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Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by altered brain connectivity 
and function. In this study, we employed advanced bioinformatics and explainable AI to analyze gene expression associ-
ated with ASD, using data from five GEO datasets. Among 351 neurotypical controls and 358 individuals with autism, 
we identified 3,339 Differentially Expressed Genes (DEGs) with an adjusted p-value (≤ 0.05). A subsequent meta-analysis 
pinpointed 342 DEGs (adjusted p-value ≤ 0.001), including 19 upregulated and 10 down-regulated genes across all data-
sets. Shared genes, pathogenic single nucleotide polymorphisms (SNPs), chromosomal positions, and their impact on 
biological pathways were examined. We identified potential biomarkers (HOXB3, NR2F2, MAPK8IP3, PIGT, SEMA4D, 
and SSH1) through text mining, meriting further investigation. Additionally, we shed light on the roles of RPS4Y1 and 
KDM5D genes in neurogenesis and neurodevelopment. Our analysis detected 1,286 SNPs linked to ASD-related condi-
tions, of which 14 high-risk SNPs were located on chromosomes 10 and X. We highlighted potential missense SNPs 
associated with FGFR inhibitors, suggesting that it may serve as a promising biomarker for responsiveness to targeted 
therapies. Our explainable AI model identified the MID2 gene as a potential ASD biomarker. This research unveils vital 
genes and potential biomarkers, providing a foundation for novel gene discovery in complex diseases.

Keywords Autism spectrum disorder · Single nucleotide polymorphism · Artificial Intelligence · Pathway Enrichment 
Analysis · Multi-omics · SHapley Additive exPlanations
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Introduction

Autism Spectrum disorder (ASD) is a neurodevelopmental 
disorder mainly affecting the brain, immune system, and 
gastrointestinal tract (Chow et al. 2012). Its characteristics 
include and are not limited to restricted interests, repetitive 
behaviors, and social communication disorders (Alonso-
Gonzalez et al. 2018). ASD is generally considered a mul-
tifactorial disorder with genetic effects and non-genetic 
components of risk. The exact cause of ASD has not been 
fully defined, but a strong genetic component has been 
demonstrated through familial studies (Eissa et al. 2018). In 
addition, genetic studies have found that alterations within 
the developmental pathways of the neuronal and axonal 
systems appear to be strongly involved in synaptogenesis 
due to single-gene mutations (Eissa et al. 2018). Microar-
ray is an important first-line technique to reveal the genetic 
contribution to ASD and other complicated neurobehav-
ioral disorders (Mehta et al. 2010; Sarachana and Hu 2013; 
Benítez-Burraco 2020). This method has been used to study 
the pathology of ASD and to detect differentially expressed 
genes (DEGs) among individuals who are autistic and nor-
mal (Kuwano et al. 2011; Sekaran et al. 2021; Voineagu et al. 
2011; Hu and Lai 2013; Sarachana and Hu 2013). Although 
microarray technology is a strategy for identifying associ-
ated genes and underlying biological mechanisms, genes 
defined in one study may not be detected in others (Zhang et 
al. 2017). The reliability and generalization of results can be 
improved by combining information from multiple reported 
studies and datasets (Ramasamy et al. 2008; Udhaya Kumar 
et al. 2021; Datta et al. 2023). The study of complicated 
disorders such as ASD requires a background understand-
ing of their pathogenesis, evolutionary history, and map-
ping of genetic loci using an integrated analysis. Network 
analysis for autism-related genes through protein-protein 
interactions (PPIs) is an alternative method to evaluate the 
dynamic influences of associated candidate genes. Such an 
assessment can suggest a list of gene-drug targets (Coromi-
nas et al. 2014).

Recently, next-generation sequencing (NGS) techniques 
have transformed the capacity of researchers and clinicians 
to gather genetic data. Moreover, machine learning (ML) 
methods have been integrated with NGS in recent years to 
revolutionize bioinformatics tools and approaches. (Hassan 
et al. 2022). Numerous literature assesses and showcases 
the various applications of ML and AI in disease and drug 
research (Li et al. 2021). Databases dedicated to understand-
ing the molecular genetics of diseases serve as valuable 
tools for investigating the epidemiology of ASD, provid-
ing comprehensive insights into the clinical manifestations 
and genetic backgrounds of individuals with ASD (Tye et 
al. 2018). To understand the genetic etiology of ASD, it 

is beneficial to employ an integrated, multidisciplinary 
approach. Modern bioinformatics techniques are instruc-
tive for deciphering ASD data. Additionally, computational 
research has shed light on the underlying mechanisms of 
ASD, confirming the importance of such tools in under-
standing this complex disorder (Rosenberg et al. 2015; Ray 
et al. 2019). Furthermore, numerous computational studies 
on various pathogenesis have been reported (Habib et al. 
2020; Younes et al. 2020; Micheal et al. 2020). Utilizing 
diverse datasets and advanced bioinformatics tools, we have 
achieved a holistic understanding of ASD. We examined 
genetic variants across the different GEO datasets, patients 
with ASD, and normal controls and identified pathogenic 
SNPs linked to ASD genes. Our exploration extended to 
recognizing consistently associated SNPs or genes, under-
standing protein-protein interactions, and analyzing gene 
pathways and ontologies related to ASD. Additionally, we 
harnessed text-mining tools to gauge gene frequency in 
ASD literature and employed the SHAP model to uncover 
potential ASD biomarkers.

Materials and methods

Dataset information

The dataset used for this analysis can be accessed through 
the Gene Expression Omnibus database (GEO) with IDs 
GSE29918, GSE29691, GSE37772, GSE111175, and 
GSE42133 (Luo et al. 2012; Pramparo et al. 2015a, b; 
Gazestani et al. 2019). These data were based on multiple 
platforms and the same cell types, showing gene expression 
profiles of 709 samples (Lymphoblastoid cell lines or leu-
kocytes) isolated from 351 normal controls and 358 autistic 
individuals. The detection and quantification of DEGs in 
the transcription profiles were evaluated using the ImaGEO 
tool with standard parameters and an adjusted p-value of 
0.05, and the method used was Fisher (Toro-Domínguez et 
al. 2019).

Protein-protein interactions (PPIs), text mining, and 
gene ontology analysis

A PPI network assessment was performed using the STRING 
database (Szklarczyk et al. 2017, 2019, 2021). This analysis 
will show the protein interaction between the studied ones. 
For the enrichment analysis, there are many tools to char-
acterize the genes’ functions. Thus, all DEGs studied were 
entered into DAVID, Shinygo, and GOnet tools using the 
Entrez Gene ID to obtain enrichment categories, GO enrich-
ment, and the pathways (Pomaznoy et al. 2018; Ge et al. 
2020; Sherman et al. 2022). The ClinVar database was used 
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to search for known disease-associated SNPs and their risk 
factors, wherein the common DEGs between the five data-
sets served as the input (Landrum et al. 2016). To detect 
the positions of the pathogenic SNPs in the genes, all the 
DEGs studied were entered into g: Profiler, a web server for 
functional enrichment analysis (Raudvere et al. 2019). Fol-
lowing this, only SNPs in delay or autism and intellectual or 
neurological diseases were submitted to SNPnexus and g: 
Profiler to annotate SNPs and genes according to effect and 
biological pathways (Dayem Ullah et al. 2018).

We performed text mining to identify previously reported 
genes associated with  ASD. Our automated extraction pro-
cess sourced data from many published research related to 
ASD. From PubMed, 8,923 article summaries were down-
loaded that contained the query “autism + gene” from 2000 
until May 1, 2021. In-home Python scripts were used to 
extract genes mentioned within the text. The complete text 
mining approach used for this study is shown in Fig. 1. Also, 
to find common genes between autism, schizophrenia, and 
other neural and brain disorders, we used DAVID PubMed 
results. For that, PubMed IDs resulting from DAVID were 
used to download the summaries of the articles until May 
1, 2021. Then, in-house Python-based scripts were used 
to detect articles with autism, schizophrenia, and neural or 
brain, then extract genes mentioned within the text from 
each type of neurological disorder. The difference between 
the two text mining methods is that DAVID’s method 

searched the specific gene results in all published articles, 
not just in autism articles, like the first method.

ASD gene biomarker identification by explainable 
artificial intelligence

Explainable Artificial Intelligence (XAI) offers significant 
potential for interpreting intricate representations amid 
diverse information sources. While ML algorithms are 
extensively employed to analyze biological data and identify 
potential disease biomarkers, the inherent black-box nature 
of traditional ML models complicates the understanding and 
interpretation of their decision-making processes (Lundberg 
and Lee 2017). XAI algorithms address these challenges by 
providing better insights into the evident decisions of the 
predictions by the AI models, ensuring accuracy, fairness, 
and transparency. These explanations assist researchers 
and experts in understanding the base factors and techni-
cal features the models consider when identifying biomark-
ers (Sekaran et al. 2023). Among the five datasets used in 
this study, we selected GSE42133 to perform biomarker 
experimentation based on a few selection criteria. The 
sample size, the number of classes in each dataset, and the 
differential expression analysis results were considered for 
selecting the dataset. The 56 control samples were assigned 
a binary value of 0, and the 91 affected patients’ samples 
were assigned a binary value of 1.

Fig. 1 The text mining analysis pipeline used for studying some published autism literature
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Results

Identifying the differentially expressed genes 
(DEGs)

Utilizing analytical samples from 351 neurotypical controls 
and 358 autism-affected subjects, 3,339 DEGs were identi-
fied with an adjusted p-value threshold of 0.05 of the five 
databases, all sourced from the same sample archetype, 
notably lymphoblastoid cell lines (LCL) and leukocytes. A 
heatmap of all DEGs was created (Fig. 2A). As shown in 
Fig. 2A, the heat map represents all DEGs over-expressed 
or under-expressed samples from each dataset. Meta-analy-
sis results showed that 342 DGEs were found in all datas-
ets with an adjusted p-value of 0.001, and these genes were 
used for the rest of the following analyses. Of them, 19 
genes were upregulated, while 10 were down-regulated in 
all five datasets (Fig. 2B).

PPI network analysis

PPI networks are a graphical representation of the interac-
tions between proteins within a biological system. The PPI 
shown in Fig. 3 exhibits the relationship found among most 
of the genes (261 out of 342) in this study. Moreover, about 
44% of the genes in the network (115 genes) have more than 
0.9 node scores. For example, ATR, CHEK1, GUCY1A3, 

Shapley additive explanations

SHapley Additive exPlanations (SHAP) is an XAI frame-
work that interprets the predictions of machine learning 
models. It provides the contribution of every variable to the 
final prediction made by the model based on its importance. 
The method follows the cooperative game theory and the 
concept of Shapley values introduced by Lloyd Shapley in 
1953 (Shapley 1953). SHAP describes the contribution of 
prediction by assigning a SHAP value to each feature of an 
input instance. SHAP value represents the fluctuation in the 
expected prediction in both cases where the particular fea-
ture is included compared to its exclusion impact (Lundberg 
et al. 2020). The following terms represent each parameter 
of the SHAP function, where X is the input features of a 
sample, f denotes the machine-learning model trained to 
predict the output, and φ is the SHAP value function.

The SHAP value function φ takes the following form:

φ(X) = φ0 + φ1(x1) + φ2(x2) + ...+ φn(xn)

In the above equation, φ0 represents the expected model out-
put for a baseline reference. φi(xi) represents the contribu-
tion of feature xi to the model output. It identifies the change 
in the prediction when feature xi is included compared to 
when it is excluded, considering all possible feature subsets.

Fig. 2 Aberrant expression of genes. (A) Complete heatmap of all 
DEGs. Two groups, ASD with purple and control with green, are dis-
criminated clearly with down-regulated genes with green color and 

upregulated genes with red. (B) All common genes (up and down-reg-
ulated) between the five datasets. Up- and down-regulated genes with 
red and blue, respectively
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cocaine addiction, and choline metabolism in cancer were 
found from the top pathways related to ASD genes, resulting 
in our study (Fig. 4A). The GO analysis from the biological 
process revealed that GO terms related to the responsibil-
ity to stimulus, signaling, and development or regulation 
of the nervous system have 171 (65%), 138 (53%), and 53 
(20%) genes, respectively (Fig. 4B). ClinVar database was 
used to search for pathogenic SNPs, associated diseases, 
and associated risk factors (Fig. 4C). All pathogenic SNPs 
found, 753, 208, 100, 83, and 67, were associated with 
cancer, mental or intellectual, neuronal diseases, Noonan 
syndrome, and delay or autism, respectively (Fig. 4C). The 
positions of SNPs in autism and the most related diseases 
(delay, intellectual, and mental diseases) were detected on 
the GRCh38 Chromosomes (Fig. 5A). In addition, many 
non-synonymous variants were detected as potential bio-
markers of response to targeted therapies for ASD, such as 
FGFR inhibitors (Fig. 5B). Also, the variant effects of the 
pathogenic SNPs were detected (Fig. 5C). These terms con-
vey information about the effects each allele of the variant 
may have on each gene (Agrahari et al. 2018, 2019)..

GUCY1B3, and MRPL34 are some of the genes with the 
highest node score, 0.999.

Enrichment analysis and SNP analysis

DAVID Functional Annotation, ShinyGo, and GOnet 
tools performed a functional enrichment analysis involv-
ing cytobands, chromosomes, diseases, and pathways 
for DEGs shared between the five datasets with adjusted 
p-value < 0.001. However, Gene Ontology (GO) enrichment 
was conducted for only genes involved in PPI’s interaction 
network. The results showed that chromosomes 19 and 
17 have the highest number of genes, 31 and 30, respec-
tively (Table 1). For cytobands, Xq13.1 and 22q13.1 have 
the highest numbers of genes (4 for each). Cancer (24%), 
pharmacogenomic (19.9%), and neurological (19.6%) were 
the most diseases found. Polymorphism (62.9%), alterna-
tive splicing (60.8%), and phosphoprotein (51.2%) were the 
highest keywords in our genes (Table 1). Also, according 
to DAVID-PubMed mining text results, we found 14, 16, 
and 211 genes related to autism, Schizophrenia, and neural 
or brain disorders. For the pathways, caffeine metabolism, 

Table 1 The five DEGs datasets and their details
Dataset name Sample type Platform Total samples Autism Control References
GSE29918 LCLs* GPL5175 10 4 6
GSE29691 LCLs GPL570 15 2 13
GSE37772 LCLs GPL6883 439 233 206 (Luo et al. 2012)
GSE111175 leukocyte GPL10558 98 28 70 (Gazestani et al. 2019)
GSE42133 leukocyte GPL10558 147 91 56 (Pramparo, Lombardo, et al. 2015; Pramparo, Pierce, et al. 2015)

Fig. 3 The interaction network of PPI for the top high-score genes
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during differential expression analysis. The datasets 
GSE37772 and GSE111175 listed only two (RPS4Y1, 
KDM5D) and zero genes, respectively, based on the 
criteria (adj. p-value < 0.01 & logFC > 0.5 or logFC < 
-0.5) as differentially expressed. We exercised caution in 
selecting gene expression datasets to ensure they would 
not compromise the sensitivity of the ML model. So, the 
GSE37772 and GSE111175 datasets are excluded from 
performing machine learning analysis. GSE42133 is 
examined, identified as relevant, and selected to build the 
XAI model.

Shapley additive explanations

The initial DEGs of GSE42133 containing 172 gene 
biomarkers that satisfied the corresponding criteria 
logFC > 0.5 or logFC < -0.5 and adj. p-value < 0.01 were 
scrutinized with a recursive feature elimination algo-
rithm (RFE), a wrapper-based feature selection method. 
It selects the most relevant features in a dataset by itera-
tively eliminating less important features based on a 
specified model’s performance. The subset generated by 
the algorithm is trained with support vector machines 
to determine the scores of each set. The resultant subset 
with the best performance contains 46 genes as candi-
date markers of ASD. This 46-feature subset is further 
trained in the next process using an extreme gradient 
boosting algorithm (XGBoost) for XAI model prepara-
tion. The trained model is fed as an input into the SHAP 

Text mining

The text mining analysis revealed 3270 genes previ-
ously documented in the scientific literature discussing 
autism disorder-related genes. Among these genes were 
50 genes common between our meta-analysis and the text 
mining from other articles. Moreover, 26 genes of the 
common 50 genes, such as DLG4 (discs large MAGUK 
scaffold protein 4), ATR (ATR serine/threonine kinase), 
and SH2B1 (SH2B adaptor protein 1), were found here 
in 0.9 of the PPI interaction networks. Furthermore, we 
tried to focus on the genes related to the development or 
regulation of the nervous system (53 genes), and using 
the results of text mining with articles published previ-
ously and PPI’s score > = 0.9, we could detect 13 genes 
that seem to be more involved in ASD’s disorders. These 
genes are DLG4, MIF, ATR, TAF1, MED12, MBP, ATF4, 
ITGA3, CREB1, DSC2, EFNB3, YY1, and GDI1.

Dataset selection criteria

The bioinformatics analysis is conducted on GSE29918, 
GSE29691, GSE37772, GSE111175, and GSE42133 to 
identify molecular insights about ASD. An attempt has 
been made to develop machine-learning models for find-
ing the gene biomarkers from these datasets. Initially, the 
datasets GSE29918 and GSE29691 are ruled out for their 
sample size of 14 and 15, respectively. In the next step, 
the total number of genes from each dataset is reduced 

Fig. 4 Functional Annotation of the DEGs. (A) Pathways in KEGG. (B) The biological process enrichment analysis. (C) All diseases related to 
the studied pathogenic SNPs.
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increased expression levels for the particular gene for all 
the samples. In Fig. 6C-D, the parameter E[f(X)] is the 
baseline, and f(x) is the value predicted by our model. 
The values on the x-axis assigned to each gene are the 
actual expression values on the particular sample. In 
comparing the results between the two samples of ASD 
and control, the genes MID2 and AK3 clearly explain that 
the increased expression levels are influencing the pre-
dictions of ASD and the low expression levels to con-
trol. Figure 6E-F represents the summary and cohort 
plots generated based on the Shapley values. The cohort 
plot clearly shows that the increased expression levels 
of MID2 predict the samples as ASD, whereas the lower 
levels are classified into normal samples. The summary 
plot is the smooth version of the bee-swarm plot with a 
violin-like representation.

framework to perform the interpretation, thereby under-
standing the decision of every prediction made by the 
black-box model. The overall importance of each fea-
ture based on its contribution towards the prediction is 
depicted in Fig. 6A-B, containing a global bar and bee-
swarm plot. The higher mean SHAP value (mean absolute 
value) denotes that such features significantly impact the 
predictions. MID2 stands on top with the highest score 
of + 1.21, followed by AK3 (+ 1) and RHOQ (+ 0.84) in 
three consecutive scores. The bee-swarm plot provides 
insight into the genes with positive and negative SHAP 
values. The positive SHAP value represents the influence 
of genes irrespective of the feature value (increased/
decreased expression levels) to “ASD,” and the negative 
SHAP value denotes the “control” prediction. The data 
points visualized in the beeswarm plot in “cyan” show 
decreased expression levels, and the “violet” indicates 

Fig. 5 SNP analysis. (A) The positions of SNPs in autism and the most related diseases. (B) Biomarker sunburst chart for autism and the most 
related diseases SNPs. (C) The variant effects of autism and the most related diseases SNPs.
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Conversely, the genes CYP20A1 (cytochrome P450 fam-
ily 20 subfamily A member 1) and CTBP1 (C-terminal 
binding protein 1) were significantly down-regulated. A 
comparison with text mining results from extant literature 
on ASD indicates that these genes were not previously asso-
ciated with ASD. As a result, they may represent novel can-
didate genes potentially implicated in ASD pathogenesis.

Upon further annotation of the 342 DEGs with an adjusted 
p-value of 0.001, chromosomes 17 and 19 were identified to 
harbor the highest number of these DEGs (Table 1). Numer-
ous cytogenetic investigations have revealed anomalies on 
chromosomes 17 and 19, including duplications, deletions, 
and inversions, within regions housing potential ASD-asso-
ciated genes (Miles 2011; Butler et al. 2015). Moreover, 
22q13.1 and Xq13.1 were found previously as chromo-
some locations for many related ASD genes (Butler et al. 
2015). The q arm at position 13.1 of chromosome 22 had 
the highest number of ASD-associated genes compared to 
other locations. Also, it has been discovered that new micro-
duplication in Xq13.1 is linked to autism and speech delay 
(Gumus 2019). In the current study, genes associated with 
oncological, pharmacogenomic, and neurological domains 
exhibited the highest frequency of investigation (Table 1) 
(Crawley et al. 2016; Xiong et al. 2019). Genes associ-
ated with cancer processes were found belong to various 
biological functions, including cellular proliferation (e.g., 
C-terminal binding protein 1 - CTBP1), cell adhesion (e.g., 
integrin subunit alpha 2 - ITGA2 and cadherin 1 - CDH1), 
growth and development (e.g., platelet-derived growth fac-
tor subunit A - PDGFA), and cell death promotion (e.g., axin 
1 - AXIN1). Pharmacogenomics studies have systematically 
investigated the associations between genetic variants, ther-
apeutic responses, and adverse reactions. Historically, the 
primary focus has been the study of antidepressants, anti-
psychotics, and stimulants, the predominant pharmacologi-
cal classes utilized in treating ASD (Brown et al. 2017).

Our study revealed that genetic polymorphisms and alter-
native splicing significantly influence our datasets related 
to ASD. Unlike conditions such as Fragile X Syndrome, 
defined by specific gene mutations, ASD does not have 
unique polymorphisms that can act as definitive biomarkers 
for prediction. This complexity results in genetic variants 
across numerous genes associated with ASD risk. It is also 
worth noting that while ASD prevalence is rising, the exact 
rates, especially within families already affected by ASD, 
require further verification (Steinman 2018). In addition, 
evidence suggests that disruption of the normal splicing 
sites can lead to many human diseases, like ASD (Cieply 
and Carstens 2015; Quesnel-Vallières et al. 2016).

In our work, the caffeine metabolism pathway featured 
the most significant proportion of involved genes (Fig. 4A). 
Research into metabolic profiles in children with ASD has 

Discussion

Rapid advancements in computing have made their way 
into high throughput bioinformatics strategies, with AI and 
advanced ML models leading the charge in bioinformat-
ics and computational biology. Enhanced data processing 
predictive modeling is now employed to develop accurate 
and precise therapeutic strategies (Subramanian et al. 2020; 
Bonkhoff and Grefkes 2022). This work identified DEGs 
across multiple GEO datasets related to ASD. Subsequent 
bioinformatics analyses were performed to investigate 
these DEGs’ putative functions and molecular interactions. 
Furthermore, XAI was employed to identify candidate 
biomarker genes for ASD. Cell type-specific gene expres-
sion profiling analyses are useful approaches to identifying 
genes specifically expressed in certain cell types and play 
an important role in ASD (Raudvere et al. 2019). However, 
gene expression in peripheral blood cells is very sensitive 
to stress so gene expression patterns may be altered dur-
ing cell isolation and purification (Pascual et al. 2010). This 
study used five different datasets from human blood studies 
(Table 2). Figure 2 A illustrates comparable expression lev-
els between control (healthy) and autistic individuals across 
the analyzed datasets.

Furthermore, we identified shared genes and loci, patho-
genic SNPs, distributions of SNP frequencies, and the chro-
mosomal locations of these SNPs. We also mapped the PPI 
network for these associated genes (Fig. 3). Through com-
prehensive analysis, we pinpointed the genes most closely 
related to ASD and related conditions. Subsequent enrich-
ment analysis was conducted to understand the functional 
implications of these identified genes. Our analysis identified 
19 upregulated and 10 downregulated genes (Fig. 2B). The 
following genes exhibited up-regulation: UTY (ubiquitously 
transcribed tetratricopeptide repeat-containing, Y-linked), 
GUCY1A3 (Guanylate cyclase soluble subunit alpha-3), 
NR2F2 (nuclear receptor subfamily 2 group F member 2), 
and GUCY1B3 (Guanylate cyclase soluble subunit beta-1).

Fig. 6 (A) Global bar plot with mean SHAP value of each gene denot-
ing its contribution to the predictions. (B) Beeswarm plot with SHAP 
value (negative value represents the genes influencing the prediction 
towards “Control,” whereas the positive value indicates the genes pre-
dicting the sample as “ASD” under different expression levels of each 
gene). (C, D). A local bar plot was generated for a random control sam-
ple (left) and an ASD sample (right) taken from the dataset to interpret 
the prediction. The results show that the increased expression levels of 
MID2 (5.534) by the model are predicted as ASD, whereas the expres-
sion levels are decreased on the samples predicted as control (5.214). 
(E) Summary plot of top 10 genes influencing the predictions. (F) 
Cohort plot revealing the most influential gene predicting the samples 
with the highest accuracy (MID2). The values MID2 < 5.40 indicate 
the lower expression levels of the gene influencing the predictions of 
samples as control (47 out of 56) and MID2 > 5.40 as ASD (100 out of 
91) with nine misclassifications

1 3
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Furthermore, 14 pathogenic SNPs were directly asso-
ciated with ASD. We noticed these pathogenic SNPs 
were the most found in chromosome 10 and chromosome 
X, with 7 and 5 pathogenic SNPs, respectively. Many 
studies linked many genes on chromosomes X and 10 
with ASD. On the other hand, we found that chromosome 
X has the highest number of pathogenic SNPs in our 
study that are related to delay or autism and intellectual 
or mental diseases (Fig. 5A). A recent study on analysis 
of the genetics related to ASD and intellectual disabil-
ity found many genes on the X chromosome (Chiurazzi 
et al. 2020). Moreover, as it is known, the ASD ratio is 
higher in males than females. Therefore, many theories 
explain the relationships between the genes on chromo-
some X and the high ratio in males (Baron-Cohen et al. 
2011). In addition, for chromosome 10, a study proved 
that some genes affect the abilities of autistic (Chapman 
et al. 2011).

The biomarker chart displays potential biomarkers that 
exhibit responsiveness to targeted therapies designed for 
ASD (Fig. 5B). As seen in Fig. 5B, the presence of the 
highest number of pathogenic SNPs in FGFR inhibitor 
suggests that it may serve as a promising potential bio-
marker for responsiveness to targeted therapies for ASD 
in further studies. Previous studies found that interrup-
tion of signaling of FGFR pathways could act as a pos-
sible function in ASD’s molecular pathology (Wu et al. 
2016, 2020). As can be seen in Fig. 5C, the missense vari-
ants are the most frequent in ASD-diseased patients, and 
this is in agreement with a recent paper that sequenced a 
large number of autistic individuals (6430) and found the 
highest frequency was for missense in exons of protein-
coding regions (Satterstrom et al. 2020). Another recent 
study on missense variants in ASD found that many mis-
sense variants in autistic individuals damage central pro-
teins and interactions (Chen et al. 2020).

While conducting experiments using the five datas-
ets to identify biomarkers of DEGs for the preparation 

underscored the significance of caffeine metabolism as a 
central pathway when comparing typically healthy children 
with those who have ASD (Rangel-Huerta et al. 2019). For 
our GO analysis, we focused on the biological processes 
(BP) that encompass stimulus, signaling, and development 
or regulation of the nervous-related processes (Fig. 4B). As 
a result of our investigation, it became evident that most of 
the genes examined in our study play a significant role in 
biological processes related to Autism Spectrum Disorder 
(ASD). We sought to pinpoint common genes between two 
distinct groups: 19 genes that exhibited increased activity 
and 53 genes associated with the development or regula-
tion of the nervous system, as revealed by our biological 
analysis.

We identified seven shared genes between these groups: 
HOXB3, NR2F2, MAPK8IP3, PIGT, SEMA4D, and SSH1. 
Strikingly, six of these genes, excluding PLK2, were absent 
from the results obtained through text mining. Therefore, 
these six genes represent promising candidates not previ-
ously associated with ASD and could play pivotal roles in 
the disorder.

We identified 1,286 pathogenic SNPs. Most of these 
SNPs were distributed among disorders with pathways 
that are either directly linked or related to ASD. Specifi-
cally, they were found in cancer (58.55%), mental or intel-
lectual disorders (16.17%), neuronal diseases (7.78%), 
Noonan syndrome (6.45%), developmental delays or 
autism (5.21%), brain-related conditions (3.65%), and 
mitochondrial disorders (2.18%) (Fig. 4C). The signifi-
cant representation of genes in cancer pathways corrobo-
rates a previous study that highlighted shared pathways, 
risk genes, and drug targets between cancer and ASD 
(Crawley et al. 2016). While many diseases can be cate-
gorized as mental or neuronal, there is a recognized over-
lap among them (Sullivan et al. 2019). This underscores 
the significance of our ASD-related findings and suggests 
that the identified SNPs should be considered strongly 
related to the pathogenesis of ASD.

Table 2 The Top functional enrichment categories
Category Term Count % P-value Benjamini FDR
UP_TISSUE Brain 165 48.25 0.03 0.96 0.96
CHROMOSOME 17 30 8.77 0.01 0.19 0.19
CHROMOSOME 19 31 9.06 0.02 0.28 0.28
UP_KEYWORDS Alternative splicing 208 60.82 0.00 0.02 0.02
UP_KEYWORDS Phosphoprotein 175 51.17 0.00 0.00 0.00
UP_KEYWORDS Cytoplasm 116 33.92 0.00 0.00 0.00
UP_KEYWORDS Acetylation 84 24.56 0.00 0.02 0.01
GAD_DISEASE_CLASS CANCER 82 23.98 0.00 0.03 0.03
GAD_DISEASE_CLASS PHARMACOGENOMIC 68 19.88 0.01 0.06 0.05
GAD_DISEASE_CLASS NEUROLOGICAL 67 19.59 0.05 0.13 0.12
CYTOBAND Xq13.1 4 1.17 0.02 1.00 1.00
CYTOBAND 22q13.1 4 1.17 0.05 1.00 1.00
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Conclusion

In this study, we used comprehensive bioinformatics, advanced 
machine learning techniques, and XAI methodologies to 
unravel the complex genetic landscape of ASD. The rigorous 
analysis of multiple GEO datasets, alongside in-depth bioin-
formatics assessments, led to the identification of a significant 
number of DEGs that are associated with ASD. We compared 
our findings with similar studies to identify common trends and 
further elucidate certain aspects, specifically the pathogenesis 
and risk factors associated with SNPs. Our XAI model iden-
tified MID2 as a potential clinical biomarker for ASD. It is 
important to note that our analysis had limitations stemming 
from the unavailability of detailed clinical data, which limited 
the potential genotype-phenotype correlation. In the future, the 
analysis of multimodal genetic datasets of many patients inte-
grated with clinical information promises to unlock profound 
insights into the molecular and clinical pathogenesis of ASD. 
This will provide a comprehensive understanding of gene func-
tionality, gene loci, observed SNPs, dysregulated pathways in 
ASD, and their impact on clinical measures. Ultimately, these 
insights will facilitate the development of more accurate treat-
ment approaches for ASD.

Acknowledgements The authors would like to take this opportunity to 
thank the management of Vellore Institute of Technology (VIT), Vellore, 
Tamil Nadu, India, for providing the necessary facilities and encourage-
ment to carry out this work. The authors would also like to acknowledge 
the efforts of the personnel at Qatar University, Doha, Qatar.

Author contributions The study design and data collection involved 
LDN, AMA, MHA, NAD, KS, SK, KV, and GPDC. LDN, AD, AMA, 
MHA, NAD, KS, SK, KV, GPDC, and HZ acquired, analyzed, interpreted 
the results, and drafted the manuscript. GPDC and HZ supervised the en-
tire study. All authors edited and approved the submitted version of the 
article.

Funding Open Access funding provided by the Qatar National Li-
brary.

Declarations

Conflict of interest The authors have declared that no conflict of inter-
est exists.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

of the XAI pipeline, we identified two specific genes, 
RPS4Y1 and KDM5D, exhibiting statistical significance 
for the GSE37772 according to the dataset selection cri-
teria. The dataset GSE111175 does not show any DEGs. 
The RPS4Y1 and KDM5D are Y-linked chromosome 
genes. The RPS4Y1 regulates trophoblast cell migration 
and invasion through the STAT3epithelial–mesenchy-
mal transition pathway (Chen et al. 2018), and emerging 
research hints at its potentially pivotal role in neurogen-
esis (Khani et al. 2022). The KDM5D contains coding 
information for a protein featuring zinc finger domains, 
and a small peptide derived from this protein serves as 
a minor histocompatibility antigen. Hatch et al. (2021) 
and Zamurrad et al. (2018) highlighted the significance 
of members within the KDM5 gene family in neurodevel-
opment. Several studies have explored the association of 
the KDM5 gene family with ASD and identified patho-
logical significance (El Hayek et al. 2020). The RPS4Y1, 
the chromosome Y encoded gene and also an inhibitor of 
STAT3 signaling, is identified as a contributor of ASD 
specific to male predominance. The GSE42133 contain-
ing 172 gene biomarkers, further scrutinized into 46 with 
RFE, is trained with the XAI model to reveal the key 
marker discriminating the ASD and control samples.

The XAI model identified MID2 as a key biomarker dif-
ferentiating control from ASD groups. Elevated MID2 gene 
expression levels have been associated with a potential pre-
dictive factor for ASD. The MID2 protein, known as Midline-
1-interacting protein 2, is encoded by the MID2 gene located on 
the X chromosome in humans (Geetha et al. 2014). Research 
has unveiled the biological significance of MID2, which is 
associated with conditions such as intellectual disability. With 
a SHAP value of + 1.21, this biomarker is linked to diseases 
like autism affecting cognitive and motor functions. MID2 is 
a member of the E3 ubiquitin ligases protein family, which 
controls cellular activities and aids in protein breakdown. 
The ubiquitin-proteasome pathway, which is responsible for 
the selective degradation of proteins within cells, specifically 
involves the MID2 (Bonini et al. 2017). Mutations or abnor-
malities in the MID2 gene have been associated with various 
genetic disorders. One well-known disorder associated with 
MID2 is Opitz G/BBB syndrome type 1 (FG syndrome), char-
acterized by developmental and intellectual disabilities (Fer-
rentino et al. 2007). Children initially diagnosed with ASD 
often display characteristics of FG syndrome. Exploring the 
protein and its associated biological pathways will provide 
fresh insights into the connection between the gene and ASD 
(Lasser et al. 2018).
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