

This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

• This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

• The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

Deep Generative Models for
Network Data Synthesis and

Monitoring

Chuanhao Sun

Doctor of Philosophy
Institute of Computing System Architecture

School of Informatics
University of Edinburgh

2023

Declaration

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except as
specified. Part of the material used for the contributions made by my thesis has been
published in the papers listed below. For the SPOTLIGHT work, the contribution of my
co-authors, other than my supervisors, is limited to helping with the implementation
of the respective software and data collection.

• Chuanhao Sun, Kai Xu, Marco Fiore, Mahesh K. Marina, Yue Wang and
Cezary Ziemlicki, ”AppShot: A Conditional Deep Generative Model for Syn-
thesizing Service-Level Mobile Traffic Snapshots at City Scale,” in IEEE Trans-
actions on Network and Service Management, vol. 19, no. 4, pp. 4136-4150,
Dec. 2022, doi: 10.1109/TNSM.2022.3199458.

• Chuanhao Sun, Kai Xu, Mahesh K. Marina, and Howard Benn. 2022.
GenDT: mobile network drive testing made efficient with generative modeling.
In Proceedings of the 18th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT ’22). Association for Computing Ma-
chinery, New York, NY, USA, 43–58.

(Chuanhao Sun)

3

To my parents

4

Abstract

Measurement and monitoring are fundamental tasks in all networks, enabling the down-
stream management and optimization of the network. Although networks inherently
have abundant amounts of monitoring data, its access and effective measurement is
another story. The challenges exist in many aspects. First, the inaccessibility of net-
work monitoring data for external users, and it is hard to provide a high-fidelity dataset
without leaking commercial sensitive information. Second, it could be very expensive
to carry out effective data collection to cover a large-scale network system, consider-
ing the size of network growing, i.e., cell number of radio network and the number of
flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fi-
delity and efficiency simultaneously in network monitoring, as the available resources
in the network element that can be applied to support the measurement function are
too limited to implement sophisticated mechanisms. Finally, understanding and ex-
plaining the behavior of the network becomes challenging due to its size and complex
structure. Various emerging optimization-based solutions (e.g., compressive sensing)
or data-driven solutions (e.g. deep learning) have been proposed for the aforemen-
tioned challenges. However, the fidelity and efficiency of existing methods cannot yet
meet the current network requirements.

The contributions made in this thesis significantly advance the state of the art in
the domain of network measurement and monitoring techniques. Overall, we leverage
cutting-edge machine learning technology, deep generative modeling, throughout the
entire thesis. First, we design and realize APPSHOT, an efficient city-scale network
traffic sharing with a conditional generative model, which only requires open-source
contextual data during inference (e.g., land use information and population distribu-
tion). Second, we develop an efficient drive testing system — GENDT, based on gener-
ative model, which combines graph neural networks, conditional generation, and quan-
tified model uncertainty to enhance the efficiency of mobile drive testing. Third, we
design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time
network telemetry system with latent GANs and spectral-temporal networks. Finally,
we propose SPOTLIGHT, an accurate, explainable, and efficient anomaly detection sys-
tem of the Open RAN (Radio Access Network) system. The lessons learned through
this research are summarized, and interesting topics are discussed for future work in
this domain. All proposed solutions have been evaluated with real-world datasets and
applied to support different applications in real systems.

5

6

Lay Summary

The emerging new applications and traffic leads to a rapid increase of the current net-
work in terms of size and complexity. The demand of lower latency, higher throughput,
and higher robustness network has motivated a transition towards the next generation
of networks. Especially on the mobile network side, 5G has been successfully commer-
cialized in many regions around the world, with > 10× improvement on speed. Many
network elements have evolved to support more intelligent network applications, such
as programmable network switches that support computation directly on the switch
and enable intelligent routing and telemetry.

While bringing better user experience, the size and complexity of current network
makes it hard to monitor and understand. Network monitoring is one of the most fun-
damental tasks in network management, which is the way to obtain the network per-
formance and then optimize the performance accordingly. The monitoring becomes
much more difficult in IP network because of the massive volume of traffic; it is even
very challenging to collect all IP packets. When considering the actual implementa-
tion, it becomes even harder to monitor, for example, one cellular basestation in Open
RAN system has more than 600 parameters just for radio and Kubernetes, and in each
city there are thousands of basestations. Such massive data require data mining and
advanced measurement techniques.

The goal of this thesis is to enhance the data sharing, measurement, and anomaly
detection in the context of current networks, including ISP networks, radio networks,
IoT systems, etc. For data sharing and access, we propose APPSHOT, to generate
a city-scale traffic map with solely open source context data as input, enabling data
sharing without commercial sensitive leakage. To better understand and measure radio
networks with a reasonable overhead, we propose GENDT, a conditional generator
driven by the graph neural network (GNN) that generates radio parameters from open
source network context, such as the location of the basestation and land use infor-
mation. GENDT also enhances the efficiency of measurement by guiding the user to
perform field tests to cover the regions help model training most. We also improve
the efficiency of the general network telemetry task with DISTILGAN, a fast infer-
ence generator that reconstructs network measurement data from compressed format
in an adaptive manner. Finally, we design and implement SPOTLIGHT, an explainable
anomaly detection system based on a deep generator and causal discovery, where the
communication overhead is significantly reduced by using a deep generative model on
the far edge to drop the data that are irrelevant to the anomalous events. All the de-
signs presented in the thesis are accompanied by concrete evaluations with real data
and implementation with significant gain to the state of the art.

7

8

Acknowledgements

Firstly, I extend my deepest thanks to my supervisor, Mahesh K. Marina. His unwa-
vering support and insightful guidance have been the cornerstone of my PhD journey.
Mahesh has been more than an academic guide; he taught me the art of conducting
quality research and the importance of striving for excellence. His lessons on enjoy-
ing the process and finding balance in life have shaped me both professionally and
personally. He truly embodies the essence of a mentor in every sense of the word.

I am also immensely grateful to my second supervisor, Dr. Kai Xu. His expertise
in high-quality machine learning research and his thoughtful advice on PhD life and
career planning have been invaluable. His deep involvement in many of my projects
and his role as a co-author have greatly contributed to my development as a researcher.

My sincere appreciation goes to my thesis examiners, Dr. Nishanth Sastry and Dr.
Siddharth N, for their time, effort, and constructive feedback. Their inputs made my
thesis defense not just a formal evaluation but an intellectually stimulating experience.
I also extend my gratitude to Dr. Luo Mai for his instructive comments during my
annual reviews, which significantly enhanced the quality of my work.

The collaborative environment during my PhD has been one of its highlights, and
for this, I am thankful to my amazing colleagues - Jon Larrea, Leyang Xue, Andrew
Ferguson, Ujjwal Pawar, and Zhihang Yuan. Their camaraderie and cooperation have
been invaluable. Additionally, I extend my thanks to the senior members of our lab,
Tanya Shreedhar, Alejandro Blanco, Mohamed Kassem, and Rajkarn Singh, for their
support and guidance.

Special thanks are due to external experts who provided invaluable insights and
assistance. I am indebted to Bozidar Radunovic and Xenofon Foukas for their guidance
from a system researcher and industry perspective. My gratitude extends to Gianni
Antichi for his profound insights into networking research and to Marco Fiore for
his guidance in mobile networking, ML applications, and access to vital resources at
IMDEA.

To my parents, Xiangye and Yanhong, words cannot express the depth of my grat-
itude. Your unconditional love, unwavering support, and belief in me have been the
pillars of my strength. The journey of starting and completing this PhD would have
been insurmountable without you.

Lastly, this PhD journey was uniquely challenging due to the pandemic. The sup-
port and help I received during these unprecedented times were crucial in making this
experience a successful one. I am eternally grateful to everyone who stood by me,
offering their help, encouragement, and understanding.

This thesis is not just a reflection of my work but a tapestry woven with the support
and contributions of many. To all, I am eternally grateful. Thank you.

9

10

Contents

Abstract 5

1 Introduction 17
1.1 Network Measurement and Monitoring 17
1.2 Motivation . 17

1.2.1 Challenges in Network Measurement and Monitoring 17
1.2.2 Generative Modeling for Network Measurement and Monitoring 18

1.3 Thesis Contributions . 20
1.3.1 Conditional generation of service level mobile traffic data . . 20
1.3.2 Efficient mobile drive testing based on generative modeling . 21
1.3.3 Generative modeling based efficient and versatile network teleme-

try . 21
1.3.4 Explainable generative modeling driven anomaly detection for

Open RAN system . 22
1.4 Thesis Organization . 22

2 Background 23
2.1 Network Measurement and Monitoring 23
2.2 Generative Models . 24
2.3 Generative Modeling for Networking 25
2.4 5G Radio Access Networks (RANs) 27

2.4.1 5G RAN general architecture 27
2.4.2 Open RAN architecture . 27

2.5 Related Work . 29
2.5.1 Service Level Traffic Data Generation 29
2.5.2 Drive Testing Data and the Application of Deep Learning . . . 30
2.5.3 Network Telemetry . 31
2.5.4 Anomaly Detection with Network Measurement Data 33

3 AppShot 35
3.1 Introduction . 35
3.2 Mobile Traffic and Context Data . 36
3.3 Analysis of Mobile Traffic Characteristics Across Services and Cities 38
3.4 APPSHOT . 40

3.4.1 Problem Statement . 40
3.4.2 Patch based Learning Methods 41
3.4.3 Detailed Model Design . 43

11

3.5 Performance Evaluation . 45
3.5.1 Fidelity Metrics . 45
3.5.2 Baselines . 46

3.6 Results . 47
3.6.1 Fidelity and Generalization 48
3.6.2 Detailed Comparisons with CartaGenie and SpectraGAN . . . 51
3.6.3 Benefit from Other Design Choices and Parameter Tuning . . 53

3.7 Use Cases of APPSHOT . 54
3.8 Discussion . 55

3.8.1 Limitations of APPSHOT . 55
3.8.2 Potential Extensions . 56

3.9 Summary . 56

4 GenDT 57
4.1 Introduction . 57
4.2 Background on Device Side Measurement of Radio Networks 60

4.2.1 Representative Radio Network KPIs 60
4.2.2 Measurement and Context Data 61
4.2.3 Network Context: Cell Information 61
4.2.4 Environment Context . 62

4.3 Analysis of Data Characteristics . 63
4.4 GENDT . 64

4.4.1 Problem Statement . 64
4.4.2 Overview of Proposed Solution 65
4.4.3 Generator . 67
4.4.4 RESGEN . 67
4.4.5 Batch Training and Generation 68
4.4.6 Stochastic Layers . 69

4.5 Evaluation Methodology . 70
4.5.1 Metrics . 71
4.5.2 Baselines . 71

4.6 Evaluation Results . 72
4.6.1 Fidelity and Generalization 73
4.6.2 Long and Complex Scenarios 74

4.7 Measurement Efficiency . 76
4.7.1 Model Uncertainty . 76
4.7.2 Uncertainty Driven Measurement 76

4.8 Downstream Use Cases . 77
4.8.1 Mobile Service Quality of Experience (QoE) Prediction . . . 77
4.8.2 Analysis of Handovers . 78

4.9 Discussion . 79
4.9.1 Why generating point coverage is insufficient 79
4.9.2 Comparison with Virtual Drive Testing 79
4.9.3 Weather and Other Critical Contexts 80

4.10 Summary . 80

12

5 DistilGAN 81
5.1 Introduction . 81
5.2 Requirements for Network Telemetry Methods 82

5.2.1 Fidelity . 82
5.2.2 Efficiency . 82
5.2.3 Versatility . 82
5.2.4 Real-time . 82

5.3 Motivation . 82
5.3.1 Limitations of existing approaches 83

5.4 DISTILGAN . 86
5.4.1 Overview . 86
5.4.2 Generator Model Design for High Fidelity Data Stream Re-

construction . 87
5.4.3 Efficiency through Sampling Rate Adaptation 91
5.4.4 Q-value as coarse recovery error estimation 94
5.4.5 Mutual Difference of Reconstructed Time Series 95
5.4.6 Design Choices & Optimizations for Versatility and Real-Time

Inference . 96
5.5 Evaluation Methodology . 98

5.5.1 Datasets . 98
5.5.2 Metrics . 99

5.6 Evaluation . 100
5.6.1 DISTILGAN achieves High Fidelity and Efficiency 100
5.6.2 DISTILGAN is Versatile . 101
5.6.3 DISTILGAN is Real-Time 103
5.6.4 Ablation Study . 105

5.7 Downstream Use Cases of DISTILGAN 106
5.7.1 ISP Network Microburst Detection 106
5.7.2 O-RAN Anomaly Detection 106
5.7.3 IoT Smart Metering Analysis 107

5.8 Summary . 107

6 SpotLight 109
6.1 Introduction . 109
6.2 System Overview . 110

6.2.1 Open RAN Architecture . 110
6.2.2 Key Challenges in ORAN Anomaly Detection 111
6.2.3 Explanation in ORAN Anomaly Detection 112

6.3 Overview of SPOTLIGHT . 112
6.3.1 System Architecture . 112
6.3.2 Detection Method Description 114

6.4 Data collection . 119
6.5 Evaluation Methodology . 119

6.5.1 Evaluation setup . 119
6.5.2 Dataset Creation . 120
6.5.3 Representative Anomalies 121
6.5.4 Baselines . 123

13

6.6 Evaluation Results . 124
6.6.1 Accuracy . 124
6.6.2 Explainability . 125
6.6.3 Results with Multiple Anomalies 126
6.6.4 Efficiency . 127

6.7 Real-world evaluation . 127
6.7.1 Case Studies . 127
6.7.2 Operational model . 128

6.8 Discussion . 128
6.8.1 Discriminator is not used to detect anomaly 128
6.8.2 How to understand the explanations 129
6.8.3 Choice of Models . 129

6.9 Summary . 129

7 Conclusions and Future Work 131
7.1 Conclusions . 131

7.1.1 APPSHOT: Conditional Deep Generative Model for Synthe-
sizing Service-Level Mobile Traffic Snapshots at City Scale . 131

7.1.2 GENDT: Mobile Network Drive Testing Made Efficient with
Generative Modeling . 132

7.1.3 DISTILGAN: High Fidelity, Efficient, Versatile and Real-Time
Network Telemetry with Deep Generative Modeling 132

7.1.4 SPOTLIGHT: Accurate, Explainable and Efficient Anomaly
Detection for Open RAN . 133

7.2 Future Work . 133
7.2.1 Network Data Generation 133
7.2.2 Network Telemetry . 133
7.2.3 Anomaly detection . 134

A Work and Publications 135
A.1 Publication Related to APPSHOT . 135
A.2 Publication Related to GENDT . 135

B Implementation Details and Extra Results 137
B.1 Data Analysis and Model Details of GENDT 137

B.1.1 Visualization of Environment Context Attributes 137
B.1.2 Details of Stochastic Layers 137
B.1.3 Hyper Parameters . 138

B.2 Discussion on DoppelGANger . 139
B.3 Additional Evaluation and Use cases 139

B.3.1 Need to Support Long Series Generation 139
B.3.2 Ablation Study . 140
B.3.3 Further Use Cases . 141

B.4 Configuration Details of DISTILGAN 142
B.4.1 Epoch Length . 142
B.4.2 Memory Configuration . 142

B.5 5G RAN and IoT Smart Metering 143

14

B.5.1 Periodical Sampling . 143
B.5.2 Threshold-based Sampling 143

B.6 Details of Baselines . 144
B.6.1 Evaluation on synthetic time series 145
B.6.2 ISP Network Scenario: KPI Breakdown during Adaptive Sam-

pling . 147
B.6.3 Spectrum Change During DISTILGAN Processing 147
B.6.4 Synthetic Data Evaluation and Visualization 147

15

16

Chapter 1

Introduction

1.1 Network Measurement and Monitoring

Telecommunication network deeply shapes the world by performing most of the data
communication tasks, building connections between arbitrary points to enable rapid
transmission of information. It is critical to understand and optimize network perfor-
mance, and the fundamental task in network management is measurement and moni-
toring of the network. Network measurement refers to the process to obtain a snapshot
of network state, where the result could be in different formats: multivariate time se-
ries [98], images [159, 178], events [54], etc. When doing measurement in a contin-
uous manner, we call this monitoring, where the network snapshot is kept up-to-date.
Monitoring provides all the data needed for network management and optimization,
and hence is a fundamental part in any network system.

1.2 Motivation

1.2.1 Challenges in Network Measurement and Monitoring

There exist several challenges in network measurement and monitoring that are yet
to be resolved. In this thesis, we focus on four critical challenges in the network
measurement and monitoring domain.

Inaccessibility of network monitoring data. Access to network monitoring data
for research and innovation is severely restricted due to commercial sensitivity con-
cerns of the operators. For example, to obtain network traffic data for all users in
a city, all operations should be carried out within the operator’s premises under the
control of the local Data Privacy Officer (DPO) and in compliance with applicable reg-
ulations, according to GDPR regulations (General Data Protection Regulation) [3], or
shared with few selected external parties with highly restrictive NDAs.

Network measurement could be expensive. Measurement of a network might in-
clude a large number of field tests to achieve sufficient coverage. For example, mobile
network drive tests at city scale are costly to conduct and time consuming (taking a
few months [160, 161]). Unfortunately, as far as we know, operators do not share their
drive testing data, and the availability of third-party dataset is very limited.

17

High fidelity and efficient network monitoring is difficult. Typically, obtaining
fine-grained network monitoring data with affordable overhead is challenging due to
the high-throughput monitoring traffic and hardware resource limitations of network
equipment [69, 71, 182]. The need for a real-time control loop makes monitoring even
more challenging, as some methods introduce significant overhead on data process-
ing [71].

Understanding and explaining network behavior is difficult. Even when the
issue of accessing rich network monitoring data is resolved, there is still the challenge
of understanding network behavior for troubleshooting and optimization. The high-
dimensional and time varying nature of network monitoring data makes it impractical
for human analysis. For example, a single base station in a mobile radio access network
(RAN) can produce several hundreds of measurement variables to analyse [54].

The aforementioned four challenges may seem independent but need to be all re-
solved for effective network monitoring in real-world networked systems.

1.2.2 Generative Modeling for Network Measurement and Moni-
toring

This thesis explores the application of generative models in networking problems,
where they offer illuminating insights into handling network data characterized by sub-
stantial inherent randomness. In scenarios where deterministic correlations are absent,
as exemplified by systems that transition between states in a stochastic manner akin
to a Markov process, conventional methods fail to efficiently learn and represent the
system’s dynamics. The complexity of these systems often exceeds simple stochas-
tic models, further complicating the learning process. Generative models, however,
adeptly navigate this complexity by learning the conditional probability distributions
underlying different network systems. This approach enables them to capture and
represent the inherent uncertainty and randomness more effectively, showcasing the
potential of generative models in providing nuanced understandings of network dy-
namics.

Generative modeling can help address the aforementioned challenges. Many typ-
ical problems in network measurement and monitoring share a similar form as research
problems in the domain of generative methods in machine learning, as we discuss in
detail in §2.3. Overall, generative models can have significantly better performance in
terms of fidelity, efficiency, and robustness than conventional methods. Nevertheless,
leveraging the power of generative model is far from straightforward, as elaborated be-
low. The new challenges when applying generative modeling to networking problems
fall into three aspects: (1) access to training data; (2) unique constraints in networking,
in terms of memory, computation, bandwidth, etc.; (3) Distinct statistical characteris-
tics compared with common time series and images in other area.

Access to training data. As a data-driven method, the generative model must
be trained with network data. However, access to network data is generally limited,
which blocks third-party research activities. Instead of sharing the original data, one
alternative is to share synthetic data that have sufficient fidelity to drive ML research,
while avoiding leaking confidential messages. One possible workflow could be to train
the data generation model and then share only synthetic copies to support other data-

18

Ground Truth By Conditional Pix2Pix

Figure 1.1: Classical generator performance on traffic map generation.

Network Data

Contexts

Generator

Training

New Contexts

Inference

Synthetic Data User

Close
Source

Open
Source

Figure 1.2: Workflow flow of generative modeling based network data sharing.

driven applications. As Figure 1.2 illustrates, the data owner (e.g., network operator)
can keep the trained generator as close source property but allow the user to upload
the context of the target region. The owner will run the model inference and share the
output with the user. The same commercial mode has been used in ChatGPT [1], etc.

Unique constraints in networks. Most ML algorithms are designed without con-
sidering system constraints. In certain tasks in networking, we require real-time pro-
cessing of input data, which means the model inference should be finished before next
input is ready; otherwise there will be queue waiting for inference. Even the inference
is fast enough, there could still be issue on the communication bandwidth, where the
model cannot work with fine-grain data (e.g., SketchVisor [69] has to drop some IP
packets as because the switch cannot parse all of them), sometimes strong noise will
be applied (e.g., radio interference). Those constraints require problem-specific design
of an ML algorithm to enhance overall performance and robustness.

Different statistical characteristics. Can we directly use a conditional image gen-
erator to generate the traffic distribution from contextual information? Yes, but the
performance is terrible. The feasibility is there because the traffic map has exactly
the same data structure as the general image, running conditional GANs based on a
classical structure such as Pixel2Pixel [80] would just give a blur output as Figure 1.1
shows. From a classical computer vision point of view, the synthetic traffic map still
performs well in terms of few metrics, such as SSIM [27], because most of the place
does not have significant traffic. However, in network management, we are more inter-
ested in those hot spots, which contribute most to the overall QoS, although it is only
a few pixels on the image. To better accommodate the image generator into network
data generation definitely requires designs that can better generate those hot spots.
The consideration of network data characteristics is critical in all kinds of generative
applications for networking.

19

1.3 Thesis Contributions

Overall, the primary contribution of this thesis lies not in advancing the core method-
ologies of machine learning (ML), but rather in the innovative application of state-of-
the-art ML techniques to solve complex networking problems. This work demonstrates
the effective integration of cutting-edge ML algorithms into the networking domain,
showcasing how these sophisticated tools can be adapted and utilized in practical, real-
world scenarios. Therefore, the significant value of this thesis resides in its applied ML
focus, illustrating a novel and impactful approach to leveraging ML technologies in the
field of networking.

In a more specific sense, the contribution of this thesis is primarily oriented toward
addressing the challenges stated in §1.2. At a high level, we address the issue intro-
duced by the ever-growing size of network with deep generative model, where those
generative models can enhance the monitoring performance by generating missing data
and making prediction for yet unseen region. When tackling the issue of implantation
of generative models in networking, we first develop methods on synthesizing network
data to support data-driven research, then design and implement a high-efficiency net-
work telemetry system that considers the constraints in network elements. Throughout
all problem solving, we accommodate the advances in generative modeling into net-
working application by introducing some special designs to work better with network
data statistics, including preprocessing, neural network structure, and training process.

1.3.1 Conditional generation of service level mobile traffic data

The city-scale service level traffic data is rarely available to the public due to privacy
concerns. Previous works [159] have shown that there is a significant correlation be-
tween traffic and context, where context refers to land use, population, time of day,
etc. In CV area, there are existing works that transfer an image to another image with
certain contexts. If we can represent those city contexts in a form of image, then we
transfer the city-scale traffic generation task as a conditional image generation task.

Specifically, in this thread, we have the following technical contribution:

• Realize conditional generation of service level traffic map based on deep mod-
ified Unet model with noise input as latent information and adversarial loss in
training process. We name this method APPSHOT.

• We introduce a batch-based generation technique for generation of arbitrary
shape traffic maps.

• We fine-tune the sliding window mechanism in APPSHOT to achieve the best
performance in terms of hot spots.

• We evaluate the proposed method with various metrics and downstreaming ap-
plications to demonstrate the fidelity of our generative model.

• We open source the synthetic dataset to support more data-driven research.

20

1.3.2 Efficient mobile drive testing based on generative modeling
In this thread, the focus is mainly on the experience of a single user. Conventional way
to infer the experience of an end user includes (1) classic drive testing: field test in all
scenarios and region; (2) virtual drive testing (VDT): doing test in lab environment to
simulate real user experience; (3) minimal drive testing (MDT): real end user upload
measurement data directly (crowd sourcing). The existing methods all have significant
limitations. Classical Drive Testing has very low efficiency to cover a large area. VDT
can only be used to perform certain equipment testing that can be simulated in the
lab. MDT involves end-user data, which arises privacy concern, and the user might
not volunteer for MDT. To address the limitations in existing drive testing methods,
we propose GENDT, a user-side KPI (Key Performance Indicator) generator based on
Graph Neural Network (GNN), and the uncertainty of generation will guide the mea-
surement in the real world to cover more informative regions. The detail contribution
is listed as follows.

• A GNN based generator that can aggregate various contextual data structure to
generate high fidelity user side KPI time series.

• Using stochastic RNN to generate small-scale fading and a deep Gaussian-based
method to generate large-scale fading in radio KPIs.

• An optimal measurement strategy driven by model uncertainty to reduce the
actual field test needed to train GENDT.

• GENDT is evaluated together of various existing methods on multiple use cases
to show the superiority of the proposed method.

1.3.3 Generative modeling based efficient and versatile network
telemetry

The native computation capability of the network elements does not increase as fast as
the network size, which overloads the memory and bandwidth of conventional network
facilities. Although there is network hardware with advanced computation ability (for
example, embedding GPUs in network switch), that hardware is expensive and hard
to implement as a versatile solution. Therefore, in this thread, we propose a network
telemetry system driven by generative modeling — DISTILGAN, which is adaptive to
the state of the network. Moreover, DISTILGAN only requires a change in sampling
rate or threshold on the network element side, all the computation involved is done in
the cloud. The detailed contributions in DISTILGAN can be summarized as follows.

• A tailored spectral-temporal network based generator to reconstruct fine-grain
telemetry data from samples.

• Optimization of inference process and highly parallel neural network structure
to achieve ∼ 50× gain on inference latency compared with compressive sensing
based methods

• A heuristic mechanism to adapt to optimal sampling rate driven by estimation of
reconstruction loss.

21

• Near-zero error measurement can be achieved with DISTILGAN with much less
overhead than in previous works, which is also proven with different downstream
tasks.

1.3.4 Explainable generative modeling driven anomaly detection
for Open RAN system

The problem we face in network monitoring is not just about collection itself, but also
about how we understand the network data. While in most cases we do not care about
the network KPIs when it works perfectly, we pay more attention to the case where
something anomalous happens, a.k.a., anomaly detection. We develop and implement
an anomaly detection system — SPOTLIGHT outperforms existing methods in the
following aspects.

• High accuracy in anomaly detection with a generative model based on two-phase
distribution learning.

• Using causal inference method and critical KPI filter to realize an accurate and
readable anomaly detection report.

• Efficient implementation with the Open RAN system, lightweight computation
at far-edge, and 4 ∼ 7× lower communication overhead than the state of the art.

1.4 Thesis Organization
The remainder of this thesis is organized as follows.

Chapter 2 introduces the background of the current network and the requirement
of network monitoring. We also introduce related works in this chapter and list their
limitations that motivate us to conduct research in this thesis.

Chapter 3 presents the detailed work on APPSHOT, generating high-fidelity city-
scale traffic maps with open source contextual data as input.

Chapter 4 presents the work related to GENDT, starting from the measurement we
made to train GENDT and the corresponding analysis of the network data that lead to
the designs of GENDT. We also introduce how to use GENDT to reduce measurement
overhead in the real world with use cases.

Chapter 5 investigates DISTILGAN, a data-driven network telemetry system, with
details on how we improve the fidelity of telemetry, what techniques we applied to
significantly reduce the inference latency and how DISTILGAN adapts to the state of
the network. In this chapter, three scenarios are discussed to demonstrate the versatility
of DISTILGAN, namely ISP network [25], 5G RAN, and IoT smart metering.

Chapter 6 carries out anomaly detection in the Open RAN system. In this chapter,
we demonstrate the challenges in Open RAN anomaly detection, our system setup, and
how we collect the measurement data. We then design and implement SPOTLIGHT,
significantly outperforming the state of the art in terms of precision, explainability, and
efficiency.

Chapter 7 concludes this thesis, summarizing the work presented and discussing
the limitations of the contributions, as well as possible directions for future research.

22

Chapter 2

Background

2.1 Network Measurement and Monitoring

In this thesis, network refers to the telecommunications network, which is a group of
nodes interconnected by telecommunications links that are used to exchange messages
between nodes. Links may use a variety of technologies based on the methodologies
of circuit switching, message switching, or packet switching, to pass messages and
signals. Multiple nodes may cooperate to pass the message from an originating node
to the destination node via multiple network hops. Examples of telecommunications
networks include ISP (Internet service provider) network, RAN (radio access network),
IoT (Internet of Things) network, etc.

Analyzing the performance of the network, identifying potential problems, and de-
tecting malicious activities is critical. Network Measurement is the practice of taking
a snapshot of the current state of the network in any format. Network Monitoring
consists of the results of a series of measurements, or network monitoring can be de-
fined as continuous network measurements. To understand the state and performance
of the network, we need to collect the performance data of different network elements
(e.g., power, memory usage, etc.), as well as collect the information of the traffic sent
within the network (e.g., number of TCP flows, number of IP packets, etc.). Network
monitoring provides the information that network administrators need to determine,
in real time, whether a network is running optimally. Traffic engineering, quality of
service, and anomaly detection also depend on monitoring for decision making.

In an ISP network or general IP network, the interest of measurement is mainly
about the features of flows or aggregation of flows. While the definition of flow might
vary between scenarios, the most common definition is two-tuples and five-tuples. By
two-tuple — <Source IP, Destination IP>, it basically includes all traffic
between two nodes in a specific direction, whereas the five-tuple:

<Source IP, Destination IP, Source Port Number,
Destination Port Number, Transport Protocol>

further specify the port and protocol. For each flow or aggregation of flows, in general,
we focus on the following typical measurements:

• Size of Flow (i.e., bitrate).

23

Basestation

User
Equipment

Cell

Figure 2.1: Major Components in a Mobile Network Cell

• Number of IP packet or special event, for example, number of SYN flags in the
TCP flow.

• Change in flow size (change in bitrate).

• Distribution of flow size.

• Number of active flows.

In radio networks, there are many special parameters that appear mainly in wireless
communication. The most representative radio network is the mobile network (a.k.a.,
cellular network), which is a telecommunications network where the link to and from
the end nodes is wireless and the network is distributed over land areas called cells,
each served by at least one fixed location transceiver called basestation, as Figure 2.1
shows. In the context of mobile network measurement, we in general focus on the
KPIs that reflect the features or performance of the wireless channel, for instance,
SNR (Signal-to-Noise Ratio), CQI (Channel Quality Indicator), etc. While most of
those special KPIs focus on the physical layer, the higher layer KPIs as stated in ISP
network can still be applied to mobile network.

In addition to the ISP network and mobile network, there are many other different
networks, such as sensor networks in an IoT system. Different systems might have
totally different KPIs to be measured. The KPIs might cross different layers of the
network or come from different elements of the system. In this thesis, we introduce
the KPIs in each scenario before the evaluation.

2.2 Generative Models
Generative models have been widely deemed the most promising approaches to cre-
ative generation of real world data. From generating images [80, 156] to imitation of
human conversation: ChatGPT [1], generative models keep updating people’s under-
standing of the power of artificial intelligence. The beauty of a generative model is
that it generates a large set of data with significantly smaller amount of data on which
we train them. In general, generative models have the potential to automatically learn
the natural characteristics of a dataset, regardless of the categories or dimensions, even
something entirely different.

Mathematically, a generative model is a statistical model of the joint probability
distribution P (X, Y) on a given observable variable X and the target variable Y or

24

Generator Discriminator
Output

GAN Loss

Input

(Together with other Loss, e.g., L1 Loss)

Figure 2.2: Schematic of adversarial training.

just P (X) if there are no labels. Suppose the distribution of X and Y is RX and RY ,
the set of RY is generally much larger than RX . With the rise of deep learning, a
new family of methods is formed through the combination of generative models and
deep neural networks. The conventional generative model includes VAE (variational
autoencoder) [88], Gaussian mixture model [146], etc.

Generative models become much more powerful after the introduction of adversar-
ial training, which is known as GAN (Generative Adversarial Network) [73], a type
of deep generative model. As its name indicates, adversarial training includes a pair
of generative model (a.k.a, generator) and discriminative model (a.k.a, discrimina-
tor), and trains them together in an adversarial manner, as Figure 2.2 illustrates. The
discriminator is a model of the conditional probability of the target Y , given an ob-
servation x, symbolically P (Y |X = x). Originally introduced to study attacks on
machine learning algorithms, adversarial training has been proven to be efficient in the
performance of deep learning models.

As an extension of classical deep learning models, the generative model in gen-
eral shares a similar neural network structure. The main difference is in the training
process, the way to introduce latent information (e.g., noise input), and the inference
process (e.g., enable variational inference). On one hand, these differences make the
training and robustness of generative models a bit challenging, for instance, the model
collapse issue of unconditional generative models. On the other hand, because of these
new functions, GAN shows significant gain on distribution learning, which then con-
tributes to better fidelity or accuracy performance.

2.3 Generative Modeling for Networking
Inspired by the characteristic of generative models that generate a much larger dataset
with a relatively much smaller training set, the generative model can be applied to gen-
erate network data for various purposes. So far, in previous work [170, 178, 179],
generative models have been proven to be powerful in network measurement and mon-
itoring in many aspects, from data prediction to anomaly detection. Meanwhile, there
is a trend to include native support for machine learning (ML) functions in various
networks, making the application of generative models feasible.

Generative models have shown great power on creating content. From a pure data
science point of view, network measurement data share a structure similar to that of
general objects. For instance, the traffic snapshot of a whole city could be taken as an
image. Starting from the data structure, many tasks in networking can be represented
by more general tasks in machine learning. As the example in Figure 2.3 shows, the
generative model that generates an image from text description could be applied to
generate a traffic map on a city scale. By generating such a traffic map, we can share
the traffic data without leaking privacy information. Also, during the implementation
of a new network, we can utilize such technology to enable ’What if’ functions by
predicting traffic or coverage performance with available context information in target

25

Metropolitan 8:00 PM YouTube ...

City Contexts

Generator

Brown Cute Dog ...

Keywords

General Image Generation Task:

Traffic Map Generation Task:

Figure 2.3: General Computer Vision Task and Network Traffic Generation.

Network Elements

Classical Sensing CS reconstruction

Encoder(DNN) Generator

Or

1. Theoritical Loose Error Bound
2. Long Executation Time (minutes)

1. Tight Error Bound
2. Sub-millisecond executation

Flexible Sensing Methods

Constraints Applied

Classical
Compressive

Sensing

Generative
Compressive

Sensing

Figure 2.4: Classical Compressive Sensing and Generative model driven case.

region.

Generative model also brings advanced computing capability into the networking
area. Optimization problem in networking, in general, includes heavy CPU computa-
tion that cannot be directly accelerated by GPUs [157]. The generation model can be
implemented in one or several steps in the optimization problem solving process. One
typical scenario is compressive sensing (CS). The process of a network measurement
system based on CS is illustrated in Figure 2.4, where the measurement data is col-
lected on network elements, then through the “sensing” process in CS algorithm, the
data are compressed into a dense representation and hence save the bandwidth for the
following transmission. Then on the receiver side, we run the CS reconstruction to re-
cover the original data. In the classical CS, the sensing process has certain constraints;
for instance, the data need to be sparse. The conventional reconstruction process in
general includes an optimization problem solving process, which is slow when the di-
mension of input data is high. The optimization problem in CS can be taken as generate
the original data based on the result after sensing, and then the optimization problem is
resolved via model inference and can be done with milliseconds level latency or even
less. In addition, the sensing process could be done with machine learning as well to
obtain an optimal representation of data that matches the corresponding generator on
the receiver side.

There are more use cases of the generative model in networking and we cannot list
them all due to space. In general, we can find many use cases in networking that can
be improved by generative models because they broadly share similar data structure
and objective.

26

gNB gNB

gNBUEs

UEs

Backhaul
Network

Mobile
Core

Internet

Radio Access Network

Figure 2.5: 5G Network Overview.

UEs

RU

Fronthaul

DU

Midhaul

CU

Backhaul
Mobile

Core

RAN
ORAN

F1 Interface
(Ethernet)
SMO/RIC

Figure 2.6: Open RAN Overview. RU: Remote Unit (radio communication), DU:
Distributed Unit, CU: Central Unit, UE: User Equipment, SMO: Service Management
and Orchestration.

2.4 5G Radio Access Networks (RANs)

2.4.1 5G RAN general architecture

Overall architecture of 5G RAN (Radio Access Network) would not look much dif-
ferent from the previous generation (4G or LTE). The definition of RAN is explained
in Figure 2.5, including user equipment (UE), gNB (gNodeB, 5G basestation). There
is backhaul connects RAN with mobile core network. The key difference between the
5G RAN from the previous generation is the different protocol and implementation.
Among all of these differences, the most outstanding one would be that the gNB in-
ternal structure is split into two parts called CU (Central Unit) and DU (Distributed
Unit), which will be illustrated in detail with a representative implementation of 5G
RAN on open-source hardware — O-RAN (Open RAN) in the following part of this
section. For the monitoring of mobile core and Internet traffic, there is no structural
change for 5G, as they are basically IP network systems, and hence we do not provide
further discussion in this part.

2.4.2 Open RAN architecture

The detailed network elements of ORAN is illustrated in Figure 2.6. ORAN is not
fully overlapped with the definition of RAN, as the user equipment is not included.
ORAN consists of three main components, RU, DU, and CU. While RU is responsible
for the radio communication part just as in the previous generation, the split CU/DU is
the new function in 5G RAN. The separation of CU and DU helps virtualize network
functionalities, which potentially contributes to flexibility and cost reduction. The CU
and DU in the ORAN system is operated on general CPUs, making the implementation

27

of RAN easier.

As Figure 2.6 shows, RAN disaggregation splits base stations into different func-
tional units, effectively embracing and extending the functional disaggregation paradigm
proposed by 3GPP for Next-Generation Node Bases (gNB) of NR. The gNB is divided
into a central unit (CU), a distributed unit (DU), and a Radio Unit (RU). The CU is
further split into two logical components, one for the Control Plane (CP) and one for
the User Plane (UP). This logical split allows different functionalities to be deployed
at different locations of the network, as well as on different hardware platforms. For
example, CUs and DUs can be virtualized on white-box servers at the edge (with hard-
ware acceleration for some of the physical layer functionalities) , while the RUs are
generally implemented on field-programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs) boards and deployed close to RF antennas.

The O-RAN Alliance has evaluated the different RU/DU split options proposed by
the 3GPP, with specific interest in alternatives for physical layer split across the RU
and the DU. The 7.2x version of RU/DU split strikes a balance between simplicity of
the RU and the data rates and latency required on the interface between the RU and
the DU. In split 7.2x, the RU performs time-domain functionalities, with precoding,
Fast Fourier Transform (FFT), cyclic prefix addition/removal, and Radio Frequency
(RF) operations, which makes the RU inexpensive and easy to deploy. The DU then
takes care of the remaining functionalities of the physical layer and of the Medium
Access Control (MAC) and Radio Link Control (RLC) layers, including scrambling,
modulation, layer mapping, part of precoding, and mapping into physical resource
blocks. The operations of these three layers are generally tightly synchronized, as the
MAC layer generates Transport Blocks (TBs) for the physical layer using data buffered
at the RLC layer. Finally, the CU units (CP and UP) implement the higher layers of the
3GPP stack, that is, the Radio Resource Control (RRC) layer, which manages the life
cycle of the connection; the Service Data Adaptation Protocol (SDAP) layer, which
manages the Quality of Service (QoS) of the traffic flows (also known as bearers); and
the Packet Data Convergence Protocol (PDCP) layer, which takes care of reordering,
packet duplication, and encryption for the air interface, among others.

Another innovation is represented by the RICs in Figure 2.6, which introduce pro-
grammable components that can run optimization routines with closed-loop control
and orchestrate the RAN. The nonreal-time (or non-RT) RIC is a component of the
Service Management and Orchestration (SMO) framework. The non-RT RIC provides
guidance, enrichment information, and management of ML models for the near-RT
RIC. Additionally, the non-RT RIC can influence SMO operations, which gives the
non-RT RIC the ability to indirectly govern all components of the O-RAN architec-
ture connected to the SMO, thus making decisions and applying policies that influence
thousands of devices. The near real-time (or near-RT) RIC is deployed at the edge
of the network and operates control loops with a periodicity between 10 ms and 1s.
Near-RT RIC consists of multiple applications supporting custom logic, called xApps,
and of the services that are required to support the execution of the xApps. An xApp is
a microservice that can be used to manage radio resources through specific interfaces
and service models.

28

Non-RT RIC

Near-RT RIC

CU-CP

CU-UP

RRC
PDCP

SDAP
PDCP

DU

RLC
MAC

PHY-High

Scrambling

Modulation

Layer Mapping

Precoding

RE mapping

RU

PHY-low

RF
Precoding

iFFT/CP

Beamforming

DAC/ADC

Figure 2.7: Open RAN Functions.

2.5 Related Work

2.5.1 Service Level Traffic Data Generation
Traditional network traffic generation focuses on creating different packet-level work-
loads. There are a number of tools that exist for this purpose (e.g., iPerf, MGEN,
Ostinato) and are also embedded in popular network simulators (e.g., ns-3). Some of
these tools like D-ITG [2, 22] support modeling different applications through param-
eterized probability distributions for packet sizes, their inter-arrival times, etc. This
form of traffic generation does not have a spatial dimension. In contrast, our focus
is on generating snapshots of application/service level mobile traffic volumes (aggre-
gated across multiple users and flows) at different locations of a target region (e.g., a
city).

We are unaware of any prior work for generation of service-level mobile network
traffic data. The few related works that exist in the mobile networking context [43,
107, 178, 180] focus on overall traffic across all services. Di Francesco et al. [43]
propose an approach for assembling a cellular dataset for a given region by integrating
multiple sources of data, including census data for population distribution, base station
locations and estimation of data demand per subscriber. For the data demand, they
simply model this as a probability distribution based on operator provided data on
overall mobile traffic across all services and then sample from it. We consider this
approach as a baseline in our evaluations and highlight its limitations in handling traffic
correlations. In another mobile traffic related work, Bo et al. [107] target generation of
mobile traffic patterns for a region focusing on hotspots through geotagged Twitter data
for that region. Here again, only total traffic volume across all services is considered
and not at the individual service level like we do. Moreover, access to Twitter data is
no more easier than accessing mobile traffic data whereas we base our generation on
context data for the target region that can be easily obtained from public sources.

SpectraGAN [180] and CartaGenie [178] are recent proposals that can be viewed
as the state of the art on mobile traffic data generation. As in our work, SpectraGAN
and CartaGenie take a conditional deep generative modeling approach but focus on
generation of spatial or spatiotemporal data for total traffic volumes in a city. We target
a different and orthogonal dimension, i.e., on the individual service level contributions
that make up the total traffic. As we show in our comparative evaluation, applying
SpectraGAN or CartaGenie for our purpose yields poor quality generation due to its
inability to model inter-service correlations and their relation to total traffic.

As we represent city-scale mobile traffic snapshots as images, their generation at
service level can be viewed as a multi-channel image generation problem. Further-
more, since we aim at conditional generation using contextual attributes as a multi-
channel image input, image translation works from the computer vision domain are

29

particularly relevant. Pix2Pix [80] is a representative prior work on conditional image
translation. When applied to our problem setting, this work has several key limitations
as we show in our evaluation: (i) it does not take particular care to capture correlations
among channels (services in our problem); (ii) it fails to model variation in the data
from using just dropout for stochasticity; (iii) it can also result in undesirable edge
effects and artefacts when generating traffic maps for arbitrary sized regions. These
limitations also apply to other related works from the computer vision literature (e.g.,
Style-GAN [60], Cycle-GAN [198]), which are essentially rooted in the fact that they
do not cater to the unique requirements of mobile service traffic map generation. The
works from the transportation domain, exemplified by Traffic-GAN [197], for road
vehicle traffic generation are also broadly related. However, these works do not dif-
ferentiate between different vehicle types (individual mobile services in our case) and
also make a strong assumption of knowing correlations among traffic on different roads
for the target region, which is unrealistic.

Besides generation of multi-service mobile traffic maps, our work also includes an
analysis of mobile network traffic across different services and cities. This part is novel
compared to prior service-oriented mobile traffic analysis works (e.g., [111, 159])
by focusing on the key characteristics that need to be kept in mind when generating
service-level mobile traffic data. In particular, unlike [159], we analyze the correlation
between traffic of different mobile services as well as with a wide range of contex-
tual attributes beyond urbanization. Compared to [111], we study the similarities and
differences in mobile traffic across cities, with a focus on peak periods, traffic stochas-
ticity, hotspot density and distribution.

Takeaways. Overall, the conditional generative model in computer vision (CV) and
related domain is very promising at service-level data generation. However, directly
applying existing methods to network data generation cannot generate a high-fidelity
traffic map due to the special characteristics of service level traffic. A tailored generator
is needed to generate high-fidelity service level traffic.

2.5.2 Drive Testing Data and the Application of Deep Learning
In the context of mobile network drive testing and is aimed at reducing its cost as-
sociated with measurement data collection. As stated at the outset, the VDT ap-
proach [26, 122, 124] is limited to device/equipment testing and so is unsuitable for this
purpose. The other alternative approaches involving user device based measurement
collection via MDT [6, 84, 158] or crowd-sourcing [10, 51, 123, 125] are hindered by
insufficient incentives and privacy concerns. To the best of our knowledge, our work
is the first to explore the generative modeling approach towards making drive testing
efficient and cost effective.

Broadly related are the works focusing on coverage mapping and pathloss predic-
tion, which can be seen as a subset of drive testing use cases. In contrast to traditional
methods including ray-tracing [138], recent work (e.g., [10, 51, 164, 176]) has adopted
statistical and machine learning approaches for measurement or computational effi-
ciency. Alimpertis et al. [10] propose a random forests based model for prediction of
signal strength (RSRP) map, whereas Thrane et al. [164] present a convolutional neural
network (CNN) based supervised spatial regression model that maps satellite images
of a target region to signal quality parameters like RSRP and RSRQ in that region.

30

On the other hand, [176] focuses on pathloss prediction using multi-layer perceptron
(MLP) based neural network model. The above mentioned works cannot mimic mea-
surements with drive testing as they do not have a notion of user trajectory or temporal
variations. They also make a simplifying but inaccurate assumption that serving cell at
each location is fixed and known. Moreover, the model in [164] due to being trained
with satellite images for a specific region does not generalize beyond that region. In
contrast, our proposed GENDT approach overcomes the above limitations through a
tailored and novel deep generative model.

GENDT leverages graph neural networks (GNNs) [13] to effectively handle vary-
ing network context around a drive testing trajectory. While there have been some
recent works employing GNNs for time-series prediction problems (e.g., [104, 168]),
to our knowledge, ours is the first work on GNN based time-series data ‘generation’.
As noted in prior work [179], data generation is a much harder task than prediction.
We comparatively evaluate our model with the LSTM-GNN model [168].

Using deep generative models, especially generative adversarial networks (GANs)
and variational autoencoders (VAEs), for data synthesis is of prime interest currently [121].
Such models are being used to generate data for machine learning, in finance, health-
care and other domains. Within the mobile networking domain, there have been few
recent works proposing deep generative models for various types of network and wire-
less data. The potential for GANs to generate physical layer channel response samples
for MIMO channels has been discussed in [184]. SpectraGAN [179] is another broadly
related work in this domain that targets the generation of spatiotemporal mobile traf-
fic data. Unlike our setting, mobile traffic data has certain unique properties such as
‘recurring’ patterns that are exploited in SpectraGAN for effective data generation.

Works on multivariate time-series synthesis in general are related given our prob-
lem involves generating time-series data for multiple radio network KPIs. Existing
work [32, 93, 98], however, targets very different problems from ours. For instance,
in [93], an unconditional GAN based multivariate time-series synthesis model is intro-
duced to generate data for resource utilization measurement of CDN caches whereas
we target a conditional data generation problem. As another example, Chen et al. [32]
focus on mitigating the severe class imbalance in the data for predicting rare events
(e.g., solar flares).

Among these works, DoppelGANger (DG) [98] is a more closely related work that
is aimed at unconditional GAN based generation of multivariate time-series data for
networks and systems (e.g., Wikipedia article views over time, network monitoring
data over time, resource usage in compute clusters).

Takeaways. To our knowledge, there is no generative model in the literature that is
tailored to generate multivariate time series that reflect stochastic features and achieve
high fidelity at the same time. Even with the generation method, we still need to design
a method to reduce the overhead of field test, because the cost of collecting sufficient
training data is high when conducting city-scale measurement.

2.5.3 Network Telemetry
Sampling. In some system when the memory and bandwidth is sufficient, Nyquist
sampling can be applied as a lossless data compression method in real-time [186].
However, if we look at more general network telemetry task, there are two limitations

31

of Nyquist sampling: (1) the underlying system cannot achieve the Nyquist rate due
to the limitation of hardware — sub-Nyquist is essential sometimes; (2) Nyquist rate
changes a lot across different periods and hard to search the correct rate. Therefore,
Nyquist sampling cannot guarantee the feasibility in general network measurement
as equipment such as switches may have very limited memory, and the robustness of
Nyquist sampling is also poor because it relies on heuristic methods [135] to determine
the correct Nyquist rate and the searching process is hard to converge when the signal
bandwidth changes very fast.

Sampling regardless Nyquist rate is also used in network telemetry [145, 166, 171].
In those scenario, sampling is applied to significantly reduce the memory or bandwidth
overhead, and only an approximation of the ground truth measurement can be obtained.
We therefore did not include these works in the evaluation as they cannot meet the
high-fidelity requirement at suggested configuration.

Sketching [53] is the common method in network telemetry for abstracting, where
approximation is introduced to record the network KPIs of interest. Because lack of
data recovery design, conventional sketching methods [70, 95, 100, 101, 182] either
focus on very high level statistics or ignore less significant part of network to meet the
memory/bandwidth budget, for instance SketchVisor [69] directly drop some IP pack-
ets to make sure the sketch is executable with limited memory size. Those approxima-
tion leads to a poor fidelity on its result, SketchVisor [69] might have more than 30%
flows measured with significant error under the recommended memory configuration
as there still be significant IP packet dropping. Besides, those methods cannot adapt
to the dynamics in the network and only works with the initial configuration, without
the ability to report the measurement error, leaving the robustness in complex network
environment vulnerable. In practice, people has to configure them with the theoretical
upper bound error and network throughput, which is inconvenient and would cause
resource waste.

Sketching Based Sensing. The discussion of combination of sketching and CS has
started from early years, in [36, 92, 103] people notice that sketching could be taken
as a sensing method in CS system. Recent years we there are few successful usages of
classic CS in general sketching system, to further reduce the measurement amount on
data plane or sensors [69, 71]. In conventional setup [69], because the features such as
orthonormality of the sensing matrix is not fine tuned, the fidelity of recovery is lim-
ited. Method such as [71] fine tune the sensing matrix as well as the counter structure
to achieve near-zero error recovery and even less memory consumption. Nevertheless,
there are another two limitation of classic CS: (1) Recovery time is unacceptable long
when the data dimension is high; (2) Estimate the sparsity of network data is challeng-
ing. The first limitation is more significant for large network measurement, when there
is 100Ks of flows, it takes minutes for the optimization solver to converge. The second
limitation means it is very difficult to know if we allocate sufficient sampling rate (or
memory) because we do not have effective method to estimate the recovery error, and
therefore poor robustness upon significant data sparsity changes.

Classical Compressive Sensing (CS). In a most general setup, classical CS highly
rely on the sparsity of data. Network data show sparsity in diverse scenarios. [33, 90,
196] leverage compressive sensing to recover missing values in traffic matrices. [23]
applies CS to network link tomography.

Deep Learning based Compressive Sensing (DL-CS). Besides sparsity, there are

32

latent structure and correlation between samples in real-world network data, such as
periodicity and self-similarity [40, 82, 133], which can be used for data recovery be-
yond Nyquist rate. Classic CS relies on data sparsity without looking into other inher-
ent structure on target data. DL-CS [62, 174, 177, 181] is then proposed to leverage the
other structural information, and also in general has much lower recovery time (around
two orders). While shows better recovery fidelity in variate domains — image process-
ing [156, 195], wireless networks [65, 108], etc., there is no thorough investigation of
DL-CS in network telemetry. Specially in network telemetry, the DL-CS with fancy
encoder on sender side is not applicable because the sender side in general do not suffi-
cient resources to process high data throughput with encoders. Broadly, we can take the
latest time series generation and imputation models [49, 91, 102, 106, 108, 162, 188]
as DL-CS methods without an encoder and designed for time series. However, the
existing methods cannot give a high-fidelity reconstruction when the sampling rate is
very low, and the recovery time is unacceptable with some latest models. The CS the-
ory is also applied some lossless compression algorithm with deep learning [61, 109],
we classify those methods to DL-CS family as well. While achieving higher compres-
sion ratio and much lower bandwidth consumption, the computation complexity is not
affordable in most of network equipment, and they also need to be operated on large
window size to achieve significant compression ratio — the actual memory and latency
overhead is very high in measurement system.

Takeaways. Generally speaking, the existing methods make different trade-offs
between the various requirements — high reliability, efficiency, versatility and real-
time, and as such none of them meets all the requirements mentioned above. This
observation motivates us to pursue a new and powerful approach to network telemetry
that is better suited to meet all requirements.

2.5.4 Anomaly Detection with Network Measurement Data
Network measurement data in general comes in the form of multi-variate time se-
ries, where each variate corresponds to specific. Time series anomaly detection is
an active area of research in the machine learning domain [19]. In line with what is
noted above, the state-of-the-art methods are prediction based (e.g., GDN [41]), re-
construction based (e.g., MADGAN [94]) or combine both (e.g., TranAD [170], VAE-
LSTM [97]). These methods have poor precision (high false alarms) when applied to
our Open RAN setting. Moreover, with the exception of a few methods like GDN [41],
most existing time series anomaly detection methods lack explainability.

From a method design perspective, the problem we target is essentially multivari-
ate time series anomaly detection [19]. In the RAN context, prior work (e.g., [87]) has
shown that commonly used non time series anomaly detection methods (e.g., Z-Score
based, robust covariance, one-class SVM) [5, 89], and supervised binary classifica-
tion based anomaly detection, as considered in early works (e.g., [81]), are ineffec-
tive. Consequently, state-of-the-art approaches for RAN anomaly detection broadly
fall under two classes: (i) time series prediction with recurrent neural networks (e.g.,
LSTM) [31, 87, 169, 192]; (ii) reconstruction based with autoencoders [87, 113, 169].
Both these approaches are limited by the unwieldy challenge of having to determine a
right threshold for prediction/reconstruction errors.

Explainability or root cause analysis has been considered in some prior works on

33

anomaly detection in traditional RANs [31, 143, 192]. A common approach is to aug-
ment an anomaly detection method with SHAP (SHapley Additive exPlanations) [105]
or similar model-agnostic explainers, for identifying important features/KPIs responsi-
ble for the detection of anomalies [31, 192]. Interpretable shallow ML models such as
decision trees have also been used [143]. Explainability of AI models is starting to be
recognized as an important requirement in the Open RAN context [24]. However, we
are unaware of any existing work on explainable anomaly detection for this context.

Takeaways. We do not find a method in the literature that jointly considers Accu-
rate, Explainable and Efficient anomaly detection. In the ORAN system, the task is a
bit tricky because only detecting the anomaly accurately is not sufficient, we have to
understand the root cause from hundreds of parameters. Meanwhile, anomaly detec-
tion should be conducted in a lightweight way, with the consideration of the limited
computation resource available on the basestation and transmission latency when the
cloud is involved.

34

Chapter 3

AppShot

3.1 Introduction

In this chapter, we focus on the first problem studied in this thesis, conditional gener-
ation of service level mobile traffic data. As stated in §1.3.1, lager scale service-level
mobile traffic data enables research studies and innovative applications in networking
domain, with a potential to shape future service-oriented communication systems and
beyond. However, real-world datasets reporting measurements at the individual service
level are hard to access as such data is deemed commercially sensitive by operators.
Such restriction can be relieved by a generative model that can generate high fidelity
traffic map solely with open source contextual data . The generated traffic map is dis-
tinct to the real traffic map and hence the risk of leaking sensitive information would
be much lower than manually cleaned dataset. Meanwhile, the fidelity of generation is
sufficient to support data driven applications and studies.

Designing a data synthesis model that can generate high-fidelity service-level mo-
bile traffic snapshots and generalizes well to new regions is challenging due to a num-
ber of reasons. First, the publicly available context data for a target region may not
fully determine the mobile services traffic for that region and in general cannot cap-
ture the stochasticity inherent to mobile traffic. Second, mobile traffic is known to
have complex spatiotemporal correlations both overall and at service level [134, 153],
which need to be captured by the model. Third, locations and times with high traffic
intensity (which we refer to as hotspots in this paper) are particularly important for
downstream use cases on research management and beyond (e.g., [83]), and need to be
faithfully modeled. Fourth, the model should correctly capture correlations between
traffic for different services and their relative contribution to overall traffic. Finally,
the model should be flexible in accommodating the fact that the target regions for traf-
fic generation may differ widely in their geographical dimensions as well as contex-
tual attributes and traffic characteristics. All those challenges motivate us to develop
APPSHOT, which to best our knowledge the first high fidelity generative model for
service-level city-scale traffic map.

In this chapter, we provide an in-depth discussion regarding the design of APP-
SHOT. The detailed neural network structure, training method, and other special de-
signs are included. The high-fidelity of APPSHOT makes the generated data of APP-
SHOT an open-source real-world traffic dataset that helps various downstreaming ap-

35

plications.
This chapter is structured as follows. The next section elaborate mobile traffic

and context data relevant to APPSHOT. Then in §3.3, we conduct an analysis of the
aforementioned data, including service-level traffic characteristics and correlation be-
tween traffic and context. The proposed generative model APPSHOT is described in
detail in §3.4. Evaluation results are presented and discussed in §3.5, followed by the
use of APPSHOT for a downstream service-level traffic dependent application in §3.7.
Finally, §3.9 concludes the chapter.

3.2 Mobile Traffic and Context Data
For the purpose of modeling, analysis and evaluation in this work, we make use of a
real-world mobile traffic dataset collected in the production network of a major mobile
network operator in Europe. We also gather data for a variety of contextual attributes
for the target regions from public sources.

Mobile Traffic Data. Our traffic dataset spans 10 major cities in a European coun-
try (referred henceforth as CITY 1-CITY 10)1, where it covers the mobile demands of
the whole subscriber base of the operator, amounting to around 30% of the local user
population. This data was obtained by monitoring individual IP data flow sessions in
the operator’s network over the General Packet Radio Service (GPRS) Tunneling Pro-
tocol User plane (GTP-U). To infer the services corresponding to the traffic flows, the
operator employs a combination of proprietary and commercial traffic classification
tools on top of Deep Packet Inspection (DPI) probes, which allows identifying a very
wide range of mobile services with a high degree of accuracy [159]. Note that the data
was aggregated geographically (per antenna sector) and temporally by the operator, so
as to make the data non-personal and to preserve user privacy; all operations were car-
ried out within the operator premises, under control of the local Data Privacy Officer
(DPO), and in compliance with applicable regulations, according to GDPR (General
Data Protection Regulation) regulations [3]. The data was aggregated over all users
in space and time in secure servers at the operators’ premises, and we only accessed
de-personalized aggregates.

Each city is represented in the data as a regular grid tesselation over space with
each grid cell (i.e. pixel) covering 250× 250 m2. Unsurprisingly, different cities have
different geographical sizes in terms of number of pixels in each dimension, and range
from 33×33 to 97×123 pixels. Traffic data per pixel consists of overall mobile traffic
volume for each service across uplink and downlink directions in bits/s, over time.
The dataset covers a continuous period of 6 weeks. In this dataset, we consider the
top 10 popular services that contribute to more than 80% of the total traffic volume,
namely: YouTube (YT), Instagram (INS), SnapChat (SC), WhatsApp (WA), Netflix
(NF), Apple Store (AS), iTunes, Facebook (FB), Twitter (TW), and Google Play (GP).
As such, the effective total mobile traffic in our study is the sum of traffic due to these
top-10 services.

Context Data2. Our conditional generation model takes advantage of contextual

1We can not disclose any information about the actual name of cities and the specific region in them.
All data information is reserved as confidential by the data provider

2To align the contexts with traffic map on pixel level, we follow the method used in [159]

36

attributes to produce credible synthetic traffic. We gather a wide range of context data
from easily accessible public sources, so that the method is applicable as widely as
possible. All attributes for each city are mapped to the corresponding regular grid
tessellation used to represent mobile traffic data, examples under each attribute are il-
lustrated in Figure 3.1. In all, we consider 27 different contextual attributes, as outlined
below.

Population. The number of inhabitants residing in each grid cell, as reported in the
relevant national census.

Land Use. The different uses of the land within each grid cell, obtained from the
Copernicus Urban Atlas repository [12]. We only retain land use types that exhibit non-
negligible correlation with mobile traffic (as per Spearman’s correlation coefficient
(SCC) [119]). Ultimately, 12 land use attributes are considered, listed in Table B.1.

Points of Interest (PoIs). The number of landmarks of a specific class within each
grid cell, extracted from the OpenStreetMap (OSM) repository [131]. We use a similar
correlation analysis with traffic as above, and retain the 14 significant PoI categories
(Table B.1).

Contextual Attribute Avg. SCC

Population 0.639
Continuous Urban 0.220
High Dense Urban 0.180

Medium Dense Urban 0.128
Low Dense Urban 0.254

Very-Low Dense Urban 0.102
Isolated Structures 0.051

Green Urban 0.325
Industrial/Commercial 0.252

Air/Sea Ports 0.321
Leisure Facilities 0.322

Barren Lands 0.067
Sea 0.072

Tourism 0.135
Cafe 0.002

Parking 0.2110
Restaurant 0.1797
Post/Police 0.118

Traffic Signal 0.430
Office 0.343

Public Transport 0.080
Shop -0.018

Primary Roads -0.074
Secondary Roads -0.009

Motorways 0.254
Railway Stations 0.371

Tram Stops 0.158

Table 3.1: List of contextual at-
tributes considered.

Tr
af

fic
 M

ap
Po

pu
la

tio
n

La
nd

 u
se

Po
Is

Figure 3.1: Spatial distribution of
total traffic of all different ser-
vices in CITY 1 and 3 selected
context attributes.

37

3.3 Analysis of Mobile Traffic Characteristics Across
Services and Cities

(a) Four locations in CITY 1

0.00 0.05 0.10 0.15 0.20 0.25
Normalized Traffic

0

2

4

6

8 A
B
C
D

(b) Corresponding traffic

Figure 3.2: Illustration of inherent variation in traffic at each location over time, con-
sidering CITY 1 as an example.

In order to better inform the design of our generator, we first investigate the proper-
ties of mobile network traffic at the service level, across a number of different dimen-
sions.

Relationship between Context and Traffic. We start by investigating how the
traffic across the 10 target services relates to contextual information. A first important
observation concerns the inherent stochasticity of mobile traffic: Figure 3.2b shows the
distribution of total traffic observed over time at four different pixels in CITY 1, whose
locations are shown in Figure 3.2a, and the traffic is normalized by the maximum pixel
scale traffic (maximum value of traffic map over all dates) as displayed in the X-axis
of Figure 3.2b. Note that mobile traffic can exhibit substantial variation at a location
even though the corresponding context remains the same: this is, e.g., the case of
the population density illustrated in Figure 3.2a. In addition, the correlation between
mobile traffic and contextual attributes for any given region is non-trivial. This is as
exemplified in Figure 3.1, where three sample contextual attributes do not show any
obvious visual correlation with the mobile traffic.

Takeaway message. The generation process must capture the stochastic nature
of mobile traffic, by correctly modeling the relationship between static context infor-
mation and spatial traffic demand at different time periods. Also, the lack of simple
correlations between individual contexts and traffic indicates that a naive univariate
statistical model based on any one attribute is not an effective generator, thus motivate
the more complex multivariate designs we consider.

Correlations with Service Level Traffic. The above analysis considers aggre-
gate traffic. As we are interested in service-level generation, we now examine the
dependence of the demand for individual services on the various contextual attributes.
Figure 3.3 shows correlation between the traffic snapshots of different services and the
contextual attributes in three cities. We observe that, for a given city, the correlation
between different services and any single attribute is close – each column generally has
a similar color, but the service-context correlation varies across attributes (columns).
This hints that the spatial distribution of traffic is consistent across services in a same

38

0.0 0.2 0.4 0.6 0.8 1.0

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526

Contextual Attributes

0
1
2
3
4
5
6
7
8
9

10

Se
rv

ice
s

(a) CITY 1

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526

Contextual Attributes

0
1
2
3
4
5
6
7
8
9

10

Se
rv

ice
s

(b) CITY 2

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526

Contextual Attributes

0
1
2
3
4
5
6
7
8
9

10

Se
rv

ice
s

(c) CITY 3

Figure 3.3: Correlation between the traffic of mobile services and contextual attributes
in three different cities.

0.0 0.2 0.4 0.6 0.8 1.0

Wha
tsA

pp

Fac
eb

oo
k

Sn
ap

cha
t

Ins
tag

ram

Yo
uT

ub
e

Goo
gle

 Pla
y

Netf
lix
Tw

itte
r

iTu
ne

s

App
le

Sto
re

To
tal

 Tr
aff

ic

WhatsApp
Facebook
Snapchat

Instagram
YouTube

Google Play
Netflix
Twitter
iTunes

Apple Store
Total Traffic

(a) Morning Peak

Wha
tsA

pp

Fac
eb

oo
k

Sn
ap

cha
t

Ins
tag

ram

Yo
uT

ub
e

Goo
gle

 Pla
y

Netf
lix
Tw

itte
r

iTu
ne

s

App
le

Sto
re

To
tal

 Tr
aff

ic

WhatsApp
Facebook
Snapchat

Instagram
YouTube

Google Play
Netflix
Twitter
iTunes

Apple Store
Total Traffic

(b) Midday Peak

Wha
tsA

pp

Fac
eb

oo
k

Sn
ap

cha
t

Ins
tag

ram

Yo
uT

ub
e

Goo
gle

 Pla
y

Netf
lix
Tw

itte
r

iTu
ne

s

App
le

Sto
re

To
tal

 Tr
aff

ic

WhatsApp
Facebook
Snapchat

Instagram
YouTube

Google Play
Netflix
Twitter
iTunes

Apple Store
Total Traffic

(c) Evening Peak

Figure 3.4: Pairwise similarity between traffic snapshots of different mobile services
(as per SSIM) in CITY 3.

city. A more detailed analysis of cross-service traffic similarity further corroborates
this observation: in Figure 3.4, we use structural similarity (SSIM) [175] measure to
compute the spatial similarity between the spatial demand of pairs of services, for dif-
ferent daily peak hours in the morning, midday and evening. Note that SSIM is a
classical image fidelity metric, which allows comparing individual pixels between a
pair of images (here traffic maps of a pair of services) while also accounting for the
differences in the whole spatial construct across the compared images. As shown in
the plots, the spatial variations between different services stay relatively consistent at
all times. Yet, not all service-level demand pairs display the same level of similarity,
as SSIM between different service pairs ranges from 0.55 to 0.95 for any given time
period.

Takeaway message. The diverse correlations among services indicate that naive
transformations (e.g., scaling) are insufficient to generate traffic snapshots for one ser-
vice from the snapshots of a different service. However, more complex transformations
may still take advantage of the significant but varying degree of similarity among the
traffic of individual services. This suggests a model design that natively performs a
joint synthesis of all per-service snapshots.

Traffic Characteristics in Different Cities. Figure 3.3 also suggests that the rela-
tionship between service-level traffic and contextual attributes is different across dif-
ferent cities. The heterogeneity among cities also appears in terms of average daily
traffic volume, depicted separately for weekdays and weekends in Figure 3.5. Popula-
tion, city size, and user preference, all contribute to such heterogeneity. For instance,
CITY 1 has significantly higher traffic volume, about six to twenty times that of other
cities. The traffic generation model must be able to capture such traffic heterogeneity
across different regions. We also notice that traffic demand during weekdays is around

39

city
 4

city
 10

city
 8

city
 6

city
 3

city
 7

city
 2

city
 5

city
 9

city
 1

City

0.0

0.2

0.4

0.6

0.8

1.0

Tr
af

fic

1e8

Weekdays
Weekends

Figure 3.5: Average daily traffic.

0 5 10 15 20

Time (h)

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Tr

af
ffi

c

CITY1
CITY2
CITY3
CITY4
CITY5
CITY6
CITY7
CITY8
CITY9
CITY10

Figure 3.6: Total traffic.

20% higher than weekends for all cities. Our evaluations therefore highlight weekday
traffic generation but relative performance results across different methods are similar
for weekends.

In contrast, Figure 3.6 shows that such differences do not emerge at the level of ag-
gregate normalized daily traffic, which is very consistent across all cities. Specifically,
we identify the same three peak hours for all cities: in the morning (8-9am), around
midday (12-1pm), and early in the evening (5-6pm).

Takeaway message. Generalizing the traffic generation task across cities is a sig-
nificant challenge, as context-traffic correlations are highly diverse between cities. So
the model must be designed so as to facilitate such generalization, which shall also be
a key element of the performance assessment. Also, in our evaluation we will focus on
the three peak hours identified above, as they are consistent across cities and especially
important for, e.g., network planning or network resource management purposes.

3.4 APPSHOT

Based on the insights from §3.3, the generation of high-quality multi-service traffic
snapshots faces the following major challenges: 1) synthesizing high-fidelity traffic
snapshot from context input with significant statistical variation; 2) preserving corre-
lations among multiple services, both in terms of structural similarity and percentage
contribution to total traffic; 3) allowing traffic generation for target cities of arbitrary
spatial sizes; and 4) accommodating diverse traffic characteristics and context data
ranges across cities.

With APPSHOT, we tackle challenges 1) and 2) by designing a tailored conditional
deep generative model (§3.3), and solve challenges 3) and 4) via customized data pro-
cessing and training methods (§3.4.2) and hyper-parameter tuning.

3.4.1 Problem Statement

Let χ = {X1, X2, · · · , XN} be a real-world mobile network traffic dataset that con-
tains sets of observations of mobile traffic, such that each set is collected in a dif-
ferent geographical region, i.e., city. The data for each city n ∈ {1, · · · , N}, in-
cludes observations over a given span of time T n, hence Xn = {xn

1 , · · · , xn
Tn}. The

observation at each time slot is composed of traffic due to S different services, i.e.,
xn
t = {xn

t,1, · · · , xn
t,S}. For time slot t ∈ 1, · · · , T n and service s ∈ 1, · · · , S, we rep-

40

resent the mobile traffic observation xn
t,s ∈ ℜHn×Wn as a single channel image, whose

pixels map to the spatial units over which network traffic is recorded. Then, each pixel
value corresponds to the network traffic value recorded for service s at a specific geo-
graphic location; and, Hn ×W n are the height and width of the city n’s dimensions in
pixels, respectively; the dimensions may differ between cities.

In addition, each observation xn
t,s is associated with a set of K conditions, i.e.,

publicly available contextual attributes that may explain the volume of traffic generated
by mobile users (e.g., as Figure 3.1 illustrates, population distribution in the region,
land use characteristics, presence of points of interest, etc.). We denote the set of
conditions for each city as its context, and represent it as the set Cn = {cn1 , · · · , cnK}.
For each condition k ∈ {1, · · · , K} in city n, we have cnk ∈ ℜHn×Wn , and thus Cn ∈
ℜK×Hn×Wn , which is a multi-channel image with one channel per attribute. Note that
the static, spatial contextual attributes alone are typically insufficient to fully explain
the corresponding network traffic, as illustrated earlier in Figure 3.2b.

Our goal is to synthesize network traffic data fm
t,s ∈ ℜHm×Wm for an unseen region

m at a particular time t and given context Cm in a way that the synthetic fm
t,s samples

exhibit similar data characteristics to the real training data χ and are compatible with
the provided C.

3.4.2 Patch based Learning Methods
In order to optimize the learning process, the mobile traffic data and contextual at-
tributes need to be carefully formatted, as presented next.

Patching and Formatting

To create the training samples, we divide the Hn × W n traffic map xn
t,s of each city

n and service s in time slot t into smaller patches xn,l
t,s , l ∈ {1, · · · , L}, where L is

the total number of patches. This formatting has two advantages. Firstly, cities vary
in their geographical span and so their traffic maps have varied dimensions, hindering
the design of a single model that can handle different sized cities: here, employing
fixed smaller sized traffic patches allows using the same generator model architecture
regardless of the city dimensions considered for training or generation. Secondly, it
allows using diverse traffic patches from different snapshots together to enable a more
efficient training via stochastic gradient optimization. Moreover, different local sub-
regions of a same city can have similar relationship between the context and traffic.
So training at the patch level can be seen as a form of weight-sharing – a type of
regularization technique – to let the model learn the actual casual relationship between
context and traffic instead of memorizing the mapping.

The output synthetic traffic generated at the patch level (denoted as fm,l
t,s) can be

of a high quality for each individual patch but may leave artefacts at the boundary
of patches when sewing the patch level outputs to a city-level traffic map. To over-
come this issue, we associate with each traffic patch xn,l

t,s a trimmed context patch cn,lk

(identical across all attributes) that includes a margin around the traffic patch (see Fig-
ure 3.7a). This is considering that only a portion of the city-wide context that is in the
geographical vicinity of the traffic patch stays relevant to the learning process. Cru-
cially, the additional margin ensures that the border pixels of a traffic patch xn,l

t,s have

41

Traffic
Context

(a) Patch of context and traffic map
Slide by 1 Patch each time

(b) No overlap

Slide by 1 Pixel each time

(c) Overlap

Figure 3.7: (a) Traffic patch and corresponding context patch; (b) non-overlapping
and (c) overlapping traffic patch cases.

sufficient context during the learning process. Clearly, the number of context patches
is the same as that of traffic patches, and we denote by cn,lk the complete context patch
corresponding to xn,l

t,s .
As an additional measure towards artefact-free synthetic traffic maps, we consider

overlapping traffic patches as shown in Figure 3.7c and slide across them by 1 pixel
each time during training and generation. Compared to the straightforward ‘no over-
lap’ case illustrated in Figure 3.7b, each pixel in the output traffic map benefits from
being part of multiple traffic patches. This not only helps with avoiding edge effects
but also serves as a data augmentation method. For example, with a city map of 20 ×
20 and traffic patch size of 10× 10 with dimensions in pixels for both, no overlap case
yields just 4 patches. Overlapping case, on the other hand, results in 121 patches3 for
the same example. More effective data for training aids in capturing key spatial traffic
features at high fidelity but also helps with better generalization across diverse cities.

Normalization

Given that different services may have vastly different traffic volumes, the training and
generation for services with relatively lower volume can become an issue if not handled
properly, especially in a multi-channel CNN model where the weights involved in the
generation of distinct services are broadly shared. To guard against this issue, we
employ service-level traffic normalization as a pre-processing step. Specifically, we

3We get 121 patches for this example by considering traffic patches with their top-left most pixel
falling at each of the pixels in the [1, 1] to [11, 11] square region.

42

c >����������@

dropout conv 2x2
+BN & ReLU

σ�K�Ŀ�

z >���@

reshape

>���������@

conv 1x1

Ŀ�>���������@

Ǒ�>���������@

conv 1x1
+ softplus

>�����������@

FiLM layer

conv 1x1
+BN & ReLU

>�����������@

K�>�����������@

conv 1x1
+BN & ReLU

>�����������@

conv 1x1
+BN & sigmoid

conv 1x1
+BN & ReLU

V�>����������@ >����������@

Figure 3.8: Schematic of APPSHOT generator architecture, labeled with input and
output at each layer.

normalize the traffic values, xs, of each service s by dividing them with xs,max, i.e., the
global per-pixel maximum traffic volume value observed for s.

This results in traffic values for each service to independently fall between 0 and 1.
As part of this normalization step, we also add a small ϵ value to handle cases where no
traffic is recorded for a service. The above normalization step can be easily reversed
during post-processing on the output synthetic traffic map via a rescaling step.

3.4.3 Detailed Model Design
Generator

The generator in APPSHOT is responsible for generating traffic map of all services,
each represented as a different channel in the multi-channel image output.

The generator, denoted as Gθ with θ representing the weights of the neural net-
work, is a conditional latent variable model instantiated by a CNN based architecture.
Formally, we use the latent variable z to model stochasticity and unobserved condi-
tions, then the probability of observing an actual mobile traffic x given conditions c
is modeled as pθ(x|c) = ∫ pθ(x|c, z)p(z)dz, where θ represents the parameters of the
conditional probability. Figure 3.8 shows a schematic of the generator’s neural network
architecture in APPSHOT. An important remark is that context c is spatial, whereas z is
non-spatial. The non-spatial input z in APPSHOT is processed via a specialized FiLM
conditioning layer [136], which effectively creates two convolutional entry branches
in the initial stages of the generator network. This design avoids the risks of a naive
conditioning on the latent variable z (e.g., simply concatenating it with c) that can
lead to the network completely ignoring stochasticity. Instead, the FiLM ensures that
the latent variable is duly accounted for in the generation process. The result of the
separate convolutional branches are then merged via an affine transformation into a
hidden representation whose spatial dimension is same as the output traffic map. This
representation is then processed by stacked convolution layers with size-1 kernels to
produce the final sample s.

In Figure 3.8, we label the dimensions of input/output at each layer using the for-
mat of [channels, sizex, sizey]. For example, the c[27, 12, 12] on the input side means
the context input is a multi-channel image with 12 × 12 dimensions and 27 channels;
each channel here represents a particular condition (i.e., contextual attribute). To re-

43

duce over-fitting to the conditions, we add a channel-wise dropout layer to the input
conditions (with a dropout rate of 0.02). The first convolutional layer has a kernel
size of Nc − Nx + 1. Here Nx refers to the dimension of the output traffic patch size
(empirically set to 10) whereas Nc is the context patch dimension (empirically set to
12 to provide the best average output quality Nx = 10). The rest of convolutions are
of size 1. As per the number of channels: Nc → 8F → 4F → 2F → F → 1,
where the base number of features F are 64. For the FiLM layer process, the latent
variable z is a Nz dimensional noise vector with Nz set to 16F . All intermediate
activations are ReLU [120], following a batch normalization (BN) layer [78]; the fi-
nal activation is Sigmoid. For σ from the FiLM layer, we use the softplus activation,
F (x) = log(1 + exp(x)), to ensure it is positive.

Training

To learn θ, we train the model by optimizing the loss function, as elaborated below. The
generator is trained in an adversarial manner with two discriminators to reflect correla-
tion among services and their contribution to total traffic. For this purpose, we define a
conditional probability distribution pD based on real data (ground truth traffic) and cor-
responding context for cities 1 to N in the training data (i.e., {(x1, C1), ..., (xN , CN)}).
We then find the model weights θ∗ that minimize a divergence criterion between the
data distribution pD and the model pθ. Specifically, following standard GAN formu-
lations [60], we train the model by minimizing the Jensen-Shannon (JS) divergence,
i.e., θ∗ = argminθJS[pD||pθ]. One of the discriminators called individual quality dis-
criminator (D1) is designed to evaluate the overall fidelity of the multi-service traffic
map. For this discriminator, the adversarial loss is defined as:

LD1
JS(pD,pθ) = EpD [logD1(x, c)] + Epθ [log(1−D1(x̃, c))].

where the x̃ is the synthetic traffic map of x.
Unlike conventional works on image generation that treat different channels inde-

pendently, we need to capture the correlation between different channels. We also need
to minimize the divergence between the sum of output channels and real total traffic
at the pixel level. By training each channel to target generation of synthetic traffic
maps for a different service does not ensure the correct sum of all traffic maps from
different channels, so providing extra regularization is helpful in our case. To constrain
the sum of traffic from different services and encourage the model to learn the correct
composition of total traffic, we introduce a second discriminator called sum quality
discriminator (D2) with its adversarial loss defined as:

LD2
JS(pD,pθ) = EpD [logD2(

∑S
s=1 xs, c)] + Epθ [log(1−D2(

∑S
s=1 x̃s, c))],

where S is the total number of services under consideration, xs refers to the traffic map
of service s within S. x̃s means the synthetic traffic corresponds to ground truth xs.

Training solely with adversarial training as described above is insufficient, which
generally leads to higher training instability and lower fidelity output. So in APPSHOT,
besides adversarial training, we make the training process more stable and controllable
by adding the L1 loss. Specifically, we use the L1 norm of the synthetic multi-channel

44

traffic map (with respect to its real counterpart) as part of the loss function. L1 loss
function is shown to be empirically effective in prior work (e.g., [147]).

As the overall loss function of the generator, we take the sum of the above two
adversarial losses and the weighted supervised learning loss (L1 norm):

L = LD1
JS(pD, pθ) + LD2

JS(pD, pθ) + λEc{||Ex∼pD [x],Ex∼pθ [x̃]||1}.

This final loss L is used to update the discriminators and generator in turn. Here λ is
a tuneable parameter to adjust the weight of L1 loss; we set λ = 0.5 by default in our
tests.

3.5 Performance Evaluation

3.5.1 Fidelity Metrics

Weighted Error (WErr). This metric quantifies the composition of a synthesized
multi-service mobile traffic dataset relative to the corresponding real (ground-truth)
data. Suppose in a real dataset made up of traffic from multiple services, the actual
percentage of traffic due to a service s among S services with respect to total traffic
is rs and its traffic volume is ts. If the traffic volume of the same service in the cor-
responding synthetically generated dataset is t̃s, then the Weighted Error (WErr) is
defined as:

WErr =
S∑

s=1

rs
|ts − t̃s|

ts
.

In other words, it is the relative estimation error in traffic volume per service weighted
by each service’s actual percentage, averaged over all services. Smaller WErr means
more accurate service composition in the synthetic dataset.

Normalized EMD (NEMD). Earth Mover’s Distance (EMD), also known as Wasser-
stein Distance [148], is a distance function defined between two probability distribu-
tions over a given metric space (e.g., 1D, 2D). It has been used in similar settings as
ours, e.g., to assess the quality of GAN models [64], or to compare two spatial distri-
butions [79].

For our particular purpose of comparing real and synthetic service-level traffic
maps, EMD is sufficient when we focus on a particular city. But that is not true for
comparison over a set of cities due to their widely different sizes. To address this is-
sue, we normalize the EMD between real and synthetic maps by the EMD between
real map and uniform (2D) distribution. Let us denote the uniform traffic map as ϕ,
the real map in simplex space as µ, and the synthetic map in simplex as v; then, the
normalized EMD (NEMD) is defined as:

NEMD =
EMD(µ, v)

EMD(µ, ϕ)
,

where EMD(a, b) is the EMD between 2D distributions a and b. It is worth noting that
with EMD, the images will be converted to simplex space, and thus the information
of the original data range is lost. This calls for use of complementary metrics such as

45

those outlined next.
SSIM and PSNR. We also consider Structural Similarity Index Metric (SSIM) and

Peak Signal-To-Noise Ratio (PSNR) – the two commonly used image quality assess-
ment metrics [68] – to respectively evaluate the structural and pixel-level fidelity.

Hotspot Histogram EMD (HEMD). As noted earlier, hotspots are a key spatial
feature of interest with mobile traffic data. To quantify the extent to which different
methods faithfully capture this feature, we use the EMD between 1D distribution (his-
togram) of hotspots in synthetic and real data.

Besides the above quantitative fidelity metrics, we also consider qualitative mea-
sures including traffic histograms at city and pixel level as well as for number of
hotspots to visualize the quality of the synthesized data with different methods, es-
pecially to gauge their ability to model underlying data variations (stochasticity).

3.5.2 Baselines
We consider a wide range of baseline methods to comparatively evaluate APPSHOT in
terms of the metrics above. The primary selection of baselines includes many image
based traffic generator. The APPSHOT project primarily processes input in the form of
images, a decision rooted in its foundational design constraints. This approach is not
arbitrary; rather, it is supported by evidence from Reference [159], where the authors
demonstrate the efficacy of using image-based inputs to integrate diverse contexts ef-
fectively. Building upon the methodologies outlined in Reference [159], an optimal
strategy for this project would be the implementation of an image transformer, such
as Pix2Pix [80], which is well-suited for handling image-centric data. In contrast to
APPSHOT, when considering other model-based traffic generators like FDaS [43], it
becomes evident that omitting explicit modeling of spatial correlations leads to sub-
optimal results. These models, while adept in certain aspects, fall short in capturing
the intricacies of spatial relationships inherent in network data. This limitation under-
scores the significance of incorporating spatial correlation in modeling to achieve more
accurate and satisfactory outcomes in network traffic generation.

In our evaluation of baseline models, we also took into account non-generative ap-
proaches. For example, the Pix2Pix model, when operating under highly detailed con-
ditions, tends to produce outputs with limited variation, which effectively positions it
as a non-generative model in our analysis. Additionally, we explored simpler method-
ologies, such as plain Convolutional Neural Networks (CNNs). The collective findings
from these experiments clearly indicate that generative models play a crucial role in
effectively addressing the challenges of traffic map generation. The use of generative
models has shown to be instrumental in capturing the complexities and variabilities in-
herent in this task, something that more straightforward or non-generative approaches
have struggled to achieve.

CNN based Regression. A simple-minded approach for our multi-service traffic
map generation task is to train a deep neural network (DNN) that takes conditions c
as input and predicts a multi-channel image output x. Given the spatial nature of the
output, CNN based regression is a good choice. This approach clearly fails to model
stochasticity, a key characteristic of mobile traffic data. We implement this baseline
via CNN on U-net architecture [147], and perform patch learning with non-overlapping
fixed size patches with patch dimensions same as in APPSHOT.

46

APPSHOT Data CartaGenie SpectraGAN Pix2Pix CNN FDaS
Morning Midday Evening All Peaks Morning Morning Morning Morning Morning

WErr ↓ 17.93% 19.09% 18.98% 15.10% 24.85% 17.74% 38.81% 42.07% 63.67%
NEMD ↓ 0.35 0.36 0.35 0.23 0.44 0.57 0.52 0.58 0.99
SSIM ↑ 0.84 0.86 0.86 0.96 0.85 0.79 0.78 0.76 0.44
PSNR ↑ 34.88 32.61 32.47 39.24 36.15 35.01 34.07 34.88 29.33
HEMD ↓ 2.09 1.99 2.24 0.6 3.90 2.93 4.31 5.79 9.20

Table 3.2: Fidelity performance of APPSHOT at different peak periods (left) and of
baselines for morning peak period (right).

Pix2Pix [80]. This model has been successfully used for image transformation
tasks in computer vision. It is both conditional and stochastic like conditional GANs,
but makes use of a tailored DNN architecture for image-to-image translation. Pix2Pix
has several limitations compared to our APPSHOT approach. In our implementation of
this baseline, we perform non-overlapping patch based learning as above.

Fit Distribution and Sample (FDaS) [43]. A prior approach for mobile traffic data
generation essentially involves fitting an empirical distribution to model the traffic data
using maximum likelihood estimation of parameters and then sampling it afterwards
to generate synthetic traffic [43]. While only total traffic demand across all services
is considered in [43], we apply their approach separately for each service to allow
comparison. Like in [43], we find log-normal distribution best fits the data but with
different parameters across distributions, as expected. This approach has the inherent
limitation of not being able to capture traffic correlations in space or time.

CartaGenie [178] and SpectraGAN [180]. These are the state of the art mobile
traffic data generation methods that also employ conditional deep generative modeling
as in APPSHOT. They, however, target generation of spatial snapshot or spatiotemporal
data for total traffic, as with the FDaS baseline above. To apply them to the multi-
service traffic generation case studied in this paper and have them as baselines, we
train and use multiple separate instances of CartaGenie and SpectraGAN models, one
per each service.

Data. In addition to the above baselines, we also consider an ideal case for refer-
ence, which we refer to as “Data”. Metrics for this case are computed by splitting the
real dataset (with 30 weekdays) into two distinct subsets (15 weekdays each part), and
comparing these subsets of real data against each other. This captures the variability of
the dataset within itself, which is a proxy for the ‘upper bound’ fidelity performance a
synthetic data generation model like APPSHOT can achieve.

3.6 Results

In the performance evaluation, we try to fine tune the baselines as well, including
changing the number of parameters or layers, select the hyper parameters with the best
overall performance. The configuration of all the baselines fine tuned to this task to
the best of our knowledge.

47

3.6.1 Fidelity and Generalization
Throughout this section, we consider a leave-one-city-out evaluation. Specifically,
each of the 10 cities in our dataset is taken as a test city in turn while using the data
for the remaining 9 cities as the training set. This type of evaluation lets us assess
the ability of APPSHOT and various baselines to generalize to unseen cities as well as
their ability to handle different sized cities and their differences in traffic/context data
value ranges. Following the earlier analysis in §3.3, our evaluations focus on weekdays
and morning/midday/evening peak hours. For brevity, we mainly show results for the
morning peak hour period, unless otherwise specified; but similar conclusions apply
for other periods.

Correlation between services. As shown in §3.3, traffic for different services ex-
hibit strong mutual correlations. So it is important for the generated traffic data to
preserve this feature. To assess APPSHOT on this aspect, for each test city in the
dataset, we compute the average of SSIM between traffic snapshots of every pair of
services in the real ground-truth data, and similarly in the data synthesized with APP-
SHOT. We then compute the absolute error in the average pairwise SSIM computed
over synthetic data with respect to that on real data. Results shown in in Figure 3.9a
indicate that APPSHOT yields a small error, within 14% of the real data on average.

Composition of different services for different cities. Besides maintaining inherent
correlations between traffic for different services, it is also important to ensure that
their proportions relative to total traffic are preserved in the synthesized data. Fig-
ure 3.9b shows the error on this measure with APPSHOT relative to real data for dif-
ferent services with each test city. We observe that APPSHOT yields a low error within
20% of real in most cases. WhatsApp case is the only exception but this is an arte-
fact due to traffic for this service making up a very small percentage (0.5%) so small
absolute errors appear as big relative errors.

cit
y 1

cit
y 2

cit
y 3

cit
y 4

cit
y 5

cit
y 6

cit
y 7

cit
y 8

cit
y 9

cit
y 1

0

City

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 E
rro

r SSIM

(a) Error in mutual correlation between ser-
vices

Wha
tsA

pp

Fac
eb

oo
k

Sn
ap

cha
t

Ins
tag

ram

Yo
uT

ub
e

Goo
gle

 Pla
y

Netf
lix
Tw

itte
r

iTu
ne

s

App
le

Sto
re

city 1
city 2
city 3
city 4
city 5
city 6
city 7
city 8
city 9

city 10

0.0

0.2

0.4

0.6

0.8

1.0

(b) Traffic proportion error for each ser-
vice and city

Figure 3.9: APPSHOT service-level performance across cities.

Performance relative to baselines. The results of the comparative evaluation for the
morning peak hour period are summarized in Table 3.2. We observe that APPSHOT, in
the comparison with the baseline methods (CartaGenie, SpectraGAN, Pix2Pix, CNN

48

and FDaS), yields the best performance on two of the metrics (NEMD and HEMD)
while being close to the best result on the other three metrics. Overall, APPSHOT pro-
vides the performance closest to the ideal ‘Data’ reference across all metrics. Among
the baselines, FDaS is clearly the worst performer on all metrics, showing the limi-
tations of this approach in handling correlations in traffic and ensuring fidelity of the
service-level snapshots.

Two other baselines – Pix2Pix and CNN based regression – have somewhat sim-
ilar performance on all metrics, but considerably worse on most metrics relative to
APPSHOT. This highlights their inability to accurately capture the spatial distribution
of traffic relative to ground truth, which particularly harms the way certain key char-
acteristics in the generated data (e.g., the position and number of hotspots). This is
particularly reflected in the HEMD performance which is more than double (twice as
worse) than APPSHOT. Since Pix2Pix is marginally better than CNN based regression
on all metrics, we only consider the former in the rest of our evaluations.

SpectraGAN exhibits slightly better performance than APPSHOT with respect to
two metrics (WErr and PSNR) but substantially worse on the remaining three met-
rics. CartaGenie is similar in that it does slightly better than APPSHOT with respect to
SSIM and PSNR but has substantially worse performance on the other three metrics.
Broadly speaking, this overall relatively poor performance of SpectraGAN and Carta-
Genie compared to APPSHOT can be attributed to their inability to exploit inter-service
correlations due to independent generation of per-service traffic and insufficient mea-
sures to correctly model hotspots (reflected in their significantly worse performance in
terms of HEMD).

The shortcomings of these two baselines with respect to APPSHOT are apparent in
the visualizations of synthetic traffic maps they generate as shown in Figure 3.10. We
see that CartaGenie and SpectraGAN respectively yield unacceptable synthetic traffic
maps for Instagram and YouTube for CITY 1, the most challenging target city given its
vastly bigger size, population density, traffic volume and hotspots compared to other
cities in our dataset (see §3.3). In §3.6.2, we will further explore the performance
of CartaGenie and SpectraGAN relative to APPSHOT. In Figure 3.10, also note that
Pix2Pix fails to provide meaningful traffic maps for any service and exhibits severe
artefacts, consistent with its poor performance in terms of quantitative fidelity metrics
as seen above.

Performance at different peak periods. We now consider how well APPSHOT gen-
erates service level traffic snapshots at different peak periods. Results for different
fidelity metrics averaged across all test cities are summarized in the left panel of Ta-
ble 3.2. We observe that APPSHOT provides consistent performance for all periods
close to the ideal ‘Data’ reference, with WErr under 20% and near-ideal results for
SSIM and PSNR.

Capturing statistical variations. It is important for a synthetic mobile traffic data
generation model to model inherent stochasticity in such data. This reflects the model’s
ability to learn traffic distributions conditioned on the contextual input, rather than
simply outputting a deterministic transformation (as CNN based regression would do).
We examine this aspect considering histograms of city-level and pixel-level total traffic
volume across all test cities, and the number of hotspots. Results shown in Figure 3.11
for APPSHOT clearly demonstrate that it achieves this intended goal. Note that we
include pixel-level histograms for only two arbitrarily selected test cities for brevity.

49

Facebook Instagram YouTube

Ap
pS

ho
t

C
ar

ta
G

en
ie

Sp
ec

tra
G

AN
Pi

x2
Pi

x
G

ro
un

d
Tr

ut
h

Figure 3.10: Synthetic traffic maps for select services in CITY 1 generated with
different methods compared against the ground truth traffic maps corresponding to
those services.

50

6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00
Log-Traffic

0
10
20
30
40
50
60
70

Data
Synthetic

(a) Across cities

4 2 0 2 4
Log-Traffic

0

5000

10000

15000

20000 Data
Synthetic

(b) CITY 5

2 0 2 4
Log-Traffic

0
2000
4000
6000
8000

10000
12000
14000 Data

Synthetic

(c) CITY 9

0.0 2.5 5.0 7.5 10.012.515.017.520.0
Number of Hotspots

0
20
40
60
80

100
120
140 Data

Synthetic

(d) #Hotspots

Figure 3.11: Statistical features of APPSHOT-generated data.

6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00
Log-Traffic

0
25
50
75

100
125
150 Data

Synthetic

(a) Across cities

4 2 0 2 4
Log-Traffic

0

5000

10000

15000

20000
Data
Synthetic

(b) CITY 5

2 0 2 4
Log-Traffic

0
2000
4000
6000
8000

10000
12000 Data

Synthetic

(c) CITY 9

0.0 2.5 5.0 7.5 10.012.515.017.5
Number of Hotspots

0

20

40

60

80 Data
Synthetic

(d) #Hotspots

Figure 3.12: Statistical features of APPSHOT-generated data without the FiLM layer.

3.6.2 Detailed Comparisons with CartaGenie and SpectraGAN

CartaGenie

Earlier in this section, we have already highlighted the benefit of APPSHOT as a whole
relative to the alternative of using multiple separate per-service instantiations of the
CartaGenie model. Here we dissect APPSHOT to examine the benefit due to some of
its underlying design choices and contrast with those underlying CartaGenie.

In Table 3.3, the ‘L1+D1+D2’ represents the APPSHOT design, using adversar-
ial training with two discriminators as well as use of overlapping patches and sliding
across them one pixel at a time (see Figure 3.7c). The ‘No Overlap’ case is different
from ‘L1+D1+D2’ in that the former uses non-overlapping patch based training (see
Figure 3.7b) as in the CartaGenie design. Clearly, non-overlapping patches worsens
performance on all metrics, significantly so for several of the metrics (WErr, NEMD
and HEMD).

The other two alternative designs – ‘L1 Only’ and ‘L1+D1’ – shown in Table 3.3
use overlapping patches as in APPSHOT but differ in their loss functions. Here ‘L1
Only’ represents the case where only L1 loss is used for the loss function as done in
CartaGenie. We see that doing so results in overall worse performance compared to
APPSHOT (i.e., ‘L1+D1+D2’). In particular, using L1 loss alone is clearly insufficient
to accurately model traffic composition (as measured by WErr) and capturing hotspot
distribution (HEMD). Addition of a discriminator (via adversarial training as in GAN),
shown as L1+D1, helps on both fronts. Yet another discriminator (L1+D1+D2) to en-
sure correct traffic composition, as we do in APPSHOT, provides the best performance
overall.

51

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
NEMD

0

20

40

60

80

100

120

140 Facebook
Snapchat
Instagram
YouTube
Total

Figure 3.13: Per-hour NEMD his-
togram for APPSHOT.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
NEMD

0
20
40
60
80

100
120
140
160 Facebook

Snapchat
Instagram
YouTube
Total

Figure 3.14: Per-hour NEMD his-
togram for SpectraGAN.

No Overlap L1 Only L1+D1 L1+D1+D2

WErr ↓ 32.04% 34.68% 22.68% 17.93%
NEMD ↓ 0.47 0.33 0.36 0.35
SSIM ↑ 0.79 0.81 0.85 0.84
PSNR ↑ 32.6 37.3 35.2 34.88
HEMD ↓ 3.70 5.59 2.19 2.09

Table 3.3: APPSHOT design (shown under L1+D1+D2 in the table) compared against
alternative design choices. The ‘No Overlap’ and ‘L1 Only’ represent the design
choices underlying the CartaGenie model.

SpectraGAN

Different from other baselines, SpectraGAN is designed to capture the spatiotemporal
features of mobile traffic. We extend SpectraGAN to service-level generation by train-
ing it on each service independently. To evaluate APPSHOT in the time domain and
show that it generalizes to different periods, we train APPSHOT to generate service
level snapshots for each hour of the day (i.e., the same granularity as SpectraGAN)
separately, and obtain synthetic service-level traffic over time by stitching the hourly
snapshots. Specifically, we train 24 models with APPSHOT that correspond to different
hours of a day. The time series of city-scale total traffic of YouTube after stitching is
illustrated in Figure 3.15.

Spatial-domain performance. The histogram of per-hour NEMD over a period of
3 weeks is shown in Figure 3.13 and Figure 3.14 for APPSHOT and SpectraGAN,
respectively; there we consider total traffic and the four popular services. APPSHOT

yields consistently good performance for individual services as well as for total traffic.
SpectraGAN, on the other hand, performs significantly worse for some services, and
is unstable over time. These results are in line with worse spatial fidelity (in terms of
NEMD and SSIM) seen previously with SpectraGAN in Table 3.2. A key reason for
this is its inability to exploit inter-service correlations, unlike APPSHOT.

Time domain performance. We employ the L1 distance of autocorrelation between
synthetic and real data (AC-L1), also considered in previous work [98, 180], to com-
paratively evaluate the temporal fidelity of the synthetic data between SpectraGAN
and APPSHOT. Specifically, we compute this metric by taking the average value of L1

norm between the corresponding points of the auto-correlations of real and synthetic
time-series data, at the pixel level. Lower values thus imply better performance.

52

0 100 200 300 400 500
Time in hour

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
to

ta
l t

ra
ffi

c

Data
SpectraGAN
AppShot

Figure 3.15: City scale total traffic time series of YouTube in CITY 1, normalized by
the maximum hourly traffic.

Instagram Snapchat Facebook YouTube Total (10)

APPSHOT 47.3 60.1 69.8 46.8 62.0
SpectraGAN 75.6 94.6 75.9 71.2 65.3

Table 3.4: Time domain performance comparison between APPSHOT and Spectra-
GAN in terms of AC-L1 (lower is better).

Table 3.4 shows results comparing the performance APPSHOT with SpectraGAN
in terms of median AC-L1, considering the top four popular services and total traffic of
all ten services available. While the two methods achieve similar performance for total
traffic, APPSHOT has substantially better performance at the individual service level.
Figure 3.15 highlights the particular case of YouTube traffic by way of explaining these
performance differences. In Figure 3.15, we observe that SpectraGAN tends to largely
overestimate the actual traffic relative to ground truth, especially during idle periods
(e.g., in hours 180 or 335), while APPSHOT correctly models such situations.

3.6.3 Benefit from Other Design Choices and Parameter Tuning

We now present further results supporting design choices in APPSHOT, and discuss
the tuning of its key hyper-parameters.

Noise Input Effect with FiLM Layer. As discussed in §3.4.2, naive conditioning on
the noise input to the generator by simply concatenating it with (spatial) context input
can cause the model to ignore the noise input altogether and prevent it from modeling
stochasticity in the data. We avoid this issue by using FiLM layer [136] to provide
the noise input separately through it. The benefit from this choice is highlighted by
comparing the results in Figure 3.11 with that of Figure 3.12 where in the latter case
APPSHOT uses naive conditioning on noise input without the FiLM layer.

Hyper-parameters. We have determined the best settings for various hyper-parameters
empirically. These resulted in the use of 12×12 as input context patch size (for 10×10
output traffic patch size) and 3 × 3 kernel size at the first convolutional layer. Among
the various hyper-parameters of the APPSHOT neural network model, through experi-
ments and analysis, we find that the kernel size of initial convolutional layers in APP-
SHOT plays a critical role in determining the fidelity of output synthetic traffic maps
(as illustrated in Table 3.5 and Figure 3.16). We choose 3× 3 kernel size as the setting
for the first convolutional layer that generally works well.

53

Kernel Size CITY 1 CITY 2 CITY 3 CITY 4 CITY 5 CITY 6 CITY 7 CITY 8 CITY 9 CITY 10 Average

1 0.32 0.52 0.41 0.34 0.46 0.45 0.40 0.44 0.36 0.28 0.38
2 0.31 0.47 0.42 0.37 0.45 0.50 0.34 0.38 0.35 0.33 0.39
3 0.27 0.40 0.40 0.35 0.38 0.41 0.35 0.38 0.36 0.26 0.35
6 0.30 0.53 0.55 0.43 0.49 0.47 0.55 0.53 0.35 0.26 0.44
11 0.45 0.54 0.44 0.37 0.51 0.46 0.54 0.44 0.35 0.25 0.44

Table 3.5: APPSHOT performance in terms of NEMD with different kernel sizes
for the first convolutional layer.

(a) K=1 (b) K=2 (c) K=3 (d) K=6 (e) K=11

Figure 3.16: APPSHOT-generated traffic maps for Instagram in CITY 1
with different kernel sizes (K) for the first convolutional layer.

3.7 Use Cases of APPSHOT

As part of our performance evaluation, we assess the utility of APPSHOT through a
downstream application use case of multi-service mobile traffic data. Specifically, we
employ synthetic data generated by APPSHOT to effectively feed a recent model for
the estimation of the multiplexing efficiency with radio network slicing [110]. The
actual size of each pixel in our dataset is 250× 250m2, which is close to the coverage
range of a small cell. We thus assume that the radio network is composed of small
cells each matching one pixel. We further assume that each service is associated with
an individual slice, i.e., a dedicated and customized set of network resources and func-
tions that allows achieving strong quality of service (QoS) guarantees to the service
providers. The need to isolate resources to each slice (i.e., service) is at the root of
a reduced multiplexing efficiency: resources need to be allocated for each slice, and
cannot be multiplexed as in legacy networks that cannot provide strong QoS [110]. In
our case, the sliced resources are at the radio access level (e.g., spectrum or baseband
processing resources), hence must accommodate the per-service traffic generated in
each pixel separately.

Formally, suppose there are N cells in the target region, and let us denote by
ri,s(p, t) the minimal resource to serve the traffic demand of slice (i.e., service) s in
cell i for a fraction of time p over a reconfiguration period t. The value of ri,s(p, t)
can be derived from multi-service mobile traffic data generated with APPSHOT and
using the model in [110]. The (minimum) amount of resources needed to serve the
overall traffic in absence of slicing (i.e., when multiplexing across services is possible)
is Ri(p, t). Then the network slicing efficiency is:

E(p) =

∑T
t=1

∑N
i=1Ri(p, t)∑T

t=1

∑N
i=1

∑S
s=1 ri,s(p, t)

.

54

We compute the accuracy of estimating multiplexing efficiency with APPSHOT-generated
data relative to using real data. We consider low and high coverage cases, respectively
corresponding to covering 95% and 99% of demand in each reconfiguration period,
i.e., p = {0.95, 0.99}. In other words, more than 95% or 99% of the demand must be
accommodated in each slice during a reconfiguration period. We consider a wide range
of reconfiguration periods from 2h to 36h. As seen from the results in Table 3.6, the
APPSHOT-generated data only introduces about 5% error in estimating the multiplex-
ing efficiency compared with the real traffic data for short reconfiguration periods. The
estimation error with APPSHOT data slightly increases with increasing reconfiguration
period as well as lowered coverage probability but it always is within 10% relative to
using real data.

2h 4h 8h 12h 16h 20h 24h 36h

95% Coverage 4.7% 4.6% 5.6% 4.9% 5.5% 5.5% 8.1% 8.4%
99% Coverage 4.7% 4.6% 5.5% 4.9% 5.4% 5.5% 6.0% 6.8%

Table 3.6: Error in multiplexing efficiency estimation with
APPSHOT-generated data for different coverage probabili-
ties and reconfiguration periods.

3.8 Discussion

3.8.1 Limitations of APPSHOT

We recognize the potential impact of city-scale influences in certain scenarios, as
evidenced in contexts similar to those observed in London, where unique urban ef-
fects are discernible. However, our batch generation approach presents challenges in
fully exploring these city-specific correlations. The constraints stem from the limited
availability of training data and the necessity to generate traffic maps across various
scales, including arbitrary ones. Given these considerations, opting for batch genera-
tion emerges as the most pragmatic solution in our context. This methodology, despite
its limitations in capturing localized urban dynamics, offers a balanced approach to
handling diverse data availability and scalability requirements in traffic map genera-
tion.

Another notable limitation of our study is the inability to investigate the effects
of varying grid sizes in traffic map generation, although we highlight the grid size is
critical with few experiments in Figure 3.16 and Table 3.5. The diversity in traffic
patterns suggests that adopting a multi-resolution approach, similar to techniques used
in computer vision modeling, could potentially yield more nuanced insights. However,
our exploration in this direction is hindered by a fundamental constraint: the lack of
access to a diverse dataset with sufficient variations in density. Our training dataset is
confined to specific countries and regions, where the density of variations is relatively
uniform and we can therefore find an optimal grid size for all cities. This uniformity
in our data limits our capacity to examine and understand the impact of different grid
sizes on traffic map generation. The absence of such an analysis represents a significant
limitation of our work, as it restricts our understanding of how varying densities might
influence traffic patterns and predictions.

55

3.8.2 Potential Extensions
The objective of APPShot is distinct from tasks aimed at city-level completion. How-
ever, adapting APPShot for city-scale applications is a feasible and straightforward
process. This can be achieved by dividing a city into several sections and training the
model separately on these subdivisions. This method of segmenting a city and applying
the APPShot model to each segment individually does not necessitate any alterations
to the model itself. Essentially, this approach represents a direct and uncomplicated
extension of APPShot’s capabilities, allowing it to operate effectively at a broader,
city-wide level without requiring fundamental changes to its underlying methodology.

3.9 Summary
In this chapter, we have presented APPSHOT, a novel conditional deep generative
model for synthesizing high-fidelity multi-service network traffic data that needs only
publicly available context information of target regions. We have used real-world
service-level mobile traffic data for multiple cities for our evaluation and show that
APPSHOT not only outperforms a range of baseline approaches in terms of fidelity
and also generalizes well to unseen regions. Our patch-based learning approach and
the corresponding operations have proven to be effective in generating traffic for cities
of different sizes. Also, data augmentation with overlapping patches significantly en-
hances performance with respect to handling traffic hotspots and diverse traffic ranges.
The architecture of the APPSHOT neural network and the service-level constraints it
incorporates significantly enhance the accuracy of service compositions in synthetic
traffic, while preserving a strong structural correlation between services. Furthermore,
APPSHOT is shown to capture realistic statistical variations on both city-wide traf-
fic demand and structural characteristics (e.g., number of hotspots). Finally, we have
demonstrated the utility of APPSHOT-generated data through a use case on radio net-
work slicing.

56

Chapter 4

GenDT

4.1 Introduction

In this chapter we focus network data generation at physical layer. The conventional
method to get physical layer KPIs in mobile network, or radio KPIs, is drive test-
ing. Drive testing has traditionally been an integral part of operating mobile net-
works [37, 48, 144]. A key aim of drive testing is measurement based assessment
and optimization of mobile network coverage, capacity and quality of service (QoS).
It involves collecting field measurements in a controlled manner by driving or walking
in a target scenario. Several measurement tools are available to perform drive or walk
testing [8, 77, 86, 151]. The principal concern with traditional drive testing is that it
requires manual effort to obtain measurements and so is costly and time-consuming.

There exist broadly two alternative approaches to reduce drive testing cost. One
approach, generally referred to as Virtual Drive Testing (VDT) [26], is aimed at en-
abling device or infrastructure equipment testing in the lab under realistic conditions.
The idea is to initially obtain a set of field measurements, as in traditional drive testing,
and then recreate the field environment in the lab by replaying drive test scenarios and
replicating field-measured channel conditions through a hardware channel emulator.
Keysight VDT toolset [122] and Spirent Live2Lab [124] represent this approach. This
approach is obviously limited to device/equipment testing and so does not cater to the
needs of optimizing operational mobile networks – the latter is our focus in this paper.

The other existing approach seeks to leverage measurements from real end-user
devices. From a network/operator perspective, 3GPP has introduced minimization of
drive tests (MDT) feature in Release 10 to obtain measurements from actual user de-
vices and enhanced it since [6, 84]. While this is an appealing approach and has been
the focus of some industry solutions and trials (e.g., [63, 127, 200]), users’ consent is
needed for their devices to participate in the MDT framework, especially to provide
device side context information (e.g., location) to annotate measurements. This in turn
causes the issue of sparse or skewed measurement data with MDT [158]. On the other
hand, inferring device locations on the network side suffers from inaccuracy along with
the additional concern due to device diversity [164].

Alternatively, device side measurements can also be collected in a crowdsourced
manner via dedicated measurement apps or SDKs (from third-party mobile analytics
companies) installed on user devices (e.g., OpenSignal [123], Tutela [125]). The scope

57

and granularity of measurements that can be gathered with such crowdsourced solu-
tions are limited by device OS APIs (e.g., Android Telephony API [75]) and so they are
mostly limited to coverage mapping based on signal strength measurements [10, 51].
Crucially, the effectiveness of both MDT and crowdsourcing based measurement ap-
proaches are limited by the ability to provide incentives for users to participate and to
safeguard their privacy.

Traditional generation techniques like the Taylor expansion [4] fall short in accu-
rately producing high-fidelity time series, particularly when dealing with the actual
radio signal, which can exhibit highly bursty characteristics. The Taylor expansion,
while useful in various contexts, lacks efficiency in representing time series data that
display such erratic and burst-like patterns. This limitation stems from the intrinsic
nature of the Taylor expansion, which is more suited to smooth, continuous functions
rather than the abrupt and unpredictable fluctuations typical of bursty radio signals.
Therefore, for the purpose of replicating these complex, high-variance time series, al-
ternative methods that can better capture the unique properties of bursty signals are
required.

In this paper, we introduce a new approach, termed GENDT, that is powered by
deep generative modeling for making drive testing efficient. Unlike the VDT ap-
proach [26, 122, 124], we design GENDT with measurement and optimization of op-
erational mobile networks in mind. The essential idea behind our approach in GENDT
is to develop a deep generative model that effectively mimics drive testing. Traditional
drive testing results in a time-series of measurements for different radio network KPIs
(e.g., RSRP, RSRQ) over a specified measurement trajectory. Similarly, GENDT takes
a trajectory as an input and generates the time-series data for multiple radio network
KPIs corresponding to that trajectory (see Figure 4.5 for an illustration). Note that
trajectory here means a sequence of (location, timestamp) tuples so the user/device
mobility is implicitly captured by this notion of trajectory. As our aim is to reduce
the number of measurements required with drive testing, we use readily available net-
work and environment ‘context’ as an aid, and train GENDT to learn the relationship
between the relevant context around a measurement trajectory and the corresponding
radio KPI time-series data. For the network context, we use cell site location and con-
figuration information that an operator would hold. Points of interest (PoIs) and types
of land use around the device location make up our environment context.

Given the above, the core technical problem we target with GENDT is conditional
multivariate time-series data generation, where the drive testing trajectory and its con-
text make up the condition (input) to the model to steer the data generation process,
and the output is the time-series data for multiple variables (i.e., radio KPIs of in-
terest). For training the GENDT model, we leverage a small number of controlled
radio network measurements for different measurement scenarios (highway, city cen-
ter, etc.) collected as with traditional drive testing. Each of these measurements is
annotated with the device location and the corresponding contextual information. The
GENDT model once trained as above can then be relied on to generate radio network
KPI time-series data for a new unseen drive test trajectory without having to collect
field measurements, by simply providing the trajectory and its surrounding context as
input to the model.

Realizing the GENDT approach as outlined above poses a significant challenge.
On one hand, GENDT should be able to generate high-fidelity (dependable) KPI time-

58

series data for new unseen trajectories (i.e., generalize well). On the other hand,
GENDT should rely on minimal amount of measurement data for training. Addressing
this challenge entails tackling a number of issues in turn: (i) Dynamic context input:
the relevant context keeps changing as the device moves along the drive testing tra-
jectory. This includes not only the immediate environment but also the number and
the actual set of potential serving cells around the device location; (ii) Long and com-
plex scenarios: drive testing trajectories can be arbitrarily long which means the model
should be able to generate correspondingly long time series of radio KPIs without loss
of fidelity. Moreover, real-world drive testing trajectories can be complex spanning
several different measurement scenarios (highway, city center, etc.); (iii) Stochasticity:
radio network KPIs are inherently stochastic and so the generated data should pre-
serve this characteristic by having the distribution of synthesized data aligning with
real measurement data; (iv) Minimal training data: the model should provide insights
to optimize the amount of training data needed while ensuring high fidelity so as to
strike the right balance between dependability and measurement efficiency.

In GENDT, we address (i) via a tailored Graph Neural Network (GNN) [13] based
LSTM network component, where a node level network is used to map the time-
varying cell information context into a high-dimensional graph; this then feeds into
another aggregation network to learn the graph level information and output a mul-
tichannel time-series output, where each channel of the output represents a different
radio network KPI. We tackle (ii) with a batch generation mechanism – the training
and generation is done at a smaller batch level to preserve temporal patterns and im-
proved training efficiency. We address (iii) by introducing a stochastic layer in the
LSTM network and adversarial training for effectively modeling the stochastic nature
of radio KPIs. Finally to address (iv), we incorporate a residual generation component
in the model whose parameters give hints on model versus data uncertainty, thereby
help achieve high fidelity with minimal training data.

We evaluate the GENDT with respect to a range of baseline approaches, using two
real-world drive testing measurement datasets from two different countries. We not
only assess the fidelity of the data generated with GENDT relative to baselines but
also highlight its ability to achieve high fidelity with minimal amount of training data
– the latter translates to greater measurement efficiency to benefit drive testing. All our
evaluations are over the testing subset of each of the datasets that is non-overlapping
with the part used for training. As such, we demonstrate the ability of GENDT to
generalize to new unseen trajectories. We also present evaluations showing the effec-
tiveness of GENDT in supporting downstream use cases as well as an ablation study to
evaluate design choices underlying GENDT. In summary, we make the following key
contributions:

• (§4.3) We first present an analysis of drive testing measurement data character-
istics that motivate our model design.

• (§4.4) We propose a novel conditional deep generative model, GENDT, featuring
several new innovations. To the best of our knowledge, GENDT is the first
method for synthesizing dependable radio KPI time series data and as such the
first step towards enabling efficient drive testing via generative modeling.

• (§4.6.1) Using real-world drive testing measurement datasets from two coun-
tries, we show that GENDT synthesizes realistic time series for multiple key

59

radio network KPIs for new unseen trajectories and generally outperforms all
baselines.

• (§4.7.2) Crucially, we demonstrate the potential of GENDT to reduce the mea-
surement effort with drive testing by leveraging the model uncertainty measure
within GENDT– it maintains high fidelity for long and complex trajectories us-
ing as little as 10% of the available data, or equivalently yield 90% measurement
efficiency.

• (§4.8.2) Moreover, we demonstrate the utility of GENDT for downstream ap-
plications through two distinct use cases, showing that using data generated by
GENDT yields results comparable to those obtained using real drive test mea-
surements.

4.2 Background on Device Side Measurement of Radio
Networks

4.2.1 Representative Radio Network KPIs
Drive testing involves measuring a number of different radio network KPIs. Here we
outline a representative set of key LTE radio network KPIs [154] that we target in
GENDT.

Reference Signal Received Power (RSRP) is the average power received from a
single reference signal. It typically ranges between -44 dBm (good) and -140 dBm
(bad). RSRP is related to another KPI called Received Signal Strength Indicator
(RSSI), which represents the total received power from the serving cell, co-channel
cells and other sources of noise:

RSRP (dBm) = RSSI(dBm)− 10× log(12NRB)

where NRB is the number of resource blocks.
Reference Signal Received Quality (RSRQ) indicates the quality of the received

signal and typically ranges from -19.5dB (bad) to -3dB (good). RSRQ is related to the
above mentioned KPIs, as follows:

RSRQ(dB) = NRB

(
RSRP (dBm)÷RSSI(dBm)

)
Based on the above, given any two of RSRP, RSRQ and RSSI, we can obtain the
third. We focus on RSRP and RSRQ given their central role in influencing handover
decisions for mobility management [150].

Signal to Interference plus Noise Ratio (SINR) is a key determinant of the re-
ceived data rate. It is related to the transmit power, pathloss and interference.

Channel Quality Indicator (CQI) is a key KPI that is related to SINR, and is
used for downlink resource scheduling and link adaptation, including the choice of
modulation and coding scheme [38]. It takes discrete values between 1 and 15.

Although the above set of KPIs are a subset of KPIs considered for drive testing
measurements [6], they are an essential subset as discussed above and so are sufficient

60

Walk Bus Tram

Time Granularity 1s 1s 1s
Avg. Velocity (m/s) 1.4 5.6 11.5
Avg. Duration at each Serving Cell (s) 80.5 49.5 43.42
Avg. RSRP (dBm) -86.6 -87.3 -85.6
Std. RSRP (dBm) 9.9 10.7 10.0
Avg. RSRQ (dB) -14.4 -12.9 -13.3
Std. RSRQ (dB) 2.1 2.2 2.1
Measurement Samples (s) 15245 13890 14198

Table 4.1: Statistics of DATASET A for different scenarios.

City Driving 1 City Driving 2 Highway 1 Highway 2

Time Granularity 3.8 3.5 2.1 2.3
Avg. Velocity (m/s) 9.1 9.8 26.7 31.1
Avg. Duration at each Serving Cell (s) 31.4 27.3 22.0 22.2
Avg. RSRP (dBm) -84.6 -85.0 -86.5 -84.1
Std. RSRP (dBm) 8.8 7.1 10.5 10.2
ROC RSRP (dBm) 0.95 0.83 1.11 1.03
Avg. RSRQ (dB) -9.5 -10.6 -8.7 -8.5
Std. RSRQ (dB) 2.0 2.5 2.2 1.9
ROC RSRQ (dB) 0.36 0.41 0.38 0.31
Sample Num. 2.1× 104 2.3× 104 3.9× 104 4.6× 104

Table 4.2: Statistics of DATASET B for different scenarios.

to highlight the potential of the proposed GENDT approach. We leave the extension
of GENDT to cover additional KPIs for future work.

4.2.2 Measurement and Context Data
For our analysis and evaluation, we use two real-world mobile network measurement
datasets from two different countries, both obtained through a drive testing like pro-
cess. We also compile corresponding network and environment context data from
public sources.

DATASET A. We collected this dataset through first-hand measurements using Nemo
Handy [76], a commercial drive testing tool, mostly in and around a city center area in
country A. The Nemo Handy tool allows measurement of a comprehensive set of radio
network KPIs at a consistent and fine time granularity of 1s. These measurements were
obtained using a custom Samsung S20 device with Nemo Handy installed. There are
other studies in the literature that have reported measurements obtained using this tool
(e.g., [47, 142]). Table 4.1 provides a summary of this dataset.

4.2.3 Network Context: Cell Information
For each measurement location in the above two datasets, we treat the corresponding
cell deployment information as the network context. Specifically, we consider the cell

61

0 100 200 300 400 500 600 700

Location
−110

−100

−90

−80

−70

−60

RS
RP

Time Slot 0
Time Slot 1
Time Slot 2
Time Slot 3
Time Slot 4

Figure 4.1: RSRP over the same trajectory
with locations aligned.

0 100 200 300 400 500 600 700
Location

0

100

200

300

400

500

Ce
ll

ID

Time Slot 0
Time Slot 1
Time Slot 2
Time Slot 3
Time Slot 4

Figure 4.2: Serving Cell ID changes
aligned with the RSRP in Figure 4.1.

site location, estimated transmit power and cell orientation for each cell within a cer-
tain range around the device measurement location, as such cells are seen as potential
serving cells. See Figure 4.3 for an illustration1. We discuss the setting of this range
around the device in the next section. We obtain the cell site location and configura-
tion information from CellMapper [28], a non-profit crowd sourced cell information
dataset2.

4.2.4 Environment Context

The radio network KPI data characteristics are not only dependent on the network con-
text described above but also on the environment around the device (terrain, obstacles,
etc.). So we additionally consider the environment context, which in our case is repre-
sented by a set of 26 attributes (see Table B.1 in Appendix B.1.1). These attributes are
obtained from public sources and broadly fall into two categories: (1) land use type
from Copernicus Urban Atlas repository [12]; and (2) points of interest (PoIs) from
the OpenStreetMap (OSM) using the Overpass API [131]. Specifically, the value of
all these attributes, centered at and within a small radius (set to 500m in this paper)
of the device location, are taken together as the environment context. For the land
use attributes, we use the percentage area of each land use type around the device as
its value. For PoI attributes, we use the number of each PoI around the device as its
value. Clearly, like the network context, the environment context also changes with the
device location. Considering the fact that there are tens of different contexts, and that
these contexts could overlap, the sheer number of possible combinations makes per-
environment training infeasible. It is difficult to obtain sufficient data for all possible
cases .

62

UE

Cell 1
Cell 2

Cell 3
Cell 4

Unavailable Cell

Visible Region

Figure 4.3: Cells in sight of a device loca-
tion.

Case
 1

Case
 2

Case
 3

Case
 4

Case
 5

Case
 6

Case
 7

0

5

10

15

20

25

30

Ce
ll

De
ns

ity
 (k

m
2)

Figure 4.4: Cells density in Km2 of dif-
ferent cases.

4.3 Analysis of Data Characteristics

Here we present a short analysis of drive test measurement data characteristics perti-
nent to our model design in §4.4.

Stochasticity of radio network KPI data. Figure 4.1 shows five measurements of
RSRP time series taken over the same trajectory on the tram in DATASET A around the
same time and on the same day. Measurement locations are aligned across the different
time series. We see significant variations between the measurements at most locations.
This shows that radio network KPI data is far from deterministic, which motivates the
need for a generative model capable of modeling this stochasticity as opposed to using
prediction/regression models. The high level of variation of a radio KPI (RSRP in this
case) at any given location is partly due to serving cell changes. Figure 4.2 shows
the serving cell ID corresponding to the measurement data in Figure 4.1. We observe
that in locations with high degree of RSRP variations, there are also a wide range of
serving cells. This suggests that assumption of serving cell at a given location is fixed
and known made in prior work (e.g., [10, 164]) does not hold in practice.

Distance to Serving Cell. From Figure B.2, we observe that distributions of dis-
tance to primary serving cell are as per intuition – slow mobility (e.g., walking) or
inner city (e.g., city center cases in DATASET B) have serving cells that are relatively
closer. Yet, there is considerable degree of variation in distance to serving cells within
and across scenarios. A direct implication of this observation for our purpose of gen-
erating radio KPI time series data conditioned on relevant context is that the scope of
the cell information context should reflect this wide diversity in order to be effective
across different scenarios. For some of the scenarios, we also observe a substantial
percentage of cells within almost zero distance from the device location. This reflects
a common phenomenon in dense city center areas where users may pass by cells within
a few meters distance and there may also be multiple cells that a user device could as-
sociate with. Also note that these plots show only the 2D distance between the device

1Here arrows indicate the sector and direction of each cell, i.e., each cell covers the direction between
two arrows (< 180◦). Dashed circle shows the furthest distance of a serving cell from the device. Cells
within that range are shown in red circles. Unavailable cells beyond that range are shown as grey circles.

2Note that in practice, this information would be directly available to an operator employing our
GENDT approach.

63

User Trajectory

 Input: >ODW��ORQJ@�WLPH�VHULHV�RI
�XVHU�PRYHPHQW

Cell
information

+

All visible cells

Consolidated context

Cell(s)

UE
time

A time series of context
snapshot around UE

Noise
+

GenDT

Conditional Generator for
Radio KPIs

RSRP
RSRQ
SINR
CQI

 Output:

1

3 4

 Attach environment
contexts

2

…

Figure 4.5: Schematic of the GENDT approach for generation of drive testing
data. The whole pipeline starts from a input trajectory, represent by a series of
[Longitude, Latitude] with corresponding time stamp. This trajectory is then con-
catenate with context vector and cell information around for each time stamp, between
step 1 to 3. Then the concatenated data is input to GenDT, where those information is
used to do inference on the generator to get various radio KPIs.

and cell site locations.
Figure 4.4 shows the cell density differences across different scenarios3 These re-

sults also follow intuition indicating that high mobility scenarios tend to experience
lower density of cells compared to inner city and slow mobility cases. Significant
diversity across scenarios highlighted in Figure B.2 and Figure 4.4 emphasize the dif-
ficulty associated with generating radio KPI data for all scenarios using a single model.
Though challenging, addressing this challenge is important to make drive testing effi-
cient considering that trajectories of interest in practice span multiple different scenar-
ios.

4.4 GENDT

4.4.1 Problem Statement
As stated at the outset, we aim at faithfully mimicking drive testing through a data gen-
eration model to reduce the need for collection of field measurements. This goal trans-
lates to generating time-series data for different radio KPIs corresponding to an input
drive testing trajectory, as would be the case with traditional drive testing. Figure 4.5
illustrates the problem we target and our proposed approach to resolve it through the
GENDT model. Note that this schematic depicts the operational process once the
GENDT model is trained; we discuss the model training aspect shortly. The process
starts with providing an input trajectory (Figure 4.5:Input), which is a timestamped
sequence of locations for the user device (represented in [Latitude,Longitude] format).
Then the network context (Figure 4.5: 1⃝ as described in §4.2.3) and environment con-
text (Figure 4.5: 2⃝ as described in §4.2.4) corresponding to each timestamp in the

3DATASET A: Case 1 – Walking, Case 2 – Bus, Case 3 – Tram; DATASET B: Case 4 – City Center
1, Case 5 – City Center 2, Case 6 – Highway 1, Case 7 – Highway 2.

64

input trajectory are consolidated into a series of context snapshots (Figure 4.5: 3⃝),
each including the user device (UE) location at the snapshot’s timestamp. This con-
text annotated trajectory together with noise makes up the input to the trained GENDT
data generation model ((Figure 4.5: 4⃝), which outputs time-series data for different
radio KPIs. Here context (Figure 4.5: 3⃝) serves as conditioning input to the generator,
whereas noise represents factors unaccounted for in the context for the data genera-
tion process such as cell load as well as statistical variation. In the training phase that
precedes the generation/operational phase outlined above, the model is trained using a
small set of real drive testing measurement data. The training follows the same pipeline
as in Figure 4.5 except that the model is updated based on the divergence between real
and generated data.

Resolving the above outlined problem for high-fidelity and generalizable radio KPI
time-series data synthesis with minimal training data is a significant challenge. A num-
ber of issues have to be addressed as part of tackling this challenge: (1) context input
varies over time with device location; (2) drive testing trajectories can be arbitrarily
long and complex spanning multiple different scenarios (city center, highway, etc.);
(3) considering the inherent stochasticity of the radio KPI data, generated KPI data
should match the distribution of the real data; (4) all of the above needs to be achieved
with minimal amount of training data to achieve our intended goal of efficient drive
testing.

4.4.2 Overview of Proposed Solution
Motivated by the above, we propose an original conditional deep generative model,
GENDT, that addresses the aforementioned challenge and issues. Specifically, the
issue (1) is addressed via a tailored GNN based time-series model, together with cus-
tomized data processing, training method, and hyper-parameter tuning, as elaborated
in this and the next subsection. Broadly speaking, the generation of time series data
for different radio KPIs in GENDT is done in two steps, as elaborated in §4.4.3. The
first step generation is conditioned on the network context (cell information). Then the
environment effect is added on through a residual generator component (§4.4.4). We
address (2) through batch training and generation (§4.4.5) that enables effective long
time-series generation and training efficiency. We tackle (3) through a combination of
mechanisms: noise in the input, adding stochastic layers in the different neural network
components of the generator (§4.4.6) and through adversarial training (à la GANs). To
address issue (4), we leverage the learned parameters of the residual generator model,
whose variation offers insight on the extent to which additional training data will help
improve model fidelity.

Formally, the target output of our generation model is to generate time-series data
for Nch different radio KPIs (e.g., RSRP, RSRQ) over a given time period T : x′

1:T,i =
[x′

1, . . . , x
′
T]i ∈ RT , i ∈ [1, · · · , Nch]. Here Nch can be viewed as different ‘channels’

of the model output. The generated series x′
1:T,i should exhibit high fidelity with respect

to the corresponding true series: x1:T,i = [x1, . . . , xT]i ∈ RT , i ∈ [1, · · · , Nch]. The
whole multivariate time series data x′

1:T,i can be generated in one shot but at the risk of
compromising fidelity, especially when T is long. So we employ generation in smaller
batches, each of length L. As such, the generated series can be seen as a sequence of
⌊T
L
⌋ batches.

65

Cell 0

Cell 1

Cell 2

GNN-Node

GNN-Node

GNN-Node

h h h

Aggregation

[L, Nc]

[L, Nc]

[L, Nc]

+

+

+

ŏ

[L, H]

[L, H, Nch] × Nb

[L, 1, Nch]

z 0

+

ŏ{

Nb

ŏ

Cells{
Nb Cells

LSTM

LSTM

[L��1J@

ResGen

+

0 1 2
Network Context

Environment
Context

ŏ
[L, 1] x Nch

Multi-channel output

z 1+

Gθ
n Gθ

a

Gθ
r

Figure 4.6: Schematic of GENDT generator architecture, labeled with input and output
dimensions for each component.

The above data generation is conditioned on context c. As such, c serves as an
input to the model. As noted earlier, overall context c is made up of network and
environment context. The network context in each batch b is dependent on the set of
potential serving (visible) cells over the course of the batch’s duration (i.e., L). As per
the analysis in §4.3, we consider cells within a certain distance ds of the user location
as the relevant network context. The value of ds is dependent on the scenario. For
example, in DATASET B, we find that serving cells are within 2 km’s within the city
and within 4 km’s on highways. We note that empirically and conservatively setting
ds to a higher value is sufficient for GENDT, although an unnecessarily high value
increases the computation time for training.

We use Ccell,b (Nb) to denote the set (number) of cells considered for the network
context in a particular batch b. Note that by considering the set of potential serv-
ing cells instead of a specific one, we account for the fact that serving cells keep
changing over time, as observed in §4.3. For each cell i in the set Ccell,b, we con-
sider Nc attributes. In this paper, we specifically consider Nc=5 attributes per cell:
ccell,i,b = [lati, loni, pmax,i, directioni, distancei,t]. Here the first four are as previously
described in §4.2.3. Specifically, lati and loni refer to the location of cell i, whereas
pmax,i and directioni respectively refer to the max transmit power and direction of cell
i. The distancei,t represents the distance to cell i from the user location in time stamp
t. By using this distance attribute, we implicitly account for the time-varying de-
vice location. Based on the above, the network context information in batch b is
Ccell,b = {ccell,i,b}, ccell,i,b ∈ RL×Nc and i = 1, . . . , Nb.

Besides the network context, we also consider the environment context as described
earlier in §4.2.4. Specifically, we denote the environment context in batch b using
cenv,b ∈ RL×Ng , where Ng (= 26 in our case) represents the number of attributes con-
sidered for the environment context. Based on the above, the overall input context to
our model for each batch b is cb = {Ccell,b, cenv,b}.

We take a data-driven approach, and accordingly design a parametric model pθ(x1:T |c)
with parameter θ and fit the model on training data D. Specifically, given training data
consisting of ground-truth multi-KPI time series from M drive test measurements, i.e.,
D = [xk

1, . . . , x
k
T]i ∈ RT , i ∈ [1, · · · , Nch], k ∈ [1, ..,M], and corresponding context

data c, we fit θ on D by finding θ∗ that minimizes the divergence D between the data
distribution pD and the model pθ, i.e., θ∗ = argminθ D(pD, pθ). Depending on the

66

specific training methods, different divergence criteria (D) can be considered. Once
trained, we can draw samples from the model pθ for a new target trajectory n with
context cn as input to generate the data x′n

1:T,i for that trajectory, as illustrated in Fig-
ure 4.5. Note that the training and generation process in GENDT is actually done at
the batch level as outlined above and elaborated later in §4.4.5. Also note that although
real world scenario characteristics can be quite different from one another (e.g., cell
density differences shown in §4.3) and a target trajectory may span multiple differ-
ent scenarios, our model does not need to explicitly consider the myriad of possible
scenarios. This allows us to use one single model for any scenario(s).

4.4.3 Generator
As illustrated in Figure 4.6, our conditional neural sampler pθ has three main neural
network components: 1) a GNN node network Gn

θ that does convolution operation over
network context (cell level information) time series; 2) an aggregation network Ga

θ to
process the temporal graph after the convolution; 3) a residual generator (RESGEN)
Gr

θ that accounts for the environmental effects to model the ‘residual’ and adds it to
the output of the aggregation network. All these three components operate at the batch
level.

• Gn
θ : RL×(Nc+Nz0)×1 → RL×H×Nch , where Nz0 is the dimension of the input

noise and Nch is number of target KPIs. We use a multi-channel LSTM for
generation of multiple KPI time series, all together. To make sure the GNN node
LSTM network does not have a bottleneck effect, we set the hidden dimension
size H >> Nc. Based on our empirical insights, we set H = 100, which we
find to achieve the right balance between convergence efficiency and training
performance. The additive input noise z0 on the GNN-node network is not for
introducing statistical variation but rather to help the model learn a de-noise
behavior and avoid over-fitting [173]; this eases the training process and makes
it robust.

• Ga
θ : RL×H×Nch → RL×1×Nch . The input havg to Ga

θ , is the high dimensional
representation of the input graph. We take the average of the hidden representa-

tion of all cells as the input graph level representation, i.e., havg =
∑Nb

i=1 hi

Nb
. The

aggregation network has the similar structure as the GNN-node network. Both
are based on LSTM and only differ in dimensions and number of input-output
channels.

• Gr
θ : RL×(Ng+Nz1) → RL×1×Nch , where Nz1 is the dimension of the input noise.

The Ng environment context attributes are concatenated with the noise as input.
The output of Gr

θ has the same dimensions as Ga
θ as they are added together to

produce the generator’s final output. This component is elaborated further in
§4.4.4.

4.4.4 RESGEN

The network context driving the first two components GENDT generator architecture
(Figure 4.6) helps model the effect of cell deployment and configuration on radio net-

67

FC

Env.
Context [Xt-m,…,Xt-1] Nch

LeakyReLU
FC

LeakyReLU
FC

LeakyReLU
Dropout

FC
Gaussian Distribution

Residual

x

x Nch

Z1
NoiseInput

learn μ��Ǒ
Figure 4.7: Illustration of RESGEN network architecture and the generation of distri-
bution parameters (FC: Fully Connected Layer, LeakyReLU: Leaky Rectified Linear
Unit).
work KPI dynamics but that by itself is insufficient. Environment (terrain, obstacles,
etc.) has an equally important effect on radio KPI behavior. Crucially, the complexity
of the environment determines the cost of drive testing (required number of measure-
ments) in practice, as previously noted in [164]. So we design the third component of
GENDT generator Gr

θ termed RESGEN (Figure 4.7) to model the environment effect,
and crucially also to get cues on the need for additional training data. RESGEN com-
plements the other two components in that its output (referred to as ‘residual’) is added
to the output of the aggregation network to generate the final output time-series data
for the target radio KPIs.

In RESGEN, we model the residual for each timestamp with a parametric Gaussian
distribution, conditioned on the environment context (cenv,t ∈ R1×Ng), noise z1 and
the recent values of radio KPI time-series data. The latter is real (generated) data
during training (generation) phase of GENDT, and importantly makes RESGEN an
auto-regressive model with temporal pattern learning capability [42]. The noise input is
sampled from a standard Gaussian distribution to represent the unaccounted contextual
information and also for capturing statistical variation. We observe that simply using a
noise input is insufficient to model the required variation on the output. Hence, we use
a dropout layer [58] before the final layer of RESGEN. Once trained, we sample the
Gaussian distribution N(µθ,t, σθ,t) to obtain the residual, where mean µθ and standard
deviation σθ are the learned distribution parameters.

Characteristics of the parameters [µθ, σθ] can be leveraged to guide the training pro-
cess. They allow distinguishing between ‘model uncertainty’ and ‘data uncertainty’. If
the parameters [µθ, σθ] themselves exhibit a high degree of variation during the training
process, then that suggests model uncertainty and the need for more training data to
stabilize these parameters. On the other hand, if the σθ has a stable but large value then
that indicates that the underlying data being modeled itself has a high degree of varia-
tion and so model is not the limitation. Our target is to reduce the model uncertainty
using minimal amount of training data and accordingly we leverage the above insight
to that end.

4.4.5 Batch Training and Generation

In GENDT, instead of handling the whole radio KPI time series from training input or
target output all in one shot, we do that in small steps called batches. We employ such

68

Input Batch # 1

2
 # 3

4
Output Series t

(a)

h 1 +
n

h 2 +
n …

Out 1 Out 2

c 1 +
n

c 2 +
nc, 1

h, 1

c, 2

h, 2

(b)
Figure 4.8: (a) Training with overlapping batches; (b) Stochastic layers of LSTM in
GNN-Node Network and Aggregation Network components of GENDT.
a batch based training and generation approach for the following reasons:

• Long series generation: The time series of radio KPI measurements with drive
testing can be quite long. We thus need to be able to generate similarly long time
series but doing that in one shot risks fidelity. It is known that learning to gener-
ate long time series data at high fidelity with recurrent neural networks (RNNs),
including its widely used LSTM variant, is hard [98]. So we turn the learning
task of synthesizing arbitrary length series into two sub-tasks that are easier to
be handle with a LSTM-based architecture: 1) learning short-term temporal cor-
relations within each batch; 2) capturing long-term temporal correlations across
batches.

• Training efficiency: With conditional generative models, operating at the batch
level has a weight-sharing effect among batches and so enhances learning effi-
ciency.

• Computational efficiency: With batch training and generation, we only need to
consider context input at the batch level, which makes the processing of input
more efficient compared to treating the whole time series at once.

Concretely, we view the whole training input and target output time series for each
KPI as a sequence of batches, each of length L:

x1:T −→ {x1:1+L, x1+∆t:1+∆t+L, . . . , x1+⌊T
L
⌋∆t:T}

where ∆t is the step length of the sliding window, which allows different forms of
batching. During the training phase, we allow the batches to be overlapping (as il-
lustrated in Figure 4.8a) to additionally optimize the training efficiency. On the other
hand, for generation, we use non-overlapping batches (i.e., ∆t = L) to ensure that
there are no smoothing artifacts introduced in the output and that the desired statistical
variation is not compromised.

4.4.6 Stochastic Layers
The inherently and highly stochastic nature of radio KPI data (even at the same loca-
tion) needs special attention to model this characteristic, especially in the generator part
driven by the dynamic network context. We find that straightforward approaches to in-
troducing noise such as injecting noise directly in the input or using a FiLM layer [136]

69

are ineffective in our setting. So we employ a variant of the Stochastic RNN (SRNN)
method [57] to efficiently propagate uncertainty in a latent state representation with
RNNs. Specifically, we use stochastic layers in the LSTM structures of both GNN-
node and aggregation networks. As illustrated in Figure 4.8b4, we introduce noise
to memories (ct) and hidden states (ht), where the noise is added just before each it-
eration. The noise modulated versions of hidden state and memory are respectively
h′
t = fn(ht, nt,h, ah) and c′t = fn(ct, nt,c, ac), where fn is a function to control the

intensity of noise input, and the intensity of noise added to hidden state h and c are
controlled by ah and ac, respectively. We assume that the noise has an uniform distri-
bution between [0, ĥt] and [0, ĉt], where ĥt and ĉt represent the average value of ht and
ct of all hidden dimensions, so that the noise adapts to the hidden state values. Unlike
the variational inference based learning used in [57], we use an adversarial training
method with a discriminator. See Appendix B.1.2 for further details.

Training Following the standard GAN formulations [73], we train the model by
minimizing Jensen-Shannon divergence, i.e., θ∗ = argminθ JS[pD||pθ], and with the
aid of discriminator as in the GAN framework. We denote such discriminator as R
due to their role as density ratio estimators [172]. Specifically, for given training input
measurement data time series and context batch (x, c), the corresponding adversarial
loss between the data pD(x, c) distribution and the model pθ(x, c) distribution is defined
as:

LR
JS(pD, pθ) = EpD [logR(x, c)] + Epθ [log(1−R(x′, c))].

In our case, we consider one discriminator, named as Rθ, the context input into dis-
criminator is the high dimensional representation of c, which is havg. The discriminator
is a single layer LSTM network.

We additionally use the standard mean squared error loss:

LM(x, x′|c) = 1

L

L∑
t=1

(xt − x′
t)

2

Since the batch length L is constant during training, this loss has an equivalent
effect to using L2 loss.

Overall, together with the adversarial (GAN) loss, the loss function to fit θ is:

L = LM + λLR
JS

where the λ is a weight to balance the effect of adversarial loss, which in our
case is set as λ = 0.1 by default. Appendix B.1.3 elaborates on the setting of hyper-
parameters.

4.5 Evaluation Methodology
Broadly speaking, we evaluate GENDT in two ways. First, we assess the fidelity of the
GENDT generated radio KPI time series data with respect to real measurement data
using multiple different metrics described in §4.5.1 and in comparison with various
baseline approaches outlined in §4.5.2. Second, we evaluate GENDT through two

4Here we show for one radio KPI (channel) case but the same applies for all channels.

70

different downstream use cases and show that GENDT generated data is a dependable
substitute for real drive testing measurement data to support such use cases. When split
the training set, validating set, and evaluation set, we make sure there is no overlapping
regions or trajectories between those three set by a longitude-latitude filter, therefore
there is no overlapping between training set and evaluation set.

4.5.1 Metrics

Mean Absolute Error (MAE) for any given KPI between its real measurement data
time series (x : {x1, x2, . . . , xT}) and generated time series (y : {y1, y2, . . . , yT})
is calculated as: MAE =

∑T
i=1 |yi − xi|/n. As such, it is a natural measure for

evaluating fidelity of GENDT and alternative approaches.
Dynamic Time Warping (DTW) [27] is an alternative metric to MAE for assess-

ing the similarity between two time series (real and generated in our setting). The main
feature of this distance measure is that it allows to recognize similar shapes between
two time-series signals, even if they need signal transformations such as shifting and/or
scaling. As such, it provides a more robust similarity measure. Events like accessing
a specific cell or going around the same location have a similar effect on the temporal
pattern of KPIs across different measurement trajectories, though with slight time shift
due to differences in user device path and velocity each time. DTW is better at identi-
fying such similarity, as the other distance metrics are too sensitive to temporal shifts.
Hence, the DTW is very useful in capturing real world performance, especially when
used in conjunction with MAE, as we do. Histogram Wasserstein Distance (HWD).
Besides having the generated time series of different radio KPIs matching with their
corresponding ground-truth time series (as quantified by the MAE and DTW metrics),
we would also want the generated data for any target KPI to have the same distribution
(histogram) as the real data. Rather than limiting the comparison of histograms of real
and generated data to just visualization, we quantify the similarity between these his-
tograms by computing their Wasserstein Distance (WD) [148] and call this metric as
the Histogram Wasserstein Distance (HWD).

Measurement Efficiency. While fidelity of the generated data along different as-
pects as quantified by the above metrics is important, the required amount of training
data to achieve that fidelity is equally important. Lower the training data needed the
better as it demonstrates the cost reduction and efficiency improvement that GENDT
can provide, aligned with the motivation behind its design. As different scenarios in-
volve different movement speeds, lengths of trajectories included in the training data
in terms of distance are not representative. We therefore factor in speed in trajectories
and consider data used for training in terms of time (∼distance/speed). Specifically,
we use the percentage of the available data in a dataset that is used for training as our
measurement efficiency metric.

4.5.2 Baselines

We are unaware of any other work in the literature adopting a generative modeling
approach like ours for efficient mobile network drive testing. So we consider a range
of alternative approaches from other domains as baselines.

71

Method
MAE↓ DTW↓ HWD↓

Walk Bus Tram Walk Bus Tram Walk Bus Tram
GENDT 5.17 8.88 7.49 2.4 5.2 3.6 7.2 3.7 3.9

FDaS 11.2 15.6 13.1 15.5 19.0 17.2 6.9 4.2 3.3
MLP 9.9 11.5 12.1 9.0 11.1 7.8 13.8 9.9 12.9

LSTM-GNN 21.5 18.3 12.8 12.1 14.2 15.1 9.7 12.3 12.4
Orig. DG 10.8 14.3 12.7 11.9 16.1 14.5 11.9 13.4 10.1

Real Cont. DG 9.2 10.43 7.71 5.1 7.9 5.2 12.6 11.2 4.9

Table 4.3: Generated RSRP time series fidelity with GENDT and baselines for differ-
ent scenarios in DATASET A.

Fit Distribution and Sample (FDaS). FDaS [43, 128] is another simple minded
baseline that focuses on modeling the distribution (histogram) of the data for any given
radio KPI. Specifically, it fits a distribution based on the real KPI data (ignoring the
time dimension) using maximum likelihood estimation, and samples from it afterwards
to generate the data for that KPI. While this baseline can be effective with respect to
the HWD metric, it can be quite poor in terms of the other fidelity metrics as it does
not consider relationship with context nor the temporal relationships in the data.

Multilayer Perceptron (MLP) is a simple minded baseline that infers the data for
each radio KPI independently at each time step through regression over the context
input. Clearly, this baseline does not account for the temporal relationships within the
real KPI time series data. Moreover, as it focuses solely on the relationship between
context and KPI data, it does not model stochasticity of the latter either.

LSTM-GNN [168], a variant of [66], is a state-of-the-art model architecture for
GNN based time-series prediction. We use it as a baseline as an alternative approach
especially with respect to the first two neural network components of GENDT genera-
tor (§4.4.3), and highlight the benefit of GENDT’s handling of dynamic context input,
batch based generation and use of stochastic layers.

DoppelGANger (DG) [98] and Variant. As mentioned in §2.5, DG is a state-
of-the-art multivariate time series data generation model and so is a natural baseline
approach to compare with. The original DG model (depicted in Figure B.3a) generates
the context in its first stage. In our problem setting, however, this context data is readily
accessible to the operator and can be directly used without having to learn to generate
it. So we additionally consider an optimized variant of DG called ‘Real Context DG’
in which we bypass the context generation stage and directly input real context to the
second stage time-series data generator in DG, as depicted in Figure B.3b.

4.6 Evaluation Results

Here in §4.6.1 we first the evaluate GENDT on the fidelity metrics from §4.5.1 and
benchmark it against the baselines outlined in §4.5.2. Then we demonstrate that the
uncertainty measure within GENDT can be used to optimize measurement efficiency
(§4.7.2). In §4.8.2, we demonstrate the value of GENDT-generated data for two down-
stream use cases. Finally, we carry out an ablation study of GENDT to examine the
effect of its underlying design choices (§B.3.2).

72

Method
RSRP RSRQ SINR CQI

MAE DTW HWD MAE DTW HWD MAE DTW HWD MAE DTW HWD
GENDT 7.18 3.73 4.93 1.9 1.27 13.2 4.0 4.6 7.2 1.9 1.20 3.8

FDaS 13.63 17.23 4.80 2.8 1.80 10.1 8.2 6.2 5.9 3.1 1.90 3.8
MLP 10.83 9.3 12.20 2.4 1.70 11.0 7.6 5.9 9.0 2.7 1.33 6.1

LSTM-GNN 17.53 13.80 11.47 2.8 1.81 13.1 9.6 6.9 11.2 3.0 1.55 4.1
Orig. DG 12.93 14.17 4.98 2.9 1.86 11.9 8.8 5.9 6.5 3.2 1.60 3.8

Real Cont. DG 9.11 6.07 10.2 2.2 1.69 12.5 5.3 5.4 8.5 2.1 1.25 4.3

Table 4.4: Average performance of GENDT and baselines across all scenarios in
DATASET A for RSRP, RSRQ, SINR, and CQI time series generation.

Method
MAE↓ DTW↓ HWD↓

City C-
enter 1

City C-
enter 2

High-
way 1

High-
way 2

City C-
enter 1

City C-
enter 2

High-
way 1

High-
way 2

City C-
enter 1

City C-
enter 2

High-
way 1

High-
way 2

GENDT 4.9 4.8 8.5 8.9 2.8 2.9 5.1 5.4 3.8 1.3 5.2 7.3
FDaS 9.8 11.7 16.7 10.8 6.5 8.8 14.8 10.1 3.4 3.1 7.9 6.4
MLP 8.5 3.2 14.5 16.9 5.6 3.1 11.9 15.2 4.1 2.8 18.7 14.0

LSTM-GNN 19.7 16.8 18.3 13.6 12.1 11.8 14.2 11.2 8.6 10.0 8.5 8.0
Orig. DG 15.6 14.3 17.1 14.6 11.5 10.1 10.4 9.8 5.0 3.2 9.5 9.2

Real Cont. DG 10.3 7.4 9.1 9.4 3.9 4.6 6.0 5.9 3.8 2.9 11.8 9.8

Table 4.5: Generated RSRP time series fidelity with GENDT and baselines for differ-
ent scenarios in DATASET B.
4.6.1 Fidelity and Generalization

Setup To assess the generalization capability of GENDT to new unseen trajectories,
we split each of our datasets into two non-overlapping parts: training and testing. We
further make sure to avoid geographic proximity between training and testing mea-
surement data locations. We only report performance on the testing set throughout
this whole section. While we show results of GENDT (and other baselines) in differ-
ent scenarios separately to highlight the versatility of GENDT, note that these are all
generated using the same GENDT model.

DATASET A. Here we present evaluation results with DATASET A focusing on
generation of time series for RSRP, RSRQ, SINR and CQI KPIs. We first carry out the
per scenario evaluation focusing on RSRP, before evaluating the average performance
of GENDT for all KPIs across all scenarios.

By comparing the performance of different methods under multiple metrics in Ta-
ble 4.3 for the generated RSRP KPI time series, we observe that the GENDT generally
yields the best performance of each scenario for all metrics. Though FDaS expectedly
can model the data distribution well (measured by HWD metric), its performance on
other two metrics (particularly DTW) is the worst among all the alternatives compared.
MLP performance is intermediate to worst on all metrics, especially in terms of HWD,
as it does not model stochasticity and temporal behavior. The HWD performance of
LSTM-GNN is similar to that of MLP due to the same underlying reason. Interestingly,
it exhibits rather poor performance on MAE and DTW, even worse than MLP that does
not model temporal variation at all. We attribute this to two reasons: (1) LSTM-GNN
is a prediction model not a generative one; and (2) it does not have mechanism for
effective long series generation.

The original DG model, despite being a time-series data generation model, per-
forms poorly across all metrics, about similar or worse than MLP and LSTM-GNN.
The performance of the original DG is limited by its function of utilizing the con-
texts. As an unconditional generative model, the original DG model does not take in
any contexts but generate everything from noise input, therefore it cannot use the con-

73

(a) RSRP time series

Real
GenDT

RSRP
(b) RSRP data distribution

Figure 4.9: Visualization of GENDT performance evaluated over a long and complex
trajectory in DATASET B.

textual information effectively. Still, it yields only intermediate performance due to
its inability to handle dynamic network context input and insufficient mechanisms to
capture stochasticity, latter clearly reflected in the poor HWD performance relative to
GENDT. The shortcoming of real context DG relative to GENDT with respect to the
former context handling issue and the effectiveness of GNN structure in GENDT to
that end is illustrated in the generated RSRP series with these methods in Figure B.4
(in Appendix B.3).

Considering all the considered KPIs including RSRP, the average performance
across all scenarios is reported in Table 4.4. We observe that the big performance
improvements seen with GENDT above continue to hold with the exception of CQI
performance, where benefits are somewhat marginal. We attribute this to the fact that,
unlike other KPIs, CQI generation is a classification problem involving a choice of one
among discrete values from 1 to 15. Overall, we observe that the overlapping batches
based training on top of batch generation and handling time-varying relevant context
input plays a key role in the superior performance of GENDT, so does the SRNN
structure in the generator (§4.4.6) which helps in better modeling the data distribution.

DATASET B. We now consider DATASET B which consists of longer and more
complex movement trajectories over a wider geographical region. This dataset, how-
ever, lets us evaluate with respect to generation of time series for only RSRP and RSRQ
KPIs as it lacks the other KPIs.

As before, we first consider RSRP and report performance at the per-scenario level
in Table 4.5. Again, we observe that GENDT generally yields the best performance and
FDaS doing marginally better in terms of HWD as expected. The average performance
across all scenarios is reported in Table 4.6, also considering the RSRQ KPI. We notice
that relative to significant improvements seen with GENDT in the case of RSRP, gains
for RSRQ are less striking. We find that this is because the RSRQ values in the test
scenarios are fairly stable and also vary in a much smaller range than RSRP, thereby
limiting the room for improvement.

4.6.2 Long and Complex Scenarios

We now consider a long continuous trajectory lasting 2230s (∼40mins) as the testing
set to evaluate GENDT and baselines for generation of long series of radio KPI data

74

Method
RSRP RSRQ

MAE↓ DTW↓ HWD↓ MAE↓ DTW↓ HWD↓
GENDT 6.78 4.05 4.40 1.7 1.40 8.1

FDaS 12.25 10.05 5.20 2.9 1.98 10.8
MLP 10.63 8.95 9.90 2.6 1.81 8.5

LSTM-GNN 17.1 12.33 8.78 2.4 2.0 12.9
Orig. DG 17.93 9.17 11.80 2.9 1.86 12.9

Real Cont. DG 9.05 5.10 7.08 2.0 1.53 11.1

Table 4.6: Average performance of GENDT and baselines across all scenarios in
DATASET B for RSRP and RSRQ generation.

Method
RSRP RSRQ

MAE↓ DTW↓ HWD↓ MAE↓ DTW↓ HWD↓
GENDT 11.69 7.18 10.4 3.9 2.40 2.1

FDaS 24.25 16.05 19.20 10.8 13.1 2.98
MLP 18.63 14.95 29.90 8.61 9.9 4.6

LSTM-GNN 18.1 13.80 30.78 10.45 9.9 4.9
Orig. DG 20.40 13.45 26.73 10.1 13.9 2.3

Real Cont. DG 15.05 10.80 27.08 5.08 7.1 3.0

Table 4.7: Overall performance of GENDT and baselines for long and complex trajec-
tory case in DATASET B.

over a complex scenario. The considered trajectory spans three cities in DATASET

B (Wuppertal, Hamm, and Koln), including inner city driving and highway driving
between them. The total length of the trajectory is about 40km. We make sure that
this test trajectory does not overlap nor has significant proximity to trajectories in the
training set. Moreover, the training set does not include data from any of the three
cities or routes between them.

We first show qualitative results in Figure 4.9, where we can see that the gener-
ated RSRP series with GENDT varies in a range that tightly covers the ground truth
(Figure 4.9a), and also shows good match with ground truth in terms of RSRP data
distribution (Figure 4.9b). Note that the upper/lower bounds shown in Figure 4.9a are
not themselves generated time series with GENDT. Rather, they represent min/max
statistics of the generated samples for each time instant. We then summarize the quan-
titative results in Table 4.7 that show the overall performance of GENDT compared to
baselines. We see that GENDT consistently and significantly outperforms on all met-
rics for both RSRP and RSRQ. These results particularly highlight the benefit of batch
generation given the length of the target trajectory with only Real Context DG coming
close to the performance of GENDT. The additional measures in GENDT to aid in
effective long series generation (autoregressive RESGEN) and beyond (GNN structure
and stochastic layers) explain its superior performance. These results also highlight
the pitfall of FDaS as data distribution of the complex target trajectory is not captured
by the training set and so FDaS yields poor performance even in terms of HWD. We
further discuss the need of long trajectory generation in §B.3.1 with quantitative results
and illustrative examples.

75

3.3
%

6.7
%

10
.0%

13
.3%

16
.7%

20
.0%

23
.3%

26
.7%

30
.0%

33
.3%

Amount of Data Used

7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0

DT
W

Uncertainty Selection
Avg. Random Selection

(a) DTW

3.3
%

6.7
%

10
.0%

13
.3%

16
.7%

20
.0%

23
.3%

26
.7%

30
.0%

33
.3%

Amount of Data Used

10
20
30
40
50
60
70
80
90

HW
D

Uncertainty Selection
Avg. Random Selection

(b) HWD

Figure 4.10: Assessing selection of new training data based on GENDT uncertainty
measure relative to random selection.

4.7 Measurement Efficiency

4.7.1 Model Uncertainty
Data uncertainty is irreducible due to the nature of the data while model uncertainty
can be reduced by training on more data and actively selecting new training points [58].
The design of GENDT naturally decouples data and model uncertainty: the data uncer-
tainty is reflected by the actual value of the standard deviation in the learned Gaussian
distribution from RESGEN while the model uncertainty is determined by the variation
of the Gaussian parameters. We use MC dropout [58] to obtain the model uncertainty
of GENDT, i.e., the dropout is turned on during generation time to obtain multiple
outputs of the model. As the parameters of observation model (mean and standard
deviation of the parametric Gaussian) are the (direct) output of the neural network
of RESGEN, we use the standard deviation of them averaged over time as the model
uncertainty. Specifically, the model uncertainty is defined as:

U(Gθ) =
1

T

∑
t=1···T

std(σθ)t + std(µθ)t

where T is the length of target series and std is the standard deviation computed by
empirical samples with dropout turned on.

4.7.2 Uncertainty Driven Measurement
We evaluate the usefulness of the model uncertainty in an active learning setup on
DATASET B, mimicking a real-world uncertainty driven drive test measurement data
collection process.

Here we take the long trajectory in §4.6.2 as the testing set (named as SL). We
remove the testing set from DATASET B, and split the rest of the data into 23 subsets
with no overlap in geographical region between them. We initially start with just one
small subset of data as the training set. At each step, we evaluate the trained model on
each of the remaining subsets in the data to obtain the model uncertainty, and select
the one with highest uncertainty as new training data to add to the current training
set. Concurrently, we evaluate the GENDT model performance on SL at each step
to assess the benefit with the above uncertainty guided training data selection. As

76

shown in Figure 4.10, just after two steps (with 10% of the available data used), the
performance on SL no longer shows clear improvement on both DTW and HWD. We
omit MAE results for brevity as they are similar to DTW.

As an alternative approach, we perform random selection with the same starting
subset of the selected 10 subsets. In other words, we follow the same process as above
but at each step randomly selecting the training point to add instead of relying on the
uncertainty measure.

Results in Figure 4.10 shows that for the same number of selected subsets, the
random selection always shows lower training efficiency compared to the uncertainty
based method. Furthermore, the random selection never goes into a case where its per-
formance is better than uncertainty based selection, which means that the uncertainty
based method does provide an optimal path to add the most informative data. Overall,
with uncertainty guided (random) training data selection, 10% (20%) of the available
data (23 subsets) is sufficient to achieve the most generalization that can be evaluated
for DATASET B. We could equivalently view this as achieving 90% (80%) measure-
ment efficiency compared to traditional drive testing. Indeed, this efficiency could be
higher as the model can generate many more trajectories for which ground truth may
not be available.

4.8 Downstream Use Cases
In this section, we assess how well our GENDT approach can support drive testing
use cases. The general idea here is to consider use cases that depend on drive testing
measurement data, and evaluate the effect of using GENDT-generated data for those
use cases in comparison with using actual measurement data. The choice of the use
cases highlighted is constrained by the access to ground-truth radio KPI measurement
data to conduct such an evaluation. In the following, we present results for two distinct
use cases, each relying on data for a different set of radio KPIs. In Appendix B.3.3, we
discuss further use cases that GENDT can support.

4.8.1 Mobile Service Quality of Experience (QoE) Prediction
User QoE assessment is a key focus of mobile network operators for which they en-
gage in drive test measurement data collection. Application layer throughput is a key
QoE metric of interest that in turn depends on lower layer radio KPIs such as RSRP
and RSRQ [139, 140]. We also consider Packet Error Rate (PER) as another key
QoE metric. We focus on DATASET A that not only includes drive/walk testing based
measurement data for multiple radio KPIs collected with Nemo Handy [76] but also
corresponding downlink throughput and PER measurements obtained with iPerf3 [50].

For QoE prediction, we leverage a recent work [161] that examined machine learn-
ing based prediction of application QoE metrics like throughput based on drive testing
based radio KPI measurement data, including RSRP and RSRQ. In particular, we use
the MLP based regression model for QoE metric prediction from [161] that uses RSRP,
RSRQ, device location, etc. as features. We first confirm that RSRP and RSRQ KPIs
are critical for accurate QoE prediction with this model by dropping these two KPIs
from the model and observing the significant divergence between real (measured) and
predicted throughput (see Figure 4.11a and second row in Table 4.8). In contrast,

77

Method
Throughput PER

MAE↓ DTW↓ HWD↓ MAE↓ DTW↓ HWD↓
Real 6.7 4.0 1.2 0.22 0.18 1.9

RSRP & RSRQ Excluded 13.1 9.6 2.4 0.48 0.39 3.8
GENDT 5.9 4.6 1.4 0.24 0.23 2.7

FDaS 13.4 9.9 2.4 0.48 0.30 3.5
MLP 8.6 5.9 2.1 0.33 0.38 3.2

LSTM-GNN 14.0 9.4 2.5 0.35 0.39 3.4
Orig. DG 13.1 10.1 2.3 0.47 0.39 3.3

Real Cont. DG 7.9 5.1 1.2 0.28 0.31 2.8

Table 4.8: Performance with GENDT-generated RSRP and RSRQ data when applied
to QoE (throughput and PER) prediction use case, relative to baselines.

including measured RSRP and RSRQ KPI data greatly improves the throughput pre-
diction (see Figure 4.11b and first row in Table 4.8).

To assess the usefulness of GENDT for this use case, we now evaluate the effect
of using GENDT-generated RSRP and RSRQ time series data. Quantitative results are
shown in Table 4.8 when using data generated with GENDT and baselines. Note that
we use the same fidelity metrics of MAE, DTW and HWD as before, except that these
results evaluate the fidelity of predicted throughput and PER time series with respect
to their real (measured) series. We observe that GENDT-generated RSRP/RSRQ data
yields QoE predictions very similar to that of using corresponding real data, and much
superior to using data generated with baselines.

0 10 20 30 40 50

Time (s)
2

3

4

5

6

7

Tr
ou

gh
pu

t (
M

bp
s) Real

Predicted

(a) Without RSRP and
RSRQ

0 10 20 30 40 50

Time (s)
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ou

gh
pu

t (
M

bp
s) Real

Predicted

(b) Real RSRP and
RSRQ

0 10 20 30 40 50

Time (s)
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ou

gh
pu

t (
M

bp
s) Real

Predicted

(c) Generated RSRP and
RSRQ

Figure 4.11: (a, b) Throughput prediction performance with and without RSRP/RSRQ
KPI measurement data, and (c) with GENDT-generated RSRP/RSRQ data.

4.8.2 Analysis of Handovers

Optimizing the handover frequency and performance is of key importance to mobile
network operators as too many handovers can not only degrade user experience but
also increase signalling overhead in the network. This is done in practice by tuning
thresholds of multiple KPIs relevant for mobility management informed by drive test-
ing measurement data on handovers [150].

To support this use case on inferring handovers for a given network deployment, we
retrained GENDT to generate the time series of an additional KPI – the serving cell.
Tracking serving cell changes essentially provides the information on time between
handovers. Note that GENDT model itself remains unchanged from what is described
in §4.4 to accomodate this new serving cell KPI. Quantitative results from Table 4.9
clearly show that GENDT-generated serving cell data provides inter-handover time

78

Method HWD↓

GENDT 2.4
FDaS 8.3
MLP 6.1
LSTM-GNN 5.3
Orig. DG 8.0
Real Cont. DG 3.0

Table 4.9: Inter-handover time dis-
tribution estimation with GENDT-
generated serving cell data, rela-
tive to baselines.

0 50 100 150 200 250
Inter-Handover Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Real
GenDT
Real Cont. DG

Figure 4.12: Inter-handover time dis-
tribution from GENDT-generated serving
cell data compared to real distribution in
DATASET B.

distribution that closely match with real data compared to the baseline approaches.
This is also apparent from the CDF of inter-handover times with GENDT shown in Fig-
ure 4.12 compared to their real counterpart from drive test measurements in DATASET

B. In contrast, inter-handover times from DG-generated data are off from the real.

4.9 Discussion

4.9.1 Why generating point coverage is insufficient
The generation of data as discrete points falls short in adequately representing the
complexities of user mobility. In the context of network performance, user mobility
is a crucial factor influencing handover behavior and the potential for signal fading
associated with varying velocities. To truly capture these dynamics, it is essential to
generate radio Key Performance Indicators (KPIs) for specific user trajectories rather
than relying on static point-based data. This approach acknowledges that mobility
patterns are often fluid and varied, and a static, point-based model can only represent
a limited scenario, such as when the user’s trajectory is stationary or has a constant
value. Incorporating trajectory-based KPI generation allows for a more realistic and
comprehensive understanding of network performance in the face of real-world user
movement and behavior.

4.9.2 Comparison with Virtual Drive Testing
Virtual Drive Testing (VDT) serves a purpose distinct from that of real-world drive
testing. VDT is designed specifically for testing network equipment under controlled
conditions that simulate real-world driving scenarios. In contrast, our approach focuses
on replicating the process of collecting real-world drive testing data through the use
of generative modeling. This method allows us to create synthetic data that closely
mirrors the kind of information gathered during actual drive tests, without the need
for physical testing conditions. Our goal is to harness the power of generative models
to simulate real-world data collection, offering an innovative alternative to traditional
drive testing methods.

79

Our current resource constraints preclude the possibility of conducting large-scale
VDT. Additionally, based on our understanding, VDT tends to simulate highly specific
environments rather than replicating the complexity and scale of real-world scenar-
ios. This inherent limitation in VDT’s capacity to generalize to unseen cases poses a
challenge in drawing fair comparisons. Therefore, while VDT can offer insights into
certain controlled environments, its application in our context may not provide a com-
prehensive or accurate reflection of the diverse and dynamic real-world conditions we
aim to analyze. This disparity between the simulated environments of VDT and the
multifaceted nature of real-world scenarios is a significant factor in our decision to not
utilize VDT for large-scale testing in our study.

4.9.3 Weather and Other Critical Contexts
Ideally, our dataset should include weather conditions, such as rain, due to their sub-
stantial influence on latent variables that are often treated as noise in our current model.
This is because, in the absence of specific weather information during data collection,
these environmental factors remain unaccounted for, leading to a significant limitation
in our dataset. Recognizing this, our proposed method has the potential to effectively
capture and integrate the impact of weather conditions, provided it is trained on a
sufficiently comprehensive dataset that includes detailed weather information. Incor-
porating such data would enhance the model’s accuracy and predictive capabilities,
allowing for a more comprehensive understanding of how weather influences the pa-
rameters we are measuring. This represents a key area for improvement and expansion
in future iterations of our research, underlining the importance of diverse and detailed
datasets in enhancing model performance.

4.10 Summary
In this chapter, we proposed GENDT, a GNN-based generator for generating radio
KPIs. We adapt GNN to leverage the context data that have graph structure with time-
varying number of nodes. Stochastic RNN is used to generate the small-scale fade
of radio signal, whereas we use a Gaussian noise with learned parameters to generate
the large-scale variation. Meanwhile, the parameter of learned Gaussian distribution
can represent the model uncertainty to a specific input, which in return guide the mea-
surement in the real world to cover the place that can reduce the model uncertainty
and accelerate the whole process of measurement. We evaluate GENDT on two city-
scale datasets in two countries that include many different cities. The results show that
GENDT can achieve perfect generalization with fewer than 10% training data across
the entire region, with significantly better fidelity of the radio KPIs generated.

80

Chapter 5

DistilGAN

5.1 Introduction

Telemetry is a collection of measurements or other data at remote points and their
automatic transmission to receiving equipment (telecommunication) for monitoring.
Telemetry to accurately understand network behavior and manage networks is a funda-
mental and longstanding problem in many scenarios: from wired to wireless networks
including IoT/sensor deployments. So far, while many methods have been proposed,
we observe that none of them can simultaneously satisfy the four essential require-
ments telemetry methods must meet: (1) high-fidelity: ability to reliably capture fine-
grained network status; (2) efficiency: minimizing the amount of telemetry information
sent by network nodes to collectors for analysis and control; (3) versatility: being able
to work in varied network telemetry settings and with diverse resource constraints;
(4) real-time: having collectors receiving data from nodes capable to quickly recover
fine-grained network status from the received information to support real-time network
management.

In this chapter, we show that this is possible by proposing DistilGAN, a new data-
driven deep generative modeling powered solution anchored at the collector in a net-
work telemetry system that only requires sampling of raw measurement data from
network nodes at the continually specified minimal rate. We show the effectiveness of
DistilGAN in meeting all the above four requirements via extensive evaluation span-
ning three real and diverse scenarios: (1) a large ISP network; (2) 5G radio access
network; and (3) IoT (smart meter) network. Compared to wide range of baselines
representing the state of the art, we show that DistilGAN yields significant gains in
fidelity, efficiency, robustness and real-time capabilities, across the three diverse sce-
narios and downstream use cases considered. Representative instances of such gains
include 25% better efficiency compared to state-of-the-art method for flow-level mon-
itoring in ISP networks for the same fidelity, and 1-2 orders of magnitude faster data
stream recovery compared to state-of-the-art approaches.

81

5.2 Requirements for Network Telemetry Methods

5.2.1 Fidelity

The utility of network telemetry data hinges on the extent to which it represents the
actual network state. So high fidelity is an essential requirement that network telemetry
methods must meet. This in turn means being able to access fine-grained measurement
information at the collector that reflects what is observed at the individual network
elements.

5.2.2 Efficiency

This requirement arises from the fact that communication of network monitoring data
to the collector needs to share the same underlying network resources with regular
operational network use. So the network telemetry method must be communication
efficient by keeping the monitoring overhead minimal and not causing disruption to
normal network operation. This in turn implies that simply reporting all raw measure-
ments from the network elements at their original frequency is not viable. Not only
that, the telemetry must also adapt what is reported in accordance with change in data
characteristics over time.

5.2.3 Versatility

Different network telemetry settings (e.g., ISP networks, data centers, cellular net-
works, sensor and IoT networks) differ in their telemetry KPIs and data characteristics.
Equally, network elements also exhibit differences in their capabilities and resource
constraints (e.g. processing power, available memory). So it is desirable for a network
telemetry method to be not only suitable for a variety of telemetry settings but also to
be robust in the face of resource constraints.

5.2.4 Real-time

Network telemetry method must support reconstruction of the network state at the col-
lector from the received telemetry data streams as fast as possible so to allow quick
and real-time response to routing imbalance [96, 99], network failures [118] and at-
tacks [170, 189]. Such data reconstruction has to at least keep pace with the arrival
rate of the data streams.

5.3 Motivation

Network telemetry systems are typically composed of two main components [190]:
(1) network elements (routers, switches, base stations, IoT devices, etc.) from where
measurement data originates and is reported; and (2) a centralized collector, where the
reported data is collected together to enable operators to analyze network behavior and
inform control decisions to effectively manage the network. The method employed for

82

Approach Fidelity Efficiency Versatility Real-time

Sampling [14, 137, 145, 167, 185, 186] ? ? ✓ ✓
Sketching [70, 95, 100, 101, 182] ? ✓ × ✓
Sensing & Recovery [18, 34, 46, 69, 71, 191] ✓ ? ? ×
Our approach — DISTILGAN ✓ ✓ ✓ ✓

Table 5.1: Qualitative comparison between existing network telemetry approaches and
proposed DISTILGAN.

acquiring telemetry data is central to the above outlined system and it must meet the
requirements in §5.2: High Fidelity, Efficiency, Versatility, and Real-time.

5.3.1 Limitations of existing approaches

Broadly, three distinct approaches exist for network telemetry, as discussed below.
Generally speaking, they make different trade-offs between the various requirements
and as such none of them meet all the aforementioned requirements, as summarized in
Table 5.1.

Sampling

Sampling is the basic and most commonly used network telemetry method. As the
name suggests, the idea behind sampling is to ‘sample’ the raw measurements at
the network elements and report only those samples. When applied to packets and
flows in IP networks, this translates to sending raw data in the form of samples of
<flowID,count> tuples [14, 137] or packets [145, 167]. This approach has mini-
mal resource requirements at the network elements and can be applied to any network
telemetry setting, thus making it versatile. In fact, sampling is typically an integral
part of other network telemetry approaches discussed next. Sampled data is also easy
to handle at the collector, contributing to its suitability to support real-time control.

However, the fidelity and efficiency with this approach is determined by how the
sampling rate is selected. As noted in [185], the approach taken in practice is to be
conservative and use the highest possible sampling rate to ensure high fidelity and not
risk missing out on any important insights from the data. Clearly, this can be highly
inefficient. Nyquist sampling frequency from the signal processing domain offers a
structured way to pick the minimal sampling rate [130]. A telemetry KPI sampled at
the Nyquist rate and put through a fourier transform on the sender side can be perfectly
recovered at the receiver (collector) side with an inverse FFT operation [185, 186].
However, Nyquist rate varies with the data characteristics over time and so the sam-
pling rate needs to be continually adapted – sampling below the Nyquist rate compro-
mises fidelity while higher than Nyquist rate sampling causes inefficiency. Existing
approaches to adapt sampling rate tend to err more on the inefficiency side (e.g., by
sampling at two different frequencies that effectively doubles the measurement over-
head [186]). There are also domain specific approaches to adapt sampling rate (e.g.,
[116, 117, 126, 132]) but make assumptions on data sparsity, distribution and signal
shape that do not hold in general across different network telemetry settings.

83

Sketching

Sketching is a streaming data summarization method that is aimed at efficient data
representation [35]. In the network telemetry context, sketching has been extensively
applied for flow-level monitoring tasks [70, 95, 100, 101, 182]. Specifically, this means
using a compact data structure (called a sketch) that is essentially a set of counters to
represent flow-level information. Sketches are constructed by hash functions to map
input flow data to counters, and therefore the information of interest (e.g., flow size)
is recorded in those counters with a compact format. With sketching, rather than re-
porting samples of raw measurements, sketches (compact format of measurement) are
reported to the collector periodically. Sketches can also be designed to reserve specific
measurements about networks, hence the usage of sketches contributes to greater ef-
ficiency for certain telemetry tasks such as heavy hitter detection. Decoding process
for received sketches at the collector is also quite lightweight so can be performed in
real-time [101].

However, sketching is limited by its very nature trades off versatility for efficiency,
as the sketching could be limited to specific system or parameter. The nature of queries
to be answered from the data stream must be decided in advance [35]. Also, sketches
designed for flow monitoring cannot be used for other types of KPIs (e.g., SNR in cel-
lular networks). The above constraint also affects the overall fidelity with the sketching
approach, while it can provide bounded errors to answer queries it is designed for under
the assumed conditions, fidelity suffers when those conditions change (e.g., reduction
in available memory). For example, more than 30% of the flows can have signifi-
cant measurement errors with sketching with the memory availability on commodity
network elements [69].

Sensing & Recovery

Compressive sensing (CS) [15, 53] is a representative class of methods that fall under
this approach. It essentially involves two procedures – sensing and recovery, one at
each end. At the sender side, the sensing procedure compresses the measurement
data stream (vector) by multiplying it with a sensing matrix. On the receiver side,
recovery procedure aims to recover the original measurement vector by solving an
optimization problem. While CS has a broad range of applications within and beyond
networking (e.g., [23, 33, 90, 108, 196]), its use for network telemetry has been mainly
to complement sketching for flow monitoring [69, 71]. For that setting, tailored use of
CS has been shown to result in near-zero-errors for almost all flows by ensuring the
orthonormality of the sensing matrix [71]. Because of the need to solve an optimization
problem at the collector for data recovery, it is difficult for the recovery to keep pace
with the telemetry data stream arrival rate and so it faces difficulty in supporting real-
time control tasks. Moreover, data sparsity assumption needs to hold for CS to be
effective but this may not be true for all network telemetry settings and KPIs of interest.

Another class of methods that take the sensing & recovery approach broadly rely
on time-series data compression [18, 34, 46, 191]. These methods are mainly devel-
oped for the IoT setting (e.g., to enable efficient data uploading from the IoT gateways
to the cloud [34]). The time series data compression or dimensionality reduction done
by these methods is relatively more computationally intensive on the sender side and

84

Raw Network KPI
Measurement Series Sampling Generator Analyzer

CollectorNetwork Element
1 Reconstructed

Time Series

2 New Sampling Rate

Figure 5.1: Workflow of DISTILGAN. Two stages are: 1⃝ data reconstruction and 2⃝
sampling rate adaptation.

crucially requires operation over long time windows. This not only limits their ver-
satility due to high processing and memory requirements at the network elements but
also makes them unsuitable for telemetry driven real-time network control. Further-
more, we demonstrate through our evaluations that these methods also result in poor
efficiency.

Other non-telemetry approaches

Also, relevant are deep learning based data stream recovery and generation meth-
ods [49, 52, 91, 106, 112, 162, 188]. Although these methods are not designed for
network telemetry, they can be applied for that purpose by pairing them with use of
sampling on the sender (network element) side. For a given down-sampled telemetry
data stream from the network element, its reconstruction at the collector can be viewed
as an ‘imputation’ problem that seeks to recover missing samples. Early approaches
in this category (e.g., [91]) focus on recovering a high-quality audio signal from a
low-quality one through an interpolation (super-resolution) process using deep convo-
lutional neural networks. More recent approaches are based on generative or diffusion
models [52, 106, 112, 162]. As we demonstrate through our evaluations, these imputa-
tion approaches are ineffective at low sampling rates (or equivalently, high percentage
of missing samples), and also suffer from artefacts when sewing reconstructed data
across time windows due to lack of temporal modeling.

The receiver side data stream reconstruction problem can alternatively be seen as
conditional sequence generation, i.e., reconstructing/generating original data stream
from the down-sampled version received from the sender. Here existing approaches
based on deep generative modeling (e.g., [49, 188]) either focus on time domain or on
frequency/spectral domain reconstruction, and as a result fail to faithfully recover the
features from the other domain. We consider the above set of deep learning methods
in our evaluations and demonstrate that from being not tailored for network telemetry,
they are inefficient, require significant computing power on the sender side and so not
versatile, and have unacceptable inference latency for real-time network control.

The foregoing discussion motivates us to pursue a new and customized approach
to network telemetry that is better suited to meeting all the requirements. We present
our DISTILGAN approach in the next section.

85

5.4 DISTILGAN
As stated before, we aim at a network telemetry method that satisfies high-fidelity,
efficiency, versatility and real-time requirements.

At a high level, our proposed DISTILGAN approach to achieving this aim is through
the design of a tailored deep generative model architecture that allows high-fidelity
data stream reconstruction at the collector from received sampled data, while simul-
taneously reducing the transmitted measurement data from the network element by
adjusting the sampling rate it in an adaptive manner. Figure 5.1 illustrates our ap-
proach. Starting with an initial (bootstrapping) sampling rate, our proposed solution
consists of two inter-dependent stages at the collector: (I) Reconstruct data at original
granularity from the received sampled data stream through a ‘Generator’ (Figure 5.1:
1⃝). (II) Infer the minimal sampling rate1 based on the generated data stream via an

‘Analyzer’ and feed it back to the network element to switch to (Figure 5.1: 2⃝).

5.4.1 Overview
Realizing our approach for high-fidelity data stream reconstruction from received sam-
pled telemetry data stream and continually adapting the sampling rate is a significant
challenge. A number of targets need to be met to address this challenge:

1. Reconstructing the data stream with high fidelity.

2. Adapting the sampling rate while not compromising fidelity.

3. Achieving general applicability across diverse network telemetry settings.

4. Minimizing inference (data stream reconstruction) latency to support real-time
network monitoring and control.

Formally, the first two targets can be stated as follows. Given a discretely sampled
form (x̃r) of a ground-truth telemetry KPI time series x(t) with raw measurement
frequency r0 > r, target (1) translates to generating x′(t) with frequency r0 so that
x′(t) mimics x(t). As the generation process occurs over short time windows of size
W , the input to the generator x̃r = D(x, r) = {x(d

r
)}, d = 0, 1, . . . , ⌊W

r
⌋. Function

D(x, r) essentially samples x with sampling rate r. Target (2) mandates that r is kept
minimal at any given time instant t. Communication efficiency or compression ratio
(CR) achieved through minimal sampling can then represented by “n = 1/r” – higher
the n better is the efficiency. For example, if the sampling rate r is 1

2
of the raw

measurement frequency r0 at the network element, then we achieve 2× efficiency in
communication.

To achieve the aforementioned targets, we propose DISTILGAN, a method in-
spired by temporal super-resolution using deep neural networks. DISTILGAN re-
constructs original data stream from received sampled data stream through a tailored
conditional deep generative model that operates across both spectrum and temporal

1For the simplicity of exposition, we focus our description on the sampling rate adaptation but our
method also supports adapting the threshold for event/change (e.g., bursts) detection in telemetry data
streams, as elaborated in §5.4.3.

86

domains (Fig. 3.8). It additionally explores available sampling rates automatically,
and adapts the sampling rate by reporting the inferred minimal sampling rate to the
telemetry data sender (network element).

We achieve target (1) by training a spectral-temporal generator that can produce
a fine-grained representation of coarse-grained input sampled data stream, as detailed
in §5.4.2. In contrast to a solution that generates a deterministic output, our method
learns the inherent stochasticity in the signal and reflects that in the output. To bet-
ter reconstruct the signal, DISTILGAN incorporates a novel way to fuse spectral and
temporal outputs. We further propose a batch generation mechanism to support high
fidelity data stream reconstruction on the fly.

As elaborated in §5.4.3, we achieve the adaptive sampling rate target (2) by lever-
aging the inherent characteristics of our generative model and the outputs it produces
with inputs differing in their resolutions. Specifically, we devise a new metric called
‘Q-value’ to quantify the mutual similarity of different rate reconstructions and esti-
mate the data stream reconstruction quality with the current sampling rate. We then
decide to increase or decrease the sampling rate guided by the Q-value.

We meet target (3) by relying only on sampling at the network elements, and
not making any assumptions on data characteristics (unlike alternative approaches
like compressive sensing that assume data sparsity). Sampling is by far the most
lightweight approach in terms of processing and memory resource requirements to
use at the network elements, and so limiting to sampling at telemetry data senders en-
sures broad applicability, including over commodity network switches and resource
constrained devices. The only additional capability we need from a sender (with negli-
gible processing and memory overhead) is for it to be able to change the sampling rate
when informed by the collector (see Fig. 5.1).

Target (4) is achieved through a neural network architecture design that minimally
uses computationally heavy RNNs along with additional system optimizations to keep
the model inference latency low. We elaborate further on our solutions to meet targets
(3) and (4) in §5.4.6.

5.4.2 Generator Model Design for High Fidelity Data Stream Re-
construction

Fig. 5.2 shows the schematic of our generator model architecture. For simplicity, we
show the case of reconstructing data stream for a single telemetry KPI from its sampled
version. The same approach is applicable for the case to simultaneously reconstruct
data streams for multiple different KPIs.

Initial Interpolation

Gg
θ : R(L·r) → RL, where L is the data stream length at its original resolution and r is

the current sampling rate. Upon receiving the sampled data stream from the sender in
a given time window, we first perform the imputation, either with nearest interpolation
or IDFT depending on the current sampling rate, so that the data stream has the same
resolution as the raw measurement granularity. We further add input-dependent Gaus-
sian noise as latent information to support the stochastic variation from the downstream
generative model.

87

Received Sampled
Data Stream

Fine-gran
Data

Deep Gauss.

Initial
Interpolation

+

Previous
Outputs

Spectral-Temporal Generator

Time-ResUnet

Sp
ec

tr
a

l-
R

e
sU

n
et

D
FT

D
FT

R
e

p
li

ca
te

&
Ex

te
n

si
o

n

Gθ
g

Gθ
t

Gθ
s

Fu
si

o
n

ID
FT

Auto-regressive

T
em

p
o

ra
l-

D
Sp

ec
tr

a
l-

D

L2 Loss +
 Adversarial Training

Gθ
f

Temporal

Spectral

Figure 5.2: Schematic of the DISTILGAN Generator Architecture.

The initial interpolation method is chosen based on the variation range ∆ = max(x̃r)−
min(x̃r) as the two paths in Figure 3.8 indicate. More specifically, we have

[I0, I1] =

{
[1, 0], ∆IDFT

∆nearest
≥ η

[0, 1], ∆IDFT
∆nearest

< η
(5.1)

where the 0 < η ≤ 1 is a threshold to select interpolation method, ∆ is the vari-
ation range after nearest interpolation and IDFT. The intuition behind is that IDFT
can reserve low frequency details and nearest interpolation can keep a more accurate
dynamic range and they work better in different conditions.

To provide noise input that represents model stochasticity and unobserved context
attributes, the interpolated time series is added with a conditional Gaussian noise Gg

θ

with learned parameters following [85] as Figure 5.4a illustrates: x̂ = Finterp(x̃r)+zg =
Finterp(x̃r) + Gg

θ(x
′
t−W :t−1, x̃r, z0), where Finterp is the Nearest Interpolation or IDFT

results based on Equation 5.1, z0 is a noise input following standard Gaussian distri-
bution and x′

t−W :t−1 is the output of last time window, for which we just use a random
initial state sampled from a standard Gaussian distribution for the first time window.
Specially for the time stamp with real samples, we keep the original value without
adding any noise, and for the other part we add a truncated Gaussian distribution by
constraining the noise range with δ = 20% (default in this paper) of the sample dy-
namics (max(x̃r)−min(x̃r)) to avoid extreme outlier samples of the learned Gaussian
distribution.

Temporal Domain

The temporal domain generator Gt
θ : RL → RL. We design the temporal generator

network we refer to as “Time-ResUnet” that is based on the Unet architecture with
residual connections [91] but customized to our setting. At a high level, our Time-
ResUnet neural network architecture uses downsampling (D-Blocks) and upsampling
(U-Blocks) blocks to reduce and increase series length, respectively. The network in-
cludes fully connected B-blocks as bottleneck layers. It also consists of Gated Recur-
rent Unit (GRU) layers at the upsampling end to capture temporal characteristics, with
both original input and transformed time series available for output alignment with real
samples. Residual connections are used for full utilization of input information.

Figure 5.3a shows a schematic of our Time-ResUnet architecture design. The “D-
Block” in Figure 5.3a means the downsampling block that reduces the series length

88

So
u

rc
e

Ti
m

e
Se

ri
es

D
-B

lo
ck

D
-B

lo
ck

D
-B

lo
ck

B
-B

lo
ck

U
-B

lo
ck

U
-B

lo
ck

G
R

U
 U

p
-B

lo
ck

G
R

U
 U

p
-B

lo
ck

D
en

se
 L

ay
er

s

Tr
an

sf
o

m
e

d
 T

im
e

 S
e

ri
e

s

Stacking Residual Connections

Additive Residual Connections

Bottleneck

Downsampling Conv Up GRU Up

(a)

Spectrum

Time Series FFT
Components

Phase

FusionNet

Components

Phase

Discard

IFFT

Output

(b)
Figure 5.3: (a) Schematic of Time-ResUnet architecture. D-Block: 1-D convolutional
layers reduces the series length; U-Block: 1-D pixel shuffle layers increases series
length; B-Block: Full connection layers that do change series length. (b) Spectral and
Temporal domain fusion. FusionNet: 1-D Convolutional Layers.

via 1-D convolution. The “U-Block” means upsampling block, which increases the
length of series via a 1-D pixel shuffle method [91, 155]. The residual connections
help full utilization of input information across different steps. In the middle there
are a few full connection layers called “B-block”, which do not change the length and
dimension of the series. The following Gated Recurrent Unit (GRU) layers are applied
to capture temporal characteristics. Both the original input and transformed time series
are available for GRU layers, and this helps the model to make sure the output is tightly
aligned with the real samples.

Spectral Domain

The spectral domain generator Gs
θ : RL → CL. We additionally use a spectral domain

generator for enhanced fidelity and better capturing high frequency features but also
implicitly for increased efficiency to allow high-fidelity operation with smaller sam-
pling rates. For this generator, after applying DFT to obtain the spectrum as in [49],
we keep the spectrum within the current sampling rate and replicate it until the target
bandwidth. In this process, the zero frequency component, i.e., power component is
kept unchanged to make sure the overall power does not change. Our Spectral-ResUnet
neural network architecture design for the spectral domain generation is a variant of
the Time-ResUnet architecture in Fig. 5.3a with the only differences being the lack of
GRU layers, and operation on complex numbers.

Spectral-Temporal Fusion

Gf
θ : (RL,CL) → RL. Through the temporal and spectral domain generators, we get

two representations of output time series. While carrying out fusion of these two, we
find that the spectral output generally comes with a larger phase noise, whereas the
temporal output aligns better with real samples. So if we directly add these outputs,
due to the fact that their phase does not match, the model will only learn to reduce
the high frequency components to reduce the phase noise, which results in high fre-
quency components getting filtered out in the final output. In order to capture the high
frequency components while also reducing the phase noise, we carry out fusion in the
spectral domain and discard the phase information afterwards, as shown in Fig. 5.3b.

The overall generator Gθ can be represented as:

x′ = Gθ(x̃r) = IDFT{|Gf
θ (|DFT(Gt

θ(x̂)|, |Gs
θ(x̂)|)| × Angle(DFT(Gt

θ(x̂))} (5.2)

89

P
re

vi
o

u
s

O
u

tp
u

t
x'

C
u

rr
e

n
t

In
p

u
t

x

N
o

is
e

Fu
ll

Co
nn

ec
ti

o
n

Le
ak

y
R

el
u

Fu
ll

Co
nn

ec
ti

o
n

Le
ak

y
R

e
lu

D
ro

p
 O

u
t

Fu
ll

Co
nn

ec
ti

o
n

G
au

ss
ai

n
 D

is
tr

ib
u

ti
o

n

~
r

Z

A
p

p
ly

 D
y

n
a

m
ic

 C
o

n
st

ra
in

ts

g

Generated
Noise n

(a)

Input Time Stamps (Coarse Granularity)

Target Time Stamps

Output Time Sereies (Fine Granularity)

Previous Outputs To be Discarded

(b)
Figure 5.4: (a) Schematic of Generative Gaussian Noise; (b) Batch Generation for
Long Time Series
where the function “Angle” in Equation (5.2) represents extracting the angle of a com-
plex vector in the form of an unit complex number, and x̂ is the input to the Spectral-
Temporal Generator (see Fig. 5.2).

Online Operation with Batch Generation

Online operation here refers to recovering the time series on the fly at every small time
window, instead of waiting to receive the whole data stream. Such an operation has
three benefits:

• Fast reconstruction without waiting for the whole series

• Enhancing the performance of adaptive sampling by window-wise analysis

• Avoiding artifacts associated with long series generation

We generate arbitrarily long series in small overlapping “batches”; similar ap-
proach has been previously shown to be effective for network traffic generation [98].
We further adopt an autoregressive structure: the previous output x′

t−W :t−1 is included
in the input to Gt

θ and Gs
θ. There could be nontrivial artifact when connecting batches

if we simply generate them independently because of the different stochastic variations
in different batches. To avoid this sewing artifact, we adapt the overlapping window
approach in Figure 5.4. For each received window, we discard the last few time stamps
of the output and enclose these discarded time stamp in next batch. Meanwhile, we
attach the last few time stamps of previous output ahead the current input, making the
generation auto-regressive.

Training

To train DISTILGAN, we follow the standard training procedure for conditional GAN [73,
115] using a combination of L2 loss and adversarial training with two separate dis-
criminators respectively for spectral and temporal domain generators. Our spectral
discriminator Rs is a multilayer perceptron (MLP) supporting complex numbers, while
the temporal discriminator Rt is implemented with single layer LSTM structure and
few dense layers.

We train the model by minimizing Jensen-Shannon divergence between the data
and model conditionals, i.e., θ∗ = argminθ JS[pD||pθ] following the conditional GAN
formulations [73, 115] with the aid of discriminator as in the GAN framework. We
denote such discriminator as R due to their role as density ratio estimators [172]. In

90

our case, we consider two discriminators, named as Rt for temporal thread and Rs

for spectral thread. Suppose the spectrum of x and x′ are s and s′. Specifically, for
given training input measurement data time series, the corresponding adversarial loss
between the data pD(x) distribution and the model pθ(x′) distribution is defined as:

LRt
JS (pD, pθ) = EpD [logRt(x)] + Epθ [log(1−Rt(x

′))].

LRs
JS (pD, pθ) = EpD [logRs(s)] + Epθ [log(1−Rs(s

′))].

In our work, the temporal discriminator Rt is implemented with single layer LSTM
structure and few dense layers, while the spectral discriminator Rs is a MLP (multi-
layer perceptron) supports complex numbers.

We additionally use the standard mean squared error loss for both of the temporal
and spectral output:

LM = LMt(x, x′) + LMs(s, s′)

LMt(x, x′) =
1

L

L∑
t=1

(x− x′)2, LMs(s, s′) =
1

L

L∑
t=1

(|s| − |s′|)2

where s and s′ is ground truth spectrum and generated spectrum (as complex number).
Overall, together with the adversarial (GAN) loss, the loss function to fit θ is:

L = LM + λtLRt
JS + λsLRs

JS

where the λt and λs is a weight to balance the effect of adversarial loss, which in
our case is set as λt = 0.1 and λs = 0.1 by default.

The learned Gaussian noise is truncated by δ = 20% of the absolute range of raw
input samples of corresponding time window. A large δ leads a stronger stochastic
variation on the output but DISTILGAN can easily learn how to denoise the outlier
samples if the input is not very bursty. In the Time-ResUnet, we only use 1 GRU layer
because more GRU layers only have marginal enhancement on the performance with
extra increase in the inference tme.

We use single layer LSTM network with dense layers (three full connection dense
layers) in the DISTILGAN temporal discriminator, and complex MLP network for
spectral discriminator.

We use W = 96 for the reconstruction time window size by default and the default
step length during training is set to 15, so there is overlap between training batches.
W = 96 is sufficient for the dataset in this paper— larger W does not show significant
gain, whereas too small W makes high CR experiment hard to carry out. Note that, in
our experiments, we found that any step length as defined in §5.4.2 between 1 and 15
gives similar result.

5.4.3 Efficiency through Sampling Rate Adaptation

Here we first present how we estimate the received data stream reconstruction quality
and then describe how we use it to adapt sampling rates.

91

Reconstruction Quality Estimation for Adaptivity

Data driven methods can aid reconstruction quality estimation. In machine learning,
model uncertainty estimation has been a subject of investigation in recent years. Meth-
ods from that body of literature [58, 152, 165] can shed light on understanding the
possible error during the model inference. However, these existing techniques come
with high computational overheads and so unsuitable for our purpose:

• Monte Carlo Dropout [58] – This method requires repeated inference to esti-
mate the learned distribution, which conflicts with our real-time inference re-
quirement. It also uses a dropout layer for which the dropout ratio needs to be
fine-tuned.

• Conformal Prediction [152, 165] – This method requires training an error pre-
diction on different quantiles, which is computationally heavy contrary to our
real-time requirement. The benefit from this method is also limited when the
underlying variation in the data is large.

In light of the above, we seek to devise a lightweight method to estimate the data
stream reconstruction quality and use it in turn to guide our sampling rate adaptation.
We observe that even without access to fine-grained ground truth time series for the
KPI of interest, its reconstruction results could still be used to estimate the recovery
quality together with the model. Our key insight is that: (1) there exists a sampling rate
at any given time which is sufficient to ensure high quality reconstruction; and (2) the
model would give similar quality result even if the sampling rate is further increased
beyond that point of sufficient sampling rate.

Specifically, we use an intuitive measure of the recovery quality based on the ro-
bustness of recovery under different levels of sampling redundancy, where the robust-
ness refers to the extent to which the model can tolerate more and more missing sam-
ples. In other words, we would like to “ask” the model about its estimated reconstruc-
tion quality on the result. In particular, we define the estimated quality metric, Q-value,
as follows:

Q(Gθ) =
Nu∑
i=1

NMAE(Gθ(D(x, r)), Gθ(D(x, r − i)))/Nu, (5.3)

where Nu is a configurable parameter2 representing the other lower sampling rates
immediately below the current sampling rate to be examined; r is the sampling rate
used for the currrent time window;

NMAE is the normalized mean absolute error (§5.5); D(x, r) is the current re-
ceived sampled data stream; and function D(x, r− i) is the variant of D that represents
sampling at the lower rate of r − i.

In §5.4.4, we provide theoretical justification on the correlation of the above Q-
value metric with reconstruction error of the model. In §5.4.5, we further provide
supportive empirical evidence of this correlation considering different scenarios.

The above suggests that we can rely on the Q-value to estimate the effect on data
stream reconstruction quality from changing the sampling rate. If Q-value is very low

2In our evaluations, we empirically set this parameter Nu = 2.

92

then this indicates that the current sampling rate may be higher than sufficient and so
could be adjusted down. Otherwise, sampling rate should be increased. This raises the
question on the scale by which increase and decrease of sampling rates should happen.
In §5.4.5, we examine additive/multiplicative policies for sampling rate adaption (à la
TCP congestion avoidance mechanism).

Adapting Sampling Rate in DISTILGAN

In DISTILGAN, the capability to adapt sampling rate is reflected along two inter-
dependent procedures:

• Automatic Sampling Rate Space Expansion: DISTILGAN will automatically
find applicable sampling rates, as depicted in Fig. 5.5a. This automatic sam-
pling rate expansion starts from finer granularity pre-trained models. When the
existing pre-trained models all show similar reconstruction quality performance,
DISTILGAN will train an even lower sampling rate model and try to reconstruct
the received data stream sampled at that rate. If the quality is maintained as in-
ferred through Q-value, then the new lower sampling rate will be added into the
rate space for real-time sampling rate adjustment from the next time window.
With this mechanism, the telemetry system does not have to train the model for
all possible sampling rates in advance. Instead, DISTILGAN can organically
expand the rate space and corresponding trained models over time.

• Automatic Sampling Rate Selection: DISTILGAN will select from available
sampling rates in an adaptive manner, as illustrated in Fig. 5.5b. The selection
procedure is as follows:

1. the received sampled data stream is down-sampled with sampling rates
lower than the current one to create further sampled data streams. The
reconstructed data streams corresponding to those further sampled streams
(i.e., at lower rates) are generated by the model.

2. If Q-value scores from above step (1) are lower than a small threshold, then
the lowest sampling rate that does not degrade the reconstruction quality is
selected.

3. Otherwise, the current sampling rate is increased and set as the selected
rate for use by the sender in the upcoming time window.

If after the above procedure, the current rate matches with the selected rate then
rate space expansion is triggered to train models at sampling rates lower than the
current rate, following the procedure outlined in Fig. 5.5a.

Threshold based Sampling

DISTILGAN uses threshold based sampling to capture the significant and random burst
in time series3. Mathematically, this part captures top k% of the samples, to avoid

3By default, we provide the same threshold based sampling result as DISTILGAN to all baselines for
fair comparison, as correct threshold is unavailable (see §5.6.2) for the model that cannot learn correct
distribution. Most of samples still measured by periodical sampling.

93

Network ElementDownsampling

Further
Downsampling

2x
3x
...

Nx
Original Input Rate

Pretrained
Model

Output

D
o

w
n

sa
m

p
le

d
 d

a
ta

Receiver

Same Result for all

Train lower
sampling rate

model

New Rate

Y

N

New Rate
Option

(a)
Network ElementDownsampling

Further
Downsampling

2x
3x
...

Nx
Original Input Rate

Generator for
each rate

Analyser

Output

N
ew

 R
a

te

D
o

w
n

sa
m

p
le

d
 d

a
ta

Receiver

Sampling rate
selection

(b)
Figure 5.5: (a) Automatic Sampling Rate Space Expansion; (b) Automatic Sampling
Rate Selection.

missing extreme burst. The threshold is learned by DISTILGAN, we use the past dis-
tribution generated by DISTILGAN to represent the ground truth distribution because
the generative model can easily capture the conditional distribution of the data. As for
the quantile of the threshold, without prior measurement of data sparsity, we only apply
a small quantile for significant outliers, which is in general less than top 5%. We then
leave the adaptive part to periodical sampling because it is also able capture enough
information when the redundancy is low by increasing sampling rate. Threshold based
sampling is especially important to applications like 5G Rand and IoT for which signal
burst is important; we detail the usage in these applications in §B.5.2.

5.4.4 Q-value as coarse recovery error estimation

Q-value can be taken as an estimation of recovery error when the following two con-
ditions are met. Suppose we are targeting on a fidelity loss ϵ that is a very small value
(e.g., NAME< 0.01)

Condition 1: Further subsampled series should have a decreasing recovery quality:

NMAE(Gθ(D(x, r −m)), x) ≤ NMAE(Gθ(D(x, r − n)), x), If m ≤ n (5.4)

Condition 2: The adaptive step is large enough to bring significant change to the
output when there is no redundancy in the input data. There is a ∆ leads to:

NMAE(Gθ(D(x, r)), Gθ(D(x, r −∆))) ≥ ϵ, if NMAE(Gθ(D(x, r)), x) > ϵ (5.5)

If the current sampling rate has significant redundancy, and even with lower n
sampling rates (n ≥ 1) the model can still reconstruct the original series, then the first
n components in the summation of Q-value (Equation 5.3) should be very close to
zero. Otherwise, if there is no redundancy at all, the further subsampled time series
should lead to a distinct output, and further reducing sampling rate can only make the
difference on reconstruction more significant (Condition 2), until the performance is
close to unconditional generation — higher reconstruction loss than any sampling rate,
when the sampling rate is extremely low. When i is small:

If Redundancy : NMAE(Gθ(D(x, r)), x) << ϵ, and NMAE(Gθ(D(x, r − i)), x) ≤ ϵ
(5.6)

Then : NMAE(Gθ(D(x, r)), Gθ(D(x, r − i))) ≤ ϵ (5.7)

If a low sampling rate is insufficient or current sampling rate is significant lower than
required, all re-sampled result should have different result and thus the Q-value is

94

Time Stamp

Figure 5.6: MAE of further downsampled and reconstructed time series to 1X (Ground
Truth), 3X, 8X, and 12X (reconstructed) time series in IoT Smart Metering

larger, if Condition 1&2 is true.

If No Redundancy : NMAE(Gθ(D(x, r)), x) > ϵ, (5.8)
Then : NMAE(Gθ(D(x, r −∆)), x) > ϵ, (5.9)
and NMAE(Gθ(D(x, r)), Gθ(D(x, r −∆))) > ϵ (5.10)

Now discuss how to make Condition 1 and 2 be true at the same time.

• Condition 1 is in general work in our dataset, which can be verified by experi-
ments. The less input information, the worse recovery quality it is.

• Condition 2 is true when the ∆ is large enough to introduce significant change
in the input. Suppose ∆ = r, the model will work on unconditional state, the
difference to conditional generated result should be significant and larger than
the target fidelity loss ϵ.

Both of the condition can be directly verified through experiments. This phenomenon
exists in all the three datasets in §5.5, and therefore the generality should be promising.

As stated before, in this paper we use a Nu = 2, so that the maximum value of i
is 2. Although we use a small Nu, the Q-value is sufficient to detect micro changes of
the input — if the sampling rate is higher than loss-less recovery rate, then Q-value is
around zero, otherwise the model need to increase the sampling rate to make sure there
are certain redundancy in the samples. We also tried larger Nu in ISP network, the
result is showed in Figure 5.7b: it is too sensitive by giving an error estimation much
larger than actual value, which might cause memory wasting.

We further evaluate the effectiveness of Q-value in §5.4.5, and the results show
that the Q-value is sufficient to adjust actual sampling to the optimal rate — minimal
sampling rate that meets fidelity requirement.

5.4.5 Mutual Difference of Reconstructed Time Series
Mutual difference of reconstructed time series refers to the components in the summa-
tion of Q-value and inequality (5.5). We verify Condition 1 and Condition 2 in §5.4.4
directly by experiments. Taking IoT Smart Metering for example, from Figure 5.6 we
have observed that when the reconstructed time series exhibit a higher NMAE to the

95

0 5 10 15 20

14
13
12
11
10

9
8
7
6
5
4

n s
: S

ize
 o

f A
da

pt
. F

S

Ideal 1-Step 2-Step Accumulative Top-up

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

(a)

128 176 224 272 320 368 416
Memory (KB)

0.000
0.025
0.050
0.075
0.100
0.125
0.150

M
ea

n
Re

la
tiv

e
Er

ro
r Actual MRE

Q-val MRE Nu = 2
Q-val MRE Nu = 4
MC 10%
MC 20%

(b)
Figure 5.7: (a) Comparison between different AIMD strategy on CAIDA dataset (flow
size by <source,destination>), at 1 second epoch length. Background: Nor-
malized MAE (NMAE); (b) Actual Error, Q-value, and Monte-Carlo Estimation with
different FS [71] size in DISTILGAN based sketching.
ground truth compared with other time stamps, the reconstructed time series will also
show a higher mutual difference. This verifies the high-level effectiveness of the Q-
value. From Figure 5.6 we also observe that lower sampling rate tends to have worse
reconstruction fidelity and larger mutual difference, and therefore the Condition 1 is
verified. We also provide another example on ISP network Figure 5.7a illustrates dif-
ferent sampling rates for different runs of AIMD algorithms in §5.4.3 on ISP network
traffic. Overall the phenomenon matches the example in IoT smart metering—further
downsampling contributes to worse mutual NMAE, and the AIMD algorithms do help
to adapt to a suitable sampling rate. For Condition 2 we show the result in Figure 5.7b,
where we prove that if the Nu is configured with proper value, the Q-value will guide
the model to converge to expected loss. In Figure 5.7b, the memory represents the
input information in the sketching system, similar to the sampling rate in other cases.
When the memory is much lower than necessary, the Q-value is even higher than the
actual loss. As the memory increases, the Q-value converges to a small value simul-
taneously with the actual loss.Larger Nu means higher sensitivity as the Nu = 4 case
in Figure 5.7b because larger i will be considered when compute Q-value, and then it
needs more redundancy on sampling rate to meet the target Q-value.

5.4.6 Design Choices & Optimizations for Versatility and Real-
Time Inference

In addition to the aspects highlighted earlier in §5.4.1, the versatility and real-time
nature of DISTILGAN is reflected through the following aspects:

• Minimal processing and memory requirements at the sender. As stated before,
sampling is a lightweight process at the network elements. All that the sender
needs to do with DISTILGAN is to simply report measurement KPIs of interest
to the collector at the specified sampling rate. The above combined with the
adaptively use the minimal sampling rate throughout keeps the resource require-
ments at the network elements at the bare minimum that even the most resource
constrained elements can cope with.

• Low inference latency: millisecond level inference for recovering fine-grained
time series of measurement KPIs of interest.

• Fast Training: Ability to achieve good generalization with small amount of train-
ing data.

96

CPU

GPU

Call GPU Call GPU

Time

GPU
Processing

GPU
Processing

Inference Latency

(a)

CPU

GPU

Call GPU

Time

GPU
Processing

GPU
Processing

GPU
Processing

Inference Latency

Call GPU Call GPU

(b)
Figure 5.8: (a) Inference with default GPU Scheduling; (b) Proactive GPU Scheduling.

GPU (w/o Parallel) GPU (in Parallel) CPU (w/o Parallel) CPU (in Parallel)

Avg. Inference Time (ms) 1.8 1.2 17.8 12.5

Table 5.2: Inference Latency with DISTILGAN.
For network switches, the benefit of DISTILGAN would be mainly in bandwidth

savings and efficiently using network resources with minimal monitoring overhead.
However, when performing telemetry with resource constrained and battery operated
mobile and IoT devices, minimal sampling rate (and therefore longer intervals be-
tween reporting samples) can be directly converted into significant power savings. As
an example, with discontinuous reception (DRX) mechanism in 5G, reducing the mea-
surement frequency from 100 Hz to 25 Hz (4× reduction in sampling rate) results in up
to 80% power saving on radio module and around 40% power saving on commercial
smartphones, according to the measurements result of major operators [7].

We measured and optimized the execution of DISTILGAN. First, the spectral and
temporal generator processes can be executed in parallel. Second, since the samples
arrive every time window, we can further reduce the CPU I/O and scheduling time
through proactive scheduling, as illustrated in Fig. 5.8. We also try executing DISTIL-
GAN solely over CPUs. The experiments are based on NVIDIA Tesla A100 Ampere
40 GB GPU and AMD EPYC 7302 16-Core CPU. Results are shown in Table 5.2 using
received sampled stream with a 96-sample window as input to DISTILGAN generator.
Leveraging GPUs and parallel execution via proactive scheduling, DISTILGAN can
achieve a 1.2ms inference latency. Even the 12.5ms CPU execution latency is clearly
sufficient for the IoT smart metering and 5G RAN monitoring scenarios with 1s and
1ms measurement granularities, respectively (see Table 5.3). For example, with 1ms
granularity and window size of 96, 12.5ms CPU execution based inference latency will
ensure data recovery 83.5ms earlier than the arrival of next window of samples. Even
when considering the 100 microseconds flow level measurement granularity in general
ISP networks, 1.2ms GPU execution latency is well within the 10ms time budget to
process a 96-sample input window. In fact, the above inference latency results suggest
the ability DISTILGAN to comfortably recover larger windows of incoming samples
without any need for buffering or waiting times at the collector.

The training of DISTILGAN is fast. For the network scenarios considered in this
paper, we can expect training time ranging from tens of seconds to a few minutes
with a single GPU, depending on the scenario and window size. At the same time,
DISTILGAN achieves a good generalization with a small randomly chosen training
set. For ISP networks and 5G RAN, DISTILGAN when trained on less than 10% data
of each dataset achieves good performance on the remainder of those datasets, while
for the IoT smart metering scenario the amount of training data required is much lower
at 3%. If the measurement of ISP network and 5G RAN lasts over a longer period as
one would typically expect it to be the case, we can expect a good generalization with

97

much smaller percentage of training data. We explored such a situation with synthetic
datasets (§B.6.1) and found that we only need to train DISTILGAN with less than 1%
of whole synthetic time series to achieve good generalization.

DISTILGAN barely has any computational or memory overhead on the network
element end due to use of sampling at minimal rates. DISTILGAN also has the poten-
tial for profound benefits for telemetry with resource constrained and battery powered
network devices, such as significantly reducing the power consumption and extend the
battery life cycle when combined with sleep mechanisms. We can reduce the infer-
ence latency of DISTILGAN to 1.2 ms with GPUs and 12.5 ms with CPUs, which is
sufficient for most real-time network monitoring and control applications. To achieve
the aforementioned benefits while ensuring high-fidelity data stream reconstruction,
DISTILGAN only requires a small amount of training data for a good generalization,
generally less than 10% of the entire dataset in our experiments.

5.5 Evaluation Methodology

5.5.1 Datasets

We evaluated DISTILGAN using three real-world scenarios (Table 5.4) with associated
datasets (Table 5.3). We also evaluated DISTILGAN on synthetic datasets (sine wave
and fGn [17]) in §B.6.1 to represent some typical signals in engineering. By default,
we use first 20% time series as training data, and evaluated the model on the rest of the
80% data.

ISP Network. The performance in ISP network is evaluated on Trace-driven sim-
ulations with CAIDA Traces [25], which is a representative real world ISP network
traces at large scale with 100K ∼ 150K TCP flows every second. This dataset has
been used in various works in network telemetry [69, 71, 199], and we use the same
data source to make sure the evaluation is done with the target scenario of certain
baselines.

5G RAN. We leverage the state-of-the-art JANUS RAN monitoring system [55]
in a carrier-grade 5G Open RAN (O-RAN) testbed and investigate the feasibility of
minimally sampling representative radio network KPIs and recovering the fine-grained
radio KPI time series afterwards. This O-RAN testbed allows measuring a large set of
KPIs but some of them like Cell ID, Number of UEs, number of resource blocks (RBs),
etc., do not vary with fine granularity, so we do not include them in our experiment.
Based on our investigation on all radio KPIs that are measured frequently in O-RAN,
we select three key KPIs that are reported with fine granularity and has significant
variation in small time scales: Signal to Noise Ratio (SNR) – signal quality; Downlink
Data Transport Block Size (DL TBS) – very fine granularity throughput measurement;
and Timing Advance (TA) – mobility measurement.

IoT Smart Metering. IoT system Smart Metering [34], is multivariate dataset
from four real smart meters installed at different locations in a university campus.
This dataset has the longest time scale (3 months) with 1s granularity, and also is
particularly suitable for adaptive sampling rate evaluation. The set of KPIs included in
this IOT dataset is listed in Table 5.4.

98

CAIDA 5G RAN IoT (Smart Metering)

Time Granularity 10ms∗ 1ms 1s
Variate Number 1 3 6
Flow Number 5× 105 1 1
Longest Series 1 hour 1 hour 3 months
Total Time Stamp 3.6× 105 3.6× 106 2.5× 105

Table 5.3: Measurement statistics for different datasets. *: 10ms is the minimal gran-
ularity we consider to query network flow information such as size.

Dataset KPIs (Measurement Attributes)

CAIDA ISP Network (1) Flow size
5G Radio Network (3) Signal-Noise Ratio (SNR), Downlink Transport Block Size (DL TBS) and Timing Advance (TA).
IoT Smart Metering (6) Apparent Power, Power, Energy, Current, Frequency, Voltage.

Table 5.4: KPIs considered in different datasets.

5.5.2 Metrics

We evaluate the performance of DISTILGAN in comparison with a wide range of base-
line methods representing the state-of-the-art (Table 6.5), focusing on all four essential
requirements for network telemetry methods highlighted earlier in the motivation sec-
tion (§5.2)4. In the following, we describe which specific metric we used for each of
the requirements.

ISP Network settings — P(Err.¡0.1%). Here we focused on the ability to recon-
struct flow sizes. For this, we use the percentage of flows that have less than 0.1%
relative error as the metric, following the state of the art work on flow-level monitoring
in ISP networks [71]. The recovered size is Sizer, and original size is Sizeo, then
relative error Err. = |Sizeo−Sizer|

Sizeo
.

5G RAN and IoT Smart Metering settings— NMAE, NWD, and NSWD.
Normalized MAE (NMAE). Given a measured data time series indicated with

(x : {x1, x2, . . . , xT}) and the generated one (y : {y1, y2, . . . , yT}), the Mean Absolute
Error (MAE) is calculated with the following: MAE(x, y) =

∑T
i=1 |yi−xi|/T . NMAE

is the MAE after normalization:

NMAE(x, y) = MAE(normalize(x), normalize(y)),

where normalize(x) = { xi−min(x)
max(x)−min(x)

}Ti=1. Compared to the original MAE, NMAE
can better reflect the overall fidelity as it has been also advocated in past works [21,
194].

Normalized Wasserstein Distance (NWD). This metric help us quantifying the
similarity between the reconstructed time series and its original counterpart. We com-
pute the Wasserstein Distance (WD) [148] after data normalization to obtain NWD, as
also used in [187]. This metric can reflect the accuracy of percentile threshold.

Normalized Spectrum Wasserstein Distance (NSWD). Besides computing the
WD on temporal domain, we also measure the spectrum similarity with WD. Same
as the temporal correspondance above, we normalize the bandwidth before comput-
ing WD; the DFT is computed with a 1000 window size, around 10 times of default

4For detailed description of various baselines, please see §B.6.

99

window size of reconstruction, to obtain an reliable result.
Efficiency. We use the Compression Ratio (CR) as a measure of efficiency. Gen-

erally speaking, compression ratio cr is defined as cr = Sizeo/Sizea, where Sizeo is
the memory cost of the raw measurement while Sizea of the one actually stored.

In the case of sampling and sampling based baselines (including sensing & recov-
ery based methods), cr can be seen as the ratio of the raw measurement frequency
to the sampling rate used at any given time instant. With sketching, the size of the
sketches and their frequency of reporting determine the cr.

Versatility. We demonstrate the versatility of DISTILGAN by applying our solu-
tion to the three very different telemetry settings presented in Table 5.3. Additionally,
we show the behavior of our system under different constraints (e.g., memory, mea-
surement window, number of flows etc.)

Real-time. We used the data stream recovery time as the metric for this require-
ment. As discussed in the previous point, the data is not stored raw in memory. This
metric allows to evaluate how much time it takes to recover the original data from the
compressed version. If the recovery time is smaller than the epoch length (input win-
dow size) used for data generation, then the recovery can be considered as real-time.

5.6 Evaluation
In this section we compare DISTILGAN against state-of-the-art approaches (Table 6.5).
We focus on its efficiency (§5.6.1), versatility (§5.6.2) and real-timeliness (§5.6.3)
while keep high-fidelity measurements reconstruction as a general requirement for all
the experiments. We evaluate our system using the three scenarios presented in Ta-
ble 5.4: ISP network, 5G RAN, and IoT Smart Metering. In the Appendix (§B.4) we
share additional information about specific configurations and tests methodology used
throughout the evaluation.

5.6.1 DISTILGAN achieves High Fidelity and Efficiency
We evaluate the efficiency comparing the maximum CR while guarantee a pre-set mea-
surement fidelity. In Figure 5.9a, we compare the behavior of DISTILGAN against
state-of-the-art sketching solutions when estimating flow sizes from a real network
trace taken from CAIDA. Here we set our measurement time window (i.e., epoch
length) to 10ms as real-time network telemetry systems need a very small control
loop. From the figure, we can see that DISTILGAN allows for up to 25× gain in terms
of bandwidth consumption than state-of-the-art when targeting on near-zero error mea-
surements. Classical CS based methods such as SeqSketch [71] and EmbedSketch [71]
are not efficient when used with very small time windows because the orthonormality
of sensing is not well guaranteed with their design, the flow size distribution on ms
level is different to the distribution on seconds level (B.4.1), and hence need to apply
more counters, whereas DISTILGAN is robust to lack of orthonormality after training.

We also compared DISTILGAN against solutions performing sensing & recovery
using the same ISP network scenario with CAIDA. Considering the operation of these
systems, for a fair comparison, we did not use a time window but we sampled the
original network trace and tried to reconstruct the missing information. As Figure 5.9b

100

70 75 80 85 90 95 100
Flow Ratio (%)

101

102

103

Co
m

pr
es

sio
n

Ra
tio

25 ×

DistilGAN
SeqSketch

EmbedSketch
ElasticSketch

SketchVisor
UnivMon

(a)

0.00 0.01 0.02 0.03 0.04 0.05
NMAE

2.5
5.0
7.5

10.0
12.5
15.0

Co
m

pr
es

sio
n

Ra
tio

Adapt. DistilGAN

DistilGAN

Adapt. DistilGAN
DistilGAN
FT-IFT

Classical CS.
AudioUnet
CSGAN

TimeGAN
STFTGAN
CSDI

(b)
Figure 5.9: Flow-level monitoring in ISP networks. (a) Comparison with sketching
methods using compression ratio vs. flow ratio (percentage of flows with less than
0.1% relative error on flow size); (b) Compression ratio vs. fidelity (NMAE) for meth-
ods not using sketching – just sampling IP packets.

shows, the feasible compression ratio is lower than the sketching case, as the models
need to recover the size of missing packets, instead of just the whole flow. Overall,
generative models yield significant gain in terms of efficiency, up to 8× better than
conventional data-driven solutions. We also observe that DISTILGAN shows better
CR than any of the considered generative models under same fidelity requirement.
Besides, compared with constant sampling rate case, the adaptive mechanism bring
about 25% ∼ 35% gain on CR.

Finally, in Figure 5.10, we demonstrate the high-fidelity nature of DISTILGAN
in being able to capture high frequency components using the same baselines as in
Fig. 5.9b. For this, we show the spectrum and amplitude from doing a sinusoidal
wave signal reconstruction. The synthetic signal has few components around 400Hz,
100Hz, and 50Hz. For visualization, we give the power on 400Hz, 100Hz, and 50Hz
with more significant value so the main components are clear. The Nyquist rate is
800 Hz and the signal is sampled at 200 Hz. All the methods work on window size
at 6 — the model is required to output reconstructed signal after receiving every 6
samples. In Figure 5.10b we can observe that the high frequency components are lost
with FT-IFT, while in Figure 5.10c we observe all three components. Without learn
spectrum explicitly, CSDI can hardly identify the components below 100Hz but simple
generate random noise spectrum beyond that. STFTGAN is the only other method in
the baselines that can identify the high frequency features, however, it cannot avoid the
artifacts introduced by recovering from a short window and the noise level much higher
than DISTILGAN. The phenomenon here is aligned with the NSWD performance in
Figure 5.11c and Figure 5.12c.

5.6.2 DISTILGAN is Versatile

DistilGAN seamlessly works across different telemetry domains

Besides ISP network, we also evaluate DISTILGAN on 5G RAN and IoT Smart Me-
tering scenarios, where the main task is to reconstruct the original time series (i.e.,
stream of measurement data) after temporal downsampling. Such task is common in
5G RAN and IoT system for the various purposes, e.g., saving bandwidth. We carry
out experiments using the KPIs presented Table 5.4, and take the average performance

101

0 2500 5000 75001000012500150001750020000
Sample

0

100

200

300

Am
pl

itu
de

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time Window

0

200

400
Fr

eq
ue

nc
y

(a) Real

0 2500 5000 75001000012500150001750020000
Sample

125
150
175

Am
pl

itu
de

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time Window

0

200

400

Fr
eq

ue
nc

y

(b) FT-IFT

0 2500 5000 75001000012500150001750020000
Sample

0
100
200
300

Am
pl

itu
de

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time Window

0

200

400

Fr
eq

ue
nc

y

(c) DISTILGAN

0 2500 5000 75001000012500150001750020000
Sample

0

100

200

300

Am
pl

itu
de

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time Window

0

200

400

Fr
eq

ue
nc

y

(d) CSDI

0 2500 5000 75001000012500150001750020000
Sample

100

200

Am
pl

itu
de

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time Window

0

200

400

Fr
eq

ue
nc

y

(e) STFTGAN

0 2500 5000 75001000012500150001750020000
Sample

0

200

400

Am
pl

itu
de

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time Window

0

200

400

Fr
eq

ue
nc

y

(f) CSGAN

Figure 5.10: Sinusoidal wave reconstruction with different methods

of all KPIs in each scenario as the final performance. In Figure 5.11 and Figure 5.12,
we show how NMAE, NWD, and NSWD evolve when changing CR. Here we compare
DISTILGAN against state-of-the-art techniques in the sensing and recovery world.

As Figure 5.11 shows, DISTILGAN in general has the best fidelity in terms of
all metrics with different CR. Compared with FT-IFT, the adaptive DISTILGAN has
75% better NMAE, and more than one order better than FT-IFT in terms of NWD
and NSWD. Compared with other data driven solutions, in Figure 5.11a, the gain of
DISTILGAN on NMAE is marginal when the CR is lower than 8, but when CR is
higher, DISTILGAN shows much better capability on maintaining the performance on
NMAE. As for NWD (Figure 5.11b) and NSWD (Figure 5.11c), DISTILGAN shows
almost 1 order gain to the baselines, indicating the superiority of DISTILGAN in dis-
tribution learning on both of temporal and spectral domain.

Without an adaptive mechanism, all methods start to have much worse performance
if CR goes beyond 8. By tuning the Q-value, the adaptive version of DISTILGAN has
more robust performance when CR changes. CSDI is good at NMAE when the CR
is lower and has similar performance on NWD with DISTILGAN, but it cannot learn
the spectrum efficiently and the NSWD performance is up to 10 times worse than
DISTILGAN. Spectrum can be recovered with high-fidelity only with the model that
learn the spectrum explicitly, such as DISTILGAN and STFTGAN.

The performance evaluation in IoT smart metering system is showed in Figure 5.12.
Here we use the same methodology as in 5G RAN, and overall all data-driven methods
show better fidelity in this specific dataset. Such observation is aligned with the fact
that our smart metering data comes with much coarser granularity and higher redun-
dancy. Even though, DISTILGAN still advances the other methods by having equally
good performance on all three metrics.

DISTILGAN is Robust

We now evaluate the behavior of DISTILGAN when estimating the flow size of net-
work traffic and changing either epoch length (i.e., time window) or system condition.

102

2 4 8 12 16 20
CR

10 2

10 1

NS
W

D

FT-IFT CSGAN STFTGAN CSDI DistilGAN Adapt. DistilGAN

2 4 8 12 16 20
CR

0.00
0.01
0.02
0.03
0.04

NM
AE

(a)

2 4 8 12 16 20
CR

10 2

10 1

NW
D

(b)

2 4 8 12 16 20
CR

10 2

10 1

NS
W

D

(c)
Figure 5.11: Fidelity vs. compression ratio in 5G RAN, in terms of: (a) NMAE, (b)
NWD, (c) NSWD. 2 4 8 12 16 20

CR

10 2

10 1

NS
W

D

FT-IFT CSGAN STFTGAN CSDI DistilGAN Adapt. DistilGAN

2 4 8 12 16 20
CR

0.005
0.010
0.015
0.020
0.025

NM
AE

(a)

2 4 8 12 16 20
CR

0.005
0.010
0.015
0.020
0.025
0.030
0.035

NW
D

(b)

2 4 8 12 16 20
CR

0.02
0.04
0.06
0.08
0.10

NS
W

D

(c)
Figure 5.12: Fidelity vs. compression ratio in IoT Smart Metering, in terms of: (a)
NMAE, (b) NWD, (c) NSWD.

We compare this against state-of-the-art sketching based approaches that also adopt
a time window for their measurements. Starting from CAIDA traces, we varied the
epoch length from 10ms to 1s, kept the fidelity constant and evaluated the CR. DIS-
TILGAN has up to 25× gain on bandwidth efficiency when the epoch is very short,
and still use less bandwidth than the others even for 1s epoch length (Figure 5.13a).

We then varied the available memory and evaluate the accuracy of flow size esti-
mation. Here we observe that DISTILGAN can provide high-fidelity measurements
even with very limited memory: with only 450KB available, it can still get ∼ 80% of
measurement correct.

Finally, as Figure 5.13c shows, the gain on memory efficiency brought by DISTIL-
GAN is constant regardless the epoch length.

5.6.3 DISTILGAN is Real-Time

Overall Recovery Time

In this section, we focus on the ability to provide results in real-time (e.g., performing
data reconstruction faster than arrival rate of new measurements). We consider a worst
case scenario, where a sketch-based solution needs to estimate the flow sizes of 100K
flows, while a method based on sampling or sensing and recovery needs to reconstruct
100K KPIs. Based on our datasets, 100K flows/KPIs tend to appear every 1s and hence
we consider an approach real-time if it is capable of producing a result in less time.

In Figure 5.14, we compare the recovery time for all the solutions we have consid-
ered so far. Methods that leverage CS (i.e., SeqSketch, EmbedSketch, and SketchVi-
sor), together with Classical CS approaches might require > 60s to get the results, so
they cannot be considered to be real-time. Deep diffusion based methods like CSDI
need hundreds times longer inference time to get a reliable result than simple DNNs,
and hence latency is high with CSDI.

Some of conventional sketching methods such as UnivMon and ElasticSketch meet

103

101 102 103

Epoch Length (ms)
0

100

101

102

103

Co
m

pr
es

sio
n

Ra
tio

25 ×
8 ×

DistilGAN SeqSketch EmbedSketch SketchVisor

101 102 103

Epoch Length (ms)
0

100

101

102

103

Co
m

pr
es

sio
n

Ra
tio

25 ×
8 ×

(a)

224 420 640 896 1152 1408 1664 1920
Memory (KB)

20

40

60

80

100

Fl
ow

 R
at

io
 (%

)

(b)

1 5 9 13 17 21 25
Epoch Length (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

M
em

or
y

(K
B)

1e4

(c)
Figure 5.13: (a) Comparing with sketching methods on compression ratio in ISP Net-
work for different epoch lengths; (b) Ratio of flows with less than 0.1% relative error
vs. memory; (c) Memory Requirement to meet high-fidelity requirement under differ-
ent epoch lengths.

Se
qS

ke
tc

h
Em

be
dS

ke
tc

h
Sk

et
ch

Vi
so

r
Ela

sti
cS

ke
tc

h
Un

ivM
on

.
FT

-IF
T

Au
dio

Un
et

Cl
as

sic
al

CS
CS

GA
N

ST
FT

GA
N

Tim
eG

AN
CS

DI
Co

ns
t.

Di
sti

lG
AN

Ad
ap

t.
Di

sti
lG

AN

0
100

101

102

Re
co

ve
ry

 T
im

e
(s

)

Figure 5.14: Recovery time to get measurement result with 100K flows for Sketch-
ing methods: SeqSketch, EmbedSketch, SketchVisor, ElasticSketch, and UnivMon; or
100K KPIs for other methods including DISTILGAN.

the real-time requirement well because they do not need complex computation. Sub-
sampling and then Inverse Fourier Transform (FT-IFT) can be done in real-time, but
the fidelity is worse than data driven methods in §5.6.2. Some deep learning based
methods might be two orders faster in recovery time than classical CS (e.g., AU-
DIOUNET, CSGAN, and DISTILGAN), but this only happens when the neural network
structure is simple (e.g., AUDIOUNET and CSGAN) or fine-tuned for real-time (e.g.,
DISTILGAN).

Real-time performance for specific task

We run further tests to better understand the results presented in the previous subsec-
tion. In Figure 5.15a, we show the inference latency on a single core CPU of DISTIL-
GAN, SeqSketch and SketchVisor when varying the number of flows. Here, we can
see that the inference time only increases near linearly with the number of flows, and it
never needs more than 1s, even in the presence of 1000K flows to decode. Noteworthy
that DISTILGAN still perform up to 90% better, especially its implementation on a
GPU.

Then for 5G RAN, we focus on sampling and recovery task. We measure the
optimal temporal window size in Figure 5.15b when work on the 5G RAN dataset in
Table 5.4, and then measure the inference latency with the optimal temporal window
size in Figure 5.15c. From Figure 5.15b, we can see that classical CS and AUDIOUNET

requires larger window size to achieve the best CR. Classical CS, CSDI, TIMEGAN,
and STFTGAN cannot be executed within their optimal window, which means they
cannot run with the finest time granularity in real-time.

104

102 103 104 105 5 × 106 106

Num. of Flows

0.0
0.2
0.4
0.6
0.8
1.0

In
fe

r.
La

te
nc

y
(m

s)

1e6

1 CPU DistilGAN
1 GPU DistilGAN
1 CPU SeqSketch
1 CPU SketchVisor

(a)
FT-

IFT

Clas
sic

al
CS

CS-G
AN

Aud
ioU

ne
t
CSD

I

Tim
eG

AN

ST
FTG

AN

Disti
lGAN

Adp
at.

 Disti
lGAN

0

100

200

300

400

500

M
in

. W
in

do
w

(b)
FT-

IFT

Clas
sic

al
CS

CS-G
AN

Aud
ioU

ne
t
CSD

I

Tim
eG

AN

ST
FTG

AN

Disti
lGAN

Adp
at.

 Disti
lGAN

0

100

101

102

In
fe

re
nc

e
Ti

m
es

 (m
s)

(c)
Figure 5.15: (a) Recovery Time with A100 GPU and CPUs for sketching based meth-
ods with different flow number; (b) Minimum (optimum) recovery time window size
to achieve the best compression ratio with deep learning based models; (c) Inference
latency under optimal window size.

Method
4× 16×

NMAE↓ NWD↓ NSWD↓ NMAE↓ NWD↓ NSWD↓
DISTILGAN 0.006 0.004 0.007 0.011 0.008 0.012

No Adaptive Sampling 0.007 0.007 0.009 0.016 0.009 0.018
No Learned Gaussian 0.008 0.012 0.030 0.016 0.018 0.048

No Temporal Generator 0.017 0.015 0.012 0.024 0.024 0.018
No Spectral Generator 0.011 0.01 0.035 0.017 0.025 0.088

No GAN Loss 0.016 0.024 0.066 0.025 0.047 0.089
No Auto-regression 0.01 0.009 0.014 0.015 0.012 0.023

Table 5.5: DISTILGAN ablation study results using the 5G RAN dataset.

5.6.4 Ablation Study

We conduct ablation study to quantify the contribution of different part of DISTIL-
GAN to the high-fidelity reconstruction, and give more insights to the model design.
In ablation study we focus on 5G RAN dataset for following reasons: (1) 5G dataset
has the smallest granularity among all scenarios. which means this case is more chal-
lenging than IoT smart metering; (2) Evaluation with the NSWD and NWD metrics
on ISP network flow size measurement is not straightforward as we do not care about
spectrum in such scenario.

Comparison with baselines earlier in §5.5, has already highlighted the limitations
of alternative designs. Here we examine the benefit from some of the key design
choices underlying DISTILGAN through an ablation test in Table. B.3. Overall, all
the key components play critical roles in the final fidelity. The adaptivity brings more
gain when compression ratio is larger as there is more space to carry out different
sampling rates. Specially, Adversarial Training (GAN loss), Time ResUnet (temporal
thread), and the auto-regression structure contribute most to NMAE, while Learned
Gaussian Noise and GAN loss jointly enhance the fidelity on temporal stochastic vari-
ation significantly. GAN loss plays critical role among all domains, the cannot show
any gain compared with the other generative models without GAN loss. Although the
spectral thread is designed to generate the high frequency and periodical features, as
well as the spectrum, it does not perform well without GAN loss and Learned Gaus-
sian Noise. Auto-regression structure for batch generation helps all the fidelity metrics
evenly by providing information from the past.

105

5.7 Downstream Use Cases of DISTILGAN

5.7.1 ISP Network Microburst Detection

We evaluate the ability to detect microbursts at collectors when only relying on samples
of traffic sent from network nodes. This is a common scenario when a network node
has very limited resources and cannot afford any type of processing. Here, we define a
microburst as a flow (or aggregate of flows) that exibits the bitrate higher than a given
threshold in a very short time window (microsecond-scale) [72].

We take a CAIDA ISP network trace [25] and recorded all the microburst flows
using a time window of 1ms to obtain our groundtruth. We then sampled the trace
at 10ms timescale to obtain a dataset of sampled traffic. We then recover the origi-
nal traffic trace from the samples and use those to perform the microburst detection
task. The F1 score is showed in Figure 5.16, DISTILGAN has significantly higher F1
score, especially when adaptive mechanism is activated (i.e., the sampling threshold
is dynamically selected by our system). We also measure the average distance to the
nearest real microburst to show the accuracy on temporal domain in Figure 5.17, and
the results show that DISTILGAN has 1 ∼ 2 order closer distance to the real burst.
Hence even DISTILGAN report a wrong detection, it will be very close to the real
microburst.

FT-IFT

AudioUnet
STFTGAN

TimeGAN CSDI

Distil
GAN

Adpat. D
istil

GAN
0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Figure 5.16: F1 Score
of 99% percentile mi-
croburst detection.

FT-IFT

AudioUnet
STFTGAN

TimeGANCSDI

Distil
GAN

Adapt. D
istil

GAN
0

100

101

102

103

Pr
ed

ict
io

n
Er

ro
r (

m
s)

Figure 5.17: Average de-
tection error to nearest
microburst.

1 2 4 8 12 16 20
Compression Ratio

0.0
0.2
0.4
0.6
0.8

F1
 S

co
re

FT-IFT
Classical CS.

AudioUnet
CSGAN

STFTGAN
CSDI

DistilGAN
Adapt. DistilGAN

Figure 5.18: F1 score vs.
compression ratio for O-
RAN anomaly detection.

5.7.2 O-RAN Anomaly Detection

Here we started from data taken from a carrier grade Open RAN (O-RAN) testbed. We
then used TranAD [170] software to detect anomalies present in the data and build our
ground-truth5. Noteworthy that TranAD reports all the anomalies with a timestamp
associated to them.

We then sampled the data using a fixed sampling rate similarly to the use case pre-
sented in §5.7.1. The obtained results are illustrated in Figure 5.18. Adaptive DISTIL-
GAN can achieve 8 ∼ 10 CR without significant loss on F1 score, whereas the other
generative methods can only makes it to 4 ∼ 6 CR. Among the non-adaptive methods,
DISTILGAN stills gives the best performance at any CR. The non-generative methods
cannot reserve any anomalous pattern when sampling rate is very low as they cannot
easily learn those patterns.

5Anomalies here can happen because of radio interferences.

106

5.7.3 IoT Smart Metering Analysis
We started from a dataset including reports from four real smart meters [34]. This
includes the temporal evolution of different variables such as power and energy con-
sumption (Table 5.4). We used this as our groundtruth. We then sampled the data using
different CRs and tried to reconstruct the original dataset with DISTILGAN. We com-
pared this against AMDC [34], a lossy streaming-based compression/decompression
algorithm specifically created for IoT smart metering reporting. In particular, we used
AMDC to first compress the time series of data and then re-generate it.

The evaluation results are shown in Table 5.6. Here the two methods are compared
in terms of NRMSE (Normalized Root Mean Square Error) of the reconstructed series
with respect to the groundtruth. If the value is bigger than 0.2 then the reconstructed
serie cannot be considered acceptable [34]. As we can see, DISTILGAN can even
reach a CR of 30 and still being able to retrieve the original series of data with a very
small NRMSE. In contrast, AMDC fails beyond CR = 4. Finally, in Figure 5.19,
we report the contribution to the Q-value for each considered attribute when using
DISTILGAN with adaptive sampling. The weight of Apparent Power, Power, and
Current increases with CR. This reflects the adaptive sampling mechanism can adapt
to different variate as well.

Method DISTILGAN Adapt. DISTILGAN AMDC

CR=30 Fail 0.059 N/A
CR=20 0.053 0.032 N/A
CR=16 0.051 0.029 N/A
CR=8 0.040 0.025 N/A
CR=4 0.032 0.019 N/A
CR=2 0.010 0.006 0.006

Table 5.6: Comparison with Streaming
Compression Algorithm in IoT system
AMDC on Overall NRMSE (Success if
NRMSE < 0.2 for each window, otherwise
fail).

CR=2 CR=4 CR=8 CR=12 CR=16 CR=20
Actual Compression Ratio (CR)

0.0

0.2

0.4

0.6

0.8

1.0

Co
nt

rib
ut

io
n

to
 Q

-V
al

ue

Apparent Power
Power

Energy
Current

Frequency
Voltage

Figure 5.19: Contribution of each KPI
in the final Q-Value based on NMAE
when carry out adaptive sampling in
IoT smart metering.

5.8 Summary
In this chapter, we investigate various network telemetry methods and propose our
resolution — DISTILGAN, to realize a high fidelity, efficient, versatile, and real-time
network telemetry system. DISTILGAN leverage a spectral-temporal-based genera-
tor with a reconstruction quality estimation-based method to achieve adaptive sam-
pling/recovery network telemetry data. We also tailor the model to have highly paral-
lel structure and optimize the inference process with GPU, achieving millisecond-level
inference latency that can meet the latency requirement of real-time control loop. We
evaluated DISTILGAN in three distinct scenarios, as well as different downstream use
cases, and the results show a significant advance of DISTILGAN in the four require-
ments stated above.

107

108

Chapter 6

SpotLight

6.1 Introduction

In this chapter we investigate the explainable anomaly detection in networking. So far,
there are existing works for general multivariate time series anomaly detection. How-
ever, most of them cannot give an explanation of anomaly detection, i.e., highlight the
root cause among all anomalous KPIs. We also find that the existing works are mainly
designed for few open-source datasets and has never be evaluate on more complex sys-
tem such as ORAN. Unfortunately, none of the existing method can give a satisfactory
accuracy in ORAN system. The limited accuracy and lack of explanation motivate us
to design and implement our solution for the anomaly detection in ORAN system.

The Open RAN architecture, with disaggregated and virtualized RAN functions
communicating over standardized interfaces, promises a diversified and multi-vendor
RAN ecosystem. However, these same features contribute to significantly increased
operational complexity, making it highly challenging to troubleshoot RAN related per-
formance issues and failures. Tackling this challenge requires a dependable, explain-
able anomaly detection method that Open RAN is currently lacking. To address this
problem, we introduce SPOTLIGHT, a tailored distributed deep learning method run-
ning across the edge and cloud. SPOTLIGHT takes in a diverse, fine grained stream of
radio network and platform metrics from the Open RAN system and the platform, to
continually detect and localize anomalies. It introduces a novel multi-step generative
model that allows us to detect potential anomalies at the edge using a light-weight al-
gorithm, followed by anomaly confirmation and an explainability phase at the cloud,
that helps identify the minimal set of KPIs that caused the anomaly. We extensively
evaluate SPOTLIGHT using the metrics collected from an enterprise-scale Open RAN
deployment in an indoor office building. Our results show that compared to a range
of baseline methods, SPOTLIGHT yields significant gains in accuracy (13% higher F1
score), explainability (4× reduction in the number of reported KPIs) and efficiency
(4− 7× bandwidth reduction).

In summary, we make the following key contributions in this chapter:

• For the first time, we draw attention to the problem of anomaly detection and
localization in the Open RAN context, highlight its uniqueness and the new chal-
lenges that need to be addressed.

109

• We introduce the SPOTLIGHT system architecture and method design to resolve
the above problem. SPOTLIGHT employs a novel custom-tailored pipeline pow-
ered by a pair of deep generative modeling based anomaly detection methods,
working in tandem and optimized for a distributed deployment, followed by
causal discovery for enhanced explainability (§6.3).

• We develop a detailed and holistic Open RAN data collection process spanning
both the radio network and platform dimensions, and we create, to our knowl-
edge, the largest and most realistic multi-UE Open RAN dataset to date (§6.4).
We commit to making the dataset publicly available within 6 months of publica-
tion of this work.

• We evaluate SPOTLIGHT on a realistic 5G RAN deployment and demonstrate
its accuracy and explainability benefits compared to state-of-the-art solutions
over synthetic anomalies, as well as its ability to detect and localize real world
anomalies during normal RAN operation (§6.5-§6.7).

6.2 System Overview

6.2.1 Open RAN Architecture
Traditional RAN deployments are typically developed as embedded systems, where
the hardware and software components are built by a single vendor and are tightly
integrated.

Open RAN is an industry transformation, similar to SDN, that seeks to decouple
RAN software (SW) from hardware (HW) and open up the interfaces between different
SW components. It allows independent evolution of hardware and software, and faster
rollout of new services. It also enables operators to mix and match their components
through new and open interfaces, thus helping the ecosystem diversification.

As shown in Figure 6.1, an open and virtualized RAN base-station consists of
several components. One is a radio unit (RU), deployed at a cell tower. Connected to
it is a virtualized distributed unit (vDU), performing latency-critical operations, such
as signal processing and radio resource scheduling. It runs on commodity servers,
optimized for low latency (e.g. using Linux with real-time kernel patches). Due to
stringent latency requirements, it is deployed at a far-edge site, at most within a few
kms from the cell towers. One vDU can serve several RUs, depending on the HW
capacity at the edge. Several vDUs connect to a virtualized centralized unit (vCU),
which often runs at a near edge, further away from the towers, since it has more relaxed
latency requirements. A typical large telco may have 10,000s of far-edge and 100s of
near edge sites.

The Open RAN architecture standardizes the control and data plane through open
interfaces. Entities like a service management and orchestration framework (SMO) and
a radio intelligent controller (RIC) allow operators to control various aspects of RAN
deployments, such as switching off RUs for power saving and optimizing handovers
between cells.

In contrast to conventional RANs, Open RAN deployments are composed of sev-
eral hardware and software components that are developed by different vendors and

110

Far-edge

Server HW
Linux/K8s

vDU

Near-edge

Server HW
Linux/K8s

vCU
nRT-RIC

Far-edge

Far-edge Near-edge

Data center
SMO

Data plane
mid-haul

Data plane
back-haul

Control
interfaces
(O1, O2)

Control
interface

(E2)

Data plane
front-haul

Figure 6.1: Open RAN defines various open interfaces and consists of hardware and
software components provided by diverse vendors (marked in different colors). The
RAN is deployed over 10,000s of far-edge and 100s of near-edge sites.

are bundled into a single solution by third-parties (e.g., system integrators). For ex-
ample, a vDU and vCU from one vendor can run on server hardware from another
vendor and the platform software from a third vendor. Different platform providers
may use different versions of Linux and Kubernetes as a part of the platform. A key
goal of Open RAN is to standardize different interfaces and architectures to enable
such diverse deployments.

6.2.2 Key Challenges in ORAN Anomaly Detection

Massive Data Volume and Number of KPIs

The foremost challenge we face involves managing the substantial throughput of mea-
surement data and the extensive array of Key Performance Indicators (KPIs). Iden-
tifying anomalies within hundreds of KPIs, each with a granularity of approximately
100 milliseconds, presents a significant hurdle. Effective anomaly detection must not
only process individual KPIs but also discern the interconnected correlations among
all KPIs. It is crucial to highlight the intricate nature of these system KPIs; they com-
prise a complex mix of various types, including categorical and binary, among others.
This diversity and complexity render most traditional methods inadequate, often fail-
ing to yield reasonable results. Our approach, therefore, must be sophisticated enough
to navigate and interpret this multifaceted data landscape effectively.

Realtime and Limited Resources

Real-time anomaly detection in Open RAN systems necessitates that all processes are
completed swiftly while the system is operational, underscoring the need for rapid
inference latency. However, reducing this latency isn’t as straightforward as simply
increasing the number of GPUs. This is particularly relevant in the context of far-edge
implementations of the RAN system, where the use of GPUs is often not feasible due
to budget constraints. Conducting anomaly detection efficiently using only CPUs at
the far-edge poses a significant technical challenge.

111

Meanwhile, on the cloud side, while computational resources are typically more
abundant, another issue emerges. Frequent data exchanges between the far-edge and
the cloud can lead to substantial bandwidth consumption. This raises a critical ques-
tion: how do we balance the communication overhead with the accuracy of the anomaly
detection? Achieving this balance requires a thoughtful and well-designed approach,
considering both the limitations of far-edge computing resources and the bandwidth
constraints of cloud communication. Addressing this challenge is key to developing
an effective and efficient anomaly detection system in Open RAN environments.

User Experience: Low False Detection

In the realm of anomaly detection research, there’s a notable trend towards metrics-
driven evaluation, with many studies primarily focusing on the overall F1 score. This
score combines precision and recall, essentially evaluating the proportion of accurately
identified anomalies. While this approach is valid for certain research problems, it may
not align with the practical concerns of network operators.

From a network operator’s perspective, the incidence of false positives – or in-
correct anomaly detections – poses a significant challenge. Frequent false alarms can
overwhelm operators, making it difficult to efficiently troubleshoot genuine issues.
Therefore, a crucial aspect of our research is to enhance the precision of anomaly
detection. Improving precision will reduce the rate of false positives, ensuring that
anomaly reports are reliable and actionable. Addressing this issue is vital for develop-
ing an anomaly detection system that is not only effective in theory but also practical
and user-friendly in real-world network operations.

6.2.3 Explanation in ORAN Anomaly Detection
We would pursue certain explainable functions of the anomaly detection results, so
that the user can spend less time on debugging. In this chapter, the term ’explanation’
specifically pertains to elucidating the outcomes of anomaly detection, rather than de-
tailing the operational mechanics of deep generative models. To clarify, this involves
focusing on a concise list of potential root causes whenever an anomaly is identified.
Such an approach significantly streamlines the user’s task by reducing the need to ex-
amine a multitude of irrelevant KPIs. By concentrating on this targeted list, users can
efficiently isolate and address the fundamental issues leading to the detected anoma-
lies. This method of explanation not only enhances the practical utility of our anomaly
detection system but also makes it more user-friendly by simplifying the diagnostic
process.

6.3 Overview of SPOTLIGHT

6.3.1 System Architecture
SPOTLIGHT is a system for detecting and explaining anomalies in RAN and platform
components of Open RAN. Its primary focus is on vDU components which are most
difficult to operate due to real-time operational requirements, but it is also applicable

112

0 20 40 60 80
Time

4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00

Gb
ps

Fronthaul link utilization

0 1 2 3 4 5 Overall
Interval

0

5

10

15

20

Tr
af

fic
 (M

bp
s)

Baseline Average
Average Traffic (10s window and overall)

95% CI Lower
95% CI Upper

(a) Baseline KPIs for TCP DL Traffic

0 20 40 60 80
Time

4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00

Gb
ps

Fronthaul link utilization

0 1 2 3 4 5 Overall
Interval

0

5

10

15

20

Tr
af

fic
 (M

bp
s) Baseline Average

17% less

Average Traffic (10s window and overall)

95% CI Lower
95% CI Upper

(b) KPIs for TCP DL Traffic with external radio interference

0 20 40 60 80
Time

4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00

Gb
ps

Fronthaul link utilization

0 1 2 3 4 5 Overall
Interval

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Tr
af

fic
 (M

bp
s)

Baseline Average
23% less

Average Traffic (10s window and overall)

95% CI Lower
95% CI Upper

(c) KPIs for TCP DL Traffic with FH network contention

0 20 40 60 80
Time

4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00

Gb
ps

Fronthaul link utilization

0 1 2 3 4 5 Overall
Interval

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Tr
af

fic
 (M

bp
s)

Baseline Average
Average Traffic (10s window and overall)

95% CI Lower
95% CI Upper

(d) KPIs for TCP DL Traffic with inadequate FH network contention

Figure 6.2: FH traffic and UE throughput for different scenarios

on other RAN components. It is built on observations that (i) anomaly detection needs
to be automated as much as possible due to the expected scale of the RAN deployments
in practice, and (ii) that in order to build this automation we need to collect detailed
metrics from both RAN and platform. SPOTLIGHT is distributed across cloud and
edge. Its high-level architecture is shown in Figure 6.3. It consists of three parts:

113

In Distribution?

R
A

N
 K

P
Is

P
latfo

rm
 K

P
Is

D
ata P

re
p

ro
ce

ssin
g

JV
G

A
N

Far-edge Cloud

Fin
al R

e
po

rt

Anomalous
KPIs

Final KPIs for
Explanation

No
Anomaly

Y

N

Distribution
based

Inference

 Imputation
guided

Inference
KPIs

Gθ
j

Gθ
m

Anomaly
Explaination

Figure 6.3: Schematic of SPOTLIGHT in the Open RAN context.

• Data collection. Unlike conventional RAN systems, SPOTLIGHT introduces
detailed instrumentation on both the RAN and platform. We introduce probes
that collect fine-grained metrics or KPIs (over 600 in total) that provide required
data to enable reliable anomaly detection and root cause identification (see §6.4).

• Data processing at the edge. A far-edge node has limited compute capacity and
is not suited for sophisticated ML methods. A centralized location (e.g., cloud),
is better equipped for this task. However, sending massive amounts of data from
10,000s far-edge locations to a centralized place can be prohibitively expensive.
We use the edge to implement a light-weight data filtering algorithm that draws
a balance between the available compute and the uplink bandwidth.

• Anomaly detection and identification in the cloud. We deploy the heavy part
of our processing in the cloud due to ample availability of compute and storage
resources.

We collect data samples each 100 ms. We aggregate 50 consecutive samples into a
window, representing multi-variate time series, and feed it to SPOTLIGHT’s anomaly
detection method. At the output, in the event of an anomaly, we receive a filtered set
of anomalous KPIs related to specific RAN and platform components that help easily
identify the root cause.

6.3.2 Detection Method Description
We start with the design requirements of SPOTLIGHT based on the following require-
ments.

• Accuracy. Our goal is to to maximize the detection of all anomalies (i.e., have a
high recall) as well as minimize spurious detections or false alarms (i.e., have a
high precision). To detect any kind of anomaly, we further require our method to
be semi-supervised in that it should be trained only using normal data [29], and a
limited amount of it. The method should also generalize well to new and unseen
KPI patterns, including normal cases un-encountered in the training data.

• Explainability. We need an anomaly detection method that reliably directs us to
the minimal subset of KPIs that point to the source of a detected anomaly. For

114

Fi
n

al
 L

ay
er

D
ro

po
u

t
La

ye
r

Previous
LayersInput

D
is

cr
im

in
a

to
r

L1
 +

 A
d

ve
rs

ar
ia

l L
o

ss

JointVAE

(a)

5% CSDI

5%-15% CSDI

15%-25% CSDI

MRPI

Outlier Data
(A)

Normal
Data (N)

Imputation with
Nearest Model

Drop Outlier
Points

Randomly Drop
Normal Points

Err. A > Err. N?

N

No
Anomaly

Y

A
n

o
m

a
ly

(b)
0 10 20 30 40 50

Time

20

10

0

10

20

KP
I V

al
ue

a(t)

b(t)

J(t))

M(t)

KPI
No Anomaly

Anomaly by JVGAN
Anomaly by JVGAN and MRPI

Fixed by MRPI
Covered by JVGAN

Figure 6.4: (a) JVGAN architecture; (b) MRPI workflow; (c) Illustration of learned
distributions – J(t): blue; – M(t): green.

example, an anomaly in a physical (L1) layer of vRAN can be visible through
unexpected uplink traffic variations in L1. But this will also cause variations in
uplink traffic in MAC, RLC and PDCP layers, and we will potentially mark these
metrics anomalous as well. The goal of the filtering step is to find the right root
cause (L1 in this case) through a minimal set of relevant metrics, by learning and
tracking dependencies between metrics.

• Efficiency. We seek a method that strikes a balance between leveraging available
local processing resources at the far-edges, to minimize the bandwidth and cost
requirements for further processing at the cloud, while ensuring detection and
localization of any anomalies within the desired timescales.

To address these requirements, we structure the detection method into 4 compo-
nents, shown in Figure 6.3. The first component is a light-weight pre-processing al-
gorithm that runs at the edge, called JVGAN, which is based on a variational autoen-
coder. The key contribution we make here is to improve the accuracy compared to
off-the-shelf methods, given that we have to deal with bursty and multi-modal data.
JVGAN is also light-weight (takes less than 0.1% of a CPU core) and its output is
significantly lighter than its input (4×-7×), addressing the efficiency requirement (see
Section 5.6.1).

JVGAN may have a high level of false positives (low precision). So we further
process the data in the cloud to improve the accuracy. For that, we use an imputation
based anomaly detector called MRPI. The idea behind it is that if we treat the outlier
points from the JVGAN stage as missing points and cannot generate them with a
time series imputation model (trained on normal data) then those outliers represent
true anomalies otherwise false alarms. This allows to better capture noisy and bursty
data. This step further improves precision by 5%-10% (see Section 6.6.1). Finally,
we filter down the list of anomalous metrics to the minimal set. This is done in steps
marked as KFILTER and CAUSALNEX in Figure 6.3, and addresses the explainability
requirement.

The anomaly detection and localization problem we target takes as input the mul-
tivariate time series of KPIs x = (xi(t))i, for each KPI i. This includes measured as
well as derived KPIs, and span both radio network and platform. Resolving our prob-
lem translates to outputting ∅ if no anomaly is found, and a minimal subset K ⊆ K
otherwise, where K is set of all KPIs. In the anomaly case, the subset of KPIs K in the
output reflects the likely cause and location of the anomaly, given that each KPI im-
plicitly represents a location in the system. We continually perform the detection and
localization for every incoming time window W of KPI streams. We next formalize
the three key components of the algorithm.

115

Why use a generative model? The task of identifying anomalies in our study
is framed as a binary classification problem, yielding deterministic outcomes (Yes or
No). Labeling this process as ’predictive’ underscores the definitive nature inherent
in anomaly detection. Our choice to utilize a generative model, particularly one that
employs probabilistic generation techniques, is primarily driven by the goal of distribu-
tion learning. The essence of our approach lies in learning a deterministic distribution
through probabilistic means. In this context, if the data falls within the bounds of the
distribution we generate, it is classified as non-anomalous. Thus, while the generative
model serves as a tool for learning the distribution of potential values, the actual deter-
mination of anomalies is governed by a deterministic rule. This approach allows us to
systematically categorize data as anomalous or not, based on a learned distribution that
reflects the expected range of normal data variations. Besides, if learn in conventional
way, with boundary and threshold, that would make the learning task more challenging
since more independent parameters need to be learned.

Distribution based inference with JVGAN

As discussed in §2.5 and shown in §6.6.1, the prior RAN anomaly detection methods
based on time series prediction or reconstruction are ineffective when applied to our
setting. So we take a fundamentally different approach and create a new, generative
modeling based anomaly detection method.

JVGAN, the initial component of our method, is a generator that first learns the
distribution of normal KPI time series and then uses the learned distribution as a ref-
erence to infer if a given test KPI time series is anomalous. This distribution learning
approach is not only robust to highly diverse patterns across many KPIs, as in our set-
ting, but also does not have the threshold setting issue as prior methods. Furthermore, it
has the beneficial effect of data filtering at the edge by efficiently distinguishing normal
from potential anomalous cases so that only the latter cases are further inspected.

Specifically, for JVGAN we train a generator Gj
θ on the observed KPI time series

x(t), where θ refers to the learned weights of the generator model. The objective of the
generator Gj

θ is to infer whether or not a given observed KPI time series x(t) ∈ X(t),
which can be stated as:

min
θ

Et>0[G
j
θ(x(t))|x(t)/∈X(t)] + Et>0[1−Gj

θ(x(t))|x(t)∈X(t)],

where Gj
θ(x(t)) = 1 if x(t) ∈ X(t), and 0 otherwise. The trained generator Gj

θ(x(t))
is then sampled N times to get a set of samples J(t) that approximates the true but
unknown distribution of the ‘normal’ KPI time series X(t).

During classification, given a ‘test’ KPI time series y(t), we check to see if it
falls within the learned distribution J(t). We use the upper and lower bounds of J(t),
represented respectively as a(t) and b(t) that are calculated as the envelope (max and
min respectively) of samples drawn from the distribution J(t), and we declare metric
y(t) as anomalous if

∀yj ∈ y(t),∃a(t), b(t) ∈ J(t) s.t. yj < bjor yj > aj (6.1)

This is illustrated in Figure 6.4(c).

116

JVGAN generator Gj
θ(x(t)) is based on the variational autoencoder (VAE) [88],

which is a standard approach for distribution learning. However, as we show in §6.6.1,
vanilla VAE is ineffective for this purpose due to the following three issues:

1. Classical VAE works well only when dealing with continuous data, but there
exist many KPIs in our setting, that are discrete or categorical (e.g., HARQ out-
come).

2. Our KPI time series is highly bursty, which makes it harder for vanilla VAE to
learn the distribution in a way that can reliably separate normal and anomalous
cases.

3. Fitting the learned distribution too closely to training data hurts generalization,
as training data does not represent all possible normal cases, i.e., X(t) ⊂ X(t).

We address issue (1) in Gj
θ(x(t)) by considering JointVAE [44] as our basic neural

network structure, as it is more robust with categorical and binary data streams. For
issue (2), we include adversarial training (à la GANs [59]) for high fidelity distribution
learning. For issue (3), we use Monte Carlo Dropout [58] to have the learned distribu-
tion to be not limited by training data. The JVGAN generator architecture (Gj

θ(x(t)))
with the above techniques is illustrated in Fig. 6.4(a).

Imputation guided Inference with MRPI

JVGAN can reliably detect normal cases when a given test KPI time series is fully
within J(t). Considering that J(t) is only an approximation of the unknown true dis-
tribution of the normal KPI time series, X(t), and that it is limited by the training data
X(t), we have many cases that only fall partially in J(t). Fig. 6.4(c) illustrates such a
case where some of the data points in the time series for a KPI fall outside the distri-
bution J(t). However, simply inferring all such cases as anomalies will lead to poor
precision (i.e., many false alarms). So, we introduce a further vetting step through
another generator called multiple rate probabilistic imputation (MRPI) to minimize
spurious anomalies.

The key idea behind MRPI is as follows.
The data points in a test KPI time series x(t) that fall outside J(t) are treated as

‘missing points’, and then we assess if they can be generated by an imputation model
trained using only normal data X(t). Among those missing points, the ones that cannot
be reliably generated through imputation, i.e., fall outside the distribution M(t) learnt
by the imputation model, can be safely inferred as anomalous.

Our MRPI design is based on CSDI [162], which is the best existing time series
imputation model [9]. However, the original CSDI design is limited to just one setting
of missing data rate. On the other hand, it is impractical to have a separate imputation
model for each possible missing data rate. We empirically observe that imputation
at 10% intervals provides good generalizability within each interval. Therefore, we
train multiple CSDI models for different intervals (ranges of missing data rates) using
normal training data X(t): ≤ 5%, 5 − 15%, 15 − 25%, .. (11 models in total). During
inference, we pick the model that is closest, based on fraction of data points in x(t) not
covered by J(t). For example, if 10% of x(t) is not in J(t), then we pick the trained

117

5 − 15% CSDI model. We declare the point as an anomaly, if it does not belong to
the distribution of the selected CSDI model. We illustrate this in Fig. 6.4(c) where
the CSDI distribution is shown in green. The overall MRPI architecture is shown in
Fig. 6.4(b).

Enhancing Explainability with KFilter and Causal Discovery

By applying the combination of JVGAN and MRPI, we can continually detect any
KPIs exhibiting anomalous behavior based on the most recent batch of KPI data streams.
However, the anomalous nature of some of these KPIs may be transient while other
anomalous KPIs might be the effect of an anomaly caused elsewhere. So, to bet-
ter identify the actual root causes of persistent anomalies, we employ two methods –
KFILTER and Causal Discovery – as elaborated below.

KFILTER. The purpose of this method is to filter out insignificant anomalous
KPIs. In particular, the aim is to discard those KPIs that are detected as anomalous
only for a brief period of time but otherwise show normal behavior. So, we monitor
the percentage of time each KPI is detected to be anomalous across the whole measure-
ment period and filter out the ones which appear anomalous below a certain threshold
period. We empirically set that threshold to 25% in our experiments.

Causal Discovery. Even after applying the KFILTER, there may be several anoma-
lous KPIs left for a domain expert to examine to identify the root cause behind a
detected anomaly. We observe that KPIs have inherent correlations and causal rela-
tionships between them. This suggests that the actual KPIs to inspect in the event of
an anomaly are the subset of anomalous KPIs that have a causal relation from them
to other anomalous KPIs. We aim to leverage the directed graph of causal relations
among KPIs to reduce the ones reported by SPOTLIGHT in the event of an anomaly.
Such an approach has proven to be effective in other settings such as root cause detec-
tion of failures in micro-services [74]. To deduce the causal graph among anomalous
KPIs after KFILTER, we make use of CausalNex [16], the state-of-the-art toolkit for
causal reasoning with Bayesian Networks. Specifically, each anomalous KPI is rep-
resented as a node in this graph and we report the ones that have directed edges from
them to other anomalous KPIs.

Training

We train the JVGAN and MRPI models independently, as they focus on distinct tasks.
We view the KPIs as different channels in the neural network, and therefore their in-
herent correlation is captured through weight sharing.

For both JVGAN and MRPI, we train the models by minimizing the Jensen-
Shannon (JS) divergence between the distributions of the data and the corresponding
models, following the conditional GAN formulations [73, 115] with the aid of a dis-
criminator as in the GAN framework. We use L1 loss as part of the loss function
for training. The discriminator of JVGAN is implemented with a single layer LSTM
structure and a few dense layers, whereas in MRPI we keep the original discriminator
as in CSDI [162]. Both JVGAN and MRPI have a loss function: L = LL1 + λLJS,
with a default weight λ = 0.1 to capture the effect of adversarial loss.

118

KPI Category Description Type
Signal Quality Includes UL/DL SINR, CSI reports, UL/DL MCS Radio

Packet Size
UL/DL packet size at PDCP, Midhaul, RLC, MAC
and FAPI layer Radio

Losses UL Bler rate and DL HARQ NACK rate Radio
Buffer info UL Buffer status report and DL buffer occupancy Radio
Resource Allocation UL/DL PRB usage and UL/DL TBS Radio

Thread Scheduling
Runtime of thread, count of on and off CPU,
CPU ID Platform

FH traffic FH UL/DL link usage in Gbps Platform
PTP logs PTP frequency, RMS, delay and max offset Platform

Table 6.1: KPI description

6.4 Data collection
One of the premises of SPOTLIGHT is access to detailed metrics. Here we describe the
data collection process we have built as a part of the system.

Radio Network KPIs: We leveraged a powerful and lightweight telemetry extraction
framework [56] that can collect detailed KPIs at a fine granularity and we integrated
it in the RAN functions. This allowed us to collect many vCU and vDU events, such
as signal quality reports of UEs, MAC scheduling decisions, queue and packet sizes
at the PDCP and RLC layers, HARQ ACKs/NACKs, etc. Using the raw data, we de-
rived several KPIs at the granularity of 100ms, including histograms and other statistics
(min, max, distribution skewness, etc.). Using this process, we collected a total of 206
radio network KPIs, all agnostic of the number of UEs.
Platform KPIs: We collected network counters (number of packets and throughput)
exposed by an API of the ToR switch at a granularity of 5s. We developed an eBPF
tool [45], that allowed us to collect detailed per-CPU runtime information from all
the threads running in the system (RAN and others), by capturing all the scheduling
events. The tool exposes both on- and off-cpu runtimes of threads, i.e., how long a
thread ran before being pre-empted (on-cpu) and how long it waited until it was sched-
uled again (off-cpu). As these events can reach hundreds of thousands per second, we
aggregated the thread runtime statistics at a granularity of 1s to guarantee the stability
of the system, in a similar way as we did for the radio network KPIs. We also scraped
OS logs to collect data about PTP synchronization (1s granularity). This resulted in
the collection of 466 platform KPIs in total.

A brief summary of all the collected KPIs, statistics and the data collection process
is listed in Table 6.1, while a detailed description of the dataset’s schema can be found
in [11].

6.5 Evaluation Methodology

6.5.1 Evaluation setup

We have deployed a state-of-the-art, enterprise-scale 5G Open RAN deployment, cov-
ering a five floor office building, with two 5G base stations per floor. All the compo-

119

Servers (8×) HPE Telco DL110 Gen 10; Xeon 6338N CPU
Accelerator Intel ACC100 for LDPC coding
Ethernet NIC Intel E810 4×25GbE NIC,

Ethernet switch Arista 7050-CX3
Radio unit Foxconn 4x4 RU; 100MHz at 3.5GHz
PTP grandmaster Qulsar Qg2 multi-sync gateway

Operating system Real-time CBL-Mariner Linux kernel 5.15
PHY software Intel FlexRAN v22.03
L2+ software CapGemini 5G Solution

Table 6.2: 5G RAN hardware and software configuration.

Foxconn RU

HPE DL110 server

CBL Mariner Linux

Arista 7050-CX3 ToR

Qulsar Qg2 PTP
Grandmaster clock

10GbE 25GbE

Intel FlexRAN L1

CapGemini L2

1GbE

CapGemini vCU

vDU

5G Core

25GbE

Figure 6.5: Deployment configuration for single cell.

nents are commercial-grade and O-RAN compliant. Table 6.2 summarizes the hard-
ware and software configuration. The vRAN functions support several 5G features,
including 100 MHz transmissions, 4×4 MIMO and the O-RAN 7.2x FH protocol. To
our knowledge, this combination of features in a standards-compliant and end-to-end
5G Open RAN deployment is a unique characteristic of our deployment. We oper-
ated the deployment for over a year, and we identified a number of real-world cases of
anomalies (discussed in Section 6.7.1) from this experience.

For the evaluation, we focus on a single cell of the deployment, using the configura-
tion illustrated in Fig. 6.5. In terms of the end-user devices, we use up to 8 UEs during
the network’s normal operation, including both commercial 5G smartphones (OnePlus
N10, Samsung Galaxy A52s), as well as Raspberry Pi development kits equipped with
Qualcomm 5G modems.

6.5.2 Dataset Creation
Using the deployment described in Section 6.5.1, we created a rich dataset consisting
of fine-grained platform and radio network KPIs described in Section 6.4, consider-
ing both non-anomalous and anomalous cases. Overall, our training dataset consists
of approximately 77 million measurement points. To our knowledge, this dataset is
the largest and most realistic Open RAN dataset to date, with existing alternatives
(e.g., [20]) mainly providing simulation/emulation data and not considering the real-
time platform KPIs.

To generate a realistic dataset, we introduced a diverse set of eight traffic profiles,
summarized in Table 6.3, and considered scenarios with one, five and eight UEs. In

120

RU 1

UE 1

UE 2 UE 3

UE 4

UE 5

UE 6

UE 7
UE 8

100

95

90

85

80

75

70

65

dBm

Figure 6.6: Floorplan of cell and UE deployment used for data collection and evalua-
tion.

experiments involving a single UE, we generated traffic with all profiles for a duration
of 10 minutes each. For five and eight UEs, we selected random UE subsets and created
two scenario types:

• Constant traffic: Each UE selects a traffic profile and maintains it for 10 minutes.

• Mixed Traffic: Each UE randomly selects one of the 8 traffic profiles for a ran-
dom duration (5 to 10 seconds). After this period, the UE pauses transmission
for a random duration between 5 to 10 seconds before resuming with another
randomly selected traffic profile. This lasts for 10 minutes.

Obtaining reproducible data in a controlled manner is challenging in a multi-UE
setting with mobility. Therefore, in this work, we opt to use static UEs, meaning that
some KPIs, such as SNR, are more static than in a truly mobile environment. We
compensate for this in two ways:

• We consider several UEs with diverse positions and varying distances from the
radio (showed in Fig. 6.6), ensuring that these KPIs differ across different UEs.

• All the KPIs of our dataset are aggregates across all UEs, rather than capturing
individual UE metrics.

This combination, makes the aggregate signal quality related KPIs of the dataset dy-
namic. In addition to that, and due to (pseudo-)random traffic patterns that we intro-
duce, all the other KPIs are also very dynamic.

6.5.3 Representative Anomalies
To evaluate the accuracy and explainability power of SPOTLIGHT, we carefully crafted
a variety of anomalous scenarios. The anomalous scenarios under study were designed
to cover representative issues across the vRAN stack, and are also discussed in §??.
Specifically, we considered the following representative types of anomalies:
CPU contention – We emulate a class of anomalies in which thread contentions or
misconfigurations are throttling threads that are responsible for RAN operations (see

121

Traffic Type Discription Duration
(minutes)

iperf3 TCP DL UE sends TCP DL traffic in DL direction 10
iperf3 TCP UL UE sends TCP UL traffic in UL direction 10

iperf3 UDP DL
UE sends UDP traffic at 10 mbps in

DL direction 10

iperf3 UDP UL
UE sends UDP UL traffic at 10 mbps in

UL direction 10

file download UE downloads the file from internet 10
file upload UE uploads the file to server using scp 10

video stream UE streams a video 10
web traffic UE constantly access a random website 10

Table 6.3: Different profiles of generated traffic

Anomaly Target Effect Duration Frequecny Ratio

PDCP worker
thread contention CU

Delays in processing of
user packets, leading

to packet drops

between 0.8
to 6 seconds

Every
10 seconds 10-65%

Radio
interference

DU air
interface

SNR reduction and
packet retransmissions

between 1
to 2 seconds

Every
10 seconds 10-20%

FH
network

contention

FH
and DU

SNR reduction and
packet retransmissions

between 0.3
to 0.6 seconds

Every
15 seconds 10-12%

MAC scheduler
thread contention DU

Missed scheduling
decisions and packet drops

between 0.8
to 1.2 seconds

Every
10 seconds 3-5%

Mixed anomalies All Combination of effects
Same as in

single anomaly
cases

Same as in
single anomaly

cases
varying

Table 6.4: Description of considered anomalies. The end result of all anomalies is UE
throughput degradation.

Section 6.7.1 for a real-world example). We introduced a CPU contention using stress-
ng [67] to a worker thread responsible for relevant processing (e.g. a PDCP worker
thread for CU, etc).

Radio interference – This scenario reflects radio interference related issues that could
be a result of inter-cell or external interference. For this anomaly, we configure a USRP
software-defined radio to transmit an intermittent traffic over 40MHz of spectrum over-
lapping with our vRAN allocated spectrum.

Network contention – This scenario is meant to represent anomalies stemming from
the sharing of network links between RAN and other functions, without proper isola-
tion and QoS guarantees. For this anomaly, we introduced intermittent traffic on the
same link that carries the FH traffic (IQ samples) between the DU and the RU.

Mixture of anomalies – In the mixed anomaly scenario, we created all six possible
combinations of the four anomalies occurring together in pairs.
We summarize them in Table 6.4. Overall, we created a test dataset containing ∼33
million datapoints. In Section 6.7.1, we further discuss several real anomalies that
manifested in our deployment during its operation for over an year.

122

Category Baseline Method

Prediction & Reconstruction
TranAD [170]

VAE-LSTM [97]

Prediction based
GDN [41]

LSTM-PRED [87, 169]

Reconstruction based
MADGAN [94]

LSTM-AE [87, 169]
Statistical Z-Score [5]

Table 6.5: Anomaly de-
tection baseline meth-
ods.

Spotlight
TranAD

MADGANGDN
VAE-LSTM

LSTM-AE

LSTM-PRED
ZScore

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

0.92

Figure 6.7: Average F1
score across all scenar-
ios.

0 25 50 75 100 125 150 175
Time (Seconds)

1.0

1.5

2.0

2.5

PD
CP

 K
PI

 a
t C

U Imputation by MRPI

Thresholds from JVGAN distr.
True Detection of Both False Detection of TranAD

Orig. PDCP KPI False Detection of JVGAN TranAD Pred.

Figure 6.8: Anomaly detection be-
havior of SPOTLIGHT vs TranAD.

6.5.4 Baselines

Accuracy baselines

As discussed in §2.5, most state-of-the-art time series anomaly detection methods in
both RAN and ML domains are prediction based, reconstruction based or combine
both. To assess accuracy benefit with SPOTLIGHT ’s anomaly detection approach, we
pick representative baselines from each of these categories, as outlined in Table 6.5.
Like SPOTLIGHT, all these methods are trained on normal data.

Methods based on time series prediction (GDN [41] and LSTM-PRED [87, 169])
rely on the prediction error (i.e., difference between predicted and actual KPIs at
each time step) for anomaly inference. On other hand, reconstruction based meth-
ods (MADGAN [94] and LSTM-AE [87, 169]) encode and decode the test time series
input using trained models and infer anomalies based on the reconstruction error (i.e.,
discrepancy between decoded and actual test input). For LSTM-PRED and LSTM-
AE methods, we use the standard deviation of prediction/reconstruction errors during
training as the threshold for anomaly detection during inference.

As a simple-minded statistical baseline method, we also use a Z-Score based time
series anomaly detection [5] in which z-score is continually computed over a sliding
window and classify a new point in the time series as an anomaly if its z-score is above
a threshold (one standard deviation).

Note that among these baselines, LSTM-PRED, LSTM-AE and Z-Score perform
‘univariate’ time series anomaly detection separately for each KPI, whereas SPOT-
LIGHT and rest of the baselines are multivariate across all KPIs.

Explanation baselines

SHAP with TranAD: SHAP [105] is a commonly used model agnostic method for ex-
plainability and provides a unified measure of feature importance – higher SHAP score
for a KPI reflects its higher importance. We augment TranAD, the best performing
anomaly detection method among our baselines, with SHAP (using its Omnixai [183]
implementation).
GDN [41] has inherent explanation capability by modeling the set of KPIs (variables)
as graph nodes and learning the edge weights between them through its attention mech-
anism. KPI(s) inferred to be anomalous and their highest weight neighbors forms the
explanation output from GDN.

Besides the above two baselines, all univariate baseline methods we consider –

123

Method
PDCP Radio MAC Network Overall

F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑
SPOTLIGHT 0.952 0.91 0.99 0.891 0.91 0.88 0.94 0.89 1 0.861 0.92 0.81 0.92 0.91 0.92

TranAD 0.88 0.78 1 0.82 0.75 0.90 0.89 0.80 1 0.70 0.62 0.80 0.81 0.73 0.92
MADGAN 0.80 0.70 0.91 0.78 0.73 0.82 0.82 0.69 1 0.75 0.65 0.88 0.79 0.69 0.91

GDN 0.72 0.56 1 0.73 0.58 1 0.51 0.34 1 0.32 0.19 1 0.57 0.41 1
VAE-LSTM 0.66 0.52 0.93 0.77 0.63 1 0.74 0.58 1 0.40 0.26 0.81 0.63 0.48 0.93
LSTM-AE 0.73 0.58 1 0.72 0.57 1 0.28 0.16 1 0.34 0.21 1 0.51 0.38 1

LSTM-PRED 0.71 0.55 1 0.72 0.56 1 0.26 0.15 1 0.31 0.18 1 0.5 0.36 1
ZScore 0.72 0.57 0.97 0.73 0.59 0.95 0.52 0.35 1 0.33 0.19 1 0.57 0.42 0.98

Table 6.6: F1 score, precision and recall for the 5 UE scenario and for all types of
anomalies.

LSTM-PRED, LSTM-AE and Z-Score – provide explainability by default, as they
treat each KPI independently and every KPI corresponds to a location in the Open
RAN system.

6.6 Evaluation Results

6.6.1 Accuracy

We begin our evaluation by comparing the overall accuracy of SPOTLIGHT to the base-
lines from Section 6.5.4 for all the configurations identified in Section 6.5. As it can be
seen from Fig. 6.7, the average F1 score of SPOTLIGHT for all the considered anoma-
lous cases is 0.92, which is ∼14% higher than the second best method (TranAD),
demonstrating its high accuracy across all scenarios under study.

To understand the nature of SPOTLIGHT’s accuracy, we present a more detailed
view of the results in Table 6.6, for all single anomalies in the case of 5 UEs with
mixed traffic. The table presents F1 scores, precision and recall. We obtain similar
results for all other scenarios, but we omit them due to lack of space. As we can ob-
serve, SPOTLIGHT has similar recall to the baselines, but fares significantly better in
terms of the precision. This can be observed in the example illustrated in Fig. 6.8, in
which we pinpoint the anomalies detected by SPOTLIGHT and the second best method,
TranAD, for the PDCP worker thread contention anomaly during a 175s period. As
we can see, in contrast to SPOTLIGHT, TranAD identified two false anomalies dur-
ing 85-95s and 130-175s for the KPI under study. Instead, the JVGAN component of
SPOTLIGHT correctly identified the samples during 85-95s as non anomalous, as they
fell within the distribution it learned. On the other hand, JVGAN falsely identified the
samples between 130s and 175s as anomalous. However, the imputation of MRPI cor-
rected the false detection of JVGAN, flagging the KPI as non-anomalous, maintaining
SPOTLIGHT’s precision at a high level.

The benefits of MRPI on improving the precision of SPOTLIGHT can also be seen
in the ablation test of Table 6.7 for one of the 5 UEs scenarios. JVGAN captures
most of the true anomalies, leading to a very high recall score for all anomalies under
study. However, the precision of the model is fairly low, but is significantly enhanced
by the introduction of MRPI at the expense of a marginally negative effect on recall.
Finally, it should be noted that if we replace the JointVAE structure with a conventional
VAE, then the precision becomes much lower, because the performance on categorical
and binary variable is much worse. Introducing model uncertainty based tolerance
contributes to the overall precision by reducing false detections. Without adversarial

124

Method
PDCP Radio MAC Network Overall

F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑
SPOTLIGHT 0.967 0.94 1 0.92 0.95 0.89 0.95 0.91 1 0.91 0.99 0.85 0.92 0.91 0.92

JVGAN (MC Dropout) 0.95 0.90 1 0.87 0.80 0.95 0.90 0.82 1 0.84 0.84 0.85 0.87 0.83 0.95
JVGAN (W/o MC Dropout) 0.74 0.62 0.92 0.76 0.63 0.95 0.78 0.65 1 0.73 0.62 0.89 0.75 0.63 0.94

JVAE 0.67 0.50 1 0.70 0.54 1 0.72 0.56 1 0.67 0.52 0.95 0.68 0.53 0.97
VAE 0.65 0.48 1 0.66 0.50 1 0.57 0.40 1 0.43 0.28 0.90 0.51 0.36 0.97

Table 6.7: Ablation Test on 5 UE scenario

Spotlight

TranAD(SHAP)
GDN

LSTM-PRED
LSTM-AE

ZScore
0.0

0.2

0.4

0.6

0.8
KP

I R
at

io
PDCP Anomaly
MAC Anomaly
Radio Anomaly
Network Anomaly

Figure 6.9: Ratio of KPIs flagged as potential causes for anomaly among all considered
KPIs

training and MC dropout, the JointVAE does not perform better than other VAEs (e.g.
VAE-LSTM), and therefore we can see that the adversarial training and MC dropout
play critical roles in enhancing the precision.

6.6.2 Explainability
Here, we focus on evaluating SPOTLIGHT in localizing and explaining anomalies. We
begin by comparing the explainability power of SPOTLIGHT compared to the base-
line methods of Section 6.5.4. We first consider the ratio of anomalous KPIs that are
flagged as potential culprits among all the considered KPIs for each anomaly by both
SPOTLIGHT and the baselines. A low ratio indicates that a model is more focused
and does well in filtering out irrelevant KPIs from the explainability step, effectively
simplifying the root cause analysis process. Fig. 6.9 illustrates the ratios for all sin-
gle anomalies that we considered. We observe that in all cases, SPOTLIGHT has a
significantly lower ratio compared to the other methods.

Next, we zoom in the causal analysis results to better explain the benefits of SPOT-
LIGHT for explainability over the baselines. Here we use Anomaly Detection Ratio
(AD Ratio) as a score for each anomalous KPI, reflecting their relative significance,
after the causal discovery step of SPOTLIGHT.

Fig. 6.10 illustrates an aggregation of the KPIs that were flagged up by SPOTLIGHT

and TranAD+SHAP for each considered anomaly, grouped by the category that the
KPIs belong to. The height of each bar (y-axis) shows the anomaly detection score
(or SHAP score in the case of TranAD+SHAP) of the most influential KPI of each
category. The number of flagged KPIs of each category are shown at the top of each
bar.

Taking as a concrete example the anomaly of PDCP contention in Fig. 6.10a, only
18 KPIs (out of more than 600) were flagged as potential culprits by SPOTLIGHT.
Eight were localized to the platform layer and were related to the PDCP threads (the
correct cause) and the rest to the radio KPIs of the RLC layer. In contrast, in the

125

RA
N/CU/BH

RA
N/CU/M

H

RA
N/DU/M

H

RA
N/DU/RLC

RA
N/DU/M

AC

RA
N/L1

/PH
Y

PLA
T/D

U/CTR
L

PLA
T/C

U/CTR
L

PLA
T/C

U/PD
CP

PLA
T/D

U/M
AC

PLA
T/D

U/M
H

PLA
T/D

U/RLC

PLA
T/L

1/P
HY

PLA
T/L

1/F
H

PLA
T/P

TP

PLA
T/N

etw
ork

0.0

0.2

0.4

0.6

0.8

1.0

AD
 R

at
io

10 KPIs 8 KPIs

0

5

10

15

SH
AP

 S
co

re5 KPIs5 KPIs

2 KPIs
5 KPIs

12 KPIs

4 KPIs4 KPIs

8 KPIs

2 KPIs

SpotLight
TranAD+SHAP

(a) PDCP contention

RA
N/CU/BH

RA
N/CU/M

H

RA
N/DU/M

H

RA
N/DU/RLC

RA
N/DU/M

AC

RA
N/L1

/PH
Y

PLA
T/D

U/CTR
L

PLA
T/C

U/CTR
L

PLA
T/C

U/PD
CP

PLA
T/D

U/M
AC

PLA
T/D

U/M
H

PLA
T/D

U/RLC

PLA
T/L

1/P
HY

PLA
T/L

1/F
H

PLA
T/P

TP

PLA
T/N

etw
ork

0.0

0.2

0.4

0.6

0.8

1.0

AD
 R

at
io

6 KPIs 4 KPIs

0

5

10

15

SH
AP

 S
co

re

8 KPIs9 KPIs
4 KPIs

4 KPIs

8 KPIs

6 KPIs

2 KPIs

SpotLight
TranAD+SHAP

(b) MAC contention

RA
N/CU/BH

RA
N/CU/M

H

RA
N/DU/M

H

RA
N/DU/RLC

RA
N/DU/M

AC

RA
N/L1

/PH
Y

PLA
T/D

U/CTR
L

PLA
T/C

U/CTR
L

PLA
T/C

U/PD
CP

PLA
T/D

U/M
AC

PLA
T/D

U/M
H

PLA
T/D

U/RLC

PLA
T/L

1/P
HY

PLA
T/L

1/F
H

PLA
T/P

TP

PLA
T/N

etw
ork

0.0

0.2

0.4

0.6

0.8

1.0

AD
 R

at
io

14 KPIs

6 KPIs

0

5

10

15

20

SH
AP

 S
co

re

12 KPIs12 KPIs

5 KPIs6 KPIs

16 KPIs

6 KPIs

SpotLight
TranAD+SHAP

(c) Radio interference

RA
N/CU/BH

RA
N/CU/M

H

RA
N/DU/M

H

RA
N/DU/RLC

RA
N/DU/M

AC

RA
N/L1

/PH
Y

PLA
T/D

U/CTR
L

PLA
T/C

U/CTR
L

PLA
T/C

U/PD
CP

PLA
T/D

U/M
AC

PLA
T/D

U/M
H

PLA
T/D

U/RLC

PLA
T/L

1/P
HY

PLA
T/L

1/F
H

PLA
T/P

TP

PLA
T/N

etw
ork

0.0

0.2

0.4

0.6

0.8

1.0

AD
 R

at
io

11 KPIs

4 KPIs

0

5

10

15

20

SH
AP

 S
co

re9 KPIs

9 KPIs

4 KPIs4 KPIs

15 KPIs

6 KPIs
4 KPIs

1 KPIs
2 KPIs

SpotLight
TranAD+SHAP

(d) Network contention

Figure 6.10: KPIs flagged by SPOTLIGHT and TranAD+SHAP groupped by category.
AD Ratio: score for each anomalous KPI

F1↑ Precision↑ Recall↑
Overall 0.90 0.98 0.84

PDCP + Network 0.89 1 0.80
PDCP + MAC 0.89 0.80 1
PDCP + Radio 0.91 0.88 0.94

Network + MAC 0.91 1 0.86
Network + Radio 0.90 1 0.81

MAC + Radio 0.95 0.90 1

Table 6.8: Mix Contention Accuracy
of SPOTLIGHT for all combinations
of anomalies and traffic scenarios.

1 CPU
1 GPU

1 CPU
1 GPU

10 5

10 4

10 3

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

Ra
tio

Real Time
JVGAN
MRPI

Figure 6.11: Ratio of processing time vs data col-
lection time.

case of TranAD+SHAP, 41 KPIs were flagged as significant. In addition, the flagged
KPIs belong to six different categories, meaning that a domain expert would have a
much harder job in identifying the actual root cause, as they would have to consider a
much bigger and less focused set of KPIs. Similar observations can be made for the
remaining anomalous scenarios (Fig. 6.10b - 6.10d).

6.6.3 Results with Multiple Anomalies

In addition to the single anomalies, we also consider the mixed anomalies as defined in
Section 6.5.3. As we can observe from Table 6.8, SPOTLIGHT achieves similar accu-
racy results to the single anomaly cases, in terms of both precision and recall, demon-
strating that it can generalize well to complex anomalous scenarios. SPOTLIGHT is
also successful in localizing combinations of anomalies that manifest simultaneously,
as illustrated in Fig. 6.12, for the case of combined PDCP/network contention and

126

RA
N/CU

/BH
RA

N/CU
/M

H
RA

N/D
U/M

H
RA

N/D
U/R

LC

RA
N/D

U/M
AC

RA
N/L1

/PH
Y

PL
AT

/D
U/C

TR
L

PL
AT

/CU
/CT

RL

PL
AT

/CU
/PD

CP

PL
AT

/D
U/M

AC

PL
AT

/D
U/M

H
PL

AT
/D

U/R
LC

PL
AT

/L1
/PH

Y
PL

AT
/L1

/FH
PL

AT
/PT

P
PL

AT
/Netw

ork

0.0
0.2
0.4
0.6
0.8
1.0

AD
 R

at
io

12 KPIs

3 KPIs

8 KPIs

4 KPIs

(a) PDCP and network contention

RA
N/CU

/BH
RA

N/CU
/M

H
RA

N/D
U/M

H
RA

N/D
U/R

LC

RA
N/D

U/M
AC

RA
N/L1

/PH
Y

PL
AT

/D
U/C

TR
L

PL
AT

/CU
/CT

RL

PL
AT

/CU
/PD

CP

PL
AT

/D
U/M

AC

PL
AT

/D
U/M

H
PL

AT
/D

U/R
LC

PL
AT

/L1
/PH

Y
PL

AT
/L1

/FH
PL

AT
/PT

P
PL

AT
/Netw

ork

0.0

0.2

0.4

0.6

0.8

1.0

AD
 R

at
io

14 KPIs

2 KPIs

4 KPIs

(b) MAC contention and radio interference

Figure 6.12: KPIs flagged by SPOTLIGHT for mixture of anomalies.

of MAC contention and radio interference. Similar observations about the causal de-
tection capability of SPOTLIGHT can be drawn for all the remaining combinations of
anomalies, which we omit due to lack of space.
6.6.4 Efficiency
We next show that our algorithm fits the architecture shown in Fig. 6.3 in terms of CPU
and bandwidth requirements. We measure the time it takes to process metrics from one
window of 5s on different computer architectures and we plot the ratio of the process-
ing time over the measurement time (5s). If the ratio is 1 or below, the processing can
be done in real-time, at least as fast as the data is collected. We perform measurements
on an AMD EPYC 7453 28-Core CPU and NVIDIA RTX A5000 GPU(s). We show
the results in Fig. 6.11. We see that JVGAN is well suited for running at the edge as it
takes less than 0.1% of a CPU core to process the data at line rate. In contrast, MRPI
requires almost 10 CPU cores or less than 6% of a GPU to run at line rate. That amount
of compute power is not available at the edge, but can be easily accommodated in the
cloud. Moreover, sharing 1 GPU (approx $2,000) to manage 17 far-edge servers is a
reasonable management overhead.

We next measure the network overhead. If we ship all the metrics to the cloud,
the average required bandwidth is 1.5-2 Mbps per far-edge site, aggregating to 100
Gbps for a large telco network with 50,000 base stations, with very high ingestion and
storage costs. When we run JVGAN at the far-edge and ship only its results to the
cloud, the required bandwidth drops by 4 – 7×, a significant cost reduction.

Finally, JVGAN, MRPI, and KFILTER, also make the explanation more efficient
by massively reducing the number of KPI to process, only 3% ∼ 5% KPIs are used
in explanation to show the anomalous KPIs with top significance. SPOTLIGHT only
takes around 30 seconds to run CAUSALNEX for 10 minutes measurement. TranAD
and SHAP combination fails to achieve this, requiring 4 ∼ 5× time of measurement
period (e.g., > 40 minutes to process 10 minutes measurement).

6.7 Real-world evaluation

6.7.1 Case Studies
In addition to the artificial anomalies that we introduced in Section 6.5.3, we used
SPOTLIGHT in our real deployment to evaluate its detection and localization capa-

127

bilities with real, previously unknown anomalies. By collecting the exact same KPIs
that we used for training, SPOTLIGHT allowed us to detect and troubleshoot three real
anomalies in our network:
Intel ICE driver bug – This issue was linked to a misbehavior of the Intel ICE driver
for the E810 NICs. Specifically, the driver version used in our deployment ignored the
hints of interrupt thread affinities and placed interrupt threads to isolated CPU cores
dedicated to the vRAN. This resulted in CPU contention with vDU worker threads,
which degraded the performance of the vRAN. Once SPOTLIGHT successfully iden-
tify the thread contentions, it will led us to investigate the other processes that were
running on the same cores, revealing the misbehaving threads. The issue was resolved,
after upgrading the ICE driver to a version that introduced relevant patches [129].
PTP synchronization issue – This issue was related to a misconfiguration of our de-
ployment, in which an NTP daemon (systemd-timesyncd) was running alongside the
PTP daemon (ptp4l) that was synchronizing our vDU server with the Qulsar grand-
master clock. Every time that the NTP daemon would run, the server would get de-
synchronized from the PTP grandmaster, resulting in detachments of the UEs and/or
traffic drops. SPOTLIGHT identified the anomaly and successfully pinpointed the PTP
timestamp KPIs as the culprit, which allowed us to quickly inspect the causes of the
de-synchronization that disable the NTP daemon.
vDU RLC queue overflow bug – This issue was related to a bug of our vDU stack,
that caused the RAN to drop all packets arriving at the RLC layer for all attached UEs,
if saturated with traffic for a long time. SPOTLIGHT detected succesfully the anomaly
and reported that the anomalous KPI was related to the RLC queues. After reporting
this issue to our vRAN vendor, we were able to identify and rectify the bug.

6.7.2 Operational model

In this section, we demonstrate how SPOTLIGHT works in an operational environment.
In such environment, it is important to have a very low fraction of false positives to
reduce the unnecessary workload of operational teams. Our observation window is
5s (Section 6.3.1), which means that we have 12 observations per minute. We note
that most of the RAN anomalies we had observed are not transient and last for many
minutes. So in order to reduce the false positives, we aggregate the observations over
one minute, and we report an anomaly only if we have 10 positive reports out of 12
windows. This means that the precision over 1h interval is 2 · 10−4 and the recall is
0.91 – 0.98. We verify these results by running the system for 1h without an anomaly,
and we note that we do not observe a single false positive during that time.

6.8 Discussion

6.8.1 Discriminator is not used to detect anomaly

In this chapter, the role of the discriminator is primarily focused on facilitating the
adversarial training of the generators. To ensure a balanced training process, we inten-
tionally designed the discriminator as a less powerful network. This approach helps
in achieving consistent convergence during training. However, it’s important to note

128

that this design choice limits the discriminator’s effectiveness in performing complex
classification tasks.

Additionally, the discriminator is trained specifically to differentiate between the
outputs generated by the generator and the actual ground truth data. This does not
necessarily equip it to distinguish between normal and anomalous samples within real-
world data. As a result of these limitations, the discriminator is not employed during
the model inference stage in our setup. Its role is confined to the training phase, where
it aids in refining the generator’s performance, rather than being directly involved in
the final anomaly detection process.

6.8.2 How to understand the explanations

In this context, the term ’explanation’ is used in contrast to scenarios where no expla-
nation is provided, necessitating the review of all Key Performance Indicators (KPIs).
Unlike a language model that translates detection results into simple, plain text, our ex-
planations require domain-specific knowledge for interpretation. They are not straight-
forwardly converted into plain text but are instead presented in a format that necessi-
tates a certain level of expertise in the field for full comprehension. The process of
transforming these technical explanations into easily understandable plain text is be-
yond the scope of this chapter. Our focus here is on providing detailed, field-specific
explanations that can aid experts in swiftly pinpointing and understanding the root
causes of anomalies, rather than on simplifying these explanations for a general audi-
ence.

6.8.3 Choice of Models

We chose the JointVAE model as one of our foundational generators due to its robust
performance with categorical data and its efficiency for CPU-based inference, making
it a suitable choice for environments with limited computational resources. In terms
of employing diffusion for data imputation, this decision was driven by its superior fi-
delity in time series imputation within our specific setup. While we have experimented
with various other methods, only those that demonstrated notable effectiveness in dif-
ferent scenarios have been included as baselines in our study. This selective approach
ensures that our comparisons are meaningful and grounded in real-world applicabil-
ity, providing a comprehensive overview of each method’s strengths and limitations in
various contexts.

6.9 Summary

In this chapter we investigate the efficient explainable anomaly detection in the ORAN
system. We first carry out detailed measurement and data analysis on an ORAN test
and introduce various contentions in different parts of the system. Our initial test
shows that none of the existing methods can give a reasonable result on the anomaly
detection, not to say explain the result. Therefore, we design and implement SPOT-
LIGHT, an explainable anomaly detection system based on VAEGAN and the deep

129

diffusion model. Although high accuracy and sensitivity are achieved in anomaly de-
tection, SPOTLIGHT also uses a lightweight generative model to filter out normal KPIs
directly on the far edge. We also use a Bayesian network-based method — Causal-
Nex to carry out causal discovery on anomalous KPIs. The evaluation result shows
that our method has 4× ∼ 7× better accuracy in explaining the root cause than the
state-of-the-art.

130

Chapter 7

Conclusions and Future Work

7.1 Conclusions
In this thesis, we improve the performance of network data generation and monitoring
with deep generative models. Through the different models used in this work, we prove
that the deep generative model can enhance the fidelity and efficiency of most network
monitoring tasks. We can also tailor the generative model to meet the real-time re-
quirement in certain cases where there is no tolerance of monitoring delay. The explo-
ration done in the thesis has a high versatility in the field of network monitoring, where
we have tried our best to discuss as many as possible scenarios in network measure-
ment, including ISP network, radio network, Kubernetes micro-services (ORAN), IoT
system, etc. In addition to data generation and monitoring, we also successfully lever-
age a deep generative model to improve the explanation of network anomalies in the
ORAN system. For each of the challenges stated in §1.2, we propose and implement
the corresponding resolution, the high-level conclusions for each of these solutions are
presented in the following subsections.

7.1.1 APPSHOT: Conditional Deep Generative Model for Synthe-
sizing Service-Level Mobile Traffic Snapshots at City Scale

We have presented APPSHOT, a novel conditional deep generative model for synthe-
sizing high-fidelity multiservice network traffic data that needs only publicly available
context information of target regions. We have used real-world service- level mobile
traffic data for multiple cities for our evaluation and show that APPSHOT not only out-
performs a range of baseline approaches in terms of fidelity and also generalizes well
to unseen regions. Our patch-based learning approach and corresponding operations
have proved to be effective in generating traffic for cities with different sizes. Also,
data augmentation with overlapping patches significantly enhances the performance
with respect to handling traffic hotspots and diverse traffic ranges. The APPSHOT neu-
ral network architecture and the service level constraints it incorporates significantly
enhance the accuracy of service compositions in synthetic traffic, while preserving a
strong structural correlation between services. Furthermore, APPSHOT is shown to
capture realistic statistical variations on both city-wide traffic demand and structural
characteristics (e.g., number of hotspots). Finally, we have demonstrated the utility of

131

APPSHOT-generated data through a use case on radio network slicing.

7.1.2 GENDT: Mobile Network Drive Testing Made Efficient with
Generative Modeling

We have presented GENDT, a new conditional deep generative model. GENDT is the
first data generation method for radio KPI time series data, aimed at reducing the mea-
surement effort with drive testing. It embeds a number of innovative aspects, including
the use of stochastic layers on top of a GNN and LSTM based network to process dy-
namic input network context and to model stochasticity, and batch based training and
generation for high fidelity long series generation. We evaluate GENDT with real drive
test measurement data from two different countries, covering a wide range of scenarios.
Our results show that GENDT generally outperforms a range of baselines, and by a big
margin. We also show that GENDT can generate radio KPI time series over long and
complex trajectories with high fidelity. Moreover, GENDT is being able to tell apart
data uncertainty from model uncertainty. The knowledge of model uncertainty in turn
enables selection of the most informative measurement data for model training, which
can significantly reduce the measurement overhead — our results show the potential
to optimize measurement efficiency by up to 90that the efficacy of GENDT-generated
data to support downstream drive test measurement use cases is comparable to that of
real data.

7.1.3 DISTILGAN: High Fidelity, Efficient, Versatile and Real-
Time Network Telemetry with Deep Generative Modeling

In DISTILGAN, we have tackled the significant network telemetry challenge of accu-
rately and timely understanding network behavior while minimizing the data collected
from various network elements. We further aimed for a method that requires minimal
processing and memory resources at the sending nodes (i.e., just sampling at minimal
rate) and thus has broad applicability including with commodity network switches and
resource-constrained devices (e.g., IoT sensors). We presented DISTILGAN, a new
data-driven solution based on deep generative modeling that meets all the essential re-
quirements for a network telemetry method: high fidelity, efficiency, versatility, and
real-time. DISTILGAN achieves high-fidelity network measurement data reconstruc-
tion through a custom-tailored deep generative model operating across temporal and
spectral domains. It can also adapt to the minimal sampling rate required for specific
fidelity objective on measurement nodes, by analyzing the reconstruction quality from
received data stream through a novel Q-value measure. We evaluated our method using
three real and diverse scenarios: (1) a large ISP network; (2) 5G radio access network
(RAN); (3) IoT (smart metering) network. Compared to a wide range of baseline ap-
proaches representing the state of the art, we show that DISTILGAN yields significant
gains with respect to all four of the above requirements as well as for representative
downstream use cases. For example, DISTILGAN provides 25× gain in efficiency for
the same fidelity compared to state-of-the-art method for flow-level monitoring in ISP
networks. Moreover, DISTILGAN achieves 1∼2 orders of magnitude lower inference
latency than prior art to support real-time monitoring and control applications at few

132

ms scale.

7.1.4 SPOTLIGHT: Accurate, Explainable and Efficient Anomaly
Detection for Open RAN

In this work, we presented SPOTLIGHT, a tailored deep learning based method for
Open RAN anomaly detection and localization, that is distributed between the edge and
the cloud. SPOTLIGHT manages to provide highly accurate and explainable anomaly
detection results, that are significantly better compared to state-of-the-art methods,
while remaining computationally efficient. To train and evaluate SPOTLIGHT, we de-
veloped a large scale and realistic data collection process spanning both the RAN and
the platform layer on an enterprise- scale 5G Open RAN deployment. As a future
work, we are planning on evaluating SPOTLIGHT at a larger scale.

7.2 Future Work
This section summarizes the limitations and future work opportunities in relation to
the contributions made in this thesis.

7.2.1 Network Data Generation
APPSHOT and GENDT cover the most common data generation task in networking,
mainly in 1-D data (e.g., univariate time series), 2-D data (multivariate time series and
traffic map in a period), and 3-D data (e.g., spatial-temporal distribution of traffic).
Nevertheless, there are still scenarios that are not discussed in this thesis.

High Dimension Data generation. One example for high-dimensional data would
be point-cloud data; a set of data points in a 3D coordinate system might change over
time (then become 4D). Such data structure becomes more and more common in cur-
rent network, such as Lidar system. There are two challenges we need to resolve for
higher dimension data: (1) fundamental changes in data structure, 4D data is much
more complex; (2) More challenging to be real-time, 4D data in general come with
massive throughput but in many scenarios (e.g., automatic driving), real-time process-
ing is needed.

An Universal Framework. In this thesis, our solution is more about a tailored
method for each scenario. It would be more efficient if the user could rely on a general
framework for most of the M − to−N generation task, where M is the input dimen-
sion and N is the output dimension. One alternative is using graph or point cloud to
represent all data structures but automatically select the dimension to learn correlation
between different inputs. This part will be left for future exploration.

7.2.2 Network Telemetry
The proposed method, DISTILGAN, can only work for data that can be represented as
a general multivariate time series. In fact, measurement data could be topological or
textual logs, which cannot be processed by DISTILGAN. For topological data, we can
enhance the current version with extra design to accommodate categorical data, and

133

when the dimension goes beyond multivariate time series, we need to propose a new
model for that. For textual logs, such as heads of IP packets, we might want to explore
the application of NLP (natural language processing) methods to detect events hidden
in ’normal’ traffic.

7.2.3 Anomaly detection
In this thesis, we design and implement SPOTLIGHT for anomaly detection in the
ORAN system. However, there are still pending tasks to explore in the future, which
is not feasible for now due to the available experiment resources.

Multiple Cells. Because of the current implementation of the testbed ORAN sys-
tem, we can only use one cell each time. In real world, we would expect at least tens
or hundreds of cells for each cloud server. The implementation of multiple cells poses
a challenge on the generalization of the proposed method among different cells, intro-
duces more transmission overhead for measurement, and leads to a significant increase
in workload on the cloud side. More challenges might be noticed once multiple cells
are available.

Mobility. Our current setup is an indoor implementation of ORAN, obviously
we cannot reflect the complex radio environment a user might experience in the real
world. High mobility will cause significant fluctuation on radio KPIs such as SINR
and makes the switch between different cells more frequent. The concept proposed in
SPOTLIGHT needs more evaluation in the context of high mobility.

More System KPIs. Current SPOTLIGHT focuses mainly on RAN KPIs and
ORAN system KPIs. In fact, the other measurements about the system can also re-
flect anomalies. For instance, the thread of ORAN might immigrate to different CPU
cores because ORAN is deployed on top of Kubernetes. Such immigration might cause
issues when two critical threads are moved to the same core. Our current setup of
SPOTLIGHT does not consider the KPIs such as CPU utilization, etc., and therefore
cannot capture the CPU thread immigration issue. In the future, we will try to include
those extra KPIs in anomaly detection to detect more anomalous events of the ORAN
system.

134

Appendix A

Work and Publications

A.1 Publication Related to APPSHOT

Chuanhao Sun, Kai Xu, Marco Fiore, Mahesh K. Marina, Yue Wang and Cezary
Ziemlicki, ”AppShot: A Conditional Deep Generative Model for Synthesizing Service-
Level Mobile Traffic Snapshots at City Scale,” in IEEE Transactions on Network and
Service Management, vol. 19, no. 4, pp. 4136-4150, Dec. 2022, doi: 10.1109/
TNSM.2022.3199458.

A.2 Publication Related to GENDT
Chuanhao Sun, Kai Xu, Mahesh K. Marina, and Howard Benn. 2022. GenDT:
mobile network drive testing made efficient with generative modeling. In Proceed-
ings of the 18th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’22). Association for Computing Machinery, New York, NY,
USA, 43–58.

135

136

Appendix B

Implementation Details and
Extra Results

B.1 Data Analysis and Model Details of GENDT

B.1.1 Visualization of Environment Context Attributes

Green Urban Office Primary Roads

Figure B.1: Spatial distribution of 3 selected environment context attributes in
DATASET B.

B.1.2 Details of Stochastic Layers
The intensity of noise is controlled by a function. When we add noise, we do not want
to change the total value of hidden state of all hidden dimensions, so we have:

h′
t = (ht + ahnt,h)

∑
i=1:H ht,i∑

i=1:H(ht,i + ahnt,h,i)
, ht = {ht,1, · · · , ht,H}

c′t = (ct + acnt,c)

∑
i=1:H ct,i∑

i=1:H(ct,i + acnt,h,i)
, ct = {ct,1, · · · , ct,H}

Where H is the dimension of hidden state ht and ct. Using different ah and ac, we
can control the relative intensity of noise to the hidden states, and thus control the
uncertainty level during training.

We use a different training method compared with [57], where the learning was
done by variational inference with an inference network introduced to use the backward-
recurrent state to approximate the nonlinear dependence of h′

t with future observation

137

Environment Context Attribute

Land Use Type PoIs

Continuous Urban Tourism
High Dense Urban Cafe

Medium Dense Urban Parking
Low Dense Urban Restaurant

Very-Low Dense Urban Post/Police
Isolated Structures Traffic Signal

Green Urban Office
Industrial/Commercial Public Transport

Air/Sea Ports Shop
Leisure Facilities Primary Roads

Barren Lands Secondary Roads
Sea Motorways

Railway Stations
Tram Stops

Table B.1: List of environment context attributes considered. See examples in Fig-
ure B.1

0 1000 2000 3000 4000 5000 6000
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Bus
Walking
Tram

(a) DATASET A

0 1000 2000 3000 4000 5000 6000
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

City Center 1
City Center 2
Highway 1
Highway 2

(b) DATASET B

Figure B.2: CDF of distance to serving cell in different scenarios.

xt:T and states ht:T . Instead, in our case effective training of SRNN is realized via
adversarial training with a discriminator. A LSTM based discriminator provides extra
training signal on top of the L2 norm loss function to make the model converge with
nonlinear dependence of h′

t.

B.1.3 Hyper Parameters

We use single layer LSTM network for both GNN-Node and aggregation networks in
the GENDT generator. Hidden layer dimensions for both GNN-Node and aggregation
networks are set to 100.

We use 50 for the batch length by default and the default step length is set to 5.
Note that, in our experiments, we found that any step length between 1 and 15 gives
similar result.

Noise intensity [ah, ac] are chosen in the range of [1, 3] with the best fit of histogram
– larger intensity means more significant variation in output series but needs to be fine-
tuned per scenario. In general, ah = ac = 2 gives good results for most of the cases.

138

Noise
Context

Generator

Generated
Context

Time Series
Data Generator

Generated Multi-KPI
Time Series Data

(a) Original DG Model
Real Context

Time Series
Data Generator

Generated Multi-KPI
Time Series Data

Noise

(b) Real Context DG Model

Figure B.3: Schematic of original DoppelGANger (DG) and its optimized variant.

B.2 Discussion on DoppelGANger
As DoppelGANger (DG) seeks to provide a generic data generation architecture across
different types of time series data and use cases as well as allow hiding sensitive con-
text (called metadata in DG), it adopts a two stage generation process. In the first
stage, context is generated from noise through an unconditional GAN model. The gen-
erated context then is used to condition (control) the generation of target time-series
network/system data in the second stage via a conditional GAN model.

From the perspective of our mobile network drive testing data generation problem
and our proposed GENDT method, DG has four key limitations:

• The DG model architecture cannot handle dynamic network context input. GENDT
overcomes this issue through a tailored GNN based generation model.

• There is very limited support for modeling stochasticity in DG via naive direct
injection of noise as input to the model. GENDT, on the other hand, comprehen-
sively and effectively deals with this issue through stochastic layers in the model
as well as noise input through its residual generator.

• DG adopts a batch generation approach for long time series generation, while
GENDT builds on this and optimizes it much further through its autoregressive
residual generator and training with overlapping batches.

• DG lacks any mechanism to minimise training data required, whereas GENDT
has the built-in residual generator to provide cues on the need for more training
data.

It is worth noting that the motivation behind DG (and even SpectraGAN) is to
overcome the barrier to accessing real data stemming from commercial sensitivity or
privacy concerns, whereas the high cost of measurement data collection with drive
testing motivates our design of GENDT.

B.3 Additional Evaluation and Use cases

B.3.1 Need to Support Long Series Generation
Note that for high fidelity drive test data generation, it is essential to support long
series generation. To illustrate this point, we compare GENDT with two cases, where
the data for the long (2200+s) target trajectory considered in this subsection is instead
obtained by stitching data from multiple independently generated short (50s and 100s)
trajectories. Results shown in Table B.2 clearly indicate that short trajectory generation

139

0 100 200 300 400 500 600 700 800

Time (s)
105

100

95

90

85

80

75

70

RS
RP

 (d
Bm

)
Real
Generated

(a) GENDT

0 100 200 300 400 500 600 700 800

Time (s)

100

90

80

70

60

50

RS
RP

 (d
Bm

) Real
Generated

(b) Real Context DG

Figure B.4: Sample of generated RSRP time series with GENDT and real context DG
in DATASET A for the Walk scenario.

Method MAE↓ DTW↓ HWD↓

GENDT 11.69 7.18 10.4
50s Trajectory 14.50 10.1 18.79
100s Trajectory 13.11 9.05 16.86

Table B.2: GENDT performance
compared with short trajectory
generation for long trajectory case
in DATASET B.

0 50 100 150 200 250 300 350 400

Time (s)
120

110

100

90

80

70

60

RS
RP

100s Trajectory
50s Trajectory
GenDT
Real

Figure B.5: GENDT-generated RSRP
time series compared with short inde-
pendently generated trajectories.

does worse than GENDT, especially in terms of the data distribution (HWD metric).
Visualization of RSRP series generated with these alternatives (GENDT and 50s/100s
short independent trajectories) in Figure B.5 clearly highlight the artifacts at the points
successive short trajectories are stitched together, whereas GENDT-generated RSRP
time series samples closely track the real measurement data. Note that in this figure,
we zoom in on the last 400s of the long trajectory to allow the differences to be clearly
seen. These results overall highlight the need to capture long-term temporal relations
in the data to ensure high fidelity generation.

B.3.2 Ablation Study

Comparison with baselines earlier in §4.6.1 has already highlighted the limitations of
alternative designs. Here we examine the benefit from some of the key design choices
underlying GENDT through an ablation test. For this, we consider RSRP and RSRQ
KPIs, common to both datasets, and report results with DATASET B.

From the results in Table B.3, we see that RESGEN plays a critical role in ef-
fectively introducing noise to help model stochasticity. Without RESGEN, GENDT
degrades considerably in terms of the HWD metric. An interesting related observation
is that environment context input through RESGEN in GENDT does not always help in
improving the fidelity on other metrics (MAE, DTW), maybe because KPI dynamics
can be high for the same input environment context. In contrast, the use of stochas-
tic layers (SRNN) consistently improves all metrics, including HWD targeted by this

140

Method
RSRP RSRQ

MAE↓ DTW↓ HWD↓ MAE↓ DTW↓ HWD↓
GENDT 8.10 5.89 7.67 1.7 1.34 1.65

No RESGEN 7.99 6.60 13.7 1.6 2.3 9.7
No SRNN 11.53 8.89 10.4 2.4 1.99 4.8

No GAN loss 14.66 12.45 15.3 3.8 3.6 6.9
No batch 12.9 9.60 10.5 2.6 2.3 3.7

Table B.3: GENDT ablation test on DATASET B considering RSRP and RSRQ.

mechanism.
Ablation results indicate that the adversarial training (i.e., use of discriminator) is

key to GENDT performance. Dropping ‘GAN loss’ from the loss function results in the
most performance degradation on all metrics compared to all other design choices. The
adversarial network of GENDT is trained to learn to play a similar role as the Inference
Network in [57], and thus it is critical for effective model training. As expected, the
use of batch generation and training with overlapping batches has a beneficial effect
on MAE and DTW fidelity metrics but also improves HWD. The batching related
mechanisms are particularly effective when generating data for long trajectories, as
previously highlighted in §4.6.2.

B.3.3 Further Use Cases
GENDT is intended to support the use cases that rely on traditional drive testing. We
evaluated GENDT for two such cases in §4.8.2. Here we outline several more example
use cases. While GENDT can be readily applied to these use cases listed below with-
out reliance on drive test measurements, evaluating its effectiveness requires access to
relevant KPI measurement data as well as ground-truth for use case specific metrics.

• Video Streaming QoE Prediction. Depending on the QoE metric, measurement
of multiple radio KPIs are required to infer the video streaming QoE [114].
GENDT can support this use case along the lines of throughput and PER pre-
diction use case we highlighted in §4.8.2.

• Cell Load Estimation. In [30, 141], the authors proposed using RSRQ and SINR
to estimate the cell load under different scenarios. Since we do not have the
ground truth cell load information, we are not able to verify the accuracy of
these methods. But these prior works offer a way to infer cell load through drive
test measurements, which can be efficiently supported with GENDT.

• Link Bandwidth Prediction. In [193], the authors identify five KPIs has signif-
icant correlation with link bandwidth (namely, RSRP, RSRQ. CQI, Handover,
and BLER) and proposed a method to infer the link bandwidth with these five
KPIs. As we have considered several of these KPIs, it would be straightforward
to support this use case with GENDT and evaluate it when real link bandwidth
measurement data is accessible.

• Uplink Network Jitter Prediction. KPIs such as RSSI, Cell ID, device location,
RSRQ, RSRP and, importantly, the average transport block (TB) size, enable

141

prediction of uplink jitter [149]. This use case can be supported by GENDT via
generation of data for these aforementioned KPIs.

What-If Analysis Studies. Over and beyond the type of radio KPI based use cases
mentioned above, the context driven design of GENDT naturally lends itself to what-if
analysis studies. An example of such a study is to examine the impact of deploying new
cells in the operator’s network on radio KPIs, prior to deployment. Another example
is to easily study the effect of recent/potential changes in the environment context of
a target region (e.g., construction of new highways or big buildings) on radio KPIs
without needing to conduct drive test measurements.

B.4 Configuration Details of DISTILGAN

B.4.1 Epoch Length

While evaluate on different epoch length, we actually reveal the robustness of different
method on the input data distribution. As the example in Figure B.6 shows, there is
a multi-modal distribution at 10ms scale, whereas such effect is not significant at 1
second. Also the tail at 10ms is much shorter than 1s in some time window, on this
specific example, 10ms epoch has 1/30 of flow number of 1s epoch length, but the
tail is 8 × 102 shorter than 1s case. All those observations point to one conclusion:
to ensure the sparsity and orthonormality for Classical CS-based methods, we cannot
simply scale down the number of counters by the expected flow number. Instead, we
must introduce a certain level of redundancy.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Flow Size 1e4

0

200

400

600

800 10ms Scale

Figure B.6: PDF at 10ms
scale.

0 100 200 300 400 500 600
Flow Size 1e4

0

1

2

3

4
1e4

1s Scale

Figure B.7: PDF at 1s
scale.

0 200 400 600 800 1000
Recon. Epoch Len. (Stamps)

0

1

2

3

4

5

No
r.

Ba
nd

wi
dt

h

(50, 1.61)(100, 1.4)
(500, 1.13)

(50, 0.66)(100, 0.74) (500, 0.89)

Random Sampling (MAX)
Random Sampling (MIN)
Evenly Sampling

Figure B.8: Window-wise sam-
pling rate with random sampling
and periodical sampling

B.4.2 Memory Configuration

We evaluate DISTILGAN on top of SeqSketch [71] with CAIDA netowork traces [25],
where the compressive sensing algorithm is replaced by DISTILGAN, and we take
SeqSketch as a way to subsample the original input. Since SeqSketch’s mechanism
has bias for the significant flows as they compete for hash table by flow size, we do not
use extra threshold based sampling. As fore the memory size, considering the number
of flows in each epoch, for one second epoch length, we set the a basic memory size at
128KB Fractional Sketch (FS), 96KB Key Value (KV), and 32KB Bloom Filter (BF),
and adaptive on the FS size with a 48KB step. The maximum step number ns,max is
10, and the actual memory is configure to:

128KB(Const. FS)+ns×48KB(Adpt. FS)+96KB(KV)+32KB(BF), ns ∈ [1, 10]

142

During recovery process, instead of using current epoch measurement, DISTILGAN
also takes in the results from previous epoch, so that DISTILGAN is able to capture
temporal pattern of each flow. The different flow will be taken as different input
channel of DISTILGAN generator. The memory size is scaled down with the num-
ber of expected flows following the configuration in §7.3 [71], which varies between
different epoch length.

DISTILGAN will adjust ns to adapt the Q − value = 0.01 or other tolerance as
stated. When compute Q-value, we mask some records randomly by FS ratio to mimic
the information loss due to limited memory, and keep using Ns = 2. ns has initial
value at 10 and then the model will learn to reduce it, and minimal value of ns is 1
to make sure we can compute the Q-value. According to [71], the maximum memory
size if more than sufficient to measure 100K level flows with classical classical CS. For
longer epoch length, we increase the size of each part according to the average number
of flows in each epoch accordingly.

B.5 5G RAN and IoT Smart Metering
For the other two scenarios, we use the following subsampling methods: periodical
sampling and threshold sampling.

B.5.1 Periodical Sampling
Considering the sophisticated sensing matrix or sensing neural network may not even
executable on general network equipment such as a programmable switch or IoT sen-
sor, we only compress the data with subsampling, which is most simple and general
compression method. To strictly limit the available communication bandwidth, we
evaluate different methods with periodical sampling (or evenly sampling). The reason
we do not using random sampling method is it has significant fluctuation sampling rate
if look at small windows. In Figure B.8 we show the fluctuation of actual window-
wise sampling rate when using random sampling, for instance, if the window size is
50 time stamps, then the peak throughput is 61% higher than average value, whereas
the minimal rate will be 66% of the average. The big fluctuation on small window
makes the real-time recovery less reliable. Hence we only use the evenly sampling to
demonstrate the different performance of data recovery unless there is adaptive
function in corresponding method.

B.5.2 Threshold-based Sampling
When doing subsampling, the percentile of threshold is set to 97%, which captures top
∼ 3% of the samples. Here the goal is to use the threshold based sampling to avoid
missing extreme value, which is is very helpful when anomalous sample has significant
sparsity. For rest of information we rely on generative model instead of data sparsity,
and the 3% samples is small enough to guarantee significant efficiency.

On the 5G RAN and IoT datasets, we did not see any gain of use lower percentile
(more samples by threshold). For fully sparsity measurement where only few signifi-
cant samples are needed, we can simply adapt the sampling rate by changing percentile

143

instead of sampling rate, but this is leaved for future work as the 5G RAN and IoT sce-
nario requires fine recovery of whole time series. For the ability and robustness in
terms of learning the distribution and correct threshold, we evaluate it on both of spec-
tral and temporal domain in §5.6 with metric NWD and NSWD, where the learned
distribution is very close the ground truth, and this is sufficient to filter out significant
values if needed. Besides, during evaluation we mainly focus on the recovery abil-
ity of different methods, and we provide the same threshold based sampling result as
DISTILGAN to all baselines.

B.6 Details of Baselines

Sampling

FT-IFT [185] takes a sampled measurement KPI as input and obtains the correspond-
ing frequency domain representation with DFT (Discrete Fourier Transform) at the
sender, then at the receiver side uses IDFT (Inverse Discrete Fourier Transform) to re-
construct the data stream (time series). Overall, if the sampling rate is lower than the
Nyquist rate then this method is equivalent to passing the sampled data through a low
pass filter – no features beyond the half sampling rate (frequency) will be preserved.

Sketching

For the comparison with the sketching methods in the literature, we mainly consider
the following works in recent years: SketchVisor [69], SeqSketch and EmbedS-
ketch [71], as they additionally use compressive sensing for recovery process and in
general has better efficiency and robustness. ElasticSketch [182] and UnivMon [101]
are considered in some positions in this paper to show the properties of representative
state of the art sketching only methods.

Sensing & Recovery

Classical CS. This is the CS algorithm used in various network measurement task [33,
69, 71] (with task specific modification sometimes [33, 71]). Here we adapt the orig-
inal form because the test dataset does not always have enough dimension to carry
out matrix decomposition, which may not always be possible to execute on network
devices.

CS-GAN [177]. Here we will focus on using the generator of the CS-GAN. Al-
though in [177], a method to train a paired encoder on sender is provided as well,
due to the limitation to run a DNN on network equipment, we would not consider the
learned sensing part.

AUDIOUNET [91]. AUDIOUNET models the time series reconstruction as a trans-
form problem between two vectors with same length, and adding high frequency fea-
tures to the input. AUDIOUNET is able to keep the real samples because of the residual
connection between input and last layer, hence we classify it as a deep imputation
model without GAN. To apply AUDIOUNET to the task in this paper, the input time
series should have the same length, which we achieve via nearest interpolation.

144

CSDI [162]. CSDI is a state-of-the-art time series imputation method based on
deep diffusion, outperforming several other prior imputation models such as [52]. Also
compared with other recent deep imputation model such as [102], CSDI has better per-
formance on random missing and more suitbale for network measurement task. Hence
we select CSDI to represent deep generative imputation methods. As the authors of
CSDI showed in their extended version [163], this method (as well as its baselines) is
ineffective with high percentage of missing samples (e.g., 90% missing samples); we
observe the same phenomenon, as shown in §B.6.1.

TIMEGAN [188] is a representative deep generative model for synthesizing time
series data, which has inspired recent time-series data generation methods in the net-
working area [98, 179]. While the original TIMEGAN is based on taking random noise
as input, we adapt it to a conditional time-series generation form that takes sampled
measurement KPI time series as input and seeks to recover the original KPI time series.

Short-Time Fourier Transform GAN (STFTGAN) [49] is a spectral domain
counterpart to TIMEGAN in that it directly extends the spectrum with adversarial
training as opposed to TIMEGAN’s approach to transformation in the temporal do-
main. STFTGAN itself can be taken as an extension of the previous work on TFNET

with adversarial training added. The technique of spectrum extension in STFTGAN

has been shown to be effective in recent network traffic generation works such as [179].

B.6.1 Evaluation on synthetic time series
We conduct experiments on synthetic datasets consisting fundamental signals in signal
processing. These experiments allow us to visually inspect the behaviour of DISTIL-
GAN in comparison to the baselines we consider.

Synthetic Datasets

For synthetic data, we consider the following signal or stochastic process. By default
the model will be trained with 105 time stamps and evaluate on 106 continuous samples
from the same signal or process, so that the amount of training set and evaluation set
is long enough to give consistent evaluation of model performance and broadly match
our real system scenarios.

• Sine Waves. Sine wave can well represent most of simple signal in the nature
such as audio signal. Moreover, by mixing multiple sine wave with different
phase and frequency, we can easily identify the frequency components in the
spectrum. A successful method should recover the frequency components even
out of Nyquist Sampling Rate.

• fractional Gaussian noise (fGn) [17]. Known as fractional Brownian mo-
tion (fBm), fGn is a continuous-time Gaussian process, with controllable self-
similarity during simulation [39]. High self-similarity (Hurst exponents higher
than 0.5) represents highly predictable stochastic processes, whereas low self-
similarity cases (Hurst Exponents smaller than 0.5) are closer to Gaussian noise.
We evaluate DISTILGAN on different self-similarity fGn simulation data gener-
ated with the method in [39].

145

DistilGAN FT-IFT AudioUnet STFTGAN TimeGAN CSDI

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compression Ratio

0.0

0.1

0.2

0.3

0.4

NM
AE

(a) NMAE

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Compression Ratio

0.05

0.10

0.15

0.20

NW
D

(b) NWD

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Compression Ratio

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

NS
W

D

(c) NSWD
Figure B.9: Performance of DISTILGAN and baselines on beyond Nyquist sampling
with sine-waves

Evaluation on sine waves

For sine wave case we consider two scenario: (1) Sampling rate is higher than the
Nyquist rate; (2) Sampling rate is significantly lower than some main frequency com-
ponents (much lower than Nyquist rate).

Within Nyquist Rate. When the sampling rate is within the Nyquist rate, both
DISTILGAN and FT-IFT can perfectly reconstruct the signal. For FT-IFT the per-
fect result is aligned with the Nyquist theorem. The latest generative model such as
DISTILGAN and CSDI can almost mimic Fourier transform perfectly, with marginal
error (NMAE < 10−4).

Beyond Nyquist Rate. Figure. B.9a shows the NMAE performance of Beyond
Nyquist Sampling on synthetic sine waves. For NMAE we show the boxplot because
it varies between each inference and we should take the average value if it varies too
much, whereas WD based metric is very stable. As the CR goes up (sampling rate
goes down), all methods tend to show performance. While the performance of gen-
erative models are better than other methods and have similar high fidelity when the
CR is lower than 4, the gain of DISTILGAN increases with CR. Also we observe that
the CSDI shows too strong stochastic variation when the CR is very high, and some
extreme samples can be worse than FT-IFT, though the performance still makes sense
on average. Both TIMEGAN and DISTILGAN show better stochastic variation over
CSDI when CR is higher than 10 (illustrated in §B.6.4 Figure B.12, where the CR is 16
— 16× downsampling). The quantitative results about stochastic variation and spec-
trum is illustrated in Figure B.9b and B.9c. All generative models have lower NWD,
which means the generated time series has closer distribution to the ground truth, and
DISTILGAN shows gain over the other generative model as well. DISTILGAN is also
the only method that can recover the spectrum with very high fidelity, much better than
the STFTGAN that includes spectrum explicitly.

Evaluation on fGn Series

We also evaluate our method on fGn. When the fGn has a Hurst exponents significantly
lower than 0.5, the fGn is more about a Gaussian Noise and unpredictable. Here we
evaluate the methods with H = 0.3 synthetic fGn. As Figure. B.10a shows, to achieve
same NMAE, DISTILGAN can achieve 2.5 to 4 times higher CR than baselines in
fGn reconstruction. Also, in Figure. B.10b DISTILGAN shows 50% to 70% lower
NWD and 75% to 90% lower NSWD than baselines for 15× downsampling. The
improvement is also visually significant in Figure B.10c and Figure B.10d, where IDFT
based reconstruction lost all high frequency details.

146

FT-IF
T

AudioUnet
STFTGAN

TimeGAN CSDI
Const.

Adapt.

Method

0

5

10

15

20

25

30

Co
m

pr
es

sio
n

Ra
tio NMAE 0.020

NMAE 0.015
NMAE 0.010

(a)

FT-IF
T

AudioUnet
STFTGAN

TimeGANCSDI
Const.

Adapt.

Method (CR=15)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

NW
D

NWD

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

NS
W

D

NSWD

(b)

200 300 400 500 600 700
Time Stamp

90

92

94

96

98

100

102

104

106

Am
pl

itu
de

Real
LowPass

(c)

200 300 400 500 600 700
Time Stamp

90

92

94

96

98

100

102

104

106

Am
pl

itu
de

Real
DistilGAN
Input

(d)Figure B.10: Performance of DISTILGAN and baselines on synthetic fGn time seires
in terms of (a) NMAE and CR, (b) NWD and NSWD, (c) FT-IFT for fGn time series
reconstruction (H = 0.3); (d) DISTILGAN for fGn time series reconstruction.

Takeaways

we get some takeaways from synthetic data evaluation: Real-world time series gener-
ally consists of sine waves (may carry information) and random pattern (e.g., noise and
anomaly), hence it is reasonable to expect DISTILGAN achieve good performance on
different networking measurement time series as well, and we will prove this quantita-
tively in the rest of this section.

B.6.2 ISP Network Scenario: KPI Breakdown during Adaptive
Sampling

Bit-rate KPI reflects more bursty pattern and contributes most in terms of Q-value when
adaptive sample on all three attributes together in CAIDA traffic trace. Figure B.11
shows the contribution of different KPIs to Q-Value during flow scale adaptive sam-
pling on CAIDA traffic trace.

CR=2 CR=4 CR=8 CR=12 CR=16 CR=20
Actual Compression Ratio (CR)

0.0

0.2

0.4

0.6

0.8

1.0

Co
nt

rib
ut

io
n

to
 Q

-V
al

ue

Retransmission Packet Count Throughput

Figure B.11: Contribution to Q-
Value During Packet level adap-
tive sampling, average of all flows.

0 10 20 30 40 50 60 70
Time Stamps

0

50

100

150

200

250

300

350

Am
pl

itu
de

Real DistilGAN TimeGAN CSDI FT-IFT

Figure B.12: Beyond Nyquist Sampling and
Reconstruction with DISTILGAN, TIMEGAN,
CSDI, and the ’HotNets’ low-pass filter method in
[186], at 16× downsampling case on synthetic sine
waves (8 times lower than Nyquist rate).

B.6.3 Spectrum Change During DISTILGAN Processing

B.6.4 Synthetic Data Evaluation and Visualization
Beyond Nyquist Sine Wave Reconstruction

In Figure B.12 we observe that the FT-IFT solution lost all high frequency details
— though average power is not changed, local power (e.g., between 20 and 25 time

147

0 250 500 750 1000 1250 1500 1750 2000
Sample

0

200000

400000

Am
pl

itu
de

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time Window (Second)

0

200

400

Fr
eq

ue
nc

y

(a)

0 500 1000 1500 2000
Sample

0

200000

400000

Am
pl

itu
de

0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time Window (Second)

0

200

400

Fr
eq

ue
nc

y

(b)

0 250 500 750 1000 1250 1500 1750 2000
Sample

0

200000

400000

Am
pl

itu
de

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time Window (Second)

0

200

400

Fr
eq

ue
nc

y

(c)

0 500 1000 1500 2000
Sample

0

200000

400000

Am
pl

itu
de

0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time Window (Second)

0

200

400

Fr
eq

ue
nc

y

(d)

0 2500 5000 7500 10000 12500 15000 17500 20000
Time (ms)

0

100000

200000

300000

400000

Bi
tra

te

Real
LowPass

(e)

0 2500 5000 7500 10000 12500 15000 17500 20000
Time (ms)

0

100000

200000

300000

400000

Bi
tra

te

Real
DistilGAN

(f)
Figure B.13: CAIDA Flow Scale Traffic Down Sampling and Reconstruction with
DISTILGAN. (a) spectrum and amplitude after downsampling; (b) after interpolation
and spectrum replication. (c) generated spectrum by DISTILGAN. (d) ground truth
spectrum and amplitude. (e) FT-IFT for flow traffic (bitrate) reconstruction (ampli-
tude) comparison; (d) DISTILGAN for flow traffic reconstruction.

stamps) changed a lot. TIMEGAN shows better high frequency detail than FT-IFT but
does not stay close to the real time series.

CAIDA Data Visualizations

We present the reconstruction result with FT-IFT and DISTILGAN on CAIDA flow
bitrate time series reconstruction in Figure B.13e and Figure B.13f, where CR = 15
and total length is 20 seconds.

148

Bibliography

[1] Chatgpt. https://chat.openai.com/. Accessed: 2023-09-01.

[2] D-ITG homepage. http://traffic.comics.unina.it/software/
ITG/. Accessed: 2021-10-19.

[3] General Data Protection Regulation (GDPR). https://gdpr-info.eu/.

[4] Taylor series. https://en.wikipedia.org/wiki/Taylor_series.
Accessed: 2023-11-30.

[5] How to build robust anomaly detectors with machine learn-
ing. https://www.ericsson.com/en/blog/2020/4/
anomaly-detection-with-machine-learning, Apr 2020.

[6] 3rd Generation Partnership Project (3GPP). Radio measurement collection
for Minimization of Drive Tests (MDT). Technical report, 3GPP, https:
//portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2602, 2017.
TS37.320-v14.

[7] 3rd Generation Partnership Project (3GPP). Study on user equip-
ment (ue) power saving in nr. https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.
aspx?specificationId=3502, 2019.

[8] Accuver. XCAL. https://www.accuver.com/sub/products/
view.php?idx=6&ckattempt=1, 2022.

[9] Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series
imputation and forecasting with structured state space models. arXiv preprint
arXiv:2208.09399, 2022.

[10] Emmanouil Alimpertis, Athina Markopoulou, Carter Butts, and Konstantinos
Psounis. City-wide signal strength maps: Prediction with random forests. In
The World Wide Web Conference, WWW ’19, page 2536–2542, New York, NY,
USA, 2019. Association for Computing Machinery.

[11] Anonymous. List of spotlight KPIs. https://anonymous.4open.
science/r/Spotlight-8E7F.

149

https://chat.openai.com/
http://traffic.comics.unina.it/software/ITG/
http://traffic.comics.unina.it/software/ITG/
https://en.wikipedia.org/wiki/Taylor_series
https://www.ericsson.com/en/blog/2020/4/anomaly-detection-with-machine-learning
https://www.ericsson.com/en/blog/2020/4/anomaly-detection-with-machine-learning
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2602
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2602
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2602
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3502
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3502
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3502
https://www.accuver.com/sub/products/view.php?idx=6&ckattempt=1
https://www.accuver.com/sub/products/view.php?idx=6&ckattempt=1
https://anonymous.4open.science/r/Spotlight-8E7F
https://anonymous.4open.science/r/Spotlight-8E7F

[12] Atlas. Copernicus Urban Atlas. https://land.copernicus.eu/
local/urban-atlas/urban-atlas-2012, 2012.

[13] Sanchez B, Ling L, Reif E, Pearce A, and Wiltschko Alexander B. A Gentle
Introduction to Graph Neural Networks. https://distill.pub/2021/
gnn-intro/, 2021.

[14] Ed. B. Claise. Cisco systems netflow services export version 9. https://
www.ietf.org/rfc/rfc3954.txt, 2004.

[15] Richard G. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine,
24(4):118–121, 2007.

[16] Paul Beaumont, Ben Horsburgh, Philip Pilgerstorfer, Angel Droth, Richard
Oentaryo, Steven Ler, Hiep Nguyen, Gabriel Azevedo Ferreira, Zain
Patel, and Wesley Leong. CausalNex. https://github.com/
quantumblacklabs/causalnex, October 2021.

[17] J Beran. Statistics for long-memory processes chapman & hall. New York, 1994.

[18] Davis Blalock, Samuel Madden, and John Guttag. Sprintz: Time series com-
pression for the Internet of Things. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 2(3):1–23, 2018.

[19] Ane Blázquez-Garcı́a, Angel Conde, Usue Mori, and Jose A. Lozano. A Review
on Outlier/Anomaly Detection in Time Series Data. ACM Comput. Surv., 54(3),
apr 2021.

[20] Leonardo Bonati, Michele Polese, Salvatore D’Oro, Stefano Basagni, and Tom-
maso Melodia. OpenRAN gym: An open toolbox for data collection and exper-
imentation with ai in O-RAN. arXiv preprint arXiv:2202.10318, 2022.

[21] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and
Luca Benini. Anomaly detection using autoencoders in high performance com-
puting systems. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 9428–9433, 2019.

[22] Alessio Botta, Alberto Dainotti, and Antonio Pescapé. A tool for the generation
of realistic network workload for emerging networking scenarios. Computer
Networks, 56(15):3531–3547, 2012.

[23] Rhys Alistair Bowden, Matthew Roughan, and Nigel Bean. Network link to-
mography and compressive sensing. In Proceedings of the ACM SIGMETRICS
joint international conference on Measurement and modeling of computer sys-
tems, pages 159–160, 2011.

[24] Bouziane Brik, Hatim Chergui, Lanfranco Zanzi, Francesco Devoti, Adlen
Ksentini, Muhammad Shuaib Siddiqui, Xavier Costa-Pérez, and Christos Verik-
oukis. A Survey on Explainable AI for 6G O-RAN: Architecture, Use Cases,
Challenges and Research Directions. arXiv preprint arXiv:2307.00319, 2023.

150

https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/gnn-intro/
https://www.ietf.org/rfc/rfc3954.txt
https://www.ietf.org/rfc/rfc3954.txt
https://github.com/quantumblacklabs/causalnex
https://github.com/quantumblacklabs/causalnex

[25] CAIDA. The caida ucsd anonymized internet traces. https://www.caida.
org/catalog/datasets/passive_dataset, 2022.

[26] Jue Cao, Di Kong, Michael Charitos, Denys Berkovskyy, Angelos A. Goulianos,
Tom Mizutani, Fai Tila, Geoffrey Hilton, Angela Doufexi, and Andrew Nix.
Design and verification of a virtual drive test methodology for vehicular lte-a
applications. IEEE Transactions on Vehicular Technology, 67(5):3791–3799,
2018.

[27] Carmelo Cassisi, Placido Montalto, Marco Aliotta, Andrea Cannata, and Al-
fredo Pulvirenti. Similarity measures and dimensionality reduction techniques
for time series data mining. Advances in data mining knowledge discovery and
applications’(InTech, Rijeka, Croatia, 2012,, 1:71–96, 2012.

[28] Cellmapper. Cellmapper. https://www.cellmapper.net/, 2021.

[29] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Comput. Surv., 41(3), Jul 2009.

[30] Kwangrok Chang and Ragil Putro Wicaksono. Estimation of network load and
downlink throughput using rf scanner data for lte networks. In 2017 Interna-
tional Symposium on Performance Evaluation of Computer and Telecommuni-
cation Systems (SPECTS), pages 1–8, 2017.

[31] Ashima Chawla, Paul Jacob, Saman Feghhi, Devashish Rughwani, Sven van der
Meer, and Sheila Fallon. Interpretable unsupervised anomaly detection for RAN
cell trace analysis. In 2020 16th International Conference on Network and Ser-
vice Management (CNSM), pages 1–5. IEEE, 2020.

[32] Yang Chen, Dustin J Kempton, Azim Ahmadzadeh, and Rafal A Angryk. To-
wards synthetic multivariate time series generation for flare forecasting. In
International Conference on Artificial Intelligence and Soft Computing, pages
296–307. Springer, 2021.

[33] Yi-Chao Chen, Lili Qiu, Yin Zhang, Guangtao Xue, and Zhenxian Hu. Ro-
bust network compressive sensing. In Proceedings of the 20th Annual Interna-
tional Conference on Mobile Computing and Networking, MobiCom ’14, page
545–556, New York, NY, USA, 2014. Association for Computing Machinery.

[34] Mayukh Roy Chowdhury, Sharda Tripathi, and Swades De. Adaptive multivari-
ate data compression in smart metering internet of things. IEEE Transactions
on Industrial Informatics, 17(2):1287–1297, 2020.

[35] Graham Cormode. Data sketching. Commun. ACM, 60(9):48–55, Aug 2017.

[36] Graham Cormode and S Muthukrishnan. Towards an algorithmic theory of com-
pressed sensing. Center for Discrete Math. and Comp. Sci.(DIMACS), Tech.
Rep. TR, 25:2005, 2005.

[37] Christopher Cox. An Introduction to LTE, chapter 17. Wiley, 2 edition, 2014.

151

https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset
https://www.cellmapper.net/

[38] Christopher Cox. An Introduction to LTE. Wiley, 2 edition, 2014.

[39] Peter F Craigmile. Simulating a class of stationary gaussian processes using the
davies–harte algorithm, with application to long memory processes. Journal of
Time Series Analysis, 24(5):505–511, 2003.

[40] Mark E Crovella and Azer Bestavros. Self-similarity in world wide web traffic:
Evidence and possible causes. In Proceedings of the 1996 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems,
pages 160–169, 1996.

[41] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection
in multivariate time series. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 4027–4035, 2021.

[42] George Deodatis and M Shinozuka. Auto-regressive model for nonstationary
stochastic processes. Journal of engineering mechanics, 114(11):1995–2012,
1988.

[43] Paolo Di Francesco, Francesco Malandrino, and Luiz A DaSilva. Assembling
and using a cellular dataset for mobile network analysis and planning. IEEE
Transactions on Big Data, 4(4):614–620, 2017.

[44] Emilien Dupont. Learning disentangled joint continuous and discrete represen-
tations. Advances in neural information processing systems, 31, 2018.

[45] eBPF. Dynamically program the kernel for efficient networking, observability,
tracing, and security. https://ebpf.io/.

[46] Frank Eichinger, Pavel Efros, Stamatis Karnouskos, and Klemens Böhm. A
time-series compression technique and its application to the smart grid. The
VLDB Journal, 24(2):193–218, 2015.

[47] Lukas Eller, Vaclav Raida, Philipp Svoboda, and Markus Rupp. Localiz-
ing basestations from end-user timing advance measurements. IEEE Access,
10:5533–5544, 2022.

[48] Ayman Elnashar and Mohamed A El-Saidny. Looking at lte in practice: A per-
formance analysis of the lte system based on field test results. IEEE Vehicular
Technology Magazine, 8(3):81–92, 2013.

[49] Sefik Emre Eskimez, Kazuhito Koishida, and Zhiyao Duan. Adversarial training
for speech super-resolution. IEEE Journal of Selected Topics in Signal Process-
ing, 13(2):347–358, 2019.

[50] J. Dugan et al. iPerf – The TCP, UDP and SCTP network bandwidth measure-
ment tool. https://iperf.fr/, 2022.

[51] Mah-Rukh Fida et al. Zipweave: Towards efficient and reliable measurement
based mobile coverage maps. In IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, pages 1–9, 2017.

152

https://ebpf.io/
https://iperf.fr/

[52] Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-
vae: Deep probabilistic time series imputation. In International conference on
artificial intelligence and statistics, pages 1651–1661. PMLR, 2020.

[53] Simon Foucart and Holger Rauhut. An invitation to compressive sensing. In A
mathematical introduction to compressive sensing, pages 1–39. Springer, 2013.

[54] Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, and Zhihua Lai. Tak-
ing 5g ran analytics and control to a new level. In Proceedings of the 29th
Annual International Conference on Mobile Computing and Networking, ACM
MobiCom ’23, New York, NY, USA, 2023. Association for Computing Machin-
ery.

[55] Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, and Zhihua Lai. Tak-
ing 5g ran analytics and control to a new level. In ACM MobiCom, October
2023.

[56] Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, and Zhihua Lai. Tak-
ing 5g ran analytics and control to a new level. In Proceedings of the 29th
Annual International Conference on Mobile Computing and Networking, pages
1–16, 2023.

[57] Marco Fraccaro, Søren Kaae Sø nderby, Ulrich Paquet, and Ole Winther.
Sequential neural models with stochastic layers. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29, Barcelona SPAIN, 2016. Curran Associates,
Inc.

[58] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning. In international conference on
machine learning, pages 1050–1059. PMLR, 2016.

[59] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial networks. Commun. ACM, 63(11):139–144, oct 2020.

[60] Ian et al. Goodfellow. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

[61] Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. Dzip:
Improved general-purpose loss less compression based on novel neural net-
work modeling. In 2021 Data Compression Conference (DCC), pages 153–162.
IEEE, 2021.

[62] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding.
In Proceedings of the 27th international conference on international conference
on machine learning, pages 399–406, 2010.

[63] Groundhog. CovMo eVDT. https://www.ghtinc.com/
the-future-of-drive-test-after-covid-19-virtual-is-here-to-stay/,
2020.

153

https://www.ghtinc.com/the-future-of-drive-test-after-covid-19-virtual-is-here-to-stay/
https://www.ghtinc.com/the-future-of-drive-test-after-covid-19-virtual-is-here-to-stay/

[64] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron Courville. Improved training of Wasserstein GANs. arXiv preprint
arXiv:1704.00028, 2017.

[65] Jiajia Guo, Chao-Kai Wen, Shi Jin, and Geoffrey Ye Li. Convolutional neural
network-based multiple-rate compressive sensing for massive mimo csi feed-
back: Design, simulation, and analysis. IEEE Transactions on Wireless Com-
munications, 19(4):2827–2840, 2020.

[66] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-
ing on large graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30, Long Beach, US, 2017. Curran Associates, Inc.

[67] Red Hat. Stress testing real-time systems with stress-ng. https://wiki.
ubuntu.com/Kernel/Reference/stress-ng.

[68] Alain Hore and Djemel Ziou. Image quality metrics: PSNR vs. SSIM. In
20th International Conference on Pattern Recognition, pages 2366–2369. IEEE,
2010.

[69] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and
Gong Zhang. Sketchvisor: Robust network measurement for software packet
processing. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, pages 113–126, 2017.

[70] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketchlearn: Relieving user
burdens in approximate measurement with automated statistical inference. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 576–590, 2018.

[71] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang, Yanwei Xu,
and Gong Zhang. Toward nearly-zero-error sketching via compressive sensing.
In NSDI, pages 1027–1044, 2021.

[72] HUAWEI. What is a microburst? how to detect a microburst? https://
support.huawei.com/enterprise/en/doc/EDOC1100086962,
2023.

[73] et al. Ian Goodfellow. Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

[74] Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi,
and Murat Kocaoglu. Root cause analysis of failures in microservices
through causal discovery. Advances in Neural Information Processing Systems,
35:31158–31170, 2022.

[75] Google Inc. Telephony API of Android. https://developer.android.
com/reference/android/provider/Telephony, 2021.

154

https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://support.huawei.com/enterprise/en/doc/EDOC1100086962
https://support.huawei.com/enterprise/en/doc/EDOC1100086962
https://developer.android.com/reference/android/provider/Telephony
https://developer.android.com/reference/android/provider/Telephony

[76] Keysight Inc. Nemo Handy by Keysight. https:
//www.keysight.com/gb/en/product/NTH00000B/
nemo-handy-handheld-measurement-solution.html?rd=1,
2021.

[77] Infovista. TEMS. https://www.infovista.com/tems, 2022.

[78] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Confer-
ence on Machine Learning, pages 448–456. PMLR, 2015.

[79] Sibren Isaacman, Richard Becker, Ramón Cáceres, Margaret Martonosi, James
Rowland, Alexander Varshavsky, and Walter Willinger. Human mobility model-
ing at metropolitan scales. In Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’12, page 239–252,
New York, NY, USA, 2012. Association for Computing Machinery.

[80] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1125–
1134, 2017.

[81] Anand Padmanabha Iyer, Li Erran Li, and Ion Stoica. Automating diagnosis
of cellular radio access network problems. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking, pages 79–87,
2017.

[82] Michael Jiang, Milan Nikolic, Stephen Hardy, and Ljiljana Trajkovic. Impact
of self-similarity on wireless data network performance. In ICC 2001. IEEE
International Conference on Communications. Conference Record (Cat. No.
01CH37240), volume 2, pages 477–481. IEEE, 2001.

[83] Carlee Joe-Wong, Sangtae Ha, Soumya Sen, and Mung Chiang. Do Mobile
Data Plans Affect Usage? Results from a Pricing Trial with ISP Customers. In
Passive and Active Measurement (PAM) Conference, 2015.

[84] Johan Johansson, Wuri A. Hapsari, Sean Kelley, and Gyula Bodog. Mini-
mization of drive tests in 3gpp release 11. IEEE Communications Magazine,
50(11):36–43, 2012.

[85] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep
learning for computer vision? Advances in neural information processing sys-
tems, 30, 2017.

[86] Keysight. Nemo Wireless Network Solutions. https://www.keysight.
com/gb/en/products/nemo-wireless-network-solutions.
html, 2022.

[87] Caner Kilinc et al. JADE: Data-Driven Automated Jammer Detection Frame-
work for Operational Mobile Networks. In IEEE INFOCOM 2022-IEEE Con-
ference on Computer Communications, pages 1139–1148. IEEE, 2022.

155

https://www.keysight.com/gb/en/product/NTH00000B/nemo-handy-handheld-measurement-solution.html?rd=1
https://www.keysight.com/gb/en/product/NTH00000B/nemo-handy-handheld-measurement-solution.html?rd=1
https://www.keysight.com/gb/en/product/NTH00000B/nemo-handy-handheld-measurement-solution.html?rd=1
https://www.infovista.com/tems
https://www.keysight.com/gb/en/products/nemo-wireless-network-solutions.html
https://www.keysight.com/gb/en/products/nemo-wireless-network-solutions.html
https://www.keysight.com/gb/en/products/nemo-wireless-network-solutions.html

[88] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[89] Paulo Valente Klaine, Muhammad Ali Imran, Oluwakayode Onireti, and
Richard Demo Souza. A Survey of Machine Learning Techniques Applied to
Self-Organizing Cellular Networks. IEEE Communications Surveys & Tutori-
als, 19(4):2392–2431, 2017.

[90] Linghe Kong, Mingyuan Xia, Xiao-Yang Liu, Min-You Wu, and Xue Liu. Data
loss and reconstruction in sensor networks. In 2013 Proceedings IEEE INFO-
COM, pages 1654–1662. IEEE, 2013.

[91] Volodymyr Kuleshov, S Zayd Enam, and Stefano Ermon. Audio super resolu-
tion using neural networks. arXiv preprint arXiv:1708.00853, 2017.

[92] Gene Moo Lee, Huiya Liu, Young Yoon, and Yin Zhang. Improving sketch
reconstruction accuracy using linear least squares method. In Proceedings of
the 5th ACM SIGCOMM conference on Internet Measurement, pages 24–24,
2005.

[93] Mark Leznik, Patrick Michalsky, Peter Willis, Benjamin Schanzel, Per-Olov
Östberg, and Jörg Domaschka. Multivariate time series synthesis using gen-
erative adversarial networks. In Proceedings of the ACM/SPEC International
Conference on Performance Engineering, ICPE ’21, page 43–50, New York,
NY, USA, 2021. Association for Computing Machinery.

[94] Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng.
MAD-GAN: Multivariate anomaly detection for time series data with generative
adversarial networks. In International conference on artificial neural networks,
pages 703–716. Springer, 2019.

[95] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. FlowRadar: A better
NetFlow for data centers. In 13th USENIX symposium on networked systems
design and implementation (NSDI 16), pages 311–324, 2016.

[96] Fusheng Lin, Hongyu Wang, Guo Chen, Guihua Zhou, Tingting Xu, Dehui Wei,
Li Chen, Yuanwei Lu, Andrew Qu, Hua Shao, et al. Fast, scalable and robust
centralized routing for data center networks. IEEE/ACM Transactions on Net-
working, 2023.

[97] Shuyu Lin, Ronald Clark, Robert Birke, Sandro Schönborn, Niki Trigoni, and
Stephen Roberts. Anomaly detection for time series using vae-lstm hybrid
model. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4322–4326. Ieee, 2020.

[98] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using
GANs for Sharing Networked Time Series Data: Challenges, Initial Promise,
and Open Questions. In Proceedings of the ACM Internet Measurement Con-
ference, IMC ’20, page 464–483, New York, NY, USA, 2020. Association for
Computing Machinery.

156

[99] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
F10: A {Fault-Tolerant} engineered network. In 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13), pages 399–412,
2013.

[100] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braver-
man, Roy Friedman, and Vyas Sekar. Nitrosketch: Robust and general sketch-
based monitoring in software switches. In Proceedings of the ACM Special
Interest Group on Data Communication, pages 334–350. 2019.

[101] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. One sketch to rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference, pages
101–114, 2016.

[102] Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series
imputation and forecasting with structured atate apace models. Transactions on
machine learning research, pages 1–36, 2023.

[103] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Abdul
Kabbani. Counter braids: a novel counter architecture for per-flow measure-
ment. ACM SIGMETRICS Performance Evaluation Review, 36(1):121–132,
2008.

[104] Zhilong Lu, Weifeng Lv, Yabin Cao, Zhipu Xie, Hao Peng, and Bowen Du.
Lstm variants meet graph neural networks for road speed prediction. Neuro-
computing, 400:34–45, 2020.

[105] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. Advances in neural information processing systems, 30, 2017.

[106] Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time
series imputation with generative adversarial networks. Advances in neural in-
formation processing systems, 31, 2018.

[107] Bo Ma, Bowei Yang, Zitian Zhang, and Jie Zhang. Modelling mobile traffic
patterns using generative adversarial neural networks. In NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, pages 1–7, 2020.

[108] Alina Machidon and Veljko Pejović. Enabling resource-efficient edge intelli-
gence with compressive sensing-based deep learning. In Proceedings of the 19th
ACM international conference on computing frontiers, pages 141–149, 2022.

[109] Yu Mao, Yufei Cui, Tei-Wei Kuo, and Chun Jason Xue. Accelerating general-
purpose lossless compression via simple and scalable parameterization. In
Proceedings of the 30th ACM International Conference on Multimedia, pages
3205–3213, 2022.

[110] Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier
Costa-Perez. How Should I Slice My Network?: A Multi-Service Empirical

157

Evaluation of Resource Sharing Efficiency. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking (MobiCom),
pages 191–206, 2018.

[111] Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, Cezary
Ziemlicki, and Zbigniew Smoreda. Not all apps are created equal: Analysis of
spatiotemporal heterogeneity in nationwide mobile service usage. In Proceed-
ings of the 13th International Conference on emerging Networking EXperiments
and Technologies (CoNEXT), pages 180–186, 2017.

[112] Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling
and imputation of incomplete data sets. In International conference on machine
learning, pages 4413–4423. PMLR, 2019.

[113] Rashid Mijumbi, Abhaya Asthana, Markku Koivunen, Fu Haiyong, and Qin-
jun Zhu. Design, implementation, and evaluation of learning algorithms for
dynamic real-time network monitoring. International Journal of Network Man-
agement, 31(4):e2108, 2021.

[114] Dimitar Minovski, Christer Åhlund, Karan Mitra, and Per Johansson. Anal-
ysis and estimation of video qoe in wireless cellular networks using machine
learning. In 2019 Eleventh International Conference on Quality of Multimedia
Experience (QoMEX), pages 1–6, 2019.

[115] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784, 2014.

[116] Moshe Mishali and Yonina C Eldar. From theory to practice: Sub-nyquist sam-
pling of sparse wideband analog signals. IEEE Journal of selected topics in
signal processing, 4(2):375–391, 2010.

[117] Moshe Mishali, Yonina C Eldar, Oleg Dounaevsky, and Eli Shoshan. Xampling:
Analog to digital at sub-nyquist rates. IET circuits, devices & systems, 5(1):8–
20, 2011.

[118] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. Fast in-network
gray failure detection for isps. In Proceedings of the ACM SIGCOMM 2022
Conference, pages 677–692, 2022.

[119] Jerome L Myers, Arnold D Well, and Robert F Lorch Jr. Research design and
statistical analysis. Routledge, New York, 2013.

[120] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, page 807–814,
Madison, WI, USA, 2010. Omnipress.

[121] n.d. How do you generate synthetic data? https://www.statice.ai/
post/how-generate-synthetic-data, 2022.

158

https://www.statice.ai/post/how-generate-synthetic-data
https://www.statice.ai/post/how-generate-synthetic-data

[122] n.d. Keysight VDT toolset. https://www.keysight.com/gb/en/
assets/7018-06582/solution-briefs/5992-3870.pdf, 2022.

[123] n.d. Open Signal. https://www.opensignal.com/, 2022.

[124] n.d. Spirent Live2Lab. https://www.spirent.com/assets/u/
virtual_drive_test, 2022.

[125] n.d. Tutela. https://www.tutela.com/, 2022.

[126] JM Nichols and F Bucholtz. Beating nyquist with light: a compressively sam-
pled photonic link. Optics express, 19(8):7339–7348, 2011.

[127] Nokia. Nokia and 3 Indonesia develop Zero Drive Test assessment
solution to enhance network quality and user experience. https:
//www.nokia.com/about-us/news/releases/2020/08/19/
nokia-and-3-indonesia-develop-zero-drive-test-assessment/
-solution-to-enhance-network-quality-and-user-experience/,
2020.

[128] Eduardo Mucelli Rezende Oliveira, Aline Carneiro Viana, Kolar Purushothama
Naveen, and Carlos Sarraute. Mobile data traffic modeling: Revealing temporal
facets. Computer Networks, 112:176–193, 2017.

[129] opendev. Kernel-modules: IRQ affinity hint fix-ups.
https://opendev.org/starlingx/kernel/commit/
7ded00431675bbab05fe254b90efd08eb335f101?style=
unified&whitespace=ignore-all.

[130] Alan V Oppenheim and Ronald W Schafer. Digital signal processing(book). Re-
search supported by the Massachusetts Institute of Technology, Bell Telephone
Laboratories, and Guggenheim Foundation. Englewood Cliffs, N. J., Prentice-
Hall, Inc., 1975. 598 p, 1975.

[131] OSM. OpenStreetMap Overpass API. http://overpass-turbo.eu/,
2020.

[132] Ayça Özçelikkale and Haldun M Ozaktas. Beyond nyquist sampling: a cost-
based approach. JOSA A, 30(4):645–655, 2013.

[133] Kihong Park, Gitae Kim, and Mark Crovella. On the relationship between file
sizes, transport protocols, and self-similar network traffic. In Proceedings of
1996 International Conference on Network Protocols (ICNP-96), pages 171–
180. IEEE, 1996.

[134] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das. Understanding
traffic dynamics in cellular data networks. In Proceedings IEEE INFOCOM,
pages 882–890, 2011.

[135] JET Penny, MI Friswell, and SD Garvey. Detecting aliased frequency compo-
nents in discrete fourier transforms. Mechanical systems and signal processing,
17(2):473–481, 2003.

159

https://www.keysight.com/gb/en/assets/7018-06582/solution-briefs/5992-3870.pdf
https://www.keysight.com/gb/en/assets/7018-06582/solution-briefs/5992-3870.pdf
https://www.opensignal.com/
https://www.spirent.com/assets/u/virtual_drive_test
https://www.spirent.com/assets/u/virtual_drive_test
https://www.tutela.com/
https://www.nokia.com/about-us/news/releases/2020/08/19/nokia-and-3-indonesia-develop-zero-drive-test-assessment/-solution-to-enhance-network-quality-and-user-experience/
https://www.nokia.com/about-us/news/releases/2020/08/19/nokia-and-3-indonesia-develop-zero-drive-test-assessment/-solution-to-enhance-network-quality-and-user-experience/
https://www.nokia.com/about-us/news/releases/2020/08/19/nokia-and-3-indonesia-develop-zero-drive-test-assessment/-solution-to-enhance-network-quality-and-user-experience/
https://www.nokia.com/about-us/news/releases/2020/08/19/nokia-and-3-indonesia-develop-zero-drive-test-assessment/-solution-to-enhance-network-quality-and-user-experience/
https://opendev.org/starlingx/kernel/commit/7ded00431675bbab05fe254b90efd08eb335f101?style=unified&whitespace=ignore-all
https://opendev.org/starlingx/kernel/commit/7ded00431675bbab05fe254b90efd08eb335f101?style=unified&whitespace=ignore-all
https://opendev.org/starlingx/kernel/commit/7ded00431675bbab05fe254b90efd08eb335f101?style=unified&whitespace=ignore-all
http://overpass-turbo.eu/

[136] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. Film: Visual reasoning with a general conditioning layer. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[137] P. Phaal, S. Panchen, and N. McKee. Inmon corporation’s sflow: A
method for monitoring traffic in switched and routed networks. https:
//datatracker.ietf.org/doc/html/rfc3176, 2001.

[138] Caleb Phillips, Douglas Sicker, and Dirk Grunwald. A survey of wireless path
loss prediction and coverage mapping methods. IEEE Communications Surveys
& Tutorials, 15(1):255–270, 2013.

[139] Darijo Raca, Ahmed H. Zahran, Cormac J. Sreenan, Rakesh K. Sinha, Emir
Halepovic, Rittwik Jana, and Vijay Gopalakrishnan. Back to the future:
Throughput prediction for cellular networks using radio kpis. In Proceedings of
the 4th ACM Workshop on Hot Topics in Wireless, HotWireless ’17, page 37–41,
New York, NY, USA, 2017. Association for Computing Machinery.

[140] Darijo Raca, Ahmed H. Zahran, Cormac J. Sreenan, Rakesh K. Sinha, Emir
Halepovic, Rittwik Jana, Vijay Gopalakrishnan, Balagangadhar Bathula, and
Matteo Varvello. Empowering video players in cellular: Throughput prediction
from radio network measurements. In Proceedings of the 10th ACM Multimedia
Systems Conference, MMSys ’19, page 201–212, New York, NY, USA, 2019.
Association for Computing Machinery.

[141] Vaclav Raida, Martin Lerch, Philipp Svoboda, and Markus Rupp. Deriving
cell load from rsrq measurements. In 2018 Network Traffic Measurement and
Analysis Conference (TMA), pages 1–6, 2018.

[142] Vaclav Raida, Philipp Svoboda, and Markus Rupp. Real world performance of
lte downlink in a static dense urban scenario - an open dataset. In GLOBECOM
2020 - 2020 IEEE Global Communications Conference, pages 1–6, 2020.

[143] Juan M Ramı́rez, Fernando Dı́ez, Pablo Rojo, Vincenzo Mancuso, and Anto-
nio Fernández-Anta. Explainable machine learning for performance anomaly
detection and classification in mobile networks. Computer Communications,
200:113–131, 2023.

[144] RantCell. What is the significance of drive test in telecom and drive test analy-
sis? https://rantcell.com/RF-drive-test-analysis-significance.html, 2022.

[145] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agar-
wal, John Carter, and Rodrigo Fonseca. Planck: Millisecond-scale monitoring
and control for commodity networks. ACM SIGCOMM Computer Communica-
tion Review, 44(4):407–418, 2014.

[146] Douglas A Reynolds et al. Gaussian mixture models. Encyclopedia of biomet-
rics, 741(659-663), 2009.

160

https://datatracker.ietf.org/doc/html/rfc3176
https://datatracker.ietf.org/doc/html/rfc3176

[147] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[148] Ludger Rüschendorf. The wasserstein distance and approximation theorems.
Probability Theory and Related Fields, 70(1):117–129, 1985.

[149] Megha Sahu, Snigdha Damle, and Arzad Alam Kherani. End-to-end uplink
delay jitter in lte systems. Wireless Networks, 27(3):1783–1800, 2021.

[150] Martin Sauter. From GSM to LTE-Advanced Pro and 5G, chapter 4. Wiley, 3
edition, 2017.

[151] Rohde & Schwarz. Mobile network testing. https:
//www.rohde-schwarz.com/us/solutions/
test-and-measurement/mobile-network-testing/
overview/mobile-network-testing_231692.html, 2022.

[152] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal
of Machine Learning Research, 9(3), 2008.

[153] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang. Characterizing geospatial
dynamics of application usage in a 3G cellular data network. In Proceedings of
IEEE INFOCOM, pages 1341–1349, 2012.

[154] Telecom Knowledge Share. LTE Drive Test Parameters.
https://telecom-knowledge.blogspot.com/2016/09/
lte-drive-test-parameters.html, 2016.

[155] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural net-
work. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1874–1883, 2016.

[156] Wuzhen Shi, Feng Jiang, Shaohui Liu, and Debin Zhao. Image compressed
sensing using convolutional neural network. IEEE Transactions on Image Pro-
cessing, 29:375–388, 2019.

[157] Xiaofeng Shi, Matthew Osinski, Chen Qian, and Jia Wang. Towards automatic
troubleshooting for user-level performance degradation in cellular services. In
Proceedings of the 28th Annual International Conference on Mobile Computing
And Networking, pages 716–728, 2022.

[158] Joel Shodamola, Haneya Qureshi, Usama Masood, and Ali Imran. Towards
addressing the spatial sparsity of mdt reports to enable zero touch network au-
tomation. In 2021 IEEE Global Communications Conference (GLOBECOM),
pages 1–6, 2021.

161

https://www.rohde-schwarz.com/us/solutions/test-and-measurement/mobile-network-testing/overview/mobile-network-testing_231692.html
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/mobile-network-testing/overview/mobile-network-testing_231692.html
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/mobile-network-testing/overview/mobile-network-testing_231692.html
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/mobile-network-testing/overview/mobile-network-testing_231692.html
https://telecom-knowledge.blogspot.com/2016/09/lte-drive-test-parameters.html
https://telecom-knowledge.blogspot.com/2016/09/lte-drive-test-parameters.html

[159] Rajkarn Singh et al. Urban vibes and rural charms: Analysis of geographic
diversity in mobile service usage at national scale. In The World Wide Web
Conference, pages 1724–1734, New York, United States, 2019. ACM.

[160] Benjamin Sliwa, Hendrik Schippers, and Christian Wietfeld. Machine Learning-
Enabled Data Rate Prediction for 5G NSA Vehicle-to-Cloud Communications.
In 2021 IEEE 4th 5G World Forum (5GWF), pages 299–304, 2021.

[161] Benjamin Sliwa and Christian Wietfeld. Data-driven network simulation for
performance analysis of anticipatory vehicular communication systems. IEEE
Access, 7:172638–172653, 2019.

[162] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Con-
ditional score-based diffusion models for probabilistic time series imputation.
Advances in Neural Information Processing Systems, 34:24804–24816, 2021.

[163] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Con-
ditional score-based diffusion models for probabilistic time series imputation.
arXiv preprint arXiv:2107.03502, 2021.

[164] Jakob Thrane, Matteo Artuso, Darko Zibar, and Henrik L. Christiansen. Drive
test minimization using deep learning with bayesian approximation. In 2018
IEEE 88th Vehicular Technology Conference (VTC-Fall), pages 1–5, 2018.

[165] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ram-
das. Conformal prediction under covariate shift. Advances in neural information
processing systems, 32, 2019.

[166] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and Laurent
Vanbever. Stroboscope: Declarative network monitoring on a budget. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
18), pages 467–482, 2018.

[167] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and Laurent
Vanbever. Stroboscope: Declarative network monitoring on a budget. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
18), pages 467–482, Renton, WA, April 2018. USENIX Association.

[168] Catherine Tong, Emma Rocheteau, Petar Veličković, Nicholas Lane, and Pietro
Liò. Predicting patient outcomes with graph representation learning. In Inter-
national Workshop on Health Intelligence, pages 281–293, Berlin, Germany,
2021. Springer, Springer.

[169] Hoang Duy Trinh, Engin Zeydan, Lorenza Giupponi, and Paolo Dini. Detect-
ing mobile traffic anomalies through physical control channel fingerprinting: A
deep semi-supervised approach. IEEE Access, 7:152187–152201, 2019.

[170] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. TranAD: deep trans-
former networks for anomaly detection in multivariate time series data. Pro-
ceedings of the VLDB Endowment, 15(6):1201–1214, 2022.

162

[171] Paul Tune and Darryl Veitch. Sampling vs sketching: An information theoretic
comparison. In 2011 Proceedings IEEE INFOCOM, pages 2105–2113. IEEE,
2011.

[172] Masatoshi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, and Yutaka
Matsuo. Generative adversarial nets from a density ratio estimation perspective.
arXiv preprint arXiv:1610.02920, 1(1):1–16, 2016.

[173] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-
Antoine Manzagol, and Léon Bottou. Stacked denoising autoencoders: Learn-
ing useful representations in a deep network with a local denoising criterion.
Journal of machine learning research, 11(12), 2010.

[174] Yu Wang, Jie Yang, Miao Liu, and Guan Gui. Lightamc: Lightweight au-
tomatic modulation classification via deep learning and compressive sensing.
IEEE Transactions on Vehicular Technology, 69(3):3491–3495, 2020.

[175] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

[176] Lina Wu, Danping He, Bo Ai, Jian Wang, Hang Qi, Ke Guan, and Zhangdui
Zhong. Artificial neural network based path loss prediction for wireless com-
munication network. IEEE Access, 8:199523–199538, 2020.

[177] Yan Wu, Mihaela Rosca, and Timothy Lillicrap. Deep compressed sensing.
In International Conference on Machine Learning, pages 6850–6860. PMLR,
2019.

[178] K. Xu, R. Singh, H. Bilen, M. Fiore, M. K. Marina, and Y. Wang. CartaGenie:
Context-Driven Synthesis of City-Scale Mobile Network Traffic Snapshots. In
2022 IEEE International Conference on Pervasive Computing and Communica-
tions (PerCom), pages 119–129. IEEE Computer Society, Mar 2022.

[179] Kai Xu et al. Spectragan: Spectrum based generation of city scale spatiotempo-
ral mobile network traffic data. In Proceedings of the 17th International Confer-
ence on emerging Networking EXperiments and Technologies, pages 243–258,
2021.

[180] Kai Xu, Rajkarn Singh, Marco Fiore, Mahesh K. Marina, Hakan Bilen, Muham-
mad Usama, Howard Benn, and Cezary Ziemlicki. SpectraGAN: Spectrum
Based Generation of City Scale Spatiotemporal Mobile Network Traffic Data.
In Proceedings of the 17th International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT’21), page 243–258. ACM, 2021.

[181] Guang Yang, Simiao Yu, Hao Dong, Greg Slabaugh, Pier Luigi Dragotti, Xu-
jiong Ye, Fangde Liu, Simon Arridge, Jennifer Keegan, Yike Guo, et al. Dagan:
deep de-aliasing generative adversarial networks for fast compressed sensing
mri reconstruction. IEEE transactions on medical imaging, 37(6):1310–1321,
2017.

163

[182] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui
Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-
wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 561–575, 2018.

[183] Wenzhuo Yang, Hung Le, Silvio Savarese, and Steven Hoi. Omnixai: A library
for explainable ai.(2022), 2022.

[184] Yang Yang, Yang Li, Wuxiong Zhang, Fei Qin, Pengcheng Zhu, and Cheng-
Xiang Wang. Generative-adversarial-network-based wireless channel modeling:
Challenges and opportunities. IEEE Communications Magazine, 57(3):22–27,
2019.

[185] Nofel Yaseen, Behnaz Arzani, Krishna Chintalapudi, Vaishnavi Ranganathan,
Felipe Frujeri, Kevin Hsieh, Daniel S. Berger, Vincent Liu, and Srikanth Kan-
dula. Towards a cost vs. quality sweet spot for monitoring networks. In Pro-
ceedings of the Twentieth ACM Workshop on Hot Topics in Networks, HotNets
’21, page 38–44, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[186] Nofel Yaseen, Behnaz Arzani, Krishna Chintalapudi, Vaishnavi Ranganathan,
Felipe Vieira Frujeri, Kevin Hsieh, Daniel S. Berger, Vincent Liu, and Srikanth
Kandula. Towards a cost vs. quality sweet spot for monitoring networks. CoRR,
abs/2110.05554, 2021.

[187] Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. Practical
gan-based synthetic ip header trace generation using netshare. In Proceedings
of the ACM SIGCOMM 2022 Conference, pages 458–472, 2022.

[188] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series genera-
tive adversarial networks. Advances in neural information processing systems,
32, 2019.

[189] Minji Yoon, Bryan Hooi, Kijung Shin, and Christos Faloutsos. Fast and ac-
curate anomaly detection in dynamic graphs with a two-pronged approach. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 647–657, 2019.

[190] Minlan Yu. Network telemetry: Towards a top-down approach. SIGCOMM
Comput. Commun. Rev., 49(1):11–17, feb 2019.

[191] Xinyang Yu, Yanqing Peng, Feifei Li, Sheng Wang, Xiaowei Shen, Huijun Mai,
and Yue Xie. Two-level data compression using machine learning in time series
database. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pages 1333–1344. IEEE, 2020.

[192] Yannan Yuan, Jiaolong Yang, Ran Duan, I Chih-Lin, and Jinri Huang. Anomaly
detection and root cause analysis enabled by artificial intelligence. In 2020 IEEE
Globecom Workshops (GC Wkshps, pages 1–6. IEEE, 2020.

164

[193] Chaoqun Yue, Ruofan Jin, Kyoungwon Suh, Yanyuan Qin, Bing Wang, and Wei
Wei. Linkforecast: Cellular link bandwidth prediction in lte networks. IEEE
Transactions on Mobile Computing, 17(7):1582–1594, 2018.

[194] Chaoyun Zhang, Marco Fiore, and Paul Patras. Multi-service mobile traffic
forecasting via convolutional long short-term memories. In 2019 IEEE Interna-
tional Symposium on Measurements & Networking (M&N), pages 1–6. IEEE,
2019.

[195] Jian Zhang and Bernard Ghanem. Ista-net: Interpretable optimization-inspired
deep network for image compressive sensing. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1828–1837, 2018.

[196] Yin Zhang, Matthew Roughan, Walter Willinger, and Lili Qiu. Spatio-temporal
compressive sensing and internet traffic matrices. In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, pages 267–278, 2009.

[197] Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong, and Jun Luo. Traffic-
GAN: Off-Deployment Traffic Estimation with Traffic Generative Adversarial
Networks. In 2019 IEEE International Conference on Data Mining (ICDM),
pages 1474–1479. IEEE, 2019.

[198] Yihao Zhao, Ruihai Wu, and Hao Dong. Unpaired image-to-image translation
using adversarial consistency loss. In European Conference on Computer Vision
(ECCV), pages 800–815. Springer, 2020.

[199] You Zhou, Youlin Zhang, Chaoyi Ma, Shigang Chen, and Olufemi O Odegbile.
Generalized sketch families for network traffic measurement. Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 3(3):1–34, 2019.

[200] ZTE. One Person, One Car, One Terminal, ZTE WNG Auto-
matic Drive Test Solution Dramatically Improves O&M Efficiency.
https://www.mobileworldlive.com/zte-updates-2019-20/
one-person-one-car-one-terminal-zte-wng-automatic-drive,
2019.

165

https://www.mobileworldlive.com/zte-updates-2019-20/one-person-one-car-one-terminal-zte-wng-automatic-drive
https://www.mobileworldlive.com/zte-updates-2019-20/one-person-one-car-one-terminal-zte-wng-automatic-drive

	Cover Sheet.pdf
	Thesis_Final_Chuanhao.pdf
	Abstract
	Introduction
	Network Measurement and Monitoring
	Motivation
	Challenges in Network Measurement and Monitoring
	Generative Modeling for Network Measurement and Monitoring

	Thesis Contributions
	Conditional generation of service level mobile traffic data
	Efficient mobile drive testing based on generative modeling
	Generative modeling based efficient and versatile network telemetry
	Explainable generative modeling driven anomaly detection for Open RAN system

	Thesis Organization

	Background
	Network Measurement and Monitoring
	Generative Models
	Generative Modeling for Networking
	5G Radio Access Networks (RANs)
	5G RAN general architecture
	Open RAN architecture

	Related Work
	Service Level Traffic Data Generation
	Drive Testing Data and the Application of Deep Learning
	Network Telemetry
	Anomaly Detection with Network Measurement Data

	AppShot
	Introduction
	Mobile Traffic and Context Data
	Analysis of Mobile Traffic Characteristics Across Services and Cities
	AppShot
	Problem Statement
	Patch based Learning Methods
	Detailed Model Design

	Performance Evaluation
	Fidelity Metrics
	Baselines

	Results
	Fidelity and Generalization
	Detailed Comparisons with CartaGenie and SpectraGAN
	Benefit from Other Design Choices and Parameter Tuning

	Use Cases of AppShot
	Discussion
	Limitations of AppShot
	Potential Extensions

	Summary

	GenDT
	Introduction
	Background on Device Side Measurement of Radio Networks
	Representative Radio Network KPIs
	Measurement and Context Data
	Network Context: Cell Information
	Environment Context

	Analysis of Data Characteristics
	GenDT
	Problem Statement
	Overview of Proposed Solution
	Generator
	ResGen
	Batch Training and Generation
	Stochastic Layers

	Evaluation Methodology
	Metrics
	Baselines

	Evaluation Results
	Fidelity and Generalization
	Long and Complex Scenarios

	Measurement Efficiency
	Model Uncertainty
	Uncertainty Driven Measurement

	Downstream Use Cases
	Mobile Service Quality of Experience (QoE) Prediction
	Analysis of Handovers

	Discussion
	Why generating point coverage is insufficient
	Comparison with Virtual Drive Testing
	Weather and Other Critical Contexts

	Summary

	DistilGAN
	Introduction
	Requirements for Network Telemetry Methods
	Fidelity
	Efficiency
	Versatility
	Real-time

	Motivation
	Limitations of existing approaches

	DistilGAN
	Overview
	Generator Model Design for High Fidelity Data Stream Reconstruction
	Efficiency through Sampling Rate Adaptation
	Q-value as coarse recovery error estimation
	Mutual Difference of Reconstructed Time Series
	Design Choices & Optimizations for Versatility and Real-Time Inference

	Evaluation Methodology
	Datasets
	Metrics

	Evaluation
	DistilGAN achieves High Fidelity and Efficiency
	DistilGAN is Versatile
	DistilGAN is Real-Time
	Ablation Study

	Downstream Use Cases of DistilGAN
	ISP Network Microburst Detection
	O-RAN Anomaly Detection
	IoT Smart Metering Analysis

	Summary

	SpotLight
	Introduction
	System Overview
	Open RAN Architecture
	Key Challenges in ORAN Anomaly Detection
	Explanation in ORAN Anomaly Detection

	Overview of SpotLight
	System Architecture
	Detection Method Description

	Data collection
	Evaluation Methodology
	Evaluation setup
	Dataset Creation
	Representative Anomalies
	Baselines

	Evaluation Results
	Accuracy
	Explainability
	Results with Multiple Anomalies
	Efficiency

	Real-world evaluation
	Case Studies
	Operational model

	Discussion
	Discriminator is not used to detect anomaly
	How to understand the explanations
	Choice of Models

	Summary

	Conclusions and Future Work
	Conclusions
	AppShot: Conditional Deep Generative Model for Synthesizing Service-Level Mobile Traffic Snapshots at City Scale
	GenDT: Mobile Network Drive Testing Made Efficient with Generative Modeling
	DistilGAN: High Fidelity, Efficient, Versatile and Real-Time Network Telemetry with Deep Generative Modeling
	SpotLight: Accurate, Explainable and Efficient Anomaly Detection for Open RAN

	Future Work
	Network Data Generation
	Network Telemetry
	Anomaly detection

	Work and Publications
	Publication Related to AppShot
	Publication Related to GenDT

	Implementation Details and Extra Results
	Data Analysis and Model Details of GenDT
	Visualization of Environment Context Attributes
	Details of Stochastic Layers
	Hyper Parameters

	Discussion on DoppelGANger
	Additional Evaluation and Use cases
	Need to Support Long Series Generation
	Ablation Study
	Further Use Cases

	Configuration Details of DistilGAN
	Epoch Length
	Memory Configuration

	5G RAN and IoT Smart Metering
	Periodical Sampling
	Threshold-based Sampling

	Details of Baselines
	Evaluation on synthetic time series
	ISP Network Scenario: KPI Breakdown during Adaptive Sampling
	Spectrum Change During DistilGAN Processing
	Synthetic Data Evaluation and Visualization

