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Figure 2.5: 5G Network Overview.
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Figure 2.6: Open RAN Overview. RU: Remote Unit (radio communication), DU:
Distributed Unit, CU: Central Unit, UE: User Equipment, SMO: Service Management
and Orchestration.

2.4 5G Radio Access Networks (RANs)

2.4.1 5G RAN general architecture

Overall architecture of 5G RAN (Radio Access Network) would not look much dif-
ferent from the previous generation (4G or LTE). The definition of RAN is explained
in Figure 2.5, including user equipment (UE), gNB (gNodeB, 5G basestation). There
is backhaul connects RAN with mobile core network. The key difference between the
5G RAN from the previous generation is the different protocol and implementation.
Among all of these differences, the most outstanding one would be that the gNB in-
ternal structure is split into two parts called CU (Central Unit) and DU (Distributed
Unit), which will be illustrated in detail with a representative implementation of 5G
RAN on open-source hardware — O-RAN (Open RAN) in the following part of this
section. For the monitoring of mobile core and Internet traffic, there is no structural
change for 5G, as they are basically IP network systems, and hence we do not provide
further discussion in this part.

2.4.2 Open RAN architecture

The detailed network elements of ORAN is illustrated in Figure 2.6. ORAN is not
fully overlapped with the definition of RAN, as the user equipment is not included.
ORAN consists of three main components, RU, DU, and CU. While RU is responsible
for the radio communication part just as in the previous generation, the split CU/DU is
the new function in 5G RAN. The separation of CU and DU helps virtualize network
functionalities, which potentially contributes to flexibility and cost reduction. The CU
and DU in the ORAN system is operated on general CPUs, making the implementation
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of RAN easier.

As Figure 2.6 shows, RAN disaggregation splits base stations into different func-
tional units, effectively embracing and extending the functional disaggregation paradigm
proposed by 3GPP for Next-Generation Node Bases (gNB) of NR. The gNB is divided
into a central unit (CU), a distributed unit (DU), and a Radio Unit (RU). The CU is
further split into two logical components, one for the Control Plane (CP) and one for
the User Plane (UP). This logical split allows different functionalities to be deployed
at different locations of the network, as well as on different hardware platforms. For
example, CUs and DUs can be virtualized on white-box servers at the edge (with hard-
ware acceleration for some of the physical layer functionalities) , while the RUs are
generally implemented on field-programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs) boards and deployed close to RF antennas.

The O-RAN Alliance has evaluated the different RU/DU split options proposed by
the 3GPP, with specific interest in alternatives for physical layer split across the RU
and the DU. The 7.2x version of RU/DU split strikes a balance between simplicity of
the RU and the data rates and latency required on the interface between the RU and
the DU. In split 7.2x, the RU performs time-domain functionalities, with precoding,
Fast Fourier Transform (FFT), cyclic prefix addition/removal, and Radio Frequency
(RF) operations, which makes the RU inexpensive and easy to deploy. The DU then
takes care of the remaining functionalities of the physical layer and of the Medium
Access Control (MAC) and Radio Link Control (RLC) layers, including scrambling,
modulation, layer mapping, part of precoding, and mapping into physical resource
blocks. The operations of these three layers are generally tightly synchronized, as the
MAC layer generates Transport Blocks (TBs) for the physical layer using data buffered
at the RLC layer. Finally, the CU units (CP and UP) implement the higher layers of the
3GPP stack, that is, the Radio Resource Control (RRC) layer, which manages the life
cycle of the connection; the Service Data Adaptation Protocol (SDAP) layer, which
manages the Quality of Service (QoS) of the traffic flows (also known as bearers); and
the Packet Data Convergence Protocol (PDCP) layer, which takes care of reordering,
packet duplication, and encryption for the air interface, among others.

Another innovation is represented by the RICs in Figure 2.6, which introduce pro-
grammable components that can run optimization routines with closed-loop control
and orchestrate the RAN. The nonreal-time (or non-RT) RIC is a component of the
Service Management and Orchestration (SMO) framework. The non-RT RIC provides
guidance, enrichment information, and management of ML models for the near-RT
RIC. Additionally, the non-RT RIC can influence SMO operations, which gives the
non-RT RIC the ability to indirectly govern all components of the O-RAN architec-
ture connected to the SMO, thus making decisions and applying policies that influence
thousands of devices. The near real-time (or near-RT) RIC is deployed at the edge
of the network and operates control loops with a periodicity between 10 ms and 1s.
Near-RT RIC consists of multiple applications supporting custom logic, called xApps,
and of the services that are required to support the execution of the xApps. An xApp is
a microservice that can be used to manage radio resources through specific interfaces
and service models.
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Figure 2.7: Open RAN Functions.

2.5 Related Work

2.5.1 Service Level Traffic Data Generation
Traditional network traffic generation focuses on creating different packet-level work-
loads. There are a number of tools that exist for this purpose (e.g., iPerf, MGEN,
Ostinato) and are also embedded in popular network simulators (e.g., ns-3). Some of
these tools like D-ITG [2, 22] support modeling different applications through param-
eterized probability distributions for packet sizes, their inter-arrival times, etc. This
form of traffic generation does not have a spatial dimension. In contrast, our focus
is on generating snapshots of application/service level mobile traffic volumes (aggre-
gated across multiple users and flows) at different locations of a target region (e.g., a
city).

We are unaware of any prior work for generation of service-level mobile network
traffic data. The few related works that exist in the mobile networking context [43,
107, 178, 180] focus on overall traffic across all services. Di Francesco et al. [43]
propose an approach for assembling a cellular dataset for a given region by integrating
multiple sources of data, including census data for population distribution, base station
locations and estimation of data demand per subscriber. For the data demand, they
simply model this as a probability distribution based on operator provided data on
overall mobile traffic across all services and then sample from it. We consider this
approach as a baseline in our evaluations and highlight its limitations in handling traffic
correlations. In another mobile traffic related work, Bo et al. [107] target generation of
mobile traffic patterns for a region focusing on hotspots through geotagged Twitter data
for that region. Here again, only total traffic volume across all services is considered
and not at the individual service level like we do. Moreover, access to Twitter data is
no more easier than accessing mobile traffic data whereas we base our generation on
context data for the target region that can be easily obtained from public sources.

SpectraGAN [180] and CartaGenie [178] are recent proposals that can be viewed
as the state of the art on mobile traffic data generation. As in our work, SpectraGAN
and CartaGenie take a conditional deep generative modeling approach but focus on
generation of spatial or spatiotemporal data for total traffic volumes in a city. We target
a different and orthogonal dimension, i.e., on the individual service level contributions
that make up the total traffic. As we show in our comparative evaluation, applying
SpectraGAN or CartaGenie for our purpose yields poor quality generation due to its
inability to model inter-service correlations and their relation to total traffic.

As we represent city-scale mobile traffic snapshots as images, their generation at
service level can be viewed as a multi-channel image generation problem. Further-
more, since we aim at conditional generation using contextual attributes as a multi-
channel image input, image translation works from the computer vision domain are
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particularly relevant. Pix2Pix [80] is a representative prior work on conditional image
translation. When applied to our problem setting, this work has several key limitations
as we show in our evaluation: (i) it does not take particular care to capture correlations
among channels (services in our problem); (ii) it fails to model variation in the data
from using just dropout for stochasticity; (iii) it can also result in undesirable edge
effects and artefacts when generating traffic maps for arbitrary sized regions. These
limitations also apply to other related works from the computer vision literature (e.g.,
Style-GAN [60], Cycle-GAN [198]), which are essentially rooted in the fact that they
do not cater to the unique requirements of mobile service traffic map generation. The
works from the transportation domain, exemplified by Traffic-GAN [197], for road
vehicle traffic generation are also broadly related. However, these works do not dif-
ferentiate between different vehicle types (individual mobile services in our case) and
also make a strong assumption of knowing correlations among traffic on different roads
for the target region, which is unrealistic.

Besides generation of multi-service mobile traffic maps, our work also includes an
analysis of mobile network traffic across different services and cities. This part is novel
compared to prior service-oriented mobile traffic analysis works (e.g., [111, 159])
by focusing on the key characteristics that need to be kept in mind when generating
service-level mobile traffic data. In particular, unlike [159], we analyze the correlation
between traffic of different mobile services as well as with a wide range of contex-
tual attributes beyond urbanization. Compared to [111], we study the similarities and
differences in mobile traffic across cities, with a focus on peak periods, traffic stochas-
ticity, hotspot density and distribution.

Takeaways. Overall, the conditional generative model in computer vision (CV) and
related domain is very promising at service-level data generation. However, directly
applying existing methods to network data generation cannot generate a high-fidelity
traffic map due to the special characteristics of service level traffic. A tailored generator
is needed to generate high-fidelity service level traffic.

2.5.2 Drive Testing Data and the Application of Deep Learning
In the context of mobile network drive testing and is aimed at reducing its cost as-
sociated with measurement data collection. As stated at the outset, the VDT ap-
proach [26, 122, 124] is limited to device/equipment testing and so is unsuitable for this
purpose. The other alternative approaches involving user device based measurement
collection via MDT [6, 84, 158] or crowd-sourcing [10, 51, 123, 125] are hindered by
insufficient incentives and privacy concerns. To the best of our knowledge, our work
is the first to explore the generative modeling approach towards making drive testing
efficient and cost effective.

Broadly related are the works focusing on coverage mapping and pathloss predic-
tion, which can be seen as a subset of drive testing use cases. In contrast to traditional
methods including ray-tracing [138], recent work (e.g., [10, 51, 164, 176]) has adopted
statistical and machine learning approaches for measurement or computational effi-
ciency. Alimpertis et al. [10] propose a random forests based model for prediction of
signal strength (RSRP) map, whereas Thrane et al. [164] present a convolutional neural
network (CNN) based supervised spatial regression model that maps satellite images
of a target region to signal quality parameters like RSRP and RSRQ in that region.
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On the other hand, [176] focuses on pathloss prediction using multi-layer perceptron
(MLP) based neural network model. The above mentioned works cannot mimic mea-
surements with drive testing as they do not have a notion of user trajectory or temporal
variations. They also make a simplifying but inaccurate assumption that serving cell at
each location is fixed and known. Moreover, the model in [164] due to being trained
with satellite images for a specific region does not generalize beyond that region. In
contrast, our proposed GENDT approach overcomes the above limitations through a
tailored and novel deep generative model.

GENDT leverages graph neural networks (GNNs) [13] to effectively handle vary-
ing network context around a drive testing trajectory. While there have been some
recent works employing GNNs for time-series prediction problems (e.g., [104, 168]),
to our knowledge, ours is the first work on GNN based time-series data ‘generation’.
As noted in prior work [179], data generation is a much harder task than prediction.
We comparatively evaluate our model with the LSTM-GNN model [168].

Using deep generative models, especially generative adversarial networks (GANs)
and variational autoencoders (VAEs), for data synthesis is of prime interest currently [121].
Such models are being used to generate data for machine learning, in finance, health-
care and other domains. Within the mobile networking domain, there have been few
recent works proposing deep generative models for various types of network and wire-
less data. The potential for GANs to generate physical layer channel response samples
for MIMO channels has been discussed in [184]. SpectraGAN [179] is another broadly
related work in this domain that targets the generation of spatiotemporal mobile traf-
fic data. Unlike our setting, mobile traffic data has certain unique properties such as
‘recurring’ patterns that are exploited in SpectraGAN for effective data generation.

Works on multivariate time-series synthesis in general are related given our prob-
lem involves generating time-series data for multiple radio network KPIs. Existing
work [32, 93, 98], however, targets very different problems from ours. For instance,
in [93], an unconditional GAN based multivariate time-series synthesis model is intro-
duced to generate data for resource utilization measurement of CDN caches whereas
we target a conditional data generation problem. As another example, Chen et al. [32]
focus on mitigating the severe class imbalance in the data for predicting rare events
(e.g., solar flares).

Among these works, DoppelGANger (DG) [98] is a more closely related work that
is aimed at unconditional GAN based generation of multivariate time-series data for
networks and systems (e.g., Wikipedia article views over time, network monitoring
data over time, resource usage in compute clusters).

Takeaways. To our knowledge, there is no generative model in the literature that is
tailored to generate multivariate time series that reflect stochastic features and achieve
high fidelity at the same time. Even with the generation method, we still need to design
a method to reduce the overhead of field test, because the cost of collecting sufficient
training data is high when conducting city-scale measurement.

2.5.3 Network Telemetry
Sampling. In some system when the memory and bandwidth is sufficient, Nyquist
sampling can be applied as a lossless data compression method in real-time [186].
However, if we look at more general network telemetry task, there are two limitations
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of Nyquist sampling: (1) the underlying system cannot achieve the Nyquist rate due
to the limitation of hardware — sub-Nyquist is essential sometimes; (2) Nyquist rate
changes a lot across different periods and hard to search the correct rate. Therefore,
Nyquist sampling cannot guarantee the feasibility in general network measurement
as equipment such as switches may have very limited memory, and the robustness of
Nyquist sampling is also poor because it relies on heuristic methods [135] to determine
the correct Nyquist rate and the searching process is hard to converge when the signal
bandwidth changes very fast.

Sampling regardless Nyquist rate is also used in network telemetry [145, 166, 171].
In those scenario, sampling is applied to significantly reduce the memory or bandwidth
overhead, and only an approximation of the ground truth measurement can be obtained.
We therefore did not include these works in the evaluation as they cannot meet the
high-fidelity requirement at suggested configuration.

Sketching [53] is the common method in network telemetry for abstracting, where
approximation is introduced to record the network KPIs of interest. Because lack of
data recovery design, conventional sketching methods [70, 95, 100, 101, 182] either
focus on very high level statistics or ignore less significant part of network to meet the
memory/bandwidth budget, for instance SketchVisor [69] directly drop some IP pack-
ets to make sure the sketch is executable with limited memory size. Those approxima-
tion leads to a poor fidelity on its result, SketchVisor [69] might have more than 30%
flows measured with significant error under the recommended memory configuration
as there still be significant IP packet dropping. Besides, those methods cannot adapt
to the dynamics in the network and only works with the initial configuration, without
the ability to report the measurement error, leaving the robustness in complex network
environment vulnerable. In practice, people has to configure them with the theoretical
upper bound error and network throughput, which is inconvenient and would cause
resource waste.

Sketching Based Sensing. The discussion of combination of sketching and CS has
started from early years, in [36, 92, 103] people notice that sketching could be taken
as a sensing method in CS system. Recent years we there are few successful usages of
classic CS in general sketching system, to further reduce the measurement amount on
data plane or sensors [69, 71]. In conventional setup [69], because the features such as
orthonormality of the sensing matrix is not fine tuned, the fidelity of recovery is lim-
ited. Method such as [71] fine tune the sensing matrix as well as the counter structure
to achieve near-zero error recovery and even less memory consumption. Nevertheless,
there are another two limitation of classic CS: (1) Recovery time is unacceptable long
when the data dimension is high; (2) Estimate the sparsity of network data is challeng-
ing. The first limitation is more significant for large network measurement, when there
is 100Ks of flows, it takes minutes for the optimization solver to converge. The second
limitation means it is very difficult to know if we allocate sufficient sampling rate (or
memory) because we do not have effective method to estimate the recovery error, and
therefore poor robustness upon significant data sparsity changes.

Classical Compressive Sensing (CS). In a most general setup, classical CS highly
rely on the sparsity of data. Network data show sparsity in diverse scenarios. [33, 90,
196] leverage compressive sensing to recover missing values in traffic matrices. [23]
applies CS to network link tomography.

Deep Learning based Compressive Sensing (DL-CS). Besides sparsity, there are
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latent structure and correlation between samples in real-world network data, such as
periodicity and self-similarity [40, 82, 133], which can be used for data recovery be-
yond Nyquist rate. Classic CS relies on data sparsity without looking into other inher-
ent structure on target data. DL-CS [62, 174, 177, 181] is then proposed to leverage the
other structural information, and also in general has much lower recovery time (around
two orders). While shows better recovery fidelity in variate domains — image process-
ing [156, 195], wireless networks [65, 108], etc., there is no thorough investigation of
DL-CS in network telemetry. Specially in network telemetry, the DL-CS with fancy
encoder on sender side is not applicable because the sender side in general do not suffi-
cient resources to process high data throughput with encoders. Broadly, we can take the
latest time series generation and imputation models [49, 91, 102, 106, 108, 162, 188]
as DL-CS methods without an encoder and designed for time series. However, the
existing methods cannot give a high-fidelity reconstruction when the sampling rate is
very low, and the recovery time is unacceptable with some latest models. The CS the-
ory is also applied some lossless compression algorithm with deep learning [61, 109],
we classify those methods to DL-CS family as well. While achieving higher compres-
sion ratio and much lower bandwidth consumption, the computation complexity is not
affordable in most of network equipment, and they also need to be operated on large
window size to achieve significant compression ratio — the actual memory and latency
overhead is very high in measurement system.

Takeaways. Generally speaking, the existing methods make different trade-offs
between the various requirements — high reliability, efficiency, versatility and real-
time, and as such none of them meets all the requirements mentioned above. This
observation motivates us to pursue a new and powerful approach to network telemetry
that is better suited to meet all requirements.

2.5.4 Anomaly Detection with Network Measurement Data
Network measurement data in general comes in the form of multi-variate time se-
ries, where each variate corresponds to specific. Time series anomaly detection is
an active area of research in the machine learning domain [19]. In line with what is
noted above, the state-of-the-art methods are prediction based (e.g., GDN [41]), re-
construction based (e.g., MADGAN [94]) or combine both (e.g., TranAD [170], VAE-
LSTM [97]). These methods have poor precision (high false alarms) when applied to
our Open RAN setting. Moreover, with the exception of a few methods like GDN [41],
most existing time series anomaly detection methods lack explainability.

From a method design perspective, the problem we target is essentially multivari-
ate time series anomaly detection [19]. In the RAN context, prior work (e.g., [87]) has
shown that commonly used non time series anomaly detection methods (e.g., Z-Score
based, robust covariance, one-class SVM) [5, 89], and supervised binary classifica-
tion based anomaly detection, as considered in early works (e.g., [81]), are ineffec-
tive. Consequently, state-of-the-art approaches for RAN anomaly detection broadly
fall under two classes: (i) time series prediction with recurrent neural networks (e.g.,
LSTM) [31, 87, 169, 192]; (ii) reconstruction based with autoencoders [87, 113, 169].
Both these approaches are limited by the unwieldy challenge of having to determine a
right threshold for prediction/reconstruction errors.

Explainability or root cause analysis has been considered in some prior works on
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anomaly detection in traditional RANs [31, 143, 192]. A common approach is to aug-
ment an anomaly detection method with SHAP (SHapley Additive exPlanations) [105]
or similar model-agnostic explainers, for identifying important features/KPIs responsi-
ble for the detection of anomalies [31, 192]. Interpretable shallow ML models such as
decision trees have also been used [143]. Explainability of AI models is starting to be
recognized as an important requirement in the Open RAN context [24]. However, we
are unaware of any existing work on explainable anomaly detection for this context.

Takeaways. We do not find a method in the literature that jointly considers Accu-
rate, Explainable and Efficient anomaly detection. In the ORAN system, the task is a
bit tricky because only detecting the anomaly accurately is not sufficient, we have to
understand the root cause from hundreds of parameters. Meanwhile, anomaly detec-
tion should be conducted in a lightweight way, with the consideration of the limited
computation resource available on the basestation and transmission latency when the
cloud is involved.
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Chapter 3

AppShot

3.1 Introduction

In this chapter, we focus on the first problem studied in this thesis, conditional gener-
ation of service level mobile traffic data. As stated in §1.3.1, lager scale service-level
mobile traffic data enables research studies and innovative applications in networking
domain, with a potential to shape future service-oriented communication systems and
beyond. However, real-world datasets reporting measurements at the individual service
level are hard to access as such data is deemed commercially sensitive by operators.
Such restriction can be relieved by a generative model that can generate high fidelity
traffic map solely with open source contextual data . The generated traffic map is dis-
tinct to the real traffic map and hence the risk of leaking sensitive information would
be much lower than manually cleaned dataset. Meanwhile, the fidelity of generation is
sufficient to support data driven applications and studies.

Designing a data synthesis model that can generate high-fidelity service-level mo-
bile traffic snapshots and generalizes well to new regions is challenging due to a num-
ber of reasons. First, the publicly available context data for a target region may not
fully determine the mobile services traffic for that region and in general cannot cap-
ture the stochasticity inherent to mobile traffic. Second, mobile traffic is known to
have complex spatiotemporal correlations both overall and at service level [134, 153],
which need to be captured by the model. Third, locations and times with high traffic
intensity (which we refer to as hotspots in this paper) are particularly important for
downstream use cases on research management and beyond (e.g., [83]), and need to be
faithfully modeled. Fourth, the model should correctly capture correlations between
traffic for different services and their relative contribution to overall traffic. Finally,
the model should be flexible in accommodating the fact that the target regions for traf-
fic generation may differ widely in their geographical dimensions as well as contex-
tual attributes and traffic characteristics. All those challenges motivate us to develop
APPSHOT, which to best our knowledge the first high fidelity generative model for
service-level city-scale traffic map.

In this chapter, we provide an in-depth discussion regarding the design of APP-
SHOT. The detailed neural network structure, training method, and other special de-
signs are included. The high-fidelity of APPSHOT makes the generated data of APP-
SHOT an open-source real-world traffic dataset that helps various downstreaming ap-
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plications.
This chapter is structured as follows. The next section elaborate mobile traffic

and context data relevant to APPSHOT. Then in §3.3, we conduct an analysis of the
aforementioned data, including service-level traffic characteristics and correlation be-
tween traffic and context. The proposed generative model APPSHOT is described in
detail in §3.4. Evaluation results are presented and discussed in §3.5, followed by the
use of APPSHOT for a downstream service-level traffic dependent application in §3.7.
Finally, §3.9 concludes the chapter.

3.2 Mobile Traffic and Context Data
For the purpose of modeling, analysis and evaluation in this work, we make use of a
real-world mobile traffic dataset collected in the production network of a major mobile
network operator in Europe. We also gather data for a variety of contextual attributes
for the target regions from public sources.

Mobile Traffic Data. Our traffic dataset spans 10 major cities in a European coun-
try (referred henceforth as CITY 1-CITY 10)1, where it covers the mobile demands of
the whole subscriber base of the operator, amounting to around 30% of the local user
population. This data was obtained by monitoring individual IP data flow sessions in
the operator’s network over the General Packet Radio Service (GPRS) Tunneling Pro-
tocol User plane (GTP-U). To infer the services corresponding to the traffic flows, the
operator employs a combination of proprietary and commercial traffic classification
tools on top of Deep Packet Inspection (DPI) probes, which allows identifying a very
wide range of mobile services with a high degree of accuracy [159]. Note that the data
was aggregated geographically (per antenna sector) and temporally by the operator, so
as to make the data non-personal and to preserve user privacy; all operations were car-
ried out within the operator premises, under control of the local Data Privacy Officer
(DPO), and in compliance with applicable regulations, according to GDPR (General
Data Protection Regulation) regulations [3]. The data was aggregated over all users
in space and time in secure servers at the operators’ premises, and we only accessed
de-personalized aggregates.

Each city is represented in the data as a regular grid tesselation over space with
each grid cell (i.e. pixel) covering 250× 250 m2. Unsurprisingly, different cities have
different geographical sizes in terms of number of pixels in each dimension, and range
from 33×33 to 97×123 pixels. Traffic data per pixel consists of overall mobile traffic
volume for each service across uplink and downlink directions in bits/s, over time.
The dataset covers a continuous period of 6 weeks. In this dataset, we consider the
top 10 popular services that contribute to more than 80% of the total traffic volume,
namely: YouTube (YT), Instagram (INS), SnapChat (SC), WhatsApp (WA), Netflix
(NF), Apple Store (AS), iTunes, Facebook (FB), Twitter (TW), and Google Play (GP).
As such, the effective total mobile traffic in our study is the sum of traffic due to these
top-10 services.

Context Data2. Our conditional generation model takes advantage of contextual

1We can not disclose any information about the actual name of cities and the specific region in them.
All data information is reserved as confidential by the data provider

2To align the contexts with traffic map on pixel level, we follow the method used in [159]
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attributes to produce credible synthetic traffic. We gather a wide range of context data
from easily accessible public sources, so that the method is applicable as widely as
possible. All attributes for each city are mapped to the corresponding regular grid
tessellation used to represent mobile traffic data, examples under each attribute are il-
lustrated in Figure 3.1. In all, we consider 27 different contextual attributes, as outlined
below.

Population. The number of inhabitants residing in each grid cell, as reported in the
relevant national census.

Land Use. The different uses of the land within each grid cell, obtained from the
Copernicus Urban Atlas repository [12]. We only retain land use types that exhibit non-
negligible correlation with mobile traffic (as per Spearman’s correlation coefficient
(SCC) [119]). Ultimately, 12 land use attributes are considered, listed in Table B.1.

Points of Interest (PoIs). The number of landmarks of a specific class within each
grid cell, extracted from the OpenStreetMap (OSM) repository [131]. We use a similar
correlation analysis with traffic as above, and retain the 14 significant PoI categories
(Table B.1).

Contextual Attribute Avg. SCC

Population 0.639
Continuous Urban 0.220
High Dense Urban 0.180

Medium Dense Urban 0.128
Low Dense Urban 0.254

Very-Low Dense Urban 0.102
Isolated Structures 0.051

Green Urban 0.325
Industrial/Commercial 0.252

Air/Sea Ports 0.321
Leisure Facilities 0.322

Barren Lands 0.067
Sea 0.072

Tourism 0.135
Cafe 0.002

Parking 0.2110
Restaurant 0.1797
Post/Police 0.118

Traffic Signal 0.430
Office 0.343

Public Transport 0.080
Shop -0.018

Primary Roads -0.074
Secondary Roads -0.009

Motorways 0.254
Railway Stations 0.371

Tram Stops 0.158

Table 3.1: List of contextual at-
tributes considered.
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Figure 3.1: Spatial distribution of
total traffic of all different ser-
vices in CITY 1 and 3 selected
context attributes.
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3.3 Analysis of Mobile Traffic Characteristics Across
Services and Cities

(a) Four locations in CITY 1
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(b) Corresponding traffic

Figure 3.2: Illustration of inherent variation in traffic at each location over time, con-
sidering CITY 1 as an example.

In order to better inform the design of our generator, we first investigate the proper-
ties of mobile network traffic at the service level, across a number of different dimen-
sions.

Relationship between Context and Traffic. We start by investigating how the
traffic across the 10 target services relates to contextual information. A first important
observation concerns the inherent stochasticity of mobile traffic: Figure 3.2b shows the
distribution of total traffic observed over time at four different pixels in CITY 1, whose
locations are shown in Figure 3.2a, and the traffic is normalized by the maximum pixel
scale traffic (maximum value of traffic map over all dates) as displayed in the X-axis
of Figure 3.2b. Note that mobile traffic can exhibit substantial variation at a location
even though the corresponding context remains the same: this is, e.g., the case of
the population density illustrated in Figure 3.2a. In addition, the correlation between
mobile traffic and contextual attributes for any given region is non-trivial. This is as
exemplified in Figure 3.1, where three sample contextual attributes do not show any
obvious visual correlation with the mobile traffic.

Takeaway message. The generation process must capture the stochastic nature
of mobile traffic, by correctly modeling the relationship between static context infor-
mation and spatial traffic demand at different time periods. Also, the lack of simple
correlations between individual contexts and traffic indicates that a naive univariate
statistical model based on any one attribute is not an effective generator, thus motivate
the more complex multivariate designs we consider.

Correlations with Service Level Traffic. The above analysis considers aggre-
gate traffic. As we are interested in service-level generation, we now examine the
dependence of the demand for individual services on the various contextual attributes.
Figure 3.3 shows correlation between the traffic snapshots of different services and the
contextual attributes in three cities. We observe that, for a given city, the correlation
between different services and any single attribute is close – each column generally has
a similar color, but the service-context correlation varies across attributes (columns).
This hints that the spatial distribution of traffic is consistent across services in a same
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(c) CITY 3

Figure 3.3: Correlation between the traffic of mobile services and contextual attributes
in three different cities.
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(c) Evening Peak

Figure 3.4: Pairwise similarity between traffic snapshots of different mobile services
(as per SSIM) in CITY 3.

city. A more detailed analysis of cross-service traffic similarity further corroborates
this observation: in Figure 3.4, we use structural similarity (SSIM) [175] measure to
compute the spatial similarity between the spatial demand of pairs of services, for dif-
ferent daily peak hours in the morning, midday and evening. Note that SSIM is a
classical image fidelity metric, which allows comparing individual pixels between a
pair of images (here traffic maps of a pair of services) while also accounting for the
differences in the whole spatial construct across the compared images. As shown in
the plots, the spatial variations between different services stay relatively consistent at
all times. Yet, not all service-level demand pairs display the same level of similarity,
as SSIM between different service pairs ranges from 0.55 to 0.95 for any given time
period.

Takeaway message. The diverse correlations among services indicate that naive
transformations (e.g., scaling) are insufficient to generate traffic snapshots for one ser-
vice from the snapshots of a different service. However, more complex transformations
may still take advantage of the significant but varying degree of similarity among the
traffic of individual services. This suggests a model design that natively performs a
joint synthesis of all per-service snapshots.

Traffic Characteristics in Different Cities. Figure 3.3 also suggests that the rela-
tionship between service-level traffic and contextual attributes is different across dif-
ferent cities. The heterogeneity among cities also appears in terms of average daily
traffic volume, depicted separately for weekdays and weekends in Figure 3.5. Popula-
tion, city size, and user preference, all contribute to such heterogeneity. For instance,
CITY 1 has significantly higher traffic volume, about six to twenty times that of other
cities. The traffic generation model must be able to capture such traffic heterogeneity
across different regions. We also notice that traffic demand during weekdays is around
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Figure 3.5: Average daily traffic.

0 5 10 15 20

Time (h)

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Tr

af
ffi

c

CITY1
CITY2
CITY3
CITY4
CITY5
CITY6
CITY7
CITY8
CITY9
CITY10

Figure 3.6: Total traffic.

20% higher than weekends for all cities. Our evaluations therefore highlight weekday
traffic generation but relative performance results across different methods are similar
for weekends.

In contrast, Figure 3.6 shows that such differences do not emerge at the level of ag-
gregate normalized daily traffic, which is very consistent across all cities. Specifically,
we identify the same three peak hours for all cities: in the morning (8-9am), around
midday (12-1pm), and early in the evening (5-6pm).

Takeaway message. Generalizing the traffic generation task across cities is a sig-
nificant challenge, as context-traffic correlations are highly diverse between cities. So
the model must be designed so as to facilitate such generalization, which shall also be
a key element of the performance assessment. Also, in our evaluation we will focus on
the three peak hours identified above, as they are consistent across cities and especially
important for, e.g., network planning or network resource management purposes.

3.4 APPSHOT

Based on the insights from §3.3, the generation of high-quality multi-service traffic
snapshots faces the following major challenges: 1) synthesizing high-fidelity traffic
snapshot from context input with significant statistical variation; 2) preserving corre-
lations among multiple services, both in terms of structural similarity and percentage
contribution to total traffic; 3) allowing traffic generation for target cities of arbitrary
spatial sizes; and 4) accommodating diverse traffic characteristics and context data
ranges across cities.

With APPSHOT, we tackle challenges 1) and 2) by designing a tailored conditional
deep generative model (§3.3), and solve challenges 3) and 4) via customized data pro-
cessing and training methods (§3.4.2) and hyper-parameter tuning.

3.4.1 Problem Statement

Let χ = {X1, X2, · · · , XN} be a real-world mobile network traffic dataset that con-
tains sets of observations of mobile traffic, such that each set is collected in a dif-
ferent geographical region, i.e., city. The data for each city n ∈ {1, · · · , N}, in-
cludes observations over a given span of time T n, hence Xn = {xn

1 , · · · , xn
Tn}. The

observation at each time slot is composed of traffic due to S different services, i.e.,
xn
t = {xn

t,1, · · · , xn
t,S}. For time slot t ∈ 1, · · · , T n and service s ∈ 1, · · · , S, we rep-
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