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Abstract
The explosive growth of online services, leading to unforeseen scales, has made

modern datacenters highly prone to failures. Taming these failures hinges on fast and

correct recovery, minimizing service interruptions. Applications, owing to recovery,

entail additional measures to maintain a recoverable state of data and computation

logic during their failure-free execution. However, these precautionary measures have

severe implications on performance, correctness, and programmability, making recovery

incredibly challenging to realize in practice.

Emerging memory, particularly non-volatile memory (NVM) and disaggregated

memory (DM), offers a promising opportunity to achieve fast recovery with maximum

performance. However, incorporating these technologies into datacenter architecture

presents significant challenges; Their distinct architectural attributes, differing sig-

nificantly from traditional memory devices, introduce new semantic challenges for

implementing recovery, complicating correctness and programmability. Can emerging

memory enable fast, performant, and correct recovery in the datacenter? This thesis

aims to answer this question while addressing the associated challenges.

When architecting datacenters with emerging memory, system architects face four

key challenges: 1 how to guarantee correct semantics; 2 how to efficiently enforce cor-

rectness with optimal performance; 3 how to validate end-to-end correctness including

recovery; and 4 how to preserve programmer productivity (Programmability).

This thesis aims to address these challenges through the following approaches: a

defining precise consistency models that formally specify correct end-to-end semantics

in the presence of failures (consistency models also play a crucial role in programma-

bility); b developing new low-level mechanisms to efficiently enforce the prescribed

models given the capabilities of emerging memory; and c creating robust testing

frameworks to validate end-to-end correctness and recovery.

We start our exploration with non-volatile memory (NVM), which offers fast per-

sistence capabilities directly accessible through the processor’s load-store (memory)

interface. Notably, these capabilities can be leveraged to enable fast recovery for Log-

Free Data Structures (LFDs) while maximizing performance. However, due to the

complexity of modern cache hierarchies, data hardly persist in any specific order, jeop-

ardizing recovery and correctness. Therefore, recovery needs primitives that explicitly

control the order of updates to NVM (known as persistency models). We outline the

precise specification of a novel persistency model – Release Persistency (RP) – that pro-

vides a consistency guarantee for LFDs on what remains in non-volatile memory upon
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failure. To efficiently enforce RP, we propose a novel microarchitecture mechanism,

lazy release persistence (LRP). Using standard LFDs benchmarks, we show that LRP

achieves fast recovery while incurring minimal overhead on performance.

We continue our discussion with memory disaggregation which decouples mem-

ory from traditional monolithic servers, offering a promising pathway for achieving

very high availability in replicated in-memory data stores. Achieving such availability

hinges on transaction protocols that can efficiently handle recovery in this setting, where

compute and memory are independent. However, there is a challenge: disaggregated

memory (DM) fails to work with RPC-style protocols, mandating one-sided transaction

protocols. Exacerbating the problem, one-sided transactions expose critical low-level

ordering to architects, posing a threat to correctness. We present a highly available

transaction protocol, Pandora, that is specifically designed to achieve fast recovery in

disaggregated key-value stores (DKVSes). Pandora is the first one-sided transactional

protocol that ensures correct, non-blocking, and fast recovery in DKVS. Our experi-

mental implementation artifacts demonstrate that Pandora achieves fast recovery and

high availability while causing minimal disruption to services.

Finally, we introduce a novel target litmus-testing framework – DART – to validate

the end-to-end correctness of transactional protocols with recovery. Using DART’s

target testing capabilities, we have found several critical bugs in Pandora, highlighting

the need for robust end-to-end testing methods in the design loop to iteratively fix

correctness bugs. Crucially, DART is lightweight and black-box, thereby eliminating

any intervention from the programmers.
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Lay summary

Modern datacenters have continued to grow in size and complexity, with failures

becoming more common than exceptions. The frequency of these failures and their

complexity and impact have dramatically escalated in recent years. These failures,

unfortunately, disrupt critical services and reduce the datacenters’ ability to respond to

users online (i.e., availability). Such disruptions not only incur significant costs but also

tarnish the reputation of cloud operators.

Addressing failures requires fast recovery algorithms to restore components and

avoid service interruptions. However, achieving fast recovery involves trade-offs in per-

formance, correctness, and programmability. Emerging non-volatile and disaggregated

memories promise opportunities for efficient recovery but also introduce correctness

and programmability challenges due to their unique architectures.

In addressing these challenges, this thesis tackles three key aspects of architecting

modern datacenters with emerging memory: defining precise correctness semantics

(i.e., consistency), developing performant low-level primitives for efficiently enforcing

correctness, and creating robust testing frameworks to validate end-to-end correctness.

This thesis makes significant contributions in three key areas: Firstly, we propose a

novel consistency model, Release Persistency, along with an efficient microarchitecture

mechanism, Lazy Release Persistency. These innovations are designed to enable fast,

correct, and performant recovery in non-volatile-memory data structures. Secondly,

leveraging the benefits of disaggregated memory, we introduce Pandora, the first fast,

correct, and recoverable one-sided transaction protocol specifically designed for disag-

gregated data stores. Finally, we introduce DART, a framework that validates end-to-end

correctness of transaction protocols with recovery.

Overall, this thesis exemplifies a holistic approach addressing recovery (availability),

performance, consistency, and programmability tensions using emerging memories.

The specifications, mechanisms, and techniques unlock potential for reliable, efficient

recovery, avoiding catastrophic failures in next-generation datacenters. Despite lim-

itations, it provides promising directions for continued research on next-generation

datacenter architectures.
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Chapter 1

Introduction

From shopping to socializing, our everyday activities are increasingly reliant on a wide

range of online services, including e-commerce, self-driving, banking, streaming, social

media, and online gaming. These services run in a shim layer, known as Cloud [19, 20]

or Sky [196], functioning over datacenters.

The unprecedented growth of online services has led to previously unseen demand

for datacenters. To meet such a proliferating demand, modern data centers have become

increasingly large, complex, and heterogeneous, making failures the norm rather than

the exception. Unfortunately, failure disrupts critical services implemented in modern

datacenters [27, 85].

The cost of service downtime is substantial, resulting in significant financial losses

for businesses and negatively impacting overall quality of service (QoS). A typical

service outage of a few minutes can cost millions of dollars for companies [125].

Therefore, it is critically important to architect data centers with fault tolerance [71, 57].

Tolerating failures in modern data centers requires fast recovery to minimize inter-

ruptions to the services (i.e., high availability). However, fast recovery gives rise to new

challenges in performance, correctness, and programmability.

In this chapter, we closely examine failures, recovery, and their crucial trade-offs

in the data center while outlining the problem statement, research objectives, and the

scope of this thesis (§1.1). Furthermore, we describe our approach and the contributions

of this thesis (§1.4).
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2 Chapter 1. Introduction

1.1 Motivation

The modern datacenter has created an abstract machine–which is referred to as the

Cloud, or Sky [19, 20, 196]– to store, retrieve, and process petabytes of application

data. Such abstraction allows for seamless management of online services while hiding

the underlying scale and complexity from application developers. However, the reality

is that modern datacenters consist of countless numbers of hardware and software

resources (CPU, memory, storage, network and OS libraries, application software) that

fail all the time [109, 27]. In this section, we discuss the importance of taming failures

in modern datacenters.

1.1.1 Failures and Availability

In 2013, a study conducted by Google revealed that a typical datacenter server experi-

ences 1.2 to 2 crashes per year [26]. Even at these rates, the mean time to failure (MTTF)

of the datacenter, comprising tens of thousands of servers, was estimated to be in the

order of minutes. For instance, consider a datacenter with 10,000 servers, each having

an MTTF of 365 days (equivalent to one crash per year). The calculated MTTF for this

datacenter would be approximately 50 minutes, which is significantly low (calculated as

365days∗24hrs/day∗60mins/hr ∗1/10,000 = 50mins). The today’s reality, however,

is considerably more challenging, as modern datacenters have continued to scale up to

tens of thousands to millions of servers, and the complexity of failures has substantially

increased [26, 24, 149].

Failures can disrupt a service in two ways. First, the failed servers stop responding

to service requests until the damage is recovered. Second, a failed server can abruptly

disrupt the functioning of the remaining servers in the service. Availability in the

presence of such failures is measured as a fraction of time that the service remains

operational [102]. For instance, consider a service operating on a datacenter with mean

time to failures (MTTF) of 60 min and mean time to recover (MTTR) of 500 ms. The

calculated availability is 0.99 or two nines (using equation 1.1). Crucially, datacenter

operators prioritize offering high availability, ideally five nines and more [49], as it

directly affects the client’s online experience and profits.

Additionally, failures are not the sole factor affecting availability; high client traffic

and limited resource availability can adversely impact overall availability. While these

aspects are important, they are not the focus of this thesis.
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Availability =
MT T F

MT T F +MT T R
(1.1)

1.1.2 Recovery

A typical service involves multiple applications that are implemented over numerous

servers, each responsible for computation and storage functionalities. Clients interact

with the services by sending requests to these servers. Unfortunately, crashed servers

lose data, stop responding to clients, and disrupt the operation of other servers. Maintain-

ing service availability in the face of failures requires quickly and correctly recovering

failed segment of the application.

System architects typically use different terms such as recovery and fault tolerance

interchangeably to describe a system’s ability to operate through failures. While

their textbook definitions have subtle nuances, the lines between these concepts have

increasingly blurred in real-world usage, largely owing to intricate modern datacenter

designs and complex application logic [38]. Therefore, before delving into recovery,

let’s first explore what it entails.

Traditionally, recovery refers to steps taken after a failure to bring back the failed

components to life. However, modern datacenters demand high availability, making

it no longer feasible to wait for all the failed components to be fully recovered. Thus,

applications incorporate redundancy mechanisms like replication to minimize downtime

by relaying the application over redundant resources [38, 198, 202]; clients experience

no interruptions. While minimal, these redundancy mechanisms still require a form of

recovery which can be as little as resending client requests to a redundant application

server [38]. In this thesis, we categorize all these different aspects as recovery.

Broadly, we define recovery as the ability to restore a failed segment of the appli-

cation – data and computation logic – regardless of whether the application remains

on the same physical devices. This definition enables us to reason about recovery in a

system-agnostic way.

1.1.3 Recovery Trade-Offs

Given the unpredictable nature of failures, which can occur at any point during appli-

cation execution, recovery requires implementing additional measures to maintain a

recoverable state throughout the failure-free execution of applications.
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First, it is vital to store application data in a fail-safe manner, as there is a risk

of permanent loss in the event of failures. System architects must ensure that data

remains stored and accessible over time, even in the face of various failures or dis-

asters (durability). Durability requires persistence or replicating of data [83, 96, 76].

Persistence ensures that failed servers can restart with a consistent data state, while

replication allows the failed portion of the application to continue functioning on a

backup server [39, 14].

Second, the consequences of server failures extend beyond data losses to disrupting

computation logic. Recovery must ensure that each request appears to execute exactly

once in an all-or-nothing manner with no partial effects on data (Failure Atomicity). This

is because, typically, client requests trigger multiple actions within application servers,

hence failures can unpredictably disrupt the execution at any point. In particular, system

architects ensure atomicity through write-ahead logging [160, 159, 180], a technique

that involves preemptively saving copies of data before making actual changes.

Crucially, additional recovery measures to implement data durability and failure

atomicity have severe implications on performance, correctness, and programmability.

Correctness Implications. Recovery complicates the end-to-end correctness of ap-

plications. Additional recovery measures introduce significant complexity into the

protocols and implementation, making it incredibly difficult to validate against the

abstract correctness properties of the applications [98, 197, 46, 142]. Rare corner cases

and the non-deterministic nature of failures further exacerbate this problem. Designing

recovery protocols and validating their correctness remains a notoriously challenging

problem [151, 103, 173, 214, 213].

Performance Implications. Implementing precautionary measures for recovery nega-

tively impacts performance; Since datacenter performance is measured by the number

of client requests completed within a fixed time frame (also referred to as throughput),

introducing more recovery measures results in higher CPU usage for processing client

requests, thereby reducing overall performance.

Programmability Implications. Alternatively, if system architects choose to expose

low-level complexities like handling failures to programmers for performance rea-

sons [179, 136, 78], the subtle complexities in recovery can diminish programmer

productivity (programmability), and usability in the datacenter.

Design Goals. Achieving fast and correct recovery, while critically important, is a

significantly challenging task. Architects focus on four key aspects when designing
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datacenter recovery:(i) minimizing recovery time or downtime (High Availability), (ii)

reducing performance overhead to a minimum (High Performance), (iii) enforcing

end-to-end correctness as if no failures occurred (Consistency), and (iv) preserving

programmer productivity (Programmability). However, achieving these objectives

remains challenging despite years of research, mainly due to their inherent conflicts and

ever-increasing failures. State-of-the-art recovery methods often prove slow, incorrect,

or require significant correctness and programmability trade-offs [211, 66].

1.2 Impact of Emerging Memory

Two key innovations in the memory subsystem (known as emerging memory) – non-

volatile memory (NVM) and hardware-disaggregated memory (we will simply refer

to it as disaggregated memory or DM from here on) – have radically changed the

way in which datacenters are built and operated. Crucially, we observe that these

new memory technologies offer a promising pathway for enabling fast recovery with

minimal performance overhead. In this section, we provide an intuitive overview of this

opportunity. First, we start our discussion with non-volatile memory (NVM) and then

continue it with disaggregated memory.

1.2.1 Non-Volatile Memory (NVM)

Datacenter applications largely rely on memory for low latency and high performance.

Historically, the content of this memory was lost when servers failed by crashing

(volatile). In contrast, the content of NVM survives server failures, hence offering

persistent storage. What does this mean for recovery?

In the case of volatile memory, the application must constantly backup data in persis-

tent storage for durability. However, traditional persistent storage devices such as hard

disks, accessible only through the I/O interface, introduce significant latency, typically

ranging from hundreds of microseconds to tens of milliseconds, thereby inducing pro-

hibitively large overhead on performance [210]. On the contrary, nonvolatile memory

(NVM) provides fast persistence within a few hundred nanoseconds, significantly faster

than traditional disk-based storage [112]. This fast persistence capability of NVM can

enable recovery with minimal performance overhead.

Opportunity. In-memory data structures are pivotal components in modern datacenters,

facilitating ultra-fast storage and retrieval of client and management data for appli-
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cations [43]. However, these data structures lack persistence, which means that their

contents can be vulnerable to loss in the event of failure. To mitigate the risk of data loss,

conventional approaches involve persisting data on slower storage media, such as hard

disks. Unfortunately, this method often leads to significantly reduced throughput [215].

Non-volatile memory (NVM) presents an alternative solution for in-memory data

structures by eliminating the need for slow persistent storage mediums like hard disks

(as memory itself is inherently persistent). This offers the opportunity to achieve

maximum performance for applications relying on in-memory data structures [43].

Log-free data structures (LFDs) are a special class of in-memory data structures

that can recover fast in the presence of failures (Null Recovery) [111]. This is achieved

by preserving their happens-before order, in which concurrent operations are visible, in

persistent storage without incorporating additional techniques such as logging [56, 111].

However, LFDs often suffer from high overhead on performance for maintaining a

recoverable state during failure-free execution (because they have to backup data on a

disk in the critical path of execution). Thus, LFDs coupled with NVM can offer fast

recovery with maximum performance [56].

1.2.2 Disaggregated Memory (DM)

Memory disaggregation decouples memory from traditional monolithic servers [144,

145]. In this new setting, compute servers execute the application logic while memory

servers store the application data. Direct communication between compute and memory

servers is facilitated by fast Remote Direct Memory Access (RDMA) [119], or future

technologies such as Compute eXpress Link (CXL) [139, 90].

While disaggregation is not a novel concept and has been previously applied to

various components within datacenters, such as storage [25, 84, 155], power [172], and

cooling systems [171], the advent of fully-fledged hardware-disaggregated memory

has rekindled the interest of system architects for several compelling reasons. First,

memory, despite its cost [139], often remains underutilized due to over-provisioning

based on peak load estimations. Second, the demand for memory is experiencing

exponential growth as big data processing increasingly relies on memory for faster exe-

cution. However, the capacity of individual server memory is limited by vendor-specific

interconnection technologies and other hardware constraints [9]. This trend is driving

datacenters toward resembling distributed shared memory systems (DSMs) [59, 120].

Unlike traditional DSMs that heavily rely on Remote Procedure Calls (RPCs), which
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are no longer viable in next-generation data centers [177, 216], memory disaggregation

provides a way to tightly couple remote memory with application logic.

In addition, DM offers significant advantages in terms of cost savings, energy

efficiency, scalability, and manageability in the datacenter [99, 130].

Opportunity. What does memory disaggregation mean to recovery?

Disaggregation isolates failures on the compute and memory servers, enabling fast

compute recovery. On the one hand, memory servers neither contain a CPU nor run any

complicated software, hence they rarely fail and do not disrupt compute servers. On the

other hand, a failed compute server need not stop the application entirely, as memory

is available to the other compute servers. In addition to fast recovery, maintaining a

recoverable state in DM is significantly faster with direct RDMA accesses or CXL (as

opposed to RPCs), thereby maximizing performance.

Disaggregation proves crucial for key-value data stores (KVSes) that seek high

availability. Typically, KVSes are partitioned, and these partitions are distributed be-

tween numerous servers within the datacenter, akin to a distributed shared memory

system [59]. Crucially, the increasing rate of failures in modern datacenters poses

a substantial challenge to the availability of these data partitions, necessitating fast

recovery. Recovery, however, relies on fault-tolerant transaction protocols that repli-

cate data across multiple servers for durability while ensuring the atomicity of data

changes across replicated partitions (meaning that changes applied to one replica will

be consistently visible in all other replicas [59, 30, 39]).

Traditionally, KVS data replicas are co-located within monolithic servers that

handle both computation and data. However, this approach has a drawback: Memory

failures can occur whenever a server crashes, thus reducing replica availability. One of

the consequences of this is that, upon detecting a failure, recovery often necessitates

stopping the data store entirely to update the new configurations of replicas (which is

not conducive to achieving fast recovery). In contrast, disaggregated memory eliminates

these limitations by isolating memory failures, allowing for fast recovery from compute

failures, which are the predominant cause of failures in data stores [26]. Consequently,

memory disaggregation can be leveraged to design performant key-value data stores

that offer high availability (we refer to these data stores as disaggregated key-value

stores or DKVSes here onward).
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1.3 This Thesis

1.3.1 Problem Statement

We have thus far argued that emerging memory technologies surprisingly offer the

opportunity to achieve fast recovery with maximum performance. However, these new

memory devices come with different architectural attributes. Consequently, architecting

datacenters with emerging memory introduces new semantic challenges. First, architects

need precise semantics for end-to-end correctness, including recovery (Consistency

Models). Then, architects need new low-level primitives to correctly and efficiently

enforce these prescribed models. Failure to specify or enforce the precise consistency

semantics not only complicates correctness but also hampers programmability and

performance. In this section, we discuss the challenges associated with each emerging

memory technology.

1.3.1.1 Non-Volatile Memory

Applications access non-volatile memory (NVM) through processor’s load/store mem-

ory interface (as opposed to traditional I/O-based disks). Therefore, architecting datacen-

ters with NVM requires new abstractions to reason about persistent memory accesses.

Regular memory accesses, due to complexities such as caching and concurrency

in modern processors, require ordering that is governed by traditional shared-memory

consistency models [79]. These models further bridge the gap between system architects

and programmers by acting as a contract, wherein the architects guarantee specific

correctness properties if programmers follow a set of rules defined by the model.

However, traditional shared-memory consistency models, or the protocols that enforce

them in server CPUs, fail to work with failures, posing a significant threat to correctness.

Ordering Challenges. NVM necessitates precise consistency models to control the

order of memory updates to NVM (often referred to as Persistency Models). These

models ensure end-to-end correctness of applications including recovery in the presence

of failures. Introduced by Pelly et al [87, 175], persistency models remain an active

area of research. Owing to recovery, these models introduce additional ordering, which

further complicates programmability, or otherwise leads to significant performance

losses [88].

Problem: Persistency For LFDs. Recall that coupled with NVM, log-free data

structures (LFDs) can provide fast recovery. Alas, we observed that state-of-the-art per-
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sistency models are neither sufficient nor optimal for recovering LFDs in NVM. These

models lead to correctness bugs, making LFDs unrecoverable, and induce prohibitively

large performance overhead.

1.3.1.2 Disaggregated Memory

Recall that disaggregated memory (DM) presents the opportunity for enabling fast

recovery in key-value data stores (KVSes). Correct and fast recovery in these data

stores rests on transaction protocols that ensure atomicity of a group of operations (like

insert, delete, update, search), while hiding underlying complexity like replication from

the application programmers. However, transaction protocols in this setting can only

operate with one-sided RDMA messages, as RPC-style protocols do not work with

passively disaggregated memory.

Ordering Challenges. One-sided accesses, in the absence of RPCs, expose critical low-

level ordering of macro operations in transaction protocols to the high-level architectural

interface. Therefore, system architects should carefully enforce transactional semantics

with one-sided accesses, which otherwise pose a threat to correctness. Moreover, one-

sided ordering is not only crucial for ensuring correctness but also plays a critical role

in harnessing the performance potential of these new memory technologies. It allows

architects to optimize performance based on the specific characteristics of one-sided

accesses.

Problem: One-Sided Transactions. We have observed that there are no correct

and recoverable one-sided transaction protocols. The only state-of-the-art one-sided

protocol, FORD [219], which was developed in parallel to this thesis, has overlooked

recovery, thereby leading to recovery bugs, while inducing prohibitively large recovery

time.

(Additionally, previous disaggregation approaches, such as storage disaggregation,

while addressing a similar availability problem, still rely on software Remote Proce-

dure Calls (RPC) and have not been extensively studied with transaction or one-sided

protocols due to various limitations [182]; These approaches are primarily tailored to

distributed file systems or disk-based block storage, and therefore cannot be directly

applied to the context of disaggregated memory or key-value stores [155, 25, 84].)
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1.3.1.3 Summary

Emerging memory technologies are promising but share one challenge in common:

Their unique architectural attributes, which drastically differ from traditional mem-

ory devices, expose critical low-level ordering to high-level application (or software)

interfaces, presenting a semantic challenge. System architects typically understand

end-to-end correctness through consistency models. Although abstract specifications of

these models are well-understood, realizing them in practice with emerging memory

is an incredibly hard challenge. This complexity affects not only correctness but also

performance and programmability, presenting a significant challenge in harnessing the

full potential of these technologies.

1.3.2 Research Objectives

The primary goal of this thesis is to investigate and address the challenges of achieving

fast, correct, and performant recovery in modern datacenter architectures. We focus

on leveraging two emerging memory technologies, nonvolatile memory (NVM) and

disaggregated memory (DM). While these technologies offer opportunities for fast

recovery and high performance, they also introduce new semantic challenges, which

present significant barriers to the realization of their full potential. Our objective is to

address these challenges that arise when architecting datacenters with emerging memory

technologies. Our specific objectives are as follows.

Consistency Specification. We aim to define precise consistency models that formally

specify end-to-end correctness guarantees for applications using emerging memory

technologies within datacenters.

Low-Level Mechanisms. We seek to explore low-level primitives tailored to emerging

memories that efficiently enforce the prescribed consistency models.

Testing and Validation. We aim to create robust testing frameworks to validate overall

correctness, including recovery mechanisms.

Programmability. We aim to maintain programmer productivity (programmability)

by minimizing exposure to low-level complexities in the consistency models, as subtle

complexities in consistency models often introduce new ordering rules, hindering

programmability.

These objectives collectively aim to unlock the potential of emerging memory for

achieving fast, performant, and correct recovery in the datacenter architectures of the
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next generation.

1.3.3 Scope

We further limit the discussion of this thesis to the following aspects.

First, we assume fail-stop failures (non-byzantine) [184]. A failed process or server

is not allowed to continue with the failed components. This is the most common failure

model in modern datacenters.

Second, we assume that there is one single datacenter rather than multiple dat-

acenters. This approach allows us to concentrate on common failure scenarios, as

fault tolerance complexity does not significantly increase with multiple datacenters. In

fact, fault tolerance techniques developed for a single datacenter serve as foundational

building blocks for similar techniques across datacenters.

1.4 Thesis Contributions

In this thesis, we explore the datacenter architecture with two emerging memory tech-

nologies, non-volatile memory (NVM) and disaggregated memory, to achieve our

research objectives. In this section, we discuss our approach and its contributions. First,

we start our discussion with non-volatile memory (NVM), and then we extend the

discussion to disaggregated memory.

1.4.1 Lazy Release Persistency (LRP)

We address the challenges of architecting datacenters with NVM with the following

approach: First, we rectify the critical ordering requirements for correct and recoverable

lock-free data structures (LFDs). Second, we show that state-of-the-art persistency

models are neither sufficient nor optimal for enforcing correct LFD semantics in the

presence of failures. Third, strengthening the existing models, we introduce precise

specifications of a novel persistency model –Release Persistency (RP) [55, 54]– that

provides a consistency guarantee for LFDs on what remains in non-volatile memory

upon failure. Next, to efficiently enforce RP, we propose a novel microarchitecture

mechanism - Lazy Release Persistency (LRP) [55]. Finally, through extensive evaluation

with standard LFD benchmarks, we demonstrate that LRP achieves fast recovery while

incurring minimal overhead on performance.
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Programmability. New consistency semantics (or persistency models) impact pro-

grammability as they introduce new ordering rules. One of the key advantages of

Release Persistency is its compatibility with an already established programming model:

Sequential Consistency for Data Race Freedom (DRF-SC). These models are already

supported in popular programming languages like Java and C++. For instance, the pro-

grams written using standard C++ libraries can be directly compiled into their RP-based

recoverable version without compromising programmability.

1.4.2 Pandora

We continue our contributions with disaggregated memory. Recall that disaggregation

enables the possibility of rendering high availability, but achieving high availability

hinges on correct and recoverable one-sided transaction protocols. First, we rectify

one-sided ordering in disaggregated memory systems and their impact on transaction

protocols. Second, we show that the state-of-the-art one-sided transaction protocol

has overlooked one-sided ordering, leading to critical correctness and recovery bugs.

Third, we present a highly available and recoverable transaction protocol– Pandora–

which is specifically designed to achieve fast recovery in disaggregated key-value stores

(DKVSes).

Pandora is the first one-sided transactional protocol that ensures correct, non-

blocking, and fast recovery in DKVSes. Pandora’s fast recovery is based on two

key innovations: (i) Implicit Latch Logging (ILL) and (ii) end-to-end RDMA-based

idempotent recovery algorithm. We implement Pandora using fully one-sided RDMA

operations while avoiding other hardware complexities associated with disaggregation.

Our implementation artifacts show that Pandora achieves fast recovery while incurring

minimal interruption to the services.

Programmability. Pandora does not compromise programmability in the datacenter as

we comply with the transactional semantics. Transactions are the de facto programming

model in many state-of-the-art data store applications.

1.4.3 DART

One of the key challenges of designing one-sided transaction protocols is validating

their end-to-end correctness, including recovery. For instance, how do we know that

Pandora’s recovery is correct? Existing techniques for testing generic applications
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and transaction protocols are often limited to random testing and significantly impact

programmability and scalability.

We propose a novel target litmus-testing framework–DART–for validating end-to-

end correctness of transaction protocols with recovery. We use DART’s target-testing

abilities to find several critical bugs in Pandora, which we fix iteratively, highlighting the

need for efficient testing methods for transaction protocols. Crucially, DART operates

as a black-box testing framework, eliminating the need for programmers to invest

additional effort or possess knowledge of the underlying complexities.

1.5 Summary

Emerging memory technologies, specifically non-volatile memory and disaggregated

memory, offer a promising pathway to address increasing failures in modern datacenters

with fast and performant recovery. However, this opportunity comes with new design

and semantic challenges. When architecting datacenters with emerging memory, first,

we need precise consistency models to reason about end-to-end correctness under

failures, second, we need efficient architectural primitives (low-level mechanisms) to

implement these models in the datacenter, and third, we need new methods for validating

the end-to-end correctness, including recovery. In this thesis, we address the challenge

while taking advantage of the opportunity for performance and availability.

This thesis is organized as follows. In Chapter 2, we establish the required back-

ground material. In Chapter 3, we present a new consistency model and an efficient

microarchitecture implementation for NVM-based datacenter architecture. In Chapter 4,

we describe a recoverable and highly available one-sided transaction protocol targeting

disaggregated memory data stores. In Chapter 4, we introduce a new litmus-testing

framework for validating the end-to-end correctness of transaction protocols. Our

artifacts based on standard benchmarks demonstrate that the proposed solutions achieve

fast and correct recovery while incurring minimal performance overhead. Finally, in

Chapter 6, we summarize the dissertation and present some lessons that we learn during

the course of this dissertation.





Chapter 2

Background

In this chapter, we lay the foundation by introducing the background materials essential

to this thesis. First, we offer an overview of modern datacenter architecture, the

failure model, and fault tolerance(§2.1). Second, we examine emerging memory and

its influence on modern datacenter architecture (§2.2). Finally, we present a concise

overview of relevant consistency models and how they respond to failures. (§2.3).

2.1 The Datacenter Architecture

In this section, we outline the key assumptions underlying our study, focusing on the

architecture of datacenters and the failure model. A datacenter consists of interconnected

servers, each equipped with CPU, memory, and storage resources (as depicted in Figure

2.1(a)). These servers run standard operating systems and software libraries to manage

their resources and are interconnected through a network of switches and routers [27].

Datacenters are often spread across a large geographical area or even multiple global

sites. Additionally, to enhance reliability and efficiency, datacenters deploy backup

power supplies and cooling systems.

Network. Datacenter servers primarily communicate with each other using Remote

Procedure Calls (RPCs). Each server is equipped with a Network Interface Card

(NIC) that connects it to the datacenter network fabric. These servers employ standard

transport layer protocols such as TCP/IP or RDMA (Remote Direct Memory Access)

to send messages via the NICs. While protocols like TCP/IP enable send-receive

(two-sided) message exchanges, RDMA-based technologies provide both two-sided

and direct one-sided messages, enabling direct memory access to remote servers. In

this thesis, we focus primarily on RDMA-based networking due to the significance of

15
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Figure 2.1: The Datacenter Architecture

RDMA’s one-sided API, particularly in the context of exploring disaggregated memory,

which is discussed in subsequent sections.

Failure Model. Failures can occur in any part of the datacenter. For this thesis, we

have adopted a fail-stop failures model [184], where a process or server is assumed

to have failed without exhibiting Byzantine behavior. Additionally, we consider a

partially synchronous network model [63], where message transmission latency has an

upper limit, albeit unknown in advance. This model strikes a balance between fully

synchronous (where message delays and processing times are strictly bounded) and

fully asynchronous (where there are no timing assumptions) network models. It further

acknowledges the practical constraints of real-world networks, where messages may

experience variable delays due to factors like network delays, system load, and other

unpredictable factors.

2.1.1 Recovery

Failures disrupt datacenter servers, tapering their ability to respond to service requests

(Availability). Recovery is the mechanism through which architects maximize availabil-

ity in the datacenter. For instance, high availability consequently ensures responsiveness

even amid server failures in the datacenter. Recovery is challenging, as it requires

additional measures.

Durability. First, it’s essential to store application data in a fault-tolerant manner

to prevent permanent loss (Durability) ‘[30, 100]. Architects typically deploy two

techniques for durable data storage in the datacenter: persistence and replication

[30, 193, 65, 96, 97, 76]. With persistence, data is retained in a persistent storage

medium like a Hard-Disk, while with replication, data is duplicated across multiple

servers. In the case of persistence, the application can restart the failed server while
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temporarily blocking other servers. Conversely, replication allows the failed portion of

the application to migrate to an active server and continue serving client requests [40,

135, 77, 202, 198].

There are also various replication approaches, including two-phase commit [30, 31,

94], primary-backup replication [39, 14, 202, 198], and quorum-based replication [133,

140, 170, 21, 116]. The selection of the best approach depends on the real world setting

and the application requirements.

Failure Atomicity. Second, recovery mandates failure atomcity [30, 69, 194], because,

just like data, computational logic also fail in the event of server failures, resulting

in partial effects on the data. Recovery ensures that every client request is processed

with exactly-once semantics, in all-or-nothing style, avoiding any partial effects on data

(Failure Atomicity) [30, 29].

For example, imagine a seemingly trivial example of a banking application running

on a data store. Lets assume Mary want to transfer 1000$ to her friend Bob. When

the data store receives this request, the application logic should first check if Mary has

enough balance to carry out the transaction, then reduce the amount from Mary’s bank

account, and finally add the amount to Bob’s bank account. If the server fails after the

amount is deduced from Mary’s bank account, the money will be lost forever. Crucially,

there should be a mechanism to rollback the effects of operations executed before the

failures (Failure Atomicity). Such a semantic is achieved by recovery algorithms that

reinstate the data to a consistent state in execution.

Achieving such robust recovery is complex and has traditionally been tackled

through two fundamental methods: re-execution and logging. This section provides

a concise overview of these techniques, laying the foundation for a more detailed

exploration in the following main chapters of this thesis.

Firstly, applications may choose to rerun client requests multiple times, even when

faced with failures. However, not all applications can rely on this recovery approach.

Specifically, only a specialized class of applications that adhere to idempotence can

truly take advantage of re-execution [179, 114, 41]. It is important to note that this

technique might introduce challenges to concurrency and programmability, which is

why we refrain from adopting it.

Secondly, an alternative approach to failure atomicity is logging, where a set of op-

erations is treated as executed in an all-or-nothing manner [100, 93, 160, 159]. Logging

is widely accepted within the datacenter context. Applications use mechanisms such as

write-ahead-logging (WAL) or checkpointing to restore or progress the application to
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its last consistent state. There are two primary WAL schemes: undo logging, designed

to roll back partial updates from interrupted executions, and redo logging, which rolls

forward when an execution is disrupted before its completion. This atomicity-based

recovery plays a pivotal role in important programming models such as transactions in

the datacenter.

End-to-End Correctness. In addition to durability and failure atomcity, application

must ensure the isolation between concurrent requests in the presence of failures. For

instance, recovering from a failures should not lead to incorrect execution of other

requests. These correctness properties are typically defined as a part of the consistency

models in the datacenter. We will discuss consistency models in the Section 2.3 .

2.2 Emerging Memory Systems

In this thesis, we use two types of emerging memory technologies: non-volatile memory

(NVM) and disaggregated memory (DM). In this section, we provide an overview of

their fault-tolerant attributes and impact on datacenter architecture. First, we discuss

nonvolatile memory, outlining its impact on persistence-based recovery (§2.2.1), and

second, we discuss memory disaggregation and its impact on high availability in data

stores (§2.2.2).

2.2.1 Non-Volatile Memory (NVM)

In this section, we outline our assumptions about non-volatile memory (NVM) technol-

ogy we use in this thesis.

Various classes of NVMs are available in the market: Phase-change memory (PCM),

resistive random-access memory (ReRAM), or magnetoresistive RAM (MRAM), and

ferroelectric RAM (FRAM). In this thesis, we focus on PCM-based NVM, specifically

Intel’s Optane DC Persistent Memory Module (or just “Optane DC PMM”) which can

provide up to 512GB memory capacity. Crucially, these new memory devices retain

data even when power is interrupted (persistent), therefore, they can be used as a fast

alternative to disk-based storage, or as an additional memory tier between volatile

memory and disk-based storage [212, 112] .

Typical disk-based storage in the datacenter, such as hard disk drives (HDD) or

solid state disk drives (SDD), provides terabytes of capacity, but can only be accessible

through the CPU’s I/O (Input/Output) interface which has significantly high access
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latency, typically ranging from a hundreds of microseconds to tens of milliseconds.

Conversely, NVM provides fast persistent memory accessible within a few hundred

nanoseconds, which is on par with regular volatile memory access latency [212, 112].

For instance, PMEM latency of sequential reads (random reads) and regular writes

is 179 ns (304 ns) and 94 ns respectively, while its 81 ns and 86 ns for DDR5-based

DRAM [112]. Additionally, Optane DC PMM provides caching within the NVM,

further minimizing these latencies. This shows that NVM, though still at an early stage,

can be purposefully leveraged as an alternative to slow storage devices. As we will

discuss later in Chapter 3, this fast persistence can be used to enable efficient fault

tolerance techniques that rely on persistence for recovery.

2.2.2 Disaggregated Memory (DM)

The other memory technology used in this thesis is disaggregated memory (DM). Mem-

ory disaggregation decouples memory from traditional monolithic servers, enabling

memory sharing across server boundaries [191, 15, 145, 47, 164, 205]. State-of-the-art

hardware technologies, RDMA or CXL [90, 139], provide network support for con-

necting passive memory to the servers’ CPU cores through either I/O subsystems or

direct load/store interface respectively. After careful consideration, we have chosen an

RDMA-based passive disaggregated memory system for this thesis. This choice is based

on RDMA’s sub-microsecond latency with 100Gbps technology, offering flexibility

in programming (this latency is anticipated to decrease further with the adoption of

400G networks and faster PCIe devices in the near future). On the contrary, CXL-based

systems are still in the early development stage, and architects are unaware of potential

performance challenges and programming complexities [9, 139]. At the time of this

thesis, there is only one CXL-based product readily available on the market [183].

In this thesis, we assume an RDMA-based disaggregated memory system. In our

setting, each server is dedicated to either compute or memory, referred to as compute

node or memory node, respectively. Each compute node consists of a CPU and a small

amount of local memory (a few MBs) for caching purposes and other OS functionalities,

while the program memory is stored entirely in the memory nodes, typically holding

terabytes of data. All compute nodes can access and share each memory node through

RDMA connections established over a 100Gbps Ethernet network (i.e., RoCE).

A typical memory node neither has a CPU nor runs any software like OS; Therefore,

memory is accessed only through the Network Interface Card (NIC) or special hardware.
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However, since there are no actual memory nodes available in the market, in this thesis,

we use regular servers for memory nodes while keeping their CPU idle, which does not

violate our assumptions. In addition, RDMA offers a rich one-sided API that includes

Read, Write, and Read-Modify-Write (RMW) commands, which is order of magnitude

faster than traditional two-sided Remote Procedure Calls (RPCs).

Figure 2.1(c) illustrates the architecture we have discussed so far. Later, in Chapter 4,

we leverage this RDMA-based disaggregated memory to achieve efficient fault tolerance

in the datacenter.

2.3 Consistency Models

A consistency model plays a crucial role in abstracting the end-to-end correctness of

the underlying architecture to application programmers, simplifying the complexity

of low-level primitives. This implementation-agnostic nature allows programmers to

reason about the correctness of their programs without delving into low-level imple-

mentation aspects like concurrency, replication, and recovery. Historically, consistency

models have been pivotal in datacenters, acting as a contract between architects and

programmers [5, 79].

In this section, we discuss several consistency models that are relevant to the

discussion of this thesis. We start the discussion with traditional (shared-memory)

consistency models: linearizability, sequential consistency, and release consistency [5,

79, 80]. These consistency models are the essence of high concurrency present in
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today’s CPUs.

2.3.1 Linearizability

Linearizability [108] is the most intuitive consistency model for programmers, ensuring

that concurrent operations appear as if they occurred instantaneously at a single point

in time (linearization point) in relation to other operations. This means that the effect

of each operation becomes atomically visible in real-time somewhere between its

invocation and response. Typically, coherence protocols deployed in modern CPUs

are variants of linearizability. However, for shared-memory programs, linearizability

represents a stricter consistency model.

2.3.2 Sequential Consistency

Sequential consistency (SC) [132] guarantees that the execution of operations on shared

data appears in some sequential order (total order) that respects the program order

for each concurrent operator. As opposed to linearizability, SC does not enforce the

real-time order, striking a good balance between performance and programmability in

shared-memory systems. A successor of SC dubbed Total Store Order (TSO) found

in Intel’s X86 CPUs further maximum performance by relaxing local happens-before

order, specifically reads-after-writes order. Such models, however, complicates pro-

grammability and will be absorbed by more weaker models we discuss later.

Consistency semantics are typically discerned through well-constructed litmus tests.

Consider the litmus tests depicted in Figure 5.1(a) and (b). These tests exemplify Se-

quential Consistency (SC) semantics with two prevalent shared-memory programming

patterns: producer-consumer (Figure 5.1(a)) and migratory patterns with Dekker’s

algorithm (Figure 5.1(b)).

In these litmus tests, SC rigorously enforces both program order and total order.

For instance, in the producer-consumer illustration, one thread (T1) first sets X to

one, followed by setting Y to 1 to indicate the alteration in X. Until Y is assigned

the value of 1, the concurrent thread T2 cannot read the updated value of X, which

is 1. This mechanism aligns with the typical behavior of producer-consumer patterns,

which necessitate enforcing read-to-read and write-to-write order to capture the under-

lying causality, which SC effectively accomplishes. Similarly, migratory litmus tests

necessitate write-to-reads order to ensure critical sections, a requirement prevalent in

synchronization algorithms like Dekker’s, which SC strictly enforces.
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One advantage of SC is that programmers are oblivious to the underlying ordering.

However, SC is somewhat strict in enforcing all local happens-before order (program

order), which might not be as performance-friendly. However, well-written (i.e., race-

free) shared memory programs using proper synchronization do not require such tight

ordering [6, 82]. The golden rule is that operations should be consistent by synchro-

nization boundaries. This understanding has led to the development of more performant

models, such as release consistency, which we will describe next.

2.3.3 Release Consistency

Release Consistency (RC) [82] is a fundamental shared memory consistency model that

guarantees that if the programmer annotates all synchronization accesses, it mimics SC

semantics [6, 82, 78]. For architects, RC is essential, as it allows reordering regular

accesses, relaxing the local happens-before order (as opposed to SC). Additionally, RC

provides one-sided synchronization accesses that can be distinguished from regular

accesses, allowing for a more relaxed happens-before order between regular access and

synchronization accesses.

Languages like C++ enable programmers to expose RC through language-level

consistency models, such as the ”Sequential Consistency for Data Race Free” (DRF-

SC) [153, 36], which captures the semantics of RC-like synchronization accesses.

Additionally, CPU vendors like ARM provide RC semantics in the ISA. For instance,

ARMv8 has two one-sided barrier instruction, release and acquire, that can be used to

annotate synchronization load/store accesses.

Consider the example in Figure 5.1(c), which provides the RC-compatible (anno-

tated) version of the producer-consumer litmus test discussed earlier. In this scenario,

the release store operation in T1 enforces the order with previous loads and stores, but

not with subsequent instructions. Similarly, the acquire operation in T2 enforces the

order with following loads and stores, but not with preceding instructions. It is important

to note that operations before the release, as well as after acquire, can potentially be

reordered, although that is not depicted in the example.

Formal Model. In the following, we provide a simplistic RC memory model for this

thesis.

We use the following notation for memory events:

• Mi
x: a memory operation (of any type) to address x from (hardware) thread i. The

operation can be further specified as a read: Ri
x, a write W i

x or with an identifier (e.g.
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M1i
x)

• Relix: a release (release write or release-RMW) to address x from thread i.

• Acqi
x: an acquire (acquire read or acquire-RMW) to address x from thread i.

We use the following notation for ordering memory events:

• Mi
x

po−→ Mi
y: Mi

x precedes Mi
y in program order.

• Mi
x

hb−→ Mj
y: Mi

x precedes M j
y in the global history of memory events, which we refer

to as happens-before order ( hb−→).

• Relix
sw−→ Acqj

x: Acq j
x synchronizes with the Reli

x, i.e., Acq j
x reads the value from Reli

x

and i ̸= j.

We formalize Release Consistency using the following rules:

≻ Release one-way barrier semantics. A memory access that precedes a release in

program order appears before the release in happens-before: Mi
x

po−→ Reli
y ⇒ Mi

x
hb−→ Reli

y.

≻ Acquire one-way barrier semantics. A memory access that follows an acquire in

program order appears after the acquire in happens-before: Acqi
y

po−→ Mi
x ⇒ Acqi

y
hb−→ Mi

x.

≻ Program order address dependency. Two memory accesses to the same address

ordered in program order preserve their ordering in happens-before: M1i
x

po−→ M2i
x ⇒

M1i
x

hb−→ M2i
x.

≻ Release synchronizes with acquire. A release that synchronizes with an acquire

appears before the acquire in happens-before: Reli
y

sw−→ Acq j
y ⇒ Reli

y
hb−→ Acq j

y.

≻ RMW-atomicity axiom. An RMW appears atomically (consecutively) in happens-

before: Ri
x

RMW−−−→ W i
x ⇒ Ri

x
hb−→ W i

x and there can be no memory operation from any

thread M j
y such that Ri

x
hb−→ M j

y
hb−→W i

x .

≻ Read value axiom. A read to an address always reads the latest write to that address

before the read in happens-before: if W j
x

hb−→ Ri
x (and there is no other intervening write

W k
x such that W j

x
hb−→W k

x
hb−→ Ri

x), the read Ri
x returns the value written by the write W j

x .

2.4 Memory Persistency Models

Traditional shared-memory consistency models that we have discussed are primarily

designed to handle concurrent accesses in the presence of caching but are not explicitly

designed to handle failures. Therefore, these models are not sufficient to ensure end-to-

end correctness of new technologies like NVM.
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As an example, consider the litmus test in Figure 5.1(e), depicting the producer-

consumer pattern under SC semantics but with potential failures. Suppose that T2 reads

Y’s updated value as part of the consumer, but the server crashes before it can complete

the subsequent operation. After restarting, T2 resumes execution. In this situation, T2

could pathologically read the initial value of X (or zero) because X’s value, which is

kept in either cache or memory, is lost, revealing that SC is insufficient to handle such

failures.

Persistence models [175, 87] are a new class of consistency models that are specifi-

cally designed to address the complexities introduced by persistent memory and guaran-

tee the desired correctness properties, including recovery even in the face of failures. In

this section, we briefly look at the concept of persistency models.

Memory persistency is still an active research area. Persistence models guarantee the

correctness of application programs with persistent memory accesses [88]. In particular,

these models govern the memory order that ensures correct execution and recovery

in the presence of failures. However, these new models have severe implications on

performance and programmability [37, 165].

Strict persistency models either bypass CPU caches using non-temporal instruction

or use a new instruction to durably send every store to NVM before being released into

CPU caches, which can significantly deteriorate concurrency and performance [87, 175].

On the other hand, relaxing the persist order, though performant, can severely complicate

correctness and programmability [175]. The complexity of the latter approach is

significantly higher, so architects have opted to go with strict persistency models [87].

Architects must carefully examine new persistence models with minimal ordering

to unleash fast persistence in NVM, a crucial factor in designing efficient fault tolerance

in datacenters. We will discuss more about the challenges in memory persistency in

Chapter 3.

2.5 Transactional Consistency Models

Transactions combine multiple standard operations, such as insertions, deletions, up-

dates, and search (reads), into atomic units. SS is subsequently designed to maintain the

atomic view of data under any circumstance, ensuring end-to-end correctness, including

recovery of transactions in the event of failures.

Consider the final example shown in Figure 5.1(f). In this example, we use the

same producer-consumer pattern that we used with sequential consistency (SC) but
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as a transaction. Application programmers can annotate a group of operations as a

transaction with tx begin and tx end, and the atomicity of the transaction is preserved

in the presence of failures. Now assume that the server crashes during execution; as

shown in the figure, SS guarantees that T2 sees either the old values of X and Y (all

zeros) or new values (all ones), but nothing in between.

2.5.1 Strict Serializability

Strict serializability (SS) [174, 187] is a rigorously formalized consistency model

widely used in production data stores. It operates as a transactional consistency model,

offering strong ACID (Atomicity, Consistency, Isolation and Durability) properties in

the presence of failures.

In formal terms, serializability ensure that all transactions appear to occur in total

order (i.e., serial) as if they were executed one at a time in isolation. Serializability,

however, does not guarantee real-time ordering. In contrast, a stronger version of

serilizability – Strict Serializability(SS) – ensures that the effects of transactions appear

atomically in real time. In this section, we provide a formalization of strict serializability

with two important properties: total ordering (i.e., serializability) and real-time ordering.

2.5.1.1 Serializability

Serializability [31, 174, 7] guarantees that the outcome of concurrent transactions is

equivalent to a serial execution (total order) of those transactions, ensuring that the final

state of the database remains consistent and reflects a valid sequential order of execution.

In this thesis, we use Adya’s history-based formalism of serializability [7, 53].

Definition 2.5.1. A history H over a set of transactions consists of two parts: (i) a partial

order of events E that reflects the operations (e.g., read, write, abort, commit) of those

transactions; and (ii) a version order, <<, that totally orders committed object versions.

Definition 2.5.2. We consider three kinds of direct read/write conflicts:

• Directly write-depends Ti writes a version of x and Tj writes the next version of

x (Ti
ww−−→ Tj)

• Directly read-depends Ti writes a version of x that Tj then reads (Ti
wr−→ Tj )

• Directly anti-depends Ti reads a version of x, and Tj writes the next version of x

(Ti
rw−→ Tj )
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Definition 2.5.3. We say that Tj start-depends on Ti (denoted as Ti
sd−→ Tj), if ci <t b j

, where ci denotes Ti’s commit timestamp and b j Tj’s start timestamp, i.e., if Tj starts

after Ti commits.

Definition 2.5.4 (Direct Serialization Graph). Each node in the direct serialization

graph DSG(H) arising from a history H corresponds to a committed transaction in H.

Directed edges in DSG(H) correspond to different types of direct conflicts. There is

a read/write/anti-dependency edge from transaction Ti to transaction Tj if Tj directly

read/write/antidepends on Ti.

Definition 2.5.5. The Started-ordered Serialization Graph SSG(H) contains the same

nodes and edges as DSG(H) along with start-dependency edges.

Definition 2.5.6. Adya’s thesis identifies the following phenomena:

• G0: Write Cycles DSG(H) contains a directed cycle consisting entirely of write-

dependency edges.

• G1a: Dirty Reads H contains an aborted transaction Ti and a committed transac-

tion Tj such that Tj has read the same object (maybe via a predicate) modified by

Ti.

• G1b: Intermediate Reads H contains a committed transaction Tj that has read a

version of object x written by transaction Ti that was not Ti’s final modification of

x.

• G1c: Circular Information Flow DSG(H) contains a directed cycle consisting

entirely of dependency edges.

• G1: G1a∨G1b∨G1c.

• G2: Anti-dependency Cycles DSG(H) contains a directed cycle having one or

more anti-dependency edges.

Definition 2.5.7. Adya defines serializability in terms of the phenomena in Definition

2.5.6:

Serializability ≡ ¬G1∧¬G2
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2.5.1.2 Real-time Ordering

Strict serilizability enforces a strong serilizable order that respects real-time ordering.

Transactions appear atomically in real time. In the similar spirit to DSG, we can define

a new graph with real-time.

Definition 2.5.8 (Real-order edge). If a transaction Ti commits before Tj executes its

first event in real-time, we add a real-order edge from Ti to Tj (Ti
rt−→ Tj)

Definition 2.5.9 (Realtime Serialization Graph). Real-time Serialization Graph or

RSG(H) has the same nodes and edges as the DSG(H) along with real-order edges to

capture the order of non-overlapping transactions. (These edges force non-overlapping

transactions to be serialized in the order in which they executed in real-time.)

Definition 2.5.10. Strict serializability is defined as the level that proscribes G1 and G2

when phenomena in Definition 2.5.6 are defined on the RSG instead of the DSG.
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Lazy Release Persistency

3.1 Introduction

The advent of fast non-volatile memory (NVM) has enabled the possibility of recover-

ing from a system crash while incurring minimal overhead during program’s normal

operation [1, 44, 50, 51, 113, 166, 204, 186]. Program recovery, however, hinges on

primitives that control the order in which data becomes persistent. What primitive(s)

offer a programmable interface while allowing for an efficient implementation at the

hardware level?

The question is the subject of an ongoing debate. Should languages support failure-

atomicity for a group of writes, or should languages forego atomicity and support only

ordering between individual word-granular writes?

Kolli et al. [128] make a case for only ordering, arguing that it is more general and

performance-friendly when compared to failure-atomicity which requires logging. They

reason that because future processors are likely only going to guarantee atomicity of

individual persists, a library that provides failure-atomicity can be used when necessary.

They then propose acquire-release persistency (ARP), a language-level persistency

model that extends C++11 by treating its release/acquire annotations as one-sided

persist barriers. They also propose a hardware mechanism for enforcing these one-sided

barriers efficiently. Thus, the key to ARP’s performance is its one-sided barriers that

attempt to precisely enforce the orderings intended by the programmer.

In subsequent work, however, Gogte et al. [86] make a case for failure-atomicity,

arguing that the absence of failure-atomicity in ARP (and indeed any ordering primitive)

makes reasoning about recovery extremely cumbersome.

Not all programs require failure-atomicity, however. In fact, an important class of

29
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nonblocking data structures [34, 56, 72, 111, 169, 185] is designed specifically to avoid

atomic regions. Recovery from a crash comes for free, aka null recovery, as long as

writes persist in the order in which they become visible [111, 203, 35]. The emergence

of NVM has sparked interest in these log-free data structures (LFDs) [56] primarily

because such programs enable recovery without the overhead of logging.

Therefore, while we concur with Gotge et al. [86] that failure-atomicity simplifies

recovery in the general case, we argue that languages must also offer efficient ordering

primitives for supporting LFDs.

However, we identify that ARP’s one-sided barriers are not strong enough to enable

recovery in LFDs. Consider Figure 3.1 that depicts an execution history of a concurrent

log-free linked list. Thread T0 first prepares node A1 for insertion by writing to its

fields (Figure 3.1a). Then, it links A1 with the rest of the list via a single atomic

Compare-and-Swap (CAS) instruction (Figure 3.1b). Note that from a consistency

standpoint, the CAS must have release semantics to ensure that the writes to A1 become

visible before the link is updated. To enable recovery, persistency must mirror visibility:

the writes to A must persist before the CAS persists (Figure 3.1d). However, ARP’s

one-way barrier does not provide this guarantee. (As shown in Figure 3.1e, it only

ensures that writes to A1 persist before writes to B2 from the acquiring thread persists).

Therefore, to enable recovery, the programmer must place full persist barriers before

the release and after the acquire (Figure 3.1f). Alas, the full barrier requirement annuls

ARP’s performance benefits which stem from its one-sided barriers.

In this thesis, we propose strengthening the one-sided barrier semantics of ARP to

enable recovery of LFDs. The resulting persistency model, dubbed Release Persistency

(RP), ensures that any two writes that are ordered by the consistency model also

persist in that order. Thus, the persistency model guarantees that the NVM will hold a

consistent-cut of the execution upon a crash, thereby satisfying the criterion for correct

recovery of an LFD [111].

We then propose an efficient microarchitectural mechanism for enforcing the one-

sided barrier semantics of RP. Going back to Figure 3.1d, the challenge is to enforce

W1
p−→ Rel

p−→ W4, without enforcing either W1
p−→ W2 or W3

p−→ W4. (The relation
p−→

denotes the persist order). We observe that efficiency necessitates a buffered imple-

mentation in which persistency is decoupled from visibility [51, 117, 129]. Taking

inspiration from lazy release consistency [124], a protocol from the DSM literature

that enforces RC lazily, we propose lazy release persistency (LRP) for enforcing RP’s

one-sided barrier semantics lazily. In a nutshell, on an acquire LRP detects the match-
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Figure 3.1: (a,b) Thread 0 inserts A1 in a log-free linked list. (c) Then, Thread 1 attempts

to insert B2. (d) shows the required persistency semantics for an insert. (e) shows the

semantics provided by ARP and (f) shows how ARP can match the required semantics.

ing release via the coherence protocol and enforces the release-side persist ordering

(W1
p−→ Rel) lazily before performing the acquire.

3.1.1 Contributions

• We have argued thus far that languages must offer efficient ordering primitives, in

addition to failure-atomicity, for supporting the important use case of LFDs.

• We observe that ARP’s one-sided barriers—their semantics as well as implementation—

are not strong enough to enable recovery in LFDs, which necessitates the inclusion

of the relatively inefficient full barriers (§3.3)
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• We propose strengthening ARP’s one-sided barrier semantics. We argue that the

resulting model RP enables correct recovery of LFDs upon a crash (§3.4).

• We propose LRP, a microarchitectural mechanism for efficiently enforcing RP’s

one-sided barriers (§3.5) .

• Our experiments on 5 commonly used LFDs suggests that LRP provides a 16%-

55% (average 43%) performance improvement over the state-of-the-art full barrier,

while enforcing RP (§4.5).

3.2 Preliminaries

In this section, we discuss persistency models with a focus on variants of (buffered)

epoch persistency (§3.2.2). We then discuss log-free data structures (LFDs) and describe

the actions required for their crash-recovery (§3.2.3). But before diving into persistency,

we first discuss consistency since the two are closely intertwined.

Without loss of generality, we assume a simple variant of Release Consistency with

a total order on all memory events, similar to what is supported by the ARMv8 and

RISC-V ISAs [18, 208]. To focus on our ideas and not get bogged down by memory

model intricacies, we assume the language-level model is identical to the ISA-level

model.

3.2.1 Release Consistency

A consistency model specifies how memory operations are globally ordered. This global

memory order specifies what value a read must return: a read returns the value of the

most recent write before it in the global memory order. Release Consistency (RC) [81]

allows for writes to be tagged as releases and reads as acquires, which have implicit

one-side barrier semantics. Specifically, memory operations before a release appear in

the global order before the release, and memory operations after an acquire appear in

the order after the acquire. Furthermore, most consistency models support read-modify-

writes (RMWs) which are essential for achieving synchronization [23, 107].

For the rest of this work, we will use the simplistic RC memory model that we

discussed in Section 2.3.
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3.2.2 Persistency Models

In a manner analogous to consistency models, Pelly et al. [176] introduce the notion

of memory persistency, which specifies a global order in which writes can persist

(i.e., persist order).

Persist notation. We use the following notation to denote that write W i
x appears after

write W j
y in persist order: W i

x
p−→W j

y . To put it succinctly, W j
y can persist only after W i

x

has persisted.

Buffered Epoch Persistency (BEP). BEP allows the programmer to place persist

barriers, demarcating the program in epochs [51]. BEP then uses the epochs to enforce

that for any two writes W i
x , W i

y , if W i
x

po−→W i
y and the writes belong to different epoch

ek, el , then W i
x

p−→ W i
y . BEP also involves an inter-thread component. When there is

an inter-thread shared memory dependency between two threads the writes from the

source epoch would have to be persisted before the writes from the target epoch. We

note that BEP is a performance-oriented variant of the stricter epoch persistency (EP).

BEP improves upon EP by decoupling persistency and visibility through buffering of

writes.

3.2.2.1 Persist Barrier Implementations

BEP can be enforced via persist barriers. We classify prior work on persist barriers into

two classes based on how writes are buffered: 1) cache-based implementations that use

the hardware caches to buffer writes and 2) persist-buffer-based implementations, that

enqueue all writes in a global FIFO, called persist buffer. Below we describe the two

classes.

Cache-based. Cache-based implementations [51, 117] buffer writes in the hardware

caches and enforces the epoch orderings by keeping track of each cache-line’s epoch.

Persisting a cache-line with epoch ek, triggers the persist of all currently buffered writes

from older epochs. A persist is triggered from a conflict; there are two types of conflicts.

≻ Intra-thread conflicts. There are two sources of intra-thread conflicts: 1) evicting a

cache-line due to demand access and 2) attempting a write with epoch ek on a cache-line

with an older epoch-id.

≻ Inter-thread conflicts. These are caused by inter-thread shared memory dependen-

cies. Such dependencies mandate the enforcement of persist ordering between epochs
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of two different threads. Inter-thread conflicts can be resolved by blocking the target

thread until the source epoch persists [51]. It is possible to enforce these in a lazy

manner [117] although that comes with the complexity cost of avoiding deadlocks if

there are cyclic dependencies.

Note that while conflicts often trigger multiple persists on the critical path of execution,

state-of-the-art cache-based implementations mitigate this overhead, through proac-

tive flushing [117], a technique that starts flushing an epoch as soon as its execution

completes.

Persist-buffer-based. Alternative persist barrier implementations [129, 163] buffer

writes in a persist-buffer: a FIFO queue in the cache hierarchy, that orders writes.

Writes enter the persist buffer in program order and before becoming visible to other

threads, i.e., a write cannot be read by a remote thread unless it has entered the persist

buffer. Notably, these implementations either enforce a global order across independent

epochs belonging to different threads [129] or statically partition the persist-buffer

entries across threads [163]. As a result, the persist buffers are not optimally utilized,

and a large number of persist operations happen in the critical path of other read/write

requests.

LRP approach. Persist buffers simplify the design, avoiding the complexity of tracking

conflicts inside the caches. However, this approach limits the benefits of buffering as

the buffers (which are typically smaller than caches) are not optimally utilized. For this

reason, we choose to implement RP using the cache-based approach (§ 3.4) because,

despite its complexity, it is likely more efficient.

3.2.3 Log-free data structures (LFDs)

To ensure correctness, operations that modify a data structure must be atomic. Often

atomicity is achieved through atomic code regions protected by locks. However, an

important class of nonblocking data structures are designed to explicitly avoid locks. To

achieve this, such data structures carefully bake their atomicity into a single instruction

(typically a Compare And Swap, i.e., CAS). Collapsing the atomic region into a single

instruction eliminates the need for locks. For instance, in the example of Figure 3.1,

Thread T0 first creates a node privately and then it atomically links the node with the

linked list through a single CAS instruction.

The intention of this design pattern is to avoid blocking, i.e., avoid states in which a

thread is unable to make progress without the cooperation of one or more peers [185].
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In doing so, nonblocking data structures also eliminate the need for failure atomicity of

a group of writes, since the atomicity is now incorporated into a single instruction, there

is no longer need to persist multiple instructions atomically. Therefore, nonblocking

data structures are log-free, as they do not require the logging mechanisms that are

typically associated with failure atomicity.

To recover a program’s progress, the PM must be kept in a consistent state. For

an LFD where failure atomicity is not required, a consistent state can be achieved

by simply ensuring that the PM writes a consistent cut of the program’s execution,

i.e., the persistency order need only mirror the happens-before relations mandated by

consistency [168]. Indeed, Izraelevitz and Scott [111] prove that log-free programs can

be recovered without any effort (i.e., null recovery), if what remains on the PM after a

crash is a consistent cut of the program’s execution. In this thesis, we aspire to provide

null recovery for log-free programs, through an RC-based persistency model (RP) and

an efficient mechanism (LRP) for enforcing RP.

3.3 Limitations of ARP

Gotge et al. [86] argue that a persistency model based on only ordering (such as ARP)

is unsatisfactory because the lack of atomicity guarantees makes recovery cumbersome.

While agreeing with Gotge et al. for general programs, we argue for their utility for

LFDs, which can be recovered without any effort after a crash (i.e., null recovery), as

long as NVM reflects a consistent cut of the program’s execution.

Design goal. In order to maximize performance, while allowing for null recovery, we set

the following design goal: the persistency model must mirror the RC semantics, without

exceeding them. The key requirement to match RC semantics is treating releases and

acquires as one-way persist barriers, in the same manner as RC treats them as one-way

barriers.

Alas, ARP [128], the only RC-based persistency model with one-sided barriers

falls short of that goal. In the rest of this section, we first describe ARP’s semantics

(§3.3.1) and implementation (§3.3.2) focusing on how ARP fails to achieve our design

goal, and then we motivate the need for a new persistency model that can rectify ARP’s

shortcomings (§3.3.3).
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3.3.1 ARP semantics

ARP [128] is a language-level persistency model with explicit release and acquire

annotations. These semantics comprise the ARP-rule, which we define below.

ARP-rule. When a release synchronizes with an acquire, all writes that precede the

release must persist before writes that follow the acquire:

W i
y

po−→ Reli
x

sw−→ Acq j
x

po−→W j
z ⇒W i

y
p−→W j

z

3.3.1.1 ARP semantics shortcomings

We note that the ARP-rule does not mirror the happens-before relations of RC and

thus it is unable to provide null recovery as it does not preserve a consistent cut in the

NVM. For instance, RC mandates that if a release is visible, all preceding writes must

be visible, too, i.e., W i
y

po−→ Reli
x ⇒W i

y
hb−→ Reli

x. However, ARP allows for a release to

persist before all preceding writes have persisted; i.e., W i
y

po−→ Reli
x ⇏W i

y
p−→ Reli

x.

Therefore, in the example of Figure 3.1b, in the event of a crash, it may be the case

that the release of Thread T0, which links a new node into the linked list, has persisted,

but the preceding writes that created the node, have not persisted. This would leave the

linked list in an inconsistent, and thus unrecoverable state.

3.3.2 ARP implementation

ARP is implemented on top of RCBSP [129], a persist-buffer-based BEP model. ARP

modifies the ISA, enhancing the release and acquire instructions with persist semantics

that enforce the ARP-rule. Note that for the ARP-rule, releases and acquires need not

be treated as persist barriers: writes that precede a release need not be ordered with

writes that follow the release and writes that follow an acquire need not be ordered with

writes that precede the acquire. ARP enhances RCBSP to leverage this observation.

Recall that RCBSP orders all writes in the persist buffer (described in §3.2.2.1).

On executing a persist barrier, the buffer’s epoch is incremented such that subsequent

writes belong to a later epoch, than writes that precede the barrier. ARP enhances this

implementation as follows: on a release, no barrier is placed; rather a flag is raised

denoting that the next acquire must place a persist barrier. On an acquire, a persist

barrier is placed only if the flag is found raised. These additions enforce the ARP-rule as
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follows: if a release Reli
x is inserted in the queue before an acquire Acq j

y, then any write

that precedes Reli
x must belong to an older epoch than any write that follows Acq j

y, thus

ensuring that writes that precede a release persist before writes that follow an acquire.

3.3.2.1 ARP implementation shortcomings

Firstly, we note that the ARP implementation abides by the ARP semantics, enforcing

only the ARP-rule, without mirroring the RC orderings. For instance, a write that

precedes a release is likely to belong to the same epoch as the release, and can thus

persist after the release.

Secondly, even though the ARP authors identify that maximizing performance

hinges on providing one-way persist barriers, their implementation still uses full persist

barriers (i.e., not one-way). The lack of one-way barriers in the implementation makes

it impossible to parallel the RC semantics: on the one hand, when the barrier is elided

(i.e., on a release) APR fails to match the RC semantics, while on the other hand, when

the barrier is placed (i.e., on an acquire) ARP provides more orderings than RC, as RC

treats acquires as one-way barriers.

3.3.3 Why not simply fix ARP?

It is possible for ARP to honour the RC semantics, and thus enable the null recovery of

log-free data structures, as long as a persist barrier is placed before every release. For

instance, in the linked list example of Figure 3.1d, a persist barrier is also placed before

the release, guaranteeing that the new node is persisted, before it can be linked to the

structure.

Recall, however, that the design goal is not only to enable null recovery of LFDs, but

also to maximize performance through one-way persist barrier semantics. By placing a

persist barrier before every release, ARP regresses into a generic BEP model with full

persist barriers. Aggravating the problem, the persist-buffer-based implementation of

ARP pertains solely to full persist barriers, making it impossible to provide the desired

one-way persist semantics.

Therefore, it is clear that there is a need for a new persistency model built from the

ground up to provide efficient null recovery for log-free programs, by mirroring RC

semantics through the use of one-way persist barriers.
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3.4 Release Persistency

In this section, we introduce Release Persistency (RP), a persistency model that recon-

ciles the performance of one-sided persist barriers with the stronger semantics that are

required for the recovery of LFDs. First, we formally specify RP (§3.4.1), and then we

discuss the performance implications of our specification (§3.4.2).

3.4.1 Formal Specification

RP must ensure that the persist order reflects the RC happens-before order, which we

formally specified in §3.2.1, for enabling crash recovery. Note that because the persist

order defines the order in which writes persist, only those RC rules that pertain to writes

must translate into the RP formalism. Therefore, RP can be succinctly formalized as

follows. Any two writes in the RC happens-before order must also persist in that order:

W1i
x

hb−→W2 j
y ⇒W1i

x
p−→W2 j

y

From the happens-before rules of §3.2.1, we can expand and specify RP via the follow-

ing rules:

≻ Release one-sided barrier semantics. A write that precedes a release in program

order appears before the release in persist order: W i
x

po−→ Reli
y ⇒ W i

x
p−→ Reli

y.

≻ Acquire one-sided barrier semantics. A write that follows an acquire in program

order appears after the acquire in persist order: Acqi
y

po−→W i
x ⇒ Acqi

y
p−→W i

x .

≻ Release synchronizes with acquire. A release that synchronizes with an acquire

appears before the acquire in persist order: Reli
y

sw−→ Acq j
y ⇒ Reli

y
p−→ Acq j

y.

≻ Program order address dependency. Two writes to the same address ordered in

program order preserve their ordering in persist order: W1i
x

po−→W2i
x ⇒ W1i

x
p−→W2i

x.

≻ RMW-atomicity axiom. Read and write of an RMW appear consecutively in persist

order: Ri
x

RMW−−−→W i
x ⇒ Ri

x
p−→W i

x and there is no write W j
y (from any thread) such that

Ri
x

p−→W j
y

p−→W i
x .

A note on RP acquires. Because an acquire being a read cannot persist, the Acqi
y

p−→W i
x

ordering may appear bizarre at first. The intention here is to allow for two or more rules

linked by an acquire to apply transitively.

For example, when a release synchronizes with an acquire, the released value must

persist before any of the writes following the acquire persist. This is captured by

applying the “release synchronizes with acquire” rule and the “acquire one-sided barrier
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semantics” rule transitively.

In a similar vein, when a release synchronizes with an RMW marked acquire: (1)

the released value must first persist; (2) then the value written by the RMW must persist

(follows from the RMW atomicity axiom that mandates that read and write must appear

consecutively in persist order); and finally (3) writes following the RMW must persist.

3.4.2 Specification implications

In Section 3.2.2.1, we discussed the conflicts that can occur in a cache-based imple-

mentation of a buffered epoch persistency model. Conflicts can adversely impact

performance because they can trigger the persist of entire epochs in the critical path

of one instruction’s execution. However, not all types of conflicts are necessary to

to capture the intention of RC; a number of these conflicts are merely an artifact of

full persist barriers, which inescapably overshoot the necessary guarantees. One-way

persist barriers capture the exact intention of RC and as a result substantially reduce the

number of conflicts that need to be handled, pruning all unnecessary constraints.

Eliminated conflicts. Specifically, one-way persist barriers allow for a write to persist

before writes of previous epochs. For example, assume W1i
x

po−→ Reli
y

po−→ W2i
z; even

though W2i
z belongs to a later epoch than W1i

x, the persist of W2i
z does not trigger the

persist of W1i
x. This relaxation substantially reduces the number of both inter- and intra-

thread conflicts. Namely, examples of conflicts that are eliminated include: conflicts due

to writing to a cache-line with an older epoch, conflicts triggered by evicting a cache-

line and conflicts due to forwarding a cache-line upon receiving a coherence request.

Notably, eliminating all these classes of conflicts allows for significant coalescing of

writes to the same cache-line, which reduces the absolute number of persists.

Performance Implication. The ability to recover a program incurs an overhead in

the program’s execution, as its writes need to persist in the order mandated by the

persistency model. The performance degrades because in order to honour the persist

order, the processor often needs to stall. Note that, in eliminating the above types of

conflicts, RP reduces the number of times the processor must stall. As a result, we

hypothesize that the specification of RP can have a profound impact in performance.

We prove this hypothesis in our evaluation section (§4.5).
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3.5 Lazy Release Persistency

In this section, we present lazy release persistency (LRP), our microarchitectural

mechanism for enforcing RP. As discussed in §3.2.2.1, a buffered implementation where

visibility does not wait for persistency is critical for minimizing persistency-related

overheads (also confirmed in our evaluation). This calls for a mechanism that maximizes

buffering. Yet, the requirements of RP mandate the enforcement of inter-thread persist

orderings (when a release synchronizes with an acquire). Allowing for buffering to

extend across threads, however, incurs complexity in the form of coordination across

memory controllers to enforce inter-thread persist dependencies correctly. It also

involves complex deadlock-avoidance mechanisms to eliminate potential cyclic inter-

thread dependencies [117]1. Thus, we make the design choice of buffering persists

within a thread until there is an inter-thread dependency, in which case we persist the

buffered writes. Our evaluation (§3.6.4) vindicates this choice.

How to realize LRP with these design requirements? Our insight here is that the

requirements matches that of lazy release consistency (LRC) [123], a protocol first

proposed in the context of DSMs for enforcing RC lazily. Taking inspiration from

LRC, we propose LRP a protocol for enforcing RP and its one-sided barriers. Next, we

provide a high-level overview of LRP and how it satisfies the RP semantics (§3.5.1).

We then dive into the specifics of our implementation (§3.5.2).

3.5.1 LRP Overview

In this section, we provide a high-level overview of LRP. We do this abstractly by

describing the invariants satisfied by LRP. We informally argue for correctness by

reasoning that the invariants are sufficient to enforce RP. In the next section, we discuss

the detailed microarchitecture, explaining how LRP enforces the invariants.

LRP uses a buffering approach where persistency trails visibility. Therefore, writes

to the L1 do not trigger persists. Instead, whenever a dirty cache-line is written back

from the L1 (owing to eviction or a downgrade), the cache-line is persisted by the

LLC/directory controller. LRP ensures that these persists enforce RP via ensuring four

key invariants:

• Invariant-1 (I1): When the L1 controller receives an eviction request for a cache-

line written by a release, it blocks the request until all of the cache-lines written
1Although DRF programs do not pose a deadlock risk, the hardware must be able to handle racy

programs as well
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by writes prior to the release have been persisted.

• Invariant-2 (I2): When the L1 controller receives a downgrade request for a

cache-line written by a release from the directory, the request is blocked until: (a)

all of the cache-lines written by writes prior to the release have been persisted;

(b) the release has been persisted.

• Invariant-3 (I3): When an RMW, marked acquire, is successful (i.e., if the write

is successful), the acquire blocks the pipeline until the write of the RMW persists.

• Invariant-4 (I4): When the directory controller receives a write-back from the

L1, the directory persists the cache-line, blocking requests for the cache-line until

it persists.

We now argue that the four invariants are sufficient to enforce RP’s persistency

rules.

≻ Release one-sided barrier semantics. Invariant-1 ensures that before a release is

allowed to persist, all previous writes have been persisted.

≻ Release synchronizes with acquire. Suppose a release from thread T1 synchronizes

with an acquire from thread T2 and issues a read request for the cache-line. There are

three cases.

• Case-1: The acquired cache-line is in M state in T1’s L1. In this case, T2’s

acquire would cause a coherence request (downgrade) to be sent to T1. Invariant-

2 ensures that the acquire will block until the release and its preceding writes

have been persisted, thereby ensuring this rule.

• Case-2: The acquired cache-line is in the LLC. Invariant-1 ensures that all writes

before the release would have persisted. Invariant-4 ensures that the release itself

would have persisted.

• Case-3: The acquired cache-line is in NVM. This implies that the release has

already persisted. Invariant-1 ensures that all writes before the release also would

have persisted.

≻ Acquire one-sided barrier semantics. This comes naturally out of the consistency

model. Any store following the acquire cannot perform (and hence cannot persist)

before the acquire performs.
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≻ Program order address dependency. This again comes naturally. Since writes

coalesce, it is impossible for two writes to the same variable to be inverted.

≻ RMW-atomicity axiom. The only interesting case is when the RMW is marked an

acquire. Invariant-3 ensures that the write of the RMW persists before following writes,

thereby ensuring this rule.

An example. Consider the required semantics of Figure 3.1d: T0’s W1 must persist

before T0’s Rel persists, and T0’s Rel must persist before T1’s W4. RP fulfills the

requirements as follows. Let us assume that when T1’s Acq performs the cache-line is

held in T0’s L1. Therefore, the Acq will trigger a downgrade request for the block, and

hence from Invariant-2, T1’s Acq will complete only after triggering the persist of T0’s

Rel and its previous writes (W1). Finally, T1’s W4 cannot be issued to the memory

system until T1’s Acq completes, thereby ensuring W1
p−→ Rel

p−→W4.

3.5.2 LRP: Microarchitecture

We have established that LRP enforces the RP rules by upholding four invariants (I1-I4).

I1 and I2 pose a significant microarchitectural challenge: on evicting/downgrading a

released cache-line, all prior writes must be tracked and persisted. Conversely, I3 is

trivially implemented by altering the processor pipeline to wait for an ack from the

NVM controller on an RMW-acquire. I4 requires a minor alteration in the directory

controller which we discuss more elaborately in §3.5.2.3.

Therefore, this section focuses on I1 and I2, presenting the a mechanism that, upon

evicting/downgrading a release can scan the L1 cache and persist all prior writes. We

note that the mechanism does not extend beyond the L1 cache and thus it can be simply

implemented by enhancing the L1 controller, the L1 cache and the processor core. We

begin by discussing the required hardware extensions.

3.5.2.1 Hardware extensions

Figure 3.3 illustrates all LRP hardware extensions, which are described one by one

below.

Per thread metadata. Each (hardware) thread maintains an epoch-id counter which

gets incremented on every release. In addition, the number of pending persists are

denoted by a pending-persists counter. Upon issuing a persist for any write, the pending-
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persists counter gets incremented; upon receiving an acknowledgment from the NVM

controller for any of the issued persists, the pending-persists counter gets decremented.

The pending-persists counter allows a persisting release to ensure that all previous

writes have persisted.

Per L1-cache-line metadata. Each cache-line maintains: (1) a min-epoch, that holds

the epoch of the earliest write to the cache-line and (2) a release-bit, that denotes

whether the cache-line holds a value written by a release.

Release Epoch Table (RET). A small content-addressable table, called Release Epoch

Table (RET), holds the release-epoch of cache-lines that hold a value written by a

release. We note that it is possible to maintain a release-epoch for every L1 cache-

line. However, we expect that at any given moment only a handful of cache-lines will

hold values written by a release. This is because in most programs variables that are

released account for a small percentage of the program’s working dataset. Through

our experiments, we have found that a 32-entry RET for each L1 cache adequately

overprovisions for the needs of most programs. On executing a release, a RET entry

is allocated, storing the release-epoch and the cache-line’s address. When a release

persists its respective entry in the RET is squashed. To avoid filling the RET, when the

capacity reaches a watermark, the persist of the oldest release in the RET is triggered.

Persist engine. The persist engine is an FSM that takes as an input a release-epoch erel

and scans the L1 cache, examining all cache-lines and persisting every cache-line with

a smaller min-epoch than erel .

Hardware Overhead. We assume 32KB L1 cache with 40-bit tags. LRP adds an 8-bit

min-epoch and a release-bit to each cache-line; amounting to 576 bytes for the entire

L1. Note that when the epoch-id overflows, all not-yet-persisted cache-lines of L1 are

persisted and the epochs are restarted. In addition, each of the 32 RET entries stores the

physical address of a cache-line (i.e., 40 bits, same as the L1 tag) plus a release-epoch

(8-bit), amounting to 192 bytes for the entire RET. In total, LRP requires less than 1KB

per hardware thread.

3.5.2.2 A mechanism to enforce the release barrier

Having described the hardware extensions in each L1 controller, we now discuss how

these extensions are leveraged to ensure that persisting a released cache-line triggers

the persists of all writes of previous epochs. We then use this mechanism to enforce
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invariants I1 and I2. But first, we establish some necessary terminology.

Terminology. If a cache-line holds a not-yet persisted write, the cache-line must reside

in L1 in modified (M) coherence state. If a cache-line is in M state and has its release-bit

set, it implies that the cache-line holds a value written by a release; we refer to such

cache-lines as released. If the cache-line is in M state but its release-bit is not set, it

implies that the cache-line holds a value written by regular writes only; we refer to such

cache-lines as only-written. If a cache-line is neither released nor only-written, we refer

to it as clean.

On a write. On performing a regular write, if the cache-line is clean, the thread’s

epoch-id is stored in the cache-line’s min-epoch. If the cache-line is not clean, the write

need not overwrite the cache-line’s min-epoch, as the cache-line already has a valid

min-epoch that is smaller than the current thread’s epoch.

On a release. On a release, the thread’s epoch-id is incremented; the new epoch will

be the release-epoch, ensuring that all writes that precede the release are in an earlier

epoch. There are two distinct cases for the state of the cache-line that the release intends

to write. (1) Clean: the release assigns its epoch to the cache-line’s min-epoch, it sets

the cache-lines release-bit and it allocates a new entry in RET, where it also stores its

release-epoch. (2) Not clean: the cache-line is first persisted and then treated as clean

(i.e., case (1)). Note that case (2) implies that the release cannot be coalesced in the

same cache-line with any previous write/release.

On a read/acquire. No additional action is necessary on a read or on an acquire.

On an RMW-acquire. An RMW marked acquire blocks the pipeline until its writes is

persisted. Beyond this, additional action is not necessary.

On downgrading a cache-line. Attempting to downgrade a cache-line from M state

triggers its persist. If the cache-line is only-written, then the persist happens off the

critical path. But, if the cache-line is released, then the downgrade cannot complete

before the cache-line has persisted.

On evicting a written/released cache-line. Evicting a cache-line that is written but not

released, has the same effect as downgrading it. If the cache-line is released, then the

eviction triggers its persist, but need not wait for the persist to complete (i.e., the persist

is off the critical path).

Note that there is a subtle distinction between evicting and downgrading a released

cache-line: while both actions cannot complete unless all previous writes/releases

persist, downgrading also requires that the released cache-line itself persists; there is no
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such requirement for evicting. To simplify the rest of the discussion, we refer to both

downgrading and eviction as the act of persisting a released cache-line. To enforce the

eviction invariant (i.e., I1) we do not wait for an ack from the NVM controller for the

released cache-line, while to enforce the downgrade Invariant (i.e., I2), we wait for the

ack.

On persisting a released cache-line. First, the RET is accessed to read out the release-

epoch erel of the cache-line. The erel along with the address of the cache-line are

propagated to the persist engine, which begins scanning the L1 cache, discovering

all only-written/released cache-lines with min-epoch smaller than erel . The persist

engine must issue a persist for all discovered cache lines, but there is a catch: amongst

the discovered cache-lines, there may exist a released cache-line CLr with epoch ek

and a written cache-line CLw with epoch ek−1, for which the release one-way barrier

semantics mandate that CLw must persist before CLr.

Figure 3.2 illustrates this case. When attempting to persist the Release (F2), the

persist engine tracks down all only-written/released cache-lines of previous epochs. One

of the tracked cache-lines will be the released CLc which holds the Release(F1) and the

only-written CLdt which holds the Write(X). The one-way persist barrier semantics of

the release mandate that the only-written CLd must persist before the released CLc.

Persist engine algorithm. The persist engine achieves this ordering by persisting

first all the only-written cache-lines and then persisting the released cache-lines in

their epoch order. Specifically, the persist engine operates as follows: as the persist

engine scans the L1 cache it keeps discovering cache-lines that must be persisted; on

discovering a only-written cache-line, it immediately schedules its persist, incrementing

the pending-persists counter. Otherwise, on discovering a released cache-line, it simply

buffers it in a local queue inside the persist engine. In either case, the engine immediately

resumes scanning the L1 cache.

After the scanning completes, the engine starts polling on the pending-persist

counter, waiting for it to become zero. Recall, that the pending-persist counter gets

decremented every time an ack from the memory controller reaches the L1, denoting

that a pending persist has completed. When the pending-persist counter reaches zero,

the persist engine infers that all scheduled persists have completed, and thus it can start

scheduling the persists of the released cache-lines.

For instance, in the example of Figure 3.2, the persist engine first persists the written

cache-lines Cla, CLb, and CLd; then, and only after these cache-lines have persisted,
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the persist engine will first persist CLc that holds Release(F1) and then CLe that holds

Release(F2).

Enforcing invariants I1 and I2. The persist engine algorithm enforces both I1 and I2

by persisting a release, with one simple distinction: for I1 (i.e., release eviction) the

persist engine does not wait for the released cache-line to be acked by the NVM memory

controller, while for I2 (i.e., release downgrade) it waits for the released cache-line to

be acked.

Persist engine correctness. The persist engine essentially reorders the persist of writes

with the persist of prior releases, while ensuring that releases persist in their epoch order.

This reordering abides by the RC happens-before order, because a release is a one-way

barrier for prior accesses, thus allowing the reordering with subsequent accesses.

3.5.2.3 Coherence controller

LRP involved modest (local) changes to the L1 coherence controller. Specifically, a

downgrade request (e.g. a Fwd-GetS request) for a released cache-line in M state could

block until previous writes in the L1 (if any) persist. It is important to note that this does

not pose a deadlock risk since the persist actions are guaranteed to complete without

themselves being blocked.

Thus far, we have discussed a stalling implementation where the cache controller

blocks on a Fwd-GetS. Stalling is not fundamental to our technique. It is possible to

avoid this stalling by moving to a transient state upon a Fwd-GetS, which logically

moves the state to S, waiting on an acknowledgement from the persist engine to move

back to a stable state. However, we have not experimented with this non-stalling variant

yet.

LRP also involves a minor change to the directory controller. Upon an L1 eviction

of a released cache-line, a PutM request is sent to the directory. Normally, the directory

would immediately transition to S state. However, the directory now enters a transient

state that would block coherence requests to (only) that block until it receives a persist

acknowledgement. Note that this does not stall the directory controller and hence is not

expected to affect its performance.
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Figure 3.2: The state of the cache after an example execution.

3.6 Experimental Evaluation

Thus far, we have established that RP must be enforced for enabling recovery of LFDs.

We conducted experiments seeking to answer two main questions. First and foremost,

how much does our one-sided barrier mechanism (LRP) improve on the state-of-the-

art full barrier when enforcing RP? Second, how much performance overhead does

enforcing RP incur over a volatile execution that provides no persistency guarantees?

Before we go to the results, we first discuss our workloads and methodology.

3.6.1 Workloads

LFDs are essentially nonblocking data structures with persist barriers inserted for

ensuring crash recovery. We obtained 4 of our workloads from the SynchroBench

suite [92], which is a collection of nonblocking data structures. Specifically, we used

the linkedlist [101], hashtable [156], binary search tree (balanced tree) [167] and skip-

list [218] workloads. We also implemented the lock-free queue from Michael and

Scott [157]. All workloads are data-race-free in that synchronization operations are

properly labelled using releases and acquires. For each workload, we use a harness

that creates 1–32 workers and issues inserts and deletes at 1:1 ratio. Since we only use

insert and delete operations, the update-rate of the benchmark suite is 100%. The data

structure size refers to the initial number of nodes in the data structure before statistics

are collected: we vary the size from 8K entries–1M entries, and the default value is 64K
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entries.

3.6.2 Comparison Points

We compare LRP against alternative methods for enforcing RP using full barriers. We

also compare against volatile execution.

LRP. This represents our approach for enforcing RP. Releases and acquires are auto-

matically treated as one-sided barriers and perform the actions described in §3.5.

SB. This represents an RP enforcement approach using a strict full barrier (SB). Recall

that SB blocks until all the cache lines modified by the writes before the barrier has

persisted. SB also has an inter-thread component; when a shared memory dependency

is detected via the coherence protocol, the target thread blocks until the writes in the

ongoing epoch of the source thread have persisted. Therefore, in order to enforce RP:

(1) an SB has to be inserted before each release to ensure that all writes before the

release persist before the release; (2) an SB also has to be inserted after the release to

ensure that inter-thread persist ordering is captured. (i.e., to ensure that when a release

synchronizes with an acquire, the acquire correctly blocks until the release persists.)

BB. This represents an RP enforcement approach using the the state-of-the-art full
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barrier [117]. As discussed in §4.2, the barrier enforces the persist orderings (both

intra-thread and inter-thread) similarly to SB, but employs an efficient buffered imple-

mentation that minimizes blocking. Hence, we refer to it as buffered barrier (BB). In

order to enforce RP: (1) a BB has to be inserted before each release to ensure that all

writes before the release persist before the release; (2) a BB has to be inserted after

the release and before the acquire for capturing the inter-thread persist ordering (i.e.,

to ensure that when a release synchronizes with an acquire, all writes following the

acquire should persist after the release persists).

NOP. Finally, we also compare against volatile execution which does not enforce any

persistency model (NOP).

Processor 64-Core (Out-of-Order)

2.5 GHz

ISA Intel x86-64

L1 I+D -Cache (pvt.) 32KB, 2 cycles, 8-way

line-width 64B

L2 (NUCA, shared) 1MB x64 tiles, 16-way

15 cycles

On-chip Network 2D-Mesh

32 bit flits and links

Coherence Directory-based, MESI

NVM (PCM) cached mode: 120 cycles

uncached mode: 350 cycles

RET (private) 32 Entries

Table 3.1: Simulator Configuration

3.6.3 Simulator

Our hardware implementation is built on top of the pin-based [150] PRiME [75]

simulator, with 64 in-order-cores processor (single thread per core), a logically shared

LLC and multiple memory controllers. Table 3.1 shows the details of the simulated

processor and memory system.

We model NVM latencies based on the performance measurements observed on

Intel Optane persistent memory [113]. Specifically, there are two modes that determine

the NVM latency. In the cached mode, an NVM writeback persists as soon as it is
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written to a battery-backed NVM-side DRAM cache. In the uncached mode, an NVM

writeback persists only after it is actually written to the NVM. We assume the faster

cached mode for our experiments unless specified otherwise.

PRiME only supports x86-64 ISA and hence enforces the TSO (Total-Store-Order)

consistency model. As such the simulator lacks releases and acquires in its ISA.

Therefore, we implemented a simple extension to the ISA for taking in release/acquire

annotations. We make use of Pin’s capability to instrument the binary and generate

these special stores and loads with release/acquire annotations corresponding to releases

and acquires in the program.

It is worth noting that we did not alter the simulator’s consistency enforcement

mechanism to take advantage of the release/acquire annotations. (This is sound because

TSO stores and loads already have release and acquire semantics respectively.) However,

we take advantage of these annotations to implement our LRP mechanisms in order to

enforce RP.

3.6.4 Results

LRP outperforms BB and SB. Figure 3.4 shows the execution times of LRP, BB, and

SB normalized to NOP with 32 worker threads and 64K elements. We first observe that

BB outperforms SP, showing a 26%-68% (average 52%) improvement over BB. This is

primarily because BB, which is a buffered implementation, avoids stalls in the critical

path. This vindicates our design decision of striving for a buffered implementation

for enforcing RP. How does LRP stack up against BB? Our key result is that LRP

significantly outperforms BB, showing a 16%-55% (average 33%) improvement over

BB.

LRP is 5%-12% within NOP. Figure 3.4 also reveals that LRP is only 5%-12%

(average 9%) within volatile execution which suggests that the persistency-related

overheads incurred by RP is nominal for these workloads.

Why LRP outperforms BB? Recall that the expected advantage of LRP over BB is that

it significantly minimizes intra-thread persistency overheads being a one-sided barrier.

On the other hand, BB is expected to incur lesser inter-thread persistency overhead; this

is because, whereas LRP blocks on an acquire to enforce the inter-thread persistency

orderings, BB enforces those lazily well. To understand why LRP outperforms BB, we

conducted experiments to study the effect of intra- vs inter-thread persistency overheads

of LRP and BB.
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Figure 3.4: Execution time normalized to No-Persistency (lower the better).

In Figure 3.5, we classify write backs into two categories: those that are in the

critical path of the execution (of the processor doing the write back) and those that are

not. For BB, a significant 69% of the write backs are in the critical path, whereas for

LRP only 15% of the write backs are in the critical path. Since almost all of the write

back are due to persistency orderings, this suggests that LRP significantly minimizes

intra-processing overheads in comparison with BB.

Figure 3.7 and Figure 3.8 compare the normalized execution time overheads of RP

vs BB as the number of worker threads are varied from 1–32. The greater the number

of threads, the greater the probability of inter-thread conflicts and hence potentially

high inter-thread persist ordering overhead for RP. However, as seen in Figure 3.7 and

Figure 3.8, this effect is nominal: for RP the persistency overhead remains relatively flat

with increasing threads. For BB there is a marginal decrease in performance overhead

as the number of threads is increased.

The above two experiments suggest that the effect of intra-thread persistency over-

head far outweighs the effect of inter-thread persistency overhead. Therefore, this

vindicates the design choice of RP in seeking to optimize away the intra-processing

overheads vs inter-thread overheads.

Individual workload analysis. Whereas RP consistently outperforms BB, as we can

see from Figure 3.4, the gap between RP and BP varies. One trend we observed is
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Figure 3.5: Percentage of write backs in the critical path

that, for read-intensive workloads, the gap between RP and BP is smaller than for

write-intensive ones. As discussed earlier, BB suffers from intra-thread conflicts and

these are more pronounced for write-intensive workloads. Thus, we can observe that

linkedlist, a read-intensive workload owing to read-heavy link traversals, shows lesser

gain over BB 19% gain compared to BST, a write-intensive workload which shows a

relatively higher 37% gain.

Cached vs Uncached mode. Recall that up until now we assumed the cached mode

where a write back is said to persist as soon as it reaches the NVM-side DRAM cache.

In this experiment, we consider the uncached mode by disabling the NVM-side DRAM

cache, thereby exposing the slower NVM to applications. Figure 3.6 presents the

normalized execution time overhead over NOP on the uncached mode. As we can see,

and comparing with the results on the cache mode shown in Figure 3.6, RP is more

robust to this change when compared with BB or SB. RP continues to incur a nominal

6%-20% (average 11%) overhead compared to NOP. BB (and SB) are affected more by

this change because they have more writebacks in the critical path when compared to

RP. Thus, RP shows a significant 76% improvement over BB in this configuration.

Sensitivity to Data structure size. In order to measure the sensitivity of RP to data

structure size, we varied the size from 8K–1M nodes. However, we did not observe a

significant change in the results (and hence we do not show these results). Changing the
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better).

number of elements in the data structure largely affects inter-thread conflicts compared

to intra-thread. Our observation is that even though the number of inter-thread conflicts

changes over the data structure size, it does not affect the execution time overheads

significantly because, as established earlier, the effect of intra-thread conflicts is more

significant.

3.7 Summary

We have argued that languages must support ordering primitives that are strong enough

to enable recovery of log-free data structures (LFDs) without compromising on effi-

ciency. Specifically, the release (and the writes before it) must persist before the writes

following the acquire persists. We formalize this behavior via a persistency model called

release persistency (RP). The challenge is to realize RP with one-sided barriers while

also retaining a buffered implementation where visibility does not wait for persistency.

I.e, we must strike a good balance between laziness and eagerness. We achieve this with

a buffered implementation in the intra-processor sense yet one with persistency catches

up with visibility when an acquire synchronizes with a release—detected and enforced

by piggybacking on top of the coherence protocol. Our experiments on commonly used
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LFDs suggest that our one-sided barriers efficiently enforce RP, significantly improving

upon the state of the art.
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Figure 3.7: PART 1: Percentage overhead over and above No-Persistency, varying the

number of threads from 1 through 32. (lower the better)
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Chapter 4

Pandora: Highly Available, Recoverable

Transactions on Disaggregated Data

Stores

4.1 Introduction

In this thesis, we explore the recovery of transactional, in-memory key-value stores over

disaggregated memory (DM) architecture. We argue that existing work has not studied

how to recover correctly and efficiently under disaggregated memory. To address that,

we propose our own approach to tackling recovery in this new setting. But first, let us

provide some context.

Both academia [190, 145, 99, 200, 136, 181, 91, 191, 130] and industry [47, 42,

138, 11, 10, 12] are exploring DM to mitigate the inefficiency caused by the fixed

compute-to-memory ratio in traditional datacenter servers. This inefficiency arises

when an application needs more compute than memory, or vice versa, but the server’s

fixed ratio doesn’t match its requirements. DM decouples memory from compute by

deploying two types of servers: 1) memory servers that provide ample memory with

minimal compute and 2) compute servers that offer high compute capabilities with

minimal memory. Memory servers are connected to compute servers through a high-

speed RDMA network, which allows memory and compute to be efficiently provisioned

according to the needs of the application.

The primary advantage of DM is improved resource utilization, but there is another

crucial benefit. With memory and compute now operating independently, distributed

applications can keep running even if a compute server fails, since no memory is lost

57
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Figure 4.1: Independent failures in Disaggregated Memory. Because memory and compute

are independent in DM, distributed applications could keep running even if a compute

server fails.

(Figure 4.1). I.e. Recovery from compute failures can be non-blocking. This is in

contrast to traditional monolithic server architecture, where a server failure results in

the automatic loss of a portion of memory that acts as the primary storage for a set of

keys.

This work leverages this observation in the context of transactional in-memory key-

value stores (dubbed KVSes). Such KVSes are a crucial component of the datacenter

infrastructure [59, 60, 126, 120], and their availability in the presence of failures is

critical. When a KVS server fails, a portion of the objects becomes inaccessible.

Although all objects are replicated, the entire KVS must stop briefly to – at least –

reconfigure itself and steer requests for the inaccessible objects to other replicas. In

KVSes the ratio between compute (transactions per second) and memory (dataset size)

can vary arbitrarily across the numerous use cases. This makes them a perfect fit for DM.

In DM-KVSes (dubbed DKVSes), the compute servers are responsible for coordinating

transactions while memory servers hold the dataset passively. In this architecture, there

is no reason why the failure of a compute server should cause any interruption to the

operation of the DKVS.

Unfortunately, there is no existing DKVS that offers this capability. Providing

this capability will require a new DM-based recovery protocol. The key challenge in

designing this protocol is that compute servers can only access memory through the

limited one-sided RDMA API (read, write, compare-and-swap, and fetch-and-add).

This is in contrast to traditional, non-disaggregated architectures where servers can send

arbitrary remote procedure calls (RPCs) to one another.
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Over the past decade, researchers have studied this RPC-to-RDMA transformation

in the context of transactional protocols [219, 158, 59, 126]. Specifically, FaRM [59, 60]

showed how to implement the execution phase of a transactional protocol over one-sided

RDMA without RPCs. FORD [219], which is the first and only existing (transactional)

DKVS, took the next step, designing the entire transactional protocol (including the

execution, validation and the commit/abort phases) solely through one-sided RDMA.

However, FORD did not consider the challenge of efficiently recovering from a compute

failure.

4.1.1 Pandora

In this thesis, we take the next step towards a correct, performant, and highly-available

DKVS. We propose Pandora, a fully one-sided transactional protocol that ensures

memory is always in a recoverable state and includes special handling of compute

failures to avoid unnecessary interruption. Using FORD as the steady-state protocol,

we design an RDMA-based recovery protocol that detects and recovers from a compute

failure while eliminating interruption. To ensure correctness, we introduce an end-

to-end litmus testing framework that revealed a number of bugs on FORD, which

prohibited recovery from being fast, correct, or non-blocking. Finally, we integrate

our innovations into the FORD system [219] and thoroughly validate and evaluate our

proposal.

Implicit Latch Logging. One problem with recovering after a compute failure in

FORD is that the FORD protocol latches1 keys before logging. Thus, post-failure, the

entire memory must be scanned to discover and undo any not-yet-logged latches taken

by the failed compute server. This operation can take multiple seconds: e.g., scanning

100 GiBs through a 100Gbps network link will require at least 8 seconds. During this

period, the rest of the compute servers must block. Crucially, to solve this, we cannot

simply reorder logging and latching, because that will either require a heavy redesign

of the protocol or impose overheads by adding extra messages. Instead, we propose

a new RDMA-friendly technique called Implicit Latch Logging, where we extend the

latch structure to also include the id of the compute server. When failing to latch, a

compute server will inspect the latch to see if the current server holding the latch is a

failed compute server. If so, the latch can be stolen.

RDMA-based Recovery protocol. To detect and handle compute failures, we propose

1Throughout this work, we say “latch” instead of “lock”.
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an RDMA-based recovery protocol that works in four steps. First, it uses heartbeats to

detect failures. Second, it revokes the RDMA rights of the failed server to ensure safety

even under false positives. Third, it reads the logs of the failed compute server (which

are stored in the memory servers) and either rolls forward or rolls back all of its logged

transactions. Finally, it notifies the remaining compute servers of the failure so that they

can acquire any stray latches of the failed server. Crucially, during this process, the

alive compute servers can continue executing transactions.

End-to-end Litmus Testing. There are several factors that render the recovery protocol

particularly error-prone. Firstly, recovery is a complicated distributed algorithm that

must be able to detect failures and roll back and forward uncommitted transactions. The

recovery is only executed once per failure, limiting the ability to uncover corner cases;

contrast this with the rest of the transactional protocol, which is executed millions of

times per second. Secondly, it does not suffice for only the recovery protocol to be

correct; for recovery to work, the transactional protocol must ensure that memory is

always in a recoverable state. However, this aspect of the protocol is not tested during

failure-free operation and thus is very error-prone.

In this thesis, we introduce a new litmus-testing framework for end-to-end validation

of transactional protocols in general, and Pandora in particular. Litmus tests are small

transaction sequences that are designed to expose bugs. To the best of our knowledge,

this is the first work to create litmus tests and a framework for deploying these tests

for validating transactional protocols. Our validation revealed multiple subtle bugs in

FORD, which can – in rare cases – leave the memory in an unrecoverable state, each of

which has been fixed in Pandora.

4.1.2 Contributions

• We observe that disaggregation presents an opportunity for highly available

(transactional) KVSes. However, the limited one-sided RDMA semantics (and

the absence of traditional RPCs) poses a challenge to fast recovery (§4.2).

• We propose Pandora, a fully one-sided transaction and recovery protocol specifi-

cally designed to achieve correct and fast recoverable transactions on DKVSes.

• Pandora consists of two innovations: Implicit Latch Logging (§4.3.1), an RDMA-

friendly technique for making latches recoverable in the presence of failures, and

new RDMA-based recovery protocol (§4.3.2) for detecting and recovering from
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failures.

• To validate correctness, we introduce a new litmus-testing framework (§5.1), and

our validation reveals multiple subtle bugs in the FORD protocol, each of which

is addressed in Pandora.

• We implement our techniques on top of the FORD system, the only state-of-

the-art DKVS. Our evaluation shows that Pandora achieves fast recovery in the

order of a few milliseconds during which live compute servers proceed with

their transactions and while incurring nominal overhead on failure-free execution

(§4.5).

4.2 Preliminaries

In this section, we first provide a brief background on disaggregated key-value-stores

(DKVS). We then briefly discuss FORD, which serves as the basis for this work.

4.2.1 Disaggregated KVS (DKVS)

Researchers from academia and industry are advocating for the adoption of disaggre-

gated memory (DM), arguing that it improves scalability, power utilization and cost

efficiency [99, 145, 15, 47, 164, 205, 33, 217]. In a DM architecture, servers are di-

vided into compute and memory. Compute servers have the compute capabilities of

today’s commodity servers, but limited memory (i.e., a few GiB) for caching but not

in-memory storage. Memory servers have a lot of memory for storage but near-zero

compute [200, 136, 219]. As in recent DM works [61, 207], we assume that memory

servers have a small set of wimpy cores (1 - 2) to support lightweight connection

management and initialization but do not traverse indexes or apply transactional logic.

Instead, compute servers perform those over the memory servers through one-sided

RDMA.

This work focuses on Key-Value Stores deployed over DM, or simply DKVSes.

Specifically, we focus on DKVSes that replicate and distribute their data in-memory

across multiple memory servers. A set of compute servers run the DKVS library,

which offers a simple transactional API. Applications express their transactions through

requests that include calls to BeginTx, Read, Write, Insert, Delete, and CommitTx. An

application can run on the same servers as the DKVS library or on remote servers. In
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Figure 4.2: FORD’s (a) commit path, and (b) abort path (only if any latch or read-

validation fails before the decision); (c) example of a transaction that reads object X, writes

object Y, before writing object Z; (d) X has P1 as primary while Y and Z have P2. P1 and

P2 are replicated in B1 and B2. For instance, in (a) coordinator first reads X from P1, then

latches and reads Y from P2 and performs a task locally before latching and reading Z

from P2, then reads the version of X from P1 for read-validation while writing undo logs

in P2 (and its backup B2) in the background; finally, it updates Y and Z in-place in P2 and

B2 before unlatching Y and Z in P2. (b) is similar.
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either case, the applications’ requests are routed to the DKVS library, which executes a

transactional protocol, accessing and replicating DKVS data as needed.

Architecture. The compute server responsible for executing the protocol for a transac-

tion is referred to as its coordinator. Each object is stored in multiple memory servers.

Every object is assigned a primary memory server, with the remaining servers desig-

nated as backups. An object can only be accessed through its primary. The backups are

kept consistent with the primary so that they can take over in the event of a failure.

Consistency and Failure Model. As in prior works in distributed replicated transac-

tions [59, 219, 120, 209], we focus on transactions that provide the strongest consistency

guarantee (i.e., strictly serializability [188]). We consider a non-byzantine partially

synchronous model [64] with crash-stop compute and (up to f + 1) memory server

failures as well as network faults, including message reordering, duplication, and loss.

4.2.2 Recoverable Transaction Protocol

A recoverable transactional protocol is responsible for ensuring consistency (i.e., strict

serializability) and handling failures under the aforementioned failure model. We find it

useful to classify the actions of the protocol under three categories.

C1. Online-failure-free. This includes all of the actions required to ensure transaction

correctness (i.e., strict serializability) when there are no faults.

C2. Online-recovery. This includes the actions from the protocol responsible for

maintaining the state required to facilitate recovery should a failure happen. Typically,

this includes all of the steps involved in logging data and metadata.

C3. Recovery. This includes all of the actions from the protocol for detecting and

recovering from a compute server failure. More specifically, it includes the actions for

detecting the failure and ensuring that the failed server cannot affect the system anymore

(e.g., in case of a false positive). It also includes actions that ensure that transactions

from the failed server have either been rolled back or rolled forward completely.

Key features of a recoverable transactional protocol. An ideal recoverable protocol

should have four key features.

1. Correctness. First and foremost, the protocol must ensure correctness (i.e., strict

serializability) both in the absence and presence of compute failures.

2. Minimal online overhead. The online-recovery component of the protocol
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should ideally add as little overhead as possible to the online-failure-free compo-

nent; i.e., the overhead of logging should be as minimal as possible.

3. Fast recovery. The recovery component should be fast; i.e., it must quickly roll

back or roll forward any pending transactions on the failed compute server, so

that these transactions (and any other transactions from other compute servers

conflicting with the above transactions) can make progress as soon as possible.

4. Non-blocking. Recovery must not block other non-conflicting transactions from

other computer servers; these transactions must continue to make forward progress

despite the computer server failure.

The combination of the non-blocking property (for non-conflicting transactions)

and fast recovery (which affects the latency of conflicting transactions) is what makes

transactions highly available.

4.2.3 FORD

This section presents FORD [219], the only published DKVS to date. FORD executes

distributed transactions using a variant of the OCC transactional protocol [131], which

offers strict serializability [189]. Specifically, FORD’s protocol consists of three phases:

execution, validation and commit/abort.

1. Execution. During execution, the coordinator reads all objects in its read-set,

and reads and latches all objects in its write-set. The execution phase will fail if

any accessed object is already latched. If execution succeeds, the protocol moves to

validation. Otherwise, it moves to the abort phase.

2. Validation. For validation, the coordinator checks that all objects in its read-set are

still in the same state, i.e. they have the same version and have not been latched. This

ensures that the transaction is working over a consistent view. When the validation

phase completes, then we say that we have reached a decision: the transaction will

either commit or abort.

3. Commit/Abort. Commit entails two steps: 1) all writes are applied to both the

primary and backups of each object and 2) latched objects are unlatched. The client

is notified after the first step with either a commit-ack or an abort-ack. Conversely, to

abort, we simply unlatch all latched objects and then notify the client.

Undo Logging. During the first two phases, the protocol writes an undo log in the
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primary and every backup of every object in its write-set. The purpose of this is to

facilitate recovery in the event of a failure.

Figure 4.2 illustrates FORD. Figure 4.2(a) and (b) show the commit and abort path

of the transaction shown in Figure 4.2(c) which reads object X and writes object Y.

Figure 4.2(d) shows the four assumed memory servers, Each of which serves as primary

or backup for objects X and Y.

FORD summary. Going back to our classification, the execution, validation, and

commit/abort phases of the protocol comprise the online-failure-free (C1) component

of FORD. The Undo logging comprises the online-recovery component (C2).

In the next section, we will discuss the limitations of FORD’s logging component

in the presence of compute server failures, and how it is addressed in Pandora. We will

also delve into Pandora’s recovery algorithm, which addresses the lack of a recovery

component in FORD.

4.3 Pandora

In this section, we discuss Pandora, a highly-available transactional protocol that recov-

ers efficiently on a compute failure. Recall that in Section 4.2, we split a transactional

protocol into three distinct categories: the online-failure-free (C1), online-recovery

(C2) the recovery (C3). Based on this classification, Pandora borrows C1 from FORD;

Pandora also borrows C2 from FORD but significantly reworks it, making it efficiently

recoverable. One of the other limitations of FORD is that it lacks a recovery component

(C3). In Pandora, we introduce a recovery algorithm that works over one-sided RDMA.

4.3.1 Making FORD Efficiently Recoverable

In Section 4.1, we asserted that the FORD protocol prohibits fast recovery on a compute

failure because it first latches objects and later it writes logs for said latches. We

elaborate on this issue and present our solution Implicit latch logging.

4.3.1.1 Problem: Stray latches

On a compute failure, it is possible that several objects are latched but there is no log

that points to these latches. We call these stray latches. First, we discuss why stray

latches prohibit fast recovery. Then we delve more into the problem, arguing that it is

more subtle than it looks, with its roots stemming from adopting disaggregated memory.
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Impact on Recovery. Stray latches create two related problems. First, we cannot

simply unlatch while other compute servers are executing transactions, as we cannot

differentiate between the stray latches and the regular latches of the live servers. Second,

we need to scan the entire memory to find the stray latches, which can take seconds:

e.g., scanning 100 GiBs through a 100Gbps network requires at least 8 seconds. Hence,

we must block the entire system for several seconds.

Understanding the problem. To modify an object, FORD issues an RDMA CAS to

latch it first, and then an RDMA Read to read it. Because RDMA guarantees that the

two messages will be delivered in order, we are certain that we read the object only

after latching it. Furthermore, only after the RDMA Read has returned can we perform

the undo logging. This is because undo logs store the previous value (so that they can

“undo” the change). Note that, had we read the value without first latching it, we would

not be able to log it, because it would be possible to log a different value than the one

we latched. Thus, we need to latch before reading, and read before logging. This is why

there are stray latches.

The role of RDMA. This ordering conundrum does not exist in the traditional non-

disaggregated architecture, because an RPC can execute all three tasks – latching,

reading, and logging – in the same step. Crucially this step is atomic with respect to

failures. I.e., if the server that executes the RPC fails, then neither the log nor the latch

will be visible. In contrast, with one-sided RDMA-access to a remote memory server,

we do not have the luxury of performing these multi-step functions in a failure atomic

manner. We expect this to become a recurring problem as more and more applications

are ported to disaggregated memory.

Summary. Stray latches are a non-trivial problem that occurs because, in a disaggre-

gated architecture, it is not possible to perform multi-step functions in a failure atomic

manner. Crucially, this problem prohibits fast recovery.

4.3.1.2 Our solution: Implicit latch logging

To solve this problem, we assign a unique 16-bit process-id to each compute server

and mandate that latches include the process-id of their owner compute server. On a

compute server failure, we need not scan the entire memory in a blocking manner to

release its stray latches. Instead, we enable other transactions to steal these latches. We

call this technique Implicit latch logging because we have repurposed the process-id

(added to the latch) to signify whether or not the latch is stale, avoiding the need for
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explicit logging.

How does stealing work? Recall that the coordinator issues an RDMA CAS to

latch an object. When the RDMA CAS fails, it returns the value of the latch, which

includes its owner process-id. We check this process-id against a series of the failed-ids,

i.e., an array that contains the process-ids of all previously failed compute servers. If we

discover that the latch is stray, we execute one more RDMA CAS to steal it. Notably,

stray latches can also cause Reads to abort, during both execution and validation phase.

To avoid this, we again check the failed-ids, and if the latch is found to be stray, we

proceed as if the object were not latched at all.

Overhead. The overhead of this approach is: 1) a check against the failed-ids, incurred

only when accessing a latched object and 2) an extra RDMA CAS when finding a stray

latch. Note that actually finding a stray latch is extremely rare, because we execute

millions of transactions per second, while we may only get one failure every a few

hours (depending on the number of compute servers [26]).

Recycling process-ids. We must ensure that a failed process-id cannot be assigned to

another compute server, until all of its stray latches are unlatched. We ensure this as

follows. We use 16 bits to represent process-ids, allowing for 64Ki compute servers to

join over the lifetime of the system. Although we expect 64Ki process-ids to be plenty,

they might outlast the utility of a long-running system. As such, we implemented a

background mechanism that scans the memory and unlatches all stray latches, allowing

to recycle failed process-ids. We trigger this mechanism if more than 95% of available

process-ids are used.

Notably, as more compute servers fail over time, we must ensure that the overhead

of checking the failed-ids stays constant. We achieve this by implementing failed-ids as

a compact bitset with 64Ki entries.

Updating failed-ids. After a compute server failure, the recovery protocol is responsible

for notifying all alive compute servers, so that they can update their failed-ids. We

discuss this further in the next section.

Summary. We presented implicit latch logging, a technique that associates each latch

with the unique process-id of its owner compute server. This allows us to detect which

latches are stray and steal them. We use a large enough number for process-ids to ensure

that we will not need to recycle them, but have a contingency plan for that. Crucially,

implicit latch logging enables recovering from a compute failure without interrupting

the rest of the system.
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4.3.1.3 Problem: Logging aborted transactions.

In FORD it is possible for a logged transaction to be aborted. The problem is that at

recovery-time it is impossible to differentiate between committed and aborted logged

transactions. This prevents correct recovery. For instance, consider a failed compute

server C, which has logged a write to object X in one of its transactions. Also, assume

that during recovery, we see that X has been modified. It is impossible for us to

know whether X has been modified by C or not. This is because, it is possible that

C’s transaction aborted, unlatching X and then a different compute server latched and

updated X . As we will see, when discussing our recovery protocol (§4.3.2.2), recovery

hinges on knowing whether C is the one that modified X , so that we can undo the

modification, if needed.

Notably, we realized this was an issue after our validation revealed three bugs that

are caused by this problem. We discuss further in Section 5.3.

4.3.1.4 Solution: Logging phase.

Firstly, note that we cannot solve this problem by relying on the fact that latches include

the process-id of their owner, because we do not latch backups. Therefore, if the

memory server that serves as the primary for object X fails, we will still face the same

problem.

There are multiple ways to solve this problem. We add an extra logging phase in-

between validation and commit/abort. This phase is executed only if validation succeeds.

To minimize the performance overhead of this extra phase, we change FORD’s logging

scheme such that the overall logging overhead is reduced.

FORD writes a log in each replica of each object in its write-set. For example,

assume a transaction that writes X and Y with a replication degree of 3 (i.e., f +1 = 3),

where X is replicated in memory servers 0,1,2 and Y is replicated in memory servers

3,4,5. FORD will log X in 0,1,2 and Y in 3,4,5. We take a different approach. For each

compute server, we specify f+1 memory servers that hold its logs. Therefore, in the

above example, both writes to X and Y will be logged in the same three servers. This is

a well-established technique [195].

As we log after validation, at which point we know the entire write-set, we can log

all writes with the same RDMA Write amortizing its overheads. Therefore, the total

cost of logging in our technique is always f +1 RDMA Writes as opposed to FORD’s

f +1 RDMA Writes per object in the write-set. This technique also makes the recovery
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Figure 4.3: Recovery Protocol

protocol slightly simpler, as all the logs of a compute server are gathered in the same

f +1 memory servers.

4.3.2 Recovery Protocol

In the previous section, we ensured that fast and non-blocking recovery is possible. In

this section, we guarantee that it is also correct. We start by specifying four correctness

criteria. Then we describe non-blocking recovery from compute failures. Finally, we

provide a brief description of how we handle memory failures.

4.3.2.1 Correctness criteria

Before we state the correctness criteria, we must first introduce some definitions. A

failed compute server, C, may have been working on a number of transactions, before

failing. We refer to these as stray transactions (Stray-Txs). There are three side-effects

of Stray-Txs that must be addressed: 1) stray latches on objects 2) updates on objects

(during commit phase) and 3) communication with the client to notify it of commit or

abort. We differentiate between two types of Stray-Txs, the Logged-Stray-Txs for which

C has written a log, and the NotLogged-Stray-Txs, for which C had not yet reached the

point of writing a log. The dichotomy is important, as transactions that have written a

log can have all three of the side-effects, while the NotLogged-Stray-Txs can only have

stray latches.

Note four correctness criteria for the recovery algorithm, after the failure of compute

server C.
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(Cor1) Before trying to recover the Stray-Txs of C, we must ensure that C cannot

access memory anymore. This ensures that memory will not be compromised by

unreliable failure detection.

(Cor2) We must either roll back or forward all Logged-Stray-Txs, to ensure that either

all or none of their updates are applied to objects.

(Cor3) We must not roll back a Logged-Stray-Tx, if it has notified its client that it has

committed. And vice versa, we cannot roll forward, if the client has been notified

of an abort.

(Cor4) We can only steal the stray latches from NotLogged-Stray-Txs. This is because

Logged-Stray-Txs may have also updated some of the latched objects and thus,

stealing could leave the memory in an inconsistent state.

4.3.2.2 Recovering from compute failures

Figure 4.3 illustrates the protocol, which comprises four steps. Below we provide an

overview of each step.

(1) Failure Detection. The first step of the protocol is initiated by a fault detector (FD),

which detects a crash on a compute server. Our protocol can work with any off-the-shelf

FD. For our evaluation, we have implemented a heartbeat-based FD, which exchanges

heartbeats with compute servers and reports failure after a time-out of 5ms.

(2) Active-Link Termination. Notably, any FD can have false positives, i.e., it can

mistakenly deem compute server C as failed. Recall correctness criterion (Cor1): before

recovering the Stray-Txs of C, we must ensure that C can no longer access memory. In

a non-disaggregated system, this is typically achieved by rejecting RPCs from servers

that are not in the stable configuration [122]. To achieve the same effect, we revoke

C’s RDMA rights, ensuring that any future requests from C will get dropped. We call

this active-link termination. Recall that memory servers have some low-power, cheap

compute for network management. We implement active-link termination by sending a

link-termination RPC to this compute.

(3) Log Recovery. Again, assume that compute server C has failed. For each of failed

C’s Logged-Stray-Txs we will make a decision, either roll it forward or backward,

satisfying criterion (Cor2). Recall that in its commit phase, the transaction will update

all replicas of an object (i.e., it applies its writes). To also address criterion (Cor3), we

make the following two assertions on the protocol 1) if all replicas of all objects in the
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write-set are updated, then it is possible that the client has received a commit-ack. 2) If

any of the objects in the write-set are updated, then it is impossible that the client has

received an abort-ack. Based on these, we can assert that we can safely roll-forward

all Logged-Stray-Txs that have updated all objects in their write-set in all replicas

because the commit-ack is possible, but the abort-ack is impossible. We roll-back all

other Logged-Stray-Txs. This is correct because it is impossible that we have sent a

commit-ack for these transactions.

In practice, we implement log recovery as follows. First, we spawn a thread which

we call Recovery Coordinator (RC). Recall that for any compute server, we write its

transaction logs in f +1 specific memory servers (§ 4.3.1.4). Therefore, the RC can

read all logs by issuing f + 1 RDMA Reads. Using the logs, the RC recreates the

write-set of each Logged-Stray-Tx. Then for each Logged-Stray-Tx it issues an RDMA

Read for every replica of every object in its write-set, so that it can check if it has been

updated. Specifically, each object has a version, so we simply read the version and

compare it with the version in the undo logs. Then, for each transaction that has updated

all replicas of all writes in its write-set, we simply unlatch its latches with an RDMA

Write to each replica. For the rest of the transaction, we also unlatch all objects, but

also use the undo log to roll back any updated objects.

Note here the importance of the second fix in FORD’s online-recovery. Had we

not done the logging after validation, it would be impossible to differentiate between

an object that is updated by a Stray-Tx or by a live transaction from an alive compute

server. This is because in FORD it is possible to log an object, and then later abort and

unlatch it. However, the log would remain.

(4) Stray latch notification. Finally, we notify all compute servers of a failure so that

they can start stealing the stray latches of the failed server. Recall the first correctness

criterion: we can only steal stray latches of not-logged stray transactions. For this

reason, it is crucial that we only perform the stray latch notification after log recovery.

4.3.2.3 Idempotent Recovery

Pandora ensures idempotent recovery, enabling any step of the end-to-end recovery

algorithm to be re-executed. This capability is essential to tolerating failures during the

recovery phase, given that the recovery coordinator operates within a standard compute

server. For instance, in cases where compute failures can cause log recovery to stall,

necessitating re-execution, Pandora allows for the re-execution of the log-recovery
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step until the final acknowledgment is received from the recovery coordinator. To

guarantee idempotent correctness, Pandora truncates all logs from the failed transaction

coordinators before sending the Stray-Latch notifications (refer to Figure 4.3).

4.3.2.4 Failure Detector Availability

The availability of the failure detector is crucial for the end-to-end recovery algorithm.

Pandora ensures detector availability by replicating it on ZooKeeper quorums [110].

To achieve this, we decouple the detector’s program state and migrate it to ZooKeeper

replicas. This approach not only tolerates detector failures but also eliminates false

negatives resulting from compute server and network delays. With quorum replication,

a compute node is considered failed only if it fails to reach a majority of the replicas (it

is considered alive as long as it reaches a majority of the quorums).

The trade-off in this approach is that compute nodes now send heartbeat messages

to all ZooKeeper replicas or a majority in the case of failures, introducing some latency

into the end-to-end recovery algorithms. However, this latency is not expected to

significantly impact recovery time and can be eliminated by alternative solutions [95].

4.3.2.5 Recovering from memory failures

This work focuses on compute failures because they present the opportunity for non-

blocking recovery. We handle a memory server failure in three steps. First, we detect the

failure and notify all compute servers. For each object whose primary is lost, compute

servers know deterministically which is the new primary using consistent hashing [121].

Notably, we do not need to recover any transactions, because all compute servers are

still alive, and have full knowledge of the state of their transactions. After learning of

the memory failure, each compute server makes a decision for each of its transactions,

using the same criterion as log recovery: it commits transactions that have updated all

live replicas and aborts the rest. Once all compute servers complete this step, operation

can resume. In the case where memory and compute servers fail together, we execute

both protocols independently. Notably, we do not handle adding memory servers.

4.4 Evaluating Pandora: Goals and Methodology

Recall that the goal of this work is to achieve fast and correct recovery for transactions

on DKVSes. Therefore, we conduct experiments to answer four key questions.
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Validation. Recovering transactions correctly on DKVSes involves subtlety. Is Pandora

actually recoverable? We validate Pandora as well as the state-of-the-art protocol

FORD [219] using our litmus-test-based validation framework. We will extensively

discuss validation in Chapter 5.

Recovery latency. Reducing recovery latency is one of the key goals of our work. What

do we mean by recovery latency precisely? Recall that our proposed techniques do not

stop the entire KVS on a failure, but transactions whose coordinators fail are affected.

The recovery latency refers to the delay seen by such transactions that are affected by

failures. We show the recovery latency of Pandora.

Fail-over throughput. When a failure does happen, can our techniques ensure minimal

disruption? We show the fail-over throughout – the throughput of Pandora when it is

recovering from a failure.

Steady-state throughput. How much overhead does Pandora impose on steady-state

failure-free execution compared to the existing state-of-the art? We show the steady-

state throughput of Pandora and compare it with the FORD baseline.

Before diving into our experimental evaluation we first explain our experimental

setup, workloads and methodology.

4.4.1 Methodology

Setup. We conducted our experiments on a cluster of 5 servers in CloudLab [62]. Each

server is an r650 node in the Clemson cluster. A server can play the role of either a

compute or a memory server. The configuration is different in different experiments. We

use a dedicated server for our failure detector and recovery manager. We will explain

the different configurations separately in each experiment. Each machine in our setup

runs Ubuntu 18.04 and is equipped with two 36-core Intel Platinum CPUs with two

hardware threads per core. Furthermore, each machine has 256GB of system memory

and a dual-port 100Gbps Mellanox ConnectX-6 Infiniband NIC.

Protocols: Baseline vs Pandora. For our evaluation, we have adopted the in-memory

version of FORD KVS [219] as the system for deploying the protocols. (Recall that

FORD is the only fully one-sided transactional DKVS in the literature.) Because FORD

misses the recovery part of the protocol, we integrated our recovery algorithm to FORD

to make it our Baseline. We compare this Baseline protocol against Pandora, which

takes the online-failure-free component from FORD, but significantly improves upon
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Bench\Coordinators 1 8 64 128 256 512

TPC-C 8 us 22 us 158 us 272 us 563 us 4951 us

SmallBank 8 us 139 us 232 us 424 us 876 us 5272 us

TATP 9 us 20 us 131 us 513 us 1039 us 2236 us

MicroBench 10 us 21 us 119 us 474 us 1001 us 2043 us

Table 4.1: Recovery latency (in microseconds) while increasing the number of outstanding

coordinators per compute node.

the online-recovery component of FORD to speed up recovery via implicit latch logging,

and introduces a new recovery component.

Workloads. For validating the Baseline and Pandora, we used our litmus tests, which

we will describe in the next section. For performance evaluation, we use the same

three standard OLTP benchmarks that were used by FORD: TPC-C [4], TATP [2], and

SmallBank [3]. These benchmarks have 8B keys. The values are 671B, 48B, and 16B,

respectively. In addition to these standard benchmarks, we have used a microbenchmark

with 8B keys and 48B values in which read/write ratios can be adjusted. It is worth

noting that each workload runs a different number of transaction coordinators (which

we explicitly specify). Each coordinator is a separate C++ coroutine, and we run up to

7 of them concurrently within a single thread. Unless mentioned otherwise, each of our

workloads runs on 16 hardware threads.

Workloads Parameters. TATP, SmallBank, and TPC-C consist of 4, 2, and 9 tables, re-

spectively. In TATP, 80% of the transactions are read-only. In contrast, both SmallBank

and TPC-C have high write ratios – 85% and 95%, respectively.

4.5 Experimental Evaluation

The goal of our experimental evaluation is to compare the Baseline against Pandora

on the following performance metrics: recovery latency, fail-over throughput, and

steady-state throughput.

4.5.1 Recovery Latency

In this section, we report recovery latency for Baseline and Pandora. Recall that FORD’s

design incurs a significant overhead on recovery. On a failure, the entire KVS must

be stopped and searched to detect stray latches. We observe that these overheads are



4.5. Experimental Evaluation 75

in the order of seconds. Specifically, in our measurements, a recovery program that

runs on a single thread while searching over the KVS using one-sided reads adds up

to around 5 seconds for 1 million keys. While more threads could be used, the latency

grows linearly with the number of keys. Overall, this is impractical for today’s KVSes

that demand high availability, hence we do not explore the Baseline’s recovery latency

any further. Instead, we focus on the recovery latency for Pandora. But before this, we

briefly describe how we emulate failures.

Emulating Failures. In this experiment, we emulate a failure by stopping a process

at a selected point in time, which implicitly stops all the in-flight transactions running

within that process. The failure detector (FD) identifies these failures using timeouts and

requests the recovery coordinator to perform recovery for each of the failed coordinators.

We use 5ms timeouts in the FD.

Pandora. Recall that Pandora introduces implicit latch logging, a fast recovery tech-

nique that moves the recovery for stray latches out of the critical path of failures.

Table 4.1 shows the recovery latency for each benchmark with respect to different

numbers of outstanding transactions (i.e., transaction coordinators). Specifically, in

TPC-C, SmallBank, and TATP recovery takes 5ms, 5.3ms, and 2.2ms respectively (with

512 outstanding transactions). In addition, our micro-benchmark with 100% writes

shows 2ms latency. The latency represents the time spent in the log recovery step of the

recovery protocol.

As we can see from the table, the recovery latency is within milliseconds, which is

three orders of magnitude smaller than the recovery latency in Baseline (FORD). Recall

that the recovery latency for the Baseline is in the order of seconds as it needs to scan the

entire KVS for latch recovery while stopping the remaining transactions. As expected,

we observe that recovery latency increases with the number of transaction coordinators,

as more outstanding transactions must be recovered upon a compute server.

Naive Logging Scheme. In addition to our main techniques, we also evaluate a naive

scheme that adds extra logging to the protocol should latches be recovered in the

recovery phase. Recall that the undo logging scheme used in FORD is not sufficient

for recovering latches. Therefore this naive scheme adds extra logging before the latch

operation executes on the transaction coordinator. We extend our recovery protocol

with this extra logging to recover latches. With the highest number of outstanding

transactions (512), recovery latency for the TATP, TPC-C, SmallBank, and MicroBench

reaches 10ms, 13ms, 2.7ms, and 2.5ms respectively.
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Summary. Overall, these results show that implicit latch logging significantly reduces

recovery latency, substantiating our argument that, we can recover fast from a compute

failure on DKVSes. Next, we will look into how much overhead these protocols impose

on failure-free stable-state execution.

4.5.2 Steady-State Throughput

Pandora’s implicit latch logging (ILL) offloads the recovery of (stray) latches to the

execution phase of the transaction, potentially adding extra overhead on steady-state

protocol. Recall that ILL adds three extra steps to the steady-state protocol: (1) latching

with process-ids, (2) a check against the failed-ids, and (3) releasing stray latches.
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Figure 4.7: Steady-state overhead of Pandora

Notably, the overhead of the last operation is only visible when there are actual failures.

First, we evaluate the steady-state overhead of ILL (only (1) and (2)). Second, we

measure the overhead of ILL under failures.

ILL under no failures. For this experiment, we use our micro-benchmark with 16
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transaction coordinators. Figure 4.6 shows the throughput over time without (blue)

and with (red) ILL. Note that the throughput difference is very negligible. This is

because the failed-id list is empty hence we do not incur any extra round trip overhead

for stealing latches. It is worth noting that each failed-id bitfield lookup (with O(1)

complexity) only adds a few nanoseconds on every failed latch (and reads), which is

insignificant compared to the round trip latencies that are in the order of microseconds.

ILL under failures. In this experiment, we measure the end-to-end steady-state

overhead of ILL under failures. Recall that after failures stealing the latch adds an extra

round trip. To measure the overhead, we ran the same experiment with failures that

stop (then recover) half of the coordinators in the setup. We then reduce the Mean Time

To Failure (MTTF) and rerun the experiment. Lower MTTF means that the number of

stray latches in the DKVS is higher and the time to recover these latches before the next

failure is lower.

Figure 4.7 shows the transaction throughput without failures (blue), with MTTF=10s

(red), MTTF=2s (yellow), and MTTF=1s (green). It is worth noting that the typical

MTTF in the datacenter is in the range of minutes [26], and MTTF < 10s is highly

unlikely. As we can see, it is clear that ILL adds insignificant overhead under failures.

This is because only just a few stray latches must actually be recovered and that overhead

is uniformly distributed over the run of the experiment.

Naive Logging. In addition to the proposed technique, we show the steady-state

overhead of the naive scheme that we discussed. Recall that for this scheme to work we

need an additional logging round trip for each latch in the steady-state execution phase.

Hence, the steady-state throughout should be lower than that of the baseline FORD’s

throughput. Figure 4.4 shows the steady-state throughput normalized to FORD. Logging

adds a 25% throughput overhead on the standard benchmarks. Smallbank, TPC-C,

and TATP incur average throughput overheads of 24%, 20%, and 9% respectively.

Microbenchmarks with 100% writes incur an overhead of 24%.

We observe that logging overhead generally increases with increasing write ratios.

For instance, TATP, which is mostly read-only, shows lesser overhead than write-

intensive workloads like SmallBank. On the other hand, some write-intensive workloads

like TPC-C show lesser overhead than anticipated because of one-sided read overhead

that is not proportional to the actual read/write ratio present in the benchmarks.

Summary. ILL adds minimal overhead over the FORD baseline while significantly

reducing the recovery latency. Next, we look at the fail-over throughput of our technique.
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4.5.3 Fail-Over Throughput

The fail-over throughput is the difference between the throughput while recovering

from a failure and the fault-free steady-state throughput. To measure this for Pandora,

we conducted an end-to-end experiment to show the impact of our fast recovery that

does not stop the entire KVS.

For this experiment, we set up a cluster of five machines with two memory nodes

and two compute nodes; the fifth server is used to run the failure detector. We use our

standard benchmarks while running 64 transaction coordinators on each machine. We

emulate a failure by crashing one compute node while measuring the throughput of

the rest of the KVS. Recall that the failure detector identifies the failure after waiting

for the timeout (i.e., 5ms in our case) and initiates the recovery coordinator. For this

experiment, we use the same failed machine to run the recovery coordinator.

Unlike blocking (i.e., ”stop-the-world”) type recoveries as in the Baseline (or

traditional monolithic server deployments [192, 68, 59, 60]), our recovery need not

stop the entire KVS for compute failures. Indeed, our microbenchmark in Figure 4.8

(blue line) shows that the throughput of Pandora does not drop to zero but rather drops

to about two-thirds of the original throughput after the emulated crash. Similarly,

Figure 4.9, Figure 4.10, and Figure 4.11 respectively show the fail-over throughput

of Smallbank, TATP, and TPCC. Recall that Pandora can handle memory failures as

all-compute failure that requires stopping the entire KVS to update the new replica

configuration. Thus, in our benchmarks (yellow line) fail-over throughput drops to zero.
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Post-Failure throughput. Recovery impacts not only the fail-over transactional

throughput but also the post-failure throughput. If the recovery cannot restore the

lost compute resources, the post-failure throughput is likely to drop in proportion to the

percentage of lost coordinators. In some cases, the post-failure throughput hinges on the

ability to restore the failed coordinators after the recovery process. In such a scheme, the

KVS can either use the freed-up resources from failed coordinators or standby backup

resources. Reusing resources from failed coordinators is possible for software crashes.

Figure 4.8 shows two scenarios: the blue line represents the situation when there is a

fault followed by recovery, but the failed resource is not reused. The red line denotes the

case in which the failed resources are reused, and hence the post-recovery throughput

matches the pre-failure throughput. It is worth noting that the failed coordinators are

brought back in less than 10ms after the failure.

Moreover, post-failure throughput is impacted by system bandwidth limitations. For

example, in scenarios with high load where transactions operate significantly below op-

timal throughput, due to a multitude of coordinators competing for memory bandwidth,

a loss of a compute node might paradoxically elevate the application’s throughput.

This phenomenon manifests in certain workloads, resulting in post-failure throughput

exceeding the steady-state throughput observed pre-failure. However, this elevation

is primarily attributed to bandwidth constraints and can be mitigated by reducing the

number of coordinators active on the compute nodes. For instance, Figure 4.12 depicts

the Smallbank benchmark with half the number of coordinators. In this configuration,

Pandora effectively restores the post-failure throughput to its pre-failure levels.
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Figure 4.10: TATP fail-over throughput

Distributed Failure Detector. Recall that replicating FD using zookeeper quorums

affects recovery time (Section 4.3.2.4). However, even when using three replicas,

Pandora consistently recovers in under 20ms.

Sensitivity to stalls. Let us consider the situation in which a transaction T1 latches

an object X during transaction execution, and then, is forced to abort due to a failure.

Recall that the failure would trigger a recovery operation (Section 4.3.2). But before

the recovery can complete, suppose another transaction T2 accesses the same object X

during transaction execution. At this point there are two options: abort transaction T2

or stall T2 until recovery is complete. Thus far, we have assumed the former, letting

other transactions that do not conflict with object X to execute and commit.

In this experiment, we explore the stalling approach: we assume that a transaction

that needs to access an object that needs to be recovered is delayed until recovery

completes. Naturally, using this approach impacts fail-over throughput, and its impact

is proportional to the recovery latency. To show the sensitivity of fail-over throughput

to different recovery latencies, we ran two experiments with a microbenchmark with

100% writes on the same setup as in the previous experiment. To emulate failures, we

crash half of the coordinators at random times. In our first experiment, we used 1000

hot objects/keys (Figure 4.13). As we can see, without fast recovery provided by our

mechanisms, throughput drops to zero: the high recovery latency and the high conflict

rate eventually block all of the transactions. In contrast, with fast recovery, there is

initially a steep drop in throughput while the recovery is taking place – but as soon
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Figure 4.11: TPCC fail-over throughput

as recovery completes, the throughput increases and stabilizes. We also conducted

a similar experiment with 100000 hot objects to reduce the number of transaction

conflicts (Figure 4.14). The reduced probability of conflicts means that, even with

slow recovery, there are non-conflicting transactions to execute. Thus, the throughput,

instead of dropping to zero immediately, drops gradually. With fast recovery, however,

there is no drop, while the fail-over throughout depends only on the number of failed

coordinators, which can be restored later.

4.6 Summary

We have observed that disaggregated memory presents an opportunity to handle compute

failures efficiently while ensuring high availability. To seize this opportunity, we

have proposed Pandora, the first one-sided transactional protocol that ensures correct,

non-blocking, and fast recovery in DKVSes. Pandora makes two key innovations:

Implicit Latch Logging and a novel one-sided recovery algorithm. For correctness, we

introduced an end-to-end litmus testing framework that revealed multiple bugs in the

FORD protocol, which we have addressed in Pandora. Our experimental evaluation

demonstrates that on a compute server failure, Pandora does not unnecessarily block

transactions on alive servers, and recovers fast (in just a few milliseconds). Crucially,

we have also shown that the recovery enhancements of Pandora incur minimal overhead

on failure-free execution.
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Figure 4.12: Smallbank fail-over throughput with low contention
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Chapter 5

DART: Validating Transactional

Databases with Target

Application-Centric Recurrent Testing

5.1 Introduction

Verifying transactional protocols is notoriously hard. Although there is a rich literature

on formally verifying models of transactional protocols using manual and automated

techniques [32, 134], our focus is on validating real implementations of the protocols.

End-to-end testing with randomly injected failures has proven to be very effective in

revealing bugs in transactional protocols used in databases [115, 152, 127, 28].

In this chapter, we discuss, DART, a target (black-box) litmus-testing framework

specifically designed for validating end-to-end correctness of transaction protocols.

DART’s end-to-end testing consists of two steps: offline test generation and online

execution. In the offline path, DART uses the consistency model to generate for each test

a set of litmus transactions and a corresponding assert transaction(s). In the online path,

DART (recurrently) runs the litmus transactions and the assert transaction(s) on many

application instances with randomly injected failures into the database; Any violation

of the consistency model is revealed in the read state of the assert transaction(s).

DART offers two benefits: first, DART scales well since the validation hinges solely

on the read state of the assert transactions, and second, DART incurs zero integration

cost as it requires no changes to the application programming interface (API).
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T1 T2 T1 T2

T3 T4

TX Begin
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TX Begin

TX End

RD x=X
WR Y=x+1

RD y=Y
WR X=y+1

Assert(X=Y) Assert(X=Y) Assert(X!=Y) Assert(X!=Y)
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(a) litmus 1 (b) litmus 2

(d) Assert (litmus 1)

Injected Crashes/Delays

T1 T2

TX Begin

TX End

TX Begin

TX End

RD x = X
WR X=x+1
WR Z=x+1

RD x =X
WR X=x+1
WR Y=x+1

Assert(X>= Z)

(c) litmus 3 

Assert(X>= Y)

TX Begin

TX End

RD x=X
RD y=Y

assert(x=y)

 

Figure 5.1: Basic litmus tests with application-observable states.

5.2 Method

The most commonly used technique for testing databases is Adya’s Histories [8, 127].

The idea is to run a number of randomly generated transactions, collect a rich trace of

data and metadata for each run (the history), and use the history to determine (violations

in) the consistency model enforced by the database. However, existing frameworks –

because they need to collect histories – tend to be heavyweight, hard to integrate and

scale.

There is an alternate method to validating databases – one based on application-

observable state [53] rather than histories. The idea is to carefully construct transactions

so that the values of the objects reveal the consistency model, and consequently reveal

bugs in the protocol (if it does not match the intended consistency model). Crooks et

al. [53] showed theoretically how the application-state-based approach can be equally

effective as the histories-based approach while being significantly more lightweight and

less costly. (It is also worth noting an analogous approach of litmus testing [13, 146,

58] has been extremely effective for validating shared-memory consistency models.)

However, being a conceptual framework, it does not contain a suite of tests or a tool

that can be readily used for testing protocols.

To the best of our knowledge, this is the first work to create transactional (litmus)
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tests for black-box testing of real-world protocols. Figure 5.1 lists 3 basic litmus tests

that we have developed in our framework for validating transaction protocols with

(strict) serializability, the intended consistency model. These litmus tests are derived

from the formal definition described in Section 2.3. They comprehensively cover

all possible scenarios of cyclic violations (cycles) in the serialization graph with a

minimal number of dependency edges. Our basic litmus tests target three types of cyclic

scenarios: direct-write, read-write, and indirect-write cycles, addressing dependency

violations.

Limitations and Challenges. Our tests are sound and complete in identifying seri-

alization bugs within an arbitrary testing time. However, these straightforward tests

may not always be exhaustive in detecting real-time ordering bugs. It’s important

to note that, while not universally necessary, real-time ordering is crucial for testing

strictly serializable transactions. Therefore, before running out tests at scale, we initially

ran our tests in a single-threaded setup to carefully analyze whether there were any

real-time ordering violations in the transaction protocols. Specifically, we use traces

and the physical timestamp of each transaction to verify if any read has not captured the

immediately written values.

5.2.1 Application-Centric Assertions

In addition to the litmus tests, we also create their matching application-centric as-

sertions. The creation of an assertion for each test is a non-trivial task and is highly

contingent upon the specific test. In this thesis, we opt for the minimal assertable

version for each test, which represents the litmus test with the fewest operations.

We use special read-only transactions for realizing the assertions. For example,

the first litmus (Figure 5.1(a)) assigns a value of V1 to both variables X and Y in the

first transaction and assigns of value of V2 to both variables in the second transaction.

Strict serializability mandates that the values of X and Y should be equal at the end

of each transaction. This is exactly what we assert with our read-only transaction

(Figure 5.1(d)). To test the steady-state protocol together with the recovery protocol,

we randomly inject crashes after every statement in a transaction.

While litmus transactions run regularly on numerous instances, assert transactions

are only required to run at selective or random intervals. However, running assert

transactions at regular intervals can minimize testing time.



88Chapter 5. DART: Validating Transactional Databases with Target Application-Centric Recurrent Testing

Litmus Bugs (Category-Source) Description Fix(es)

Litmus-1

(Direct-Write

Cycles)

Complicit Aborts

(C1 - Baseline/Pandora)

Releasing unset latches

in the abort path

Unlatch only the acquired

latches during

execution in the abort path

Missing Actions

(C2 - Baseline)
Omitting logging of inserts Add inserts into undo logs.

Litmus-2

(Read-Write

Cycles)

Covert Latches

(C1- Baseline/Pandora)

Not checking the latch value in

the validation phase

Read and check latches

of read-only data

during the validation phase

Relaxed Latches

(C1 - Baseline/Pandora)

Relaxing the order of latches and

validation in the commit path

Grab all latches

before validation

Litmus-3

(Indirect-Write

Cycles)

Lost Decision

(C2 - Baseline/Pandora)

Logs for a transactions

that aborted without

being able to tell

if it hs updated its objects

Add log phase

if validation succeeds

(Section 4.3.1.4)

Logging without latching

(C2 - Baseline/Pandora)

Loging a latch

that was never grabbed

Add log phase

if validation succeeds

(Section 4.3.1.4)

Table 5.1: Three categories of bugs found in Baseline and Pandora: online-failure-free

(C1), online-recovery (C2) and recovery (C3).

5.3 Litmus Tests, Bugs, and Fixes

In this section, we discuss our litmus tests in detail and the bugs we have found in both

Baseline and Pandora using our litmus testing framework.

In order to pinpoint where the bugs are, we classify the actions of each of these

protocols into three distinct categories: online-failure-free (C1), online-recovery (C2),

and recovery (C3). Recall, that Baseline inherits C1 and C2 from FORD and C3 from

Pandora. Pandora also inherits C1 from FORD. Table 5.1 summarizes and classifies the

bugs that we have found, listing the protocol where we found the bug (Baseline and/or

Pandora) and the corresponding category.

5.3.1 Litmus 1

Litmus 1 checks direct-write cycles (or violations) between two transactions. As we

discussed above, there are two transactions in the litmus test, with the first transaction

assigning value V1 to objects X and Y, and the second transaction assigning value V2 to

the same two objects. We then assert that the two objects have the same value. Different

values imply a strict serializability violation. We also ran variants of this litmus test,

replacing writes with inserts and deletes.
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Bug: Complicit Abort In this bug, FORD releases every latch in its write-set when

it decides to abort. As a result, it also releases some latches that were never actually

acquired by the transaction during execution. Crucially, this bug can cause a transaction

to release a latch grabbed by a different transaction. Note that this is an online-failure-

free (C1) bug that affects both the Baseline and Pandora, because the bug is present in

FORD.

Fix: We fix this bug by releasing only the latches that have been actually acquired

during execution.

Bug: Missing Actions Additionally, we have found a bug in FORD because logging

is omitted for inserts. This is an online-recovery (C2) bug in FORD that affects only the

baseline.

Fix: We fix the bug by adding undo logs for inserts (in addition to writes, deletes,

and updates).

5.3.2 Litmus 2

Litmus 2 checks read-write Cycles (Figure 5.1(b)). Transaction T1 reads the value of X

while updating the value of Y, and T2 reads Y while updating X. Let us assume that T1

reads the old value X=0 and writes Y=1. Since T1 does not see the write of T2, it must

be that T2 sees the write of T1. Specifically, if T1 reads X=0 then T2 must read that

Y=1. If t2 reads Y=0 and proceeds to commit X=1, the final outcome would be X=1,

Y=1 which violates (strict) serializability [189, 29, 53].

Bug: Covert Latches In its validation phase, FORD does not check if the read

objects are latched. Recall that FORD checks versions of all the read-only objects

in the validation phase. However, it must also ensure that the objects are not latched.

Specifically what happens in the litmus test is that transactions T1 and T2 concurrently

read X=0 and Y=0 and then latch Y and X. Because the transaction protocol only checks

the version numbers during the validation phase, without considering whether they have

been latched, both T1 and T2 can progress, leaving objects in an inconsistent state (X=1,

Y=1).

Fix: In order to resolve this bug, we fetch both the latch value and version for each

read-only object in a single round trip. This is possible because the latch and version for

each object in FORD’s KVS are stored together. Then, in the validation phase, before

comparing versions, we check whether the object is latched; if the object is latched, we

abort the transaction.
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Bug: Relaxed Latches Litmus Test 2 revealed also another online-failure-free (C1)

bug in FORD, where in rare cases validation starts before ensuring all latches have

been grabbed. As a result, the execution phase overlaps with the validation phase. This

affects both Baseline and Pandora.

Fix: We fix this bug by enforcing that validation happens strictly after latching.

5.3.3 Litmus 3

We use litmus 3 to check multi-variable indirect-write cycles (Figure 5.1(c)). Transaction

T1 reads and increments X, and write the new X into Y. T2 reads and increments X but

writes the new X into Z. Therefore, at any given time, the values of Y and Z cannot be

larger than the value of X; this is checked by the assertions.

Bug: Lost Decision As we discussed in Section 4.3.1.3, FORD writes logs for

transactions that may later get aborted. Crucially, it may be impossible for the recovery

protocol to tell whether the transaction has aborted, or it has updated all of its objects

and thus must be rolled forward. In the litmus test, T1 logs the writes to X and Y but it

aborts. The bug occurs when the recovery protocol reads the log and infers that the write

to X has been applied because it sees that X has been modified. But the modification

has been done by T2, not T1. Because Y has not been modified, the recovery protocol

rolls back the update to X. In doing so, it partially undoes T2 and leaves memory in an

inconsistent state, as Z has been updated by T2.

Fix: As discussed in Section 4.3.1.4, we add a logging phase after validation, which

is executed only if validation succeeds.

Bug: Logging without latching This bug is caused by the problem discussed above

(logging and then aborting), in conjunction with a corner case in FORD where a log

is written before the latch is actually grabbed. Similarly, with the above, the recovery

protocol can either erroneously roll-forward or undo the write of another transaction.

Fix: The logging phase after validation suffices to solve both issues, as it ensures

we log after latching. Alternatively, Pandora can enforce latch-to-log order, eliminating

the additional round trip.

5.3.4 More Bugs and Fixes

Apart from the above reported bugs, we also came across numerous bugs while testing

Pandora’s proposed C2 and C3 phases. We have fixed all of those bugs. The next

performance evaluation section refers to the fixed versions of the Baseline and Pandora.
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Figure 5.2: Scaling tests and their asserts: scalable and non-scalable asserts

5.4 Test Coverage

Comprehensive test coverage is essential for any testing framework to thoroughly vali-

date system correctness while improving test confidence. DART maximizes coverage

in three key ways:

First, non-assert transactions in each DART test can execute recurrently with-

out affecting the test effectiveness. Supporting recurring test execution increases the

probability of exposing bugs, as some of the bugs can only be uncovered by precise

interleaving of the protocol steps.

Second, scalability plays a pivotal role in achieving comprehensive coverage.

DART’s advantage lies in separating specification testing from low-level protocol

implementation details. This offers two key benefits: It removes randomness from

test generation, simplifying scalability through consistency-based test creation, and

facilitates scalability of the testing against diverse parameters such as component count

and system failures. As a result, our tests seamlessly scale to numerous application

instances, with the assert never failing when execution is correct. This expansive cover-

age surfaces bugs that may manifest only in larger deployments. Figure 5.2 illustrates

this: the left test (a and c) is not scalable due to assert failures, while the right test (b

and d) is scalable to any number of instances. DART only chooses the latter test.
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TX Begin
RD x=Z
RD y=Y
RD z=Z

TX End
assert(x!=y!=z)

Assert(X!=Y!=Z)

Assert

TX Begin

TX End

RD x=X
RD y=Y
RD z=Z

assert(x=y=y)

T3

TX Begin

TX End

WR X=V3
WR Y=V3
WR Z=V3

Figure 5.3: Extending tests by changing number of variables

Third, DART facilitates comprehensive test coverage through extensible testing

within our framework, a pivotal aspect of end-to-end testing. Each test can be readily

expanded both vertically and horizontally. Figure 5.3 illustrates the extension of our

foundational tests, Litmus 1 (a) and Litmus 2 (b), incorporating additional variables to

augment their efficacy. This extensibility also applies to the inclusion of further asserts

within the tests, and it can be applied to other test scenarios.

In summary, factors such as test recurrence, scalable generation, and extensible

tests enable DART to maximize coverage by thoroughly exercising diverse execution

scenarios. This helps DART ensure the end-to-end correctness of complex transaction

protocols.

5.5 Summary

In this chapter, we proposed DART, a novel target litmus-testing framework for val-

idating the correctness of transaction protocols. Unlike state-of-the-art transaction

validation frameworks, DART operates as a black-box tester. As such, it does not

impose a heavy programming burden and is both scalable and efficient.
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One takeaway from this research emphasizes the importance of litmus testing in

protocol design. We argue that the design of RDMA-based transaction protocols should

incorporate a robust end-to-end testing infrastructure within the design loop. This

ensures that any protocol bugs can be iteratively identified and corrected. DART is

specifically tailored for this purpose.
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Conclusion

In this section, we discuss the conclusion of this work(§6.1), a critical analysis and

limitations(§6.2), lessons learned (§6.3), and future work(§6.4) of this thesis.

6.1 Summary

Taming the growing failures in modern datacenters necessitates fast recovery to min-

imize interruptions for online users (Availability). However, introducing additional

measures to implement recovery negatively impacts performance, correctness, and

programmability. Firstly, these recovery measures consume CPU cycles that could

otherwise be allocated to handling more client requests in the datacenter (Performance).

Secondly, these additional recovery measures make it significantly challenging to

achieve end-to-end correctness (Consistency) and maintain programmability in practice.

This thesis leveraged the potential of two emerging memory technologies– specifi-

cally non-volatile memory (NVM) and disaggregated memory (DM)– to achieve fast,

correct, and performant recovery in the datacenters. Specifically, we showed that emerg-

ing memory offers a surprising opportunity for enabling fast recovery with minimal

performance overhead. However, both NVM and DM have one crucial problem in

common: they expose critical low-level ordering to the high-level software interface, in-

troducing new semantic challenges that can jeopardize correctness and programmability.

Therefore, when architecting datacenters with emerging memory, the system architect

must, in turn, specify precise consistency models and provide low-level primitives to

efficiently enforce them (these models also play a crucial role in optimizing performance

opportunities). We addressed these challenges with three contributions: LRP, Pandora,

and DART.
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First, we demonstrated that non-volatile memory (NVM) enables the opportunity

for recovering log-free data structures (LFDs) with minimal performance overhead. The

recovery of LFDs, however, hinges on primitives that control the order of updates to

NVM during execution; Overlooking this ordering leads to correctness issues, while

excessive ordering can significantly impact performance, hindering the opportunity

for efficient recovery To enforce correct and minimal ordering, we proposed a new

persistency model – Release Persistency (RP) – together with an efficient microarchi-

tectural mechanism, dubbed Lazy Release Persistency (LRP). Our experiments reveal

that LRP enables fast and correct recovery for LFDs, surpassing state-of-the-art per-

sistency models by up to 55% in terms of performance improvement. Importantly, RP

does not compromise programmability, as its release-acquire semantics align with the

well-established DRF-SC (”Sequential Consistency for Data Race Free”) programming

model widely used in popular languages like C++ and Java.

Second, we argued that hardware-disaggregated memory (DM) offers a promising

yet challenging path to achieving high availability in key-value data stores. High avail-

ability hinges on transaction protocols that enable fast and correct recovery. However,

traditional transaction protocols that rely on RPCs fail to work with DM, necessitating

one-sided accesses. We demonstrated that one-sided accesses expose critical low-level

ordering to the high-level software interface, thereby potentially leading to recovery

bugs and prohibitively long recovery time. To address these challenges, we proposed

Pandora, which provides a fast, correct, and recoverable one-sided transaction protocol.

Our implementation artifacts showed that Pandora achieves fast (and correct) recovery

within the range of a few milliseconds, which is multiple orders of magnitude faster than

state-of-the-art one-sided transaction protocols, all while incurring minimal overhead

on performance. Additionally, adapting transactions as our programming model did not

compromise on programmability, as transactions have been the de facto programming

model in data stores.

Finally, we proposed DART, a target litmus-testing framework for validating the

end-to-end correctness of transaction protocols with recovery. We highlighted several

critical bugs that DART found in Pandora which we used to iteratively fix the protocol.

Crucially, DART is effective and lightweight and can be used as an alternative to model

checking which is notoriously hard to verify for transaction protocols. Furthermore,

DART serves as a black-box testing method, requiring no additional programming

effort, thereby enhancing its utility and applicability for rigorous protocol testing.

In hindsight, this thesis, named TANDEM, successfully achieved the initial goals we
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set at its inception. It substantiates our argument that emerging memory technologies

can indeed be leveraged to enable fast, correct, and performant recovery in modern

datacenters, provided the associated challenges are appropriately addressed. This thesis

highlighted the importance of a holistic consistency-driven approach to addressing these

challenges.

6.2 Critical Analysis

In this section, we critically analyze our approach and acknowledge the limitations of

this thesis.

Traditionally, systems architects ensure end-to-end correctness using consistency

models. These models are also crucial for improving programmability and optimizing

performance. While these models are well-established, enforcing them in practice with

emerging memory, especially in the context of failures and recovery, introduces new

semantic challenges that pose a significant threat to correctness.

We tackled this challenge by distilling minimal correctness specifications for se-

lected applications, such as log-free data structures (LFDs) and key-value data stores

(KVSes). We then focused on two widely used consistency models in the literature:

release consistency (for LFDs) and transactions (for KVSes). We subsequently studied

these models to account for specific failure scenarios in NVM and DM. To enforce

consistency semantics, we proposed two low-level protocols and relied on testing to

confirm their adherence to the prescribed consistency model. While practical, this

approach lacks formal rigor.

First, one of the key limitations of our approach is the absence of formal proof

of correctness guarantees. Instead, we rely on informal proofs wherever possible to

validate the correctness of our proposed solutions. While informal proofs and litmus

testing can provide valuable insights into the behavior of our systems, they may not

offer the same level of rigor and certainty as formal proofs. This limitation implies that

there might be cases or edge scenarios where the correctness of our solutions is not

fully established.

Furthermore, the lack of formal proofs limits our discussion to only a few selected

protocols in each emerging memory category. This limitation is particularly significant

when dealing with one-sided transaction protocols in disaggregated memory key-value

stores due to their complexity and non-trivial nature. With the formal proofs, we could

have generated different one-sided transaction protocols with distinct trade-offs.
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Formal proof of correctness is a rigorous mathematical method that provides a strong

assurance of the desired properties and behavior of a system. By not having formal

proofs, we introduce an element of uncertainty in the correctness claims of our proposed

solutions, potentially leaving some scenarios unexplored or not fully validated. However,

this is a common problem: formally verifying consistency protocols, especially in the

context of failures, is notoriously hard. Not to mention that failures further exacerbate

the complexity of this problem. Therefore, further research and development might be

required to provide more comprehensive formal proofs for our solutions to enhance

their robustness and reliability.

Second, as we have already emphasized, due to the complexity of consistency,

we limited our thesis to two basic applications: LFDs and Transactional KVSes [201,

70, 118, 67, 154, 106, 178, 199, 59, 120]. Part of this limitation stems from the

lack of formalism because we had to manually derive these protocols and implement

them. However, it is crucial to recognize that these applications, while not the only

applications running in the datacenter, are an important class of application in the

datacenters. The applicability of our proposed solutions may vary when dealing with

other types of applications and consistency models, and additional research would be

needed to explore their effectiveness in different contexts. However, such applications

only account for a small proportion of the datacenter.

The limitation of not providing formal proof of correctness and the narrow scope

of our study are important considerations that warrant further attention in future re-

search. Despite these limitations, we believe our work contributes valuable insights

into leveraging emerging memory technologies for fault tolerance and performance in

datacenters. As we continue to refine and extend our research, a focus on incorporating

more formal methods of verification and proof, as well as exploring broader application

scenarios, will be essential to strengthen the credibility and impact of our work.

Furthermore, as with any research, there are inherent constraints that we encountered

during the course of this thesis. The scope of emerging memory technologies is

continually evolving, and while we have focused on non-volatile and disaggregated

memory, there may be other emerging memory technologies that could have relevance to

fast recovery and performance in datacenters. Our study was limited to the technologies

available up to the time of this research, and as newer technologies emerge, there may

be additional opportunities and challenges to explore.

In hindsight, while our thesis has made significant strides in addressing challenges

in new memory technologies, it is essential to acknowledge the specific limitations
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we encountered. The focus on specific applications, the evolving nature of emerging

memory technologies, the absence of formal proof of correctness, and the potential

variations in applicability to other datacenter applications all contribute to the scope of

our work. As we navigate these limitations and continue to expand our understanding,

future research and exploration will play a vital role in advancing the application of

emerging memory technologies in the broader context of datacenter architecture.

6.3 Lessons Learned

In this section, we discuss two lessons that we learned while working on this thesis.

These insights are important for future research in this direction.

6.3.1 Lesson 1: Formal Methods vs Testing

The most precise approach to validate correctness is by formal methods, which con-

stitute a set of rigorous mathematically based techniques for specifying, designing,

and verifying software and hardware systems. These methods involve using formal

languages and mathematical logic to describe system behaviors, properties, and specifi-

cations. Formal methods encompass a range of techniques, including model checking,

theorem proving, and static analysis.

For example, model checking is geared towards exhaustive verification of whether a

provided system model satisfies a desired property. In the process of model checking, a

formal representation of the system’s behavior is constructed, often utilizing finite state

machines or temporal logic. The model checker systematically traverses through all

potential states and transitions within the model, aiming to confirm the validity of the

desired property or identify any counterexamples.

Formally verifying distributed systems, while necessary, is notoriously hard [45,

173, 103, 214, 151, 213]. Specifically, in distributed systems, expressing behavior

mathematically is extremely hard as it requires more effort and lines of codes than

designing the system. Additionally, verifying abstract specifications or models, due

to low-level complexities like failures, does not always guarantee that the actual im-

plementation is correct. An alternative approach to ensure correctness is thorough

testing [147, 141, 148, 161, 89, 74].

Testing exhausts the system with possible inputs to see if the systems behave

differently than intended properties [147, 115]. Testing, while effective in validating
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both specifications and implementation, has a lower chance of finding correctness issues.

Actually, it depends on the effectiveness of testing [142, 98, 197, 46, 137]. Typically,

system designers have used random testing which is not sufficient.

We have learned neither approach, formal methods nor random testing, is desirable

in the datacenter. In this thesis, we have adopted a hybrid approach for testing where we

derive test cases from the correctness properties (consistency models). Such methods

can further be strengthened with formal methods which we leave as future work [206].

Similarly, system architects can adopt hybrid techniques to reduce the complexity of

techniques like model checking.

6.3.2 Lesson 2: Inherent Complexity of Consistency

Consistency models have been studied for decades. However, models like linearizability

or sequential consistency, while intuitive and prevalent in many systems, lack sufficient

definitions for handling failures and recovery. For instance, linearizability, a widely

considered standard in many systems, is not defined under failures, introducing ambigu-

ity for architects and programmers. (Additionally, these models do not say anything

about the behavior of transactions [105].) Therefore, when architecting datacenters for

failures, architects must pay careful attention to the consistency models.

Conversely, distributed systems experts turn to consistency models like strict serial-

izability to precisely outline correctness in failure-prone scenarios [187]. Nevertheless,

these models lack formal definitions and can lead to confusion, especially due to their

similarity to terms like serializability commonly used in database isolation. In an effort

to mitigate these confusions, architects have introduced new terminology such as Strong

Consistency or External Consistency [52]. However, this approach has inadvertently

compounded the issue, given that the same term is also used to contrast with more

relaxed consistency models like eventual consistency [17, 16].

Similarly, the database community relies on ACID to describe end-to-end con-

sistency, arguably the most rigorously defined model in the presence of failures [30,

31]. Nonetheless, the ACID properties—Atomicity, Consistency, Isolation, Durabil-

ity—often bewilder architects and programmers [104, 127, 53].

These intricate nuances of consistency become evident when designing datacen-

ters with emerging memory technologies. For example, to address the challenges of

linearizability, architects have recently proposed novel consistency models such as

durable linearizability or detectability [73, 22, 143, 48, 162], which remain active areas



6.4. Future Work 101

of research. The crux of the matter is that precise consistency semantics are crucial

when architecting datacenters with new technologies, despite the inherent challenges

stemming from complexity and ambiguity. However, contrary to common belief, we

have realized that there are still issues with consistency definitions (formal models).

6.4 Future Work

While this thesis has made significant progress in addressing the challenges of emerging

memory technologies, several avenues for future research and exploration remain

open. The following areas represent potential directions for further investigation and

development:

6.4.1 Formal Proof

One of the primary limitations of our approach is the lack of formal proof of correctness

guarantees for the proposed solutions. Although we have utilized informal proofs and

litmus testing to validate the correctness and recovery of our systems, the adoption of

formal methods offers a higher level of rigor and certainty. Future work should focus on

developing formal verification techniques specifically tailored for consistency protocols,

especially within the context of transactions. Enhancing the robustness and reliability

of our solutions through formal proofs would significantly strengthen their credibility

and applicability in real-world datacenter deployments.

6.4.2 Verifiably Correct Transaction Protocols

Fault-tolerant transactions stand as the most important consistency model within dat-

acenters. Yet, the design and verification of transaction protocols remain notoriously

hard. Using ad-hoc techniques and trial-and-error testing is not sufficient. The need for

correct and recoverable one-sided transaction protocol in the future will exacerbate this

problem. Can we systematically design transaction protocols that are verifiably correct?

One insight from this thesis is that there is a possibility to design and verify transaction

protocols by formally modeling their correctness properties including recovery (i.e.

consistency models). Using these models we can synthesize transaction protocols while

formally verifying their correctness properties. Rigorous testing like DART proposed in

this thesis can be further developed to improve the confidence of such an approach. We

will investigate this aspect of the protocols in the future.
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6.4.3 Incorporating New Emerging Memory Technologies

The field of emerging memory technologies is continuously evolving, and new technolo-

gies may emerge after the completion of this thesis. Future work should keep abreast of

the latest developments in emerging memory and assess their relevance to fault toler-

ance and performance in datacenters. Exploring the strengths and limitations of novel

emerging memory technologies will offer fresh insights into potential opportunities and

challenges that were not within the scope of this research. For instance, looking into

how new disaggregated memory hardware like Compute eXpress Links (CXL) impacts

our design decision is an interesting research avenue [139, 90, 183].

6.4.4 Final Remarks

In conclusion, while this thesis has laid a strong foundation in addressing challenges of

fast, correct, and performant recovery in modern datacenters with the use of emerging

memory technologies, there are exciting opportunities for future research and devel-

opment. By focusing on formal verification, synthesizing transaction protocol, and

keeping up with evolving technologies, we can continue to advance the application of

emerging memory technologies in the broader context of datacenter architecture. The

pursuit of these future research directions will undoubtedly contribute to the ongoing

advancement of datacenter technology and its pivotal role in supporting our rapidly

evolving cloud ecosystem.
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