drugs could be incorporated into a CDSS in order to suggest safe alternatives
when an inappropriate drug is prescribed.

The Alternative drug recommendation column analysed if the proposed CDSSs
suggested alternative drugs in case of drug problems, to understand how the
rules were designed and in which situations the CDSS provided the alternatives.
In this regard, no approach recommended alternative drugs. Nevertheless,
three approaches [95, 105, 146] provide deprescribing recommendations and
[105] additionally provided dose adjustment advice. These studies did not
suggest alternative drugs for drugs classified as PIMs. Furthermore, when

31

2. CONTEXT

providing alternatives or dealing with multiple knowledge bases or guidelines,
it was checked if the CDSS could detect and solve inconsistencies. For example,
inconsistencies between drug recommendations, such as when one guideline
recommends a drug while another recommends avoiding the same drug. None of
the listed studies considered this feature.

2.2.3.3 Drug scheduling

Drug interactions can be co-related with the time that drugs are administered,
so-called Time-dependent Drug–Drug Interaction. The coadministration of drugs
that have interaction can decrease absorption or affect the metabolism of one
or both of them. Consequently, some strategies exist to avoid or minimise the
side effects of this interaction by defining appropriate administration times and
staggered dosing.

Consider administering drugs at distinct times may minimise the interaction
[4]. The changes in pharmacokinetic parameters such as absorption, distribution,
metabolism, and elimination can be eliminated when properly scheduling the
time to peak drug concentration in serum TMAX between drugs that interact[164].
Nagai et al. (2022) [102] affirms that "to take advantage of its benefits in clinical
practice requires full comprehension of this strategy on the part of both prescriber
and patient".

Some studies have proposed a rescheduling approach to tackle drug interactions,
such as [153] and [69]. However, they do not automate the process of minimising
the interaction by considering the TMAX. According to Van der Sijs et al. (2009)
[153], the approach was considered inefficient and error-prone in suggesting
interaction interventions.

Therefore, we checked if the studies listed in the bibliometric analysis proposed
an alternative approach in case of drug interaction without alternative drugs,
such as the drug rescheduling recommendation. Moreover, we analysed which
parameters were considered in this approach, such as Pharmacokinetics. However,
none of the listed studies considered an alternative approach to tackle PIMs.

2.2.3.4 Summary of the analysis

The qualitative analysis we did on relevant existing approaches provides us
with insights on what is currently available for tackling PIMs as well as current

32

2.2. Related Work

limitations. Regarding the guidelines, the majority of the studies used at least
one of the widely used guidelines (Beers Criteria and/or STOPP&START), which
highlights that these guidelines are universally considered standards for listing
PIMs. However, the lack of an approach that provides a shareable knowledge base
indicates that sharing knowledge between CDSS is still a problem that needs to be
addressed, as only [60] considered this to some extent. System interoperability is
crucial in healthcare contexts because many other systems and tools are already
in place in this domain. Not addressing this from the beginning will limit the
applicability and adaptability of any new developed solution in practice.

Several studies used the same PIMs guideline, and thereby, a shareable knowledge
base could improve the quality and facilitate the comparison among approaches.
This highlights the importance of organisations (such as AGS) distributing their
guidelines in a machine-readable/standardised form that would facilitate the
use and comparison among approaches. Detecting a drug-related problem is the
first step to help health professionals avoid prescribing PIMs. The deprescribing
recommendations and dose adjustment that some studies proposed are strategies
that already help health professionals to minimise drug-related problems.

Providing alternative drug recommendations, which can be assessed by a conflict
management tool to avoid drug-related problems, is a further step towards
supporting them in taking better decisions. Moreover, conflict management
tools can provide essential support for health professionals to choose a drug
without drug-related problems when alternative drugs are suggested or when
multiple guidelines are used simultaneously. In several approaches, more than
one guideline was used. Hence, a conflict management tool could detect noncon-
formity between rules. Nonetheless, these studies proposed neither alternative
drug recommendations nor conflict management tools. In the case of interacting
drugs that do not have suitable alternatives and need to be prescribed, we can
attempt to minimise the interaction between them by rescheduling and considering
pharmacokinetics parameters. This seems to be a novel approach to deal with
PIMs as no other study and corresponding tool currently exists that does this.

Finally, the relevance of the approaches listed and discussed (cf. Table 2.1) is
clear in the context of our work, and we will revisit them when we compare our
proposed framework with theirs in Section 8.3.

33

2. CONTEXT

2.3 Summary

In this chapter, we introduced the subjects of our study which are related to
tackling PIMs. We described the concepts of a CDSS, knowledge representation
and reasoning, and SAT/SMT solvers at a high-level. These are the main
approaches that our framework will adopt, and we go into further details when
using them throughout the thesis. Moreover, we introduce general concepts about
drug interactions and, more specifically, inappropriate medications to motivate
the requirements we should consider when building our own version of a CDSS
framework for tackling PIMs.

We described the state-of-the-art for tackling PIMs, and presented related work
that serves as the foundation for our research. As far as we are aware, no research
proposes a framework to comprehensively address PIMs. For this reason, we will
adapt several approaches that have been discussed in this chapter when building
our framework to formally check and solve inappropriate medications.

34

3CHAPTER THREE

CDSS FRAMEWORK
WORKFLOW

In this chapter, we provide a comprehensive description of the workflow and
underlying concepts of the proposed Clinical Decision Support System (CDSS)
framework to detect and tackle PIMs. Here, our purpose is to give a broad
overview of the CDSS, the underlying workflow, the key computer science-
based techniques that form the CDSS and how they are integrated. The main
contribution of the presented CDSS lies in the inference engines incorporating
multiple reasoning approaches, which are presented to perform specific tasks to
tackle PIMs. By reflecting on the architectural choices, we discuss how the same
approach can be applied to tackle other medical issues.

3.1 CDSS framework

The main focus of our research concerns knowledge representation and reasoning
of PIM constraints. To this end, we develop a CDSS framework which integrates
multiple reasoning approaches with an underlying formal and shareable knowl-
edge base. The framework scheme shown in Figure 3.1 is based on a so-called
knowledge CDSS[13], a known approach used to combine user input/output, a
knowledge base, and an inference engine.

The process starts when the user (e.g., health professional) enters data into the
CDSS. The data consists of patient parameters such as age and gender, clinical

35

3. CDSS FRAMEWORK WORKFLOW

conditions (including lab results, diseases and syndromes) and prescription. The
data is integrated into the CDSS by the inference engine which consists of three
components. The first is the Beers Criteria Reasoner, which aims to detect and
classify PIMs. The second is the Drug Alternative Solver, which aims to solve PIMs
by finding alternative drugs. Finally, the Rescheduling Solver aims to minimise
the interaction between drugs and determine when drugs that interact should be
prescribed. These components interact with a knowledge base formalising the
Beers Criteria, alternative drugs and the time to peak drug concentration in serum,
also known as TMAX.

Figure 3.1: Overview of our CDSS

The CDSS provides different alerts/recommendations (outputs) for a given patient
prescription (input). When no interaction is found in the prescription by the
Beers Criteria Reasoner, then the CDSS returns a valid prescription message.
However, when one or more PIMs are found, the Drug Alternative Solver searches
for alternative drug solutions that attempt to solve the detected PIMs, returning
the prescription with the found alternative drugs. If there are no alternative drugs
to resolve the original interaction(s), then the Rescheduling Solver searches for
ways in which rescheduling the drugs can maximise the distance between TMAX
to minimise the interaction. Finally, when solvers do not find a solution, then the
CDSS returns an Unsat prescription, which means that the CDSS was not able to
solve the PIMs or find a better alternative.

The framework scheme demonstrates at an abstract level the main features of the
CDSS and how it contributes to supporting health professionals in tackling PIMs

36

3.1. CDSS framework

and taking decisions for improving the drug prescription. In the following sections,
we will briefly describe each component of the framework scheme, starting with
the knowledge base, which interacts with all the inference engines and is the main
source of knowledge of the CDSS. Later chapters go into further details for all the
elements of our CDSS.

3.1.1 Knowledge base - the Beers Criteria ontology

In order to support medical decision-making, it is essential to have a knowledge
source for constructing a CDSS. Such a source can typically be acquired from
a variety of resources, including drug databases (e.g. Drugbank [159]), liter-
ature, clinical practice, or patient-centred evidence. To ensure readability for
both humans and computers and provide reliable decision-making information,
information can be organised and formalised into an ontology [148].

Screening and early detection of PIMs improve quality-based medical care. Several
guidelines and national evidence-based screening tools are available, including the
Beers Criteria from the US and STOPP and EU(7)- PIM from Europe [70]. The Beers
Criteria has become one of the most widely used and reliable tools by clinicians,
educators, researchers, healthcare administrators, and regulators to identify PIM
use in elderly patients [141, 117]. It aims to improve geriatric care by reducing
exposure to PIMs [6]. Given the global utilization of the Beers Criteria and its
specific adoption by the hospital database that we will conduct our evaluation, we
have opted for this guideline for this research.

At a high level, our knowledge base comprises the Beers Criteria ontology,
which gathers and formalises information on the Beers Criteria from journals
and translates it into a formal representation (e.g., taxonomy, logical axioms and
inference rules). The Beers Criteria consist of a list of PIMs that older adults in
specific circumstances should avoid and can be seen as a source of knowledge for
defining interactions and drug alternatives targeting specifically the elderly.

The Beers Criteria is not available in a formal representation that reasoners can
interpret. To obtain a formal representation, we need a taxonomy which is best
captured as a hierarchy with distinct groups of medications according to different
criteria, such as drug-disease or drug-syndrome, drug-drug interactions, or drugs
to be used with caution. In addition, we need logical axioms and inference rules
to define the classification and groups associated with a drug. No formalisation

37

3. CDSS FRAMEWORK WORKFLOW

of Beers Criteria can be found in the literature, and this thesis hence proposes a
novel ontology for it.

In order to suggest alternative drugs to those that are classified as PIM, we follow
the suggestions from [73, 63] and formalise these as ontology inference rules and
use them to capture the constraints that each drug has to satisfy to be considered
an alternative. The alternative drugs were added to the same ontology of the Beers
Criteria as they share a similar taxonomy and parameters. If the alternative drugs
would have a different taxonomy and parameters or the number of guidelines
were expanded, then building a specific taxonomy for alternative drugs would
be appropriate. Finally, a few additional parameters are added for each drug
to support the rescheduling process. With all the required knowledge suitably
formalised, the ontology makes it straightforward to detect PIMs, find alternative
drugs if applicable and provide drug parameters for minimising interactions by
rescheduling drugs if possible.

3.1.1.1 PIMs formalisation

The Beers Criteria are commonly captured in a table with entries in natural
language (this will be described in detail in Chapter 4, see Figure 4.4 for an
example). The first step in the formalisation of the Beers Criteria list consists of
converting the information from this table into an ontology. This process happens
by identifying the elements that the ontology has to consider and the taxonomy
to build the ontology hierarchy. To illustrate the process, Figure 3.2 shows a
hypothetical formal representation of DrugA that is classified as B.PIM based on
the Beers Criteria.

Figure 3.2: A B.PIM drug example

A taxonomy consists of a hierarchy of classes and subclasses. Here, there are two
main classes: Beers Criteria and Drugs. Drug A belongs to the Drug category X,
which in turn belongs to the main class Drugs. The arrow subClass Of indicates

38

3.1. CDSS framework

that Drug A belongs to class B.PIM, which means that patient parameters satisfy
an inference rule, as follows:

∀d,p,prDrugA(d)∧Patient(p)∧Prescription(pr) :

hasPrescription(p, pr)∧hasDrug(pr,d)∧hasAge(p,v)∧ v ≥ 65 ⇒ B.PIM(d)

The above inference rule can be interpreted as follows: for any drug d of the class
drug A, and an arbitrary patient p and prescription pr such that pr contains d, and
p’s age is greater than or equal to 65, then the drug d is a B.PIM which belongs to
the class Beers Criteria.

The formalisation of all the PIMs is detailed in Chapter 4.1.7, which includes the
definition of classes, properties and formalised rules and the taxonomy of the
underlying ontology.

3.1.1.2 Alternative drugs

The alternative drugs consist of drugs that can be switched with drugs classified
as PIMs in order to minimise the risks for the patient. To formalise the alternative
drugs, rules were defined according to specific criteria for each drug. For the
definition of alternative drugs, a taxonomy was defined considering the drug
hierarchy. For example, Figure 3.3 illustrates the main class Alternative drugs,
which is composed of the drug class Alt category X and the two alternative drug
classes Alternative 1 and Alternative 2.

Figure 3.3: Alternative drug example

These two drugs are considered alternatives for Drug A, linked by the element is
alternative of. Therefore the following rule was defined to state this condition.

39

3. CDSS FRAMEWORK WORKFLOW

∀p,d,a,prPatient(p)∧Drug(d)∧DrugA(d)∧Prescription(pr)∃altDAlt_category_X(altD) :

hasPrescription(p, pr)∧hasDrug(pr,d)∧hasAge(p,v)∧ v ≥ 65 ⇒ isAlternativeoF(altD,d)

The rule can be read as follows: for arbitrary patient p, drug d and prescriptions
pr, if the following statements are satisfied:

• d is a Drug of the class Drug A

• patient p has the prescription pr

• prescription pr contains drug d

• patient p has age value v greater than or equal to 65, and

• there exists an alternative category X altD for the drug d.

Then altD is an alternative for drug d.

3.1.1.3 Drug parameter formalisation for rescheduling

The rescheduling process uses some drug parameters such as the TMAX to define
the constraints. Therefore, these parameters are included in the Beers Criteria
ontology for each drug by assigning elements and values. Figure 3.4 illustrates an
example where the element hasTmax is used to associate Drug A with the integer
value 60, indicating that it takes 60 minutes for the drug to reach its maximum
concentration in the blood following administration to a patient.

Figure 3.4: Adding Cmax value to class drug

40

3.1. CDSS framework

The TMAX is used as a parameter by the rescheduling solver to define, if possible,
a safe distance between drugs that have an undesired interaction. Hence, the
rescheduling solver aims to maximise the distance between the TMAX values and
consequently minimise the interaction.

The main goal of the solver is to minimise the interactions between drugs that
have an undesired side effect. Hence, the rescheduling solver aim is to maximise
the distance between the TMAX values and consequently minimise the interaction.
Moreover, other parameters such as fixed administration time, hospital routines
and patient preferences are also considered by the solver.

3.1.2 Inference engines

As mentioned earlier, the proposed CDSS inference engine is composed of three
core elements: the Beers Criteria reasoner, the Drug alternative Solver and the
Rescheduling Solver (cf. Figure 3.1). Within the engine, the patient data (input) is
integrated with the knowledge available in the ontology to execute the reasoning
required to detect existing PIMs, to find alternative drugs (if available), and
to suggest alternative prescriptions (without PIMs or with a minimal level of
interaction between PIMs respectively).

Each element performs a specific task. The Beers Criteria reasoner aims to
detect PIMs, the Drug alternative Solver aims to find alternative drugs that can
be switched with drugs classified as PIMs and finally, the Rescheduling Solver
aims to minimise the interaction between drugs. The order of execution of the
framework’s sequence can be modified according to specific circumstances, similar
to how the process can be halted at any point in any of the inference engines if a
solution is discovered or if a solution is deemed impossible. In other words, the
framework’s execution sequence is flexible and adaptable to changing conditions.

3.1.2.1 Beers Criteria reasoner

The Beers Criteria reasoner aims to identify PIMs. After patient records and
prescriptions are integrated into the ontology, the reasoner infers the presence of
PIMs in the given patient’s prescription. Once the ontology reasoning is complete,
the resulting output is further analysed to verify whether any PIMs were found
or not. If no PIMs were detected, the process concludes by sending a message
informing that it is a valid prescription. However, if there is an interaction between

41

3. CDSS FRAMEWORK WORKFLOW

any of the prescribed drugs, the drug alternative solver is triggered to explore the
possibility of finding substitute drugs for the detected PIMs.

3.1.2.2 Drug alternative solver

The purpose of the Drug Alternative Solver is to address drug interactions by
identifying alternatives that can replace the prescribed drugs. This means that
if there is a drug classified as PIMs, then the solver tries to find an alternative
drug that does not have interaction with another prescribed drug. SMT solvers are
considered very efficient in solving constraint problems such as drug interactions.
They aim to automate and check the satisfiability of the defined constraints that
have to be satisfied simultaneously. All the drug constraints can be easily expressed
in the SMT model. For example, in suggesting alternative drugs, the solver
checks if drugs that are considered alternatives do not have interaction with
other prescribed drugs. Therefore, the solver aims to find a prescription without
interaction among drugs, taking into account the alternative drugs.

Patient data, prescription, interactions and alternative drugs are inserted into the
SMT model [40]. The solver considers a result satisfiable if there are no drugs
classified as PIMs or drug interactions. In case the solver can not find a satisfiable
result be satisfied, the conflict drugs (due to interaction or PIMs)are identified
and extracted. These unsatisfiable drugs are then forwarded to the rescheduling
inference module for further analysis and processing.

3.1.2.3 Rescheduling Solver

SMT solvers are considered very efficient in solving optimisation problems. In
addition to determining satisfiability, optimisation objectives such as maximisation
and minimisation can be defined. Hence, the solver aims to find a solution
that satisfies all the problem’s constraints and improves the objective function.
The objective of the rescheduling inference engine is to adjust the time at
which interacting drugs are administered, taking into account the maximum
concentration of the drug (CMAX) in order to reduce the likelihood (and to
some extent intensity) of interactions. Besides the CMAX parameter, additional
constraints are also taken into account, for example, rules were defined based on
hospital routines to determine the drug schedule constraints, such as meal times.
The solver aims to adjust the administration times to increase the distance between
drug CMAX points, thereby minimising interaction likelihood.

42

3.2. Clinical Decision Support System (CDSS) workflow

3.2 Clinical Decision Support System (CDSS)

workflow

The CDSS workflow consists of a sequence of activities integrating the framework
elements as illustrated in Figure 3.5. There are two main swimlanes, one to indicate
the Input/Output and another to capture the clinical decision support system. The
Input/Output swimlane corresponds to the activities carried out outside the CDSS,
such as sending requests and receiving results. The CDSS swimlane contains the
knowledge base swimlane (where the Beers Criteria ontology is defined) and the
inference engines swimlane, which makes use of the Beers Criteria reasoner and
the other solvers.

The process begins when the Input/Output swimlane sends a request to the
knowledge base, which contains information about the patient and their pre-
scription. These data are then integrated with the ontology and processed using
the ontology reasoner in the Beers Criteria reasoner swimlane, which detects
drugs categorised as PIMs and determines the type of interaction. Following
this, the Beers Criteria reasoner verifies if any interactions were identified. If
no interactions are found, a message is sent to the Input/Output to indicate no
interactions, and the process ends. However, if interactions are found, a message
is sent to the Input/Output with the drug interaction list and type. Moreover, the
knowledge base is queried for potential alternative drugs. The query results are
sent to the drug alternative solver swimlane, where it is checked if any alternatives
are available. The prescription is sent to the rescheduling solver swimlane if there
are no alternative drugs. In contrast, if alternative drugs are available, a message
with the alternative drugs is sent to the Input/Output, and the prescription,

interactions, and alternative drugs are inserted into the SMT solver. The alternative
inference is then executed to assess if the alternative drugs meet all the constraints,
such as interaction with other prescribed drugs, in order to address all the PIMs
issues. The solver then checks whether a prescription without PIMs can be
identified. If prescriptions are found, they are sent to the Input/Output swimlane.
However, if a prescription cannot be found, it is forwarded to the rescheduling
solver.

The rescheduling swimlane receives a prescription and selects drugs that can be
rescheduled. Only drugs that interact with other drugs are considered, as drugs
which have interaction with other parameters such as age, gender, or disease

43

3. CDSS FRAMEWORK WORKFLOW

Figure 3.5: CDSS workflow

44

3.3. Tackling other medical issues

do not benefit from rescheduling. Once the drugs are selected, the swimlane
retrieves the CMAX value from the knowledge base. The drugs, administration
time, CMAX value, and additional constraints, such as fixed administration time
or meal times, are then converted into an SMT model. Next, the rescheduling
inference is executed to maximise the distance between drugs’ TMAX. If a valid
rescheduling model is found, it is selected from the inference result and sent to
the Input/Output swimlane. However, if a rescheduling model cannot be found,
a message indicating that the prescription is Unsat is sent to the Input/Output
swimlane. To clarify the CDSS outputs, Table 3.1 lists them together with their
meaning.

Output Description

Prescription without
interaction

No constraints were found, the prescription is satisfi-
able

Drug interaction list List of drugs and their interactions

Drug alternative list List of drugs and their alternatives

Alternative prescrip-
tions

Prescriptions listing alternative drugs

Drugs scheduling Drugs and administration times

Prescription Unsat 1 When the inference engine was not able to solve drug
interaction constraints

Table 3.1: Outputs from the CDSS framework

The outputs generated by the CDSS are examples of messages that can be
transmitted to external sources. In addition to the messages that have been pre-
defined, the CDSS has the capability to extract supplementary information from
its knowledge base as needed. The strength of recommendation, the quality of
evidence and the side effects of the interactions are examples of information that
could be extracted. This information can be customised when selected in the
knowledge base for the specific needs, avoiding alert fatigue.

3.3 Tackling other medical issues

The proposed CDSS was designed to tackle PIMs problems. However, this
same CDSS could be adapted to tackle other medical issues. To do this we

45

3. CDSS FRAMEWORK WORKFLOW

would, nonetheless, have to consider other ontologies as these would form the
basis to encode knowledge and reasoning for different problems. For example,
if we consider an ontology with information on diagnose rules the inference
engines could be used to support patient diagnosis. Additionally, (clinical or
nursing) guidelines could also be formalised in an ontology to support the
treatment definition and/or searching for inconsistencies between guidelines
and/or medications used.

The CDSS can be used either with all the elements that compose it or as a
stand-alone solution comprising of individual elements of interest. Moreover,
for employing the proposed CDSS for other medical issues, some changes might
be necessary to fit the requirements of the new medical context. Hence, we propose
a framework that can be adapted and expanded to tackle different medical issues.

3.4 Summary

This chapter shows the architecture of the proposed CDSS which combines
multiple approaches for solving or minimising drug interaction problems and
consists of an ontology (knowledge base) and a set of inference engines used as
required. Additionally, we detail the interaction between the CDSS and external
input and outputs, and outline how it can be applied to tackle other medical issues.

The knowledge base underlying our CDSS will be presented incrementally and
each inference engine will be further detailed in accordance to Figure 3.5. Details
of the Beers Criteria ontology and its rules can be found in Chapter 4. Chapter
5 describes how the alternative drug rules were added to the ontology, and the
constraints that each alternative has to satisfy to be chosen as a valid alternative
for the original patient prescription. Chapter 6 focuses on medication rescheduling
making use of drug parameters (such as TMAX) and the SMT solver. The
development and evaluation of the framework is covered in later chapters.

46

4CHAPTER FOUR

ONTOLOGY FOR DRUG
INTERACTIONS

Before we can develop a Clinical Decision Support System (CDSS) specifically
for managing medications for the elderly, we need to equip such a CDSS with
an adequate knowledge base over PIMs. This chapter presents and defines an
ontology to capture Beers Criteria content. Concretely, we focus and expand on
the knowledge acquisition, requirements elicitation and architecture used to build
the ontology. Moreover, we define the semantic rules for PIMs, aiming to detect
them in patient prescriptions.

4.1 Beers Criteria Ontology

The main source of knowledge of the CDSS is a new ontology which captures
the Beers Criteria. This ontology includes all information on interactions, rec-
ommendations, side effects and alternative drugs related to PIMs, which will be
required before making recommendations concerning prescriptions for the elderly.
To facilitate personalised recommendations, the CDSS combines not only the
ontology rules but also patient-specific information. This means that the ontology
also assists healthcare providers in suggesting additional steps when PIMs are
identified.

The Beers Criteria is composed of a list of Potentially Inappropriate Medication Use
in Older Adults. The Beers Criteria Ontology aims to embrace all those listed drugs

47

4. ONTOLOGY FOR DRUG INTERACTIONS

and create rules to detect drug interactions in patient prescriptions by reasoning
over the ontology rules and patient data. The construction of the ontology went
through a series of steps. The first step concerned knowledge acquisition, in which
the Beers Criteria were analysed to identify how the PIMs rules were composed
and structured, which variables were used and which additional information could
be extracted besides the rules. In the second step, the result of the knowledge
acquisition was scrutinised to determine the requirements to build the ontology,
for example, how the PIMs should be defined. Finally, all the necessary elements
were put together to build the ontology and define the PIMs rules based on the
requirements.

In Section 2.1.2.1, we provided an overview explanation of the concepts, definitions
and components that make up the ontology. Ontologies usually consist of
concepts (classes) organised hierarchically in accordance to their relationships [25].
Taxonomies can be part of an ontology as they categorize terms hierarchically
based on generalization relationships. However, different from a taxonomy
that only allows a parent-child relationship, an ontology enables the formal
and structured representation of concepts as well as reasoning and inference
capabilities.

Figure 4.1: Ontology’s individuals .

In order to make it easier to comprehend the ontology-building process and the
logic used to define its components, we will explain some fundamental concepts
relating to individuals, classes, and properties in the upcoming example. Figure 4.1

48

4.1. Beers Criteria Ontology

illustrates different elements of the ontology shown as coloured lozenges. In this
example, the individual patient Tom (blue) is represented as taking drugs X, Y, and
Z (green), as well as having diseases A and B (yellow). The arrows depicted in the
figure symbolise the properties of these individuals, which are binary relationships
between elements (e.g., an individual and the drugs he or she takes, an individual
and the diseases he or she has, etc). In Figure 4.1, we use different colours to
highlight the difference between the kinds of individuals in the ontology, and
clustered them according to their domain. In an ontology, these clusters are known
as classes, where each class can contain a set of individuals.

Following on from the previous example, Figure 4.2 shows the three different
classes of individuals: Patient (blue), Disease (yellow) and Drugs (green).

Figure 4.2: Individuals clustered in classes.

Classes can be arranged in a hierarchical model with superclasses and subclasses,
also known as a taxonomy. For example, in the class Drugs, there are three
subclasses, representing three sets {Y, Z}, {X, Q, T, W, K} and {W, K}. The classes {Y,
Z} and {X, Q, T, W, K} are subclasses of the class Drugs, and {W, K} is a subclass of
class {X, Q, T, W, K}. Therefore an individual can belong to several classes, as W and
K belong to three. These drug classes can represent, for example, drug categories
and therefore have to be named, as shown in Figure 4.3 with the drug classes A, B
and C. For instance, let us consider that class A represents the individuals {X, Q, T,
W, K}, class C {W, K} and class B {Y, Z} .

The definition of the individuals, classes, hierarchy and relations between elements

49

4. ONTOLOGY FOR DRUG INTERACTIONS

is a crucial process to build the Beers Criteria ontology knowledge base for the
CDSS to detect incorrect prescribing for elderly patients. Based on the ontology
elements, for example, inference rules can be defined to determine the detection
of PIMs in patient prescriptions.

Figure 4.3 expands the previous example with some basic ontology elements of
the Beers Criteria. In addition to the patient’s age, there are other reasons a drug
may be classified as PIMs, such as, due to disease, clinical conditions or interaction
between drugs. In the example shown, a Patient has a Disease and/or has done
an Exam. Moreover, the Patient also has a Prescription which has the drugs classes
A,C and B. Notice that C is a subclass of A. A and C have an interaction with B
and C with a Disease. Moreover, A,C and B have interaction with Patient Age and
B also has interaction with a clinical condition detected in a Exam.

Figure 4.3: Ontology classes and relations.

In Example 4.3, we state that there are interactions involving drugs, age, exam and
disease. The ontology asserts if an interaction exists by the definition of inference
rules. For example, DrugA has interaction with DrugB, hence, an inference rule
between these two drugs can be defined in the logical expression 4.1.

∀p,pr,da,db Patient(p)∧Prescription(pr)∧hasPrescription(p, pr)

∧DrugA(da)∧DrugB(db)∧hasDrug(pr,da)

∧hasDrug(pr,db)

⇒ hasInteractionWith(da,db) (4.1)

50

4.1. Beers Criteria Ontology

This logical expression states that for any patient p, prescription pr, DrugA da,
and DrugB db, if the patient has the prescription, and both instances of DrugA
and DrugB are included in the prescription, then da has an interaction with db.
In other words, the expression implies that if a patient has a prescription that
includes both an instance of DrugA and an instance of DrugB, then there will be
an interaction between the two drugs. It holds true for all possible scenarios where
the conditions in the expression are met.

This section provided a brief idea about the ontology aims and the logic of defining
the ontology elements. To build the Beers Criteria ontology, several elements still
have to be defined to create the necessary rules to detect PIMs. In the next section,
we explain how the ontology elements were extracted from the Beers Criteria list.

4.1.1 Knowledge Acquisition

The knowledge acquisition to build this ontology was performed on the version
from 2019 of the Beers Criteria [117] list of potentially inappropriate medication
use in older adults. Each PIM in the Beers Criteria list was scrutinised to identify
how it could be formalised and the elements that must be incorporated into the
ontology. For example, classes, object properties and data properties are explained
in detail in the following subsection.

The Beers Criteria are divided into five categories, as mentioned earlier in Section
2.1.5.1. Figure 4.4 shows how PIMs are described in the Beers Criteria for the
category of drugs potentially inappropriate for older adults, which consists
of an interaction between the age (age > 65) and a drug. Recollect that, as
previously explained, we are using the acronym B.PIM for drugs listed in the
Beers Criteria PIM category. In the example of Figure 4.4, Column 1 corresponds
to the list of B.PIM, which can be categorized according to Organ System,
Therapeutic Category or Drug(s) in a taxonomic hierarchy, which in this example
has three levels. The first level corresponds to the therapeutic drug category
Anticholinergics(highlighted in yellow). The second level corresponds to the
drug class First-generation antihistamines (highlighted in green). Finally, the
third level corresponds to the list of drugs that compose the drug class, such as
Brompheniramine and Carbinoxamine. Moreover, this column also details if a
drug is potentially inappropriate only in a specific circumstance. For example,
Diphenhydramine is potentially inappropriate only when the administration route

51

4. ONTOLOGY FOR DRUG INTERACTIONS

1 is oral(highlighted in pink).

Figure 4.4: The Beers Criteria Table.

Column 2 (Rationale) provides information about why the interaction happens,
what side effects the interaction may cause for the patient and particular drug
situations. To facilitate the visualisation, we highlight the reason in yellow, the
side effects in pink and the individual circumstances in blue. For example, in
Figure 4.4, the interaction happens due to highly anticholinergic; clearance reduced
with advanced age, and tolerance develops when used as hypnotic. Additional
information is given for the clinician to consider, such as side effects, including
the risk of confusion, dry mouth, constipation, and other anticholinergic effects
or toxicity. Finally, it provides individual circumstance information for using
diphenhydramine in situations such as acute treatment of severe allergic reactions
may be appropriate. Column 3 provides the Recommendation for the B.PIM,
which is avoid in this case, for all listed drugs. Next, Column 4 provides the
Quality of evidence of the B.PIM, which can be High, Moderate and Low and finally,
Column 5 provides the Strength of Recommendation, which can be either Strong
or Weak.

This section clarified how knowledge is obtained from the Beers Criteria. Based
on the information gathered from the knowledge acquisition, we will detail the
requirements that were defined to consider all the PIMs rules in the next section.

4.1.2 Construction of ontology’s requirements

The knowledge acquisition elucidated that the Beers Criteria comprises miscella-
neous interaction rules, depending on the interaction variables (e.g. drug dose,
age, disease, lab exam results and gender). Therefore, the following competency

1The administration route is categorized based on the location where the drug is applied into
the body, such as oral or intravenous [82].

52

4.1. Beers Criteria Ontology

requirements were pinpointed to ensure that the proposed ontology considers all
the interaction requirements. These requirements were defined after analysing the
rules and details of the Beers Criteria interactions.

An ontology for Beers Criteria needs to consider the following requirements:

1. Formalise interactions between:

1.1 Age-drug

1.2 Age-drug-drug

1.3 Age-drug-drug_length_therapy

1.4 Age-drug-dose

1.5 Age-drug-gender

1.6 Age-drug-disease

1.7 Age-drug-administration route

1.8 Age-drug-clinical conditions

2. Formalise interaction rules among multiple drugs

3. Provide a list of known side-effects of an interaction belonging to one of the
categories listed above.

4. Define multi-language labels

The requirements detail interactions between many variables that can classify
drugs as PIMs. A parameter that is always considered is the patient’s age, as
the Beers Criteria focuses on patients over 65. Although there are interactions
for different year ranges, for example, some drugs are considered PIMs only
for patients older than 75. Moreover, interactions among drugs usually happen
between two drugs. However, for the Beers Criteria, there are cases where drugs
are considered PIMs when an interaction happens among three or more drugs from
the same therapeutic drug groups. Hence, the interaction rules should consider
not only drugs, but therapeutic drug groups and drug classes.

The daily dose amount can be a factor for a drug to be classified as potentially
inappropriate; therefore, the ontology has to consider interactions between age,

53

4. ONTOLOGY FOR DRUG INTERACTIONS

drug and the daily dose amount. Additionally, the drug length of therapy is also a
parameter for PIMs. This means that some drugs are inappropriate when taken for
more than a certain period, for example, some drugs are considered PIMs when
prescribed for more than eight weeks. Furthermore, age and drugs may interact
with gender, disease, and administration route. Finally, clinical conditions related
to kidney function (e.g., the creatinine clearance levels) can affect drug reactions.
Hence, laboratory exams have to be considered in the ontology.

The rationale column from the Beers Criteria table provides additional information,
such as side effects. Therefore, this information has to be incorporated into
the ontology, as it may support clinicians in making decisions. Finally, the last
requirement is about multi-language labels. It is a requirement not directly related
to the Beers Criteria list. Even though the Beers Criteria are published in English,
multi-language labelling allows the ontology to be used in several languages and
hence, to be incorporated in many different countries. For example, the EMR used
to perform the evaluation is in Portuguese; hence, for the ontology to recognise
the Portuguese labels (e.g., drug names), a multi-language label is necessary.

4.1.3 Requirement elicitation

The definition of the ontology’s requirements provides the necessary specifications
the ontology must hold. Moreover, the requirements provide insights about
elements the ontology will have to capture in order to define the PIMs rules.
However, the definition of the PIMs in the Beers Criteria table are not defined
in formal logic. Therefore, to establish requirement elements and relations for
building the ontology, the atomic data semantic triple was employed, consisting
of a subject, predicate and object. Semantic triples can be used in natural language
to extract and represent information from unstructured text. Figure 4.5 shows
an example of a patient takes a medication in a semantic triple. To formalise this
example, the subject was defined as Patient, the predicate as takes and object as
Medication.

Figure 4.5: Basic semantic triple model.

54

4.1. Beers Criteria Ontology

Figure 4.6 illustrates several semantic triples in which a Patient takes Drug A and
suffers from Parkinson’s. Drug A belongs to the Object Drug and has the side
effect Confusion, which belongs to the Object Side Effect. Moreover, Parkinson’s
has as a treatment indication Drug A and belongs to the object Disease.

Figure 4.6: Semantic triple model multiple relations.

Through the utilisation of semantic triples it was possible to identify a range
of distinct classes and properties. Furthermore, semantic triples facilitated the
identification of the taxonomy classes. These elements are the foundation for the
development of the Beers Criteria ontology.

The following sections provide an in-depth explanation of the components
that have been identified for the development of the Beers Criteria ontology.
Throughout these sections, each identified element will be discussed, and its
meaning will be explained in detail in order to provide a clear understanding of
the ontology and how it is composed.

4.1.4 Ontology elements

The development of the Beers Criteria ontology involved establishing a collection
of classes and subclasses, as well as object properties and data properties. The
forthcoming sections will detail each ontology component, outlining its specific

55

4. ONTOLOGY FOR DRUG INTERACTIONS

features and characteristics to thoroughly understand its construction and role in
the ontology.

4.1.4.1 Classes

The main building blocks of an ontology are classes. Classes are groups or
collections of objects that assemble common characteristics, organised in the form
of a hierarchy tree. A set of classes and subclasses build the foundation for the
ontology taxonomy based on Beers Criteria elements. In the list below, we can
find the description of the main ontology classes.

• Beers Criteria: corresponds to the main PIMs class. This class is subdivided
into five Beers Criteria groups and further into several subclasses where each
PIMs rule is defined.

• Quality of Evidence: establishes the level of the PIMs evidence, which can
be High, Low or Moderate.

• Strength of Recommendation: establishes the level of the PIMs recommen-
dation, which can be Weak or Strong.

• Side effect: represents the possible adverse effects of a PIMs.

• Drug Category: defined the drug hierarchy according to the Beers Criteria
which is consistent with for example the AHFS Pharmacologic Therapeutic
Classification2.

• Drug: establishes the main class of all drugs that constitute the ontology.

• Disease: represents the diseases that are related to the Beers Criteria.

• Administration Route: represents all kinds of routes to administer drugs,
such as oral, injection or nasal.

• Exam: represents the exams that are related to the Beers Criteria.

• Gender: defines the Beers Criteria genders.

• Patient: represent the patients instances.
2The AHFS organises drugs based on their pharmacological and therapeutic properties.

56

4.1. Beers Criteria Ontology

• Release Drug: represents how the drug can be released, whether immediate
or Short-acting.

As previously mentioned, classes are organised in a hierarchical taxonomy. For
example, Figure 4.7 shows a sample3 of how it represents the taxonomy for
drugs belonging to the class Central nervous system active drugs. This class
has two subclasses Anti epileptic and Benszodiazepines with their respective
drug classes. Moreover, the drug classes cloBAZam and clonezaPAM are in an
intersection zone, which means that they belong to both subclasses (Anti epileptic
and Benszodiazepines).

Figure 4.7: Visualisation of the drug categories hierarchy tree for central nervous system
active drugs.

Additionally to a class hierarchy, it is possible to define some parameters that
belong to each class. For example, Figure 4.8 defines the Quality of evidence and
the Strength of recommendation of the Interaction class which is a subclass of
B.PIM which in turn is a subclass of Beers Criteria. In this example, the Interaction
class is linked to the Quality of evidence subclass Low by the object property has
quality of evidence and to the Strength of recommendation subclass Strong by the
object property has strength of recommendation.

3P.S.: In the Beers Criteria, it is important to note that there are additional drugs that belong to
the Central nervous system active drugs category that are not depicted in the figure.

57

4. ONTOLOGY FOR DRUG INTERACTIONS

Figure 4.8: Class parameters.

Another relevant feature that has to be defined is the Disjoint Classes rule. The
ontology allows an individual to belong to several classes or a class to be a subclass
of more than one superclass. In an ontology, by default anything that is not
formally prohibited is considered possible. However, in some situations, an
individual or class cannot belong to another class or superclass. For example,
an individual of an administration route Nasal cannot simultaneously be an
individual of the administration route Injection. Therefore, a disjoint class rule
has to be imposed in these cases, not allowing an individual to belong to multiple
classes. Figure 4.9 demonstrates the administration route class and the subclasses
Nasal and Injection that have a property Disjoint with between them. For an
arbitrary individual x, this property can be expressed in logical terms declared in
the Formula (4.2).

(¬Nasal(x)∧ In jection(x))∨ (Nasal(x)∧¬In jection(x)) (4.2)

According to the statement, for any value of x, x is not Nasal, and x is an In jection

or vice versa. Therefore, the ontology would be inconsistent if an individual x

would belong to both classes (Nasal and Injection). The same inconsistency would
arise if there would be a class InjectionNasal simultaneously a subclass of Nasal
and Injection.

4.1.4.2 Data properties

Data properties are the relation between an instance and literal datatype values,
such as integer, Boolean, varchar or date. For example, to define a drug dose, the

58

4.1. Beers Criteria Ontology

Figure 4.9: Disjoint Classes.

data property hasDailydoseValue is used in a drug instance, where a float number
is informed on the property. The items below explain each data property defined
in the ontology based on the requirements to build the Beers Criteria rules.

• hasDailydoseValue: is used to record the total drug dose per day. Its domain
is Drug and range is float;

• hasDate: specifies the exam and prescription date. Its domain is Prescription
and Exam, and range is date;

• hasExamValue: is used to record an exam result. Its domain is Exam, and
range is float;

• hasLenghtDrugTherapy: identifies how long the patient takes a specific
drug during hospitalisation.Its domain is Drug, and range is int;

• hasPatientAgeValue: is used to record the patient’s age. Its domain is Patient,
and range is int;

• hasDrugType: tells the drug type, which can be composed or single. A
composed drug has more than one active ingredient.Its domain is Drug, and
range is char;

• isCriticalPatient: informs the patient criticality level.Its domain is Patient,
and range is char;

• isFirstLineDrug: reports if a drug is regarded as the first line for the
treatment. Its domain is Drug, and range is char.

59

4. ONTOLOGY FOR DRUG INTERACTIONS

For each data property, it is possible to define the domain and the range. For
example, for the data property hasDailydoseValue, the domain is the class Drug,
with means that only drug classes are allowed to be the subject of this data property.
Moreover, the range defines the object of the data property, which means the data
type that can be linked, for example, float, string or date.

4.1.4.3 Object properties

Object properties allow for a relationship between two individuals. In order
to establish this relationship, it is necessary to have a subject, a predicate, and
an object, as illustrated in Figure 4.5. For example, if we want to establish a
relationship between a subject prescription and an object drug, we would use the
predicate hasDrug. The following list provides a detailed explanation of each
object property defined in the ontology.

• hasDisease: is used for to store the patient diseases;

• hasDrug: is used to associate the prescription with the prescribed drugs;

• isDrugOf: is the inverse property of hasDrug. It is used to link prescribed
drugs with a prescription;

• hasExam: informs the patient exams;

• hasGender: is used to record the patient gender;

• hasPrescription: is used to associate the patient to prescriptions;

• hasQualityofEvidence: informs the quality of evidence for a particular
interaction;

• hasRoute: is used to record the administration route of a specific drug;

• hasStrengthofRecommendation: informs the strength of recommendation
for a specific interaction;

• hasTreatmentIndication: is used to store the treatment indication of a
particular drug;

• hasInteractionWith: identifies the drug interactions of a specific drug;

• toRelease: is used to record the drug administration release schema.

60

4.1. Beers Criteria Ontology

Similar to the data property, it is possible to define the domain and range of an
object property. However, the domain and the range are usually classes. For
example, Figure 4.10 shows that the object property hasDisease has the class
Patient as the domain and the class Disease as the codomain/range.

Figure 4.10: Object property parameters.

The object property domain can be defined as declare in Formula 4.3.

∀x∃y : hasDisease(x,y)→ Patient(x) (4.3)

The statement can be read as: "For all x, if there exists a y such that x has disease
y, then x is a Patient" asserting that if there is at least one individual y that is
associated with an individual x through the relationship hasDisease, then x must
be a patient.

The object property range can be defined as declare in Formula 4.4.

∀x∀y : hasDisease(x,y)→ Disease(y) (4.4)

The statement means that: "For all x and y, if x has disease y, then y is a Disease",
asserting that if an individual x is in a relationship hasDisease with an individual y,
then y is a Disease.

Another parameter that can be defined for an object property is the Inverse Of,
which means it operates in the opposite direction. For instance, in Figure 4.10,
we have the objects hasDisease in the arrow from the class Patient to the class
Disease and its Inverse of property in the dotted arrow isDiseaseOf. This means
that when the object hasDisease is instantiated, the object isDiseaseOf will also
be instantiated for the same classes in the opposite direction.

61

4. ONTOLOGY FOR DRUG INTERACTIONS

4.1.4.4 Annotation property

Ontology annotation properties are used to provide additional information about
entities within an ontology. They are used to annotate or describe the entities
and can be used to write a comment or version. It is also possible to create a
new type of annotation. For the Beers Criteria ontology, the annotation properties
Comment describes the reason why the drug is classified as PIMs. Moreover, the
Recommendation details what is suggested in case of PIMs.

The annotation label defines the class names. A class can have more than one label,
for example, the drug Acetaminophen is also known as Paracetamol, hence, this
drug is defined under two labels. Additionally, it is also possible to determine the
label language as displayed in Figure 4.11, which means it can define the drug
name labels in English and Portuguese, for instance, as the database where the
evaluation of the ontology will be performed is in Portuguese.

Figure 4.11: Drug label.

4.1.5 Ontology conceptual model

The outcome of the performed analysis to define the ontology elements is shown
in Figure 4.12. It represents a conceptual model that reflects the main classes and
relationships between elements required to build the ontology based on the Beers
Criteria. The model comprises ellipses that correspond to classes, rectangles that
denote data properties, and arrows that represent object properties.

To facilitate the understanding of the ontology element’s representation, these
were grouped into three main categories represented by blue, green, and red
ellipses. The elements associated with the patient have been placed within the
blue ellipse, while those connected to drugs and prescriptions are located in the
green ellipse. Finally, the red ellipse contains elements linked to the Beers Criteria
class, allowing for a clear and concise representation of the information.

62

4.1. Beers Criteria Ontology

Figure 4.12: Beers conceptual model.

The Patient class is linked with class Gender, and the data property Age through
the object properties has gender and has age. Moreover, the classes Disease, Lab
exam and Prescription are also linked with the Patient by the object’s properties
has disease, has exam and has prescription. For the class Lab exam, the values
of the exam are defined in the data property Exam value linked by the object
property has exam value.

The Prescription class gathers the drugs prescribed for the patient. Hence, this
class is linked to the class Drug with the object property has drug. Furthermore, for
each prescribed drug, the Dose and Length therapy are defined through the data
properties has daily dose value and has length drug therapy. Additionally, the
Administration route and Release drug are defined through the object properties
to release and has route.

A Drug class belongs to at least one Drug category class, linked by the object
property subclass. If a prescribed drug has an interaction with another drug,
for example, it will be part of one or more Beers Criteria subclass. In the Beers
Criteria class, all the PIMs categories are defined in its subclasses. For each PIMs,
the Quality of evidence, Strength of recommendation and Recommendation are

63

4. ONTOLOGY FOR DRUG INTERACTIONS

defined by their respective object properties and equally the Side effect when
available.

The definition of the ontology elements allows constructing inference rules. These
rules aim to assess patient prescription and data in the ontology to assert by the
ontology reasoner if there are drugs classified as PIMs. The following sections will
detail the definition of those rules and how ontology reasoning is performed.

4.1.6 Ontology Reasoning

A reasoner in an ontology can be used in many contexts: to perform inference rules
on ontology assertions to derive additional knowledge or conclusions, as well as to
verify the consistency of the ontology analysing if there are no contradictory facts,
such as classes that were defined as disjoint sharing an individual or subclass.

An ontology can be analysed from two perspectives. From the Terminology
component (TBox) perspective, which constitutes the formal domain of interest
by defining classes and properties; and from the Assertion component (ABox)
perspective [39]. In TBox, the reasoning happens at the class level, whereas in ABox
the reasoning is done directly over individuals [85]. In the following example, we
define what constitutes a Patient and a PolypharmacyPrescription. We define the
statements for Tbox and assert the individuals in Abox.

TBox

Patient(x)⇒ Person(x)∧∃y(hasPrescription(x,y)∧Prescription(y))

PolypharmacyPrescription(y)⇒ Prescription(y)∧

∀5
i, j=1, i ̸= j ∧Drug(zi)∧Drug(z j)∧hasDrug(y,zi)∧hasDrug(y,z j)

Individual definitions

Person(John)∧Prescription(prescription1)∧

hasPrescription(John, prescription1)∧hasDrug(prescription1,Drug1)∧

hasDrug(prescription1,Drug2)∧hasDrug(prescription1,Drug3)∧

hasDrug(prescription1,Drug4)∧hasDrug(prescription1,Drug5)

ABox

64

4.1. Beers Criteria Ontology

John ⇒ Patient

prescription1 ⇒ PolypharmacyPrescription

The T box assertion states that an individual x is a Patient only if x is a Person

and there exists a Prescription y such that x has the prescription y. Additionally,
an individual x is a PolypharmacyPrescription only if x is a Prescription and there
exist at least 5 individual drugs yi, with 1 ≤ i ≤ 5 all distinct (i.e., for any i ̸= j,
yi ̸= y j) such that x has drug yi. These assertions can be used to represent and
reason about the relationships between Patient, Prescription, and Drug. From the
example above, it is possible to denote in the ABox that John is a Patient as he is
an individual Person and has Prescription1. His prescription, Prescription1, is a
PolypharmacyPrescription as it contains at least 5 different prescribed drugs.

4.1.7 Beers Criteria Rules

The ontology inference rules aim to detect PIMs and classify them according to
categories from the Beers Criteria. There are five main categories classes:Potentially
Inappropriate Medication Due to Drug-Disease or Drug-Syndrome Interactions That May
Exacerbate the Disease or Syndrome (DDDS), Potentially Clinically Important Drug-
Drug Interactions (DDI), Beers Criteria Potentially Inappropriate Medications (B.PIM),
Drugs To Be Used With Caution (UWC), and Medications That Should Be Avoided or
Have Their Dosage Reduced With Varying Levels of Kidney Function (VLKF). When a
drug is classified as PIMs, it can belong to one or more of these categories. In the
following sections, we detail each category subclass. All the Beers Criteria rules
are defined in the ontology with Semantic Web Rule Language (SWRL), which
will be further explained in Chapter 7.

4.1.7.1 Potentially Inappropriate Medication Due to Drug-Disease or
Drug-Syndrome Interactions That May Exacerbate the Disease or
Syndrome (DDDS)

The DDDS4 subclass is composed of four main groups of disease classes, Car-
diovascular, Central nervous system, Gastrointestinal and Kidney/Urinary tract
as shown in Figure 4.13. We also define subclasses for each particular disease or
syndrome(e.g. DDDS_Heart failure and DDDS_Syncope). Within each disease

4Refers to Table 3 of the Beers Criteria from the 2019 version.

65

4. ONTOLOGY FOR DRUG INTERACTIONS

Figure 4.13: Drug-Disease or Drug-Syndrome Interactions classes hierarchy.

or syndrome, additional classes were created for a drug or a drug category
class that are PIMs, as illustrated in Figure 4.14. For example, Cilostazol is
considered a potentially inappropriate medication for heart failure. Therefore, the
DDDS_Cilostazol class was created for class DDDS_Heart_failure.

For each drug or drug category class, a rule was defined to classify a drug as
DDDS. The Rule 4.5 is an example of how an inference rule was defined for the
drug Cilostazol 5 . Let p be an arbitrary patient, pr be a prescription, d be a drug,
and a be an integer.

(Patient(p)∧Prescription(pr)∧Cilostazol(d)∧Heart_ f ailure(ti)∧

a ≥ 65∧hasPrescription(p, pr)∧hasPatientAgeValue(p,a)∧

hasTreatmentIndication(p, ti))⇒ DDDS_Cilostazol(d) (4.5)

5Refers to Table 3 -> Cardiovascular ->Heart failure - of the Beers Criteria from the 2019 version.

66

4.1. Beers Criteria Ontology

The statement says: if patient p has a prescription pr for Cilostazol d, has a
diagnosis of heart failure with treatment indication ti, and is aged 65 or older
(a ≥ 65), then Cilostazol d is classified as DDDS_Cilostazol, which is a subclass of
DDDS_Heart_failure.

Figure 4.14: Drug-Disease or Drug-Syndrome Interactions Cardiovascular Rule.

In Figure 4.14, drugs and drugs category subclasses of the class DDDS_Heart
failure are displayed. The figure also shows additional classes and subclasses
related to each DDDS. For example, the class DDDS_Cilostazol is linked to the
side effect Increase Mortality by the object property has side effect. Additionally,
this drug has quality of evidence Low, has strength of recommendation Strong
and has recommendation Avoid. These parameters were formalised as defined in
Rule 4.6.

67

4. ONTOLOGY FOR DRUG INTERACTIONS

∀i,DDDS_Cilostazol(i)→ DDDS_Heart_ f ailure(i)∧

∃QoE ,hasQualityo f Evidence(i,QoE)∧Low(Qoe)∧

∃Se,hasSideE f f ect(i,Se)∧ Increase_mortality(Se)∧

∃SoR,hasStrengtho f Recommendation(i,SoR)∧Strong(SoR)

∃SoR,hasRecommendation(i,r)∧Avoid(r) (4.6)

The rule can be read as: "For all interaction i, if i is DDDS_Cilostazol, then i is also
DDDS_Heart_ f ailure. Moreover i has quality of evidence QoE Low, side effect Se

Increase_mortality, strength of recommendation SoR Strong and recommendation r

to Avoid.

4.1.7.2 Potentially Clinically Important Drug-Drug Interactions (DDI)

The DDI6 class is formed of twenty-one subclasses as illustrated in Figure 4.15.
The subclasses were named according to the drug or drug category that compose
the interaction. For example, the class CNS_Active_Drugs x CNS_Active_Drugs
means an interaction between drugs from the same drug category Central
Nervous System Active Drugs. In comparison, Warfarin x Amiodarone7 means an
interaction between these two drugs. For this interaction, the inference Rule 4.7
was defined, where we assume that p is an arbitrary patient, pr is a prescription,
d1 and d2 are drugs, and a is an integer.

Patient(p)∧Prescription(pr)∧War f arin(d1)∧Amiodarone(d2)∧a ≥ 65

∧hasPrescription(p, pr)∧hasDrug(pr,d1)∧hasDrug(pr,d2)

∧hasPatientAgeValue(p,a)

⇒War f arinXAmiodarone(d1)∧War f arinXAmiodarone(d2)∧

hasInteractionWith(d1,d2)∧hasInteractionWith(d2,d1) (4.7)

The statement asserts that if patient p aged 65 or older has a prescription pr and
the prescription includes both d1 and d2, where d1 is of type Warfarin and d2 is of

6Refers to Table 5 of the Beers Criteria from the 2019 version.
7Refers to Table 5 -> Warfarin x Amiodarone - of the Beers Criteria from the 2019 version.

68

4.1. Beers Criteria Ontology

Figure 4.15: Drug-Drug Interactions classes hierarchy.

type Amiodarone, then d1 and d2 belong to the class WarfarinXAmiodarone, and
there is a bidirectional interaction between these two drugs asserted by the object
property hasInteractionWith.

4.1.7.3 Beers Criteria Potentially Inappropriate Medications (B.PIM) and
Drugs To Be Used With Caution (UWC)

The B.PIM8 class is composed of 45 subclasses, and UWC9 class of 17 subclasses.
For all these classes, inference rules were defined. For example, for the category

8Refers to Table 2 of the Beers Criteria from the 2019 version.
9Refers to Table 4 of the Beers Criteria from the 2019 version.

69

4. ONTOLOGY FOR DRUG INTERACTIONS

drug, Antithrombotics10 the Rule 4.8 was defined.

Patient(p)∧Prescription(pr)∧Dipyridamole(d)∧Oral(r)∧a ≥ 65

∧Short_acting(sa)∧hasPrescription(p, pr)∧hasDrug(pr,d)

∧hasPatientAgeValue(p,a)∧hasRoute(d,r)∧ toRelease(d,sa)

⇒ PIM_Antithrombotics(d) (4.8)

The statement says that for a patient p aged over 65 with a prescription pr with
the medication Dipyridamole d to be administered orally and short acting, the
medication d is potentially inappropriate and classified as PIM_Antithrombotics.

For the classes that belong to the UWC class, rules were also created for each drug.
For example, for drug Rivaroxaban11 was defined the Rule 4.9.

Patient(p)∧Prescription(pr)∧Rivaroxaban(d)

∧Venous_thromboembolism(ti)∧a ≥ 75∧hasPatientAgeValue(p,a)

∧hasTreatmentIndication(p, ti)⇒UWC_Rivaroxaban(d) (4.9)

The formula states that if a patient p is prescribed Rivaroxaban for the treatment of
venous thromboembolism and the patient is 75 years or older, then Rivaroxaban is
classed as UWC_Rivaroxaban(d). As for all drugs classified as inappropriate, for
this UWC, the properties were also defined according to Rule 4.10.

∀iUWC_Rivaroxaban(i)→UWC(i)∧∃QoE∧

∃QoE,hasQualityo f Evidence(i,QoE)∧Moderate(Qoe)∧

∃Se,hasSideE f f ect(i,Se)∧Gastrointestinal_bleeding(Se)∧

∃SoR,hasStrengtho f Recommendation(i,SoR)∧Strong(SoR) (4.10)

10Refers to Table 2 -> Antithrombotics -> Dipyridamole of the Beers Criteria from the 2019
version.

11Refers to Table 4 -> Dabigatran/Rivaroxaban of the Beers Criteria from the 2019 version.

70

4.1. Beers Criteria Ontology

Interactions that are classified as UWC_Rivaroxaban are also classified as UWC
and have Moderate(Qoe) quality of evidence, Gastrointestinal_bleeding(Se) as a
side effect, and Strong(SoR) strength of recommendation.

4.1.7.4 Medications That Should Be Avoided or Have Their Dosage Reduced
With Varying Levels of Kidney Function (VLKF)

The VLKF12 class is composed of five main subclasses: VLKF Anti-infective, VLKF
Cardiovascular or hemostasis, VLKF Central nervous system and analgesics, VLKF
Gastrointestinal and VLKF Hyperuricemia. Subclasses and rules were created for each
drug or drug category classified as VLKF, totalling twenty-nine subclasses and
rules. An example of these rules is defined below. A particularity of Medications
That Should Be Avoided or Have Their Dosage Reduced With Varying Levels of Kidney
Function (VLKF) is that all rules have the Creatinine_Clearance exam results due to
the expected problems associated to kidney function. Rule 4.11 was defined for
VLKF_Fondaparinux13 . This rule can be read as: if patient p aged over 65 has a
prescription prcontaining Fondaparinux d, and has a Creatinine_Clearance e exam
value v less than 30, then d is classified as VLKF_Fondaparinux.

Patient(p)∧Prescription(pr)∧Creatinine_Clearance(e)

∧Fondaparinux(d)∧hasPrescription(p, pr)∧hasExam(p,e)

∧hasDrug(pr,d)∧hasExamValue(e,v)∧ v

< 30∧hasPatientAgeValue(p,a)∧a ≥ 65

⇒V LKF_Fondaparinux(d) (4.11)

The result of our research of the Beers Criteria as documented has led to the main
Beers Criteria classes as illustrated in Figure 4.16. After defining the five classes
and their rules to detect and classify PIMs, the ontology can already be integrated
with patient data. In the next section, we provide examples of how patient data
can be integrated into the ontology and analyse the resulting outputs.

More details of the ontology can be seen in Appendix B.
12Refers to Table 6 of the Beers Criteria from the 2019 version.
13Refers to Table 6 -> Fondaparinux - of the Beers Criteria from the 2019 version.

71

4. ONTOLOGY FOR DRUG INTERACTIONS

Figure 4.16: Beers Criteria classes

4.1.8 Applying the Beers Criteria ontology

After building the ontology and defining the rules to detect PIMs, it is possible
to demonstrate how the ontology would perform over patient data. Therefore,
we will simulate a fictional scenario to illustrate how some classes’ relationships
happen and how the PIMs are classified by the PIMs rules. This simulation is
explained in two steps. First, we introduce a scenario with a patient with a disease,
prescription, drugs and information on their administration route. Then, we
present a scenario with drugs classified as PIMs asserted by the ontology rules.

In Figure 4.17, several individuals were defined, represented as lozenges inside
the classes, which are shown as ellipses. The relations between individuals and
between classes are given by arrows. An ellipse that is inside another ellipse
represents the class’s taxonomy of class and subclass.

Inside the class Patient, represented with a light blue ellipse, we find the individual
Tom. This individual is linked to the individual M(Male) from the class Gender
by the object property hasGender and with the individual P1 from the class
Prescription by object property hasPrescription. Moreover, Tom is linked by the
object property hasDisease to the individual P1_History_of_falls, and he is 75,
given by the link set by the data property hasPatienAgeValue.

The individual prescription P1 is linked with four individual drugs (shown as
green lozenges) by the object property hasDrug which all belong to the class Drug.
The individual P1_Metoclopramide is a Metoclopramide drug type which belongs
to the Prokinectic Agents drug category class. The individualP1_Triazolam belongs
to the Benzodiazepines drug category class while P1_Codeine and P1_Morphine
both belong to drug category class Opiate Agonists. All of these three drugs

72

4.1. Beers Criteria Ontology

Figure 4.17: Individual Prescription

belong to the drug category class of central nervous system active drugs. All the
drugs are administered by injection route, seen by the fact that they are linked by
the object property hasRoute to the individual P1_Inject, which belongs to the
classes Injection and Administration Route.

Summarising the above Tbox scenario shown in Figure. 4.17, patient Tom, 75,
male, suffers from a history of falls and has a prescription for four drugs
(Metoclopramide, Triazolam, Codeine and Morphine) all to be administered by
injection.

To check whether our patient Tom has PIMs in his prescription, which corresponds
to the individuals and relationships described in Figure 4.17, we use the ontology
inference rules to check. Figure 4.18 illustrates the inference rules outcome (ABox)
from the performed rules. As a result of the inference rules, we obtain the Beers
Criteria, Recommendation, Strength of recommendation and Quality of evidence
classes, with their respective subclasses.

Figure 4.18 shows that for the four prescribed drugs, PIMs could be asserted as
shown by the arrows that link the individual drugs with the Beers Classes from
Table 4.1.

73

4. ONTOLOGY FOR DRUG INTERACTIONS

Figure 4.18: Abox Inferred PIMs for the patient Tom

These classes are divided into two main superclasses B.PIM and DDI. Moreover,
PIM_Metoclopramide is a subclass of Gastrointestinal while PIM_Benzodiazepines
is a subclass of the Central nervous system, both of which belong to class PIM.
In the DDI subclasses, OpioidsBenzodiazepines means an interaction between
these drug categories, while the CNS_Active_Drugs/CNS_Active_Drug means an
interaction between drugs from the same drug category.

The interaction between the individual drugs contained in Tom’s prescription
is illustrated more clearly in Figure 4.19. The red arrows represent the object
property hasInteractionWith, which when given as a double-headed arrow means
that the interaction is bidirectional. For example, the individual P1_Triazoalm
interacts with P1_Codeine and P1_Morphine, and P1_Codeine interacts with
P1_Morphine.

74

4.1. Beers Criteria Ontology

Individual drugs PIM category PIM Class

P1_Metoclopramide B.PIM PIM_Metoclopramide

P1_Triazolam

DDI CNS_Active_Drugs/CNS_Active_Drugs

DDI Opioids/Benzodiazepines

B.PIM PIM_Benzodiazepines

P1_Codeine
DDI Opioids/Benzodiazepines

DDI CNS_Active_Drugs/CNS_Active_Drugs

P1_Morphine
DDI Opioids/Benzodiazepines

DDI CNS_Active_Drugs/CNS_Active_Drugs

Table 4.1: Ontology Abox

Figure 4.19: Abox Drug interaction

The inappropriate drug assertions for this case emerged from the inference rules
that compose the ontology. For each Beers Criteria class drug or drug category, a
rule has been defined. Therefore, to understand how the ontology classified these
individual drugs as PIMs, we give the details for the inference rules that compose
this example. In the following, let p denote a patient, pr a prescription, d a drug or

75

4. ONTOLOGY FOR DRUG INTERACTIONS

drug category, and a an integer.

The PIM_Metoclopramide14 inference Rule 4.12 is defined as follows:

(hasPrescription(p, pr)∧hasDrug(pr,d)∧Metoclopramide(d)

∧hasPatientAgeValue(p,a)∧a ≥ 65) ⇒ PIM_Metoclopramide(d) (4.12)

The logical expression formulated for the PIM_Metoclopramide defines that
for an elderly patient p with a prescription pr containing the drug d of type
Metoclopramide, drug d is classified as a potentially inappropriate medication
(PIM).

Similarly, the PIM_Benzodiazepines15 inference Rule 4.13 applies if d is a drug of
type Benzodiazepines instead:

(hasPrescription(p, pr)∧hasDrug(pr,d)∧Benzodiazepines(d)

∧hasPatientAgeValue(p,a)∧a ≥ 65)⇒ PIM_Benzodiazepines(d) (4.13)

The drug-drug interaction DDI_Opioids/Benzodiazepines16 is formulated in the
inference Rule 4.14, where we consider two drugs d1 and d2 of each type.

(Opiate_Agonists(d1)∧Benzodiazepines(d2)∧hasPrescription(p, pr)

∧hasDrug(pr,d1)∧hasDrug(pr,d2)∧hasPatientAgeValue(p,a)∧a ≥ 65)

⇒ DDI_Opioids/Benzodiazepines(d1)∧DDI_Opioids/Benzodiazepines(d2)∧

hasInteractionWith(d1,d2)∧hasInteractionWith(d2,d1) (4.14)

The meaning of the statement is that for elderly patients p with a prescription
pr for an Opiate agonist drug d1 and a Benzodiazepines drug d2, d1 and d2 are
classified as DDI_Opioids/Benzodiazepines when used in combination with each
other in patients 65 or above. Additionally, it states that there is a (bidirectional)
interaction between these drugs.

14Refers to Table 2 -> Gastrointestinal -> Metoclopramide - of the Beers Criteria from the 2019
version.

15Refers to Table 2 -> Central nervous system -> Benzodiazepines - of the Beers Criteria from
the 2019 version.

16Refers to Table 5 -> Opioids/Benzodiazepines - of the Beers Criteria from the 2019 version.

76

4.2. Summary

For the following rule, let p be a patient with prescription pr, three different drugs
d1 ̸= d2 ̸= d3 of type Central_nervous_system_active_drugs, and i ̸= j ∈ {1,2,3}.
The inference Rule 4.15 - DDI_CNS_Active_Drugs/CNS_Active_Drugs defines
the interaction between CNS Active Drugs17

hasPrescription(p, pr)∧hasDrug(pr,d1)∧hasDrug(pr,d2)

∧hasDrug(pr,d3)∧hasPatientAgeValue(p,a)∧a ≥ 65

⇒∀i̸= j∈{1,2,3}DDI_CNS_Active_DrugsCNS_Active_Drugs(di)

∧hasInteractionWith(di,d j)∧hasInteractionWith(d j,di) (4.15)

According to this rule, for an elderly patient p with prescription pr containing
distinct drugs d1, d2 and d3 of type Central_nervous_ system_active_drugs, then
each of the three drugs has a (bidirectional) drug-drug interaction (DDI) with each
other as defined in the object property hasInteractionWith and these drugs belong
to the PIM category DDI_CNS_Active_Drugs /CNS_Active_Drugs.

Through the integration of patient data with the ontology, this example showcases
how we can utilise the ontology to detect PIMs. Additionally, the ontology can
be integrated with a Clinical Decision Support System (CDSS) or other ontologies
to enhance its usability and facilitate the sharing of knowledge. It also keeps
the knowledge base separate and makes it easier to accommodate changes to the
knowledge associated with the Beers Criteria (e.g., through newly revised criteria)
without impacting on the remaining components and reasoning engines.

4.2 Summary

This chapter elicited the ontology requirements, how it was built and how to
classify a drug as PIM. We explained the elements that compose the ontology and
how the rules were defined.

Our ontology can be used to detect drug interactions and consequently support
clinical decision-making. Nevertheless, this is just one step of the decision process.
Further recommendation steps include preferred alternatives with equal/similar

17Refers to Table 5 -> Antidepressants (TCAs, SSRIs, and SNRIs) Antipsychotics Antiepileptics
Benzodiazepines and nonbenzodiazepine, benzodiazepine receptor agonist hypnotics (ie, “Z-
drugs”) Opioids / Any combination of three or more of these CNS-active drugs - of the Beers
Criteria from the 2019 version.

77

4. ONTOLOGY FOR DRUG INTERACTIONS

therapeutic value, revised timed schedules for medications to avoid interactions
when no alternative is present, as well as revision of medications to check whether
there is still a therapeutic need for certain medications over time. The example
introduced in this chapter to identify PIMs will be revisited in later chapters.

Details on how the ontology was developed are demonstrated in Chapter 7.
Furthermore, the experiments we conducted with real data are discussed in
Chapter 8. It includes integrating real patient data in the ontology and analysing
the outcomes as well as comparing our approach with current practice in the
hospital.

78

5CHAPTER FIVE

ALTERNATIVE DRUGS
RECOMMENDATION

AND VALIDATION

In the previous chapter, we showed how PIMs can be detected in a purpose built
Beers Criteria Ontology and underlying inference rules. This chapter goes one step
further and describes the concepts and implementation associated to determining
preferable alternative drugs, if these exist. In addition, to determining whether a
prescription with alternative drugs is satisfiable, we detail the validation of the
recommended alternatives for patient prescriptions using an SMT solver-based
approach. Concretely, we explain the implementation of rules on the Beers Criteria
ontology used to provide alternative drugs for prescription drugs. Moreover, how
patient data and ontology recommendations, consisting of prescription drugs,
interactions, and alternative drugs, are integrated into an SMT solver to validate
the alternative drugs and find prescriptions that fit all the interaction requirements.

5.1 Beers Criteria Drug alternatives

The choices of drug treatments health professionals have at their disposal are
numerous and can be challenging to select for complex cases. When prescribing
drugs for older adults, it is essential to consider the probability of the treatment
being both safe and effective. One solution to this challenge is providing

79

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

healthcare professionals with a list of evidence-based medications considered safer
alternatives to those listed in the Beers Criteria. However, it is important to note
that these drug recommendations are not intended to replace the expertise and
knowledge of healthcare professionals [73, 63]. Therefore, when implemented in a
CDSS, the system can suggest these drugs in specific circumstances. However, the
decision to change a drug for an alternative drug is always defined by physicians.

At this point, the Beers Criteria ontology is able to detect inappropriate medications
in prescriptions, which is the first stage of the decision-making process that the
proposed CDSS is supporting health professionals. This first stage can support
health professionals in avoiding prescribed PIMs; however, it does not support
finding alternative drugs to sort out PIMs problems. Thus, the next stage is to
provide alternative drug recommendations when inappropriate medications are
found. Consequently, alternative drug recommendations were implemented in
the Beers Criteria ontology to support the decision process to tackle this problem.

However, the ontology is not able to check if the recommended alternative drugs
have interactions with other alternative or prescribed drugs. Consequently,
the alternative drug recommendations have to be validated by another tool.
Thus, we proposed an SMT model-based approach to validate the prescription
consistency considering the alternative drugs. The model checks if there are
interactions between drugs and provides all the possible prescriptions, combining
the prescribed drugs with the alternative drugs.

5.1.1 Alternative drugs knowledge acquisition

The knowledge acquisition provides the necessary elements to define how to
structure and formalise the alternative rules in the ontology. Thus, for each
described interaction in the Beers Criteria, we scrutinised how the alternative
drugs suggested by the AGS Health in Aging Foundation [73] and by Hanlon et
al. (2015) [63] could be formalised and which additional ontology elements would
be necessary. The suggested alternative drugs follow a similar hierarchy as the one
defined for the Beers Criteria list, as shown in Figures 5.2 and 5.1 for illustration.

The process of determining the required components of the ontology to establish
the rules for alternative drugs involved utilising the same methodology employed
in defining PIMs. This approach involved employing semantic triples consisting
of subject, predicate and object.

80

5.1.
Beers

C
riteria

D
rug

alternatives

Figure 5.1: Example of alternative drugs suggested by Hanlon et al. (2015) [63].

81

5.
A

LT
E

R
N

A
T

IV
E

D
R

U
G

R
E

C
O

M
M

E
N

D
A

T
IO

N
S

A
N

D
V

A
L

ID
A

T
IO

N

Figure 5.2: Example of alternative drugs suggested by the AGS Health in Aging Foundation [73].

82

5.1. Beers Criteria Drug alternatives

Furthermore, when defining the rules for the alternative drug, previously es-
tablished components in the Beers Criteria, such as classes, objects, and data
properties, were taken into account, and additional components were included to
properly formalise the rules if and as needed.

To exemplify how the elements were defined, Figure 5.3 illustrates a scenario
in which a patient has been prescribed the drug Amobarbital, which belongs
to the Barbiturates drug category. Furthermore, this patient is over the age of
65 and suffers from Epilepsy. According to the Beers Criteria, Amobarbital is
considered a PIMs, which means an alternative drug could be prescribed to
avoid undesired effects. Therefore, alternative drugs from the Anticonvulsant
category can be considered. Lamotrigine and Levetiracetam, which belong to the
Anticonvulsant drug category, are examples of alternative drugs to Amobarbital
for this prescription. To represent the link between the prescribed drug and the
alternative drugs, the object property has alternative and its inverse is alternative of
were created.

Figure 5.3: Alternative drugs semantic triple

The elements in Figure 5.3 could be represented in semantic triples according
to Table 5.1. The table is composed of three semantic triple columns (Subject,
Predicate and Object). Additionally, the column Statement is added to clarify
when the relation between the elements happens, which can be either in a TBox
or a ABox. As previously explained, TBox statements provide the framework
for understanding the Beers Criteria taxonomy while ABox statements are the
assertions or factual statements that relate to the conceptual model defined by the
TBox. In Figure 5.3, the TBox is represented by the black arrows and the ABox by

83

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

the red dotted arrows. From Table 5.1, column Statement, it is possible to deduce
that for the ABox to be true, all TBox statements must be true.

Subject Predicate Object Statement

Patient has age higher than 65 TBox

Patient has disease Epilepsy TBox

Patient has prescription Prescription TBox

Prescription has drug Amobarbital TBox

Amobarbital subclass of to Barbiturates TBox

Lamotrigine subclass of to Anticonvulsants TBox

Levetiracetam subclass of to Anticonvulsants TBox

Barbiturates has alternative Anticonvulsants Abox

Lamotrigine is alternative of Amobarbital Abox

Levetiracetam is alternative of Amobarbital Abox

Table 5.1: Semantic triple for alternative drugs

The knowledge acquisition process resulted in new properties and classes that
were utilised to establish alternative rules. Classes must be organised into a
hierarchical taxonomy that adheres to the same organisational logic employed in
the Beers Criteria ontology. The upcoming section will provide further information
on the specific elements that were discovered and how they are structured.

5.2 Alternative drug recommendation ontology rules

The alternative drug recommendation rules aim to provide alternative drugs for
inappropriate medications. These rules are implemented on the Beers Criteria
ontology based on the elements defined in the knowledge acquisition. In this
section, we detail the necessary elements to build the rules and how the rules are
formalised.

84

5.2. Alternative drug recommendation ontology rules

5.2.1 Ontology elements

In addition to the previously described elements from Chapter 4, a new collection
of classes, objects and data properties were defined with the semantic triple
approach in order to develop the alternative drug recommendation rules in the
Beers Criteria ontology.

5.2.1.1 Drug alternative classes

To systematise the alternative drug classes, a new main class was created
named Alternative_drugs. The alternative drugs were defined by Hanlon et al.
(2015) [63]in two main classes: High-Risk_Medications class and Medications
Drug-Disease_Interactions. Therefore to define the ontology taxonomy, these
two alternative drug category classes were employed in the ontology as shown in
Figure 5.4. Each alternative drug category class is composed of subclasses in which
the High-Risk_Medications subclasses are based on the Therapeutic Class, and the
Drug-Disease_Interactions subclasses are based on the Diseases Class. The newly
defined class names start with the initials "Alt" to indicate that they belong to the
category of alternative drugs and to distinguish them from previously established
classes.

Figure 5.4: Main classes for the alternative drugs hierarchy

The Alt High-Risk_Medications class is illustrated in Figure 5.5. The class comprises
six main subclasses: Alt Central nervous system, Alt Endocrine system, Alt
Anticholinergic, Alt Pain medication, Alt Cardiovascular and Alt Antithrombotic
anti-platelets. Each of these subclasses contains drug categories subclasses and
their corresponding medication classes. For instance, the Alt Pain medication
subclass comprises three subcategories of drugs, while the Alt Antithrombotic anti-
platelets class consists of three specific medications. As depicted in Figure 5.5, the
medications from Alt Antithrombotic anti-platelets start with the initials "Alt", as

85

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

they were previously defined for the drug class and do not belong exclusively to
the Alternative_drugs taxonomy.

Figure 5.5: Alternative drugs hierarchy for High-Risk Medications.

The Alt Medications Drug-Disease_Interactions is composed of three main classes:
Alt Falls, Alt Dementia and Alt Kidney diseases. These classes have drug category
subclasses linked with drug classes. Moreover, there are drug category classes
that can be an alternative for more than one disease class. For example, Figure 5.6
illustrates an intersection between the classes Alt Fall and Alt Dementia, where five
drug category subclasses belong to both disease classes.

The Beers Criteria PIMs classes and alternative drugs have a similar taxonomy
and similar class names; thus, finding which drug may be an alternative for an
interaction drug or group of drugs is straightforward. The alternative drugs
taxonomy aims to facilitate the creation of rules and to find a possible alternative
drug. However, particular constraints have to be considered for each case; for
example, some drugs are considered alternatives only when the patient suffers
from a specific disease, as exemplified in Table 5.1. Therefore, a rule that specifies
the criteria for a drug to be considered an alternative must be defined for each
alternative drug or drug category.

86

5.2. Alternative drug recommendation ontology rules

Figure 5.6: Alternative drugs hierarchy for drug-disease interactions

5.2.1.2 Object and data property

The relation that defines if a drug is an alternative to the other is stated by
object properties. Moreover, there are individual drugs that belong to a drug
class that might not be considered alternative; hence, we set a data property to
define whether an individual drug is or is not an alternative. The object and data
properties used to define the rules for determining alternative drugs are detailed
below:

Object property:

• hasAlternative: defines the relationship between a drug and an alternative.
Therefore if a drug has an alternative, the hasAlternative is the predicate
between the subject drug and the object alternative drug. Its domain is the
class Drug, and its inverse property is isAlternativeOf;

• isAlternativeOf: works in the inverse direction of object property hasAlter-
native. It is the predicate between the subject alternative drug and the object

87

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

drug.

Data property:

• isAlternative: defines if an individual drug can be considered an alternative
to other drugs.

The defined elements are essential for the definition of the drug alternative rules.
Most of the elements previously defined in the Beers Criteria ontology were used,
as well as the taxonomy. The next step for the ontology to suggest alternative
drugs is to define the drug alternative rules according to each drug specification,
which was mapped in the semantic triple approach.

5.2.2 Drug alternative rules

The alternative drug recommendation rules in the Beers Criteria ontology aims
to provide alternative drugs in cases where alternatives are available and could
be offered instead. As before, our rules consist of two parts: an antecedent and
a consequent. The antecedent establishes the requirements to define whether a
drug is (or is not) an alternative to other drugs. The consequent links a drug with
an alternative when the antecedent is true. The rules are given in predicate logic.
In the following, we use p to denote an arbitrary patient, pr a prescription, d and
altD drugs, pd a disease, and a an integer. Additional variables may be introduced
in the rules as needed and are explained in the context of the rule.

Two main categories of drugs, namely Alt High-Risk_Medications and Alt Medica-
tions Drug-Disease_Interactions, are used to make alternative drug recommenda-
tions. Thus, to demonstrate how the drug alternative rules are defined, we explain
one rule for each category.

In the Rule 5.1, we define an alternative drug recommendation rule for the drug
category Histamine H2 Antagonists, a group of drugs (which can be) used to treat
symptoms of Dementia. The rule states that under certain conditions (see below)
and if there is an alternative drug from class Alt H2 blocker, then the Histamine H2

88

5.2. Alternative drug recommendation ontology rules

Antagonists prescribed drug can be replaced by the alternative.

Patient(p)∧Prescription(pr)∧hasPrescription(p, pr)

∧hasDrug(pr,d)∧Drug(d)∧Histamine_H2Antagonists(d)

∧Drug(altD)∧Alt_H2_blockers(altD)∧hasPatientAgeValue(p,a)

∧(a ≥ 65)∧ isAlternative(altD, true)∧Dementia(pd)

∧hasDisease(p, pd)⇒ hasAlternative(d,altD) (5.1)

The rule can be broken down as follows:

• Patient(p) ∧ Prescription(pr) ∧ hasPrescription(p, pr) ∧ hasDrug(pr,d): speci-
fies that p is a patient with a prescription pr containing drug d.

• Histamine_H2Antagonists(d) ∧ Drug(d): specifies that d is a drug of type
Histamine H2 Antagonists.

• Drug(altD) ∧ Alt_H2_blockers(altD): establishes that altD is a drug that
belongs to the class Alt_H2_blocker.

• hasPatientAgeValue(p,a)∧ (a ≥ 65): states that patient p is aged 65 or above.

• isAlternative(altD, true): specifies that altD is an alternative drug.

• Dementia(pd)∧hasDisease(p, pd): determines that patient p has a diagnosis
(pd) of dementia.

• hasAlternative(d,altD): this predicate is used to indicate that altD is an
alternative drug for d.

In summary, this rule states that for a patient aged 65 or above, suffering from
dementia, with prescription containing drug d of type Histamine_H2Antagonist,
we can replace d with altD of type Alt_H2_blocker.

The Rule 5.2 defines an alternative drug for the drug category Alt First Generation
Antihistamines, which belongs to the Alt Anticholinergics and Alt High-Risk
Medication classes, as follows:

89

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

Patient(p)∧Prescription(pr)∧hasPrescription(p, pr)∧

hasDrug(pr,d)∧First_Generation_Antihistamines(d)∧Drug(d)∧

Drug(altD)∧Alt_First_generation_antihistamines(altD)∧

hasPatientAgeValue(p,a)∧ (a ≥ 65)∧ isAlternative(altD, true)

⇒ hasAlternative(d,altD) (5.2)

The rule is similar to the one given earlier. It states that for a patient aged 65 or
above, if the patient has been prescribed a medication d that is a first-generation
antihistamine, then if there is an alternative altD in the same group of medications,
then d can be replaced by altD.

5.2.2.1 Applying the ontology alternative rules

By establishing the rules for alternative drug recommendations, the ontology
can provide alternative drugs for the prescribed drugs. To illustrate how the
ontology recommends alternative drugs, we recall the example from Figure 4.18
which introduced patient Tom, who suffers from a history of falls, is 75 years
old and male. As we saw before, all the prescribed drugs (P1_Metoclopramide,
P1_Codeine, P1_Morphine, P1_Triazolam) that Tom was given in a prescription
P1 were classified as inappropriate.

The Beers Criteria ontology aims to find alternative drugs to replace the inappro-
priate drugs prescribed for P1, in accordance with the defined rules. Figure 5.7
shows diagrammatically the ABox result after the alternative inference rules were
performed. The result shows that the ontology could find four alternative individ-
ual drugs alt_Pregabalin, alt_Escitalopram, alt_Fluoxetine and alt_Levetiracetam,
for drug P1_Triazolam. These individual drugs are represented in orange lozenges
and are linked with the individual P1_Triazolam by the object properties has
Alternative (green arrows) and by its inverse property is alternative of(orange
arrows). Each individual alternative drug belongs to its respective drug class. For
example, alt_Escitalopram belongs to drug class Escitalopram. This drug class also
belongs to the drug category Selective_Serotonin-reuptake_Inhibitors and to the
alternative classes Alt Anticonvulsants, Alt Falls, Alt Drug-Disease Interaction and
Alternative drugs.

90

5.2. Alternative drug recommendation ontology rules

Figure 5.7: Alternative drugs ABox example.

To comprehend how these alternative drugs were inferred for the individual drug
P1_Triazolam, we will scrutinise the corresponding rule. Regarding the patient
parameters, we know that Tom is 75, suffers from falls and has a prescription
for the individual drug P1_Triazolam, which belongs to drug class Triazolam.
Additionally, the drug class Triazolam also belongs to the drug category classes
Benzodiazepines and Anticonvulsants. These alternatives are defined in the

91

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

inference Rule 5.3:

Patient(p)∧Prescription(pr)∧hasPrescription(p, pr)∧

hasDrug(pr,d)∧Anticonvulsants(d)∧Drug(d)∧Drug(altD)∧

Alt_Anticonvulsants(altD)∧ isAlternative(altD, true)∧

hasPatientAgeValue(p,a)∧ (a ≥ 65)∧History_o f _ f alls(pd)

∧hasDisease(p, pd)⇒ hasAlternative(d,altD) (5.3)

The first part of the formula above is similar to earlier rules. The second part of the
formula is an implication (⇒) that connects the antecedent (the conditions specified
in the first part) with the consequent (the statement that follows the arrow).
The consequent states that if the patient has a prescription of an Anticonvulsants

drug d, then this drug could be switched to a drug that belongs to the class
Alt_Anticonvulsants. In other words, the formula states that for patients aged 65 or
above with a history of falls, who have been prescribed an Anticonvulsants drug,
there exists an alternative drug that can be prescribed instead of the original drug.
Therefore, all the drugs that belong to the class Alt_Anticonvulsants are considered
alternative drugs.

This example shows how the rules were created and how the ontology provides
alternative drug recommendations. Rules were created for all the alternative drugs
listed by Hanlon et al. (2015) [63] and by the AGS Health in Aging Foundation
[73]. However, the alternative drug recommendations do not consider whether
there is interaction with other prescribed drugs or alternative drugs. Therefore,
a new approach is proposed in the following sections to validate the alternative
drugs.

5.3 Alternative drugs validation by an SMT model

The Beers ontology supports health professionals in detecting PIMs and finding
alternative drugs. Thereafter, the next decision that health professionals have to
make is defining which alternative drugs can be selected without introducing
new interactions with other drugs. Consequently, the alternative drug recommen-
dations have to be validated to support health professionals in finding (better
alternative) prescriptions without interactions. To facilitate this we propose a
novel SMT model based approach for validating and finding alternative drugs

92

5.3. Alternative drugs validation by an SMT model

that do not interact with other prescribed drugs.

The patient prescription, alternative and inappropriate drugs are provided by
the ontology. The SMT model will incorporate this information in order to be
able to validate it. The prescription validation process happens in three steps.
First, the data is extracted from the ontology, then converted and declared in SMT,
and finally, the SMT solver checks whether there are valid prescriptions. These
steps will be explained in the following sections. The result of the SMT model (a
solution) is a prescription containing drugs without interactions (and suitable for
patients aged 65 or above) or no solution (unsat - the model is unsatisfiable) can
be found because there are no prescriptions without interactions.

5.3.1 Retrieving data from the Beers Criteria ontology

The first step outlined to determine valid alternative prescriptions corresponds to
retrieving the necessary information from the ontology. The prescribed drugs for
the patient, the suggested alternative drugs and the interaction between drugs are
obtained from the ontology.

Concerning drug interactions, these are extracted from the Ontology by the object
property hasInteractionWith. As for any binary relation between elements of
two sets, it can be seen as a subset of pairs of elements from the corresponding
sets. For hasInteractionWith, we have hasInteractionWith ⊆ Drug × Drug. For
inappropriate drugs from the group Potentially Clinically Important Drug-Drug
Interactions (DDI), the interaction happens between two different drugs. For
example, for drugs d1 ̸= d2 in DDI we have d1 hasInteractionWith d2 which we
represent equivalently as a pair (d1,d2) ∈ hasInteractionWith.

In contrast, inappropriate drugs classified as DDDS, B.PIM, UWC, and VLKF
usually do not have interactions with other drugs. These groups of drugs are
considered to interact for other reasons, such as age, diagnosed disease (e.g.,
comorbidities that the patient has) or clinical condition. If these parameters affect a
given patient, these drugs must be switched to other suitable alternative drugs. To
encode the problem of taking such drugs in these cases, we assume an interaction
of the drug with itself. For instance, if d is a drug within DDDS (or any of these
classifications), then we assume that d hasInteractionWith d which we represent
equivalently as a pair (d,d) ∈ hasInteractionWith.

Similarly, alternative drugs are extracted from the ontology by the object property

93

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

hasAlternative which links the prescribed drug with (one or more) alternative
drugs. For hasAlternative, we have hasAlternative⊆Drug×Drug where for (d,ad)∈
hasAlternative is such that d is the prescribed drug whereas ad is one possible
alternative. If d has several alternatives ad1 . . .adn, then (d,adi) ∈ hasAlternative for
1 ≤ i ≤ n.

To explain the data structure that composes the data extracted from the Beers
Criteria ontology, we use the example from Figure 5.7 for patient Tom. This
example can be summarised in three sets:

Prescription set = {P1_Metoclopramide, P1_Codeine, P1_Morphine, P1_Triazolam}

Interaction set = {(P1_Metoclopramide, P1_Metoclopramide), (P1_Codeine,
P1_Morphine), (P1_Codeine, P1_Triazolam), (P1_Morphine, P1_Triazolam)}

Alternative set= {(P1_Triazolam, alt_Pregabalin), (P1_Triazolam, alt_Fluoxetine),
(P1_Triazolam, alt_Escitalopram), (P1_Triazolam, alt_levetiracetam)}

The prescription set represents the 4 drugs that our patient Tom was prescribed.
The interaction set shows pairs of drugs that are problematic together. In the
case of Metoclopramide, this drug cannot be taken by Tom and is hence excluded
by imposing an interaction with itself. The alternative set describes possible
replacements for drugs listed in the original prescription P1. For instance,
Pregabalin can be used instead of Triazolam, but so can Fluoxetine,Escitalopram or
Levetiracetam.

The data retrieved from the ontology, as shown above, now needs to be passed to
an SMT solver as described next.

5.3.2 Converting rules into SMT

Once the information is extracted from the ontology, drug details, interaction,
and alternative rules can be passed to the solver. The process consists of
adding the three sets (described through an example in Section 5.3.1) to the SMT
solver: prescription, interaction and alternative sets. The underlying SMT model
implemented in Python(as used at present - arithmetic will be useful later on) is
based on Boolean logic, which means the solver will find Boolean assignments
for all the variables: in our case, whether a drug is present/taken or not, which
can be true or false. Drugs with true values correspond to those that should be
prescribed, and drugs with false values will not be considered. For example, since

94

5.3. Alternative drugs validation by an SMT model

the alternative set gives several options for individual drugs (e.g., the case of
options for Pregabalin), one solution will pick one of these options and assign it a
true value, whereas all others are set to false.

5.3.2.1 Drug Declaration

To proceed with the drug declaration for the model, each drug is declared as
belonging to the Drug Datatype, a custom data structure for our purposes. Custom
data structures are useful because they allows us to introduce new data types,
useful for our domain and beyond the built-in ones the solver provides, such as
integers, Boolean, and arrays. Once a data type is defined, it can be used to create
instances of it. In the alternative model, each drug that composes the model is an
instance of the datatype Drug.

Considering that the drug instances would ideally be defined as Boolean (e.g.,
true if picked, false if not) and the Drug datatype is not the same as Boolean, a
function named choice was created to attach a Boolean value to drug instances.
The function choice as defined below

choice : Drug → BoolSort()

takes a parameter of type Drug and returns a value of type BoolSort(), which
represents the Boolean values. For example, to express the choice of a
drug Paracetamol, we indicate this through the function choice as follows
choice(Drug.Paracetamol) == True.

Algorithm 1: Algorithm for declaring drugs
1 def declare_drug(drugSet):
2 Drug = Datatype
3 for d ∈ drugSet do
4 Drug.declare(d)

5 Drug.create()
6 choice = Function(’choice’, Drug, BoolSort())

7 ,

The Algorithm 1 above (shown in pseudocode) represents how instance drugs
are declared in the SMT model through the function declare_drug. The function
receives a set of drugs that are declared as datatype Drug. Thereafter the drugs
are created in the SMT model, and the function choice is defined. Notice that up

95

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

to this point, no Boolean value has been assigned for the drug instances by the
function choice.

5.3.2.2 Drug constants

The SMT alternative drug model was set to provide a prescription that includes
the exact number of prescribed drugs, considering alternative drugs. It means
that if five drugs were prescribed, the solver will provide a solution with five
drugs. Otherwise, the solver could provide a solution with more or less drugs
than prescribed, which could not be ideal. Hence, we have to define a constraint
forcing the solver to provide the same number of drugs as prescribed. To formalise
this constraint we declare Constants of type Drug(which is a datatype previously
explained) with the exact number of prescribed drugs.By declaring these Constants
and declare that they Exist and are True, we force the model to provide a solution
with the prescribed number of drugs. Moreover, that the drugs assigned are
Distinct for each Constants. The Algorithm 2 was defined to define this constraint.

Algorithm 2: Algorithm for declaring drug constants
1 def declare_constant(numOfPrescribedDrugs):
2 distinctRules = list()
3 for x ∈ numOfPrescribedDrugs do
4 drug(x) = Const(drug(x), Drug)
5 sol.add(Exists(drug(x),choice(drug(x))))
6 sol.add(And(choice(drug(x))) == True)
7 distinctRules.append(drug(x))

8 sol.add(Distinct([x for x in distinct_rules]))

In Algorithm 2, the function declare_constant receives the variable numO f Prescribed

Drugs with the total number of prescribed drugs. Then in a for loop, the Constants

are created. First, it is assigned for a sequential variable drug(x), a Constant
named drug(x)(the same name as the variable) of type Drug. Then is defined
that Exists a choice(drug(x)) for the drug constant drug(x). Next, we define
that choice(drug(x))condition should be equal to True and add drug(x) in the
distinctRules list. Finally, we define that all constants in distinctRules are Distinct,
which means the constants of type Drug are not equal to each other.

To exemplify how it works, let us imagine that we have a prescription with three
drugs(A, B, C), the interaction between A and B and the alternatives (X, Y) for
drug A. Three variables (drug1, drug2, drug3) would be instantiated with Const

96

5.3. Alternative drugs validation by an SMT model

(with the same name) of type Drug. Then we declare to the solver that Exists a
choice(drug1), choice(drug2), choice(drug3). Next, we define that choice as true.
Finally, we define that drug1, drug2, and drug3 must be distinct.

So the solver could provide solutions such as (X, B, C) or (Y, B, C). If this constraint
would not be defined, the solver could provide several solutions, for example, (B,
C), (X, B) or (B).

5.3.2.3 Mandatory true drugs rules

The SMT model has to provide the same number of prescribed drugs. However,
it is not only the number of drugs that matter but also which drugs the SMT
model selects for the prescription. Some drugs do not have interaction, and
alternative drugs available. Thus, these drugs have always to be considered in the
prescription.

For defining these drugs as always True in the SMT model, we consider the
following definition in Algorithm 3.

Algorithm 3: Algorithm for declaring mandatory drugs
1 def declare_true_drugs(drugSet):
2 sequence = 0
3 for d ∈ drugSet do
4 sol.add(And(choice(Drug.d)) == True))
5 sol.add(Exists(Drug(sequence),choice(Drug.d)))
6 sequence += 1

Algorithm 3 receives as a parameter a set of drugs that have to be considered
True, i.e., drugs that cannot be replaced and need to be kept in the prescription (for
some reason). To do so, we iterate through the set of drugs and add a constraint
stating that the drug is chosen (for each of the drugs in the set), i.e., function choice

associates the value True to all the drugs in the set.

5.3.2.4 Interaction rules

The definition of an interaction rule refers to drugs that can not be prescribed
together. Therefore, the SMT model has to choose only one drug with interaction.
There are cases where a drug has interactions with more drugs. In this case, several
rules are created. For example, if A interacts with B and C and B interacts with C,
then the solver can choose either A or B or C, but not more than one.

97

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

Algorithm 4 defines the interaction rules for a pair of drugs. The function
declare_interactions receives as parameters the interactions sets, which are sets of
two drugs. For example {(A,B),(A,C),(B,C)}. Then a constraint with the interaction
drugs is added in the solver.

Algorithm 4: Algorithm for interactions
1 def declare_interaction(drugPairsSet):
2 for (d_1,d_2) ∈ drugPairsSet do
3 sol.add(Or(Not(choice(Drug.d_1))),(Not(choice(Drug.d_2))))

The rule represents a logical expression which in this case makes use of the logical
operators "Or" and "Not" to combine two Boolean values, representing the selection
of one of the two drugs. In this rule, if Drug.d1 and Drug.d2 are both not True, then
the expression holds. If only one of the drugs, Drug.d1 or Drug.d2, is declared True,
then the expression also holds. However, note that if both Drug.d1 and Drug.d2

would be declared as True, the expression would no longer hold. In other words,
only three possible assignments for d1 and d2 are satisfiable.

5.3.2.5 Alternative rules

In the SMT model, alternative drugs are considered drugs that can substitute
prescribed drugs. Thus, when a constraint does not allow a drug to be prescribed,
for example, due to an interaction, then the solver can switch this drug for
an alternative drug (when available) based on the defined alternative rule.
Considering the example from the interaction drugs, where A interacts with
B and C and B interacts with C, if A has the alternative X, and B has the alternative
Y, then the solver could define a valid prescription (X, Y, C).

The Algorithm 5 declares the rule for alternative drugs. The function de-
clare_alternative receives as parameters a set of two drugs (prescribed and
alternative drug) and adds them into the solver. The constraint rule comprises a
Xor operator in which either choice(Drug.d1) or choice(Drug.d2) can be assigned
as True, but not both drugs.

The operator Xor stands for exclusive or. This logical operator takes two Boolean
operands and returns true if and only if exactly one of the operands is True and
the other is False. It indicates that it is impossible to prescribe both an alternative
drug and a prescription drug simultaneously. For instance, the combination of

98

5.3. Alternative drugs validation by an SMT model

Algorithm 5: Algorithm for declaring alternative drugs
1 def declare_alternative(alternativePairsSet):
2 rule = ”
3 for (drug1, drug2) ∈ alternativePairsSet do
4 rule = (Xor(choice(Drug.d1), choice(Drug.d2),rule))

5 sol.add(rule)

A and X or B and Y can not be recommended concurrently since they may have
identical therapeutic effects for the patient. Thus, the solver will define only one
drug as true. In the example from the alternative set, we have the alternatives
(P1_Triazolam, alt_Pregabalin), (P1_Triazolam, alt_Fluoxetine), (P1_Triazolam,
alt_Escitalopram), (P1_Triazolam, alt_levetiracetam). In this case, four drugs can
be alternatives to P1_Triazolam, but only one drug from all the alternatives can be
defined as True.

5.3.2.6 Checking prescriptions

After declaring the drugs and specifying the SMT model interactions, alternatives,
and requirements, the solver verifies if there is a prescription that meets all the
constraints. More prescriptions may be possible, but unless we enforce this, the
solver only provides one solution. Indeed, here in case a prescription that fits all
the constraints is found, the algorithm checks if other valid prescriptions can be
found, in order to provide health professionals with more prescription options.

Algorithm 6 checks all the possible prescriptions without interaction or drugs
classified as PIMs, considering the predefined constraints (interaction, alternative,
mandatory drugs). The function check_prescription receives as parameters a set
with the mandatory drugs (drugs that must be picked and hence are necessarily
True). First, it is checked if the constraints are satisfiable (sol.check() == sat), which
means there are prescriptions without interactions. Next, if the constraints are
satisfiable, then the solver tries to find more prescriptions without interactions in
a while loop. These prescriptions are stored in a model set. Then the function get_-
true_drugs returns a list of drug names assigned as True by the solver, disregarding
the mandatory drugs, and assigns this list for the variable trueDrugs. If the list
trueDrugs is not null, then a new constraint is added to the solver. This constraint
determines that one of the True drugs should be assigned as False next time
the solver checks for prescriptions without interactions in the while loop. For

99

5. ALTERNATIVE DRUG RECOMMENDATIONS AND VALIDATION

example, if the model has three drugs (X, B, C) assigned as True, this constraint will
determine that Or X, Or B, Or C has to be ̸= True. So this new constraint force the
solver to find another valid drug. This loop happens until prescriptions without
interactions cannot be found. Thus, this algorithm provides all the possibilities of
prescriptions considering the alternative drugs available.

Algorithm 6: Algorithm for declaring interaction constraints
1 def check_prescription(mandatoryDrugs):
2 model = set()
3 if sol.check() == sat then
4 while sol.check() == sat do
5 model.add (sol.model())
6 solution = "False"
7 trueDrugs =

get_true_drugs(sol.model()).difference(mandatoryDrugs)
8 if trueDrugs then
9 for d in trueDrugs do

10 solution = Or((choice(drug.d) != True), solution)

11 sol.add(solution)

12 else
13 break

14 return (model)

Considering again the example of Tom’s prescription, only alternatives for
drug P1_Triazolam were available, which would result in an unsat prescription.
Therefore, in this example, to get a prescription that would satisfy the constraints, it
would be necessary to have alternative drugs for P1_Metoclopramide, P1_Codeine
or P1_Morphine, P1_Morphine or P1_Triazolam and P1_Codeine or P1_Triazolam.
In particular, if there were alternatives for drugs P1_Metoclopramide, P1_Codeine
and P1_Triazolam without interaction with other drugs, the prescription would
be valid.

When a valid prescription cannot be found, there are two options: either prescribe
the drugs with interaction (e.g., there may be a tradeoff between using a drug and
avoiding a potentially severe side effect which may not occur) or not prescribe
them. In case we choose to prescribe drugs that have interaction, we can investigate
if we can attempt to minimise the interaction in some way. Our novel proposed
approach is to minimise this interaction by maximising the distance between the
peak (highest concentration in the blood) of both drugs and offering scheduling

100

5.4. Summary

options for these drugs accordingly. This approach will be detailed in the next
chapter.

5.4 Summary

This chapter explained how alternative rules are formulated and added to the
Beers Criteria ontology, and validated by an SMT model. We added new elements
to the ontology in order to define the alternative rules. Moreover, we detailed
how an SMT model can support health professionals in selecting drugs that do
not interact with other prescribed drugs. With this approach, we aim to support
the decision process beyond simply identifying PIMs. However, a prescription
without interactions can not always be found. Therefore, in the next chapter, we
describe a novel approach to minimise drug interactions when interacting drugs
cannot be replaced and have to be prescribed.

101

6CHAPTER SIX

DRUG SCHEDULING
OPTIMISATION FOR
MINIMISING DRUG

INTERACTIONS

This chapter describes an SMT solver based approach for optimising drug
schedules which minimises the effect of drug interactions. As described in
Chapter 5, there may be cases where drugs cannot be replaced to avoid interactions.
In such cases, our aim is to find solutions which maximise the distance between
the maximum serum concentration of the drugs in the body after the drug has
been administered. In other words, by scheduling interacting drugs in ways that
avoid having their maximum concentration at the same time, we are trying to
reduce the impact of their interaction. The proposed solution makes use of a
known TMAX value for drugs and adds it to the ontology. TMAX corresponds to
the time when the maximum concentration is reached after their administration.
We formalise the scheduling and detail all relevant constraints for the SMT model,
including administration times, drug frequency, meal and drug administration
time rules. Overall, we demonstrate how this approach can be used to support
health professionals in defining drug schedules that minimise interaction when
the prescribed drugs themselves cannot be replaced for good reasons.

103

6. DRUG SCHEDULING OPTIMISATION FOR MINIMISING DRUG INTERACTIONS

6.1 Drug administration scheduling

The drug scheduling process defines the time and frequency of drug administra-
tion. Each drug has recommended administration schemes that are commonly
prescribed by physicians. The frequency refers to the number of times that a drug
should be administered. For example, three times a day usually means this drug
should be given every eight hours. The time indicates precisely when the drug has
to be administered. For example, some drugs should be taken at particular times,
such as after or before meals and before going to sleep.

As mentioned in earlier chapters, prescriptions often involve taking several
medications which may interact with each other and even have contraindications
when taken together. These drug interactions can sometimes yield positive
outcomes, such as enhanced effectiveness. However, they more frequently lead to
adverse effects such as reduced effectiveness and increased toxicity [44, 122].

In a hospital routine, the nurse plays a crucial role in ensuring the safe and accurate
scheduling of medication administration. They are responsible for adhering
to fixed routine hours and recording the specific times medications are given.
However, using standardised and fixed schedules can inadvertently lead to the
simultaneous administration of multiple drugs to the same patient. As mentioned
before, this situation increases the risk of accidental drug interactions, as different
medications may interact negatively when taken together [37].

Specially in cases where medications cannot be dropped or replaced, implementing
rescheduling measures is a preventive approach to minimise the occurrence of
drug interactions. The risk of adverse interactions can be reduced by scheduling
medications with the potential for interaction at different times. However,
effectively monitoring and implementing rescheduling activities poses a significant
challenge, particularly when dealing with patients at a higher risk of drug
interactions [8]. It is a common practice to maximise the distance between the
administration times of drugs that have interaction. However, this approach is
sometimes ineffective as a drug’s effect does not always start right after it has been
administered.

An enhanced approach to rescheduling measures to minimise the interaction could
consider CMAX as a key factor. CMAX is the peak concentration of a drug in the
body after administration, and it is a crucial parameter in determining dosing
schedules. A drug needs to reach a high enough concentration for effectiveness

104

6.1. Drug administration scheduling

while avoiding side effects. In pharmacokinetic studies, CMAX is widely used to
understand drug-body interactions, as it represents the maximum concentration
of the drug [34]. CMAX does not indicate the drug’s distribution throughout the
body. Different organs may have varying concentrations, with organs like the liver
potentially having higher values due to the metabolic breakdown. Conversely,
TMAX refers to the time it takes for the drug to reach its peak concentration after
administration, measured in units of time [135, 84]. Opting for a strategy that
maximises the distance between the TMAX values of interacting drugs proves
more effective than solely focusing on maximising administration time.

Figure 6.1: CMAX parameter after drug administration.

Figure 6.1 show how the maximum concentration is reached at time TMAX for an
arbitrary drug. The drug is taken at time zero, where the amount of the drug in the
blood is also zero. After the drug is administered, it is absorbed and metabolized
by the body until it reaches CMAX represented by the red dot at time TMAX.
After reaching the highest concentration, the level of the drug in the blood starts to
decrease. Absorption and elimination times vary for different drugs and different
people. When finding the right time for administering a drug we should consider
the time the highest concentration is reached (TMAX), and use this information
when trying to avoid the effects of interactions between this and other drugs. Even
though understanding the relationship between CMAX and TMAX for a drug
and how this may vary when given to different people (e.g., how genetics may
affect drug absorption, how taking drugs over prolonged periods of time may
change, etc) is outside the scope of the present thesis, we provide an approach
that given such values (and the more we may know about them in time) can

105

6. DRUG SCHEDULING OPTIMISATION FOR MINIMISING DRUG INTERACTIONS

offer personalised advice on how to schedule drugs to minimise the effect of their
interactions.

6.2 Ontology pharmacokinetic parameters

The Beers Criteria ontology provides a knowledge base to support health pro-
fessionals in taking decisions and provides relevant data for considering several
situations. As seen in earlier chapters, our framework so far uses the ontology to
identify PIMs, classify them according to the Beers Criteria PIMs type, and provide
alternative drugs (if available) to avoid them. A further approach to enhance our
framework consists of allowing drug scheduling to maximise drug efficacy whilst
minimising the interactions. The SMT scheduling model considers the TMAX
values as a parameter for the scheduling process; hence, these values have to be
formalised in the ontology in order for the solver to be able to consider them.

Each drug class in the ontology has to be enriched with a TMAX value, that is, a
value which corresponds to the time when CMAX is expected to be reached for that
drug class. This is given by the data property hasCmaxTime (cf. Figure 3.4) which
assigns the value TMAX to a drug class. For example, after taking Paracetamol,
it takes on average 60 min for paracetamol to reach CMAX. Consequently, in its
ontology class hasTmaxTime is assigned the value 60.

6.3 Rescheduling measures to minimise the

interaction

Our SMT scheduling model aims to minimise the interaction among drugs by
rescheduling them, maximising the distance between their corresponding TMAX
values. This is different from current practice where the usual way of minimising
drug interaction is by maximising the distance between administration times.
To exemplify the usual way of minimising drug interaction, let us consider the
following scenario: two drugs (Drug A and Drug B) have been prescribed to a
patient with the recommendation to be administered twice a day with an interval
of twelve hours. That means for example that if one of the drugs is given at 8 AM,
then it has to be given again at 8 PM. However, let us assume that these drugs
have an interaction and they are rescheduled to maximise their administration
times. Considering that each drug has to be given twice daily, the best we can

106

6.3. Rescheduling measures to minimise the interaction

do is to keep their administration six hours appart. Figure 6.2 illustrates the
administration of Drug A and Drug B in one day (24 hour period) in a way that
maximises the distance between their administration. In this solution, Drug A
would be administered at 12 AM and 12 PM, and Drug B at 06 AM and 06 PM.

Figure 6.2: Prescriptions schedule.

Figure 6.2 also shows when each drug instance reaches its corresponding CMAX
value. For Drug A (red curve) this is around six hours after being given, whereas
for Drug B (blue curve) this is in less than two hours. When considering the
times in which drugs achieve their CMAX value (given by their TMAX), it is
clear that maximising drug administration in this case has the opposite effect than
desired, as the distance between the drug’s TMAX values was not maximised. In
other words, ignoring TMAX values when rescheduling drugs may lead to worse
outcomes. Conversely, an approach that considers TMAX values for interacting
drugs is likely to be more accurate and safer.

Figure 6.3 shows the result of rescheduling the drug instances from the previous
example, considering TMAX. In this scenario, Drug A is administered at 00 and 12,
while Drug B is administered at 10 and 22. The administration’s distance is two
hours; however, the distance between TMAX points is six hours.

The rescheduling measure to minimise the interaction that considers TMAX was
shown to be more effective than only considering administration times. It can be
straightforward to reschedule two drugs; however, when more drugs are added
and more constraints must be considered (such as fixed administration times or
meal times), this quickly becomes complex and time-consuming.

To enable automated drug rescheduling considering all necessary constraints and
drugs, we adopt an SMT-based approach in line with what we have done before

107

6. DRUG SCHEDULING OPTIMISATION FOR MINIMISING DRUG INTERACTIONS

Figure 6.3: Rescheduling prescriptions.

for detecting interactions but where the power of arithmetic’s of SMT solvers is
now been used. Before explaining the approach, we describe all constraints that
must be considered in the model.

6.4 Rescheduling constraints definition

The rescheduling model includes a set of constraints that must be satisfied to
optimise the distance between TMAX points. Constraints are logical conditions or
restrictions inflicted on the variables in their formulae, and can be used to specify
relationships, conditions, or limitations that must be satisfied by the variables to
find a satisfying solution to the formulae. Here, we can use them to formulate
conditions over our TMAX values.

The first and main constraint is the interaction between drugs. An interaction can
lead to undesired effects, such as increasing or decreasing the concentration of
a drug, which may result in clinical toxicity or decrease the therapeutic efficacy
of the individual drugs. Interactions can happen among two or several drugs.
For example, consider that a patient has a prescription containing a set of drugs
{A,B,C,D}. Let their assigned daily administration times (in a 24 hour period) be
given by ha, hb, hc and hd respectively. Let us assume that A and B interact, as do
C and D. Consider the following constraints:

Constraint 1 ∃ha,hb(A(ha)∧B(hb)∧¬B(ha)∧¬A(hb))

Constraint 2 ∃hc,hd(C(hc)∧D(hd)∧¬D(hc)∧¬C(hd))

Constraint 1 above makes sure that drugs A and B are not administrated at the

108

6.4. Rescheduling constraints definition

same time. This can also we expressed as:

∃ha ̸=hb(A(ha)∧B(hb))

Similarly, Constraint 2 does this for drugs C and D. There are also cases where
more than two drugs interact simultaneously. For example, if we now assume that
A, B and C interact, Constraint 3 below enforces that the drug times for A, B and C

do not coincide, though nothing is said about hd which can potentially coincide
with either of the other administration times.

Constraint 3 ∃ha,hb,hc,hd(A(ha)∧B(hb)∧C(hc)∧D(hd)∧¬A(hb)∧¬A(hc)∧¬B(ha)∧
¬B(hc)∧¬C(ha)∧¬C(hb))

Besides formalising drug interactions as above (and further formalising distances
between drug administration times and making sure they are maximal), additional
constraints have to be considered for each drug in a prescription, such as the drug
frequency and fixed times. As previously mentioned, drug frequency refers to
the number of times the drug will be administered in 24 hours, and fixed times
are composed of the hours that this drug must be administered, for example,
before or after meals. The following First order logic (FOL) formula was defined
to formalise the frequency constraint of three times per day for drug A (ha) and
imposes fixed times for drug B, here hb1 and hb2, at 10 and 22 respectively.

Let ha,hb1,hb2 be times (hours) within a day, i.e., 0 ≤ ha,hb1,hb2 ≤ 24.

∃ha,hb1,hb2(A(ha)∧A(ha+8)∧A(ha+16)∧

B(hb1)∧ (hb1 == 10)∧B(hb2)∧ (hb2 == 22))

In the formula above, and as in the earlier constraints, we use D(hd) to indicate the
time, hd, when drug D is administered. In this example, drug A is administered at
time ha, time ha+8 and time ha+16. For drug B the values are shown explicitly
(though could be specified in relation to each other).

Another essential constraint that has to be considered concerns the TMAX time.
The rescheduling process aims to maximise the distance between TMAX values of
interacting drugs. Therefore, interacting drugs have to be administered at times
such that together with their TMAX value, they do not clash on times when their

109

6. DRUG SCHEDULING OPTIMISATION FOR MINIMISING DRUG INTERACTIONS

concentration in the blood (CMAX values) are the highest.

Below, let T max(D,hd) = hd+T MAX denote the time that drug D reaches its CMAX
value if given at time hd. For instance, T max(A,ha) = ha+2 would suggest that
the CMAX for A is reached within two hours of administration and hence at time
ha+ 2 with respect to administration time ha. The following constraints were
added to the previous formulae:

T max(A,ha) = ha+2 ∧ T max(B,hb1) = hb1+1 ∧ T max(B,hb2) = hb2+1

which describe when CMAX is reached for A and B with respect to their adminis-
tration times (for A as mentioned before, whereas two hours for B).

In addition, when scheduling these two drugs we want to ensure that their CMAX
values are not happening at the same time. This means that our solver will find
assignments for the variables in such a way that the following constraint is met:

∃ha,hb1,hb2((T max(A,ha) ̸= T max(B,hb1))∧ (T max(A,ha) ̸= T max(B,hb2)))

As mentioned before, we also have to ensure that interacting drugs are spaced
out as much as possible. In other words, we do not just want possible values
for ha, hb1 and hb2 (for our example), but values that mean that the TMAX for
drugs A and B are as distant as possible. Hence, we need to assign values for
each interval between drug Tmax instances that have interaction and must be
maximised. Therefore, we defined the following predicates:

• Drug(x) : x is a drug

• Interval(x) : x is an interval

• LessThanOrEqual720(x) : x ≤ 720

The Formula 6.1 defines the value for each interval between drug instances that
have interaction. The interval is always defined between two drug instances;
therefore, if there are two drug instances of two drugs that have interaction, four
intervals will be defined.

110

6.4. Rescheduling constraints definition

∀x∀y
(

Drug(x)∧Drug(y)∧ Interval(interval)

=⇒
(

LessThanOrEqual720((x− y) mod 1440)

=⇒ interval = (x− y) mod 1440
)

∨
(
¬LessThanOrEqual720((x− y) mod 1440)

=⇒ interval = (y− x) mod 1440
))

(6.1)

The Formula 6.1 can be breakdown as follows:

1. Quantifiers:

• ∀x: For all values of x.

• ∀y: For all values of y.

2. Predicates:

• Drug(x): x is a drug.

• Drug(y): y is a drug.

• Interval(interval): interval is an interval.

• LessThanOrEqual720(x): x is less than or equal to 720.

3. Implication:

• =⇒ : Implies or implies that.

4. Logical Structure:

• The formula asserts that for all drugs x and y and for any interval
interval, if x and y are drugs and interval is an interval, then either:

– If (x− y) mod 1440 is less than or equal to 720, then interval is
equal to (x− y) mod 1440.

– Otherwise, if (x− y) mod 1440 is greater than 720, then interval is
equal to (y− x) mod 1440.

This formula captures a logical relationship between drugs x and y and an interval
interval. It states that the interval is determined based on the value of (x− y)

111

6. DRUG SCHEDULING OPTIMISATION FOR MINIMISING DRUG INTERACTIONS

mod 1440 and whether it is less than or equal to 720. The OR condition allows for
two possibilities depending on the comparison result. If (x− y) mod 1440 is less
than or equal to 720, then interval is set accordingly. If it is not less than or
equal to 720, then interval is set based on (y− x) mod 1440.

In summary, our examples have highlighted the types of rules that we have to
formalise and convert to the SMT solver:

• Drug frequency and the interval between drugs

• Drug with fixed time

• Drug administration must be in a 24-hour windows time

• Interval between the administration time and the Tmax time

The examples above demonstrate the process of formalising constraints that have
to be given to the SMT solver before a solution (rescheduling) can be determined.
As mentioned, additional constraints (meal times, patient preference, hospital
routines) are formalised (if required) with the same principles. The following
section details how these constraints are converted into the SMT code and how
the distance between TMAX points for interacting drugs are maximised.

6.5 A SMT model for rescheduling drugs

The formalisation of the schedule constraints in FOL offers a thorough explanation
of how the rules must be specified for the SMT model. In this section, we will
detail how the constraints were converted into SMT.

6.5.1 Model constraints

The SMT model consists of variables, constraints, and rules or axioms that define
the model assumptions. The SMT solver analyses the model and attempts to find
a satisfying assignment of values to the variables that satisfies all the constraints.
Additionally, to handle constraints, SMT optimisation extends the capabilities of
SMT solvers to find optimal solutions that maximise or minimise an objective
function. SMT solver optimisation searches for the optimal solution by iteratively
refining the assignment of values to the variables, considering both the constraints
and the objective function.

112

6.5. A SMT model for rescheduling drugs

The SMT rescheduling model consists of a sequence of steps. First, we define the
drug instances with their constraints, then we define the interaction rules, and
finally, we define the objective function to maximise the distance between TMAX
points and check the results.

6.5.1.1 Declaring drugs and constraints

The drug declarations consist of declaring an instance for each time that a drug is
administered. For example, if drug A is administered three times a day, then three
instances A1, A2 and A3 of this drug will be declared. Additionally, for each drug
instance is also declared a Tmax instance, in which for drug A would be A1Tmax,
A2Tmax and A3Tmax. Moreover, the Tmax value is the difference between the
drug and Tmax instances, for example, A1−A1T max. Finally, there are drugs in
which the administration time is fixed, therefore, a value is assigned for the drug
instance. For example, let us suppose that drug "B" has to be administered at 8
AM and 8 PM, hence, the instances would be assigned as B1 = 8 and B2 = 20. The
process of declaring drugs and constraints is implemented in Algorithm 7.

The Algorithm 7 receives the variables drugName, interval, schedule, fixedtime, and
Tmax. The drugName refers to the name of the drug, interval refers to the number
of times that the drug has to be administered, schedule is a list of administration
times for the drug instances in the prescription. fixedtime if the schedule times are
fixed, that means, need to be administered at the defined times and finally Tmax
refers to the value of the Tmax.

The Algorithm 7 starts by checking if the drug has to be administered at fixed
times(row 2). If it is not, then the interval(in minutes) between each instance
is assigned to the variable drugInterval(row 3). Next, it is defined the drugTmax
and the drug for each instance, both variables are defined as Integer (rows 6 and
7). Then, it is checked if there is more than one instance of the drug; if there is,
then the distance between the previous and current instances must be equal to
the drugInterval (rows 8 and 9). After, is defined the value of drug considering
the Tmax value and 24-hour windows, hence, it is calculated with the mod(%)
operator in 1440 minutes, which corresponds to 24 hours (row 10). Thereafter,
it is defined that drug and drugTmax, must be assigned with values between
24-hour windows (rows 11 and 12). Finally, is defined that the drug should be
administered in even hours (row 13), however, it is not a mandatory constraint
hence, a soft constraint was defined for it.

113

6. DRUG SCHEDULING OPTIMISATION FOR MINIMISING DRUG INTERACTIONS

Algorithm 7: Algorithm for creating drug instances
1 def createDrugInstances(drugName, interval, schedule, fixedtime,

Tmax):
2 if fixedtime == ’N’ then
3 drugInterval = 24

interval ×60
4 interval = interval+1
5 for x in range(1, interval) do
6 drugTmax = Int(drugName(x)Tmax)
7 drug = Int(drugName(x))
8 if x > 1 then
9 s.add(drug−drugName(x−1) == drugInterval)

10 s.add(drug == (drugTmax−Tmax)%1440)
11 s.add(drug ≤ 1440,drug ≥ 1)
12 s.add(drugTmax ≤ 1440,drugTmax ≥ 1)
13 s.add_soft(drug%120 == 0)

14 else
15 schedindex = 0
16 interval = interval+1
17 for x in range(1, interval) do
18 drugTmax = Int(drugName(x)Tmax)
19 drug = Int(drugName(x))
20 s.add(drug == (drugTmax−Tmax)%1440)
21 s.add_soft(drug%120 == 0)
22 s.add(drug == (int(schedule[schedindex]))×60)
23 schedindex+= 1

Drugs that are administered in fixed time are declared from rows 15 to 23. The drug
and drugTmax instances are declared in rows 18 and 19 , the distance between the
drug and the drugTmax is calculated in row 20, and the even hours soft constraint
are defined in row 21. Finally, it is assigned the fixed time from the schedule list for
each drug instance in row 22.

6.5.1.2 Drug interaction Rules

The drug interaction rules establish the assertions that aim to increase the distance
(interval) between the administration of drugs with interactions. Therefore, the
administration time interval between drug instances is calculated. Additionally,
for each interval between interacting drugs, the interval is calculated and assigned
a variable named Interval.

114

6.5. A SMT model for rescheduling drugs

The Algorithm 8 details how the intervals are created. The function receives the
interval name name as a parameter. Then, an interval of type integer is defined in
which the interval name+intervalIndex is a sequential number. Finally, the function
returns the variable interval.

Algorithm 8: Algorithm for creating an interval
1 def createInterval(name):
2 intervalIndex+= 1
3 interval = name(intervalIndex)
4 interval = Int(interval)
5 returninterval

The Algorithm 9 assigns the interaction constraint for each interval as previously
explained. The algorithm receives as a parameter a dictionary dicDrug with a
pair of drugs, with the drug name and administration frequency, for example,
Drug A, three times a day. These drug’s name and frequency are assigned to
variables(rows 2 to 6). Then, the drug1 T max and drug2 T max names are defined
in the for loops(rows 7 to 10). Next, a variable interval is defined for each interval
between two drug instances. Finally, it is assigned the constraint for each interval
and declared a constraint(Distinct) that the drug instances cannot have the same
value.

Algorithm 9: Algorithm for creating drug rules
1 def createDrugRules(dicDrug):
2 drugs = list(dicDrug.keys())
3 drug1Name = drugs[0]
4 drug1Freq = dicDrug[drug1Name]
5 drug2Name = drugs[1]
6 drug2Freq = dicDrug[drug2Name]
7 for x in range(1, int(drug1Freq)+1) do
8 drug1 = drug1Name(x)Tmax
9 for i in range(1, int(drug2Freq)+1) do

10 drug2 = drug2Name(i)Tmax
11 interval = createInterval(′interval′)
12 s.add(If((drug1−drug2)%1440 ≤ 720, interval ==

(drug1−drug2)%1440, interval == (drug2−drug1)%1440))
13 s.add(Distinct(drug1,drug2))

115

6. DRUG SCHEDULING OPTIMISATION FOR MINIMISING DRUG INTERACTIONS

6.5.1.3 Maximising the distance between interacting drugs

Once all the constraints and intervals are defined, the objective function maximise

is defined to maximise the distance between intervals. The intervals are grouped
in a list, which is passed as a parameter to the Algorithm 10. In the algorithm, the
intervals are summed and assigned to the variable ob j(row 2). Then, this variable
is defined in the object function maximise in row 3, in which the SMT solver aims
to solve the constraints and maximise the value of each interval.

Algorithm 10: Algorithm for maximising distance between intervals
1 def createDrugRules(intervalList):
2 ob j = Sum(intervalList)
3 s.maximize(ob j)

6.6 Example of rescheduling

To provide a realistic example of how the solver defines each interval, we defined
an example in Table 6.1. In columns D1 and D2, we give some fictional values
(in minutes) for drugs D1 and D2. Then, we calculate the difference between D1
and D2 in column 3. Next, we calculate the modulo of the result considering 1440
minutes (24 hours). The modulo operation can be used for calculations involving
cycles or repetitions; in this case, it represents a 24-hour window.

D1 D2 - D1 D2 mod (- D1 D2) 1440 (ite (<= (mod (- D1 D2) 1440) 720) THEN ELSE Result

1 60 1440 -1380 60 THEN 60 1380 60

2 120 1380 -1260 180 THEN 180 1260 180

3 420 1080 -660 780 ELSE 780 660 660

4 480 1020 -540 900 ELSE 900 540 540

5 1020 480 540 540 THEN 540 900 540

6 1080 420 660 660 THEN 660 780 660

7 1380 120 1260 1260 ELSE 1260 180 180

8 1440 60 1380 1380 ELSE 1380 60 60

Table 6.1: Rescheduling interaction rule

Afterwards, we define the ite (if-then-else) function to compare if the result
of (mod(−D1D2)1440) is lower or equal to 720 (12 hours), which corresponds

116

6.6. Example of rescheduling

to the maximum possible distance between two instances. If the result of
the ite function is lower than 720, then the value from column THEN is as-
signed to the variable interval. The THEN column corresponds to the assertion
(= interval1(mod(−D1D2)1440)), which is the one defined in the ite function.
However, if the result is higher than 720, then the value from the column ELSE is
assigned. The ELSE column corresponds to the inverse assertion of the ite function.

Figure 6.4 below illustrates three examples of drug scheduling. The first and the
second correspond to rows 2 and 4 from Table 6.1. In the first example, the interval
to maximise is between D2 and D1, with value 180 (THEN column). In the second
example, the interval that has to be maximised is between D1 and D2, with value
-540 (column ELSE). In the third example, the drugs are already optimised and do
not require further maximisation.

Figure 6.4: Drug Scheduling.

Now, let us consider a set of three drugs, {A,B,C}, with the following constraints:

• Constraint 1: Drug A has to be administered three times in 24 hours with an
interval of 8 hours

• Constraint 2: Drug A reaches Tmax in 2 hours

• Constraint 3: Drug B has to be administered at fixed times 8 AM and 8 PM

• Constraint 4: Drug B reaches Tmax in 1 hour

• Constraint 5: Drug C has to be administered two times in 24 with an interval
of 12 hours

• Constraint 6: Drug C reaches Tmax in 1 hour

• Constraint 7: Drug A interacts with Drug B

• Constraint 8: Drug A interacts with Drug C

117

6. DRUG SCHEDULING OPTIMISATION FOR MINIMISING DRUG INTERACTIONS

• Constraint 9: Drug B interacts with Drug C

• Constraint 10: The administration time has to be preferably in even hours in
accordance with the hospital routine

In the given example, interactions exist amongst Drug A, Drug B and Drug C.
According to the constraints, Drug A must be administered thrice daily, which is
declared by three instances. There are also TMAX variables for each drug instance.
For example, Drug A has instances A1, A2 and A3 with corresponding TMAX
instances A1Tmax, A2Tmax and A3Tmax, and similarly for the other drugs. The
drug instance A1 is equals A1Tmax minus 120. The definition of the constraints
for Drug B has to consider fixed times instead of intervals. Therefore, instances
have to be defined as B1 (9 hours) and B2 (21 hours).

Drug A has three instances and Drug B two, consequently, six intervals between
all drug instances have to be created. The rescheduling model has to assume
a 24-hour (1440 minutes) window to calculate the interval difference between
drugs. For example, if Drug A is administered at 11 PM and Drug B at 2 AM,
the difference between these instances could be either 3 or 21 hours. In other
words, if we calculate the distance between 11 PM to 2 AM we get 3 hours, while
if we calculate it between 2 AM and 11 PM we obtain 21 hours. Nevertheless, the
rescheduling model considers the lowest distance, which can be a maximum of 12
hours (or equivalently 720 minutes). The same approach has to be defined for the
interaction between Drug B and Drug C

A possible solution(s) for the example consists of value assignments for each
instance that satisfy all constraints (cf. Table 6.2). The table values are represented
visually in Figure 6.5. The results demonstrated that the solver was able to avoid
overlapping TMAX values. The minimum distance between Drug A and Drug B
instances is 1 hour, between Drug A and Drug C is 2 hours and between Drug B
and Drug C is 5 hours. The soft constraint, which states that the administration
time should be in even hours, was partially satisfied as Drug C instances were
assigned to be administered on odd hours.

118

6.7. Summary

Drug Instance Administration time Tmax time

A

1 4 6

2 12 14

3 20 22

B
1 8 9

2 20 21

C
1 3 4

2 15 16

Table 6.2: Rescheduling solver result

Figure 6.5: Rescheduling prescription result.

6.7 Summary

In this chapter, we presented a novel rescheduling SMT solver-based approach to
minimise drug interaction problems. Additionally, we explained how the schedule
constraints were formalised in FOL and converted into SMT code. Finally, we
illustrate and discuss the solver results for a hypothetical scenario.

Details on the experiments we conducted are discussed separately in the next
chapter. This includes all experiment’s inputs and results for the rescheduling
approach discussed in this chapter.

119

7CHAPTER SEVEN

FRAMEWORK
DEVELOPMENT AND

TESTING

In this chapter, we discuss the development and integration of the various compo-
nents that make up the CDSS framework. We previously covered the formalisation
and requirements of each individual component. Here, we demonstrate how both
the requirements and formalised rules were implemented into the knowledge
base and the inference engines. Additionally, we describe the validation of the
adopted approach by executing test cases in order to ensure the correctness and
completeness of the framework.

7.1 Framework development

The development of the CDSS framework involved defining requirements, creating
a taxonomy, formalising inference rules and constraints, and integrating several
reasoning engines to address different possible outcomes. Figure 7.1 illustrates
the CDSS framework internal information flow. The dataflow starts from the Input
module, in which the information that composes the Knowledge base is provided
and from the hospital EMR, in which the patient data is submitted to the CDSS
framework.

121

7. FRAMEWORK DEVELOPMENT AND TESTING

Figure 7.1: The internals of the CDSS framework

The knowledge base comprises the Beers Criteria Ontology and the SWRL rule
base. The Beers Criteria Ontology defines the taxonomy, objects and data
properties and its rules (e.g. disjoint, equivalence, domain, range). The SWRL
rule base consists of inference rules for drug inappropriate drugs and alternative
drugs. Both components were developed and overseen by the Ontology and Rule
Editor within the Protégé tool [1]. As the ontology/rules can be edited, and this is
a shared ontology, it would need version control and an update protocol to ensure
correctness when updated. The process of converting the Beers Criteria list and
Alternative Drugs list is done manually.

The Ontology data integrator then converts these data using the OWLReady1 [85]
1Owlready is an OO Programming library in Python with automatic classification and high-

level constructs for biomedical ontologies

122

7.1. Framework development

library to integrate them with the inference engine components. Next, the ontology
Reasoner integrates these data with the Knowledge base. The Pellet2 [142]
reasoner was selected due to its functionality to check the consistency of ontologies,
compute the classification hierarchy, incorporate Semantic Web Rule Language
(SWRL) rules in reasoning, explain inferences, and answer Simple Protocol and
RDF Query Language (SPARQL) queries. Moreover, Pellet does reasoning over
object and data properties, unlike, for example, Hermit, which only considers
object properties. The Reasoner then infers patient data over the Knowledge base
aiming to detect interactions and alternative drugs.

After performing the reasoner, a SPARQL query is performed into the reasoner
assertions to check if interactions were detected. Thereafter, the CDSS checks
if interactions are not found, and then a sat prescription message is sent to the
CDSS Database. However, if interactions are found, they are sent to the SMT
alternative solver component. The SMT alternative solver first queries the reasoner
to check whether there are alternative drugs. If alternative drugs are found, then
interaction rules, the prescription drugs and the alternative drugs are converted
for the SMT solver, which was developed in Z33 [40]. Z3 solver was selected
because it supports datatypes and quantifiers, which were necessary for modelling
the alternative constraints model and due to its API with Python. The solver
checks which alternative drugs do not have interaction with other drugs and if
prescriptions that satisfy all the constraints can be found. If prescriptions are
found, they are sent to the CDSS Database; otherwise, the drug interactions are
sent to the SMT rescheduling solver component. The component first selects
only the interaction between drugs, which are the ones that can be rescheduled,
and queries the ontology to get the Tmax value of each drug. Next, the solver
reschedule the drugs. If a valid schedule can be found, the solver sends it to the
CDSS Database. Additionally, a list of all the interactions that were found and
a list of valid alternative drugs are also sent to the CDSS Database. The CDSS
framework source code developed in Python can be seen in the Appendix F.

Once the results of our approach are stored in the CDSS database, they can
be retrieved and displayed for health professionals to support the decision
process. As the Beers Criteria provide the Quality of evidence and the strength of

2Pellet is the OWL 2 Description Logics reasoner
3Z3 is a theorem prover for solving satisfiability modulo theories (SMT) problems. It supports

various input formats, including SMT-LIB, SMTLIB2, and programmatically using APIs in
languages such as C++, C#, Java and Python.

123

7. FRAMEWORK DEVELOPMENT AND TESTING

recommendations, the PIM alerts could be customised to display only relevant
alerts for the professionals. Moreover, the rationale of the PIM drug could be
displayed when requested in order to explain the reasons for the drug to be
classified as PIM.

7.1.1 Beers Criteria ontology

In Chapter 4, we detail the formalization of the Beers Criteria through an ontology.
This section will detail how this ontology was developed and how the inference
rules were defined.

Figure 8.1 illustrate the ontology classes taxonomy, object and data properties. To
detail how the taxonomy was defined, we expanded some BeersCriteria classes.
The BeersCriteria class is composed of the main classes DDDS, DDI, B.PIM, UWC
and VLKF. The interaction between drugs and disease or syndrome is defined in
the DDDS class. This class is composed of four subclasses which represent a group
of diseases. The DDDS_Cardiovascular has two disease subclasses DDDS_Heart_-
Failure and DDDS_Syncope. The DDDS_Heart_Failure comprises six subclasses
representing the drugs associated with this disease. The same approach was used
to define the taxonomy of all other classes that compose the ontology. Additional
parameters were defined in the ontology, such as disjoint classes, which means
that an individual cannot belong to both classes. For example, a drug cannot be
both Ibuprofen and Paracetamol; therefore, a disjoint rule is defined.

The object properties are listed in the second column, and the data properties in
the third in Figure 8.1. For these elements, parameters were defined as domain
and range. For example, the object property hasDisease has the domain class
Prescription and the range class Drug. It means that this object can only link
prescriptions with drugs. The same approach was used for data property, but
instead of linking two classes, it linked a class with datatypes(e.g. float, int, string).

After defining the ontology elements, inference rules were defined in SWRL to
detect and categorise the Beers Criteria interactions. In Section 4.1.8, we provide a
fictional example to explain how the link between ontology elements happens and
how inappropriate drugs are classified. Here, we will use the same to demonstrate
the ontology implementation. To recollect, we had a patient named Tom, 75, male,
suffers from a history of falls, has a prescription with four drugs, Metoclopramide,
Triazolam, Codeine and Morphine which are administered by the route injection.

124

7.1. Framework development

Figure 7.2: Ontology elements

First, to exemplify how all the interaction inference rules were translated from FOL
to SWRL(all the ontology SWRL are available in Appendix C), we will consider
the DDI_Opioids/Benzodiazepines rule as follows:

1Patient(?p) ^ Prescription(?pr) ^ Opiate_Agonists(?d) ^ Benzodiazepines(?d2) ^
2hasPatientAgeValue(?p, ?a) ^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d2) ^
3hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4−> DDI_Opioids/Benzodiazepines(?d2) ^ hasInteractionWith(?d2, ?d) ^
5DDI_Opioids/Benzodiazepines(?d) ^ hasInteractionWith(?d, ?d2)

Listing 7.1: Interaction SWRL rule

.

This inference rule aims to detect interactions between the drug categories Opi-
ate_Agonists and Benzodiazepines. Patient(?p) represents an individual patient,
and Prescription(?pr) represents an individual prescription. Opiate_Agonists(?d)

and Benzodiazepines(?d2) represent classes of drugs, with the individual drugs
denoted by ?d and ?d2, respectively. hasPatientAgeValue(?p,?a) indicates the age
value of the patient ?p, while hasPrescription(?p,?pr) means that the patient ?p

has a prescription ?pr. If a prescription ?pr includes drugs ?d2 and ?d, they are
represented by hasDrug(?pr,?d2) and hasDrug(?pr,?d), respectively.

125

7. FRAMEWORK DEVELOPMENT AND TESTING

The rule states that if a patient is over 64 years old (checked by swrlb :
greaterT han(?a,64)), and they are prescribed both Opiate_Agonists and Benzodiaze

pines, then there is a drug-drug interaction between these medications rep-
resented by DDI_Opioids/Benzodiazepines(). Additionally, the interaction be-
tween ?d2 and ?d is bidirectional, represented by hasInteractionWith(?d2,?d) and
hasInteractionWith(?d,?d2).

After defining the inference rules, the reasoner was executed to assess if inappro-
priate drugs could be found. The ontology results and the link between classes
and individuals are depicted in Figure 7.3. In this example, we illustrated the link
between individuals of classes Beers Criteria and Drug Categories. For example,
the individual P1_Codeine is linked to class Codeine, and the same happens
to other drugs. The items highlighted in yellow represent the assertions made
by the reasoner. For example, the individual P1_Codeine is linked to classes
DDI_CNS_Active_Drugs/CNS_Active_Drugs and DDI_Opioids/Benzodiazepines
in the Description:P1_Codeine. Moreover, the Property assertions:P1_Codeine,
shows that this individual also has interaction with P1_Morphine and P1_-
Triazolam.

Figure 7.3: Classes and individuals links

7.1.2 Alternative drug solver

The development of the inference engine to find alternative drugs for the prescrip-
tion involves a two-step process. Firstly, a taxonomy was defined in the ontology
and then, inference rules were developed into the Beers Criteria in order to suggest

126

7.1. Framework development

alternative drugs. Following this, the suggested drugs underwent validation by
the SMT model to ensure that they did not conflict with any other prescribed or
alternative drugs.

To exemplify how these rules were formalised, we will still consider the example
from the previous section. In the example, four alternative drugs were found for
the individual P1_Triazolam. The reasoner used the following inference rule to
assert these drugs:

1Patient(?p) ^ Prescription(?pr) ^ Drug(?d) ^ Anticonvulsants(?d)
2^ Alt_Anticonvulsants(?alt) ^ Drug(?alt) ^ History_of_falls(?pd)
3^ isAlternative(?alt, true) ^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ hasPrescription(?p, ?pr) ^ hasDisease(?p, ?pd) ^ hasPatientAgeValue(?d, ?a)
5 −> hasAlternative(?d, ?alt)

Listing 7.2: Alternative SWRL rule

This rule defines the relationship between a patient, a prescription, a specific
drug, the patient’s age, and the availability of an alternative drug. All the SWRL
alternative rules defined in the Beers Criteria ontology are available in Appendix
D.

The rule can be breakdown as follows:

• Patient ?p represents an individual patient

• Prescription ?pr represents an individual prescription

• Drug ?d represents the class Drug

• Anticonvulsants ?d represents a drug category class

• Alt_Anticonvulsants ?alt represents a class of alternative drugs for the drug
category Anticonvulsant drug

• History_of_falls ?pd represents a medical condition

• isAlternative(?alt, true) specifies that the drug ?alt is an alternative option

• hasDrug(?pr, ?d) indicates that the prescription ?pr includes the drug ?d

• swrlb:greaterThan(?a, 64) checks if the age value ?a is greater than 64,
implying that the patient is over 64 years old

127

7. FRAMEWORK DEVELOPMENT AND TESTING

• hasPrescription(?p, ?pr) states that the patient ?p has a prescription ?pr

• hasDisease(?p, ?pd) indicates that the patient ?p has a specific disease or
condition ?pd

• hasPatientAgeValue(?p, ?a) specifies that the patient ?p has age value ?a

According to the rule, if all the conditions are met, then drugs that belong to
class Alt_Anticonvulsants are considered alternative to drugs that belong to
the drug category Anticonvulsants. Specifically, the relationship between an
Anticonvulsants drug and an Alt_Anticonvulsants drug is represented by the
hasAlternative(?d, ?alt) notation. It indicates the alternative drug ?alt can be used
instead of the prescribed drug ?d.

Figure 7.4 displays the drug alternatives recommended by the ontology reasoner.
The taxonomy Alternative_drug of the selected alternative drugs and the individ-
uals are also displayed It is important to note that in this example, only drugs
identified as an alternative to prescription drugs were included in the taxonomy.
P1_Triazolam is the only individual drug that has alternatives alternative drugs
as illustrated in Property assertions: P1_Triazolam, named alt_Escitalopram,
alt_Fluoxetine, alt_Leviteracetam, and alt_Pregabalin,linked by the object property
hasAlternative.

Figure 7.4: Drug alternatives recommended by the reasoner.

Based on the prescribed drugs and the ontology reasoner assertions, the following
constraints have to be considered in the SMT Alternative Solver:

Drug Interactions:

• P1_Codeine x P1_Enoxaparin

• P1_Codeine x P1_Morphine

128

7.1. Framework development

• P1_Codeine x P1_Triazolam

• P1_Metoclopramide x Patient age > 65

Alternative drugs:

• P1_Triazolam x alt_Escitalopram

• P1_Triazolam x alt_Fluoxetine

• P1_Triazolam x alt_Leviteracetam

• P1_Triazolam x alt_Pregabalin

Precription:

• Number of drugs = 4

These constraints are extracted from the ontology reasoner by a SPARQL query
demonstrated in the Apendix E.4. Then these constraints are inserted in the SMT
Alternative solver as explained in Chapter 5. In Chapter 5, we demonstrated how
the data is converted and inserted into the SMT solver with Python algorithms.
Here, we will demonstrate how drugs and constraints are declared directly in SMT
Lib. Initially, the drug variables of the prescription and alternative are declared in
Listing 7.3, which are defined as a datatype Drug (row 1). Then, are declared the
constants variables to define that the result must have the same number of drugs
as the prescription (rows 2-5). Finally is defined the function Choice which takes a
single argument of type Drug and returns a Boolean value (row 6).

1declare−datatypes ((Drug 0)) (((alt_Pregabilin) (P1_Metoclopramide) (P1_Triazolam) (
P1_Codeine) (alt_Escitalopram) (alt_Levetiracetam) (alt_Fluoxetine) (P1_Morphine
))))

2(declare−fun Drug0 () Drug)
3(declare−fun Drug1 () Drug)
4(declare−fun Drug2 () Drug)
5(declare−fun Drug3 () Drug)
6(declare−fun choice (Drug) Bool)

Listing 7.3: Declaring Drug datatype instances

129

7. FRAMEWORK DEVELOPMENT AND TESTING

A constraint is defined thereafter in Listing 7.4, asserting that the drug constants
have to exist with a true value (rows 1-9). Then are defined drugs which do
not have alternatives and must be true (rows 10-15). Next, are defined the drug
interactions constraints (rows 16-18) and finally are defined the alternative drugs
constraints (rows 19-22).

1(assert (exists ((Drug0 Drug)) (choice Drug0)))
2(assert (and (= (choice Drug0) true)))
3(assert (exists ((Drug1 Drug)) (choice Drug1)))
4(assert (and (= (choice Drug1) true)))
5(assert (exists ((Drug2 Drug)) (choice Drug2)))
6(assert (and (= (choice Drug2) true)))
7(assert (exists ((Drug3 Drug)) (choice Drug3)))
8(assert (and (= (choice Drug3) true)))
9(assert (distinct Drug0 Drug1 Drug2 Drug3))

10(assert (and (= (choice P1_Metoclopramide) true)))
11(assert (exists ((Drug0 Drug)) (choice P1_Metoclopramide)))
12(assert (and (= (choice P1_Codeine) true)))
13(assert (exists ((Drug1 Drug)) (choice P1_Codeine)))
14(assert (and (= (choice P1_Morphine) true)))
15(assert (exists ((Drug2 Drug)) (choice P1_Morphine)))
16(assert (or (not (choice P1_Codeine)) (not (choice P1_Morphine))))
17(assert (or (not (choice P1_Codeine)) (not (choice P1_Triazolam))))
18(assert (or (not (choice P1_Morphine)) (not (choice P1_Triazolam))))
19(assert (xor (choice P1_Triazolam) (choice alt_Escitalopram)))
20(assert (xor (choice P1_Triazolam) (choice alt_Fluoxetine)))
21(assert (xor (choice P1_Triazolam) (choice alt_Levetiracetam)))
22(assert (xor (choice P1_Triazolam) (choice alt_Pregabilin)))

Listing 7.4: Declaring drug constraints

After declaring the variables and the constraints, the solver checks whether these
alternative drugs satisfy all the constraints. In this example, the solver returns
a UNSAT result, meaning a valid prescription could be found. Therefore, drugs
that do not have alternatives have to be rescheduled, aiming to minimise the
interaction.

7.1.3 Rescheduling solver

The rescheduling inference engine uses the TMAX value as a parameter to
maximise the time between CMAX of the different drugs. Hence, the TMAX values
and the administration times or frequency of administration of each drug are
added to the SMT solver. The solver seeks to maximize the distance between the
TMAX values of the drug interaction to minimize the interaction and, consequently,
the adverse effects that can be caused as detailed on Section 6.3. Moreover, this

130

7.1. Framework development

value was added to the Beers Criteria ontology by the data property hasTmax.
Figures 7.5 and 7.6 show how this value(in minutes) was added to the drug classes
Codeine and Morphine.

Figure 7.5: Codeine Tmax data property

Figure 7.6: Morphine Tmax data property

For the rescheduling solver, it is considered only interaction between drugs(DDI).
Hence, these drugs are selected from the ontology using the query demonstrated
in Appendix E.3. In the following example, we will detail the rescheduling model
in SMT Lib for drugs Codeine and Morphine. In this scenario, both drugs were
prescribed to be administered twice a day; thus, two instances of each drug
(P1Codeine(1/2) and P1Morphine(1/2))and of the Tmax P1Codeine(1/2)Tmax
and P1Morphine(1/2)Tmax and the intervals between these drug instances were
declared as follows:

1(declare−fun P1Codeine1Tmax () Int)
2(declare−fun P1Codeine1 () Int)
3(declare−fun P1Codeine2Tmax () Int)
4(declare−fun P1Codeine2 () Int)
5(declare−fun P1Morphine1 () Int)
6(declare−fun P1Morphine1Tmax () Int)
7(declare−fun P1Morphine2 () Int)
8(declare−fun P1Morphine2Tmax () Int)
9(declare−fun interval1 () Int)

10(declare−fun interval2 () Int)
11(declare−fun interval3 () Int)
12(declare−fun interval4 () Int)

Listing 7.5: Drug instances declaration

Thereafter, the values of Tmax were defined for each drug. In row 1 of Listing 7.6,
P1Codeine1 was assigned with mod(−P1Codeine1T max90)1440. It means that
Tmax is reached after 90 minutes of being administrated. The drug administration

131

7. FRAMEWORK DEVELOPMENT AND TESTING

schedule considered 24 hours(1440 minutes); hence, the mod operator was used to
calculate the value within this time period.

1(assert (= P1Codeine1 (mod (− P1Codeine1Tmax 90) 1440)))
2(assert (<= P1Codeine1 1440))
3(assert (>= P1Codeine1 1))
4(assert (<= P1Codeine1Tmax 1440))
5(assert (>= P1Codeine1Tmax 1))
6(assert (= (− P1Codeine2Tmax P1Codeine1Tmax) 720))
7(assert (= P1Codeine2 (mod (− P1Codeine2Tmax 90) 1440)))
8(assert (<= P1Codeine2 1440))
9(assert (>= P1Codeine2 1))

10(assert (<= P1Codeine2Tmax 1440))
11(assert (>= P1Codeine2Tmax 1))
12(assert (and (<= P1Morphine1 1440) (>= P1Morphine1 1)))
13(assert (<= P1Morphine1Tmax 1440))
14(assert (>= P1Morphine1Tmax 1))
15(assert (= P1Morphine1 (mod (− P1Morphine1Tmax 60) 1440)))
16(assert (= P1Morphine1 480))
17(assert (and (<= P1Morphine2 1440) (>= P1Morphine2 1)))
18(assert (<= P1Morphine2Tmax 1440))
19(assert (>= P1Morphine2Tmax 1))
20(assert (= P1Morphine2 (mod (− P1Morphine2Tmax 60) 1440)))
21(assert (= P1Morphine2 1200))

Listing 7.6: Declaration of Tmax for drugs

The interaction constraints between these drug instances are defined in List-
ing 7.7. Rows 1, 2 and 3 define the interaction between P1Codeine1T max and
P1Morphine1T max.

1(assert (ite (< (mod (− P1Codeine1Tmax P1Morphine1Tmax) 1440) 720)
2 (= interval1 (mod (− P1Codeine1Tmax P1Morphine1Tmax) 1440))
3 (= interval1 (mod (− P1Morphine1Tmax P1Codeine1Tmax) 1440))))
4(assert (distinct P1Codeine1Tmax P1Morphine1Tmax))
5(assert (ite (< (mod (− P1Codeine1Tmax P1Morphine2Tmax) 1440) 720)
6 (= interval2 (mod (− P1Codeine1Tmax P1Morphine2Tmax) 1440))
7 (= interval2 (mod (− P1Morphine2Tmax P1Codeine1Tmax) 1440))))
8(assert (distinct P1Codeine1Tmax P1Morphine2Tmax))
9(assert (ite (< (mod (− P1Codeine2Tmax P1Morphine1Tmax) 1440) 720)

10 (= interval3 (mod (− P1Codeine2Tmax P1Morphine1Tmax) 1440))
11 (= interval3 (mod (− P1Morphine1Tmax P1Codeine2Tmax) 1440))))
12(assert (distinct P1Codeine2Tmax P1Morphine1Tmax))
13(assert (ite (< (mod (− P1Codeine2Tmax P1Morphine2Tmax) 1440) 720)
14 (= interval4 (mod (− P1Codeine2Tmax P1Morphine2Tmax) 1440))
15 (= interval4 (mod (− P1Morphine2Tmax P1Codeine2Tmax) 1440))))
16(assert (distinct P1Codeine2Tmax P1Morphine2Tmax))
17(assert−soft (= (mod P1Codeine1 120) 0) :weight 1)
18(assert−soft (= (mod P1Codeine2 120) 0) :weight 1)
19(assert−soft (= (mod P1Morphine1 2) 0) :weight 1)
20(assert−soft (= (mod P1Morphine2 2) 0) :weight 1)
21(assert−soft (>= interval1 360) :weight 1)

132

7.2. Inference engine testing

22(assert−soft (>= interval2 360) :weight 1)
23(assert−soft (>= interval3 360) :weight 1)
24(assert−soft (>= interval4 360) :weight 1)

Listing 7.7: Rescheduling drug interaction declaration

Next, the solver checks for a valid drug schedule considering all the constraints.
The result of the solver is listed in Table 7.1.

Drug/Tmax Minutes Hours

P1Codeine 90 1:30

P1Codeine1Tmax 180 3

P1Morphine1 480 8

P1Morphine1Tmax 540 9

P1Codeine2 810 13:30

P1Codeine2Tmax 900 15

P1Morphine2 1200 20

P1Morphine2Tmax 1260 21

interval1 360 6

interval2 360 6

interval3 360 6

interval4 360 6

Table 7.1: Rescheduling solver result example

7.2 Inference engine testing

The CDSS Framework validation consists of analysing the correctness and com-
pleteness of the inference engines. Several tests were executed in each inference
engine, considering the required parameters to validate the framework results.
Some examples of data input are listed in the Appendix H

133

7. FRAMEWORK DEVELOPMENT AND TESTING

7.2.1 Beers Criteria ontology

In ontology testing, patient and prescriptions inputs were provided to check if
the ontology outputs were correct. This test can be classified as Black Box testing
[14]. The black box testing focuses on the system’s external behaviour. In this case,
provide inputs (e.g., ontology terms, relationships between terms) and observe
the outputs (e.g., inferred relationships, logical consequences) to check if they
align with the expectations and the defined ontology rules. In this context, black
box testing aims to validate that the ontology behaves correctly according to
its intended design and specification. For example, we could provide inputs
like patient age = 65 and prescribed drug = Meperidine and expect the output
PIM_Pain_medications. This partially automated process involves checking if the
ontology content covers the Beers Criteria list. Additionally, ontology reasoners
are used to ensure the consistency of the ontology.

7.2.1.1 Ontology consistency

The consistency test verifies if the ontology is free of inconsistencies and unsatis-
factory classes. The Pellet [142] reasoner was employed with the Protégé 5.0 [1] to
test the ontology consistency. The reasoner revealed no discrepancies regarding
the Beer Criteria ontology.

For example, a class can be considered inconsistent when there is a taxonomy
problem. Figure 4.9 illustrated how a Disjoint Classes rule was formalised. For
instance, an administration route cannot be both Nasal and Injection at the same
time. Therefore, a disjoint rule was created to avoid an individual belonging to
these administration routes simultaneously.

To illustrate how the Pellet [142] reasoner checks the ontology consistency, we
created a new class named NasalIntection. Figure 7.7 shows that this class is
equivalent to Nasal and Injections.

Figure 7.7: Inconsistent Class example

134

7.2. Inference engine testing

However, these classes belong to a disjoint rule. Hence, a class can be either Nasal
or Injection but not both of them at the same time. Consequently, the reasoner
highlighted in red an inconsistency in class NasalInjection as shown in Figure 7.8.

Figure 7.8: Inconsistent class highlighted

Figure 7.9 depicts an individual named InconsistentRoute from type NasalInjection.
This individual is also considered inconsistent as it belongs to an inconsistent class.

Figure 7.9: Inconsistent individual

As the ontology is inconsistent, it is not possible to do reasoning. Therefore, the
reasoner provided an explanation of the inconsistencies that have to be fixed. In
the NasalInjection example, it is shown in Figure 7.10 that there is an individual
InconsistentRoute from type NasalInjection. There is also a DisjointClassses
rule that the classes Intection and Nasal belong to. Finally, it shows the class
NasalInjection is equivalent to Nasal and Injection.

Figure 7.10: Inconsistencies explanation

In order to detect some of the most common pitfalls occurring in the development
of ontologies that could lead to modelling errors, the Ontology Pitfall Scanner!
(OOPS!) [125] was employed. This tool supports the test activity, providing
mechanisms to automatically detect several pitfalls, such as wrong inverse
relationships, unconnected ontology elements, and missing annotations. The
results demonstrate that no pitfall was detected in the Beers Criteria ontology.

135

7. FRAMEWORK DEVELOPMENT AND TESTING

7.2.1.2 Completeness of content coverage - inappropriate medication

We evaluated the ontology content against the defined Beers Criteria. The
results showed that the ontology is 100% complete, as it accurately identifies
inappropriate medications based on its knowledge.

In order to conduct the test, multiple prescriptions were formulated to replicate
each rule of the Beers Criteria. The prescriptions contain the necessary parameters
for a drug to be classified as potentially inappropriate. For example, considering
the criteria from Figure 4.4, there are listed drugs that belong to the drug class
First-generation antihistamines. For this particular group, the only parameter that
matters is the patient age being higher or equal to 65. Therefore, a prescription was
created with all these drugs and a patient with 65 years. Another prescription was
explicitly created for the drug Diphenhydramine, as it is potentially inappropriate
only when the administration route is oral.

These prescriptions were then added into the Beers Criteria ontology and inte-
grated with the reasoner. After that, a query was performed with SPARQL to get
the information from the ontology(Rationale, recommendation, quality of evidence
and Strength of recommendation). Finally, the query results were compared with
the Beers Criteria information to find inconsistent or missing information.

7.2.2 Alternative drug solver

The evaluation of the Alternative solver inference engine comprises two steps. The
first is evaluating the ontology inference rules to check whether the alternatives
suggested by the solver are accurate. The second refers to the SMT model to check
if the prescriptions provided by the solver with the alternative drugs are valid.
The consistency of the ontology has already been checked, so there is no need to
repeat the process.

7.2.2.1 Completeness of content coverage - alternative drugs

To evaluate alternative drugs provided by the ontology inference rules, we adopted
a similar approach to check the inappropriate medications. The alternative drug
rules were analysed to collect the necessary constraints to classify a drug as an
alternative. Then prescriptions were created and integrated into the ontology.
Next, the ontology reasoner was performed, and then queries were performed
with SPARQL to get the alternative drug for each prescribed drug.

136

7.2. Inference engine testing

7.2.2.2 SMT model test - alternative drugs

The SMT model consists of three inputs, prescriptions, interactions and alternative
drugs. Therefore, a set of prescriptions, interactions and alternative drugs were
created to simulate a realistic scenario to check if the SMT model would provide
valid prescriptions.

To evaluate the SMT model, we consider the following constraints:

• Number of prescribed drugs x number of drugs suggested

• Interactions not detected

• Suggestion of invalid alternative drugs

• Valid alternative drugs were not suggested

The first constraint refers to the number of drugs suggested by the solver. We
assumed that the number of drugs the alternative solver provides must be the
same as the original prescription. That means if five drugs were prescribed, the
alternative solver has to provide a valid prescription with five drugs too.

In the second constraint, we checked if the solver could detect all the interactions
and not allow a drug that two drugs that interact belong to the same prescription.
In the following constraint, we check if there are alternative drugs that should not
be suggested for a drug. Finally, in the last constraint, we checked if there were
valid alternatives that the solver did not consider.

7.2.3 Rescheduling solver

The Rescheduling solver test consists of checking if the results provided are
consistent. The following three constraints were validated:

• Drug frequency and the interval between drugs

• Drug with fixed time

• Drugs interaction: drugs where the Tmax times were not maximised

The frequency and interval between drugs refer to the number of times (instances)
a drug has to be administered in 24 hours and the interval between each

137

7. FRAMEWORK DEVELOPMENT AND TESTING

administration. This test aims to check if the number of drug instances and
intervals correspond to the prescription.

The drug with a fixed time constraint refers to a pre-defined administration time.
In this case, the solver cannot change the administration time. Only drugs that do
not have a fixed time can be rescheduled. In this test, we check if the prescription’s
fixed time corresponds to the rescheduled prescription.

Finally, the drug interactions constraint refers to drugs that cannot be administered
simultaneously. Consequently, the administration time between these drugs has
to be maximised. Thus the test aims to check the conflicts in the administration
time of these drugs.

To perform the test, we simulate scenarios that comprise these constraints. Several
prescriptions with different sets of drugs were defined. For example, with different
drug frequencies, fixed times and number of interactions.

7.3 Summary

This chapter demonstrates how the CDSS framework was developed and the
performed tests. We detail the information flow between components and how
they were integrated. Moreover, we list the tools/libs employed to develop the
knowledge base and the inference engines.

Regarding the Beers Criteria ontology, we demonstrate how the requirements
and formalised rules from the previous chapters were implemented in the
ontology. Moreover, we illustrate the relationship between classes, individuals
and properties. Finally, we show how the ontology information was obtained
from the ontology and integrated with the inference engines.

We detail how the requirements were converted into constraints in the solvers.
First, we detail the alternative solver constraints of drug interactions, and
alternative drugs were formalised in the SMT model. Then we demonstrate
how the rescheduling solver was implemented and how the requirements related
to drug interaction, drug administration and Tmax time were formalised in a SMT
model optimisation.

Finally, we detail how each component of the framework was tested in order to
consist the correctness and completeness of the framework. The tests aimed to

138

7.3. Summary

check whether the results provided by each element of the framework were consis-
tent. The results demonstrated that the framework is detecting the inappropriate
drugs according to the Beers Criteria list, suggesting alternative drugs without
having interaction with other prescribed drugs and considering all the constraints
when drugs are rescheduled.

139

8CHAPTER EIGHT

CDSS EXPERIMENTS
AND EVALUATION

This chapter details the experiments conducted with a hospital EMR. Moreover,
we evaluate and compare our CDSS framework with other prescription screening
tools and research. First, we describe the hospital EMR dataset and introduce
some characteristics of patient and prescription profiles. Then some case studies
will be conducted with selected patients to demonstrate how our CDSS framework
can support health professionals and to compare the results with the hospital
CDSS. Moreover, we will evaluate the hospital EMR prescriptions, explain and
discuss the outcomes. Finally, we will compare our CDSS framework with other
prescription screening tools and with the approaches listed earlier in related work.

8.1 Dataset Analysis

Our dataset was provided by a Brazilian hospital Eletronic Medical Record (EMR).
The records are composed of prescriptions, patient data, laboratory exams, vital
signs, main underwent procedures, and previous diseases as shown in the Entity
Relationship diagram in Figure 8.1. The data is restricted to inpatients over 65
years old and was anonymized by the hospital, excluding any possibility of patient
identification. The results may have some impact (positive or negative), which
could affect the hospital’s image. Therefore, the name of the hospital is also not
disclosed.

The dataset tables can be described as follows:

141

8. CDSS EXPERIMENTS AND EVALUATION

Figure 8.1: DataSet tables

• Patient data: patient characteristics (age, gender) and the information
about the hospitalisation (admission, discharge) discharge reason (e.g.,
recovery, transfer, death) and medical speciality (e.g., Cardiology, Oncology,
Neurology, Pulmonology). These records are filled out each time a patient is
hospitalised.

• Prescription: Drugs administered at the hospital must be prescribed and
registered in the prescription table. Information such as drug name, dose,
schedule, interval and expiration date is stored in this table. A prescription
can contain one or several drugs. In the hospital routine, a prescription is
usually valid for 24 hours.

• Lab exams: Exam results are stored in this table with their results.

• Main underwent procedure: This table stores the procedure that is the main
cause of the patient’s hospitalisation.

142

8.1. Dataset Analysis

• Previous disease: register of diseases that the patient has suffered before the
hospitalisation

• Vital sign: physiological parameters such as body temperature, heart rate
and blood pressure measurements.

Table 8.1 shows the general characteristics of the research patients. The data
suggests that Male patients are more likely to be hospitalised. Considering that
only patients over 64 years were considered, the mean age is 77.6. The length of
stay refers to the average number of days a patient is hospitalised. For discharge
reasons, we grouped them into Recovery/Transfer and Death.

Hospitalisation

Gender
Male: 9,531

Female: 8,450

Age(mean, SD): 77.6 - 7.4

Length of Stay(mean, SD): 4.7 - 5.8

Discharge reasons
Recovery/Transfer: 15,965

Death: 2,016

Table 8.1: General characteristics of the considered patients in the dataset

Table 8.2 lists the general characteristics of the prescriptions. The dataset contains
92,273 prescriptions with a total of 1.3 million drugs. This means that, on
average, 5.1 prescriptions with 14 drugs are prescribed per patient during the
hospitalisation.

Total number of prescriptions: 92,273

Total number of prescribed drugs: 1,3M

Prescription per patient (mean, SD): 5.3 - 5.8

Drugs per prescription (mean, SD): 13 - 5.1

Table 8.2: Prescription profile

Table 8.3 lists the most prescribed drugs. These drugs are part of several drug
classes but are mainly related to painkillers, heart diseases and antiemetics.

143

8. CDSS EXPERIMENTS AND EVALUATION

Drug Quantity

Dipyrone Sodium 80,706

Metoclopramide 77,109

Human Regular Insulin 61,272

Glucose 51,194

Morphine 38,627

Captopril 33,939

Omeprazole 33,509

Enoxaparin 28,515

Furosemide 27,970

Ondansetron 27,628

Table 8.3: Leading administered drugs

The 10 most common diseases listed in Table 8.4 provide an overview of the differ-
ent types of hospitalisations and treatments. The leading causes of hospitalisation
are related to oncology treatment, as 4 out of 10 procedures are linked to it.

Disease Quantity

Hospitalisation for continuous administration chemotherapy 1640

Treatment of other bacterial diseases 934

Treatment of pneumonia or influenza (flu) 908

Treatment of clinical complications in oncology patients 637

Coronary angioplasty with stent implantation 562

Treatment of heart failure 533

Excision and suturing with Z-plasty in oncology 484

Treatment of acute ischemic or hemorrhagic stroke 404

Treatment with multiple surgeries 372

Multiple excisions of skin or subcutaneous tissue lesions in oncology 343

Table 8.4: Leading diagnosed diseases

144

8.2. Experiments

8.2 Experiments

The CDSS framework aims to support health professionals in tackling drug
interactions, particularly when faced with elderly patients. To contextualise how
the system could work in a hospital environment, we explain a typical patient
journey in accordance with the hospital dataset. It is noteworthy again that the
hospital employed the Beers Criteria guideline in its CDSS. Moreover, we present
a few real patient cases to introduce how the framework was developed and
demonstrate the obtained results in each case. It also highlights the benefits our
approach would have had in real-life applications.

8.2.1 Patient journey

A typical patient journey illustrated in Figure 8.2 starts with the hospital admission,
which can happen if the patient needs to undergo a scheduled surgery, treatment
or arrives at the emergency department (A&E) as as a result of an emergency.
The patient data is collected, and the patient is admitted to a ward department.
There, physicians may prescribe drugs and care, and request exams in the hospital
Eletronic Medical Record (EMR) system. For prescriptions, these are analysed by
a pharmacist in order to detect and, when necessary, adjust inconsistencies such as
dosage, interactions, repeated drugs, conflicts with the treatment plan, laboratory
exams and scheduling problems. Some inconsistencies are automatically detected
by the CDSS and others manually. After prescriptions have been analysed,
the prescribed drugs are sent to the ward department to be administered by
nurses. The drug administration, whenever possible, is administered at odd times
following hospital rules.

Along the described process, there are several steps in which our framework
could be incorporated to support health professionals. During the prescription
process, the framework could alert the physician when an interaction is detected
and provide an alternative solution, such as another drug or by providing the
scheduled times to minimise the interaction. This same approach can be adopted
in the pharmacist process, supporting the automated detection of prescription
inconsistencies. In cases where the drug scheduling is not in according with the
hospital routines, nurses occasionally also reschedule the drug administration
directly. The framework rescheduling process of our CDSS can support nurses in
their time adjustments in accordance with drug constraints that sometimes nurses
are unaware of.

145

8. CDSS EXPERIMENTS AND EVALUATION

Figure 8.2: Patient journey

8.2.2 Experiments - Patient Case Studies

In order to demonstrate how the CDSS framework works with real data, we pick
three patients from the hospital’s EMR. These patients have different profiles
of hospitalisation and disease. With these experiments, we want to evaluate
if the proposed CDSS framework is able to detect inappropriate medications
and compare the outcomes with the systems currently used by the hospital, the
hospital’s CDSS.

The hospital’s CDSS outcome includes the drugs’ names that were classified as
inappropriate during the hospitalisation. Information on the inappropriate Beers
Criteria classification or the number of prescriptions during the hospitalisation
were not available/provided. Therefore, the comparison between the hospital
system and the proposed CDSS is limited to the number of different types of drugs
classified as inappropriate.

8.2.2.1 Case patient 1

The first patient was a 75 years old man who was hospitalised for the treatment
of Parkinson’s disease in the Medical Specialty of Neurology. During his

146

8.2. Experiments

hospitalisation, 25 drugs were prescribed in two prescriptions corresponding
to 12,5 drugs per day. His discharge reason was upon request.

Our CDSS framework found the inappropriate medications listed in Table 8.5.
Six different prescribed drugs were classified as inappropriate in four interaction
groups. In total, 17 cases of inappropriate drugs were identified. From the listed
drugs, the hospital CDSS could only detect two drugs: Quetiapine fumarate and
Promethazine.

Inappropriate medications
Drug Cases

Group Subgroup

DDDS
All antipsychotics Haloperidol 1

Antiemetics Promethazine 1

DDI

Anticholinergic

/Anticholinergic

Clozapine 1

Promethazine 1

CNS Active Drugs

/CNS Active Drugs

Clozapine 1

Escitalopram 1

Haloperidol 1

B.PIM

Antipsychotics first

and second generation

Clozapine 1

Haloperidol 1

Quetiapine fumarate 1

First-generation

antihistamines
Promethazine 1

Insulin sliding scale Regular Human Insulin 2

UWC
Antipsychotics

Clozapine 1

Quetiapine fumarate 1

SSRIs Escitalopram 2

Table 8.5: Patient 1: Inappropriate medications

After detecting inappropriate medications, the next step is to check if alternative
drugs would have been available. The Beers Criteria ontology outcome revealed
alternative drugs for drug Promethazine:alt_Beclomethasone, alt_Cetirizine, alt_-
Fexofenadine, alt_Fluticasone, alt_Loratadine, alt_Saline_nasal_rinse and alt_-
Steroid_nasal_sprays. This would mean that the interactions DDDS - Antiemetics,
DDI- Anticholinergic/Anticholinergic and PIM - First-generation antihistamines

147

8. CDSS EXPERIMENTS AND EVALUATION

could have been solved. However, not all the interactions the given prescriptions
had could have been solved, and consequently, a prescription without interactions
does not exist. Instead, for drug-drug interactions, a rescheduling approach can be
employed to minimise their interaction. In this case, DDI - CNS Active Drugs/CNS
Active Drugs (CloZAPina, ESCitalopram and Haloperidol) can be rescheduled.

The following constraints composed the rescheduling model:

• Drug: CloZAPina

– Interval : 2 x per day

– Tmax: 150

• Drug: ESCitalopram

– Interval : 1 x per day

– Tmax: 300

• Drug: Haloperidol

– Interval : 4 x per day

– Tmax: 270

The rescheduling solver provided the drug administration times illustrated in
Figure 8.3. The schedule does not have TMAX conflicts, all the constraints were
considered, and the interval between drug TMAX times was maximised.

8.2.2.2 Case patient 2

The second patient was a man aged 89 who was hospitalised for surgical treatment
of subdural hematoma in the Medical Specialty of Internal Medicine. During his
hospitalisation, 495 drugs were prescribed in 26 prescriptions which corresponds
to 19 drugs per day. His discharge reason was deceased.

Our CDSS framework found the inappropriate medications listed in Table 8.6.
In total, 14 different prescribed drugs were classified as inappropriate in three
interaction groups. In total, 190 cases of inappropriate drugs were identified.
From the listed drugs, the hospital CDSS could only detect eight of these drugs:
Prometazina, Quetiapine fumarate, Metilprednisolona succinate, Midazolam,
Omeprazole, Risperidona, Sulfato de Atropina and Zolpidem.

148

8.2. Experiments

Inappropriate medications
Drug Cases

Group Subgroup

DDI

Anticholinergic/

Anticholinergic

Chlorpromazine 1

Promethazine 1

CNS Active Drugs/

CNS Active Drugs

Chlorpromazine 1

Diazepam 1

Fentanyl 7

Haloperidol 17

Midazolam 5

Morphine 16

Quetiapine fumarate 10

Risperidone 6

Magnesium Sulfate 1

Zolpidem 3

Opioids/Benzodiazepines

Fentanyl 5

Midazolam 5

Morphine 5

B.PIM

Benzodiazepines
Diazepam 1

Midazolam 5

First-generation

antihistamines
Promethazine 2

Insulin sliding scale Regular Human Insulin 25

Metoclopramide Metoclopramide 26

Nonbenzodiazepine

benzodiazepine receptor

agonist hypnotics

Zolpidem 3

UWC
Antipsychotics

Chlorpromazine 1

Haloperidol 21

Quetiapine fumarate 15

Risperidone 6

Diuretics Mannitol 1

Table 8.6: Patient 2: Inappropriate medications

149

8. CDSS EXPERIMENTS AND EVALUATION

Figure 8.3: Patient 1 rescheduled drugs

For this patient, the CDSS the Beers Criteria ontology found two alternative
drugs (alt_glipiZIDE and alt_metFORMIN) for ClorproMAZINA and seven (alt_-
Beclomethasone, alt_Cetirizine, alt_Fexofenadine, alt_Fluticasone, alt_Loratadine,
alt_Saline_nasal_rinse and alt_Steroid_nasal_sprays) for Prometazina. With these
alternatives, it would have been possible to solve the DDI Anticholinergic/An-
ticholinergic, PIM-First-generation antihistamines and UWC-Antipsychotics for
ClorproMAZINA. Overall, it would not have been possible to find a prescription
without inappropriate drugs. However, it is possible to minimise the DDI - CNS
Active Drugs/CNS Active Drugs by rescheduling the drugs. Hence, we selected a
prescription with four drugs that belong to the category CNS Active Drugs, which
are listed below:

• Drug: Morfina

– Interval : 4 x per day

– Tmax: 60

• Drug: Risperidona

– Interval : 2 x per day

– Tmax: 60

150

8.2. Experiments

• Drug: Haloperidol

– Interval : 2 x per day

– Tmax: 270

• Drug: Quetiapina, fumarato

– Interval : 2 x per day

– Tmax: 90

Through the use of the solver underlying our solution we could reschedule all
drugs maximising the distance between the TMAX times as shown in Figure 8.4.

Figure 8.4: Patient 2 rescheduled drugs

8.2.2.3 Case patient 3

The third patient was a man aged 79 who was hospitalised for treatment of heart
failure in the Medical Specialty of Cardiology. During his hospitalisation, 38 drugs
were prescribed in 3 prescriptions which corresponds to 12,6 drugs per day. His
discharge reason was recovered.

151

8. CDSS EXPERIMENTS AND EVALUATION

Inappropriate medications
Drug Cases

Group Subgroup

DDDS NSAIDs Sodium Dipyrone 3

DDI

Potassium-

sparing diuretics

Enalapril 3

Spironolactone 3

RAS inhibitor Enalapril 3

RAS inhibitor Spironolactone 3

B.PIM

Insulin sliding

scale
Regular Human Insulin 3

Metoclopramide Metoclopramide 3

UWC
Diuretics

Spironolactone 3

Furosemide 3

SSRIs Escitalopram 3

Table 8.7: Patient 3: Inappropriate medications

The CDSS framework found the inappropriate medications listed in Table 8.7.
Seven different prescribed drugs were classified as inappropriate in three interac-
tion groups. In total, 30 cases of inappropriate drugs were identified. In this case,
the hospital CDSS did not find any inappropriate drug. No drugs were found
in the Beers Criteria ontology regarding the alternative drugs. Therefore, drugs
belonging to DDI (Enalapril and Espironolactona) were rescheduled as follows:

• Drug: Enalapril

– Interval : 4 x per day

– Tmax: 240

• Drug: Espironolactona

– Interval : 2 x per day

– Tmax: 200

The drugs were rescheduled according to the TMAX value as illustrated in
Figure 8.5. There is no conflict between TMAX times. However, there is an
interaction between both drugs in six hours of twenty-four. For example, in

152

8.3. Results evaluation

Figure 8.5: Patient 3 rescheduled drugs

hours 6, 8 and 9, both drugs interact; the same happens in hours 18, 20 and 21.
Nevertheless, no solution could avoid the interaction between these drugs due to
the number of intervals and the duration until the drugs reach their CMAX.

8.3 Results evaluation

In this section, we first compare our CDSS framework outcomes with the hospital
CDSS. Then we evaluate the list and discuss the results of the prescription
screening of our CDSS framework for the entire hospital EMR database. Finally, we
compare the CDSS framework features with existing PIMs prescription-screening
tools and with PIMs prescription-screening research.

A hospital pharmacist validated the results presented by our approach. The results
of drugs classified as PIMs, the suggestion of alternative drugs and rescheduled
drugs were validated. The validation showed that drugs classified as PIMs exactly
followed the Beers Criteria. Moreover, alternative drugs had no interactions
with other prescribed drugs and were in accordance with the AGS Health in
Aging Foundation [73] and by Hanlon et al. (2015) [63] guidelines. Finally, the
rescheduled drugs were maximized according to TMAX values appropriately.

Our approach was also demonstrated to a geriatric physician. The doctor

153

8. CDSS EXPERIMENTS AND EVALUATION

highlighted that in medical practice, drugs classified as PIMs are often ignored,
resulting in some situations that result in negative results that could be avoided
with a tool that helps in decision-making. In this way, he emphasized the
importance of automating the detection of drugs classified as PIMs and suggested
finding alternative drugs, which are tasks of significant complexity. If implemented
in medical practice, the doctor assessed that our tool would prevent drugs
classified as PIMs from being prescribed, avoiding adverse clinical outcomes.

8.3.1 Our CDSS Framework versus the Hospital’s CDSS

The CDSS currently used by the hospital was implemented recently. Therefore,
the system was not used to assess most of the prescriptions of the hospital EMR.
Nevertheless, the hospital provided a set of results for 249 patients assessed by
their CDSS. The results include a list of drugs classified as inappropriate according
to the Beers Criteria for each patient during hospitalisation. The patient profile of
this set is detailed in Table 8.8 and the prescription profile in Table 8.9.

Hospitalisation

Gender
Male: 142

Female: 107

Age(mean, SD): 77 - 6.9

Length of Stay(mean, SD): 14,4 - 15,2

Table 8.8: Patient profile

Total number of prescriptions: 3,696

Total number of prescribed drugs: 77,290

Prescription per patient(mean, SD): 14,8 - 15,3

Drugs per prescription(mean, SD): 20,9 - 7,4

Table 8.9: Prescription profile

Compared to the EMR data analysis, there was no significant change in the age
mean and standard deviation. However, the length of stay significantly increased,
impacting the number of prescriptions for each patient during hospitalisation. The
number of drugs per prescription is also higher, which may impact the number

154

8.3. Results evaluation

of interactions per patient. As previously mentioned, the hospital just provides
a list of drugs detected during the patient’s hospitalisation. Other information,
for instance which Beers Criteria category the prescribed drugs belong to, the
hospital’s CDSS is not able to provide. Thus, the comparison between CDSS
outcomes is limited to the number of different drugs that were classified as
inappropriate.

Our CDSS framework could find 2864 inappropriate drugs for the 249 patients,
which corresponds to an average of 11.5 drugs per patient during hospitalisation.
This number does not consider the number of times a drug was prescribed or the
different inappropriate categories a drug could belong to. In total, 70 different
drugs were detected (cf. Table I.1 in the appendix).

Table 8.10 below lists the cases per Beers Criteria categories. It considers the
number of times that a drug was prescribed and the categories that a drug
belongs to. For example, if one inappropriate drug is prescribed three times
during hospitalisation and belongs to two categories, it leads to six cases of
inappropriate drugs. The higher incidence of inappropriate drugs is related to
drug-drug interactions, followed by potentially inappropriate drugs, drugs that
have to be used with caution and drug-disease or syndrome interaction.

Inappropriate drugs Cases

DDI 16321

B.PIM 14432

UWC 7041

DDDS 1823

Total 39617

Table 8.10: Inappropriate drug cases

By contrast, the hospital’s CDSS could find 839 inappropriate drugs, corresponding
to an average of 3.7 per patient. Only sixteen different drugs were detected (cf.
listed in the appendix on Table I.2). Five drugs were detected by the hospital’s
CDSS which were not detected by our framework CDSS: Two of these drugs
(Nitrofurantoin and Atropine Sulfate) refer to version 2023 of the Beers Criteria,
and the other three drugs (PrednisONE, Propafenone and Methylprednisolone
succinate) are not listed in the Beers Criteria.

155

8. CDSS EXPERIMENTS AND EVALUATION

CDSS Inappropriate drugs Number of different drugs

CDSS framework 2864 70

Hospital CDSS 839 16

Table 8.11: Comparative results of Hospital x framework CDSS

When comparing the number of inappropriate drugs detected during hospital-
isation, our framework outperformed the hospital’s system by detecting more
instances. Additionally, the hospital’s CDSS misclassified some drugs that were
not directly relevant to the Beers Criteria, leading to inaccuracies in the provided
information. As such, our CDSS framework provides more reliable and accurate
medication recommendations for health professionals. We also note that our
framework is based on the information contained in Beers Criteria from 2019,
but it can be extended to more recent versions and updated with additional
information that does not appear in the Beers Criteria if there are valid reasons
for doing so. The correctness of the sources used, in other words the information
contained in the Beers Criteria and used by our CDSS, is nevertheless outside of
the scope of this thesis.

8.3.2 Hospital EMR prescription-screening results

8.3.2.1 Results of the Beers Criteria ontology

A prescription screening was performed by our CDSS framework in the hospital’s
EMR to check and tackle occurrences of inappropriate medications. As previously
introduced in Section 8.1, the EMR consists of 1,3 million drugs from 92,273
prescriptions and 17,981 patients aged 65 or above. Table 8.12 summarises the
CDSS framework outcomes.

Inappropriate

drugs

Inappropriate

types

Non-inappropriate

drugs

Total prescribed

drugs

483,204 606,274 822,555 1,305,759

Table 8.12: Summary of Hospital EMR prescription-screening results

In total, 483,204 drugs were classified with at least one category of the Beers
Criteria, which represents 37% of the total drugs prescribed. It means, on

156

8.3. Results evaluation

average, that 5,23 of 13 drugs of each prescription have at least one type of
inappropriate drug. Moreover, 606,274 inappropriate classifications were assigned
to inappropriate drugs.

Table 8.13 lists the number of cases in each Beers Criteria category. The majority of
inappropriate drugs were classified as B.PIM, DDI and UWC. DDDS was not as
representative due to its restriction to specific diseases. In the case of VLKF, this
is due to the creatinine clearance lab results that are a parameter for a drug to be
classified as inappropriate, when the majority of patients did not have this exam
in their EMR.

Interaction Group Interaction cases %

B.PIM 259983 42.9

DDI 226821 37.4

UWC 103053 17

DDDS 16416 2.7

VLKF 1 0

Total 606,274 100

Table 8.13: Hospital EMR Inappropriate medications by group

Table 8.14 lists the five more common subcategories of inappropriate medication
cases. The first is the DDI_CNS_Active_Drugs, corresponding to drugs prescribed
for the central nervous system. Drugs composing this drug class are considered
inappropriate when three are prescribed together. In the EMR, 54 different types
and 110,229 cases of these drugs were prescribed. In Table 8.15, this class is
represented by drugs Tramadol, Morphine, Midazolam, Haloperidol, Clonazepam
and Diazepam. The second is the PIM_Metoclopramide, which refers to the
Metoclopramide drug used to treat nausea and vomiting and increase gastric
motility. It is the second most prescribed drug, as shown in Table 8.3 and the first
commonly prescribed inappropriate drug listed in Table 8.15.

The following subcategory is DDI_Opioids/Benzodiazepines, which refers to the
interaction between the drug classes Opioids and Benzodiazepines. Opioids are
prescribed mainly to treat moderate to severe pain, while Benzodiazepines are
primarily prescribed for treating anxiety and other mental health conditions. This
inappropriate subcategory corresponds to 19 different drug types, and 65,841 cases

157

8. CDSS EXPERIMENTS AND EVALUATION

Inappropriate SubGroup medications Cases %

DDI_CNS_Active_Drugs/CNS_Active_Drugs 110229 18.2

PIM_Metoclopramide 74213 12.2

DDI_Opioids/Benzodiazepines 65841 9.1

PIM_Insulin_sliding_scale 55219 8.4

PIM_Proton-pump_inhibitors 51123 7

Table 8.14: Hospital EMR Inappropriate medications by subgroup

Inappropriate drug Cases %

Metoclopramide 74338 12.3

Regular Human Insulin 48732 8

Tramadol 40368 6.7

Morphine 37158 6.1

Omeprazole 33509 5.5

Midazolam 30463 5

Haloperidol 29131 4.8

Clonazepam 28474 4.7

Diazepam 24255 4

Furosemide 23627 3.9

Table 8.15: The ten most commonly prescribed inappropriate medications

of these drugs were prescribed in the EMR. In Table 8.15, the drugs Tramadol,
Morphine, Midazolam, Clonazepam and Diazepam correspond to this subcategory.
PIM_Insulin_sliding_scale corresponds to the prescription of Human Insulin,
which is prescribed for regulating blood sugar levels in patients with diabetes.
It is the second most prescribed inappropriate drug listed in Table 8.15. Finally,
PIM_Proton-pump_inhibitors refers to the drugs Omeprazole and Pantoprazole
prescribed for treating stomach acid-related conditions.

In Table 8.16, we compared the incidence of inappropriate medications between
different discharge reasons. The column Inappropriate Types lists the average
inappropriate classifications that were assigned to inappropriate drugs. The

158

8.3. Results evaluation

table shows that the incidence of inappropriate medications is higher for patients
who died than those who recovered. Moreover, in Table 8.17, we compared
the mortality rate in patients with a prescription of inappropriate medication
versus those without inappropriate medication. Once again, patients prescribed
inappropriate medications had a higher mortality rate.

Discharge reason Inappropriate types Total patients

Death 60.05 1,976

Recovered 32.78 14,876

Table 8.16: Hospital EMR Inappropriate medications by discharge reason

Mortality rate Death patients Total patients

Patient with

inappropriate medication 11.7% 1,976 16,852

Patient without

inappropriate medication 3.4% 39 1,129

Table 8.17: Mortality rate among patients with inappropriate medication and patients
without inappropriate medication

These values could indicate that prescribing inappropriate medication is associated
with a higher mortality rate. However, we cannot reach this conclusion, as other
variables must be evaluated to analyse the correlation between mortality and
inappropriate medication that is not included in the scope of this research.

8.3.2.2 Results of the Alternative Drug Solver

We now discuss results on the detection of available alternatives for the prescribed
inappropriate medication and the number of solved prescriptions. In total our
CDSS framework detected 102 different drugs classified as inappropriate which
can be replaced by alternative drugs. Table 8.18 summarises the context of the
alternative drugs. The Beers Criteria ontology provided 106 alternative drugs for
22 different prescribed drugs.

In our approach, an alternative drug becomes a prescribed drug when it does not
have interactions with other prescribed or alternative drugs. If all inappropriate

159

8. CDSS EXPERIMENTS AND EVALUATION

Cases

Prescription with

inappropriate drugs
89,602

Satisfiable prescription 152

Unsatisfiable prescription 89,450

Alternatives drug available

for prescription
15,173

Drugs that have alternative 22

Alternative drugs available 106

Table 8.18: Summary of Hospital alternative drugs

drugs are solved, a prescription is considered satisfiable. Nevertheless, if an inap-
propriate drug cannot be solved, then the prescription is considered unsatisfiable.
In total, 89,450 prescriptions had one or more drugs classified as inappropriate,
which represents 97,1% of all EMR prescriptions. For 15,173 prescriptions, one
or more alternative drug were available. However, only 152 prescriptions were
considered satisfiable. It means that less than 1% of the prescriptions could be
entirely solved. We note that this is as expected from experience when elderly
patients take large numbers of medications. It is hence more important to prioritise
and reduce the severity of interactions as opposed to completely eliminate them.

Table 8.19 provides a list of drugs with a significant number of alternative options.
Upon comparing this list to Table 8.15, which details the most commonly pre-
scribed inappropriate drugs, it is observed that none of the alternative drugs listed
in the former table are present in the latter. It implies that the primary alternative
drugs are not applicable to the most commonly prescribed inappropriate drugs.

The low number of satisfiable prescriptions implies that the available alternative is
for specific cases that differ from the EMR inappropriate drugs. For example, most
alternative drugs are available for a particular disease or clinical condition, such as
dementia and history of falls. Moreover, the average number of 5,23 inappropriate
drugs per prescription and 13 drugs per prescription is also a reason that more
prescriptions could not be solved.

160

8.3. Results evaluation

Drug Alternatives

Indomethacin 33

Cyclobenzaprine 33

Thiopental 29

Primidone 29

Phenobarbital 29

Phenobarbital Sodium 29

Haloperidol 13

Quetiapine Fumarate 13

Olanzapine 13

Clomipramine 11

Table 8.19: Drugs with a greater number of alternative drug options

8.3.2.3 Results of the Rescheduling Solver

We now discuss results of the use of the underlying solver in our framework
to reschedule prescriptions. For the rescheduling process we only considered
interaction between drugs (DDI). In total, 47,133 prescriptions, 161,265 drugs and
439,126 drug instances were available to be rescheduled. We recall that we use
drug instance to refer to the number of times the same drug is administered in 24
hours.

The rescheduling solver could maximise the distance of TMAX values from 32973
prescriptions, and 97,305 drugs (or 240,591 drug instances) were rescheduled. In
other words, 54,78% of the available drug instances were rescheduled. The main
reason for not rescheduling drugs in some prescriptions were cases such as drugs
with continuous administration (e.g., saline infusion). In this case, the CMAX is
constant as the drug is administered 24 hours daily. Therefore, there is no way of
maximising the distance with other drugs.

8.3.3 Our CDSS Framework versus Other Existing Tools

In addition to comparing our CDSS framework with the hospital’s most recent
CDSS, we compared it with existing tools that (claim to) address inappropriate
drugs. We defined parameters based on the Beers Criteria to consider patient

161

8. CDSS EXPERIMENTS AND EVALUATION

and prescription drug profiles. Moreover, we evaluated if the tools provided
alternative drugs and if they considered the patient profile. We also looked for
additional approaches to address inappropriate drugs, such as drug rescheduling.
Finally, we checked some essential features, such as being reusable and supporting
the integration with EMR systems. Below are the tools that have been compared:

• AGS Beers Criteria [145]: is an app provided by the American Geriatrics
Society to tackle potentially inappropriate drugs which supports health
professionals in implementing prescribing recommendations.

• MALPIP, STOPP Start, Beers [51]: is a screening tool to issue alerts and in this
way to support health professionals in dealing with inappropriate drugs.

• GlobalRPh [2]: is a website to generate a report of medications from the
Beers criteria based on the patient’s current conditions.

• PIM Check [47]: is a prescription-screening website checklist to detect
potentially inappropriate medications.

Table 8.20 compares these tools and the CDSS framework. The first item evaluated
is the decision based on the patient profile, which means that if a drug is classified
as inappropriate, we consider the patient profile. The only parameter that is
considered by AGS Beers Criteria, GlobalRPh and PIM Check is the patient’s
disease. In contrast, our CDSS framework, considers not only the patient’s
disease, but the age, gender, criticality and laboratory exams, which are required
parameters to classify a drug as inappropriate. The next item refers to the
prescription drug profile. According to the Beers Criteria, some drugs are classified
as inappropriate depending on the patient’s age and the dose, duration of therapy
or if it is a first-line treatment. Therefore, these parameters must be considered to
provide accurate information. None of the tools considers these parameters, only
our CDSS framework.

Another dimension that was evaluated is if the tool suggests alternative drugs
and if this suggestion considers the patient profile. Besides our CDSS framework,
the AGS Beers Criteria tool is the only one which provides a list of alternatives.
However, it is a static list that does not consider the patient profile. Some drugs
are considered alternatives in specific conditions, for example, when a patient
suffers from a disease. Therefore, our CDSS framework provides a straightforward

162

8.3. Results evaluation

Dimension
CDSS

Framework

AGS Beers

Criteria

MALPIP, STOPP

Start, Beers
GlobalRPh

PIM

Check

Decisions based on the

patient profile
Yes Yes No Yes Yes

Age Yes No No No No

Gender Yes No No No No

Disease Yes Yes No Yes Yes

Criticality Yes No No No No

Exams Yes No No No No

Decisions based on the

prescription drug profile
Yes No No No No

Dose Yes No No No No

Duration therapy Yes No No No No

First line Yes No No No No

Suggest alternative drugs Yes Yes No No No

Suggest alternative drugs based

on patient profile
Yes No No No No

Disease Yes No No No No

Check alternative drugs

interaction with prescribed drugs
Yes No No No No

Reschedule drugs for

minimising interaction
Yes No No No No

Based on standard knowledge

(e.g., collected from CPGs)
Yes Yes Yes Yes Yes

Available for reuse Yes No No No No

Interoperable with EMR systems Yes No No No No

Multi-languages label Yes No No No Yes

Table 8.20: Comparison between prescription-screening tools

163

8. CDSS EXPERIMENTS AND EVALUATION

suggestion of alternative drugs, as it considers the patient profile to provide the
suggestions. Additionally, to provide alternative drugs, our framework also
checks if the alternatives do not conflict with other prescribed or alternative
drugs, providing a more accurate suggestion. The AGS Beers Criteria tool does
not take into account the patient’s prescription. If it is impossible to switch an
inappropriate drug with an alternative drug, our CDSS framework provides an
additional solution that minimises the interaction by rescheduling drugs that have
interaction. All the other mentioned tools do not provide a mechanism to address
interactions further.

The standard knowledge incorporated in these tools was also analysed. All the
existing tools consider the Beers Criteria list, whereby some of them consider
the 2015 version of the criteria, whereas our CDSS framework is based on the
2019 version. The tool with the most updated version of Beers is the AGS Beers
Criteria which considers the 2023 version. The tools evaluation also includes
three essential characteristics: availability of a knowledge base for reuse by
other systems, integration with EMR systems, and multi-language label options.
Out of all the options, only our CDSS framework offers the ability to reuse and
integrate. Additionally, PIM Check is the only tool besides our framework that
offers information in two languages. However, the architecture of our framework
allows the information to be defined in any number of languages.

We conducted a comparative analysis of studies aiming to accomplish similar
objectives as our research, as presented earlier in Table 2.1. The purpose was to
identify areas that require further improvement or resolution. Based on that table,
we list the elements that were evaluated with the results of our research as follows:

• Guideline: Beers Criteria

• Shareable knowledge base: Yes

• Alternative drug recommendation: Yes

• Conflict management: Yes

• Drug scheduling recommendation: Yes

• Pharmacokinetics parameters: Yes, Tmax value

• Input: Patient data, disease, exams, prescriptions

164

8.3. Results evaluation

• Output: Inappropriate criteria, rationale, recommendation, strength of
recommendation, quality of evidence, alternative drugs, rescheduled drug
times.

Compared with the studies listed in Table 2.1, our CDSS framework addresses
all the compared elements. For example, it is the only one that provides
alternative drug recommendations with a conflict management tool to select only
the alternatives that do not interact with other drugs. Moreover, it provides another
approach to minimise the interaction by rescheduling the drugs considering the
TMAX value. Finally, it embraces more input data that can be used to provide
more accurate information and provide more outputs to support clinical decision-
making.

The comparison conducted in Table 8.20 and Table 2.1 indicates the current tools
and approaches available for handling PIMs do not provide a comprehensive
solution. It means that these tools/approaches cover only a part of the process of
supporting the decision process, such as the identification of PIMs. Consequently,
it may affect the clinical decision process, leaving healthcare professionals in
charge of finding solutions for medications identified as PIMs. This highlights the
importance of our approach, which presents a complete solution for detecting and
resolving PIMs issues.

8.3.4 Performance Evaluation

To conduct all the experiments, a MacBook with a 2,3 GHz Dual-Core Intel Core
i5 CPU and 16 gigabytes of memory was used. The experiments were conducted
using a database with a total size of 600 MB. This database contained the tables
listed in the Appendix G, which constitute all patient data and prescriptions,
as well as the results of experiments, such as interactions, prescriptions with
alternative medications and rescheduled prescriptions.

Table 8.21 lists the performance of each inference engine to run the experiments.
For comparison purposes, we selected five prescriptions from the hospital database
with the highest number of medications and five with the lowest number of
medications.

Based on the data analyzed, it was found that the average time required to run a
prescription with a smaller number of medications was 20 seconds. In comparison,

165

8. CDSS EXPERIMENTS AND EVALUATION

Prescription Number of Drugs Execution Time Avg Time per Drug

Prescription 1 69 00:00:43 00:00:01

Prescription 2 66 00:00:38 00:00:01

Prescription 3 65 00:00:29 00:00:00

Prescription 4 65 00:00:38 00:00:01

Prescription 5 63 00:00:54 00:00:01

Prescription 6 1 00:00:20 00:00:20

Prescription 7 1 00:00:20 00:00:20

Prescription 8 1 00:00:20 00:00:20

Prescription 9 1 00:00:22 00:00:22

Prescription 10 1 00:00:20 00:00:20

Total 333 00:05:04 00:00:11

Table 8.21: Summary of prescription performance evaluation

for a prescription with a greater number of medications, the average time was
40 seconds. On calculating the average execution time of the total number of
medications with the total execution time, the average value obtained was 11
seconds. It can be observed that there is a significant difference between the
average time taken to run the first five prescriptions as compared to the next
five prescriptions. This indicates that the ontology requires approximately 19
seconds to be loaded and executed, while the impact of the number of drugs on
the execution time is around 1 second per drug. We could not find information
regarding the execution performance of the studies/tools we use as a benchmark
to evaluate our approach. Therefore, we were unable to carry out a comparative
performance analysis.

8.4 Summary

This chapter demonstrated how the CDSS framework performed over a real
hospital EMR dataset. We showed concrete cases of patients from the EMR to
detail the outcomes of each component of the CDSS and compare them with the
hospital’s CDSS outcomes. Moreover, we showed and compared the results of the

166

8.4. Summary

prescription-screening assessment on the hospital’s EMR by the CDSS. The results
demonstrated that our CDSS framework could detect more inappropriate drugs
and provide accurate information based on patient and prescription profiles.

Our CDSS framework was also compared with other prescription-screening tools,
and compare the features and scope of each tool. The results demonstrated that
our CDSS framework is much more comprehensive, the only one that considers
all the Beers Criteria parameters and consequently can provide accurate person-
alised information to support clinical decision-making. Moreover, it is the only
available approach which contains additional mechanisms to tackle inappropriate
prescribing (here in the form of drug rescheduling). Finally, we evaluate studies
with objectives similar to our research. The CDSS framework stands out as the sole
solution that comprehensively addresses all the evaluated items, making it the
most effective personalised approach for addressing inappropriate prescribing.

167

9CHAPTER NINE

CONCLUSIONS

Supporting health professionals in taking better decisions has been the key
motivation for our research to improve the quality of patient care and treatment.
Avoiding patient harm that could lead to death due to inappropriate medications
is a must when defining treatments. Medications should have the purpose of
treating and improving the quality of life and not be a risk to health and life.
However, as shown in our thesis through the complexity of the ontology alone, it
is hard to keep an oversight of the complexity of conditions, drugs, and potential
intolerances patients may have without the aid of automated solutions.

This thesis looked into this problem by exploring how different approaches within
computer science could be combined to provide novel and realistic solutions
currently unavailable to healthcare practitioners. As demonstrated, the current
tools for handling Potentially Inappropriate Medications only cover a part of
the decision process, leaving healthcare professionals responsible for finding
comprehensive solutions for solving Potentially Inappropriate Medications issues.
Through our developed approach, we make a novel contribution to supporting
healthcare providers and avoiding inappropriate prescribing. In this research, we
designed and implemented a CDSS approach that tackles potentially inappropriate
drugs from the Beers Criteria guideline to be in line with best medical practice. The
core of our approach combines formal reasoning activities to detect interactions,
find alternative drugs or minimise the effect of drug interactions and inappropriate
medications in accordance with a recognised knowledge base.

We have covered three sub-questions that summarise our research questions: (1)
how can we formalise PIMs in a clinical knowledge base for reasoning? (2) which

169

9. CONCLUSIONS

reasoning methods best support clinical decision-making for PIMs, and (3) can the
proposed approach be used in practice to identify and solve PIMs in real scenarios?

To address our first sub-questions, we proposed a novel knowledge base that
gathers information regarding potentially inappropriate medications, alternative
drugs and drug parameters of the Beers Criteria guideline to support reasoning
activities. No formalisation of Beers Criteria can be found in the literature that
reasoners (or other automated tools) can interpret. Therefore, we formalised
the Beers Criteria into an ontology that can be shared and integrated with
other knowledge bases or systems and can be continuously updated with new
information. This process involved knowledge acquisition from each Beers
criterion to specify the requirements for determining the classes, building the
taxonomy and defining the object, data and annotation properties that constitute
the ontology.

The second sub-questions was first formalised (and then built) by adding inference
rules to the ontology to determine when a drug was classified as inappropriate and
to suggest alternative drugs. Moreover, we propose an SMT model (though at this
point a SAT-based approach would suffice) to check and suggest only alternative
drugs that do not have interaction with other prescribed drugs. Different from the
evaluated tools, these inference rules considered the patient and prescription
parameters, providing a precise prescription screening result. Additionally,
considering that an alternative drug is not always available, we proposed an SMT
solver based rescheduling approach to minimise the effect of drug interactions
more efficiently than currently done in practice. By considering the TMAX value,
we aimed to avoid/minimise the interaction between drugs at the peak of drug
concentration in the blood(CMAX). We also considered additional constraints
regarding drug administration, such as fixed time of administration and hospital
routines.

Finally, for our last sub-questions, we conducted a proof of concept with an
real hospital EMR to evaluate and compare our CDSS approach with other tools
and studies. The results demonstrated that our CDSS approach could detect
a greater number of inappropriate drugs and offer more precise solutions to
address them. Moreover, we validated the correctness and completeness of the
inference engines. First, we check ontology consistencies with the Pellet [142]
reasoner. Then to test the completeness of content coverage, we provided inputs
by formulating prescriptions that covered each criterion and checked if the outputs

170

9.1. Key Contributions

were in accordance with what was expected.

9.1 Key Contributions

There are several contributions in this thesis:

❋ We have demonstrated how to formalise clinical guidelines in an ontology.
Having the ontology, we can use it further to support prescription screening
to tackle inappropriate medications.

➼ The formalisation process converted the Beers Criteria guideline into
FOL and next into ontology inference rules. The process ranged from
defining guideline requisites to creating inference rules to detect and
propose alternative drugs to inappropriate medications. Formalising
a guideline in an ontology facilitates the reuse of its knowledge by
other systems. The same process can be applied to formalise other
guidelines, reusing the object and data properties employed in the
ontology. Further knowledge can be incorporated similarly, adding new
relationships if and as needed.

➼ The detection of inappropriate medications that considers patient and
prescription profiles to fulfil guideline requirements is a complex task to
be performed by humans. To the best of our knowledge, this approach
addressed all the Beers Criteria requirements and can personalise the
detection and suggestion of alternative drugs for inappropriate drugs.
As Beers Criteria change over time, our approach can be extended and
adapted to cover these changes.

❋ Supporting healthcare professionals in decision making can encompass
several steps. The identification of a drug interaction or inappropriate
medication is the standard approach of a CDSS . Yet, addressing a medication
issue necessitates more than just detection; a CDSS must also aid healthcare
professionals in resolving it.

➼ The suggestion of alternative drugs that consider the patient a pre-
scription profile is an approach that supports addressing medication
problems. Manually doing it when several parameters have to be
considered, is time consuming and error prone. The alternative solver

171

9. CONCLUSIONS

can support health professionals to optimise and mitigate errors by
defining alternative drugs.

➼ The process of rescheduling drugs to minimise is a practice that is
already adopted in hospitals. However, taking into account the TMAX
to provide a more accurate solution is not part of the rescheduling
routines. Thus, our rescheduling solver provides a novel approach that
enhances and optimises the rescheduling process providing a more
accurate way to minimise the effect of drug interactions.

❋ The prescription of inappropriate medications is still a concern that has to be
addressed in Brazilian hospitals (where our dataset is from) and beyond.

➼ The results of the evaluation of the dataset from the hospital’s EMR
demonstrated that the incidence of inappropriate medications is very
high.

➼ The current hospital’s CDSS detected only a small number of inap-
propriate drugs, which may have led health professionals to prescribe
possible harmful drugs for patients without knowing the side effects
when some of these cases could have been avoided.

In 2017, the World Health Organization (WHO) launched the third Global Patient
Safety Challenge to tackle unsafe medication practices and medication errors
[113]. It emerged from the recognition that medication errors and associated harm
remains a problem worldwide. Even though it includes aspects that we cannot
address (like incorrect drug dispensing), we make a contribution to reducing
medication-related harm by focusing on PIMs in the elderly. Indeed, we address
this challenge by offering a digital solution that can be used to provide guidance
to medical practitioners and consequently improve the choice of prescribed
medications in the interest to enhancing patient safety.

9.2 Threats to Validity

Our approach has external dependencies that limit the validity of our tool and,
thus, the validity of our results. For instance, we assume that the drugs defined
as PIMs by the Beers Criteria are correct. However, there are several limitations,
for example, Beers Criteria 2019 states: "Evidence for the benefits and harms
of medications in older adults is often limited, particularly from randomized

172

9.2. Threats to Validity

clinical trials, and so decisions on the composition of the criteria were often
made in the context of best-available, rather than definitive evidence. Moreover,
evidence assessment frameworks are not perfectly tuned to drug safety evaluation,
particularly for observational studies from which much relevant evidence derives."
Hence, if the guideline has any errors, the same error will be applied to our
approach since we fully replicate the rules of the guideline into the ontology.
Moreover, we assume that the results of the ontology reasoner and the SMT solver
are correct, and then we use that information to conduct our evaluation. However,
should the ontology or SMT solver misbehave at some point, the trust in our
results would have to be reassessed.

We have evaluated our approach through a proof-of-concept with a hospital EMR.
However, for this approach to be validated in a real-world environment before
being approved for use, the CDSS would have to undergo some trials to ensure
accuracy and correctness. For example, randomized controlled trials to evaluate
the effectiveness of the CDSS by comparing outcomes between a group using
the CDSS and a control group without it in order to assess the clinical outcomes,
patient safety, and adherence to guidelines. Moreover, accuracy and validation
trials to verify the accuracy of the CDSS in providing relevant information
and recommendations to compare the CDSS outputs against established clinical
guidelines and expert opinions. The feedback from the hospital will go a long way
towards addressing "threats to external validity".

In addition to external threats, there are also some threats to the internal validity
of our approach. For example, the conversion of the Beers Criteria rules to the
ontology is performed manually, hence, errors that could affect the results are
possible. Furthermore, the ontology update process is also carried out manually
and lacks a system that guarantees correct versioning and interoperability with
other systems.

Although the ontology provides multi-language labelling and allows multiple
names to be registered for the same class, such as alternative (commercial) names
of medications, it is subject to misspelling errors. The approach does not address or
validate any spelling errors relating to patient data, medications and prescription
details, either in the ontology or in a patient’s data entry. This may represent a
threat to its applicability in a real-world scenario where data entry is not previously
validated.

173

9. CONCLUSIONS

9.3 Future Work

There are many possible directions for future work.

Regarding the Beers Criteria ontology, it was developed in accordance with version
2019. However, a new version was released in May 2023. Therefore, it has to be
updated with this version. The formalisation and update of the Beers Criteria
ontology requires a manual analysis and translation to the ontology. An approach
with machine analysis and translation could automate and improve this process
without human effort.

On average, a new version of Beers Criteria is released every four years. As
mentioned, importing information regarding Beers Criteria directly into a CDSS is
not possible. A tool for automating the conversion process of the Beers Criteria
file into an ontology or another format that allows data to be structured to be
imported or compared with previous versions could be an opportunity for future
work. On the other hand, it would be handy if AGS released the versions in a
structured way, thus avoiding this rework.

Besides the Beers Criteria, other guidelines cover potentially inappropriate drugs.
To provide a more comprehensive analysis, detect more inappropriate drugs, and
suggest more alternative drugs, other guidelines could be incorporated, such as
the STOPP/START [111]. The ontology was built in a standalone environment,
which means it is not, at present, integrated with other ontologies. In the
future, it could be integrated with the SNOMED ontology, which is a medical
terminology and coding system that covers a wide variety of clinical concepts
such as diseases, procedures, drugs, and active ingredients. A further benefit of
doing so is that it would facilitate integration with other ontologies, CDSS and
EMR systems. Moreover, to enhance the traceability of the information captured
from the ontology, the source table of Beers Criteria could be incorporated into the
ontology. For example, the criterion PIM -> Anticholinergics -> First-generation
antihistamines ->Brompheniramine refers to Table 2. Therefore, this information
could be stored in an annotation property, facilitating the traceability of the
ontology rules and the Beers Criteria. The same approach could be applied
to alternative drugs. Running the drug interaction rules backwards, given a
patient’s known prescribed medications and interaction symptoms, for identifying
the possible drug interactions for unknown medications of that patient would
be another field that could be explored. The reverse process could be a way of

174

9.3. Future Work

supporting the discovery of unknown PIM drugs.

The alternative drug solver considers only hard constraints, which means that all
drugs have the same weight in the definition of an alternative. Soft constraints
could be incorporated to add different drug weights (scores) or PIMs according
to specific parameters, as proposed by [24, 23]. For example, scores could be
defined to separate mild from serious interactions or side-effects/harm, and to
find alternative drugs that may have interactions but are still less severe. We could
also consider the patient choices when defining the alternative, for example, to
avoid certain side effects. Moreover, the cost of a drug could also be a parameter
for the definition of an alternative drug.

Currently, the rescheduling solver considers only the TMAX parameter. In the
current model, we know when a drug is administered and when it reaches the
CMAX at time given by TMAX. However, we do not know when the effect
of a drug stops or how different people react differently. Therefore, we could
for instance incorporate the time to reach the minimum concentration in the
bloodstream, aka Tmin. This measure would provide the solver with information
on which distance between drugs could be considered safe (potentially useful
for very severe drug interactions concerning drugs which can nonetheless not be
removed). For example, if a drug reaches the Tmin after 1 hour of the TMAX,
there is no need for the rescheduling to maximise the distance between drugs
by more than 1 hour. In addition to Tmin, we could adopt other parameters
such as T50 or T10 (when the concentration drops to 50% or 10%) to find the best
time to administer the medications. Additionally, the rescheduling process was
considered over a 24-hour window. Additionally, constraints could be added to
the model to consider drugs administered in an interval of more than 24 hours, as
currently the rescheduling process considers only a 24-hour window.

One of the future objectives is to integrate our approach with the hospital’s EMR
or CDSS. To properly integrate patient and prescription data, we must validate the
integration process with other systems. Moreover, we must develop a front-end
layer to display the processed data and results.

175

REFERENCES

[1] Stanford Center for Biomedical Informatics Research (BMIR), “Protégé,”.
https://protege.stanford.edu. [Online; accessed 2021-01-10].

[2] GlobalRPh - Beers Criteria Patient-Specific Reporting. https:

//globalrph.com/medcalcs/beers-criteria-patient-specific-

reporting-available/. Accessed: August 7, 2023.

[3] Erika Ábrahám and Gereon Kremer. Satisfiability checking: Theory and
applications. In Software Engineering and Formal Methods: 14th International
Conference, SEFM 2016, Held as Part of STAF 2016, Vienna, Austria, July 4-8,
2016, Proceedings 14, pages 9–23. Springer, 2016.

[4] European Medicines Agency. Guideline on the investigation of drug
interactions, 2012.

[5] Agência Nacional de Vigilância Sanitária (ANVISA). Boletim de
farmacovigilância aborda erros de medicação, 2022. URL http://antigo.

anvisa.gov.br/resultado-de-busca?p_p_id=101&p_p_lifecycle=

0&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_

p_col_count=1&_101_struts_action=%2Fasset_publisher%2Fview_

content&_101_assetEntryId=5765434&_101_type=content&_101_

groupId=219201&_101_urlTitle=boletim-de-farmacovigilancia-

aborda-erros-de-medicacao&inheritRedirect=true. Accessed:
November 8, 2023.

[6] Ahmad Al-Azayzih, Rawan Alamoori, and Shoroq M Altawalbeh. Po-
tentially inappropriate medications prescribing according to beers criteria
among elderly outpatients in jordan: a cross sectional study. Pharmacy
Practice (Granada), 17(2), 2019.

[7] Kannayiram Alagiakrishnan, Patricia Wilson, Cheryl A Sadowski, Darryl
Rolfson, Mark Ballermann, Allen Ausford, Karla Vermeer, Kunal Mohindra,

177

https://protege.stanford.edu
https://globalrph.com/medcalcs/beers-criteria-patient-specific-reporting-available/
https://globalrph.com/medcalcs/beers-criteria-patient-specific-reporting-available/
https://globalrph.com/medcalcs/beers-criteria-patient-specific-reporting-available/
http://antigo.anvisa.gov.br/resultado-de-busca?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=5765434&_101_type=content&_101_groupId=219201&_101_urlTitle=boletim-de-farmacovigilancia-aborda-erros-de-medicacao&inheritRedirect=true
http://antigo.anvisa.gov.br/resultado-de-busca?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=5765434&_101_type=content&_101_groupId=219201&_101_urlTitle=boletim-de-farmacovigilancia-aborda-erros-de-medicacao&inheritRedirect=true
http://antigo.anvisa.gov.br/resultado-de-busca?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=5765434&_101_type=content&_101_groupId=219201&_101_urlTitle=boletim-de-farmacovigilancia-aborda-erros-de-medicacao&inheritRedirect=true
http://antigo.anvisa.gov.br/resultado-de-busca?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=5765434&_101_type=content&_101_groupId=219201&_101_urlTitle=boletim-de-farmacovigilancia-aborda-erros-de-medicacao&inheritRedirect=true
http://antigo.anvisa.gov.br/resultado-de-busca?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=5765434&_101_type=content&_101_groupId=219201&_101_urlTitle=boletim-de-farmacovigilancia-aborda-erros-de-medicacao&inheritRedirect=true
http://antigo.anvisa.gov.br/resultado-de-busca?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=5765434&_101_type=content&_101_groupId=219201&_101_urlTitle=boletim-de-farmacovigilancia-aborda-erros-de-medicacao&inheritRedirect=true
http://antigo.anvisa.gov.br/resultado-de-busca?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=5765434&_101_type=content&_101_groupId=219201&_101_urlTitle=boletim-de-farmacovigilancia-aborda-erros-de-medicacao&inheritRedirect=true

REFERENCES

Jacques Romney, and Robert S Hayward. Physicians’ use of computerized
clinical decision supports to improve medication management in the elderly–
the seniors medication alert and review technology intervention. Clinical
interventions in aging, 11:73, 2016.

[8] Cassia Amorim Rodrigues Araújo and Isabel Cristina Fonseca da Cruz.
Evidence-based nursing practice about risk of adverse drug interaction in
icu–systematic review. Journal of Specialized Nursing Care, 13(1), 2021.

[9] Imran Sarwar Bajwa, Bushra Ramzan, and Shabana Ramzan. Markov
logic based inference engine for cdss. Mehran University Research Journal of
Engineering & Technology, 36(1):55–66, 2017.

[10] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz,
Andres Nötzli, et al. cvc5: A versatile and industrial-strength smt solver.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 415–442. Springer, 2022.

[11] Karen Barnett, Stewart W Mercer, Michael Norbury, Graham Watt, Sally
Wyke, and Bruce Guthrie. Epidemiology of multimorbidity and implications
for health care, research, and medical education: a cross-sectional study. The
Lancet, 380(9836):37–43, 2012.

[12] Mark H Beers, Joseph G Ouslander, Irving Rollingher, David B Reuben,
Jacqueline Brooks, and John C Beck. Explicit criteria for determining
inappropriate medication use in nursing home residents. Archives of internal
medicine, 151(9):1825–1832, 1991.

[13] Eta S Berner and Tonya J La Lande. Overview of clinical decision support
systems. In Clinical decision support systems, pages 1–17. Springer, 2016.

[14] Ralf Bierig, Stephen Brown, Edgar Galván, and Joe Timoney. Essentials of
Software Testing. Cambridge University Press, 2021.

[15] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz-an optimizing
smt solver. In Tools and Algorithms for the Construction and Analysis of Systems:
21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015, Proceedings 21, pages 194–199. Springer, 2015.

178

References

[16] Emilia Błeszyńska, Łukasz Wierucki, Tomasz Zdrojewski, and Marcin Renke.
Pharmacological interactions in the elderly. Medicina, 56(7):320, 2020.

[17] BMJ Newsroom. 237 million medication errors made every year in
england, 2022. URL https://www.bmj.com/company/newsroom/237-

million-medication-errors-made-every-year-in-england/. Ac-
cessed: November 8, 2023.

[18] Miquel Bofill, Joan Espasa, and Mateu Villaret. Relaxed e-step plans in
planning as smt. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence, pages 563–570, 2017.

[19] Ettore Bolisani and Constantin Bratianu. The elusive definition of knowl-
edge. In Emergent knowledge strategies, pages 1–22. Springer, 2018.

[20] Paolo Bouquet, Chiara Ghidini, Fausto Giunchiglia, and Enrico Blanzieri.
Theories and uses of context in knowledge representation and reasoning.
Journal of pragmatics, 35(3):455–484, 2003.

[21] Jean Bousquet. Electronic clinical decision support system (ecdss) in the
management of asthma: from theory to practice, 2019.

[22] Malaz Boustani, Noll Campbell, Stephanie Munger, Ian Maidment, and
Chris Fox. Impact of anticholinergics on the aging brain: a review and
practical application. 2008.

[23] Juliana Bowles, Marco B Caminati, Suhyun Cha, and Juan Mendoza. A
framework for automated conflict detection and resolution in medical
guidelines. Science of computer programming, 182:42–63, 2019.

[24] Juliana KF Bowles and Marco B Caminati. Balancing prescriptions with
constraint solvers. In Automated Reasoning for Systems Biology and Medicine,
pages 243–267. Springer, 2019.

[25] Karin Koogan Breitman, Marco Antonio Casanova, and Walter Truszkowski.
Ontology in computer science. Semantic Web: Concepts, Technologies and
Applications, pages 17–34, 2007.

[26] Marshall N Brunden, Thomas J Vidmar, and Joseph W McKean. Drug
Interaction and Lethality Analysis. Chapman and Hall/CRC, 2019.

179

https://www.bmj.com/company/newsroom/237-million-medication-errors-made-every-year-in-england/
https://www.bmj.com/company/newsroom/237-million-medication-errors-made-every-year-in-england/

REFERENCES

[27] Teresa Cristina Jahn Cassoni, Ligiana Pires Corona, Nicolina Silvana
Romano-Lieber, Silvia Regina Secoli, Yeda Aparecida de Oliveira Duarte,
and Maria Lúcia Lebrão. Use of potentially inappropriate medication by
the elderly in são paulo, brazil: Sabe study. Cadernos de saude publica, 30(8):
1708–1720, 2014.

[28] Ellen Carolina D Castilho, AMM Reis, TL Borges, LDC Siqueira, and
AI Miasso. Potential drug–drug interactions and polypharmacy in institu-
tionalized elderly patients in a public hospital in brazil. Journal of psychiatric
and mental health nursing, 25(1):3–13, 2018.

[29] Xing Chen, Chenggang Clarence Yan, Xiaotian Zhang, Xu Zhang, Feng
Dai, Jian Yin, and Yongdong Zhang. Drug–target interaction prediction:
databases, web servers and computational models. Briefings in bioinformatics,
17(4):696–712, 2016.

[30] Yuh-Jen Chen. Development of a method for ontology-based empirical
knowledge representation and reasoning. Decision Support Systems, 50(1):
1–20, 2010.

[31] Antonio Cherubini, Andrea Corsonello, and Fabrizia Lattanzio. Polyphar-
macy in nursing home residents: what is the way forward? Journal of the
American Medical Directors Association, 17(1):4–6, 2016.

[32] Wajanakorn Chivapricha, Varalak Srinonprasert, and Thanarat Suansanae.
Impact of geriatric pharmacy specialist interventions to reduce potentially
inappropriate medication among hospitalized elderly patients at medical
wards: A prospective quasi-experimental study. Drugs-Real World Outcomes,
8(1):39–47, 2021.

[33] Insun Choi, Seung-Mi Lee, Linda Flynn, Chul-min Kim, Saerom Lee,
Na-Kyung Kim, and Dong-Churl Suh. Incidence and treatment costs
attributable to medication errors in hospitalized patients. Research in Social
and Administrative Pharmacy, 12(3):428–437, 2016.

[34] SallyL Collins, ClaraC Faura, R Andrew Moore, and HenryJ McQuay. Peak
plasma concentrations after oral morphine: a systematic review. Journal of
pain and symptom management, 16(6):388–402, 1998.

[35] Erika Cornell, Michael Kwa, Amy S Paller, and Shuai Xu. Adverse events
reported to the food and drug administration from 2004 to 2016 for cosmetics

180

References

and personal care products marketed to newborns and infants. Pediatric
dermatology, 35(2):225–229, 2018.

[36] Kieran Dalton, Gary O’Brien, Denis O’Mahony, and Stephen Byrne. Com-
puterised interventions designed to reduce potentially inappropriate pre-
scribing in hospitalised older adults: a systematic review and meta-analysis.
Age and ageing, 47(5):670–678, 2018.

[37] Flávia Fernanda Rosa D’Aquino, Carmen Maria Casquel Monti Juliani,
Silvana Andrea Molina Lima, Wilza Carla Spiri, and Carmen Silva Gabriel.
Incidentes relacionados a medicamentos em uma instituição hospitalar:
subsídios para a melhoria da gestão [drug-related incidents in a hospital:
input to improving management]. Revista enfermagem UERJ, 23(5):616–621,
2015.

[38] Fabiana Divina de Brito Amorim, Paula Vanessa Peclat Flores,
Priscila Sanchez Bosco, Andréia Holanda Barbosa Menezes, and
Kyra Vianna Alóchio. O aprazamento de medicamentos pautado na
segurança do paciente: um alerta para prática de enfermagem. Revista
de Enfermagem UFPE on line, 8(1):224–228, 2014.

[39] Giuseppe De Giacomo and Maurizio Lenzerini. Tbox and abox reasoning in
expressive description logics. KR, 96(316-327):10, 1996.

[40] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 337–340. Springer, 2008.

[41] Leonardo de Moura, Bruno Dutertre, and Natarajan Shankar. A tutorial on
satisfiability modulo theories: (invited tutorial). In International conference on
computer aided verification, pages 20–36. Springer, 2007.

[42] Henrique Souza Barros de Oliveira, Jamile Rafaela Poltronieri de Sousa,
Ana Carolina Gariba Donis, and Maria Elisa Gonzalez Manso. Utilização
dos critérios de beers para avaliação das prescrições em idosos portadores
de doenças crônicas vinculados a um plano de saúde. Revista Brasileira de
Ciências do Envelhecimento Humano, 14(3), 2017.

[43] Luciana Mello de Oliveira, Juliana do Amaral Carneiro Diel, Alessandra
Nunes, and Tatiane da Silva Dal Pizzol. Prevalence of drug interactions

181

REFERENCES

in hospitalised elderly patients: a systematic review. European Journal of
Hospital Pharmacy, 28(1):4–9, 2021.

[44] Kelly Cristina Batista de Queiroz, Maria de Fátima da Silva Nascimento,
Vander Fernandes, and Fábio André Miotto. Análise de interações medica-
mentosas identificadas em prescrições da uti neonatal da icu-hgu. Journal of
Health Sciences, 16(3), 2014.

[45] Jeffrey C Delafuente. Understanding and preventing drug interactions in
elderly patients. Critical reviews in oncology/hematology, 48(2):133–143, 2003.

[46] Kim H DeRhodes. The dangers of ignoring the beers criteria—the prescrib-
ing cascade. JAMA Internal Medicine, 179(7):863–864, 2019.

[47] Aude Desnoyer, Anne-Laure Blanc, Valérie Pourcher, Marie Besson, Caroline
Fonzo-Christe, Jules Desmeules, Arnaud Perrier, Pascal Bonnabry, Caroline
Samer, and Bertrand Guignard. Pim-check: development of an international
prescription-screening checklist designed by a delphi method for internal
medicine patients. BMJ open, 7(7):e016070, 2017.

[48] James G Dolan. Multi-criteria clinical decision support: a primer on the use
of multiple-criteria decision-making methods to promote evidence-based,
patient-centered healthcare. The Patient: Patient-Centered Outcomes Research,
3:229–248, 2010.

[49] Bruno Dutertre. Yices 2.2. In International Conference on Computer Aided
Verification, pages 737–744. Springer, 2014.

[50] Shaker H El-Sappagh and Samir El-Masri. A distributed clinical decision
support system architecture. Journal of King Saud University-Computer and
Information Sciences, 26(1):69–78, 2014.

[51] CoolApps Entertainment. Malpip, stopp/start, beers, 2023. URL
https://play.google.com/store/apps/details?id=pack.geridea&

hl=pt&gl=US.

[52] Joan Espasa Arxer et al. Smt techniques for planning problems. 2018.

[53] Mary Ane Lessa Etelvino, Noemi Duque dos Santos, Beatriz Gerbassi Costa
Aguiar, and Tamyris Garcia de Assis. Segurança do paciente: uma análise
do aprazamento de medicamentos. Enfermagem em Foco, 10(4), 2019.

182

https://play.google.com/store/apps/details?id=pack.geridea&hl=pt&gl=US
https://play.google.com/store/apps/details?id=pack.geridea&hl=pt&gl=US

References

[54] Rui Feng, Qiping Hu, and Yingan Jiang. Unknown disease outbreaks
detection: A pilot study on feature-based knowledge representation and
reasoning model. Frontiers in Public Health, 9:535, 2021.

[55] Donna M Fick, James W Cooper, William E Wade, Jennifer L Waller, J Ross
Maclean, and Mark H Beers. Updating the beers criteria for potentially
inappropriate medication use in older adults: results of a us consensus
panel of experts. Archives of internal medicine, 163(22):2716–2724, 2003.

[56] Eliana Frutos, Martin Kakazu, Matias Tajerian, Alejandro Gaiera, Luciana
Rubin, Carlos Otero, and Daniel Luna. Clinical decision support system for
pim in elderly patients: Implementation and initial evaluation in ambulatory
care. Studies in Health Technology and Informatics, 294:475–479, 2022.

[57] Tomás M García-Caballero, Juan Lojo, Carlos Menéndez, Roberto Fernández-
Álvarez, Raimundo Mateos, and Alejandro Garcia-Caballero. Polimedica-
tion: applicability of a computer tool to reduce polypharmacy in nursing
homes. International psychogeriatrics, 30(7):1001–1008, 2018.

[58] Simona Ghibelli, Alessandra Marengoni, Codjo D Djade, Alessandro Nobili,
Mauro Tettamanti, Carlotta Franchi, Silvio Caccia, Flavio Giovarruscio,
Andrea Remuzzi, and Luca Pasina. Prevention of inappropriate prescribing
in hospitalized older patients using a computerized prescription support
system (intercheck®). Drugs & aging, 30(10):821–828, 2013.

[59] Christoph D Gladisch. Satisfiability solving and model generation for
quantified first-order logic formulas. In International Conference on Formal
Verification of Object-Oriented Software, pages 76–91. Springer, 2010.

[60] Adela Grando, Susan Farrish, Cynthia Boyd, and Aziz Boxwala. Ontological
approach for safe and effective polypharmacy prescription. In AMIA
Annual Symposium Proceedings, volume 2012, page 291. American Medical
Informatics Association, 2012.

[61] Hima Bindu Gujjarlamudi. Polytherapy and drug interactions in elderly.
Journal of mid-life health, 7(3):105, 2016.

[62] Akash Gupta, Tieming Liu, and Scott Shepherd. Clinical decision support
system to assess the risk of sepsis using tree augmented bayesian networks
and electronic medical record data. Health informatics journal, 26(2):841–861,
2020.

183

REFERENCES

[63] Joseph T Hanlon, Todd P Semla, and Kenneth E Schmader. Alternative
medications for medications in the use of high-risk medications in the elderly
and potentially harmful drug–disease interactions in the elderly quality
measures. Journal of the American Geriatrics Society, 63(12):e8–e18, 2015.

[64] A Harugeri, J Joseph, G Parthasarathi, M Ramesh, S Guido, et al. Potentially
inappropriate medication use in elderly patients: a study of prevalence and
predictors in two teaching hospitals. Journal of postgraduate medicine, 56(3):
186, 2010.

[65] Phyllis Heintz and Malcolm Buchholz. After rescue: The importance of
beers criteria for medication assessment in older adults. Critical Care Nursing
Quarterly, 38(3):312–316, 2015.

[66] Mohammad Hekmatnejad, Andrew M Simms, and Georgios Fainekos.
Model checking clinical decision support systems using smt. arXiv preprint
arXiv:1901.04545, 2019.

[67] Heinrich Herre. Formal ontology and the foundation of knowledge organi-
zation. KO KNOWLEDGE ORGANIZATION, 40(5):332–339, 2014.

[68] Lisa E Hines and John E Murphy. Potentially harmful drug–drug interactions
in the elderly: a review. The American journal of geriatric pharmacotherapy, 9
(6):364–377, 2011.

[69] PC Hsiu, HC Yeh, PH Tsai, CS Shih, DH Burkhardt, TW Kuo, JWS Liu,
TY Huang, et al. A general model for medication scheduling. Institute of
Information Science, Academia Sinica, Taiwan, Technical Report TR-IIS-05-008,
2005.

[70] Chi-Hsien Huang, Hiroyuki Umegaki, Yuuki Watanabe, Hiroko Kamitani,
Atushi Asai, Shigeru Kanda, Hideki Nomura, and Masafumi Kuzuya.
Potentially inappropriate medications according to stopp-j criteria and risks
of hospitalization and mortality in elderly patients receiving home-based
medical services. Plos one, 14(2):e0211947, 2019.

[71] Jialiang Huang, Chaoqun Niu, Christopher D Green, Lun Yang, Hongkang
Mei, and Jing-Dong J Han. Systematic prediction of pharmacodynamic
drug-drug interactions through protein-protein-interaction network. PLoS
computational biology, 9(3):e1002998, 2013.

184

References

[72] Ian Hyland and Renate A Schmidt. Protege-ts: An owl ontology term
selection tool. In Description Logics, 2020.

[73] AGS Health in Aging Foundation. Tip sheet: Alternatives for medications
listed in the ags beers criteria® for potentially inappropriate medication
use in older adults. URL https://www.healthinaging.org/tools-and-

tips/tip-sheet-alternatives-medications-listed-ags-beers-

criteriar-potentially.

[74] Pengli Jia, Longhao Zhang, Jingjing Chen, Pujing Zhao, and Mingming
Zhang. The effects of clinical decision support systems on medication safety:
an overview. PloS one, 11(12):e0167683, 2016.

[75] Yicheng Jiang, Bensheng Qiu, Chunsheng Xu, Chuanfu Li, et al. The research
of clinical decision support system based on three-layer knowledge base
model. Journal of healthcare engineering, 2017, 2017.

[76] Rose-Marie Johansson-Pajala, Lene Martin, and Kerstin Jorsäter Blomgren.
Registered nurses’ use of computerised decision support in medication
reviews: Implications in swedish nursing homes. International Journal of
Health Care Quality Assurance, 31(6):531–544, 2018.

[77] Hanumanthrao Kannan. Formal reasoning of knowledge in systems
engineering through epistemic modal logic. Systems Engineering, 24(1):
3–16, 2021.

[78] Hanumanthrao Kannan. Knowledge representation and reasoning in the
context of systems engineering. In Recent Trends and Advances in Model Based
Systems Engineering, pages 217–227. Springer, 2022.

[79] Masoudeh Keshavarzi and Hamid Reza Ghaffary. An ontology-driven
framework for knowledge representation of digital extortion attacks. Com-
puters in Human Behavior, page 107520, 2022.

[80] Ahlem Chérifa Khadir, Hassina Aliane, and Ahmed Guessoum. Ontology
learning: Grand tour and challenges. Computer Science Review, 39:100339,
2021.

[81] Mohamed Khalifa. Clinical decision support: Strategies for success. Procedia
Computer Science, 37:422–427, 2014.

185

https://www.healthinaging.org/tools-and-tips/tip-sheet-alternatives-medications-listed-ags-beers-criteriar-potentially
https://www.healthinaging.org/tools-and-tips/tip-sheet-alternatives-medications-listed-ags-beers-criteriar-potentially
https://www.healthinaging.org/tools-and-tips/tip-sheet-alternatives-medications-listed-ags-beers-criteriar-potentially

REFERENCES

[82] J Kim and O De Jesus. Medication routes of administration. statpearls, 2022.

[83] Andrii Kovalov and Juliana Küster Filipe Bowles. Avoiding medication
conflicts for patients with multimorbidities. In International Conference on
Integrated Formal Methods, pages 376–390. Springer, 2016.

[84] Butch KuKanich. Clinical interpretation of pharmacokinetic and pharma-
codynamic data in zoologic companion animal species. Veterinary Clinics:
Exotic Animal Practice, 14(1):1–20, 2011.

[85] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in python
with automatic classification and high level constructs for biomedical
ontologies. Artificial intelligence in medicine, 80:11–28, 2017.

[86] Louis Létinier, Sébastien Cossin, Yohann Mansiaux, Mickaël Arnaud,
Francesco Salvo, Julien Bezin, Frantz Thiessard, and Antoine Pariente. Risk
of drug-drug interactions in out-hospital drug dispensings in france: results
from the drug-drug interaction prevalence study. Frontiers in Pharmacology,
10:265, 2019.

[87] Leonardo Lezcano, Miguel-Angel Sicilia, and Carlos Rodríguez-Solano.
Integrating reasoning and clinical archetypes using owl ontologies and
swrl rules. Journal of biomedical informatics, 44(2):343–353, 2011.

[88] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha
Chechik. Symbolic optimization with smt solvers. ACM SIGPLAN Notices,
49(1):607–618, 2014.

[89] Bárbara Heather Lutz, Vanessa Irribarem Avena Miranda, and Andréa Dâ-
maso Bertoldi. Potentially inappropriate medications among older adults in
pelotas, southern brazil. Revista de saude publica, 51:52, 2017.

[90] Alpana Mair, Martin Wilson, and Tobias Dreischulte. Addressing the
challenge of polypharmacy. Annual review of pharmacology and toxicology, 60:
661–681, 2020.

[91] Sharad Malik and Georg Weissenbacher. Boolean satisfiability solvers:
techniques and extensions. Software Safety & Security Tools for Analysis and
Verification; IOS Press: Amsterdam, The Netherlands, 2012.

186

References

[92] Louise Mallet, Anne Spinewine, and Allen Huang. The challenge of
managing drug interactions in elderly people. The Lancet, 370(9582):185–191,
2007.

[93] Arduino A Mangoni and Stephen HD Jackson. Age-related changes in
pharmacokinetics and pharmacodynamics: basic principles and practical
applications. British journal of clinical pharmacology, 57(1):6–14, 2004.

[94] Alessandra Marengoni, Alessandro Nobili, and Graziano Onder. Best
practices for drug prescribing in older adults: a call for action. Drugs &
aging, 32(11):887–890, 2015.

[95] Emily G McDonald, Peter E Wu, Babak Rashidi, Alan J Forster, Allen Huang,
Louise Pilote, Louise Papillon-Ferland, André Bonnici, Robyn Tamblyn,
Rachel Whitty, et al. The medsafer study: a controlled trial of an electronic
decision support tool for deprescribing in acute care. Journal of the American
Geriatrics Society, 67(9):1843–1850, 2019.

[96] Juan Jose Mendoza Santana and Juliana Kuster Filipe Bowles. Formal
reasoning over class models with tomm. Journal of Object Technology, 2019.

[97] Aniello Minutolo, Massimo Esposito, and Giuseppe De Pietro. A pattern-
based knowledge editing system for building clinical decision support
systems. Knowledge-Based Systems, 35:120–131, 2012.

[98] Luís Monteiro, Tiago Maricoto, Isabel Solha, Inês Ribeiro-Vaz, Carlos
Martins, Matilde Monteiro-Soares, et al. Reducing potentially inappropriate
prescriptions for older patients using computerized decision support tools:
systematic review. Journal of medical Internet research, 21(11):e15385, 2019.

[99] Manuel Montero-Odasso, Yanina Sarquis-Adamson, Hao Yuan Song,
Nick Walter Bray, Frederico Pieruccini-Faria, and Mark Speechley. Polyphar-
macy, gait performance, and falls in community-dwelling older adults.
results from the gait and brain study. Journal of the American Geriatrics
Society, 67(6):1182–1188, 2019.

[100] Francisca Sueli Monte Moreira, Javier Jerez-Roig, Lidiane Maria de
Brito Macedo Ferreira, Ana Patricia de Queiroz Medeiros Dantas, Ke-
nio Costa Lima, and Maria Ângela Fernandes Ferreira. Use of potentially
inappropriate medications in institutionalized elderly: prevalence and
associated factors. Ciência & Saúde Coletiva, 25:2073–2082, 2020.

187

REFERENCES

[101] Abdelmalek Mouazer, Karima Sedki, Rosy Tsopra, and Jean-Baptiste Lamy.
Speak-pim, towards a framework for the automatic detection of potentially
inappropriate prescriptions. Studies in health technology and informatics, 294:
460–464, 2022.

[102] K Nagai, S Fukuno, R Moriwaki, H Kuroda, S Omotani, T Miura, Y Hatsuda,
M Myotoku, and H Konishi. Influence of concurrent and staggered dosing
of semi-solid nutrients on the pharmacokinetics of orally administered car-
bamazepine in rats. Die Pharmazie-An International Journal of Pharmaceutical
Sciences, 77(3-4):118–120, 2022.

[103] Tabbasum Naz, Muhammad Akhtar, Syed Khuram Shahzad, Maria Fasli,
Muhammad Waseem Iqbal, and Muhammad Raza Naqvi. Ontology-driven
advanced drug-drug interaction. Computers & Electrical Engineering, 86:
106695, 2020.

[104] M Neugebauer, M Ebert, and R Vogelmann. A clinical decision support
system improves antibiotic therapy for upper urinary tract infection in a
randomized single-blinded study. BMC health services research, 20(1):1–10,
2020.

[105] Kristina M Niehoff, Nallakkandi Rajeevan, Peter A Charpentier, Perry L
Miller, Mary K Goldstein, and Terri R Fried. Development of the tool to
reduce inappropriate medications (trim): a clinical decision support system
to improve medication prescribing for older adults. Pharmacotherapy: The
Journal of Human Pharmacology and Drug Therapy, 36(6):694–701, 2016.

[106] Robert Nieuwenhuis and Albert Oliveras. On sat modulo theories and
optimization problems. In Theory and Applications of Satisfiability Testing-
SAT 2006: 9th International Conference, Seattle, WA, USA, August 12-15, 2006.
Proceedings 9, pages 156–169. Springer, 2006.

[107] Yasiru Nilan, Darika Sellahewa, Shalith Fernando, Lakshan Gamage, and
Dulani Meedeniya. A clinical decision support system for drug conflict
identification. In 2018 Moratuwa Engineering Research Conference (MERCon),
pages 126–131. IEEE, 2018.

[108] Jin Niu, Robert M Straubinger, and Donald E Mager. Pharmacodynamic
drug–drug interactions. Clinical Pharmacology & Therapeutics, 105(6):1395–
1406, 2019.

188

References

[109] Paulo Roque Obreli-Neto, Alessandro Nobili, André de Oliveira Baldoni,
Camilo Molino Guidoni, Divaldo Pereira de Lyra Júnior, Diogo Pilger, Ju-
liano Duzanski, Mauro Tettamanti, Joice Mara Cruciol-Souza, Walderez Pen-
teado Gaeti, et al. Adverse drug reactions caused by drug–drug interactions
in elderly outpatients: a prospective cohort study. European journal of clinical
pharmacology, 68(12):1667–1676, 2012.

[110] Scottish Government Polypharmacy Model of Care Group. Polypharmacy
guidance, realistic prescribing 3rd edition. 2018.

[111] Denis O’Mahony, David O’Sullivan, Stephen Byrne, Marie Noelle O’Connor,
Cristin Ryan, and Paul Gallagher. Stopp/start criteria for potentially
inappropriate prescribing in older people: version 2. Age and ageing, 44
(2):213–218, 2014.

[112] ’World Health Organization and others’. Multimorbidity. 2016.

[113] ’World Health Organization and others’. Medication without harm. Techni-
cal report, World Health Organization, 2017.

[114] Martin O’connor, Holger Knublauch, Samson Tu, and Mark Musen. Writing
rules for the semantic web using swrl and jess. Protégé With Rules WS, Madrid,
2005.

[115] American Geriatrics Society 2012 Beers Criteria Update Expert Panel. A mer-
ican g eriatrics s ociety updated b eers c riteria for potentially inappropriate
medication use in older adults. Journal of the American Geriatrics Society, 60
(4):616–631, 2012.

[116] American Geriatrics Society 2015 Beers Criteria Update Expert Panel,
Donna M Fick, Todd P Semla, Judith Beizer, Nicole Brandt, Robert Dom-
browski, Catherine E DuBeau, Woody Eisenberg, Jerome J Epplin, Nina
Flanagan, et al. American geriatrics society 2015 updated beers criteria
for potentially inappropriate medication use in older adults. Journal of the
American Geriatrics Society, 63(11):2227–2246, 2015.

[117] American Geriatrics Society 2019 Beers Criteria® Update Expert Panel,
Donna M Fick, Todd P Semla, Michael Steinman, Judith Beizer, Nicole
Brandt, Robert Dombrowski, Catherine E DuBeau, Lynn Pezzullo, Jerome J
Epplin, et al. American geriatrics society 2019 updated ags beers criteria®

189

REFERENCES

for potentially inappropriate medication use in older adults. Journal of the
American Geriatrics Society, 67(4):674–694, 2019.

[118] American Geriatrics Society 2023 Beers Criteria® Update Expert Panel.
American geriatrics society 2023 updated ags beers criteria® for potentially
inappropriate medication use in older adults. Journal of the American
Geriatrics Society, 2023.

[119] Dominic Papandria, Jeremy G Fisher, Brian D Kenney, Michael Dykes,
Abigail Nelson, and Karen A Diefenbach. Orientation in perpetuity: an
online clinical decision support system for surgical residents. Journal of
Surgical Research, 245:649–655, 2020.

[120] Maxime Peralta, Pierre Jannin, and John SH Baxter. Machine learning in
deep brain stimulation: A systematic review. Artificial intelligence in medicine,
122:102198, 2021.

[121] Francisco Gilberto Fernandes Pereira, GA Melo, Nelson Miguel
Galindo Neto, RE Carvalho, ED Néri, and JA Caetano. Interações medica-
mentosas induzidas pelo aprazamento e os erros no preparo de antibacteri-
anos. Revista Rene, 19, 2018.

[122] Francisco Gilberto Fernandes Pereira, Geórgia Alcântara Alencar Melo, Nel-
son Miguel Galindo Neto, Rhanna Emanuela Fontenele Lima de Carvalho,
Eugenié Desireé Rabelo Néri, and Joselany Áfio Caetano. Drug interactions
resulting from scheduling and errors in the preparation of antibacterials.
2018.

[123] Leonard Petnga. Ontology-driven knowledge modeling and reasoning for
multi-domain system architecting and configuration. In Recent Trends and
Advances in Model Based Systems Engineering, pages 229–239. Springer, 2022.

[124] Rachel Phillips, Lorna Hazell, Odile Sauzet, and Victoria Cornelius. Analysis
and reporting of adverse events in randomised controlled trials: a review.
BMJ open, 9(2):e024537, 2019.

[125] María Poveda-Villalón, Asunción Gómez-Pérez, and Mari Carmen Suárez-
Figueroa. OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for Ontology
Evaluation. International Journal on Semantic Web and Information Systems
(IJSWIS), 10(2):7–34, 2014.

190

References

[126] Vanida Prasert, Aiko Shono, Farsai Chanjaruporn, Chanuttha Ploylearm-
sang, Keerataphan Boonnan, Apinan Khampetdee, and Manabu Akazawa.
Effect of a computerized decision support system on potentially inappro-
priate medication prescriptions for elderly patients in thailand. Journal of
Evaluation in Clinical Practice, 25(3):514–520, 2019.

[127] Zhenisgul Rakhmetullina, Raushan Mukhamedova, Roza Mukasheva, and
Elvira Aitmukhanbetova. Mathematical model for clinical decision support
system using genetic algorithm. In 2020 4th International Symposium on
Multidisciplinary Studies and Innovative Technologies (ISMSIT), pages 1–5. IEEE,
2020.

[128] Guilherme Redeker and Juliana Bowles. Tackling polypharmacy: A multi-
source decision support system. In Digital Personalized Health and Medicine,
pages 688–692. IOS Press, 2020.

[129] Anna Renom-Guiteras, Gabriele Meyer, and Petra A Thürmann. The eu
(7)-pim list: a list of potentially inappropriate medications for older people
consented by experts from seven european countries. European journal of
clinical pharmacology, 71(7):861–875, 2015.

[130] José A Riaza and Ginés Moreno. Using sat/smt solvers for efficiently tuning
fuzzy logic programs. In 2020 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), pages 1–8. IEEE, 2020.

[131] Sarmad Riazi and Bengt Lennartson. Using cp/smt solvers for scheduling
and routing of agvs. IEEE Transactions on Automation Science and Engineering,
18(1):218–229, 2020.

[132] Eloisa Rogero-Blanco, Juan A Lopez-Rodriguez, Teresa Sanz-Cuesta, Mer-
cedes Aza-Pascual-Salcedo, M Jose Bujalance-Zafra, Isabel Cura-Gonzalez,
et al. Use of an electronic clinical decision support system in primary care to
assess inappropriate polypharmacy in young seniors with multimorbidity:
observational, descriptive, cross-sectional study. JMIR medical informatics, 8
(3):e14130, 2020.

[133] Sabino Francesco Roselli, Kristofer Bengtsson, and Knut Åkesson. Smt
solvers for job-shop scheduling problems: Models comparison and perfor-
mance evaluation. In 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE), pages 547–552. IEEE, 2018.

191

REFERENCES

[134] Elizabeth E Roughead, Susan J Semple, and Ellie Rosenfeld. The extent of
medication errors and adverse drug reactions throughout the patient journey
in acute care in australia. International journal of evidence-based healthcare, 14
(3-4):113–122, 2016.

[135] Malcolm Rowland and Shaikh B Matin. Kinetics of drug-drug interactions.
Journal of Pharmacokinetics and Biopharmaceutics, 1(6):553–567, 1973.

[136] Serhad Sarica and Jianxi Luo. Design knowledge representation with
technology semantic network. Proceedings of the Design Society, 1:1043–1052,
2021.

[137] Stefan Schulz and Ludger Jansen. Formal ontologies in biomedical knowl-
edge representation. Yearbook of medical informatics, 22(01):132–146, 2013.

[138] Oshani Seneviratne, Amar K Das, Shruthi Chari, Nkechinyere N Agu,
Sabbir M Rashid, Ching-Hua Chen, James P McCusker, James A Hendler,
and Deborah L McGuinness. Enabling trust in clinical decision support
recommendations through semantics. In SeWeBMeDa@ ISWC, pages 55–67,
2019.

[139] Amir Mohammad Shahsavarani, Esfandiar Azad Marz Abadi, Maryam
Hakimi Kalkhoran, Saeideh Jafari, and Shirin Qaranli. Clinical decision
support systems (cdsss): state of the art review of literature. International
Journal of Medical Reviews, 2(4):299–308, 2015.

[140] Rishabh Sharma, Malika Arora, Ravinder Garg, and Parveen Bansal. A
closer look at the 2019 beers criteria. Drugs & Therapy Perspectives, 36(3):
116–122, 2020.

[141] Rishabh Sharma, Parveen Bansal, Ravinder Garg, Ravi Ranjan, Rakesh Ku-
mar, and Malika Arora. Prevalence of potentially inappropriate medication
and its correlates in elderly hospitalized patients: A cross-sectional study
based on beers criteria. Journal of Family & Community Medicine, 27(3):200,
2020.

[142] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical owl-dl reasoner. Journal of Web Semantics, 5
(2):51–53, 2007.

192

References

[143] David M Smith, Charlotte Friend, and Joanne Reeve. Polypharmacy and
rationalisation of medications. InnovAiT, 13(2):87–93, 2020.

[144] Ben D Snyder, Thomas M Polasek, and Matthew P Doogue. Drug interac-
tions: principles and practice. 2012.

[145] American Geriatrics Society. Ags beers criteria® for potentially
inappropriate medication use in older adults, the ags beers criteria®, 2023.
URL https://geriatricscareonline.org/ProductAbstract/ags-

beers-criteria-for-potentially-inappropriate-medications-

for-older-adults-mobile-app/B067.

[146] Andreas Sönnichsen, Ulrike S Trampisch, Anja Rieckert, Giuliano Piccoliori,
Anna Vögele, Maria Flamm, Tim Johansson, Aneez Esmail, David Reeves,
Christin Löffler, et al. Polypharmacy in chronic diseases-reduction of
inappropriate medication and adverse drug events in older populations
by electronic decision support (prima-eds): study protocol for a randomized
controlled trial. Trials, 17(1):1–9, 2016.

[147] Robert Stevens, Carole A Goble, and Sean Bechhofer. Ontology-based
knowledge representation for bioinformatics. Briefings in bioinformatics, 1(4):
398–414, 2000.

[148] Reed T Sutton, David Pincock, Daniel C Baumgart, Daniel C Sadowski,
Richard N Fedorak, and Karen I Kroeker. An overview of clinical decision
support systems: benefits, risks, and strategies for success. NPJ Digital
Medicine, 3(1):1–10, 2020.

[149] Mohammad Mustafa Taye. Understanding semantic web and ontologies:
Theory and applications. arXiv preprint arXiv:1006.4567, 2010.

[150] Kristine Thorell, Patrik Midlöv, Johan Fastbom, and Anders Halling. Use of
potentially inappropriate medication and polypharmacy in older adults: a
repeated cross-sectional study. BMC geriatrics, 20(1):1–9, 2020.

[151] Carlos Toro, Manuel Graña, Eider Sanchez, Cesar Sanin, and Edward
Szczerbicki. Experience based clinical decision support systems: An
overview and case studies. Knowledge Management and Engineering with
Decisional DNA, pages 151–188, 2020.

193

https://geriatricscareonline.org/ProductAbstract/ags-beers-criteria-for-potentially-inappropriate-medications-for-older-adults-mobile-app/B067
https://geriatricscareonline.org/ProductAbstract/ags-beers-criteria-for-potentially-inappropriate-medications-for-older-adults-mobile-app/B067
https://geriatricscareonline.org/ProductAbstract/ags-beers-criteria-for-potentially-inappropriate-medications-for-older-adults-mobile-app/B067

REFERENCES

[152] Johannes P van den Berg, Hugo EM Vereecke, JH Proost, Douglas J Eleveld,
JK Götz Wietasch, Anthony R Absalom, and Michel MRF Struys. Pharma-
cokinetic and pharmacodynamic interactions in anaesthesia. a review of
current knowledge and how it can be used to optimize anaesthetic drug
administration. BJA: British Journal of Anaesthesia, 118(1):44–57, 2017.

[153] Heleen van der Sijs, Laureen Lammers, Annemieke van den Tweel, Jos Aarts,
Marc Berg, Arnold Vulto, and Teun van Gelder. Time-dependent drug–
drug interaction alerts in care provider order entry: software may inhibit
medication error reductions. Journal of the American Medical Informatics
Association, 16(6):864–868, 2009.

[154] Eduard E Vasilevskis, Avantika S Shah, Emily K Hollingsworth, Matthew S
Shotwell, Amanda S Mixon, Susan P Bell, Sunil Kripalani, John F Schnelle,
and Sandra F Simmons. A patient-centered deprescribing intervention for
hospitalized older patients with polypharmacy: rationale and design of the
shed-meds randomized controlled trial. BMC health services research, 19(1):
1–13, 2019.

[155] Sanne Verdoorn, Henk-Frans Kwint, Petra Hoogland, Jacobijn Gussekloo,
and Marcel L Bouvy. Drug-related problems identified during medication
review before and after the introduction of a clinical decision support system.
Journal of clinical pharmacy and therapeutics, 43(2):224–231, 2018.

[156] ATM Wasylewicz and AMJW Scheepers-Hoeks. Clinical decision support
systems. Fundamentals of clinical data science, pages 153–169, 2019.

[157] Nedra S Whitehead, Laurina Williams, Sreelatha Meleth, Sara Kennedy,
Nneka Ubaka-Blackmoore, Michael Kanter, Kevin J O’Leary, David Classen,
Brian Jackson, Daniel R Murphy, et al. The effect of laboratory test–based
clinical decision support tools on medication errors and adverse drug events:
A laboratory medicine best practices systematic review. The journal of applied
laboratory medicine, 3(6):1035–1048, 2019.

[158] Szymon Wilk, Wojtek Michalowski, Martin Michalowski, Ken Farion,
Marisela Mainegra Hing, and Subhra Mohapatra. Mitigation of adverse
interactions in pairs of clinical practice guidelines using constraint logic
programming. Journal of biomedical informatics, 46(2):341–353, 2013.

194

References

[159] David S Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava,
Dan Tzur, Bijaya Gautam, and Murtaza Hassanali. Drugbank: a knowl-
edgebase for drugs, drug actions and drug targets. Nucleic acids research, 36
(suppl_1):D901–D906, 2008.

[160] World Health Organization. Who calls for urgent action by
countries for achieving medication without harm, 2022. URL https:

//www.who.int/news/item/16-09-2022-who-calls-for-urgent-

action-by-countries-for-achieving-medication-without-harm.
Accessed: November 8, 2023.

[161] World Wide Web Consortium (W3C). Swrl: A semantic web rule lan-
guage combining owl and ruleml, 2004. URL https://www.w3.org/

submissions/SWRL/. Accessed on October 13, 2023.

[162] Fran Wu, Mitch Williams, Peter Kazanzides, K Brady, and J Fackler. A
modular clinical decision support system. In Proc. of 3rd International
Conference on Pervasive Computing Technologies for Healthcare,(PervasiveHealth)
and Workshops, 2009.

[163] Guizhen Yang, Michael Kifer, and Chang Zhao. Flora-2: A rule-based
knowledge representation and inference infrastructure for the semantic web.
In OTM Confederated International Conferences" On the Move to Meaningful
Internet Systems", pages 671–688. Springer, 2003.

[164] Jiansong Yang, Maria Kjellsson, Amin Rostami-Hodjegan, and Geoffrey T
Tucker. The effects of dose staggering on metabolic drug–drug interactions.
European journal of pharmaceutical sciences, 20(2):223–232, 2003.

[165] Hyeong Won Yu, Maqbool Hussain, Muhammad Afzal, Taqdir Ali,
June Young Choi, Ho-Seong Han, and Sungyoung Lee. Use of mind maps
and iterative decision trees to develop a guideline-based clinical decision
support system for routine surgical practice: case study in thyroid nodules.
Journal of the American Medical Informatics Association, 26(6):524–536, 2019.

[166] Mariam Zahwe, Hadi Skouri, Samar Rachidi, Maurice Khoury, Samar
Noureddine, Hussain Isma’eel, Hani Tamim, and Amal Al-Hajje. Potentially
inappropriate medications in elderly patients with heart failure: Beers
criteria-based study. International Journal of Pharmacy Practice, 28(6):652–
659, 2020.

195

https://www.who.int/news/item/16-09-2022-who-calls-for-urgent-action-by-countries-for-achieving-medication-without-harm
https://www.who.int/news/item/16-09-2022-who-calls-for-urgent-action-by-countries-for-achieving-medication-without-harm
https://www.who.int/news/item/16-09-2022-who-calls-for-urgent-action-by-countries-for-achieving-medication-without-harm
https://www.w3.org/submissions/SWRL/
https://www.w3.org/submissions/SWRL/

REFERENCES

[167] Yael Zenziper, Daniel Kurnik, Noa Markovits, Amitai Ziv, Ari Shamiss,
Hillel Halkin, and Ronen Loebstein. Implementation of a clinical decision
support system for computerized drug prescription entries in a large tertiary
care hospital. The Israel Medical Association Journal: IMAJ, 16(5):289–294,
2014.

[168] BT Zhong, LY Ding, Peter ED Love, and HB Luo. An ontological approach
for technical plan definition and verification in construction. Automation in
Construction, 55:47–57, 2015.

196

AAPPENDIX A

ETHICS APPROVALS

197

A. ETHICS APPROVALS

School of Computer Science Ethics Committee

School of Computer Science Ethics Committee

Dr Juan Ye/Convenor, Jack Cole Building, North Haugh, St Andrews, Fife, KY16 9SX

Telephone: 01334 463252 Email: ethics-cs@st-andrews.ac.uk
The University of St Andrews is a charity registered in Scotland: No SC013532

31 May 2021
Dear Guilherme,

Thank you for submitting your ethical application which was considered by the School Ethics Committee.

The School of Computer Science Ethics Committee, acting on behalf of the University Teaching and Research

Ethics Committee (UTREC), has approved this application:

Approval Code: CS15485 Approved on: 31.05.2021 Approval Expiry: 31.05.2026

Project Title: Searching for hospital prescriptions with drug interactions when treating elderly patients

Researcher(s): Guilherme Alfredo Redeker

Supervisor(s): Dr Juliana Bowles

The following supporting documents are also acknowledged and approved:

1. Application Form

2. Consent and Authorisation Documents

Approval is awarded for 5 years, see the approval expiry data above.

If your project has not commenced within 2 years of approval, you must submit a new and updated ethical

application to your School Ethics Committee.

If you are unable to complete your research by the approval expiry date you must request an extension to the
approval period. You can write to your School Ethics Committee who may grant a discretionary extension of up to

6 months. For longer extensions, or for any other changes, you must submit an ethical amendment application.

You must report any serious adverse events, or significant changes not covered by this approval, related to this

study immediately to the School Ethics Committee.

Approval is given on the following conditions:

• that you conduct your research in line with:
o the details provided in your ethical application

o the University’s Principles of Good Research Conduct

o the conditions of any funding associated with your work

• that you obtain all applicable additional documents (see the 'additional documents' webpage for guidance)
before research commences.

You should retain this approval letter with your study paperwork.

Yours sincerely,

SEC Administrator

198

BAPPENDIX B

ONTOLOGY DETAILS

B.1 Accessing ontology files

The ontology relevant files are available in the GitHub repository:
https://github.com/gr60/ThesisFiles

The ontology components, comprising classes, objects, and data properties, along
with inference rules and relevant details, can be readily accessed and viewed in the
file named TheBeersCriteriaOntology.owl. This file can be conveniently opened
using the Protégé software Protégé.

199

https://github.com/gr60/ThesisFiles
https://protege.stanford.edu/

CAPPENDIX C

SEMANTIC WEB RULE
LANGUAGE (SWRL)

RULES TO DETECT
INAPPROPRIATE DRUGS

This appendix provides the SWRL rules developed on the Beers Criteria ontology
to detect and classify prescribed inappropriate drugs. The rules are listed according
to the Beers Criteria categories.

C.1 Potentially Clinically Important Drug-Drug

Interactions (DDI) Rules

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Central_nervous_system_active_drugs(?d)
3^ hasDrug(?pr, ?d2) ^ Central_nervous_system_active_drugs(?d2)
4^ hasDrug(?pr, ?d3) ^ Central_nervous_system_active_drugs(?d3)
5^ hasPatientAgeValue(?p, ?a) ^ swrlb:greaterThan(?a, 64)
6^ differentFrom(?d, ?d2) ^ differentFrom(?d2, ?d3)
7^ differentFrom(?d, ?d3) -> DDI_CNS_Active_Drugs/

CNS_Active_Drugs(?d)
8^ DDI_CNS_Active_Drugs/CNS_Active_Drugs(?d2)
9^ DDI_CNS_Active_Drugs/CNS_Active_Drugs(?d3) ^

hasInteractionWith(?d, ?d2)
10^ hasInteractionWith(?d2, ?d) ^ hasInteractionWith(?d, ?d3)
11^ hasInteractionWith(?d3, ?d) ^ hasInteractionWith(?d3, ?d2)
12^ hasInteractionWith(?d2, ?d3

201

C. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO DETECT
INAPPROPRIATE DRUGS

Listing C.1: DDI_CNS_Active_Drugs/CNS_Active_Drugs

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^hasDrug(?pr,?d)^Drugs_With_Strong_Anticholinergic_Properties(?d)

3^hasDrug(?pr,?d2)^Drugs_With_Strong_Anticholinergic_Properties(?
d2)

4^hasPatientAgeValue(?p, ?a) ^ swrlb:greaterThan(?a, 64)
5^differentFrom(?d,?d2) -> DDI_Anticholinergic/Anticholinergic(?d)

6^DDI_Anticholinergic/Anticholinergic(?d2) ^ hasInteractionWith(?
d, ?d2)

7^hasInteractionWith(?d2, ?d)

Listing C.2: DDI_Anticholinergic/Anticholinergic

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Corticosteroids(?d)^Nonsteroidal_Anti-inflammatory_Agents(?d2)
3^ hasDrug(?pr,?d) ^ hasDrug(?pr,?d2) ^ hasPatientAgeValue(?p,?a)
4^ swrlb:greaterThan(?a, 64) ^ Oral(?r) ^ hasRoute(?d, ?r) ->
5DDI_Corticosteroids/NSAIDs/Oral(?d) ^ hasInteractionWith(?d2,?d)
6^ DDI_Corticosteroids/NSAIDs/Oral(?d2)^hasInteractionWith(?d,?d2)

Listing C.3: DDI_Corticosteroids/NSAIDs/Oral

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Corticosteroids(?d)^Nonsteroidal_Anti-inflammatory_Agents(?d2)
3^ hasDrug(?pr,?d) ^ hasDrug(?pr,?d2) ^ hasPatientAgeValue(?p,?a)
4^ swrlb:greaterThan(?a, 64) ^ Parenteral(?r) ^ hasRoute(?d, ?r)
5-> DDI_Corticosteroids/NSAIDs/Parenteral(?d)
6^ DDI_Corticosteroids/NSAIDs/Parenteral(?d2)
7^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.4: DDI_Corticosteroids/NSAIDs/Parenteral

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Lithium(?d) ^ hasDrug(?pr, ?d2)
3^ Angiotensin-Converting_Enzyme_Inhibitors(?d2)
4^ hasDrug(?pr,?d) ^ hasPatientAgeValue(?p,?a)
5^ swrlb:greaterThan(?a, 64)
6-> DDI_Lithium/ACEIs(?d) ^ DDI_Lithium/ACEIs(?d2)
7^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

202

C.1. Potentially Clinically Important Drug-Drug Interactions (DDI) Rules

Listing C.5: DDI_Lithium/ACEIs

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Lithium(?d) ^ hasDrug(?pr, ?d2) ^ Loop_Diuretics(?d2)
3^ hasDrug(?pr, ?d) ^ hasPatientAgeValue(?p, ?a)
4^ swrlb:greaterThan(?a, 64)
5-> DDI_Lithium/Loop_diuretics(?d)
6^ DDI_Lithium/Loop_diuretics(?d2)
7^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.6: DDI_Lithium/Loop_diuretics

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Opiate_Agonists(?d) ^ hasDrug(?pr,?d2) ^ Benzodiazepines(?d2)
3^ hasDrug(?pr, ?d) ^ hasPatientAgeValue(?p, ?a)
4^ swrlb:greaterThan(?a, 64) -> DDI_Opioids/Benzodiazepines(?d)
5^ DDI_Opioids/Benzodiazepines(?d2)
6^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.7: DDI_Opioids/Benzodiazepines

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Opiate_Agonists(?d) ^ hasDrug(?pr, ?d2) ^ Gabapentin(?d2)
3^ hasDrug(?pr, ?d) ^ hasPatientAgeValue(?p, ?a)
4^ swrlb:greaterThan(?a, 64) -> DDI_Opioids/Gabapentin(?d)
5^ DDI_Opioids/Gabapentin(?d2)
6^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.8: DDI_Opioids/Gabapentin

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Opiate_Agonists(?d) ^ hasDrug(?pr, ?d2) ^ Pregabalin(?d2)
3^ hasDrug(?pr, ?d) ^ hasPatientAgeValue(?p, ?a)
4^ swrlb:greaterThan(?a, 64) -> DDI_Opioids/Pregabalin(?d)
5^ DDI_Opioids/Pregabalin(?d2) ^ hasInteractionWith(?d, ?d2)
6^ hasInteractionWith(?d2, ?d)

Listing C.9: DDI_Opioids/Pregabalin

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Non-selective_alpha-1-Adrenergic_Blocking_Agents(?d)
3^ Loop_Diuretics(?d2) ^ hasDrug(?pr, ?d) ^ hasDrug(?pr, ?d2)
4^ hasPatientAgeValue(?p, ?a) ^ swrlb:greaterThan(?a, 64)

203

C. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO DETECT
INAPPROPRIATE DRUGS

5^ Parenteral(?r) ^ hasRoute(?d, ?r)
6-> DDI_Peripheral_alpha-1_blockers/Loop_diuretics(?d)
7^ DDI_Peripheral_alpha-1_blockers/Loop_diuretics(?d2)
8^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.10: DDI_Peripheral_alpha-1_blockers/Loop_diuretics

1Phenytoin(?d) ^ Trimethoprim_sulfamethoxazole(?d2) ^ hasDrug(?pr
,?d)

2^ Patient(?p) ^ hasPatientAgeValue(?p, ?a) ^ Prescription(?pr)
3^ swrlb:greaterThan(?a, 64) ^ hasPrescription(?p, ?pr)
4^ hasDrug(?pr, ?d2) -> hasInteractionWith(?d, ?d2) ^

DDI_Phenytoin/Trimethoprim_sulfamethoxazole(?d2)
5^ hasInteractionWith(?d2, ?d)
6^ DDI_Phenytoin/Trimethoprim_sulfamethoxazole(?d)

Listing C.11: DDI_Phenytoin/Trimethoprim_sulfamethoxazole

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Renin-Angiotensin-Aldosterone_System_Inhibitors(?d)
3^ Potassium-sparing_Diuretics(?d2) ^ hasDrug(?pr, ?d)
4^ hasDrug(?pr, ?d2) ^ hasPatientAgeValue(?p, ?a)
5^ swrlb:greaterThan(?a, 64)
6-> DDI_Potassium-sparing_diuretics(?d)
7^ DDI_Potassium-sparing_diuretics(?d2)
8^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.12: DDI_Potassium-sparing_diuretics

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ hasDrug(?pr, ?d)^ hasDrug(?pr, ?d2)
3^ Renin-Angiotensin-Aldosterone_System_Inhibitors(?d)
4^ Renin-Angiotensin-Aldosterone_System_Inhibitors(?d2)
5^ differentFrom(?d, ?d2) ^ hasPatientAgeValue(?p, ?a)
6^ swrlb:greaterThan(?a, 64) -> DDI_RAS_inhibitor(?d)
7^ DDI_RAS_inhibitor(?d2)
8^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.13: DDI_RAS_inhibitor

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Theophyllines(?d) ^ Cimetidine(?d2) ^ hasDrug(?pr, ?d)
3^ hasDrug(?pr, ?d2) ^ hasPatientAgeValue(?p, ?a)
4^ swrlb:greaterThan(?a, 64) -> DDI_Theophylline/Cimetidine(?d)
5^ DDI_Theophylline/Cimetidine(?d2) ^ hasInteractionWith(?d, ?d2)
6^ hasInteractionWith(?d2, ?d)

204

C.1. Potentially Clinically Important Drug-Drug Interactions (DDI) Rules

Listing C.14: DDI_Theophylline/Cimetidine

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Theophyllines(?d) ^ Ciprofloxacin(?d2)
3^ hasDrug(?pr, ?d) ^ hasDrug(?pr, ?d2)
4^ hasPatientAgeValue(?p, ?a) ^ swrlb:greaterThan(?a, 64)
5-> DDI_Theophylline/Ciprofloxacin(?d)
6^ DDI_Theophylline/Ciprofloxacin(?d2)
7^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.15: DDI_Theophylline/Ciprofloxacin

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Warfarin(?d) ^ Amiodarone(?d2) ^ hasDrug(?pr, ?d)
3^ hasDrug(?pr, ?d2) ^ hasPatientAgeValue(?p, ?a)
4^ swrlb:greaterThan(?a, 64) -> DDI_Warfarin/Amiodarone(?d)
5^ DDI_Warfarin/Amiodarone(?d2)
6^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.16: DDI_Warfarin/Amiodarone

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Warfarin(?d) ^ Ciprofloxacin(?d2) ^ hasDrug(?pr, ?d)
3^ hasDrug(?pr, ?d2) ^ hasPatientAgeValue(?p, ?a)
4^ swrlb:greaterThan(?a, 64) -> DDI_Warfarin/Ciprofloxacin(?d)
5^ DDI_Warfarin/Ciprofloxacin(?d2)
6^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.17: DDI_Warfarin/Ciprofloxacin

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Warfarin(?d) ^ Macrolides(?d2) ^ hasDrug(?pr, ?d)
3^ hasDrug(?pr, ?d2) ^ Azithromycin(?az)
4^ differentFrom(?d2, ?az) ^ hasPatientAgeValue(?p, ?a)
5^ swrlb:greaterThan(?a, 64) -> DDI_Warfarin/Macrolides(?d)
6^ DDI_Warfarin/Macrolides(?d2)
7^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.18: DDI_Warfarin/Macrolides

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Warfarin(?d) ^ Nonsteroidal_Anti-inflammatory_Agents(?d2)
3^ hasDrug(?pr, ?d) ^ hasDrug(?pr, ?d2)

205

C. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO DETECT
INAPPROPRIATE DRUGS

4^ hasPatientAgeValue(?p, ?a) ^ swrlb:greaterThan(?a, 64) ->
5DDI_Warfarin/NSAIDs(?d) ^ DDI_Warfarin/NSAIDs(?d2)
6^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.19: DDI_Warfarin/NSAIDs

1Trimethoprim_sulfamethoxazole(?d2) ^ hasDrug(?pr, ?d)
2^ Patient(?p) ^ hasPatientAgeValue(?p,?a) ^ Prescription(?pr)
3^ swrlb:greaterThan(?a, 64) ^ hasPrescription(?p, ?pr)
4^ Warfarin(?d) ^ hasDrug(?pr, ?d2)
5-> DDI_Warfarin/Trimethoprim_sulfamethoxazole(?d)
6^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)
7^ DDI_Warfarin/Trimethoprim_sulfamethoxazole(?d2)

Listing C.20: DDI_Warfarin/Trimethoprim_sulfamethoxazole

C.2 Potentially Inappropriate Medication Due to

Drug-Disease or Drug-Syndrome Interactions

That May Exacerbate the Disease or Syndrome

(DDDS) Rules

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e)
5^ Cyclooxygenase-2_COX-2_Inhibitors(?d) ^ hasRoute(?d, ?r) ^
6Oral(?r) ->
7DDDS_NSAIDs_non-COX_and_COX_selective_oral_and_parenteral_

nonacetylated_salicylates(?d) ^ hasInteractionWith(?d, ?d)

Listing C.21: DDDS_NSAIDs_non-COX_and_COX - Cyclooxygenase - Oral

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e)
5^ Cyclooxygenase-2_COX-2_Inhibitors(?d) ^ hasRoute(?d, ?r) ^
6Parenteral(?r) ->
7DDDS_NSAIDs_non-COX_and_COX_selective_oral_and-

parenteral_nonacetylated_salicylates(?d)
8^ hasInteractionWith(?d, ?d)

206

C.2. Potentially Inappropriate Medication Due to Drug-Disease or
Drug-Syndrome Interactions That May Exacerbate the Disease or Syndrome

(DDDS) Rules

Listing C.22: DDDS_NSAIDs_non-COX_and_COX - Cyclooxygenase - Parenteral

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr,?d) ^ swrlb:greaterThan(?a,64) ^ swrlb:lessThan(?v,

30)
4^ Creatinine_Clearancee(?e) ^ Non_COX-2_selective_NSAIDS(?d)
5^ hasRoute(?d, ?r) ^ Oral(?r) ->
6DDDS_NSAIDs_non-COX_and_COX_selective_oral_and-

parenteral_nonacetylated_salicylates(?d)
7^ hasInteractionWith(?d, ?d)

Listing C.23: DDDS_NSAIDs_non-COX_and_COX - Non_COX-2_selective_NSAIDS -
Oral

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p, ?a)

2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64) ^ swrlb:lessThan(?

v, 30)
4^ Creatinine_Clearancee(?e) ^ Non_COX-2_selective_NSAIDS(?d)
5^ hasRoute(?d, ?r) ^ Parenteral(?r) -> DDDS_NSAIDs_non-

COX_and_COX_selective_oral_and-
parenteral_nonacetylated_salicylates(?d)

6^ hasInteractionWith(?d, ?d)

Listing C.24: DDDS_NSAIDs_non-COX_and_COX - Non_COX-2_selective_NSAIDS -
Parenteral

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr,?d) ^ swrlb:greaterThan(?a,64) ^ swrlb:lessThan(?v,

30)
4^ Creatinine_Clearancee(?e) ^ Nonacetylated_salicylates(?d)
5^ hasRoute(?d, ?r) ^ Oral(?r) -> DDDS_NSAIDs_non-

COX_and_COX_selective_oral_and-
parenteral_nonacetylated_salicylates(?d)

6^ hasInteractionWith(?d, ?d)

Listing C.25: DDDS_NSAIDs_non-COX_and_COX - Nonacetylated_salicylates - Oral

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64) ^ swrlb:lessThan(?

v, 30)

207

C. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO DETECT
INAPPROPRIATE DRUGS

4^ Creatinine_Clearancee(?e) ^ Nonacetylated_salicylates(?d)
5^ hasRoute(?d, ?r) ^ Parenteral(?r) ->
6DDDS_NSAIDs_non-COX_and_COX_selective_oral_and-

parenteral_nonacetylated_salicylates(?d)
7^ hasInteractionWith(?d, ?d)

Listing C.26: DDDS_NSAIDs_non-COX_and_COX - Nonacetylated_salicylates -
Parenteral

C.3 Medications That Should Be Avoided or Have

Their Dosage Reduced With Varying Levels of

Kidney Function (VLKF) Rules

1hasExam(?p, ?e) ^ hasExamValue(?e, ?v) ^ hasPatientAgeValue(?p,?
a)

2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e)
5^ aMILoride(?d) -> VLKF_Amiloride(?d) ^ hasInteractionWith(?d,?d)

Listing C.27: VLKF_Amiloride

1hasExam(?p, ?e) ^ swrlb:lessThan(?v, 25) ^ hasExamValue(?e,?v)
2^ hasPatientAgeValue(?p, ?a) ^ Patient(?p) ^ Prescription(?pr)
3^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)
4^ swrlb:greaterThan(?a, 64) ^ Apixaban(?d)
5^ Creatinine_Clearancee(?e) -> VLKF_Apixaban(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.28: VLKF_Apixaban

1hasExam(?p, ?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)

2^ swrlb:lessThan(?v, 50) ^ Patient(?p) ^ Prescription(?pr)
3^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)
4^ swrlb:greaterThan(?a, 64) ^ Cimetidine(?d)
5^ Creatinine_Clearancee(?e) -> VLKF_Cimetidine(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.29: VLKF_Cimetidine

208

C.3. Medications That Should Be Avoided or Have Their Dosage Reduced With
Varying Levels of Kidney Function (VLKF) Rules

1hasExam(?p, ?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)

2^ Ciprofloxacin(?d) ^ Patient(?p) ^ Prescription(?pr)
3^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)
4^ swrlb:greaterThan(?a, 64) ^ swrlb:lessThan(?v, 30)
5^ Creatinine_Clearancee(?e) -> VLKF_Ciprofloxacin(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.30: VLKF_Ciprofloxacin

1hasExam(?p, ?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)

2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ swrlb:lessThan(?v, 30) ^ Colchicine(?d)
5^ Creatinine_Clearancee(?e) -> VLKF_Colchicine(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.31: VLKF_Colchicine

1hasExam(?p, ?e) ^ Dofetilide(?d)^ swrlb:lessThan(?v, 60)
2^ hasExamValue(?e, ?v) ^ hasPatientAgeValue(?p, ?a)
3^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
4^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
5^ Creatinine_Clearancee(?e) -> VLKF_Dofetilide(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.32: VLKF_Dofetilide

1hasExam(?p, ?e) ^ hasExamValue(?e,?v) ^ DULoxetine(?d)
2^ hasPatientAgeValue(?p, ?a) ^ Patient(?p)
3^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
4^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
5^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e)
6-> VLKF_Duloxetine(?d) ^ hasInteractionWith(?d, ?d)

Listing C.33: VLKF_Duloxetine

1hasExam(?p, ?e) ^ swrlb:lessThan(?v, 51) ^swrlb:greaterThan(?v
,14)

2^ hasExamValue(?e, ?v) ^ hasPatientAgeValue(?p, ?a) ^ Patient(?p)

3^ Prescription(?pr) ^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)

4^ swrlb:greaterThan(?a, 64) ^ Edoxaban_Tosylate(?d)
5^ Creatinine_Clearancee(?e) -> VLKF_Edoxaban(?d)
6^ hasInteractionWith(?d, ?d)

209

C. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO DETECT
INAPPROPRIATE DRUGS

Listing C.34: VLKF_Edoxaban 15-50

1hasExam(?p, ?e) ^ swrlb:lessThan(?v,15) ^ hasExamValue(?e,?v)
2^ hasPatientAgeValue(?p, ?a) ^ Patient(?p) ^ Prescription(?pr)
3^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)
4^ swrlb:greaterThan(?a, 64) ^ Edoxaban_Tosylate(?d)
5^ Creatinine_Clearancee(?e) -> VLKF_Edoxaban(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.35: VLKF_Edoxaban <15

1hasExam(?p, ?e) ^ swrlb:greaterThan(?v,95) ^ hasExamValue(?e,?v)
2^ hasPatientAgeValue(?p, ?a) ^ Patient(?p) ^ Prescription(?pr)
3^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)
4^ swrlb:greaterThan(?a, 64) ^ Edoxaban_Tosylate(?d)
5^ Creatinine_Clearancee(?e) -> VLKF_Edoxaban(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.36: VLKF_Edoxaban >95

1hasExam(?p, ?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)

2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ Enoxaparin(?d) ^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e) ->
5VLKF_Enoxaparin(?d) ^ hasInteractionWith(?d, ?d)

Listing C.37: VLKF_Enoxaparin

1hasExam(?p, ?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)

2^ swrlb:lessThan(?v, 50) ^ Patient(?p) ^ Prescription(?pr)
3^ hasPrescription(?p, ?pr) ^ Famotidine(?d) ^ hasDrug(?pr, ?d)
4^ swrlb:greaterThan(?a, 64) ^ Creatinine_Clearancee(?e) ->
5VLKF_Famotidine(?d) ^ hasInteractionWith(?d, ?d)

Listing C.38: VLKF_Famotidine

1hasExam(?p, ?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)

2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ swrlb:lessThan(?v, 30) ^ Fondaparinux(?d)

210

C.3. Medications That Should Be Avoided or Have Their Dosage Reduced With
Varying Levels of Kidney Function (VLKF) Rules

5^ Creatinine_Clearancee(?e) -> VLKF_Fondaparinux(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.39: VLKF_Fondaparinux

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ Gabapentin(?d) ^ Patient(?p) ^ Prescription(?pr)
3^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)
4^ swrlb:greaterThan(?a, 64) ^ swrlb:lessThan(?v, 30)
5^ Creatinine_Clearancee(?e) -> VLKF_Gabapentin(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.40: VLKF_Gabapentin

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ swrlb:lessThan(?v, 81) ^ Patient(?p) ^ Prescription(?pr)
3^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)
4^ swrlb:greaterThan(?a, 64) ^ levETIRAcetam(?d)
5^ Creatinine_Clearancee(?e) -> VLKF_Levetiracetam(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.41: VLKF_Levetiracetam

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ swrlb:lessThan(?v, 50) ^ Patient(?p) ^ Prescription(?pr)
3^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)
4^ swrlb:greaterThan(?a, 64) ^ Creatinine_Clearancee(?e)
5^ Nizatidine(?d) -> VLKF_Nizatidine(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.42: VLKF_Nizatidine

1hasExam(?p,?e) ^ swrlb:lessThan(?v,60) ^ Pregabalin(?d)
2^ hasExamValue(?e, ?v) ^ hasPatientAgeValue(?p, ?a)
3^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
4^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
5^ Creatinine_Clearancee(?e) -> VLKF_Pregabalin(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.43: VLKF_Pregabalin

1hasExam(?p,?e) ^ Probenecid(?d) ^ hasExamValue(?e,?v)
2^ hasPatientAgeValue(?p, ?a) ^ Patient(?p)
3^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
4^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)

211

C. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO DETECT
INAPPROPRIATE DRUGS

5^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e) ->
6VLKF_Probenecid(?d) ^ hasInteractionWith(?d, ?d)

Listing C.44: VLKF_Probenecid

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ raNITIdine(?d) ^ swrlb:lessThan(?v, 50) ^ Patient(?p)
3^ Prescription(?pr) ^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)

4^ swrlb:greaterThan(?a, 64) ^ Creatinine_Clearancee(?e)
5-> VLKF_Ranitidine(?d) ^ hasInteractionWith(?d, ?d)

Listing C.45: VLKF_Ranitidine

1hasExam(?p,?e) ^ Rivaroxaban(?d) ^ hasExamValue(?e,?v)
2^ hasPatientAgeValue(?p, ?a) ^ swrlb:lessThan(?v, 50)
3^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
4^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
5^ Creatinine_Clearancee(?e) -> VLKF_Rivaroxaban(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.46: VLKF_Rivaroxaban

1Spironolactone(?d) ^ hasExam(?p,?e) ^ hasExamValue(?e,?v)
2^ hasPatientAgeValue(?p, ?a) ^ Patient(?p)
3^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
4^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
5^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e)
6-> VLKF_Spironolactone(?d) ^ hasInteractionWith(?d, ?d)

Listing C.47: VLKF_Spironolactone

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)
2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e)
5^ traMADol(?d) -> VLKF_Tramadol(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.48: VLKF_Tramadol

1hasExam(?p,?e) ^ hasExamValue(?e,?v) ^ Triamterene(?d)
2^ hasPatientAgeValue(?p, ?a) ^ Patient(?p)
3^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
4^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)

212

C.4. Potentially Inappropriate Medications (PIMs) rules

5^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e)
6-> VLKF_Triamterene(?d) ^ hasInteractionWith(?d, ?d)

Listing C.49: VLKF_Triamterene

1hasExam(?p,?e) ^ Trimethoprim(?d) ^ hasExamValue(?e,?v)
2^ hasDrug(?pr, ?d) ^ hasPatientAgeValue(?p, ?a)
3^ Patient(?p) ^ Prescription(?pr)
4^ swrlb:greaterThan(?a, 64) ^ swrlb:lessThan(?v, 30)
5^ hasPrescription(?p, ?pr) ^ Creatinine_Clearancee(?e)
6-> VLKF_Trimethoprim_sulfamethoxazole(?d)
7^ hasInteractionWith(?d, ?d)

Listing C.50: VLKF_Trimethoprim

C.4 Potentially Inappropriate Medications (PIMs)

rules

1hasExam(?p, ?e) ^ hasExamValue(?e,?v) ^ hasPatientAgeValue(?p,?a)

2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ swrlb:lessThan(?v, 30) ^ Creatinine_Clearancee(?e)
5^ Nitrofurantoin(?d) -> PIM_Anti-infective(?d)
6^ hasInteractionWith(?d, ?d)

Listing C.51: PIM_Anti-infective - Creatinine_Clearancee

1hasLenghtDrugTherapie(?p,?v) ^ hasPatientAgeValue(?p,?a)
2^ Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
3^ hasDrug(?pr, ?d) ^ swrlb:greaterThan(?a, 64)
4^ swrlb:greaterThan(?v, 30) ^ Nitrofurantoin(?d)
5-> PIM_Anti-infective(?d) ^ hasInteractionWith(?d, ?d)

Listing C.52: PIM_Anti-infective- LenghtDrugTherapie

C.5 Drugs To Be Used With Caution (UWC) rules

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Angiotensin-Converting_Enzyme_Inhibitors(?d)
3^ Trimethoprim_sulfamethoxazole(?d2) ^ hasDrug(?pr, ?d)

213

C. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO DETECT
INAPPROPRIATE DRUGS

4^ hasDrug(?pr, ?d2) ^ hasPatientAgeValue(?p, ?a)
5^ swrlb:greaterThan(?a, 64) ->
6UWC_Trimethoprim_sulfamethoxazole(?d)
7^ UWC_Trimethoprim_sulfamethoxazole(?d2)
8^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.53: UWC_Trimethoprim_sulfamethoxazole - Angiotensin-Converting_Enzyme_-
Inhibitors

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ Angiotensin_II_Receptor_Antagonists(?d)
3^ Trimethoprim_sulfamethoxazole(?d2) ^ hasDrug(?pr, ?d)
4^ hasDrug(?pr, ?d2) ^ hasPatientAgeValue(?p, ?a)
5^ swrlb:greaterThan(?a, 64) ->
6UWC_Trimethoprim_sulfamethoxazole(?d)
7^ UWC_Trimethoprim_sulfamethoxazole(?d2)
8^ hasInteractionWith(?d, ?d2) ^ hasInteractionWith(?d2, ?d)

Listing C.54: UWC_Trimethoprim_sulfamethoxazole - Angiotensin_II_Receptor_-
Antagonists

214

DAPPENDIX D

SEMANTIC WEB RULE
LANGUAGE (SWRL)

RULES TO FIND
ALTERNATIVE DRUGS

This appendix provides the SWRL rules developed on the Beers Criteria ontology
to find alternative drugs for prescribed drugs.

D.1 Alternative drugs rules to drugs included in the

Potentially Harmful Drug-Disease Interactions

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ hasDrug(?pr, ?d) ^ First_Generation_Antihistamines(?d)
3^ Drugs(?d) ^ Drugs(?snp) ^ isAlternative(?snp, true) ^

Alt_First_generation_antihistamines(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ swrlb:greaterThan(?a, 64)
5^ Dementia(?pd) ^ hasDisease(?p, ?pd)
6-> hasAlternative(?d, ?snp)

Listing D.1: Alt_DDI_Dementia_Anticholinergic_First-generation_antihistamines

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ hasDrug(?pr, ?d) ^ First_Generation_Antihistamines_Oral(?d)
3^ Drugs(?d) ^ Drugs(?snp) ^ isAlternative(?snp, true) ^

Alt_First_generation_antihistamines(?snp)

215

D. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO FIND ALTERNATIVE
DRUGS

4^ hasPatientAgeValue(?d, ?a) ^ swrlb:greaterThan(?a, 64)
5^ Dementia(?pd) ^ hasDisease(?p, ?pd)
6-> hasAlternative(?d, ?snp)

Listing D.2: Alt_DDI_Dementia_Anticholinergic_First-generation_antihistamines_Oral

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ hasDrug(?pr, ?d) ^ Benztropine(?d) ^ Drugs(?d)
3^ hasRoute(?d, ?o) ^ Oral(?o) ^ Drugs(?snp)
4^ Alt_Parkinson_disease(?snp) ^ hasPatientAgeValue(?d, ?a)
5^ isAlternative(?snp, true) ^ Parkinson(?pd)
6^ hasDisease(?p, ?pd) ^ swrlb:greaterThan(?a, 64)
7^ Dementia(?pd) -> hasAlternative(?d, ?snp)

Listing D.3: Alt_DDI_Dementia_Anticholinergic_Parkinson_Benztropine

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ hasDrug(?pr, ?d) ^ Trihexyphenidyl(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Parkinson_disease(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ Parkinson(?pd) ^ hasDisease(?p, ?pd)
6^ swrlb:greaterThan(?a, 64) ^ Dementia(?pd)
7-> hasAlternative(?d, ?snp)

Listing D.4: Alt_DDI_Dementia_Anticholinergic_Parkinson_Trihexyphenidyl

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ hasDrug(?pr, ?d) ^ Antipsychotics(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Antipsychotics_Behavioral(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) ^ Dementia(?pd)
6^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.5: Alt_DDI_Dementia_Antipsychotics_Behavioral

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ hasDrug(?pr, ?d) ^ Histamine_H2-Antagonists(?d)
3^ Drugs(?d) ^ Drugs(?snp) ^ Alt_H2_blockers(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) ^ Dementia(?pd)
6^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.6: Alt_DDI_Dementia_H2Blocker

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)

216

D.1. Alternative drugs rules to drugs included in the Potentially Harmful
Drug-Disease Interactions

2^ hasDrug(?pr, ?d)
3^ Non-aspirin_nonsteroidal_anti-inflammatory_drugs_NA-NSAIDs(?d)
4^ Drugs(?d) ^ Drugs(?snp)
5^ Alt_Non-aspirin_nonsteroidal_anti-inflammatory_drugs_NA-NSAIDs

(?snp)
6^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
7^ swrlb:greaterThan(?a, 64) ^ Dementia(?pd)
8^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.7: Alt_DDI_Dementia_NA-NSAIDs

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Eszopiclone(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Benzodiazepines(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) ^ Dementia(?pd)
6^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.8: Alt_DDI_Dementia_Nonbenzodiazepine_Eszopiclone

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d)
3^ Tricyclics_and_Other_Norepinephrine-_reuptake_Inhibitors(?d)
4^ Drugs(?d) ^ Drugs(?snp) ^ isAlternative(?snp, true) ^

Alt_Tertiary_amine_tricyclic_antidepressants(?snp)
5^ hasPatientAgeValue(?d, ?a) ^ swrlb:greaterThan(?a, 64)
6^ Dementia(?pd) ^ hasDisease(?p, ?pd)
7-> hasAlternative(?d, ?snp)

Listing D.9: Alt_DDI_Dementia_Tricyclic antidepressants - secondary

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Tertiary_amine_tricyclic_antidepressants(?d)

3^ Drugs(?d) ^ Drugs(?snp) ^ isAlternative(?snp, true)
4^ Alt_Tertiary_amine_tricyclic_antidepressants(?snp)
5^ hasPatientAgeValue(?d, ?a) ^ swrlb:greaterThan(?a, 64)
6^ Dementia(?pd) ^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.10: Alt_DDI_Dementia_Tricyclic antidepressants - tertiary

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Anticonvulsants(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Anticonvulsants(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) ^ History_of_falls(?pd)

217

D. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO FIND ALTERNATIVE
DRUGS

6^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.11: Alt_DDI_Falls_Anticonvulsants

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Antipsychotics(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Antipsychotics_Behavioral(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) ^ History_of_falls(?pd)
6^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.12: Alt_DDI_Falls_Antipsychotics_Behavioral

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Antipsychotics(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Antipsychotics_Delirium(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) ^ History_of_falls(?pd)
6^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.13: Alt_DDI_Falls_Antipsychotics_Delirium

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Antipsychotics(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Antipsychotics_Schizophrenia(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) ^ History_of_falls(?pd)
6^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.14: Alt_DDI_Falls_Antipsychotics_Schizophrenia

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Benzodiazepines(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Benzodiazepines(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) ^ History_of_falls(?pd)
6^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.15: Alt_DDI_Falls_Benzodiazepines

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Zaleplon(?d) ^ Drugs(?d) ^ Drugs(?snp)
3^ Alt_Benzodiazepines(?snp) ^ hasPatientAgeValue(?d, ?a)
4^ isAlternative(?snp, true) ^ swrlb:greaterThan(?a, 64)
5^ History_of_falls(?pd) ^ hasDisease(?p, ?pd)

218

D.1. Alternative drugs rules to drugs included in the Potentially Harmful
Drug-Disease Interactions

6-> hasAlternative(?d, ?snp)

Listing D.16: Alt_DDI_Falls_Benzodiazepines_Zaleplon

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Zolpidem(?d) ^ Drugs(?d) ^ Drugs(?snp)
3^ Alt_Benzodiazepines(?snp) ^ hasPatientAgeValue(?d, ?a)
4^ isAlternative(?snp, true) ^ swrlb:greaterThan(?a, 64)
5^ History_of_falls(?pd) ^ hasDisease(?p, ?pd)
6-> hasAlternative(?d, ?snp)

Listing D.17: Alt_DDI_Falls_Benzodiazepines_Zolpidem

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Eszopiclone(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Benzodiazepines(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) ^ History_of_falls(?pd)
6^ hasDisease(?p, ?pd) -> hasAlternative(?d, ?snp)

Listing D.18: Alt_DDI_Falls_Nonbenzodiazepine_Eszopiclone

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d)
3^ Tricyclics_and_Other_Norepinephrine-_reuptake_Inhibitors(?d)
4^ Drugs(?d) ^ Drugs(?snp) ^ isAlternative(?snp, true) ^

Alt_Tertiary_amine_tricyclic_antidepressants(?snp)
5^ hasPatientAgeValue(?d, ?a) ^ swrlb:greaterThan(?a, 64)
6^ History_of_falls(?pd) ^ hasDisease(?p, ?pd)
7-> hasAlternative(?d, ?snp)

Listing D.19: Alt_DDI_Falls_Tricyclic antidepressants - secondary

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Tertiary_amine_tricyclic_antidepressants(?d)

3^ Drugs(?d) ^ Drugs(?snp) ^ isAlternative(?snp, true)
4^ Alt_Tertiary_amine_tricyclic_antidepressants(?snp)
5^ hasPatientAgeValue(?d, ?a) ^ swrlb:greaterThan(?a, 64)
6^ History_of_falls(?pd) ^ hasDisease(?p, ?pd)
7-> hasAlternative(?d, ?snp)

Listing D.20: Alt_DDI_Falls_Tricyclic antidepressants - tertiary

219

D. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO FIND ALTERNATIVE
DRUGS

D.2 Alternative drugs rules to drugs Included in the

High-Risk Medications

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p,?pr)
2^ hasDrug(?pr, ?d) ^ First_Generation_Antihistamines(?d)
3^ Drugs(?d) ^ Drugs(?snp) ^ isAlternative(?snp, true)
4^ Alt_First_generation_antihistamines(?snp)
5^ hasPatientAgeValue(?d, ?a) ^ swrlb:greaterThan(?a, 64)
6-> hasAlternative(?d, ?snp)

Listing D.21: Alt_HRM_Anticholinergic_First-generation_antihistamines

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ First_Generation_Antihistamines_Oral(?d)
3^ Drugs(?d) ^ Drugs(?snp) ^ isAlternative(?snp, true)
4^ Alt_First_generation_antihistamines(?snp)
5^ hasPatientAgeValue(?d, ?a) ^ swrlb:greaterThan(?a, 64)
6-> hasAlternative(?d, ?snp)

Listing D.22: Alt_HRM_Anticholinergic_First-generation_antihistamines_Oral

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Benztropine(?d) ^ Drugs(?d)
3^ hasRoute(?d, ?o) ^ Oral(?o) ^ Drugs(?snp)
4^ Alt_Parkinson_disease(?snp) ^ hasPatientAgeValue(?d, ?a)
5^ isAlternative(?snp, true) ^ Parkinson(?pd)
6^ hasDisease(?p, ?pd) ^ swrlb:greaterThan(?a, 64)
7-> hasAlternative(?d, ?snp)

Listing D.23: Alt_HRM_Anticholinergic_Parkinson _disease_Benztropine

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Trihexyphenidyl(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Parkinson_disease(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ Parkinson(?pd) ^ hasDisease(?p, ?pd)
6^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.24: Alt_HRM_Anticholinergic_Parkinson _disease_Trihexyphenidyl

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Dipyridamole(?d) ^ Drugs(?d)
3^ hasRoute(?d, ?o) ^ Oral(?o) ^ Drugs(?snp)
4^ Alt_Antithrombotic_Anti_platelets(?snp)
5^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)

220

D.2. Alternative drugs rules to drugs Included in the High-Risk Medications

6^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.25: Alt_HRM_Antithrombotic/Anti platelets_Dipyridamole

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Ticlopidine(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Antithrombotic_Anti_platelets(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.26: Alt_HRM_Antithrombotic/Anti platelets_Ticlopidine

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Barbiturates(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Barbiturates(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.27: Alt_HRM_CNS_Barbiturates

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Meprobamate(?d) ^ Drugs(?d) ^ Drugs(?snp)
3^ Alt_Meprobamate(?snp) ^ hasPatientAgeValue(?d, ?a)
4^ isAlternative(?snp, true) ^ swrlb:greaterThan(?a, 64)
5-> hasAlternative(?d, ?snp)

Listing D.28: Alt_HRM_CNS_Other_Meprobamate

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Thioridazine(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Thioridazine(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.29: Alt_HRM_CNS_Other_Thioridazine

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Tertiary_amine_tricyclic_antidepressants(?d)

3^ Drugs(?d) ^ Drugs(?snp) ^ isAlternative(?snp, true) ^
Alt_Tertiary_amine_tricyclic_antidepressants(?snp)

4^ hasPatientAgeValue(?d, ?a) ^ swrlb:greaterThan(?a, 64)
5-> hasAlternative(?d, ?snp)

221

D. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO FIND ALTERNATIVE
DRUGS

Listing D.30: Alt_HRM_CNS_Tertiary_TCAs

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Ergoloid_Mesylates(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Vasodilator(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.31: Alt_HRM_CNS_Vasodilator_Ergot mesylates

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Isoxsuprine(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Vasodilator(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.32: Alt_HRM_CNS_Vasodilator_Isoxsuprine

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Central_alpha-Agonists(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Alpha_agonists_central(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.33: Alt_HRM_Cardio_Alpha agonists

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Disopyramide(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Cardio_Other(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.34: Alt_HRM_Cardio_Other_Disopyramide

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ NIFEdipine(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Cardio_Other(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.35: Alt_HRM_Cardio_Other_NIFEdipine

222

D.2. Alternative drugs rules to drugs Included in the High-Risk Medications

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Desiccated_thyroid(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Desiccated_thyroid(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.36: Alt_HRM_Endocrine_Desiccated thyroid

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Estrogens(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Estrogens(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.37: Alt_HRM_Endocrine_Estrogens

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ chlorproMAZINE(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Sulfonylureas(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.38: Alt_HRM_Endocrine_Sulfonylureas_chlorproMAZINE

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ glyBURIDE(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Sulfonylureas(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.39: Alt_HRM_Endocrine_Sulfonylureas_glyBURIDE

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Meperidine(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Opioids(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.40: Alt_HRM_Pain_Opioids_Meperidine

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Meperidine(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Opioids(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)

223

D. SEMANTIC WEB RULE LANGUAGE (SWRL) RULES TO FIND ALTERNATIVE
DRUGS

5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.41: Alt_HRM_Pain_Opioids_Pentazocine

1Patient(?p) ^ Prescription(?pr)
2^ hasPrescription(?p, ?pr) ^ hasDrug(?pr, ?d)
3^ Centrally_Acting_Skeletal_Muscle_Relaxants(?d)
4^ Drugs(?d) ^ Drugs(?snp)
5^ Alt_Skeletal_muscle_relaxants(?snp)
6^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
7^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.42: Alt_HRM_Pain_Skeletal muscle relaxants

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Orphenadrine(?d) ^ Drugs(?d)
3^ Drugs(?snp) ^ Alt_Skeletal_muscle_relaxants(?snp)
4^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
5^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.43: Alt_HRM_Pain_Skeletal muscle relaxants_Orphenadrine

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Indomethacin(?d) ^ Drugs(?d) ^ Drugs(?snp)

^ Alt_Specific_nonsteroidal_antiinflammatory_drugs(?snp)
3^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
4^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.44: Alt_HRM_Pain_Specific nonsteroidal antiinflammatory
drugs_Indomethacin

1Patient(?p) ^ Prescription(?pr) ^ hasPrescription(?p, ?pr)
2^ hasDrug(?pr, ?d) ^ Ketorolac(?d) ^ Drugs(?d) ^ Drugs(?snp) ^

Alt_Specific_nonsteroidal_antiinflammatory_drugs(?snp)
3^ hasPatientAgeValue(?d, ?a) ^ isAlternative(?snp, true)
4^ swrlb:greaterThan(?a, 64) -> hasAlternative(?d, ?snp)

Listing D.45: Alt_HRM_Pain_Specific nonsteroidal antiinflammatory drugs_Ketorolac

224

EAPPENDIX E

SPARQL
INTERACTIONS

QUERYING

This appendix provides the SPARQL queries performed on the Beers Criteria
ontology to select prescribed inappropriate drugs, alternative drugs, and TMAX
value.

E.1 SPARQL interactions querying

1 SELECT DISTINCT ?Drug ?Interaction1 ?Interaction2
2 WHERE OntoBC:P1 OntoBC:hasDrug ?Drug .
3 ?Drug rdf:type ?Interaction1 .
4 ?Interaction1 rdfs:subClassOf ?Interaction2 .
5 ?Interaction2 rdfs:subClassOf OntoBC:BeersCriteria .

Listing E.1: SPARQL group interaction query

1 SELECT DISTINCT ?Drug ?Interaction1 ?Interaction2 ?
Interaction3

2 WHERE OntoBC:P1 OntoBC:hasDrug ?Drug .
3 ?Drug rdf:type ?Interaction1 .
4 ?Interaction1 rdfs:subClassOf ?Interaction2 .
5 ?Interaction2 rdfs:subClassOf ?Interaction3 .
6 ?Interaction3 rdfs:subClassOf OntoBC:BeersCriteria .

Listing E.2: SPARQL group and subgroup interaction query

225

E. SPARQL INTERACTIONS QUERYING

1 SELECT DISTINCT ?Drug ?DrugInt
2 WHERE OntoBC:P1 OntoBC:hasDrug ?Drug .
3 ?Drug {ontology}:hasInteractionWith ?DrugInt

Listing E.3: SPARQL drug-drug interaction query

E.2 SPARQL alternative querying

1SELECT DISTINCT ?Drug ?Alternative
2WHERE OntoBC:P1 OntoBC:hasDrug ?Drug .
3 ?Drug OntoBC:hasAlternative ?Alternative

Listing E.4: SPARQL alternative drug query

E.3 SPARQL drug parameters querying

1SELECT DISTINCT ?value
2WHERE {{{ontology}:{labeldrug} rdfs:subClassOf ?object.
3 ?object a owl:Restriction .
4 ?object owl:onProperty {ontology}:hasTmax.
5 object owl:qualifiedCardinality ?value }}

Listing E.5: SPARQL Tmax query

E.4 SPARQL all PIM parameters querying

1 prefix = "http://gr60.st-andrews.ac.uk/BeersCriteria#"
2 graph.bind("pre", prefix)
3 result = list(graph.query(
4 SELECT *
5 WHERE { {
6 SELECT ?Prescription ?Drug ?Interaction ?InteractionGroup
7 ?QualityofEvidence ?StrengthofRecommendation
8 WHERE {
9 pre:Patient1 pre:hasPrescription ?Prescription .

10 ?Prescription pre:hasDrug ?Drug .
11 ?Drug rdf:type ?Interaction .
12 ?Drug rdf:type ?InteractionProp .
13 ?Interaction rdfs:subClassOf ?InteractionGroup .
14 ?InteractionGroup rdfs:subClassOf pre:BeersCriteria .
15 ?InteractionProp rdfs:subClassOf ?QoF .
16 ?InteractionProp rdfs:subClassOf ?SoR .

226

E.4. SPARQL all PIM parameters querying

17 ?QoF a owl:Restriction .
18 ?QoF owl:onProperty pre:hasQualityofEvidence.
19 ?QoF owl:someValuesFrom ?QualityofEvidence .
20 ?SoR a owl:Restriction .
21 ?SoR owl:onProperty pre:hasStrengthofRecommendation.
22 ?SoR owl:someValuesFrom ?StrengthofRecommendation . }
23 }
24 UNION {
25 SELECT ?Prescription ?Drug ?Interaction ?InteractionGroup
26 ?QualityofEvidence ?StrengthofRecommendation
27 WHERE {pre:Patient1 pre:hasPrescription ?Prescription .
28 ?Prescription pre:hasDrug ?Drug .
29 ?Drug rdf:type ?InteractionSubGroup .
30 ?Drug rdf:type ?InteractionProp .
31 ?InteractionSubGroup rdfs:subClassOf ?Interaction .
32 ?Interaction rdfs:subClassOf ?InteractionGroup .
33 ?InteractionGroup rdfs:subClassOf pre:BeersCriteria .
34 ?InteractionProp rdfs:subClassOf ?QoF .
35 ?InteractionProp rdfs:subClassOf ?SoR .
36 ?QoF a owl:Restriction .
37 ?QoF owl:onProperty pre:hasQualityofEvidence.
38 ?QoF owl:someValuesFrom ?QualityofEvidence .
39 ?SoR a owl:Restriction .
40 ?SoR owl:onProperty pre:hasStrengthofRecommendation.
41 ?SoR owl:someValuesFrom ?StrengthofRecommendation . }
42 }
43 }
44))

Listing E.6: SPARQL all PIM parameters query

227

FAPPENDIX F

PYTHON CODE

This appendix provides the inference engines developed in Python that are
integrated with the Beers Criteria ontology.

F.1 Main file

The main file integrates the inference engines and the CDSS database. Moreover,
it defines the CDSS workflow.

Filename: main.py

1from ie_beers_criteria_interactions import checkInteraction
2from ie_smt_alternative_solver import checkAlternative
3from ie_smt_rescheduling_solver import checkRescheduling
4from Utils.dbInsert import importPatients
5from Utils.dbCreate import resetDB
6from result_queries import results
7 import sqlite3, os
8 import pandas as pd
9from config import DBNAME

10 import time
11
12
13 importPatients(True) # Insert patient data into the DB − Folder: /data/patient_data
14
15conn = sqlite3.connect(DBNAME, timeout=10)
16
17def getPatients(conn): # Get patients from the CDSS DB
18 df = pd.read_sql_query("""
19 SELECT distinct (A.CD_PATIENT)
20 FROM PATIENT A""", conn)
21 patients = df.values.tolist()
22 return(patients)
23

229

F. PYTHON CODE

24patients = getPatients(conn)
25
26for patient in patients:
27 os.system(’cls’ if os.name == ’nt’ else ’clear’)
28 checkInteraction(patient[0]) #Check if there are inappropriate medications in each

prescription
29 os.system(’cls’ if os.name == ’nt’ else ’clear’)
30 checkAlternative(patient[0]) #Check if SAT prescriptions can be found with

alternative drugs
31 os.system(’cls’ if os.name == ’nt’ else ’clear’)
32 checkRescheduling(patient[0]) #Reschedule drug−drug interaction
33
34results() #Folder: /results/CDSS

F.2 Inference engine Beers Criteria

The Beers Criteria inference engine integrates the patient data with the ontology
and the reasoner Pellet. Moreover, it selects the interactions and alternative drugs
from the reasoners and inserts them in the CDSS database.

Filename: ie_beers_criteria_interactions.py

1 import sys, io, glob
2 import time
3from owlready2 import *
4from dateutil import parser
5from import_files import importFile, listOccurence, listPatients, listExams,

listPreviousDisease, listPrescrDays
6from datetime import datetime
7 import pandas as pd
8 import sqlite3
9from config import DBNAME, BEERSVERSION

10os.system(’cls’ if os.name == ’nt’ else ’clear’)
11
12conn = sqlite3.connect(DBNAME, timeout=10)
13c = conn.cursor()
14default_world.set_backend(filename = fr’inference_engines/ontology_files/

t.sqlite3’, exclusive = False)
15
16version = BEERSVERSION
17
18
19ONTOLOGY = fr’inference_engines/ontology_files/BeersOntologyV{

version}.owl’
20ONTOLOGY_NAME = f"BeersOntologyV{version}."
21ONTO = get_ontology(ONTOLOGY).load() #Import the Beers Criteria Ontology
22DRUGS = ’Drugs’
23ROUTE = ’AdministrationRoute’
24DISEASE = ’Disease’
25BEERS = ’BeersCriteria’
26EXAMS = ’Exams’
27PATIENT = ’Patient’

230

F.2. Inference engine Beers Criteria

28PROCESSED_ROWS = 0
29
30DrugNotRegistered = set()
31RouteNotRegistered = set()
32DiseaseNotRegistered = set()
33ExamNotRegistered = set()
34PacientNotRegisted = set()
35Exceptions = set()
36
37
38
39
40#ONTOLOGY FUNCTIONS
41
42def checkLabel(name, type): #check if exist the label drug on the onotlogy and return

the class name
43 classObj = ONTO.search(label = (name))
44 if not classObj:
45 classObj = ONTO.search(label = (name.replace(’-’, ’_’)), _case_sensitive =

False)
46 if not classObj:
47 classObj = ONTO.search(label = (name.replace(’_’, ’-’)), _case_sensitive =

False)
48 if classObj:
49 classObj = str(classObj[0]).replace(ONTOLOGY_NAME,’’)
50
51 if isinstance(ONTO[classObj], ONTO[type]):
52 return classObj
53 else:
54 return(None)
55
56def checkIndividual(name): #check if exist the label drug on the onotlogy and return the

class name
57 classObj = ONTO.search(iri = ’*’+str(name), _case_sensitive = False)
58 if classObj:
59 return(True)
60 else:
61 return(False)
62
63
64def addOntologyPatients(patientList): #Select patient data and send to the function

addIndividualPatient
65 for index, row in patientList.iterrows():
66 name = row[’CD_PATIENT’]
67 age = int(row[’AGE’])
68 gender = row[’GENDER’]
69 composeName = str(name)+"-"+str(age)+"-"+str(gender)
70 hospitalizationDate = row[’DT_Admission’]
71 dischargeDate = row[’DT_discharge’]
72 procedureName = row[’MAIN_PROCEDURE’]
73 duration = pd.to_datetime(row[’DT_discharge’]) − pd.to_datetime(

row[’DT_Admission’])
74 lenghtTreatment = duration.days
75 #Insert parameters into the ontology
76 individual = ONTO.Patient(composeName)
77 individual.hasPatientAgeValue = age

231

F. PYTHON CODE

78 individual.hasLenghtTreatment = lenghtTreatment
79 addOntologyDisease(procedureName, composeName)
80 if gender == ’M’:
81 individual.hasGender.append(ONTO.iMale)
82 else:
83 individual.hasGender.append(ONTO.iFemale)
84
85def addOntologyDisease(name, patient):
86 if checkIndividual(patient):
87 diseaseName = (str(patient)+"-"+str(name))
88 if checkIndividual(diseaseName):
89 ONTO[patient].hasDisease.append(ONTO[diseaseName])
90 return(’Disease already registered’)
91 else:
92 classObj = checkLabel(name, DISEASE)
93 if classObj:
94 individualdisease = ONTO[classObj](diseaseName)
95 ONTO[patient].hasDisease.append(individualdisease)
96 return(’Disease registered’)
97 else:
98 DiseaseNotRegistered.add(name)
99 return(None)

100 else:
101 PacientNotRegisted.add(patient)
102 print(f’{PacientNotRegisted} PacientNotRegisted’)
103 return(None)
104
105def addOntologyRelease(name, patient):
106 if checkIndividual(patient):
107 diseaseName = (str(patient)+"-"+str(name))
108 if checkIndividual(diseaseName):
109 classObj = checkLabel(name, ’ReleaseDrug’)
110 return(ONTO[classObj](diseaseName))
111 else:
112 classObj = checkLabel(name, ’ReleaseDrug’)
113 individualRelease = ONTO[classObj](diseaseName)
114 return(individualRelease)
115
116def addOntologyRoute(name, patient):
117 if checkIndividual(patient):
118 routeName = (str(patient)+"-"+str(name))
119 if checkIndividual(routeName):
120 classObj = checkLabel(name, ’AdministrationRoute’)
121 return(ONTO[classObj](routeName))
122 else:
123 classObj = checkLabel(name, ’AdministrationRoute’)
124 individualRelease = ONTO[classObj](routeName)
125 return(individualRelease)
126
127def add_ontology_exam(examList, age, gender):
128 for index, row in examList.iterrows():
129 patient = row[’CD_PATIENT’]
130 seqResult = row[’seq_Result’]
131 exam = row[’nm_Exam’]
132 result = float(row[’qt_Result’])
133 date = row[’dt_Result’]

232

F.2. Inference engine Beers Criteria

134 composeName = str(patient)+"-"+str(age)+"-"+str(gender)
135 examName = str(composeName) +"-"+ exam+"-"+str(seqResult)
136
137 if checkIndividual(examName):
138 ONTO[examName].hasExamValue.append(result)
139 ONTO[composeName].hasExam.append(ONTO[examName])
140 return(’Exam already registered’)
141 else:
142 classObj = checkLabel(exam, EXAMS)
143 if classObj:
144 if checkIndividual(composeName):
145 individualexam = ONTO[classObj](examName)
146 ONTO[composeName].hasExam.append(individualexam)
147 individualexam.hasExamValue.append(result)
148 else:
149 ExamNotRegistered.add(exam)
150
151
152## Prescription functions
153def addOntologyDrug(name, patient, prescription, age, route, dose, gender,

drugNameOriginal, typeDrug, drugLenght,criticalPatient,firstLine,release):
154 classDrug = checkLabel(name, DRUGS)
155 classRoute = checkLabel(route, ROUTE)
156 classRelease = checkLabel(release, ’ReleaseDrug’)
157 global PROCESSED_ROWS
158 PROCESSED_ROWS += 1
159 if typeDrug == ’S’ or typeDrug ==’C’:
160 if classDrug and classRoute:
161 individual = ONTO[classDrug](str((str(prescription)+"-"+str(name))).

replace(’/’, "-"))
162 individual.hasPatientAgeValue = age
163 individual.hasLenghtDrugTherapie = drugLenght
164 individual.isAlternative.append(False)
165 individual.hasGender.append(gender)
166 currentDose = individual.hasDailydoseValue
167 if criticalPatient == ’False’ or criticalPatient == ’false’ or

criticalPatient == ’F’:
168 individual.isCriticalPatient.append(False)
169 else:
170 individual.isCriticalPatient.append(True)
171
172 if firstLine == ’False’ or firstLine == ’false’ or firstLine == ’F’:
173 individual.isFirstLine.append(False)
174 else:
175 individual.isFirstLine.append(True)
176 individualRelease = addOntologyRelease(release,patient)
177 individual.toRelease.append(individualRelease)
178 if currentDose:
179 dose = int(currentDose) + dose
180 individual.hasDailydoseValue = dose
181 individualRoute = addOntologyRoute(route, patient)
182 individual.hasRoute.append(individualRoute)
183 if checkIndividual(prescription):
184 ONTO[patient].hasPrescription.append(ONTO[prescription])
185 else:
186 individualPrescr = ONTO[’Prescription’](str(prescription))

233

F. PYTHON CODE

187 ONTO[patient].hasPrescription.append(individualPrescr)
188 ONTO[prescription].hasDrug.append(ONTO[(str((str(prescription)+"-"

+str(name))).replace(’/’, "-"))])
189 return(individual)
190 else:
191 if not classDrug:
192 DrugNotRegistered.add(name)
193 print(f’{DrugNotRegistered} DrugNotRegistered’)
194 if not classRoute:
195 RouteNotRegistered.add(route)
196 print(f’{RouteNotRegistered} RouteNotRegistered’)
197 return(None)
198 else:
199 individual = ONTO[name](str((str(prescription)+’_ALT_’+str(name))).

replace(’/’, "-"))
200 individual.hasPatientAgeValue = age
201 individual.hasLenghtDrugTherapie = drugLenght
202 individual.isAlternative.append(False)
203 currentDose = individual.hasDailydoseValue
204 if currentDose:
205 dose = currentDose + dose
206 individual.hasDailydoseValue.append(dose)
207 individual.hasRoute.append(ONTO[classRoute])
208 if checkIndividual(prescription):
209 ONTO[patient].hasPrescription.append(ONTO[prescription])
210 else:
211 individualPrescr = ONTO[’Prescription’](str(prescription))
212 ONTO[patient].hasPrescription.append(individualPrescr)
213 ONTO[prescription].hasDrug.append(ONTO[(str(str(prescription)+’_ALT_’+

str(name)).replace(’/’, "-"))])
214
215
216def add_ontology_drug_assertions(patient, day, age, gender): #Add an individual

patient
217 if gender == ’M’:
218 Indvgender = ONTO.iMale
219 else:
220 Indvgender = ONTO.iFemale
221
222 presc_day = str(patient)+"-"+str(age)+"-"+str(gender) +"-"+str(day).

replace("-", "").replace("/", "")
223 patientName = str(patient)+"-"+str(age)+"-"+str(gender)
224 if patient:
225 drugs = ONTO[presc_day].hasDrug
226 diseases = ONTO[patientName].hasDisease
227 for drug in drugs:
228 drug.hasGender.append(Indvgender)
229 for disease in diseases:
230 drug.hasTreatmentIndication.append(disease)
231 alternatives = ONTO.search(iri = ’*alt_*’, _case_sensitive = False,

isAlternative = True)
232 for alternative in alternatives:
233 if isinstance(alternative, ONTO[’Alternative_Drugs’]):
234 alternative.hasPatientAgeValue = age
235 alternative.hasGender.append(Indvgender)
236

234

F.2. Inference engine Beers Criteria

237def add_prescription(prescription_df, age, gender): #Select patient data and send to the
function

238 if gender == ’M’:
239 Indvgender = ONTO.iMale
240 else:
241 Indvgender = ONTO.iFemale
242 prescrdata={}
243 header = {}
244 body = []
245 index = prescription_df.index.tolist()
246 counter = int(prescription_df["CD_PATIENT"][index[0]])
247 header = {"Counter": counter, "Gender": gender,"Age": age}
248 for i in index:
249 drugName = ’’.join(str(prescription_df["DRUG"][i]).rstrip().lstrip()).

replace(" ", "_")
250 drugNameOriginal = ’’.join(str(prescription_df["DS_DRUG_ORIGINAL"

][i]).rstrip().lstrip()).replace(" ", "_")
251 composeName = str(counter)+"-"+str(age)+"-"+str(gender)
252 route = ’’.join(str(prescription_df["ROUTE"][i]).rstrip().lstrip()).replace(

" ", "_")
253 startDateInt = str(prescription_df[’START_DATE’][i]).replace("/", "").

replace("-", "")
254 startDate = str(prescription_df[’START_DATE’][i])
255 endDate = str(prescription_df[’END_DATE’][i])
256 schedule = str(prescription_df[’SCHEDULE’][i])
257 frequency = str(prescription_df[’FREQUENCY’][i])
258 typeDrug = str(prescription_df[’TYPE_DRUG’][i])
259 criticalPatient = str(prescription_df[’CRITICAL_PATIENT’][i])
260 firstLine = str(prescription_df[’FIRST_LINE’][i])
261 release = str(prescription_df[’RELEASE’][i])
262 drugLenght = int(prescription_df[’Drug_Lenght’][i])
263 presc_day = str(counter)+"-"+str(age)+"-"+str(gender) +"-"+str(

startDateInt)
264 if typeDrug == ’S’:
265 dose = int(prescription_df[’DOSE’][i])
266 addOntologyDrug(drugName, composeName, presc_day, age,

route, dose, Indvgender, drugNameOriginal, typeDrug,
drugLenght,criticalPatient,firstLine,release)

267 body.append({’DrugName’: drugName , ’DrugNameOriginal’:
drugNameOriginal, ’Route’ :route, ’Dose’ :dose, ’
TypeDrug’:typeDrug, ’StartDate’:startDate, ’EndDate’:
endDate, ’Schedule’:schedule, ’Frequency’:frequency, ’
CriticalPatient’:criticalPatient , ’FirstLine’:firstLine ,
’Release’:release })

268 else:
269 drugName = ’’.join(str(prescription_df["DRUG"][i]).rstrip().lstrip()).

replace(" ", "-")
270 dose = int(prescription_df[’DOSE’][i])
271 addOntologyDrug(drugName, composeName, presc_day, age,

route, dose, Indvgender, drugNameOriginal, typeDrug,
drugLenght,criticalPatient,firstLine,release)

272 body.append({’DrugName’: drugName , ’DrugNameOriginal’:
drugNameOriginal, ’Route’ :route, ’Dose’ :dose, ’
TypeDrug’:typeDrug, ’StartDate’:startDate, ’EndDate’:
endDate, ’Schedule’:schedule, ’Frequency’:frequency, ’
CriticalPatient’:criticalPatient , ’FirstLine’:firstLine ,

235

F. PYTHON CODE

’Release’:release })
273 try:
274 for x in range(3):
275 if len(str(prescription_df[’DS_COM_DRUG’+str(x)][i])) > 3:
276 drugName = ’’.join(str(prescription_df[’

DS_COM_DRUG’+str(x)][i]).rstrip().lstrip()).
replace(" ", "-")

277 dose = int(prescription_df[’DOSE_COM’+str(x)][i])
278 addOntologyDrug(drugName, composeName,

presc_day, age, route, dose, Indvgender,
drugNameOriginal, typeDrug, drugLenght,
criticalPatient,firstLine,release)

279 body.append({’DrugName’: drugName , ’
DrugNameOriginal’:drugNameOriginal, ’
Route’ :route, ’Dose’ :dose, ’TypeDrug’:
typeDrug, ’StartDate’:startDate, ’EndDate’
:endDate, ’Schedule’:schedule, ’Frequency’
:frequency, ’CriticalPatient’:
criticalPatient , ’FirstLine’:firstLine , ’
Release’:release })

280 except Exception as e: Exceptions.add(’’)
281 prescrdata = {’Header’: header, ’Drugs’: body}
282 return (prescrdata)
283
284def add_disease(diseaseList, age, gender): #Select patient data and send to the function

addIndividualPatient
285 for index, row in diseaseList.iterrows():
286 patient = row[’CD_PATIENT’]
287 disease = row[’nm_Disease’]
288 composeName = str(patient)+"-"+str(age)+"-"+str(gender)
289 addOntologyDisease(disease, composeName)
290
291
292
293#get Results − SPARQL
294
295def get_prescription_interactions(patient, prescription, ontology, dbcon):
296 print("Selecting inappropriate drugs from the ontology")
297 queryDrug1 = list(default_world.sparql(f"""
298 SELECT DISTINCT ?Drug ?Interaction1 ?Interaction2 ?

QualityofEvidence ?StrengthofRecommendation ?quant
?recommendation ?detail

299 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

300 ?Drug rdf:type ?Interaction1 .
301 ?Interaction1 rdfs:subClassOf ?Interaction2 .
302 ?Interaction2 rdfs:subClassOf {ontology}:

BeersCriteria .
303 ?Interaction1 rdfs:subClassOf ?QoF .
304 ?Interaction1 rdfs:subClassOf ?SoR .
305 ?QoF a owl:Restriction .
306 ?QoF owl:onProperty {ontology}:

hasQualityofEvidence.
307 ?QoF owl:someValuesFrom ?QualityofEvidence .
308 ?SoR a owl:Restriction .
309 ?SoR owl:onProperty {ontology}:

236

F.2. Inference engine Beers Criteria

hasStrengthofRecommendation.
310 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
311 optional {{?Interaction1 {ontology}:

intDrugQuantity ?quant}}
312 optional {{?Interaction1 {ontology}:recommendation

?recommendation}}
313 optional {{?Interaction1 rdfs:comment ?detail}}
314 FILTER(CONTAINS(STR(?Interaction1), STR(?

Interaction2)))
315 }} """))
316 queryDrug2 = list(default_world.sparql(f"""
317 SELECT DISTINCT ?Drug ?Interaction1 ?Interaction2 ?

Interaction3 ?QualityofEvidence ?
StrengthofRecommendation ?quant ?recommendation ?
detail

318 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

319 ?Drug rdf:type ?Interaction1 .
320 ?Interaction1 rdfs:subClassOf ?Interaction2 .
321 ?Interaction2 rdfs:subClassOf ?Interaction3 .
322 ?Interaction3 rdfs:subClassOf {ontology}:

BeersCriteria .
323 ?Interaction1 rdfs:subClassOf ?QoF .
324 ?Interaction1 rdfs:subClassOf ?SoR .
325 ?QoF a owl:Restriction .
326 ?QoF owl:onProperty {ontology}:

hasQualityofEvidence.
327 ?QoF owl:someValuesFrom ?QualityofEvidence .
328 ?SoR a owl:Restriction .
329 ?SoR owl:onProperty {ontology}:

hasStrengthofRecommendation.
330 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
331 optional {{?Interaction1 {ontology}:

intDrugQuantity ?quant}}
332 optional {{?Interaction1 {ontology}:recommendation

?recommendation}}
333 optional {{?Interaction1 rdfs:comment ?detail}}
334 FILTER(CONTAINS(STR(?Interaction1), STR(?

Interaction3)))
335 }} """))
336 queryDrug3 = list(default_world.sparql(f"""
337 SELECT DISTINCT ?Drug ?Interaction1 ?Interaction2 ?

Interaction3 ?Interaction4 ?QualityofEvidence ?
StrengthofRecommendation ?quant ?recommendation ?
detail

338 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

339 ?Drug rdf:type ?Interaction1 .
340 ?Interaction1 rdfs:subClassOf ?Interaction2 .
341 ?Interaction2 rdfs:subClassOf ?Interaction3 .
342 ?Interaction3 rdfs:subClassOf ?Interaction4 .
343 ?Interaction4 rdfs:subClassOf {ontology}:

BeersCriteria .
344 ?Interaction1 rdfs:subClassOf ?QoF .
345 ?Interaction1 rdfs:subClassOf ?SoR .
346 ?QoF a owl:Restriction .

237

F. PYTHON CODE

347 ?QoF owl:onProperty {ontology}:
hasQualityofEvidence.

348 ?QoF owl:someValuesFrom ?QualityofEvidence .
349 ?SoR a owl:Restriction .
350 ?SoR owl:onProperty {ontology}:

hasStrengthofRecommendation.
351 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
352 optional {{?Interaction1 {ontology}:

intDrugQuantity ?quant}}
353 optional {{?Interaction1 {ontology}:recommendation

?recommendation}}
354 optional {{?Interaction1 rdfs:comment ?detail}}
355 FILTER(CONTAINS(STR(?Interaction1), STR(?

Interaction4)))
356 }}
357 """))
358 queryDrug4 = list(default_world.sparql(f"""
359 SELECT DISTINCT ?Drug ?Interaction2 ?Interaction3 ?

Interaction4 ?QualityofEvidence ?
StrengthofRecommendation ?quant ?recommendation ?
detail

360 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

361 ?Drug rdf:type ?Interaction1 .
362 ?Interaction1 rdfs:subClassOf ?Interaction2 .
363 ?Interaction2 rdfs:subClassOf ?Interaction3 .
364 ?Interaction3 rdfs:subClassOf ?Interaction4 .
365 ?Interaction4 rdfs:subClassOf {ontology}:

BeersCriteria .
366 ?Interaction2 rdfs:subClassOf ?QoF .
367 ?Interaction2 rdfs:subClassOf ?SoR .
368 ?QoF a owl:Restriction .
369 ?QoF owl:onProperty {ontology}:

hasQualityofEvidence.
370 ?QoF owl:someValuesFrom ?QualityofEvidence .
371 ?SoR a owl:Restriction .
372 ?SoR owl:onProperty {ontology}:

hasStrengthofRecommendation.
373 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
374 optional {{?Interaction2 {ontology}:

intDrugQuantity ?quant}}
375 optional {{?Interaction2 {ontology}:recommendation

?recommendation}}
376 optional {{?Interaction2 rdfs:comment ?detail}}
377 FILTER(CONTAINS(STR(?Interaction2), STR(?

Interaction4)))
378 }} """))
379 queryDrug5 = list(default_world.sparql(f"""
380 SELECT DISTINCT ?Drug ?Interaction2 ?Interaction3 ?

QualityofEvidence ?StrengthofRecommendation ?quant
?recommendation ?detail

381 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

382 ?Drug rdf:type ?Interaction1 .
383 ?Interaction1 rdfs:subClassOf ?Interaction2 .
384 ?Interaction2 rdfs:subClassOf ?Interaction3 .

238

F.2. Inference engine Beers Criteria

385 ?Interaction3 rdfs:subClassOf ?Interaction4 .
386 ?Interaction3 rdfs:subClassOf {ontology}:

BeersCriteria .
387 ?Interaction2 rdfs:subClassOf ?QoF .
388 ?Interaction2 rdfs:subClassOf ?SoR .
389 ?QoF a owl:Restriction .
390 ?QoF owl:onProperty {ontology}:

hasQualityofEvidence.
391 ?QoF owl:someValuesFrom ?QualityofEvidence .
392 ?SoR a owl:Restriction .
393 ?SoR owl:onProperty {ontology}:

hasStrengthofRecommendation.
394 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
395 optional {{?Interaction2 {ontology}:

intDrugQuantity ?quant}}
396 optional {{?Interaction2 {ontology}:recommendation

?recommendation}}
397 optional {{?Interaction2 rdfs:comment ?detail}}
398 FILTER(CONTAINS(STR(?Interaction2), STR(?

Interaction3)))
399 }} """))
400 queryAlternative1 = list(default_world.sparql(f"""
401 SELECT DISTINCT ?Alternative ?Interaction1 ?

Interaction2 ?QualityofEvidence ?
StrengthofRecommendation ?quant ?recommendation ?
detail

402 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

403 ?Drug {ontology}:hasAlternative ?Alternative
404 ?Alternative rdf:type ?Interaction1 .
405 ?Interaction1 rdfs:subClassOf ?Interaction2 .
406 ?Interaction2 rdfs:subClassOf {ontology}:

BeersCriteria .
407 ?Interaction1 rdfs:subClassOf ?QoF .
408 ?Interaction1 rdfs:subClassOf ?SoR .
409 ?QoF a owl:Restriction .
410 ?QoF owl:onProperty {ontology}:

hasQualityofEvidence.
411 ?QoF owl:someValuesFrom ?QualityofEvidence .
412 ?SoR a owl:Restriction .
413 ?SoR owl:onProperty {ontology}:

hasStrengthofRecommendation.
414 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
415 optional {{?Interaction1 {ontology}:

intDrugQuantity ?quant}}
416 optional {{?Interaction1 {ontology}:recommendation

?recommendation}}
417 optional {{?Interaction1 rdfs:comment ?detail}}
418 FILTER(CONTAINS(STR(?Interaction1), STR(?

Interaction2)))
419 }} """))
420 queryAlternative2 = list(default_world.sparql(f"""
421 SELECT DISTINCT ?Alternative ?Interaction1 ?

Interaction2 ?Interaction3 ?QualityofEvidence ?
StrengthofRecommendation ?quant ?recommendation ?
detail

239

F. PYTHON CODE

422 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

423 ?Drug {ontology}:hasAlternative ?Alternative
424 ?Alternative rdf:type ?Interaction1 .
425 ?Interaction1 rdfs:subClassOf ?Interaction2 .
426 ?Interaction2 rdfs:subClassOf ?Interaction3 .
427 ?Interaction3 rdfs:subClassOf {ontology}:

BeersCriteria .
428 ?Interaction1 rdfs:subClassOf ?QoF .
429 ?Interaction1 rdfs:subClassOf ?SoR .
430 ?QoF a owl:Restriction .
431 ?QoF owl:onProperty {ontology}:

hasQualityofEvidence.
432 ?QoF owl:someValuesFrom ?QualityofEvidence .
433 ?SoR a owl:Restriction .
434 ?SoR owl:onProperty {ontology}:

hasStrengthofRecommendation.
435 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
436 optional {{?Interaction1 {ontology}:

intDrugQuantity ?quant}}
437 optional {{?Interaction1 {ontology}:recommendation

?recommendation}}
438 optional {{?Interaction1 rdfs:comment ?detail}}
439 FILTER(CONTAINS(STR(?Interaction1), STR(?

Interaction3)))
440 }} """))
441 queryAlternative3 = list(default_world.sparql(f"""
442 SELECT DISTINCT ?Alternative ?Interaction1 ?

Interaction2 ?Interaction3 ?Interaction4 ?
QualityofEvidence ?StrengthofRecommendation ?quant
?recommendation ?detail

443 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

444 ?Drug {ontology}:hasAlternative ?Alternative
445 ?Alternative rdf:type ?Interaction1 .
446 ?Interaction1 rdfs:subClassOf ?Interaction2 .
447 ?Interaction2 rdfs:subClassOf ?Interaction3 .
448 ?Interaction3 rdfs:subClassOf ?Interaction4 .
449 ?Interaction4 rdfs:subClassOf {ontology}:

BeersCriteria .
450 ?Interaction1 rdfs:subClassOf ?QoF .
451 ?Interaction1 rdfs:subClassOf ?SoR .
452 ?QoF a owl:Restriction .
453 ?QoF owl:onProperty {ontology}:

hasQualityofEvidence.
454 ?QoF owl:someValuesFrom ?QualityofEvidence .
455 ?SoR a owl:Restriction .
456 ?SoR owl:onProperty {ontology}:

hasStrengthofRecommendation.
457 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
458 optional {{?Interaction1 {ontology}:

intDrugQuantity ?quant}}
459 optional {{?Interaction1 {ontology}:recommendation

?recommendation}}
460 optional {{?Interaction1 rdfs:comment ?detail}}
461 FILTER(CONTAINS(STR(?Interaction1), STR(?

240

F.2. Inference engine Beers Criteria

Interaction4)))
462 }}
463 """))
464 queryAlternative4 = list(default_world.sparql(f"""
465 SELECT DISTINCT ?Alternative ?Interaction2 ?

Interaction3 ?Interaction4 ?QualityofEvidence ?
StrengthofRecommendation ?quant ?recommendation ?
detail

466 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

467 ?Drug {ontology}:hasAlternative ?Alternative
468 ?Alternative rdf:type ?Interaction1 .
469 ?Interaction1 rdfs:subClassOf ?Interaction2 .
470 ?Interaction2 rdfs:subClassOf ?Interaction3 .
471 ?Interaction3 rdfs:subClassOf ?Interaction4 .
472 ?Interaction4 rdfs:subClassOf {ontology}:

BeersCriteria .
473 ?Interaction2 rdfs:subClassOf ?QoF .
474 ?Interaction2 rdfs:subClassOf ?SoR .
475 ?QoF a owl:Restriction .
476 ?QoF owl:onProperty {ontology}:

hasQualityofEvidence.
477 ?QoF owl:someValuesFrom ?QualityofEvidence .
478 ?SoR a owl:Restriction .
479 ?SoR owl:onProperty {ontology}:

hasStrengthofRecommendation.
480 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
481 optional {{?Interaction2 {ontology}:

intDrugQuantity ?quant}}
482 optional {{?Interaction2 {ontology}:recommendation

?recommendation}}
483 optional {{?Interaction2 rdfs:comment ?detail}}
484 FILTER(CONTAINS(STR(?Interaction2), STR(?

Interaction4)))
485 }} """))
486 queryAlternative5 = list(default_world.sparql(f"""
487 SELECT DISTINCT ?Alternative ?Interaction2 ?

Interaction3 ?QualityofEvidence ?
StrengthofRecommendation ?quant ?recommendation ?
detail

488 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?
Drug .

489 ?Drug {ontology}:hasAlternative ?Alternative
490 ?Alternative rdf:type ?Interaction1 .
491 ?Interaction1 rdfs:subClassOf ?Interaction2 .
492 ?Interaction2 rdfs:subClassOf ?Interaction3 .
493 ?Interaction3 rdfs:subClassOf ?Interaction4 .
494 ?Interaction3 rdfs:subClassOf {ontology}:

BeersCriteria .
495 ?Interaction2 rdfs:subClassOf ?QoF .
496 ?Interaction2 rdfs:subClassOf ?SoR .
497 ?QoF a owl:Restriction .
498 ?QoF owl:onProperty {ontology}:

hasQualityofEvidence.
499 ?QoF owl:someValuesFrom ?QualityofEvidence .
500 ?SoR a owl:Restriction .

241

F. PYTHON CODE

501 ?SoR owl:onProperty {ontology}:
hasStrengthofRecommendation.

502 ?SoR owl:someValuesFrom ?StrengthofRecommendation.
503 optional {{?Interaction2 {ontology}:

intDrugQuantity ?quant}}
504 optional {{?Interaction2 {ontology}:recommendation

?recommendation}}
505 optional {{?Interaction2 rdfs:comment ?detail}}
506 FILTER(CONTAINS(STR(?Interaction2), STR(?

Interaction3)))
507 }} """))
508
509 for data in queryDrug1:
510 patientDb = patient
511 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
512 interaction1 = str(data[2]).replace(f"{ontology}.", ’’)
513 interaction2 = str(data[1]).replace(f"{ontology}.", ’’)
514 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
515 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
516 QoF = str(data[3]).replace(f"{ontology}.", ’’)
517 SoR = str(data[4]).replace(f"{ontology}.", ’’)
518 intDrugNum = str(data[5]).replace(f"{ontology}.", ’’)
519 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
520 recommendation = str(data[6]).replace(f"{ontology}.", ’’)
521 detail = str(data[7]).replace(f"{ontology}.", ’’)
522 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation
, "F")

523 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\
nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

524 # Print the formatted string with tuple values
525 formatted_params = format_string.format(*params)
526 print(formatted_params, end=’\n’)
527 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
528
529 for data in queryDrug2:
530 patientDb = patient
531 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
532 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
533 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
534 interaction2 = str(data[2]).replace(f"{ontology}.", ’’)
535 interaction1 = str(data[3]).replace(f"{ontology}.", ’’)
536 QoF = str(data[4]).replace(f"{ontology}.", ’’)
537 SoR = str(data[5]).replace(f"{ontology}.", ’’)
538 intDrugNum = str(data[6]).replace(f"{ontology}.", ’’)
539 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
540 recommendation = str(data[7]).replace(f"{ontology}.", ’’)
541 detail = str(data[8]).replace(f"{ontology}.", ’’)
542 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation

242

F.2. Inference engine Beers Criteria

, "F")
543 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\

nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

544 # Print the formatted string with tuple values
545 formatted_params = format_string.format(*params)
546 print(formatted_params, end=’\n’)
547 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
548
549 for data in queryDrug3:
550 patientDb = patient
551 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
552 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
553 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
554 interaction2 = str(data[2]).replace(f"{ontology}.", ’’)
555 interaction1 = str(data[4]).replace(f"{ontology}.", ’’)
556 QoF = str(data[5]).replace(f"{ontology}.", ’’)
557 SoR = str(data[6]).replace(f"{ontology}.", ’’)
558 intDrugNum = str(data[7]).replace(f"{ontology}.", ’’)
559 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
560 recommendation = str(data[8]).replace(f"{ontology}.", ’’)
561 detail = str(data[9]).replace(f"{ontology}.", ’’)
562 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation
, "F")

563 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\
nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

564 # Print the formatted string with tuple values
565 formatted_params = format_string.format(*params)
566 print(formatted_params, end=’\n’)
567 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
568
569 for data in queryDrug4:
570 patientDb = patient
571 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
572 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
573 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
574 interaction2 = str(data[2]).replace(f"{ontology}.", ’’)
575 interaction1 = str(data[3]).replace(f"{ontology}.", ’’)
576 QoF = str(data[4]).replace(f"{ontology}.", ’’)
577 SoR = str(data[5]).replace(f"{ontology}.", ’’)
578 intDrugNum = str(data[6]).replace(f"{ontology}.", ’’)
579 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
580 recommendation = str(data[7]).replace(f"{ontology}.", ’’)
581 detail = str(data[8]).replace(f"{ontology}.", ’’)
582 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation

243

F. PYTHON CODE

, "F")
583 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\

nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

584 # Print the formatted string with tuple values
585 formatted_params = format_string.format(*params)
586 print(formatted_params, end=’\n’)
587 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
588
589 for data in queryDrug5:
590 patientDb = patient
591 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
592 interaction1 = str(data[2]).replace(f"{ontology}.", ’’)
593 interaction2 = str(data[1]).replace(f"{ontology}.", ’’)
594 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
595 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
596 QoF = str(data[3]).replace(f"{ontology}.", ’’)
597 SoR = str(data[4]).replace(f"{ontology}.", ’’)
598 intDrugNum = str(data[5]).replace(f"{ontology}.", ’’)
599 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
600 recommendation = str(data[6]).replace(f"{ontology}.", ’’)
601 detail = str(data[7]).replace(f"{ontology}.", ’’)
602 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation
, "F")

603 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\
nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

604 # Print the formatted string with tuple values
605 formatted_params = format_string.format(*params)
606 print(formatted_params, end=’\n’)
607 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
608
609 for data in queryAlternative1:
610 patientDb = patient
611 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
612 interaction1 = str(data[2]).replace(f"{ontology}.", ’’)
613 interaction2 = str(data[1]).replace(f"{ontology}.", ’’)
614 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
615 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
616 QoF = str(data[3]).replace(f"{ontology}.", ’’)
617 SoR = str(data[4]).replace(f"{ontology}.", ’’)
618 intDrugNum = str(data[5]).replace(f"{ontology}.", ’’)
619 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
620 recommendation = str(data[6]).replace(f"{ontology}.", ’’)
621 detail = str(data[7]).replace(f"{ontology}.", ’’)
622 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation

244

F.2. Inference engine Beers Criteria

, "T")
623 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\

nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

624 # Print the formatted string with tuple values
625 formatted_params = format_string.format(*params)
626 print(formatted_params, end=’\n’)
627 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
628
629 for data in queryAlternative2:
630 patientDb = patient
631 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
632 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
633 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
634 interaction2 = str(data[2]).replace(f"{ontology}.", ’’)
635 interaction1 = str(data[3]).replace(f"{ontology}.", ’’)
636 QoF = str(data[4]).replace(f"{ontology}.", ’’)
637 SoR = str(data[5]).replace(f"{ontology}.", ’’)
638 intDrugNum = str(data[6]).replace(f"{ontology}.", ’’)
639 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
640 recommendation = str(data[7]).replace(f"{ontology}.", ’’)
641 detail = str(data[8]).replace(f"{ontology}.", ’’)
642 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation
, "T")

643 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\
nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

644 # Print the formatted string with tuple values
645 formatted_params = format_string.format(*params)
646 print(formatted_params, end=’\n’)
647 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
648
649 for data in queryAlternative3:
650 patientDb = patient
651 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
652 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
653 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
654 interaction2 = str(data[2]).replace(f"{ontology}.", ’’)
655 interaction1 = str(data[4]).replace(f"{ontology}.", ’’)
656 QoF = str(data[5]).replace(f"{ontology}.", ’’)
657 SoR = str(data[6]).replace(f"{ontology}.", ’’)
658 intDrugNum = str(data[7]).replace(f"{ontology}.", ’’)
659 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
660 recommendation = str(data[8]).replace(f"{ontology}.", ’’)
661 detail = str(data[9]).replace(f"{ontology}.", ’’)
662 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation

245

F. PYTHON CODE

, "T")
663 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\

nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

664 # Print the formatted string with tuple values
665 formatted_params = format_string.format(*params)
666 print(formatted_params, end=’\n’)
667 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
668
669 for data in queryAlternative4:
670 patientDb = patient
671 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
672 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
673 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
674 interaction2 = str(data[2]).replace(f"{ontology}.", ’’)
675 interaction1 = str(data[3]).replace(f"{ontology}.", ’’)
676 QoF = str(data[4]).replace(f"{ontology}.", ’’)
677 SoR = str(data[5]).replace(f"{ontology}.", ’’)
678 intDrugNum = str(data[6]).replace(f"{ontology}.", ’’)
679 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
680 recommendation = str(data[7]).replace(f"{ontology}.", ’’)
681 detail = str(data[8]).replace(f"{ontology}.", ’’)
682 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation
, "T")

683 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\
nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

684 # Print the formatted string with tuple values
685 formatted_params = format_string.format(*params)
686 print(formatted_params, end=’\n’)
687 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
688
689 for data in queryAlternative5:
690 patientDb = patient
691 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
692 interaction1 = str(data[2]).replace(f"{ontology}.", ’’)
693 interaction2 = str(data[1]).replace(f"{ontology}.", ’’)
694 interaction3 = str(data[1]).replace(f"{ontology}.", ’’)
695 interaction4 = str(data[1]).replace(f"{ontology}.", ’’)
696 QoF = str(data[3]).replace(f"{ontology}.", ’’)
697 SoR = str(data[4]).replace(f"{ontology}.", ’’)
698 intDrugNum = str(data[5]).replace(f"{ontology}.", ’’)
699 #intDrugCat = str(data[6]).replace(f"{ontology}.", ’’)
700 recommendation = str(data[6]).replace(f"{ontology}.", ’’)
701 detail = str(data[7]).replace(f"{ontology}.", ’’)
702 params = (patientDb, prescription, drug,intDrugNum, interaction1,

interaction2, interaction3, interaction4, QoF, SoR, detail, recommendation

246

F.2. Inference engine Beers Criteria

, "T")
703 format_string = "Patient DB: {}\nPrescription: {}\nDrug: {}\

nInt Drug Num: {}\nInteraction 1: {}\nInteraction 2:
{}\nInteraction 3: {}\nInteraction 4: {}\nQoF: {}\nSoR
: {}\nDetail: {}\nRecommendation: {}\nAlternative: {}\
n"

704 # Print the formatted string with tuple values
705 formatted_params = format_string.format(*params)
706 print(formatted_params, end=’\n’)
707 dbcon.execute("INSERT INTO PRESC_INTERACTION values

(?,?,?,?,?,?,?,?,?,?,?,?,?)", params)
708
709
710def get_alternatives(patient,prescription, ontology, dbcon):
711 print("Select alternative drugs from the ontology")
712 response = list(default_world.sparql(f"""
713 SELECT DISTINCT ?Drug ?Alternative
714 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?

Drug .
715 ?Drug {ontology}:hasAlternative ?Alternative }}""")

)
716
717 for data in response:
718 drug = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{prescription

}-", ’’)
719 alternative = str(data[1]).replace(f"{ontology}.", ’’)
720 params = (patient, prescription, drug,alternative)
721 format_string = "Patient: {}\nPrescription: {}\nDrug: {}\

nAlternative: {}\n"
722 # Print the formatted string with tuple values
723 formatted_params = format_string.format(*params)
724 print(formatted_params, end=’\n’)
725
726 dbcon.execute("INSERT INTO DRUG_ALTERNATIVE values (?,?,?,?)

", params)
727
728
729def set_prescription_as_processed(patient, prescription, ontology, prescFile, dbcon):
730 params = (patient, prescription)
731 dbcon.execute("INSERT INTO PRESCRIPTION_PROCESSED values

(?,?)", params)
732
733
734def get_drug_drug_interaction(patient, prescription, ontology, dbcon):
735 print("Selecting drug x drug interactions from the ontology")
736 response = list(default_world.sparql(f"""
737 SELECT DISTINCT ?Drug ?DrugInt
738 WHERE {{{ontology}:{prescription} {ontology}:hasDrug ?

Drug .
739 ?Drug {ontology}:hasInteractionWith ?DrugInt }} """))
740 for data in response:
741 drug1 = str(data[0]).replace(f"{ontology}.", ’’).replace(f"{

prescription}-", ’’)
742 drug2 = str(data[1]).replace(f"{ontology}.", ’’).replace(f"{

prescription}-", ’’)
743 params = (patient, prescription, drug1, drug2)

247

F. PYTHON CODE

744 format_string = "Patient: {}\nPrescription: {}\nDrug: {}\
nDrug interaction: {}"

745 # Print the formatted string with tuple values
746 formatted_params = format_string.format(*params)
747 print(formatted_params, end=’\n’)
748 dbcon.execute("INSERT INTO DRUG_DRUG_INTERACTION values

(?,?,?,?)", params)
749
750
751def current_time():
752 now = datetime.now()
753 current_time = now.strftime("%H:%M:%S")
754 return(current_time)
755
756
757def get_prescriptions(patient):
758 df = pd.read_sql_query(f"""SELECT *
759 FROM PRESCRIPTION A
760 WHERE CD_PATIENT = {patient}
761 AND CD_PRESCRIPTION NOT IN (

SELECT DISTINCT(
CD_PRESCRIPTION) FROM
PRESCRIPTION_PROCESSED WHERE
CD_PATIENT = {patient})""",

conn)
762 return(df)
763
764def get_patient(patient):
765 df = pd.read_sql_query(f"SELECT * FROM PATIENT WHERE CD_PATIENT = {

patient}", conn)
766 return(df)
767
768def get_exam(patient, day):
769 df = pd.read_sql_query(f"SELECT * FROM PATIENT_EXAMS WHERE

CD_PATIENT = {patient} and dt_Result = ’{day}’", conn)
770 return(df)
771
772def get_previousDiseases(patient):
773 df = pd.read_sql_query(f"SELECT * FROM PATIENT_PREVIOUS_DISEASES

WHERE CD_PATIENT = {patient}", conn)
774 return(df)
775
776def getpatientProcessed(conn):
777 df = pd.read_sql_query("SELECT DISTINCT CD_PATIENT from

PRESCRIPTION_PROCESSED", conn)
778 patients = df.values.tolist()
779 patientlist = []
780 for patientl1 in patients:
781 for patientl2 in patientl1:
782 patientlist.append(int(patientl2))
783 return(patientlist)
784
785
786def getNumDrugprocessed(conn):
787 df = pd.read_sql_query("SELECT count(DISTINCT CD_PRESCRIPTION)

from PRESCRIPTION_PROCESSED", conn)

248

F.2. Inference engine Beers Criteria

788 patients = df.values.tolist()
789 return(patients)
790
791def getNumDrugs(conn):
792 df = pd.read_sql_query("SELECT count(DISTINCT CD_PRESCRIPTION)

from PRESCRIPTION", conn)
793 patients = df.values.tolist()
794 return(patients)
795
796
797def get_patient_age(patient):
798 df = pd.read_sql_query(f’SELECT distinct(age) from PATIENT WHERE

CD_PATIENT = {patient}’, conn)
799 patients = df.values.tolist()
800 if patients:
801 return(int(patients[0][0]))
802 else:
803 return(999)
804
805def get_patient_gender(patient):
806 df = pd.read_sql_query(f’SELECT distinct(gender) from PATIENT WHERE

CD_PATIENT = {patient}’, conn)
807 patients = df.values.tolist()
808 if patients:
809 return(str(patients[0][0]))
810 else:
811 return(’M’)
812
813##################MAIN APPLICATION##################
814
815def checkInteraction(key):
816 print(f’#########################Inference engine: Beers

Criteria Interactions######################### \n’)
817 patient_prescriptions = get_prescriptions(key)
818 if not patient_prescriptions.empty:
819 startTime = datetime.now()
820 totalRows = getNumDrugs(conn)
821 print(f’Total prescription:{totalRows} / Prescription

processed: {getNumDrugprocessed(conn)}’)
822 prescDays = listPrescrDays(patient_prescriptions)
823 age = get_patient_age(key)
824 gender = get_patient_gender(key)
825 for day in prescDays:
826 print(f"Patient:{key} - Day:{day} Time: {time.ctime(time.

time())} - Inserting patient data into the
ontology")

827 daystr = str(day).replace(’/’,’’).replace("-",’’)
828 #Add patient into the ontology
829 patientData = get_patient(key)
830 patient = addOntologyPatients(patientData)
831
832 #Add exam into the ontology filter by patient and date
833 examData = get_exam(key, day)
834 add_ontology_exam(examData, age, gender)
835
836 #Add disease into the ontology filter by patient and date

249

F. PYTHON CODE

837 diseaseData = get_previousDiseases(key)
838 add_disease(diseaseData, age, gender)
839
840 #Add prescription drugs into the ontology filter by patient and date
841 dtFilterPrescriptions = patient_prescriptions.loc[patient_prescriptions.

START_DATE == day, :]
842 index = dtFilterPrescriptions.index.tolist()
843 patient_prescr = add_prescription(dtFilterPrescriptions, age, gender)
844
845 add_ontology_drug_assertions(key, daystr, age, gender)
846 composeName = str(key)+"-"+str(age)+"-"+gender
847 classObjDrugs = ONTO.search(iri = ’*’+str(composeName)+’*’,

_case_sensitive = False)
848
849 diff = datetime.now() − startTime
850 days, seconds = diff.days, diff.seconds
851 hours = days * 24 + seconds // 3600
852 minutes = (seconds % 3600) // 60
853
854 AllDifferent(classObjDrugs)
855
856 #Save a copy of the ontology with patient data
857 ONTO.save(rf’inference_engines/ontology_files/{key}.owl’

, format = "rdfxml")
858
859 print(f"Patient:{key} - Day:{day} Time: {time.ctime(time.

time())} - Sync reasoner pellet")
860 sync_reasoner_pellet(infer_property_values = True,

infer_data_property_values = True)
861 os.system(’cls’ if os.name == ’nt’ else ’clear’)
862
863
864 print(f"Patient:{key} - Day:{day} Time: {time.ctime(time.

time())} - SPARQL - Querying results and inserting
into the CDSS DB ")

865 presc_day = str(key)+"-"+str(age)+"-"+gender+"-"+str(daystr)
866 print(’Inappropriate drugs \n’)
867 get_prescription_interactions(key,presc_day, ONTOLOGY_NAME.

replace(’.’, ’’), c) #Get interactions from the ontology
868 print(’Alternative drugs\n’)
869 get_alternatives(key, presc_day,ONTOLOGY_NAME.replace(’.’, ’’), c)

Get the alternative drugs
870 print(’Drug-drug interaction\n’)
871 get_drug_drug_interaction(key,presc_day, ONTOLOGY_NAME.replace(

’.’, ’’), c) # Get interaction between drugs
872 set_prescription_as_processed(key,presc_day, ONTOLOGY_NAME.

replace(’.’, ’’),patient_prescr, c) # Define the prescription as
processed

873 print(f"Patient:{key} - Day:{day} Time: {time.ctime(time.
time())} - Deleting patient data from the ontology
\n")

874
875 classObj = ONTO.search(iri = ’*’+str(composeName)+’*’,

_case_sensitive = False)
876 for individual in classObj: #Delete patient data
877 destroy_entity(individual)

250

F.3. Inference engine Alternative solver

878 os.system(’cls’ if os.name == ’nt’ else ’clear’)
879 conn.commit()

F.3 Inference engine Alternative solver

The Alternative solver inference engine collects the patient data, interactions and
alternative drugs from the CDSS database to integrate them with the SMT solver
(z3_alternativeDrug) to then get the valid alternatives. These alternatives are then
stored in the CDSS database.

Filename: ie_smt_alternative_solver.py

1 import json, sys, glob, io, os
2 import sqlite3
3 import pandas as pd
4 import time
5from config import DBNAME
6
7
8from z3_alternativeDrug import Solver_obj, check_prescription
9

10conn = sqlite3.connect(DBNAME, timeout=10)
11
12
13def getProcessedPatients(conn, patient):
14 df = pd.read_sql_query(f""" SELECT DISTINCT CD_PATIENT,

CD_PRESCRIPTION
15 from PRESC_INTERACTION
16 where CD_PATIENT = {patient}
17 and CD_PRESCRIPTION not in(SELECT

CD_PRESCRIPTION FROM
PRESCRIPTION_MODELS)

18 and CD_PRESCRIPTION not in(SELECT
CD_PRESCRIPTION FROM
TIMEOUT_PRESCRIPTIONS)""", conn)

19 patients = df.values.tolist()
20 return(patients)
21
22
23def getInteractionList(prescriptionPar, conn):
24 df = pd.read_sql_query(f"""
25 SELECT DRUG1, DRUG2 from DRUG_DRUG_INTERACTION
26 WHERE CD_PRESCRIPTION = "{prescriptionPar}" """, conn)
27 prescriptions = df.values.tolist()
28 prescriptionList = []
29 for prescription1 in prescriptions:
30 temp = []
31 for prescription2 in prescription1:
32 temp.append(prescription2.replace(’,’,’’).replace(’.’,’’).replace(’-’,

’_’).replace(’/’,’_’).replace("’",’’))
33 prescriptionList.append(temp)

251

F. PYTHON CODE

34 return(prescriptionList)
35
36def getPrescrDrugsList(prescriptionPar, conn):
37 df = pd.read_sql_query(f"""
38 SELECT DISTINCT DRUG from PRESCRIPTION
39 WHERE CD_PRESCRIPTION = "{prescriptionPar}" """, conn)
40 prescriptions = df.values.tolist()
41 prescriptionList = []
42 for prescription1 in prescriptions:
43 for prescription2 in prescription1:
44 prescriptionList.append(prescription2.replace(’,’,’’).replace(’.’,’’).

replace(’-’,’_’).replace(’/’,’_’).replace("’",’’))
45 return(prescriptionList)
46
47def getPrescrAlternativeList(prescriptionPar, conn):
48 df = pd.read_sql_query(f"""
49 SELECT DISTINCT DRUG from DRUG_ALTERNATIVE
50 WHERE CD_PRESCRIPTION = "{prescriptionPar}" """, conn)
51 drugs = df.values.tolist()
52 alternativeList = []
53
54 for druglist in drugs:
55 for drug in druglist:
56 alternatives = []
57 alternatives.append(drug.replace(’,’,’’))
58 df = pd.read_sql_query(f"""
59 SELECT DISTINCT ALTERNATIVE from DRUG_ALTERNATIVE
60 WHERE CD_PRESCRIPTION = "{prescriptionPar}"
61 AND DRUG = "{drug}" """, conn)
62 for alterlist in df.values.tolist():
63 for alter in alterlist:
64 alternatives.append(alter.replace(’,’,’’).replace(’.’,’’).

replace(’-’,’_’).replace(’/’,’_’).replace("’",’’))
65 alternativeList.append(alternatives)
66 return(alternativeList)
67
68def getNumDrugprocessed(conn):
69 df = pd.read_sql_query("SELECT count(CD_PATIENT) from

PRESCRIPTION_MODELS", conn)
70 patients = df.values.tolist()
71 return(patients)
72
73def getNumDrugs(conn):
74 df = pd.read_sql_query("SELECT count(CD_PATIENT) from PRESCRIPTION

", conn)
75 patients = df.values.tolist()
76 return(patients)
77
78def checkAlternative(patient):
79 print(f’#########################Inference engine: SMT

alternative solver######################### \n’)
80 totalDrugs = getNumDrugs(conn)
81 drugsProcessed = getNumDrugprocessed(conn)
82 registers = getProcessedPatients(conn, patient)
83 for patient, prescription in registers:
84 print(f"Patient:{patient} - Prescription:{prescription}

252

F.4. Inference engine Rescheduling Solver

Time: {time.ctime(time.time()) } - Selecting patient
inappropriate and alterantive drugs")

85 drugs = getPrescrDrugsList(prescription, conn)
86 alternative = getPrescrAlternativeList(prescription, conn)
87 interaction = getInteractionList(prescription, conn)
88 solverObject = Solver_obj
89 solverObject.nr_prescription = prescription
90 solverObject.prescription = drugs
91 solverObject.interaction = interaction
92 solverObject.alternative = alternative
93
94 print(f"Patient:{patient} - Prescription:{prescription}

Time: {time.ctime(time.time()) } - Inserting data into
the SMT Solver")

95 # Print the solverObject and its attributes
96 print(f"Solver Object Information:\nPrescription number: {

solverObject.nr_prescription}\nPrescription: {
solverObject.prescription}\nInteraction: {solverObject
.interaction}\nAlternative: {solverObject.alternative}
")

97 models = check_prescription(solverObject)
98
99 print(f"Patient:{patient} - Prescription:{prescription}

Time: {time.ctime(time.time()) } - Inserting results
into the CDSS DB")

100 if models == ’canceled’:
101 params = (patient, prescription)
102 conn.execute("INSERT INTO TIMEOUT_PRESCRIPTIONS values

(?,?)", params)
103 elif models:
104 for model in models:
105 params = (patient, prescription,str(model))
106 format_string = "Patient: {}\nPrescription number: {}\

nValidPrescriptions: {}\n"
107 formatted_params = format_string.format(*params)
108 print(formatted_params, end=’\n’)
109 conn.execute("INSERT INTO PRESCRIPTION_MODELS values

(?,?,?)", params)
110 else:
111 params = (patient, prescription,’null’)
112 format_string = "Patient: {}\nPrescription number: {}\

nValidPrescriptions: {}\n"
113 formatted_params = format_string.format(*params)
114 print(formatted_params, end=’\n’)
115 conn.execute("INSERT INTO PRESCRIPTION_MODELS values

(?,?,?)", params)
116 conn.commit()

F.4 Inference engine Rescheduling Solver

The Rescheduling Solver inference engine collects the patient data and interactions
from the CDSS database to integrate them with the SMT solver (z3_scheduling) to
get the schedules the solver defines. These scheduled times are then stored in the

253

F. PYTHON CODE

CDSS database.

Filename: ie_smt_rescheduling_solver.py

1 import sqlite3, sys
2 import pandas as pd
3 import time
4 import re
5from owlready2 import *
6from z3_scheduling import schedulingDrugs
7from config import DBNAME, BEERSVERSION
8
9

10version = BEERSVERSION
11ONTOLOGY = fr’inference_engines/ontology_files/BeersOntologyV{

version}.owl’
12ONTOLOGY_NAME = f"BeersOntologyV{version}"
13ONTO = get_ontology(ONTOLOGY).load()
14
15conn = sqlite3.connect(DBNAME, timeout=10)
16
17
18def checkLabel(name, type): #check if exist the label drug on the onotlogy and return

the class name
19 ONTOLOGY = fr’inference_engines/ontology_files/BeersOntologyV

{version}.owl’
20 ONTOLOGY_NAME = f"BeersOntologyV{version}"
21 ONTO = get_ontology(ONTOLOGY).load()
22 ch = ’.’
23 pattern = ".*" + ch
24 classObj = ONTO.search(label = (name), _case_sensitive = False)
25 if not classObj:
26 classObj = ONTO.search(label = (name.replace(’-’, ’_’)), _case_sensitive =

False)
27 if not classObj:
28 classObj = ONTO.search(label = (name.replace(’_’, ’-’)), _case_sensitive =

False)
29 if classObj:
30 classObj = str(classObj[0]).split(’.’, 1)[−1]
31
32 if isinstance(ONTO[classObj], ONTO[type]):
33 return classObj
34 else:
35 return(None)
36
37
38
39def getTmax(drug, ontology):
40 value = 0
41 labeldrug = checkLabel(drug, ’Drugs’)
42 response = list(default_world.sparql(f"""
43 SELECT DISTINCT ?value
44 WHERE {{{ontology}:{labeldrug} rdfs:subClassOf ?object

.
45 ?object a owl:Restriction .

254

F.4. Inference engine Rescheduling Solver

46 ?object owl:onProperty {ontology}:hasTmax.
47 ?object owl:qualifiedCardinality ?value }}"""))
48
49 for data in response:
50 value = str(data[0])
51 if value == 0:
52 value = 120
53 return(value)
54
55
56
57def getPatients(conn, patient):
58 df = pd.read_sql_query(f""" SELECT DISTINCT CD_PATIENT FROM

PRESCRIPTION_MODELS
59 WHERE CD_PATIENT = {patient}
60 and CD_PATIENT NOT IN (SELECT

CD_PATIENT FROM
PRESCRIPTION_RESCHEDULED)

61 AND MODEL = "null"
62 """, conn)
63 patients = df.values.tolist()
64 patients = [patient for patientList in patients for patient in patientList]
65 return(patients)
66
67
68def getUnsatPrescriptions(conn, patientInput):
69 df = pd.read_sql_query(f""" SELECT DISTINCT CD_PRESCRIPTION FROM

PRESCRIPTION_MODELS
70 WHERE CD_PATIENT = "{patientInput}"
71 AND MODEL = "null"
72 AND CD_PRESCRIPTION NOT IN (SELECT

CD_PRESCRIPTION FROM
PRESCRIPTION_RESCHEDULED)

73 """,
conn
)

74
75 prescriptions = df.values.tolist()
76 prescriptions = [prescription for prescriptionList in prescriptions for prescription in

prescriptionList]
77 return(prescriptions)
78
79
80def getInteractions(conn, prescription):
81 df = pd.read_sql_query(f""" SELECT B.DRUG1, B.DRUG2
82 FROM DRUG_DRUG_INTERACTION AS B
83 WHERE B.CD_PRESCRIPTION = "{

prescription}"
84 AND B.DRUG2 <> B.DRUG1""", conn)
85 interactions = df.values.tolist()
86 return(interactions)
87
88def getInteractionsWithoutAlternative(conn, prescription):
89 df = pd.read_sql_query(f""" SELECT B.DRUG1, B.DRUG2
90 FROM DRUG_DRUG_INTERACTION AS B
91 WHERE B.CD_PRESCRIPTION = "{

255

F. PYTHON CODE

prescription}"
92 AND B.DRUG2 <> B.DRUG1
93 and B.DRUG2 not in (SELECT DISTINCT

A.DRUG from DRUG_ALTERNATIVE AS
A

94 WHERE A.
CD_PRESCRIPTION
= "{prescription}

")
95 """, conn)
96 interactions = df.values.tolist()
97 return(interactions)
98
99

100def getPrescDrugDetails(conn, prescription, drug):
101 df = pd.read_sql_query(f""" SELECT DISTINCT FREQUENCY, SCHEDULE,

FIXEDTIME
102 FROM PRESCRIPTION
103 WHERE CD_PRESCRIPTION = "{prescription}"
104 AND DRUG = "{drug}" """, conn)
105 interactions = df.values.tolist()
106 return(interactions)
107
108
109def getNumDrugprocessed(conn):
110 df = pd.read_sql_query("SELECT count(CD_PATIENT) from

PRESCRIPTION_MODELS", conn)
111 patients = df.values.tolist()
112 return(patients)
113
114def getNumDrugs(conn):
115 df = pd.read_sql_query("SELECT count(CD_PATIENT) from PRESCRIPTION

", conn)
116 patients = df.values.tolist()
117 return(patients)
118
119
120
121
122def checkRescheduling(patient):
123 print(f’#########################Inference engine: SMT

rescheduling solver######################### \n’)
124 totalDrugs = getNumDrugs(conn)
125 patients = getPatients(conn, patient)
126
127 for patient in patients:
128 prescriptions = getUnsatPrescriptions(conn, patient)
129 for prescription in prescriptions:
130 print(f"Patient:{patient} - Prescription:{prescription}

Time: {time.ctime(time.time()) } - Selecting
inappropriate drugs")

131 interaction = getInteractionsWithoutAlternative(conn, prescription)
132 druglist = []
133 drugdic = {}
134 if interaction:
135 for drug1, drug2 in interaction:

256

F.5. SMT solver - Alternative Drugs

136 if sorted([drug1, drug2]) not in druglist:
137 druglist.append(sorted([drug1, drug2]))
138 print(f"Patient:{patient} - Prescription:{

prescription} Time: {time.ctime(time.
time()) } - Selecting drug parameters")

139 details = getPrescDrugDetails(conn, prescription, drug1)
140 drugdic[drug1] = [details]
141 print(f"Patient:{patient} - Prescription:{

prescription} Time: {time.ctime(time.
time()) } - SPARQL - Selecting Tmax
value")

142 drugdic[drug1].append(getTmax(drug1,
ONTOLOGY_NAME.replace(’.’, ’’)))

143 details = getPrescDrugDetails(conn, prescription, drug2)
144 drugdic[drug2] = [details]
145 drugdic[drug2].append(getTmax(drug2,

ONTOLOGY_NAME.replace(’.’, ’’)))
146 patientPref = []
147 print(f’Drug list: {druglist}\n’)
148 print(f’Drug details: {drugdic}\n’)
149 print(f’Patient preferences: {patientPref}\n’)
150 print(f"Patient:{patient} - Prescription:{

prescription} Time: {time.ctime(time.time()) }
- Inserting drug into Z3 model")

151 sat, result = schedulingDrugs(druglist, drugdic, patientPref)
152 params = (patient, prescription,sat,str(result))
153 format_string = "Patient: {}\nPrescription number: {}\

nSat Schedule: {}\n Drug schedule: {}\n"
154 # Print the formatted string with tuple values
155 formatted_params = format_string.format(*params)
156 print(formatted_params, end=’\n’)
157 print(f"Patient:{patient} - Prescription:{

prescription} Time: {time.ctime(time.time()) }
- Inserting results into the CDSS DB")

158 conn.execute("INSERT INTO PRESCRIPTION_RESCHEDULED
values (?,?,?,?)", params)

159 conn.commit()

F.5 SMT solver - Alternative Drugs

The SMT solver - Alternative Drugs gets the data from the Alternative solver
inference engines to find valid alternative drugs for the prescription by the Z3
SMT model.

Filename: z3_alternativeDrug.py

1from z3 import (Solver, And, Or, Not, sat, Datatype, Function, BoolSort, Exists, Distinct,
Const, Xor)

2 import re
3#import signal
4from contextlib import contextmanager
5

257

F. PYTHON CODE

6
7class Solver_obj(object):
8
9 def __init__(self, interaction = [], variables = [], alternatives = [], prescription= [],

opt_false= [], opt_true= [], nr_prescription = int):
10 self.interaction = interaction
11 self.alternatives = alternatives
12 self.prescription = prescription
13 self.nr_prescription = nr_prescription
14 self.opt_false = opt_false
15 self.opt_true = opt_true
16 self.variables = variables
17
18
19def check_prescription(Solver_obj):
20 obj_solve = Solver_obj
21 result = False
22 if len(obj_solve.interaction) == 0:
23 return ([True])
24 else:
25 result = solve_alternatives(obj_solve)
26 return (result)
27
28
29def get_true_values(model, num):
30 characters_to_remove = "[" + "]=[==,"+ "]"
31 data_string = str(model)
32 data_string = re.sub(characters_to_remove, "", data_string)
33 split_data = data_string.split()
34 drugs = set()
35 try:
36 for i in range (num):
37 index = split_data.index(’Drug’+str(i))
38 drugs.add(str(split_data[index+1]))
39 except Exception as e: print(’err’)
40 return(drugs)
41
42def remove_duplicate_sets(set_p): #remove alternative if it has inconsistency with itself,

for example [[Aspirin, Aspirin]]
43 result = []
44 [result.append(x) for x in set_p if x not in result]
45 return(result)
46
47def solve_alternatives(self):
48 sol = Solver()
49 Drug = Datatype(’Drug’)
50# Inserting variables
51#Add drug names to a set drug (prescription, interaction and alternatives)
52 set_drugs = set()
53 set_alternative = set()
54 set_prescription = set()
55
56 self.interaction = remove_duplicate_sets(self.interaction)
57
58 for prel1 in self.prescription: #prescription
59 set_drugs.add(prel1)

258

F.5. SMT solver - Alternative Drugs

60 set_prescription.add(prel1)
61
62 for intl1 in self.interaction: #interaction
63 for intl2 in intl1:
64 set_drugs.add(intl2)
65
66 for altl1 in self.alternative: #alternatives
67 for altl2 in altl1:
68 set_drugs.add(altl2)
69 set_alternative.add(altl2)
70
71#Declare drugs i1n Z3
72 for drug in set_drugs:
73 Drug.declare(str(drug))
74
75 Drug = Drug.create()
76 distinct_rules = []
77
78 choice = Function(’choice’, Drug, BoolSort())
79
80 for x in range(len(self.prescription)):
81 exec("Drug"+str(x)+" = Const(’Drug"+str(x)+"’, Drug)")
82 sol.assert_and_track(Exists([eval("Drug"+str(x))],choice(eval("Drug"+str(x)))

), ’Exists_’+ str(x))
83 sol.assert_and_track(And(choice(eval("Drug"+str(x))) == True), ’

ExistsTrue_’+ str(x))
84 distinct_rules.append(eval("Drug"+str(x)))
85 sol.assert_and_track(Distinct([x for x in distinct_rules]), ’Distinct_’+ str(x))
86
87
88#Insert true drugs on Z3 − drugs without alternatives
89 sequence = 0
90 trueDrugs = set_prescription.difference(set_alternative)
91 for drug in trueDrugs:
92 sol.assert_and_track(And(choice(eval("Drug."+str(drug))) == True), str(f’

TRUE_{drug}’))
93 sol.assert_and_track(Exists([eval(f"Drug{str(sequence)}")],choice(eval(f

"Drug.{str(drug)}"))), f’Exists_Drug{str(sequence)} / {
str(drug)}’)

94 sequence += 1
95
96# Inserting interaction rules
97 for interactList in self.interaction:
98 sol.assert_and_track(Or(Not(choice(eval("Drug."+str(interactList[0])))), (Not

(choice(eval("Drug."+str(interactList[1])))))),str(f’NOT_{str(
interactList[0])}/{str(interactList[1])}’))

99
100 #Insert alternative rules on Z3
101 drugAlternaitve = [["choice(Drug."+drug+")" for drug in group] for group in

self.alternative]
102 altSequence = 0
103 for alternative in drugAlternaitve:
104 if len(alternative) > 2:
105 for value in alternative:
106 altSequence += 1
107 tempList = alternative.copy()

259

F. PYTHON CODE

108 tempList.remove(value)
109 tempList2 = ’,’.join(str(e) for e in tempList)
110 sol.assert_and_track(Xor(eval(value), Or(eval(tempList2))), str(’XOR

’+str(altSequence)))
111 else:
112 altSequence += 1
113 sol.assert_and_track(Xor(eval(alternative[0]),eval(alternative[1])), str(’

XOR’+str(altSequence)))
114
115
116 model = []
117 check = sol.check()
118 if check == sat:
119 sequence = 0
120 while sol.check() == sat:
121 sequence += 1
122 prescrModel = sorted(frozenset(get_true_values(sol.model(), len(self.

prescription))))
123 if len(self.prescription) == len(prescrModel):
124 if prescrModel not in model:
125 model.append(prescrModel)
126 else:
127 break
128 solution = "False"
129 trueValues = get_true_values(sol.model(), len(self.prescription)).

difference(trueDrugs)
130 if trueValues:
131 for i in trueValues:
132 i = ’choice(Drug.’+str(i)+’)’
133 solution = f"Or(({i} != {True}), {solution})"
134 f2 = eval(solution)
135 sol.assert_and_track((f2), f’Models{sequence}’)
136 else:
137 break
138 #[print(sublist) for sublist in model]
139 if sol.reason_unknown() == ’canceled’:
140 return (sol.reason_unknown())
141 else:
142 return(model)

F.6 SMT solver - Rescheduling Drugs

The SMT solver - Rescheduling Drugs, gets the data from the Rescheduling Solver
inference engines to find optimised drug schedules for the prescription by the Z3
SMT model.

Filename: z3_scheduling.py

1from z3 import *
2 import re
3s = Optimize()
4s.set("timeout", 15000)

260

F.6. SMT solver - Rescheduling Drugs

5 intervalIndex = 0
6 intervalIndexavg = 0
7drugList = []
8 intervalList = []
9 intervalAvg = []

10
11def createDrugInstances(drugName, interval, schedule, fixedtime, Tmax):
12 try:
13 global drugList
14 if fixedtime == ’N’ or (interval != len(schedule) and fixedtime == ’F’):
15 drugInterval = (24/interval)*60
16 interval = interval + 1
17 for x in range(1,interval):
18 drugTmax = str(drugName+str(x)+’Tmax’)
19 drugList.append(drugTmax)
20 globals()[f"{drugTmax}"] = Int(drugTmax)
21 drugTmax = eval(drugTmax)
22 drug = str(drugName+str(x))
23 globals()[f"{drug}"] = Int(drug)
24 drugList.append(drug)
25 if x > 1:
26 prevDrug = str(drugName+str(x−1))
27 s.add(eval(drug) − eval(prevDrug) == drugInterval)
28 s.add(eval(drug) == (drugTmax − Tmax)%1440)
29 s.add(eval(drug) <= 1440,eval(drug) >= 1)
30 s.add(drugTmax <= 1440, drugTmax>= 1)
31 s.add_soft(eval(drug) % 120 == 0)
32
33 elif interval == len(schedule) and fixedtime == ’F’:
34 schedindex = 0
35 interval = interval + 1
36 for x in range(1,interval):
37 drugTmax = str(drugName+str(x)+’Tmax’)
38 drugList.append(drugTmax)
39 globals()[f"{drugTmax}"] = Int(drugTmax)
40 drugTmax = eval(drugTmax)
41 drug = str(drugName+str(x))
42 globals()[f"{drug}"] = Int(drug)
43 drugList.append(drug)
44 s.add(And(eval(drug) <= 1440, eval(drug) >= 1))
45 s.add(drugTmax <= 1440, drugTmax>= 1)
46 s.add(eval(drug) == (drugTmax − Tmax)%1440)
47 s.add_soft(eval(drug) % 120 == 0)
48 s.add(eval(drug) == (int(schedule[schedindex]))*60)
49 schedindex += 1
50 except Exception as e: print(drugName,drug, interval, schedule, fixedtime, Tmax)
51
52def definePatientPreference(drugName, list):
53 interval = int(list[0]) + 1
54 for x in range(1,interval):
55 drug = str(drugName+str(x))
56 globals()[f"{drugName}"] = Int(drugName)
57 s.add_soft(And(eval(drugName) == (list[x])*60))
58
59def createInterval(name, freq):
60 global intervalIndex

261

F. PYTHON CODE

61 intervalIndex += 1
62 interval = str(name+str(intervalIndex))
63 globals()[f"{interval}"] = Int(interval)
64 interval = eval(interval)
65 s.add_soft(interval >= 720/freq, 5)
66 return(interval)
67
68
69def createDrugRules(dicDrug, total_intervals):
70 global intervalList
71 global intervalIndexavg
72 global intervalAvg
73 drugs = list(dicDrug.keys())
74 drug1Name = drugs[0]
75 drug1Freq = dicDrug[drug1Name]
76 drug2Name = drugs[1]
77 drug2Freq = dicDrug[drug2Name]
78 if drug2Freq> drug1Freq:freq = drug2Freq
79 else: freq = drug1Freq
80 for x in range(1, int(drug1Freq)+1):
81 drug1 = eval(drug1Name+str(x)+’Tmax’)
82 for i in range(1, int(drug2Freq)+1):
83 drug2 = eval(drug2Name+str(i)+’Tmax’)
84 interval = createInterval(’interval’, freq)
85 intervalList.append(interval)
86 s.add(If((drug1 − drug2)%1440 <= 720, interval == (drug1 − drug2)

%1440, interval == (drug2 − drug1)%1440))
87 s.add(Distinct(drug1,drug2))
88
89def schedulingDrugs(interactions, drugDetails, patientPref):
90 global s
91 global intervalIndex
92 global drugList
93 global intervalList
94 s.set("timeout", 15000)
95 drugDic = {}
96 total_intervals = 0
97 for drug, values in drugDetails.items():
98 inner_lists, tmax = values
99 #for i in inner_lists: # iterate over each nested list in the value

100 sum_of_first_values = sum(int(item[0]) for item in inner_lists)
101 # Concatenate the second values of each nested set
102 concatenated_second_values = " ".join(item[1] for item in inner_lists)
103 last_element = inner_lists[0][2]
104 # Create a new merged list with the sum of the first values and

concatenated second values
105 merged_list = [sum_of_first_values, concatenated_second_values,

last_element]
106 # iterate over each nested list in the value
107 freq, schedule, fixedTime = merged_list
108 schedule = schedule.rstrip().split()
109 drug = drug.replace(’,’,’’)
110 createDrugInstances(drug,int(freq),schedule,fixedTime,tmax)
111 drugDic[drug] = freq
112 total_intervals = int(freq) +total_intervals
113

262

F.6. SMT solver - Rescheduling Drugs

114 total_intervals = (24/total_intervals)*60
115
116 if patientPref:
117 for drug, values in patientPref.items():
118 definePatientPreference(drug, values)
119
120
121 for interaction in interactions:
122 interacDic = {}
123 for drug in interaction:
124 drug = drug.replace(’,’,’’)
125 interacDic[drug] = drugDic[drug]
126 createDrugRules(interacDic, total_intervals)
127 obj = Sum(intervalList)
128 s.maximize(obj)
129 checkSat = s.check()
130 m = s.model()
131 result = []
132 if len(m)> 0:
133 for drug in drugList:
134 value = int(str(m[eval(drug)]))/60
135 result.append(drug)
136 result.append(round(value))
137 s = Optimize()
138 if len(m) == 0:
139 result = ’null’
140 intervalIndex = 0
141 drugList = []
142 intervalList = []
143 return(str(checkSat), str(result))

263

GAPPENDIX G

CDSS DATABASE

This appendix lists the tables that compose the CDSS database.

G.1 CDSS database

1TABLE PRESCRIPTION_PROCESSED: (
2 CD_PATIENT,
3 CD_PRESCRIPTION
4);

Listing G.1: Table Prescription Processed

1TABLE PRESC_INTERACTION (
2 CD_PATIENT,
3 CD_PRESCRIPTION,
4 DRUG,
5 INTER_DRUG_NUM,
6 INTERACTION1,
7 INTERACTION2,
8 INTERACTION3,
9 INTERACTION4,

10 QOE,
11 SOR,
12 DETAIL,
13 RECOMMENDATION,
14 ALTERNATIVE CHAR(3)
15);

Listing G.2: Table Prescription Interaction

1TABLE DRUG_DRUG_INTERACTION (
2 CD_PATIENT,

265

G. CDSS DATABASE

3 CD_PRESCRIPTION,
4 DRUG1,
5 DRUG2
6);

Listing G.3: Table Drug-Drug Interaction

1TABLE DRUG_ALTERNATIVE (
2 CD_PATIENT,
3 CD_PRESCRIPTION,
4 DRUG,
5 ALTERNATIVE
6);

Listing G.4: Table Drug Alternative

1TABLE PRESCRIPTION_MODELS (
2 CD_PATIENT,
3 CD_PRESCRIPTION,
4 MODEL
5);

Listing G.5: Table Prescription Models

1TABLE PRESCRIPTION_RESCHEDULED (
2 CD_PATIENT,
3 CD_PRESCRIPTION,
4 MODEL
5);

Listing G.6: Table Prescription Rescheduled

1TABLE PATIENT (
2 CD_PATIENT,
3 AGE,
4 GENDER,
5 DT_ADMISSION,
6 DT_DISCHARGE,
7 CLINIC,
8 DISCHARGE_REASON,
9 MAIN_PROCEDURE,

10 CID
11);

Listing G.7: Table Patient

266

G.1. CDSS database

1TABLE PATIENT_EXAMS (
2 CD_PATIENT,
3 SEQ_RESULT,
4 NM_EXAM,
5 QT_RESULT,
6 DT_RESULT
7);

Listing G.8: Table Patient Exams

1TABLE PATIENT_PREVIOUS_DISEASES (
2 CD_PATIENT,
3 NM_DISEASE
4);

Listing G.9: Table Patient Previous Diseases

1TABLE PRESCRIPTION (
2 CD_PATIENT,
3 CD_PRESCRIPTION,
4 DRUG,
5 DOSE,
6 FREQUENCY,
7 SCHEDULE,
8 START_DATE,
9 END_DATE,

10 FIXEDTIME,
11 DS_INTERVAL,
12 TYPE_DRUG,
13 DRUG_UNIT,
14 DS_DRUG_ORIGINAL,
15 DRUG_LENGTH,
16 ROUTE,
17 COMPOSENAME,
18 PRESC_DAY
19);

Listing G.10: Table Prescription

267

HAPPENDIX H

INPUT AND OUTPUT
TEST TABLE FOR THE

BEERS CRITERIA

This Appendix lists the main tables used to perform validation tests. The data
in the table was created based on information from the Beers Criteria table to
simulate all possible results of medications classified as PIM. In the tables, we list
only a sample of the data.

269

H
.

IN
P

U
T

A
N

D
O

U
T

P
U

T
T

E
ST

T
A

B
L

E
F

O
R

T
H

E
B

E
E

R
S

C
R

IT
E

R
IA

H.1 Input test tables

Table H.1 refers to the patient’s hospitalization data, such as date of entry, exit, and diagnosis.

Table H.1: Patient Information

Patient Gender Age Entry Date Discharge Date Procedure Description ICD 10

111111 M 89 2022-09-26 2022-10-22 Surgical Treatment of Subdural Hematoma I620

555555 M 75 2022-09-15 2022-09-16 Treatment of Parkinson’s Disease G20

888888 M 79 2022-12-02 2022-12-05 Treatment of Heart Failure I500

Table H.2 refers to the illnesses the patient suffered before the hospitalisation.

Table H.2: Patient previous diseases

Patient Disease

111111 Parkinson

555555 Delirium

888888 History of Falls

Table H.3 refers to the result of the Creatinine Clearance exam during the hospitalisation.

270

H
.1.

Inputtesttables

Table H.3: Lab Test Results

Patient Exam Name Result Value. Result Date

111111 Creat. Clearance 20 2022-09-16

111111 Creat. Clearance 30 2022-09-15

555555 Creat. Clearance 20 2022-10-01

555555 Creat. Clearance 30 2022-10-02

888888 Creat. Clearance 20 2022-12-02

888888 Creat. Clearance 30 2022-12-03

Table H.4 refers to the drugs prescribed for the patient during the hospitalization.

271

H
.

IN
P

U
T

A
N

D
O

U
T

P
U

T
T

E
ST

T
A

B
L

E
F

O
R

T
H

E
B

E
E

R
S

C
R

IT
E

R
IA

Table H.4: Patient prescriptions

Patient Start Dose Schedule Route Frequency Fixed End Drug Dose Critical First Release Drug Treatment

ID Date Unit Time Date Date Name Patient Line Drug Length Length

111111 16/09/22 mg 16 00 08 Nasoenteral Tube 3 N 17/09/22 Amantadine 10000 FALSE FALSE Immediate 1 1

555555 02/10/22 amp 05:55 Intravenous 1 F 03/10/22 Atracurium 20 FALSE FALSE Immediate 0 1

555555 02/10/22 amp 06:20 Intravenous 1 F 03/10/22 Atropine 0.5 FALSE FALSE Immediate 0 1

555555 01/10/22 mg SN Nasoenteral Tube 4 N 02/10/22 Captopril 625 FALSE FALSE Immediate 0 0

555555 02/10/22 mg SN Nasoenteral Tube 4 N 03/10/22 Captopril 625 FALSE FALSE Immediate 1 1

888888 02/12/22 mg ACM Oral 2 N 03/12/22 Warfarin 625 FALSE FALSE Immediate 0 0

888888 03/12/22 mg 18 Oral 2 N 04/12/22 Warfarin 312.5 FALSE FALSE Immediate 1 1

555555 02/10/22 FA SN Intravenous 2 N 03/10/22 Fentanyl 0.1 FALSE FALSE Immediate 0 1

888888 02/12/22 mg 16 00 08 Intravenous 3 N 03/12/22 Furosemide 400 FALSE FALSE Immediate 0 0

888888 03/12/22 mg 16 00 08 Intravenous 3 N 04/12/22 Furosemide 400 FALSE FALSE Immediate 1 1

111111 15/09/22 amp SN Intravenous 4 F 16/09/22 Glucose 150 FALSE FALSE Immediate 0 0

555555 01/10/22 amp SN Intravenous 4 F 02/10/22 Glucose 150 FALSE FALSE Immediate 0 0

555555 02/10/22 amp SN Intravenous 2 F 03/10/22 Glucose 150 FALSE FALSE Immediate 1 1

888888 02/12/22 amp SN Intravenous 2 F 03/12/22 Amiodarone 150 FALSE FALSE Immediate 0 0

888888 03/12/22 amp SN Intravenous 4 F 04/12/22 Amiodarone 150 FALSE FALSE Immediate 1 1

555555 01/10/22 mg SN Intravenous 2 N 02/10/22 Gabapentin 50 FALSE FALSE Immediate 0 0

555555 02/10/22 mg SN Intravenous 2 N 03/10/22 Gabapentin 50 FALSE FALSE Immediate 1 1

888888 02/12/22 mg SN Intravenous 2 N 03/12/22 Trimethoprim 50 FALSE FALSE Immediate 0 0

888888 03/12/22 mg SN Intravenous 2 N 04/12/22 Trimethoprim 50 FALSE FALSE Immediate 1 1

888888 02/12/22 mg 08 Oral 1 F 03/12/22 Metoprolol succinate 1250 FALSE FALSE Immediate 0 0

888888 03/12/22 mg 08 Oral 1 F 04/12/22 Metoprolol succinate 1250 FALSE FALSE Immediate 1 1

555555 01/10/22 mg SN Intravenous 8 N 02/10/22 Morphine 40 FALSE FALSE Immediate 0 0

888888 02/12/22 mg 08 Oral 1 N 03/12/22 Pramipexole 0.015625 FALSE FALSE Immediate 0 0

888888 03/12/22 mg 08 Oral 1 N 04/12/22 Pramipexole 0.015625 FALSE FALSE Immediate 1 1

111111 16/09/22 mg SN Intramuscular 1 N 17/09/22 Promethazine 1250 FALSE FALSE Immediate 0 1

272

H
.2.

O
utputtesttable

H.2 Output test table

Table H.4 refers to the list of PIMs drugs detected by the ontology.

Table H.5: Drug Interactions

Patient ID Prescription ID Drug Interaction 1 Interaction 2 Interaction 3 Interaction 4

111111 111111-89-M-20220916 Promethazine DDDS DDDS_Parkinson_disease DDDS_Antiemetics DDDS_Antiemetics

111111 111111-89-M-20220916 Promethazine PIM PIM_Anticholinergics PIM_First-generation_antihistamines PIM_First-generation_antihistamines

555555 555555-75-M-20220110 Gabapentin DDI DDI_Opioids/Gabapentin DDI_Opioids/Gabapentin DDI_Opioids/Gabapentin

555555 555555-75-M-20220110 Morphine DDI DDI_Opioids/Gabapentin DDI_Opioids/Gabapentin DDI_Opioids/Gabapentin

555555 555555-75-M-20220210 Atropine PIM PIM_Anticholinergics PIM_Antispasmodics PIM_Antispasmodics

555555 555555-75-M-20220210 Fentanyl DDI DDI_Opioids/Gabapentin DDI_Opioids/Gabapentin DDI_Opioids/Gabapentin

555555 555555-75-M-20220210 Gabapentin DDI DDI_Opioids/Gabapentin DDI_Opioids/Gabapentin DDI_Opioids/Gabapentin

888888 888888-79-M-20220212 Amiodarone DDI DDI_Warfarin/Amiodarone DDI_Warfarin/Amiodarone DDI_Warfarin/Amiodarone

888888 888888-79-M-20220212 Amiodarone PIM PIM_Cardiovascular PIM_Amiodarone PIM_Amiodarone

888888 888888-79-M-20220212 Furosemide UWC UWC_Diuretics UWC_Diuretics UWC_Diuretics

888888 888888-79-M-20220212 Warfarin DDI DDI_Warfarin/Amiodarone DDI_Warfarin/Amiodarone DDI_Warfarin/Amiodarone

888888 888888-79-M-20220312 Amiodarone DDI DDI_Warfarin/Amiodarone DDI_Warfarin/Amiodarone DDI_Warfarin/Amiodarone

888888 888888-79-M-20220312 Amiodarone PIM PIM_Cardiovascular PIM_Amiodarone PIM_Amiodarone

888888 888888-79-M-20220312 Furosemide UWC UWC_Diuretics UWC_Diuretics UWC_Diuretics

888888 888888-79-M-20220312 Warfarin DDI DDI_Warfarin/Amiodarone DDI_Warfarin/Amiodarone DDI_Warfarin/Amiodarone

273

IAPPENDIX I

HOSPITAL CDSS X
FRAMEWORK CDSS -

INAPPROPRIATE DRUG
TABLES

This appendix provides the tables of inappropriate cases detected by our CDSS
framework and by the hospital CDSS.

I.1 Hospital CDSS x Framework CDSS -

inappropriate drug tables

Table I.1: Framework CDSS Inappropriate drugs

Drug Cases Drug Cases

Acetazolamida 54 HidroCLOROTiazida 386

Acido_Valproico 197 Insulina_Humana_NPH 685

Alprazolam 180 Insulina_Humana_Regular 2997

Continued on next page

275

I. HOSPITAL CDSS X FRAMEWORK CDSS - INAPPROPRIATE DRUG TABLES

Table I.1 – Continued from previous page

Drug Cases Drug Cases

Amilorida 4 Lorazepam 64

AmioDARONA 58 Losartana_Potassica 81

AmiTRIPtilina 859 Metadona 487

Captopril 191 Metildopa 31

CarBAMazepina 71 Metoclopramida 2999

Carbonato_de_litio 44 Midazolam 1693

Ciclobenzaprina 37 Morfina 2690

Cilostazol 21 NORTriptilina 28

Citalopram 211 Olanzapina 814

Clonazepam 1489 Oleo Mineral 265

ClorproMAZINA 561 Olmesartana_medoxomila 7

Clortalidona 22 Omeprazol 660

CloZAPina 130 Pantoprazol 2006

Codeina 612 Paroxetina 106

Dexclorfeniramina 358 Periciazina 3

Diazepam 1614 Pregabalina 204

Dimenidrato 601 Prometazina 622

DipiRONA_Sodica 174 Quetiapina,_fumarato 2344

Doxazosina 4 Risperidona 763

DULoxetina 381 Sertralina 401

Enalapril 399 Sol_Manitol 50

Continued on next page

276

I.1. Hospital CDSS x Framework CDSS - inappropriate drug tables

Table I.1 – Continued from previous page

Drug Cases Drug Cases

ESCitalopram 411 SUFentanila 4

Escopolamina 301 Sulfato_de_Magnesio 145

Espironolactona 912 Tiopental 1

Fenitoina 163 Topiramato 2

Fenobarbital 18 Tramadol 2132

FentaNILA 1371 Valsartana 49

Flunitrazepam 12 Varfarina 31

FLUoxetina 220 Venlafaxina 4

Furosemida 1667 Zolpidem 557

Gabapentina 583 Nalbufina 1

277

I. HOSPITAL CDSS X FRAMEWORK CDSS - INAPPROPRIATE DRUG TABLES

Table I.2: Hospital Inappropriate drugs

Inappropriate drugs Cases

Lorazepam 10

Metadona 25

Metildopa 3

Metilprednisolona succinato 20

Midazolam 69

Nalbufina 1

Nitrofurantoina 2

NORTriptilina 3

Olanzapina 17

Oleo Mineral 53

Omeprazol 89

Pantoprazol 187

PrednisONA 51

Prometazina 67

Propafenona 1

Quetiapina, fumarato 147

Risperidona 39

Sulfato de Atropina 5

Zolpidem 50

278

	Abstract
	Acknowledgements
	Declaration
	Permissions
	Underpinning Research Data or Digital Outputs
	Data Management
	Funding
	Publications
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Research problem context
	1.3 Objectives
	1.4 Outline

	2 Context
	2.1 Background
	2.1.1 Clinical Decision Support Systems
	2.1.1.1 CDSS functions and interventions
	2.1.1.2 Knowledge and Non-knowledge-based CDSS

	2.1.2 Knowledge representation and reasoning
	2.1.2.1 Ontology
	2.1.2.2 Semantic Web Rule Language

	2.1.3 SAT/SMT Solvers
	2.1.3.1 SMT-based optimization

	2.1.4 Drug Interaction
	2.1.4.1 Interaction types

	2.1.5 Drugs potentially risky for elderly people
	2.1.5.1 Beers Criteria

	2.2 Related Work
	2.2.1 Drug and disease-related problems approaches
	2.2.2 PIMs CDSS bibliometric analysis
	2.2.3 PIMs CDSS qualitative analysis
	2.2.3.1 Clinical decision support systems do detect PIM
	2.2.3.2 Drug recommendations
	2.2.3.3 Drug scheduling
	2.2.3.4 Summary of the analysis

	2.3 Summary

	3 CDSS framework workflow
	3.1 CDSS framework
	3.1.1 Knowledge base - the Beers Criteria ontology
	3.1.1.1 PIMs formalisation
	3.1.1.2 Alternative drugs
	3.1.1.3 Drug parameter formalisation for rescheduling

	3.1.2 Inference engines
	3.1.2.1 Beers Criteria reasoner
	3.1.2.2 Drug alternative solver
	3.1.2.3 Rescheduling Solver

	3.2 cdss workflow
	3.3 Tackling other medical issues
	3.4 Summary

	4 Ontology for drug interactions
	4.1 Beers Criteria Ontology
	4.1.1 Knowledge Acquisition
	4.1.2 Construction of ontology's requirements
	4.1.3 Requirement elicitation
	4.1.4 Ontology elements
	4.1.4.1 Classes
	4.1.4.2 Data properties
	4.1.4.3 Object properties
	4.1.4.4 Annotation property

	4.1.5 Ontology conceptual model
	4.1.6 Ontology Reasoning
	4.1.7 Beers Criteria Rules
	4.1.7.1 ddds
	4.1.7.2 ddi
	4.1.7.3 bpim and uwc
	4.1.7.4 vlkf

	4.1.8 Applying the Beers Criteria ontology

	4.2 Summary

	5 Alternative drug recommendations and validation
	5.1 Beers Criteria Drug alternatives
	5.1.1 Alternative drugs knowledge acquisition

	5.2 Alternative drug recommendation ontology rules
	5.2.1 Ontology elements
	5.2.1.1 Drug alternative classes
	5.2.1.2 Object and data property

	5.2.2 Drug alternative rules
	5.2.2.1 Applying the ontology alternative rules

	5.3 Alternative drugs validation by an smt model
	5.3.1 Retrieving data from the Beers Criteria ontology
	5.3.2 Converting rules into smt
	5.3.2.1 Drug Declaration
	5.3.2.2 Drug constants
	5.3.2.3 Mandatory true drugs rules
	5.3.2.4 Interaction rules
	5.3.2.5 Alternative rules
	5.3.2.6 Checking prescriptions

	5.4 Summary

	6 Drug scheduling optimisation for minimising drug interactions
	6.1 Drug administration scheduling
	6.2 Ontology pharmacokinetic parameters
	6.3 Rescheduling measures to minimise the interaction
	6.4 Rescheduling constraints definition
	6.5 A smt model for rescheduling drugs
	6.5.1 Model constraints
	6.5.1.1 Declaring drugs and constraints
	6.5.1.2 Drug interaction Rules
	6.5.1.3 Maximising the distance between interacting drugs

	6.6 Example of rescheduling
	6.7 Summary

	7 Framework development and testing
	7.1 Framework development
	7.1.1 Beers Criteria ontology
	7.1.2 Alternative drug solver
	7.1.3 Rescheduling solver

	7.2 Inference engine testing
	7.2.1 Beers Criteria ontology
	7.2.1.1 Ontology consistency
	7.2.1.2 Completeness of content coverage - inappropriate medication

	7.2.2 Alternative drug solver
	7.2.2.1 Completeness of content coverage - alternative drugs
	7.2.2.2 SMT model test - alternative drugs

	7.2.3 Rescheduling solver

	7.3 Summary

	8 cdss Experiments and Evaluation
	8.1 Dataset Analysis
	8.2 Experiments
	8.2.1 Patient journey
	8.2.2 Experiments - Patient Case Studies
	8.2.2.1 Case patient 1
	8.2.2.2 Case patient 2
	8.2.2.3 Case patient 3

	8.3 Results evaluation
	8.3.1 Our CDSS Framework versus the Hospital's CDSS
	8.3.2 Hospital emr prescription-screening results
	8.3.2.1 Results of the Beers Criteria ontology
	8.3.2.2 Results of the Alternative Drug Solver
	8.3.2.3 Results of the Rescheduling Solver

	8.3.3 Our CDSS Framework versus Other Existing Tools
	8.3.4 Performance Evaluation

	8.4 Summary

	9 Conclusions
	9.1 Key Contributions
	9.2 Threats to Validity
	9.3 Future Work

	References
	A Ethics Approvals
	B Ontology details
	B.1 Accessing ontology files

	C swrl rules to detect inappropriate drugs
	C.1 ddi Rules
	C.2 ddds Rules
	C.3 vlkf Rules
	C.4 pim rules
	C.5 uwc rules

	D swrl rules to find alternative drugs
	D.1 Alternative drugs rules to drugs included in the Potentially Harmful Drug-Disease Interactions
	D.2 Alternative drugs rules to drugs Included in the High-Risk Medications

	E sparql interactions querying
	E.1 sparql interactions querying
	E.2 sparql alternative querying
	E.3 sparql drug parameters querying
	E.4 sparql all PIM parameters querying

	F Python Code
	F.1 Main file
	F.2 Inference engine Beers Criteria
	F.3 Inference engine Alternative solver
	F.4 Inference engine Rescheduling Solver
	F.5 SMT solver - Alternative Drugs
	F.6 SMT solver - Rescheduling Drugs

	G CDSS database
	G.1 CDSS database

	H Input and Output Test Table for the Beers Criteria
	H.1 Input test tables
	H.2 Output test table

	I Hospital CDSS x Framework CDSS - inappropriate drug tables
	I.1 Hospital CDSS x Framework CDSS - inappropriate drug tables

