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rning (FL) has emerged as a powerful paradigm for training Machine Learning (ML), particularly Deep Learn
ltiple devices or servers while maintaining data localized at owners’ sites. Without centralizing data, FL hold

here data integrity, privacy and security and are critical. However, this decentralized training process also
or opponents to launch unique attacks, where it has been becoming an urgent need to understand the vulne
ding defense mechanisms from a learning algorithm perspective. This review paper takes a comprehensiv
cks against FL, categorizing them from new perspectives on attack origins and targets, and providing ins
logy and impact. In this survey, we focus on threat models targeting the learning process of FL systems. Bas
get of the attack, we categorize existing threat models into four types, Data to Model (D2M), Model to Dat
el (M2M) and composite attacks. For each attack type, we discuss the defense strategies proposed, highligh
assumptions and potential areas for improvement. Defense strategies have evolved from using a singular
icious clients, to employing a multifaceted approach examining client models at various phases. In this surv
dicates that the to-learn data, the learning gradients, and the learned model at different stages all can be ma
icious attacks that range from undermining model performance, reconstructing private local data, and to
e have also seen these threat are becoming more insidious. While earlier studies typically amplified m
nt endeavors subtly alter the least significant weights in local models to bypass defense measures. This

es a holistic understanding of the current FL threat landscape and highlights the importance of developin
rivacy-preserving defenses to ensure the safe and trusted adoption of FL in real-world applications. The ca
an be found at: https://github.com/Rand2AI/Awesome-Vulnerability-of-Federated-Learnin

derated Learning, Deep Learning, Model Vulnerability, Privacy Preserving

on

of Artifical Intelligence (AI) that is built upon
need to extract valuable insights from massive
formation is driving innovation across industries.
of data-driven Deep Learning (DL) models have

d in many areas, ranging from Natural Language
LP) [1, 2, 3] to visual computing [4, 5, 6, 7]. It
reed upon that the more training data, the greater
rmance of the model. To illustrate, the research
s if one were able to collect data from all medical
els trained on such dataset would have the poten-
ring many significant questions”, such as drug
predictive modeling of diseases. Data central-
for training AI model has been the predominant

cades. However, methods solely relying on cen-
g scheme are becoming less viable, not only due
computational resources, but more importantly,
ncerns related to privacy and security, which has
eed for alternative learning paradigms. Federated

g Authors: X. Xie (x.xie@swansea.ac.uk) and J. Deng
urham.ac.uk).

Learning (FL) [9, 10], a distributed learning paradigm
as a pioneering solution to address these challenges, w
tiple decentralized parties collaborate on a learning ta
the data remains with its owner. In contrast to tradit
proaches, where all data has to be centralized, FL s
from the increasing concerns on data privacy allows
be trained at the source of data creation. This innov
proach not only minimizes the risk of data leakage, m
the privacy of sensitive information, but also lifts th
tational burden of cloud centers, which is considered
tential alternative for completing multi-party learning
domains, such as: healthcare [11, 12, 13], finance [14
smart cities [17, 18, 19] and autonomous driving [20
We observed that there is a significant growth related
both academic research and industrial applications.

Recent studies on exploiting vulnerabilities of FL
luminated the fact that the robustness of FL archite
not as secure as expected, where each building blo
algorithms, ranging from its data distribution, comm
mechanisms, to aggregation processes, is susceptible
cious attacks [23, 24, 25, 26]. These vulnerabilities
tentially compromise the privacy and security of th
pants, meanwhile downgrade the integrity and effecti

d to Neurocomputing Novemb
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Global Model Client Updates

Attacker

(d) Inference Data

(d) Gradient
Leakage

AttackerUser
(e) Free-riding

Stolen Model

rview of Common Vulnerabilities in FL. Malicious attackers can: (a) manipulate model updates to prevent the global model from
bels to induce erroneous predictions after training; (c) inject backdoors into the global model; (d) reconstruct data or inference data p
del updates; (e) steal the global model while contribute nothing.

ing system. Figure 1 illustrates various common
provides a comprehensive overview on different
ponents in the FL that can be targeted by oppo-
ally, a variety of tactics that a malicious attacker
follows:

pering: By disrupting data label or introduc-
le noisy the adversary misguides the global model
naccurate or biased predictions.

anipulation: By changing the model weight
gregation, the attacker forces the global model
from the desirable convergence. It can be a sub-

e over time, or a drastic disruption that leads to
t performance degradation.

onstruction: By exploring the gradient informa-
odel weight, the opponent attempts to reconstruct
specific attributes of the original data, thereby

the privacy of data owner.

r Injection: By embedding backdoor into the
odel, the contestant deceives the trained model to
gnated prediction when the corresponding trigger

the input is presented.

promising future of FL aimed at alleviating pri-
, FL still faces a wide variety of threats. In con-
ing FL from system and network security per-
is survey, we focus on retrospecting the research
of FL vulnerability that is inherited from the na-
e learning algorithms. As shown in Figure 1, we
malicious attacker can attack every component

em. For example, an opponent may masquerade
ing client of the system and provide toxic data
prediction performance of the global model, or

intercept client updates and inject backdoor or recons
vate training data. In this paper, we propose a taxono
attacks centered around attack origins and attack targe
are outlined in Table 1. Our taxonomy of FL attacks em
exploited vulnerabilities and their direct victims. For
label-flipping is a typical D2M attack, often described
poisoning technique. If the local data is tampered by su
ignated attack, the trained global model can be compro
such training data and exhibit anomalous behavior.

The rest of survey is organized as such: In Secti
firstly introduce the essential preliminaries of FL a
Then, following the proposed taxonomy, we review e
of attack, including D2M Attack, M2M Attack, M2
and Composite Attack in Section 3, 4, 5 and 6 res
Within each section, both threat models and the corre
defense strategies are presented, compared and discus
tion 7 concludes our findings and provides our recomm
for future research directions.

2. Preliminaries of Federated Learning

FL can be categorized into horizontal FL, vertical
federated transfer learning, based on how the trainin
organized [27]. Since the majority of research on FL vu
ities focuses on the horizontal FL setting, therefore, w
cus on horizontal FL as the central topic in this review
is the most classic horizontal FL algorithm, where t
model is learned by averaging across all local mode
on clients. Surprisingly, such a simple aggregation sc
been proven to be effective in many case studies [28
where the convergence is also mathematically sound
provements upon FedAvg include incorporating loc
corrections [32, 33] or adaptive weighting schemes [34
however, the fundamental aggregation scheme remain

2
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Table 1: Our proposed taxonomy
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e of Attack Definition Example

Model (D2M) tampering the data alone to degrade model performance label-flipping

o Model (M2M) tampering updates to prevent learning convergence Byzantine atta

to Data (M2D) intercepting model updates to inference private data information gradient leakag

ite (D2M+M2M) tampering both data and updates to manipulate model behavior backdoor inject

present FedAvg [10] as an example to demon-
ntial components in FL system that can be tar-
ious parties. Firstly, all clients receive the iden-

odel ω0 from the central server that is randomly
en, the local model is trained on each client with
Once the local training steps finish (i.e., the num-
iteration or epoch is reached), individual clients
updated local model ωE or the model difference

. The central server aggregates the global model
g the local models, and send the updated model
To speed up the training, a subset of clients are
ly for the current round of training, which is also

a dropout regularization for FL. The pseudo code
Avg algorithm is given in Algorithm 1, where the
ted indicate the entities that can be compromised.
ison between surveys on FL attacks and defenses

in Table 2. While most surveys include de-
on on defense strategies, some of them only give
rviews on threat models, such as explaining the
zantine attacks (M2M) without delving into di-
s we summarized in Table 4. Our work reviews
ties from the perspective of learning algorithms.
ludes major threat models that exploits the learn-

of FL and discusses defense strategies to counter

odel Attacks

e Data to Model (D2M) attacks in FL as threat
e launched by manipulating the local data while
training are being targeted as victims. D2M at-
considered as black-box attacks because the at-
need to access inside information such as client

s or updates, tampering the data alone is often
ch a D2M attack. However, the attackers can

rmation from local dataset or client models to en-
tiveness of D2M attacks. We present the timeline

rch in Figure 3. The characteristics of discussed
re shown in Table 3.

cks on Class Labels
attack of poisoning data labels is called label-
an attack aims at misleading the training models
pered labels for training. For instance, the at-
itch the labels for car images to “planes”, result-

el to classify car images as planes after training.

Algorithm 1 FedAvg for Horizontal FL. (Terms hi
are the vulnerable components can be targeted by adv
ni is the number of local samples, NS is the total n
samples among selected clients, Di is the local trainin
is model weights
Server:

1: create and send model to all clients
2: clients own their respective data Di

3: initialize ω0
4: for each round r = 1, 2, ...,R do
5: sample |S | clients, send ωr−1 to each clients in
6: for each client i ∈ S do
7: ωi

r or ui ←Client(i, ωr−1)
8: end for
9: ωr ← ∑|S |i=1

ni
NS
ωi

r or ωr ← ωr−1 +
∑|S |

i=1
ni
NS

ui

10: validate the model with ωr

11: end for
Client(i, ω):

1: for each epoch e = 1, 2, ..., E do
2: ωe ← ωe−1 −η· ∇ωe−1 L(Di)
3: end for
4: u← ωE − ω
5: return ωE or u to server

Label-flipping attack is first studied and proved its
ness in the centralized setting [42]. Later on, [43, 44
strate label-flipping attack in FL scenarios. Theses st
low [42] and flip the labels from the victim class to a
target class. Authors of [44] show that with only 4
tal clients being malicious, label-flipping attack can
recall on victim class to drop by 10% on the Fashion
dataset [45], indicating that even a small number of m
clients can effectively degrade the performance of a
less FL system through label-flipping attack. In Po
[46], the label-flipping attack is further improved. Ta
FL system for image classification, the authors of Po
use the global model received on clients as the discrim
Generative Adversarial Network (GAN). The attacke
local generator until the global model classifies gene
ages as the victim class. The attackers can then flip
generated images, compromising client models by fee
images along with flipped labels. The noteworthy a
of PoisonGAN is that the attacker now does not need
clients’ data. The attacker can simply generate their

3
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Table 2: Comparison of Related Surveys on Federated Learning Attacks and Defenses
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veys
Federated Learning Attacks and Defenses

D2M M2M M2D Composite
Threat Defense Threat Defense Threat Defense Threat Defen

et al. [23] ◦ ✓ ◦ ✓ ◦ ✓
et al. [37] ✓ ✓ ✓ ✓ ✓ ✓
t al. [38] ◦ ✓ ◦ ✓ ◦ ✓ ◦ ✓
t al. [39] ◦ ◦ ◦ ✓
al. [40] ✓ ✓
t al. [41] ◦ ✓ ◦ ✓ ◦ ✓
urs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
vel overview ✓: detailed review.

Poisoned Data

Clean Data

Updates from 
Poisoned Data

Upload

Central Server

Misbehaving Model

Malicious Client

D2M Attack

Figure 2: An illustration for D2M attack.
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Figure 3: The timeline of research on FL attacks and defenses.

mples. Instead of arbitrarily choosing the target
udies such as [47, 48] investigate different heuris-
g the target class. Semi-targeted attack proposed
istance measures to determine which target class
ly affect model predictions. The intuition of this

attack is that if samples of two different classes are
close in the feature space, then label-flipping attack
two classes is more likely to succeed as the proximi
tures suggests easier learning convergence. The autho
consider both the Independent and Identically Distribu
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ures for the local training data. The geometric
class is computed based on features of local data

class should be the one closest to the victim class.
scenario, the local feature space no longer well
structure of the global feature space. Thus, the

ges the scale of updates to measure which class is
ictim class. The attacker feeds local samples of

ss to the global model and examines the scale of
n these samples are annotated as different classes.
l that induces the smallest gradient is chosen as
s. Different from [46, 48] that exploit the global
r attacks, the heuristic of the edge-case attack [47]
distribution of the training data. The edge-case
els into classes in the tail of the data distribution.
edge-case attack only affects a minority of sam-
erely impair the model’s fairness for underrepre-
nd may pose great threats in autonomous driving
Experiments in [47] show that the attack is most
the attacker holds most of the edge samples. As
possess larger portions of edge samples, the at-
by benign updates.

cks on Samples
not the only target in D2M attacks. Depending
nario, the attackers may choose to poison other
data. A threat model that targets the sample size
roposed in [52]. Based on the fact that FedAvg
weighted average of client weights based on the
eir corresponding local samples, the attacker can
report the number of local samples to be a large

that the aggregated model will be dominated by
chosen model. AT2FT [50] is another D2M at-
rate poisonous samples. The difference between
isonGAN [46] is that the former does not flip la-
of AT2FT formulates their attack as a bilevel opti-
lem in which the attacker tries to perturb subsets
ng samples such that losses on local clean data
d. In essence, the AT2FT algorithm maximizes
rough gradient ascent where gradients w.r.t the
are approximated by minimizing a dual prob-

M attacks are also not limited to classification
thors of [53] propose a D2M threat model, lo-
nt poisoning, targeting federated Reinforcement
). The attacker can influence the learned policy
fake rewards during local agent training. Fake
rived from gradient descent such that they min-
ctive function of RL. A D2M threat model on
ommendation (FedRec) systems is proposed in
lly, the authors of [54] focused on the graph neu-
sed FedRec system proposed in [55]. By feeding
client models with fake item ratings during train-
er can force the recommendation system to show
ratings for specific users.
bove methods that use D2M attacks to influence

ions, the covert channel attack proposed in [51]

its local training data such that even a small perturbat
data results in different classification outcomes. Pertur
samples along with the transmission interval, the clean
soned class predictions are sent to the sender client. T
client decides whether to fine-tune its local model wit
turbed data depending on the message bit it wishes to
the local model’s prediction. Once the receiver clien
the updated model, it can decode the message bit bas
classification outcome of perturbed samples.

For D2M attacks to be successful, studies in [43
show that it is vital to ensure the availability of malicio
during training. If no malicious client are selected t
pate in the global model update, the effects of their at
be quickly erased by updates from benign clients [44
studies on FL threat models tend to combine D2M att
M2M attacks to launch more powerful composite attac
the attacker also manipulates model updates, composi
can be stealthier and more persistent. Such attacks also
attacker more freedom of when and how to trigger the

3.3. Defense Against D2M Attacks
In this section we introduce defense strategies

along with studies on label-flipping attacks [43, 44,
Since D2M attacks ultimately induce changes in mode
FL system administrators may also consider defens
nisms designed for M2M or composite attacks.

Strategies proposed in [43] and [44] are both ins
the observation that gradients in FL behave differently
of benign and malicious clients. In particular, becau
non-IID nature of data, it is observed in [43] that
from benign clients are more diverse than those fr
cious clients. This is because benign gradients confo
non-IID distribution of local data while malicious mo
a shared poisoning goal. The defense strategy FoolsG
thus aims at reducing the learning rate of similar m
dates while maintaining the learning rate of diverse
To determine the similarity of model updates, the hist
model updates are stored and pair-wise cosine simi
tween current and historical updates are computed.
fense strategy in [44] requires prior knowledge on t
target. This method needs the user to first choose
class that is believed to be poisoned. Then only mode
directly contributing to the prediction of the suspect
collected. These model weights subsequently go thro
cipal Component Analysis (PCA) and are clustered
their principal components. Principal components o
and malicious clients fall in different clusters. Simil
dients, model weights can also be used to differentia
and malicious clients. Sniper [49] is a defense strate
on the Euclidean distances between model weights. Th
server first computes the pair-wise distances between
client models. Then the server constructs a graph bas
distances. Client models are the nodes of the graph, a
distance between two client models are smaller than
threshold, these two models are then linked by an ed

5
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Table 3: Characteristics of D2M Attacks.
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Threat Model Threat Objective Poisoned Data

Label-Flipping [43, 44, 49] mislassification class labels

Semi-Target Poisoning [48] misclassification class labels

Edge-case Attack [47] misclassification class labels

AT2FT [50] misclassification general samples

PoisonGAN [46] misclassification
general samples and

class labels

Covert Channel [51] secretly passing messages edge samples

Fake Sample Size [52] disrupting convergence client dataset size

Local Environment Poisoning [53] poisoning policy agent rewards

Poisonous Ratings [54] controlling item
recommendation item ratings

dels in the maximum clique of the graph is larger
e total number of clients, models in this clique are
update the global model. Otherwise, the server
distance threshold and repeat the above process

clique can be found.
ning [56] is a paradigm of RL in which multiple
oncurrently to solve a problem. Parallel learning
iates data deficiency but also stabilizes training,
n from diverse experiences. Unlike multi-agent

s to develop competitive or cooperative strate-
ients, parallel RL focuses on solving single-agent
ugh parallel training. This objective is similar
ventional federated learning, in which the goal
global model through distributed local model

efore, federated reinforcement learning becomes
en the learning environment of RL is privacy-
the D2M threat model targeting federated RL, a
defense strategy was also proposed in [53]. This

es the central server to evaluate client agent per-
termine their credibility. Specifically, the central

ent policies and computes their corresponding re-
ntral server aggregates client policies based on a
derived from normalized rewards.

n Metrics for Attacks and Defenses on Classifi-
sks
ajority of studies on D2M attacks focus on im-
ion, the most commonly used datasets for D2M
ion are MNIST [57], Fashion-MNIST [45] and
]. Natural language and domain-specific datasets
n [43, 47, 50, 54]. Attack Success Rate (ASR) is
evaluate the effectiveness of an attack. Specif-

M attacks targeting classification tasks, ASR is
proportion of targeted test samples being mis-
ely,

S R =
Σ(xi,yi)∈D1{ f (xi) = yt, yt , yi}

|D| (1)

where D is the test set for evaluation, xi is the data sam
yi is its corresponding groundtruth label, yt is the lab
by the attacker, f (·) is the attacked global model, and 1
to 1 if the condition inside the brackets is met. ASR is
to evaluate M2M or composite attacks. The metric res
reflects how severely the attack disrupts model converg
how sensitive the model is to backdoor triggers. In add
performance of the attack can also be demonstrated b
crease in overall classification accuracy. For regressi
mean absolute error and root mean squared error are e
While some defenses provide formal proof for their
ness, most work on FL defenses is empirically vali
demonstrating the robustness of model performance
defense is adopted in a malicious environment.

4. Model to Model Attacks

We define Model to Model (M2M) attacks in FL
models that manipulate local model updates or weig
fect the global model, as depicted in Figure 4. The
objective of an M2M attack is to disrupt the convergen
algorithms. The presence of M2M attacks is also des
the Byzantine problem [59]. In a distributed system
by the Byzantine problem, benign and malicious pa
coexist in the system. Malicious participants deliber
seminate confusing or contradicting information to u
the system’s normal operations. Therefore the challen
system administrator lies in achieving consensus amon
participants despite the presence of malicious ones.
ing against these M2M attacks means ensuring that the
algorithm to converge to an optimal minima regardle
soned updates from malicious clients. In addition to t
threat model, a special case of M2M attacks, called
rider attack, aims to steal the global model itself, infr
the intellectual property rights of the model owner.
cious party may pretend to join the FL system solely
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Clean Data

Malicious Update

Benign Update

Upload

Disrupting Convergence

M2M Attack

Figure 4: An illustration of M2M attack.

global model, without contributing to the learn-
the threat model of free-rider attack is compara-

orward, we discuss this type of attack along with
chanisms in the same section. The characteristics
2M attacks are shown in Table 4.

2M Threat Models

M threat models can be divided into a priori and
tacks.A priori attacks do not require any knowl-
n clients while a posteriori attacks need to forge
del updates based on information from benign

2M Attacks
rward a priori M2M (prioM2M) attack is send-
e central server. This method is dubbed as Gaus-
e in [61]. The Gaussian distribution for noise

has zero mean but large variance to disrupt the
f the learning algorithm. Gaussian Byzantine is
the baseline attack [62, 63]. Bit-flipping is a

ck proposed in [62]. On malicious clients, the
tack flips four significant bits of certain 32-bit
ers in the original gradients as poisoned model
her two prioM2M attacks, same-value attack and
ttack, are proposed in [63]. For the same-value
us clients upload vectors with an identical ran-

each dimension to the server. In the sign-flipping
ous clients computes their own gradient as nor-
e sign of gradients before uploading them to the
The prioriM2M attack proposed in [64] takes se-
on rules into account. It specifically attacks FL
ped with median-based aggregation rules such as
70] or Krum [61]. The basic idea of the attack is
updates on multiple malicious clients such that
ability the aggregation rule picks one of the ma-
s as the median for global update. The authors
statistical heuristic to find the maximum devia-
ich is used to forge the malicious updates. The
dimension of the original updates on malicious

clients is transformed by the maximum deviation ran
tain forged malicious updates. The authors also aug
attack with the D2M attack, which is discussed in Sec

4.1.2. Posteriori M2M Attacks
For a posteriori M2M (postM2M) attacks, omnisci

tive gradient approach proposed in [62] is an equally
forward approach compared to Gaussian Byzantin
method assumes that the attacker have full knowledge
clients, then malicious clients only need to send scaled
sum of benign gradients to the central server. The sc
tor is a large number on the order of magnitude of 1
postM2M attack proposed in [65] takes Bayzantine-res
gregation rules into account. Specifically, this attack ta
gregation rules that compute the norms of client gra
filter out malicious updates. The problem with norm-
gregation rules is that Lp norms cannot tell if two no
differ in one specific dimension or every dimension.
attacker can exploit this by only poisoning one dimens
gradients. The poisoned value can be scaled by a lar
while still being accepted by the aggregation rule as
is not far away from those of the benign gradients. M
as the norm chosen by the aggregation rule approach
finite norm, the attacker can poison every dimension
updates.

The above attacks can be launched individually o
controlled by the attacker, these approaches does no
malicious clients to coordinate with each other. A
postM2M attack is later proposed in [66]. This me
gets aggregation rules such as Krum [61] and Buylan
use the Euclidean distance between client models a
terion for choosing trustworthy models. The threat
[66] aims at pushing the global model towards the op
the benign update direction. To achieve this at the pr
aforementioned aggregation rules, a chosen malicious
responsible for generating model updates that maxim
global model update in the opposite direction. Other m
clients generate updates that are close to the chosen
ceiving the aggregation rules that malicious clients fo
nign cluster and the chosen malicious client should b

7
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Table 4: Various M2M threat models
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reat Model Approach Type Objective
e-riding [60] pretend as a client

a priori

stealing global model
ine Gaussian[61] uploading Gaussian noise

inhibiting convergence

-flipping [62]
flipping significant bits

of floating numbers

value attack [63]
uploading vectors with
identical values across

all dimensions

-flipping [63]
flipping signs of gradients

on attacked clients

an cheating [64]
cheating the aggregation

rule to pick the false
median

ive gradient [62]
uploading the scaled

sum of benign gradients from
malicious clients

a posteriori

m attack [65]
scaling certain dimensions

of gradients

ding attack [66]
deceiving the aggregation

rule to pick the chosen
malicious client

converging to an inferio
minima

pAttack [67]
generating item embeddings
based on public information

increasing ER@K of targ
items

ecAttack [68]
minimizing the rating

scores of untargeted items

pproximation [69]
generating item embeddings
through approximated user

embeddings

tion rule.

reat Models on Federated Recommendation Sys-

ed in the introduction section, FL is well-suited
dation systems thanks to its ability to provide per-
mmendations and reduce privacy risks. A com-
edRec framework is proposed in [71]. Research
bilities of domain-specific FL like FedRec is still
. In this section, we introduce three noteworthy
, 69] focusing on exploiting security vulnerabili-
.
n goal of existing attacks on FedRec is to in-
osure rate of certain items. The affected recom-
tem may always present or never show certain
. In [68, 67, 69], the attackers are assumed to
ss to item embeddings, local and global models.
at characterize users are always hidden from the

ipAttack [67], the attacker increases target items’
y forging their embeddings to be similar to those
s. Since the attacker have no access to the pop-

s in the system, this information is retrieved from
Based on the retrieved information, the attacker
popularity classifier with item embeddings as in-
ghts of the classifier are then fixed, target item

embeddings are poisoned by enforcing them to be cla
popular by the classifier. The poisoned item embed
uploaded to the central server to mislead the FedRec s

Authors of FedRecAttack [68] later points out th
limitations of PipAttack include that it may severely
the recommendation performance and it needs aroun
clients to be attacked for it to be effective. Since t
sure rate at rank K (ER@K) [67], meaning the fraction
whose top-K recommended items include the target
non-differentiable function, FedRecAttack uses a surro
function to facilitate the attack. FedRecAttack also
that around 5% of user-item interaction histories are
available for the attacker to use. The loss function of F
tack encourages the rating scores of recommended n
items to be smaller than the scores of target items with
action history, then the gradients of target item embedd
this loss function are uploaded to the central server. T
eschew being detected by secure aggregation rules, the
ents are normalized before uploading if their norms a
than the threshold.

Both PipAttack and FedRedAttack require pub
knowledge to work. In contrast, the A− ra/A− hum at
posed in [69] does not have this requirement. A − ra/
also uses a surrogate loss function to promote the E
target items, but this attack focuses on approximating

8
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variance as a hyper-parameter. The attacker first
ber of user embeddings from the Gaussian dis-
maximized the interaction scores target items

user embeddings to derive poisonous item em-
ead of sampling from a Gaussian, A − hum uses
er mining to generate user embeddings. The at-
erate hard user embeddings that are not likely to
xisting items. Then target item embeddings are

ncrease their interaction chances with the synthe-
rs.

Table 5: Characteristics of M2M Defenses

Defense Aggregation Criterion

ed[72] geometric median

[73]
Weiszfeld-smoothed

geometric median

ed[62] dimension-wise median

ed[62] mean-around median

ean[70] dimension-wise trimmed mean

i-Krum [61] Euclidean distance

n[65]
Euclidean distance and mean-

around median

E[74] gradient information gain

gainst M2M Attack
median is robust to outliers in statistics, it is
M2M defenses to filter out malicious updates.

is an exemplar of median-based M2M defenses.
e central server first divides received client gradi-
ple groups and computes the mean of each group.
etric median of group means is used as the gra-

ting the global model. The approach of using ge-
n for robust aggregation is further improved by
[73]. In RFA, clients compute their aggregation

on the aggregation rule inspired by the Weiszfeld
. Including the geometric median, more median-

s are studied in [62]. Marginal Median (MarMed)
ed form of median proposed in [62]. It com-
an on each dimension for client gradients. Mean-
n (MeaMed) in [62] further leverages more val-
median. Built upon MarMed, MeaMed finds the
at are nearest to the median of each dimension,
of these nearest values is used as the gradient on

nding dimensions.
dian, trimmed mean also has the benefit of be-
tive to outliers. The authors of [70] introduce
se trimmed mean as an aggregation rule. For each
lient gradients, this rule removes the top-k largest
alues, the mean of the remaining values is treated
t on the corresponding dimension.

are two exemplary defenses built on this criterion.
motivated by avoiding the drawbacks of square-distan
jority based aggregation rules. The problem pointed o
is that malicious attackers can collude and misguide t
of norms to a bad minima for the sqaure-distance bas
gation, and the majority based aggregation is too com
ally expensive as it needs to find a subset of gradients
smallest distances among them. For a central server th
Krum as its aggregation rule, it first finds the (n − f −
est neighbors for each client based on the Euclidean
between their updates, where n is the number of cl
participate the training, f is the estimated number of m
clients. Then the central server sums up the distances
each client and their corresponding neighbors as Kru
The client with lowest score is chosen by the centr
and its gradient is used to update the global model fo
rent training round. Multi-Krum [61] is a variation
that balances averaging and Krum. It chooses top-k cli
highest Krum scores. The average of chosen clients
is used to update the global model. The prerequisite
to be effective is that the number of malicious clients
satisfy f > (n − 2)/2.

Although the convergence of Krum has been prove
authors of Bulyan [65] point out that the attacker ca
deceive Krum to pick the malicious client that conver
ineffective local minima. Such an attack is launched b
ulating the gradient norms as discussed above. Bulya
norm-based aggregation rules such as Krum by adding
stage after a client has been chosen by the central se
added stage is akin to MeaMed [62]. Bulyan first i
move clients chosen by Krum or other rules to a cand
Once the number of candidates passes the threshold
Bulyan computes the MeaMed on each dimension
date gradients. The resulting vector is regarded as the
Bulyan and subsequently used to update to global m
Bulyan to be effective, the number of malicious clients
satisfy f > (n − 3)/4.

Different from the above approaches, ELITE [74] u
mation gain to filter out malicious updates. ELITE fi
putes the empirical probability density function for
mension of gradients, which allows for deriving the di
wise information entropy. The sum of all entropy is c
as the total entropy of updates for the current trainin
Then for each participating client, their information g
fined as the difference between the original total ent
the total entropy with this client being removed. Cli
largest information gains are considered as malicious a
excluded from the aggregation. The intuition behin
is that benign gradients tend to roughly point at the
rection, namely the direction of the optimal gradient,
malicious gradients tend to point at rather different d
When the majority of clients are benign, removing m
gradients results in less total entropy as the uncertain
dients is reduced.

9
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jective of free-rider attacks is to obtain the global
L system, free-rider clients need to upload their
el such that they can pretend to be benign clients.
dels are constructed with minimum cost. The
simply upload their received global model to the
r Gaussian noise may be added to the received
uploading [76]. The key of defending against

cks is to identify which clients submit free-rider
ing defenses can be categorized into watermark-
nd anomaly detection methods. Watermarking
porate watermark learning tasks on clients, while
tion approaches are learned on the server. If a
ails to trigger watermarked behaviors or being
n anomaly, such client is considered as a free-

ng neural networks has been studied in the cen-
g [77, 78] to verify the ownership of deep neu-
Watermarks are commonly embedded into inter-
res or backdoored test samples. In the FL sce-
E [79] is an early work of FL watermarking in
er embeds watermarks by retraining the aggre-
ith backdoored samples. However, watermarking
ide is not suitable for defending against free-rider
free-rider model is identical to the global model.
ddresses the problem by generating secret wa-

lients. At the initialization stage of FL, FedIPR
client to generate their own trigger dataset, wa-
dding matrix and the location of watermarks. In

primary learning task, local models now learns
rmarks in both the intermediate features and lo-

. In the verification stage, client models are fed
ective trigger set. If the detection error of trig-
smaller than a given threshold, this client passes
. FedIPR also verifies feature-based watermarks

the Hamming distance between the watermark in
del and local secret watermark. One major chal-
R is that clients may generate conflicting water-
rs of FedIPR proves that different client water-
embedded without conflicts when the total bit-
rmarks is bounded by the channel number of the
If the bit-length exceeds the threshold, FedIPR

wer bound for detecting watermarks.

etection based free-rider defense are inspired by
tion approaches in the centralized setting, such
uthors of [76] concatenate client updates on the
an auto-encoder. The auto-encoder learns to re-

ived client updates. In the verification stage, if the
error induced by updates from one client is larger
n threshold, this client is deemed as a free-rider.
ach proposed in [76] is using DAGMM [82] in-
anilla auto-encoder. DAGMM detects anomaly
g the latent representation of the auto-encoder to
ixture network to estimate the likelihood of the
being abnormal.

In this section, we will introduce the Model to Da
attacks in FL, which is to reveal a specific attribut
or full of the data. We summarized the methods to
gradient-based leakage and gradient-based data leakag

5.1. Non-Gradient-Based Data Leakage
We define non-gradient-based data leakage as the d

of private information that occurs independently of the
generated during the training stage. For instance, th
can involve identifying specific attributes or membersh
within the training data, or recovering original trainin
from obscured or masked versions. Typically, such lea
ploits the capabilities of a well-trained model to exec
attacks.

5.1.1. Attribute Inference
The paper [83] is one of the earliest works that ta

leakage of private information from an Machine Learn
model. In this paper, the authors construct a nov
classifier that is used to attack other ML classifiers wit
of revealing sensitive information from the training dat
considered a white-box attack, as the adversary has kn
of both the structure and the parameters of the targe
Specifically, the method assumes full access to a we
target model and pre-sets a particular attribute to be i
determining whether or not it exists in the training da
this, the authors first create multiple synthetic training
some of which partially contain the pre-set attributes,
rest do not. They then train several classification m
these synthetic datasets; the architecture of these clas
models is identical to that of the target model. Subs
the parameters of these classification models are used
for training the meta-classifier. Finally, the parame
the well-trained target model are fed into this meta-cla
determine if the particular attribute exists in the train
Both the target model and the meta-classifier are ML
e.g., Artificial Neural Network (ANN), Hidden Marko
(HMM) [84], Support Vector Machine (SVM) [85], or
Tree (DT). The authors provide two example cases
ate their method. In one example, they identify the
nationality using a speech recognition dataset process
HMM. Later, they use an SVM to set up a network traffi
fier to distinguish between two kinds of traffic conditio
the meta-classifier to identify the type of traffic. In bo
ples, the meta-classifiers are DTs.

5.1.2. Membership Identification
The above work is further improved by [86], who

membership identification attacks. They propose a
training technique to identify whether specific sample
of the training dataset. The membership inference p
formulated as a classification task. An attack model
to distinguish between the behavior of shadow mod
fed with forged training data. These shadow model
signed to behave similarly to the target model. The

10
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Figure 5: M2D Attack.

black-box attack, meaning that the attacker only
wledge of the output for a given input. Several
ods have been developed for generating forged
or the shadow models. The first method utilizes
ess to the target model to synthesize the data. The
d leverages statistical information related to the

training dataset. In the third method, it is as-
e adversary has access to a noisy version of the
training dataset. While the first method operates
ing any prior knowledge about the distribution of
el’s training data, the second and third methods

cker to query the target model just once before
hether a particular record was part of its training

ecovery
recovering valuable information from obfuscated
is one of the earliest works to the best of our
bfuscated images are easily accessible through
rotection techniques (e.g., blur, mask, corrupt,
9]. In the study [87], the authors utilized a DL
er valuable information from obfuscated images
on tasks. They assumed that the adversary has
rtion of the original training data and applied one
ion methods to those images to train the attack
is reason, their method is generally not suitable
orld scenarios.

trate how neural networks can overcome pri-
n measures, they employed four commonly used
cognizing faces, objects, and handwritten digits.
tasks carries substantial privacy concerns. For
uccessful identification of a face could infringe
cy of an individual featured in a captured video.
igits could enable the deduction of written text
icular registration numbers.
sults are impressive. On the MNIST [57] dataset,
an accuracy of about 80% for images encrypted
ecommended threshold level of 20. Conversely,
exceeds 80% when the images are masked by
solution 8 × 8. On the CIFAR-10 [58] dataset,

only vehicle and animal images were used for exp
achieving an accuracy of 75% against P3 with a thr
20. When deploying a 4 × 4 mask on the images,
racy is approximately 70%, and it drops to 50% when
with 8 × 8 resolution. On the AT&T [90] dataset, the
method achieved a remarkable accuracy of 97% agains
a threshold of 20, over 95% against various mask s
57% against face blurring. On the FaceScrub [91] dat
achieved an accuracy of 57% against masking the fa
16 × 16 window and 40% against P3 with a threshold

In more recent work [92], the authors utilize a GAN
on a public dataset, to recover missing sensitive regio
ages; this is termed the Generative Model-Inversion (
tack, as shown in Figure 6. A diversity loss is propos
courage diversity in the images synthesized by the
when projected into the target network’s feature spac
essential during the training of the GAN on the publ
because the adversary aims for the generated images
tinct in the feature space of the target model. If diff
ages map to the same feature space, the adversary ca
cern which generated image corresponds to the priva
features, thus failing to reveal the private information.

Figure 6: Overview of the GMI attack method. [92]

The authors assume that the adversary has access to
trained target model, which serves as a discriminato
as to the target label of the input corrupted image.
the generator is used to create an image, which is then
two separate discriminators to calculate the prior loss
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on of the reconstructed image. Upon completing
the GAN, the adversary, during the reveal phase,

continue optimizing the generator’s inputs so that
images are sufficiently realistic while also maxi-
ood in the target model.
ts employed for evaluation are MNIST [57],
93], and CelebA [94]. The experimental results
without using the corrupted image as an input
tor, the attack’s success rate is approximately

d 46% on target networks VGG-16 [95], ResNet-
face.evoLVe [97], respectively. However, when
image is incorporated, the accuracy increases to
d 51% for blurred input images; 78%, 80%, and
r-masked images; and 58%, 63%, and 64% for

images. Consequently, the inclusion of cor-
as auxiliary information has a significant impact
accuracy.

-Based Data Leakage

gradient-based data leakage, this refers to tech-
xploit gradients from the target model to ex-
ensitive information. DL models are trained on
arameter updates occur through alignment with
ce. This establishes an inherent relationship be-
ghts or gradients and the dataset. Consequently,
ies aim to reveal private information by lever-
adients. The effectiveness and success rates of
approaches have consistently surpassed those of
ased methods. Unlike non-gradient-based leak-
ased data leakage can occur even in models that

onverged.

Recovery
[98] proposed a data recovery method that uti-
victim model and a target label. The method

ate new data closely resembling the distribution
dataset. This attack is formulated as a generative
a GAN. In a FL system, an attacker can pose as
reveal private data from the victim by modeling

ce. Suppose the attacker masquerades as a ma-
ant with a portion of training samples that have
along with a portion of samples generated via

orrect labels. The attacker’s goal is to produce a
ares the same feature distribution as the other par-
aging GAN and the global gradients downloaded
eter server.

m 2, the victim trains its local model on its own
eral iterations until it achieves an accuracy be-

threshold. Subsequently, the malicious actor uses
cal model as the discriminator. The weights in
tor are fixed, and a generator is trained to maxi-
dence of a specific class. This is an indirect data
od, sensitive to the variance in the victim’s train-

Although the generated images are consistent

be mapped back to the training data.
Another related work by Generative Gradient

(GGL) [100] also employs a GAN to generate fake
this approach, the weights of the GAN are pretrained a
while the trainable parameters in GGL are the input s
to the GAN. The label inference part is adapted from I
DLG (iDLG) [101], requiring a batch size of 1. Unl
methods, GGL uses Covariance Matrix Adaptation E
Strategy (CMA-ES) and Bayesian Optimization (BO
mizers to reduce the variability in the generated data.
the data generated by GGL is not identical to true data
ficiently similar (see Table 6), providing GGL with ro
against various defense strategies like gradient nois
ping, or compression. The generated images are influ
two factors: 1) the inferred ground-truth label, which
the image classification, and 2) fine-tuning based on
information to make the image as similar as possible t
image.

Algorithm 2 The proposed work from [98]
Assume: two participants V and M who have comm

ing goals.
Require: V’s local dataset Dv with label La and Lb.

M’s local dataset Dm with label Lb and Lc

a. Parameter Server
1: build model and initialize weights.
2: send the initial weights to the clients.
3: local training on victim and malicious clients.
4: receive the trained local weights and generate t

model.
5: repeat Step 2 and 3 until the model converges.

b. Victim Client
1: download the global weights from parameter serv
2: train the local model on its local dataset Dv.
3: upload the local model to the parameter server.

c. Malicious Client
1: download the global weights from parameter serv
2: train a GAN model to generate fake data of class
3: generate many fake data using GAN and relabel t

Lc to update the local dataset Dm.
4: train the local model on the updated local dataset
5: upload the local model to the parameter server.

5.2.2. Full Recovery (Discriminative)
Zhu et al. [103] introduced Deep Leakage from G

(DLG), framing the image recovery task as a regress
lem. Initially, the shared local gradient is derived fro
tim participant, and a batch of “dummy” images a
is randomly initialized. These are then used to calc
“dummy” gradient through standard forward-backw
agation, employing the L-BFGS optimizer [104]. T
cess leverages regression techniques to decipher intr

12
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Table 6: Typical experimental results performed on GGL are shown below. The backbone network is ResNet-18 and the dataset is ILSVRC2012 with a resolution
of 256 ∗ 256. [102
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e gradient, thereby reconstructing the private im-
e approach provides a powerful framework for
Importantly, it is the input “dummy” data that is
the model parameters—by minimizing the Mean
(MSE) between the “dummy” gradient and the
radient. This strategy prioritizes the fidelity of
ted image, ensuring preservation of essential fea-
ils. Among existing leakage methods, DLG is
eving precise pixel-wise data revelation without

requiring additional information. The technique is in
and deploys unique algorithms to achieve an unparall
of precision. Some results from DLG of batch data are
in Figure 7. It marks a significant advancement in th
gradient leakage, opening new avenues for research a
cation. Although DLG can perform attacks on multip
simultaneously, the accuracy in label inference remain
timal. This limitation is an active area of research, w
ing efforts to improve label inference accuracy with

13



Journal Pre-proof
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attain high precision. Its potential applications
ond existing methods, positioning it at the fore-
logical advancements in the field.
101] introduced a novel method known as iDLG,
on the identification of labels in a more accurate
technique involves calculating the derivative of
py loss with respect to one-hot labels for each

assification task. The crux of this approach lies
ranges of the derivative values that correspond

bels. The authors discovered that the derivative
round-truth label uniquely falls within the range
e the derivatives corresponding to incorrect labels
range of [0, 1]. This separation of value ranges
id basis for identifying the correct label. By sim-

the derivative value, the system can distinguish
el from incorrect ones. However, this method
n concerning the batch size: the batch size must
uring the process. While this constraint may af-
in large-scale applications, the iDLG method’s

ch to label identification through derivative anal-
a significant contribution to the field of gradient

ens avenues for future research to potentially re-
ique and mitigate its limitations.
to the low accuracy of label inference, DLG of-
over the image from the gradient when the data
ge, see Figure 8. This is particularly common
ith a large number of classes. Inverting Gradi-
] improved the stability of DLG and iDLG by
magnitude-invariant cosine similarity metric for
ion, termed Cosine Distance (CD). This ap-
find images that yield similar prediction changes

cation model, rather than images that produce
ing values with a shared gradient. The method
promising results in recovering high-resolution
24 × 224) when trained with large batch sizes
= 100); however, the Peak Signal-to-Noise Ra-

ains unacceptably low.
105], Jeon et al. [106] argued that relying solely
nformation is insufficient for revealing private

They introduced GIAS, which employs a pre-
for data revelation. Yin et al. [107] reported that
ification tasks, the ground-truth label can be eas-
m the gradient of the last fully-connected layer.

Batch Normalization (BN) statistics can signifi-
e the efficacy of gradient leakage attacks and fa-
elation of high-resolution private training images.
proach to gradient leakage attacks is based on
dels. Wang et al. [108] trained a GAN with a
riminator, named mGAN-AI, to generate private
sed on gradients.

covery (Generative)
[109], the Generative Regression Neural Net-

was proposed as a method for reconstructing pri-
ata along with its associated labels. The model

GAN and DLG methods, GRNN introduces a gradie
approach for image creation that effectively addresses
lenges of stability and data quality commonly associ
DLG methodologies.

The novel GRNN, which serves as an innovative dat
attack technique, is capable of retrieving private trainin
with resolutions up to 256 × 256 and batch sizes of 2
makes it particularly well-suited for FL applications
the local gradient g and the global model F (•) are eas
sible within the system’s configuration. The GRNN a
employs a dual-branch structure to generate fake traini
and corresponding labels ŷ. It is trained to estimate a
dient ĝ, computed from the generated data x̂ and labe
that it closely matches the true gradient g associated
global model. The divergenceD between the true and
dients is evaluated using a combination of MSE, Wa
Distance (WD), and Total Variation Loss (TVLoss) m

Through empirical testing on various image clas
challenges, the GRNN approach has been rigorously c
to cutting-edge alternatives, showing significantly bett
across multiple metrics. The trial findings confirm tha
posed method is notably more stable and capable of
ing images of superior quality, especially when applie
batch sizes and high resolutions.

Compared to the most latest work [103, 101, 105
takes a generative approach, which shows high stabili
covering high-resolution images (i.e. up to 256 × 25
large batch size (i.e. #Batch = 256). Table 7 present
differences between DLG, iDLG IG and GRNN.

Algorithm 3 GRNN: Data Leakage Attack [109]
1: g← ∂L(F (< x, y >, θ))/∂θ; #Produce true gr

local client.
2: v← Sampling from N(0, 1); #Initialize rando

inputs.
3: for each iteration i ∈ [1, 2, ..., I] do
4: (x̂i, ŷi)← G(v|θ̂i); #Generate fake images an
5: ĝi ← ∂L(F (< x̂i, ŷi >, θ))/∂θ; #Get fake gr

global model.
6: Di ← L̂(g, ĝi, x̂i); #Loss between true

gradient.
7: θ̂i+1 ← θ̂i − η(∂Di/∂θ̂i); #Update GRN
8: end for
9: return (x̂I , ŷI); #Return generated fake images a

5.3. Defense Against M2D Attacks

The issue of M2D attack methods has garnered s
attention in the world of ML and DL. This issue ha
concern as it can lead to the unintended exposure
mation. In response, numerous methods and techniq
been proposed to understand, mitigate, and control
age, e.g., gradient perturbation [103, 110, 111, 112, 1
obfuscation or sanitization [113, 114, 115, 116, 117],
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h the sequence might differ and additional artifact pixels are present, deep leakage in batched data still generates images that closely r
[101]

Table 7: Comparison of different related works on gradient leakage. [109]
Recovery

Mode #Batch Resolution Loss Functio

3] Discriminative Small, up to 8 Low 64 × 64 MSE

1] Discriminative Small, only 1 Low 64 × 64 MSE

] Discriminative Medium, up to 100 High 224 × 224 CD & TVLos

0] Generative Small, only 1 High 224 × 224 CMA-ES & B

9] Generative Large, up to 256 High 256 × 256 MSE & WD & TV

tructed image using its gradient features. On the left is the
taken from the validation dataset. The center image is recon-

ained ResNet-18 model that has been trained on ILSVRC2012
ight is the image rebuilt using a trained ResNet-152 model.

, 36, 119, 120, 121, 102]. These methods aim
tent of information that can be exposed, ensur-
ls operate with the requisite confidentiality and
nse against M2D attacks has emerged as a com-

namic research area within the field. M2D attacks
ous attempts to extract or manipulate sensitive in-
ctly from the data used in training models. This
h explores various strategies and mechanisms to
these attacks, preserving the privacy of the data
g the robustness of the models.

easures have been undertaken to safeguard per-

sonal data against the M2D attack. Techniques such as
perturbation, data obfuscation or sanitization, Differe
vacy (DP), Homomorphic Encryption (HE), and Secu
Party Computation (MPC) are among the most promin
ods for ensuring the privacy of both the private trai
and the publicly shared gradient exchanged between
and server. Experiments conducted by Zhu et al.
cused on two specific noise types: Gaussian and L
Their findings revealed that the key factor affecting the
was the magnitude of the distribution variance, rather
type of noise itself. When the variance exceeds 10−2,
age attack fails; concurrently, there is a significant d
the model’s performance at this variance level. Cha
al. [117] introduced a technique for perturbing data,
that this approach maintains model performance with
promising the confidentiality of the training data. In
text, the dataset is treated as a data matrix, and a mu
sional transformation is applied to project it into a ne
space. Various degrees of transformation are used to p
input data, guaranteeing an adequate level of alteratio
tral server is responsible for creating global perturbatio
eters in this technique. Notably, a potential drawback
perturbation process could distort the architectural str
image-related data. Wei et al. [121] employed DP to
noise into the training datasets of each client and fo
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Figure 9: Examp
model. [109]
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les of data leakage attack using the GRNN on the global

-based DP method known as Fed-CDP. They de-
amic decay noise injection strategy to improve
performance and the level of gradient leakage

rtheless, experimental findings indicate that, de-
lly hindering the reconstruction of training data

ient, this method leads to a considerable decline
ccuracy. Additionally, since DP is applied to ev-
stance, the computational overhead becomes sub-

uting the gradient, Privacy Enhancing Module
122] aims to prevent the input information from
rough the model. PRECODE introduces a mod-
output layer to transform the latent representation
ng a probabilistic encoder-decoder. This encoder-

prised of two fully-connected layers. The first
the input features into a sequence and then nor-

the sequence, while the standard deviation is derived
remaining half. Finally, the decoder translates the no
sequence back into a latent representation, which th
as input to the output layer. This normalization step
the encoder and decoder prevents the input informat
affecting the gradient, thereby allowing PRECODE to
leakage of input information through the gradient.
the insertion of two fully-connected layers in front o
put layer results in a significant computational cost. Th
only three very shallow neural networks were used fo
ments in their paper.

Recent studies have uncovered that shared gradien
sult in the potential exposure of sensitive data, leadin
vacy violations. The work in [102] presents an exhau
amination and offers a fresh perspective on the issue o
leakage. These theoretical endeavors have culminat
development of an innovative gradient leakage defens
that fortifies any model architecture by implementing
key-lock mechanism. The only gradient communicat
parameter server for global model aggregation is the
has been secured with this lock. The newly formulated
approach, termed FedKL, is designed to withstand at
attempt to exploit gradient leakage.

The key-lock component has been meticulously desi
trained to ensure that without access to the private
the key-lock system: a) the task of reconstructing priv
ing data from the shared gradient becomes unattainab
there is a considerable deterioration in the global mod
ity to make inferences. The underlying theoretical re
gradients potentially leaking confidential informatio
plored, and a theoretical proof confirming the effica
method is provided.

The method’s robustness has been verified throug
sive empirical testing across a variety of models on n
widely-used benchmarks, showcasing its effectivenes
maintaining model performance and protecting again
ent leakage.

In the study [102], a theoretical foundation is laid t
strate that the feature maps extracted from the fully-c
layer, convolutional layer, and BN layer contain confid
tails of the input data. These details are not only enco
within the feature maps but also coexist within the grad
ing the process of backward propagation. Furtherm
posited that gradient leakage attacks can only succee
is adequate alignment between the gradient spaces of t
and local models.

As a solution, they proposed FedKL, a specialized
module that excels at differentiating, misaligning,
guarding the gradient spaces using a private key. This
plished while preserving federated aggregation comp
conventional FL schemes. Specifically, the operation
ing and shifting in the normalization layer are restruc
private key, generated randomly, is fed into two fully-c
layers. The resulting outputs function as exclusive co
for the scaling and shifting procedures. Both theoret

16



Journal Pre-proof

ysis and experimental results affirm that the proposed key-lock1057

module is efficient and effective in protecting against gradient1058
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s. This is achieved by masking the uniformity of
ta in the gradient, thus making it challenging for

tacker to perform forward-backward propagation
of the private key and the lock layer’s gradient.
the task of approximating the shared gradient in
ork to reconstruct local training data becomes

Attacks

able 8: Characteristics of Composite Attacks

f Attack Distinctive Feature

sting [123] boosting malicious updates

oosting [123] regularized update boosting

cement [124] replace converging global model

[125] bounded update projection

+ PGD [47] PGD on minority samples

terval [64]
median cheating with
normalized updates

[126] distributed backdoor trigger

BA [127] distributed and learnable trigger

xin [128]
tampering insignificant

model weights

toxin [129]
searching Neurotoxin
parameters with RL

[130]
sign-flipping on

insignificant weights
rd

ing [131]
tampering stale

word embeddings
date
ation [132]

estimating future updates
from malicious clients

llapse [133]
estimating potent

malicious gradients

composite attacks as threat models that corrupt
ts of FL. The attacker can combine D2M and
o launch backdoor attacks. The attacker surrepti-
igger patterns to local training data, then poisons
such that the global model learns how to react to
doored models behave normally when fed with
the presence of trigger data, these models are

predictions designated by the attacker.
erns vary from one attack to the other. We sum-
g triggers in Figure 10. Generic samples of a
les with shared patterns are commonly used in
attacks, these attacks can be further enhanced by
M2M attacks. Triggers based on certain natural
o known as semantic triggers [124] . Handpicked

tribution, are used in attacks targeting underrepresen
which can significantly damage the fairness for the
group. Lastly, learnable triggers is a relatively new str
pears in recent studies.

Compared to D2M or M2M attacks, now that the
also has control over client model updates, composi
tend to be stealthier and more destructive. A high-leve
such attacks is illustrated in Figure 11. We group rec
posite attacks based on their most notable features.
tacks may also use techniques proposed in other gro
show the characteristics of composite attacks in Table

6.1. Composite Threat Models

6.1.1. Update Boosting
To boost the effectiveness of model updates derived

soned data, scaling up malicious updates is a common
in early studies on composite attacks [123, 124]. G
soned data with their labels being flipped, authors of [
pose two types of threat models. The explicit appro
train client models with the poisoned data, then boo
updates by scaling it up with a predefined coefficient.
this approach is easy to implement, the boosted update
tistically different from benign updates, suggesting th
aggregation rules can easily identify boosted malicious
As for the stealthy approach in [123], the attacker inst
client models on both the clean and poisoned data.
from the poisoned data are boosted as the explicit
while a regularization term is used to ensure that the di
between current malicious updates and last round’s av
nign updates are bounded. Instead of boosting only
cious updates, the model replacement attack proposed
seeks to entirely replace the global model with the ba
model. As the training goes on, benign updates from
ing client models tend to cancel each other out. By so
linear aggregation equation, the attacker can find the s
scale up malicious updates such that the global model i
the model trained with poisoned data, namely the glob
is replaced with the one with backdoors.

6.1.2. Bounded Updates
Boosting model updates is an effective way to inj

doors. However, these updates have distinctive nor
pared to benign updates. As mentioned above, booste
can be easily filtered out by norm-based aggregation ru
jected Gradient Descent (PGD) proposed in [125] aim
passing norm-based aggregation by projecting booste
onto a small ball around the norm of global model
PGD can be also seen in later studies [47]. On to
edge case D2M attack in [47], the attacker can further
their intention by projecting model updates derived f
case data. Another threat model proposed in [47]
PGD with model replacement [124] in which the boo
licious updates is bounded through projection before
the global model. Another way to generate bounded u
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Learnable TriggersPrede�ned Triggers

c. handpicked logos or icons
les with shared
ral patterns

b. generic samples of a class d. edge samples of a class
e. patterns that maximi

neuron activations

ger types

ple triggers

reen car cat red triangle uncommon plane learned trigger patch

erview of Trigger Patterns. Among these trigger types, a and b are mostly associated with label-flipping. Type c is a common strategy f
rary samples. Type d uses samples at the tail of the data distribution to induce erroneous predictions for underrepresented data. Type d
es.

Data with Triggers

Clean Data

Backdoor Update

Benign Update

Upload

Central Server

Backdoored Model

Malicious Client

D2M Attack

M2M Attack

h-level View of Injecting Backdoors with a Composite Attack. The attacker chooses a preferable trigger and tampers local data with
so trained on clean data to avoid detection. Most attacks aim at poisoning the global model with only a few clients.

4]. In stead of projecting malicious updates, they
d by the maximum deviation range discussed in
k section.

uted Triggers
n trait of the above composite attacks is that their
ers are stand-alone, namely the trigger patterns
cross all clients and tampered samples. Even

re experiments on concurrently employing multi-
25], these triggers are still independent from each
lack the ability to collude. The Distributed Back-
BA) [126] instead assigns local triggers to mul-

ocal triggers can be assembled to form a stronger
The triggers used in DBA is similar to the ones

ets [134], which are colored rectangles placed
rners of images. Malicious updates of DBA are
coefficient similar to [123]. Another attack with
gers is proposed in [127]. Unlike DBA whose
defined, triggers in [127] are based on [135] with

learn-able parameters that generate local trigger patter
trigger generation stage of [127], the attacker first de
the target class. By feeding various samples of the ta
to the received global model, the attacker finds the inte
ron that is most sensitive to the target class. This is
by comparing the sum of connected weights and the n
activation. The attacker then optimizes trigger patter
eters such that they maximize the activated value of
sensitive neuron. In the distributed training stage of [1
malicious client only trains from the most sensitive
layer to the final output layer.

6.1.4. Insidious Tampering
More recent composite attacks focus on maki

cious updates more insidious and persistent, which
ally achieved by tampering with weights that are uni
to the clean data. For instance, Neurotoxin [128]
dates insignificant parameters to prevent backdoors
ing erased by benign updates. Neurotoxin considers pa

18



Journal Pre-proof

with largest gradients to be most used by benign clients, there-1171
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nts. The attacker can only optimize less impor-
rs to achieve their backdoor objectives. Neuro-
ly enhanced by authors of [129] who employ RL
hyperparameters for the attack. Rare word em-
k proposed in [131] shares a similar idea with
the sense that it manipulates word embeddings
as they are not likely to be updated by benign
ffectiveness of the rare word embedding attack

r amplified by the gradient ensembling method
acker intentionally stores the global models from
s, then gradients of backdoor word embeddings
for all these models. The exponential moving
se gradients is used to update backdoor embed-
urrent round. Focused Flip Federated Backdoor
) is a recent threat model that falls into the cate-
us tampering. Intuitively, F3BA tries to flip the
important weights such that they are most sen-
r patterns. The importance of a weight is mea-
roduct of its gradient and weight value. F3BA
least important weights found by this metric, and

of weights are enough to degrade model perfor-
ipping of F3BA is conducted between consecu-
the first layer, the attacker reshapes the trigger

that it aligns with the convolution kernel. Signs
tant weights of this kernel are flipped if they are
the signs of the aligned trigger pixels. In sub-
, the attacker respectively feeds the model with
soned data, records their activation differences,
s of the chosen weights such that the activation

maximized. When sign-flipping is completed,
ne-tuned to associate flipped weights with the la-
ed data. The model’s local updates will also be
to benign updates after fine-tuning. Like [127],
s is also learn-able. F3BA learns the trigger pat-
lues by maximizing the clean-poisoned activation
he first layer.

Approximation
attacks introduced so far directly optimize model

backdoor classification task. There are also at-
to optimize niche objectives. These objectives
ctable (e.g. estimating future updates of other

he attacker needs to find proper approximations to
ctical solutions. If an omniscient attacker knows
ates of a FL system, the optimal way of inject-
is differentiating through the computation graph
pdates w.r.t the weights of the attacker’s model.
tuition behind [132] and the authors propose a
roximate updates in the near future. The attack in
the attacker to control a subset of client models.
ses these models to simulate future updates by

vg. Throughout the simulation, only clean data
the malicious client is used. In the first round

ion, all models are fed with data. The malicious
t out in the following rounds, which is simulat-

model weights are optimized through the classificati
on both clean and poisoned data similar to [123]. A
tive Poisoning Attack (APA) [133] is another method
rectly optimizes model weights for the backdoor task
jective of APA is to clandestinely poison model weig
maintaining a good test performance. As soon as the
fed with trigger data, its performance drastically dro
ing the system administrator with minimum time to re
the attack. APA learns two functions: an accumulative
and a poisoning function. The accumulative functio
to manipulate model updates such that the model is m
sitive to trigger gradients. The poisoning function i
transform benign gradients from validation data into m
gradients, leading to performance degradation. Intuit
grading model performance can be viewed as maxim
validation loss. By taking the first order Taylor polyn
the validation loss, the maximization problem is tra
into minimizing the first order gradient w.r.t the accu
and poisoning functions. The authors of APA further
the minimization problem with its first order appro
The final optimization objective then becomes simul
aligning the directions of poisoned gradients with beni
ents as well as the second order gradients of the valida
All gradients from APA are all projected through PGD
enhance stealth. While it is not mandatory to use tri
terns with APA, the authors demonstrate that explici
makes APA more potent.

6.2. Defense Against Composite Attack

In this section, we introduce defenses that are sp
designed to counter D2M+M2M composite attacks. S
type of attack also manipulates model weights or upd
fenses against M2M attacks such as Krum [61] or Bu
are also evaluated in many existing studies on defens
composite attacks. Depending on the subjects being p
by the defense strategy, we divide defenses again com
tacks into update cleansing and model cleansing.

6.2.1. Update Cleansing
Defenses based on update cleansing filter out uploa

igate influence from malicious clients by examining m
dates. Robust-LR [136] is an update cleansing defens
the heuristics that directions of malicious updates are
from benign ones. The authors of Robust-LR take a
voting over model updates. The voting computes th
signs of model updates on each dimension. If the sum
a pre-defined threshold, meaning that malicious clien
ipate in the current round of update, the learning rat
dimension is multiplied by −1 to apply gradient asce
picious updates.

Training models with DP has been mathematicall
as an effective way of defending against backdoor i
[137, 125]. This approach is first introduced to FL b
of DP-FedAvg [138]. Compared to the vanilla FedAv
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nst a given parameter, which could be an over-
for all model weights or a set of layer-wise clip-
r. When the global model is updated by taking
ent updates, noise from a zero-mean Gaussian is

Cleansing
ased method is proposed in [139]. This approach
rank the average activation values of the last layer
ls. The central server prunes neurons in the de-
r based on the aggregated rankings of neurons.
stillation is also considered as a defense against
kdoor attacks [140, 130]. By aligning the atten-
he teacher model and the student model, Neural
illation (NAD) [140] manages to erase backdoors
model. The distillation process of [140] assumes
is available to the defender. This requirement is

by FedRAD [141], a knowledge distillation based
. FedRAD needs to prepare synthetic data [142]
server for model evaluation. Client models are
ynthesized data for evaluation, then the central
how many times a client’s logit obtains the me-
its corresponding class. The median frequencies
ls are normalized and used as global model ag-
cients. The distillation process of FedRAD is

F [143]. The central server distills knowledge
odels by minimizing the KL divergence between
del’s predictions and the average prediction of

rch considers certified robustness [144] as the
d against composite backdoor attacks. A ML
to have certified robustness if its predictions are
n if the input is perturbed. CRFL [145] is a de-
d to counter the model replacement attack. By
w the global model parameters update during

grants the global model certified robustness un-
ion that the backdoor trigger is bounded. Specif-
he conventional global model aggregation com-
ters of the global model are first clipped, then

e is added to these parameters. At test time, a set
oise is sampled from the previous noise distribu-
to the aggregated global model, resulting in a set

l models. A majority voting is conducted among
odels to decide the classification results of test
her defense with certified robustness is proposed
s method achieves certified robustness through
oting among a number of concurrently trained
. Given n clients, the defense in [146] trains

(
n
k

)

, where k is the number clients chosen without
r each model. Although the authors of [146] ap-

arlo approximation to speed up the defense, it still
hundreds of global models, making this method
tionally expensive than other defenses.
majority voting is not exclusive to defenses with
tness. Authors of BaFFLe [147] rely on diver-

When the global model for current global training rou
gregated, it is sent to randomly selected clients to v
the global model is poisoned. A set of recently accept
models are also sent to selected clients as reference.
dation process s of BaFFLe requires these clients to te
models with their local data. In particular, each cli
putes the misclassification rate for samples of a spec
the client also computes the rate of other classes’ sam
ing misclassified as the examined class. For benign m
gap between these two rates are relatively stable dur
ing. However, drastic changes can happen for backdoo
els. If the misclassification gap of the newly aggregat
model deviates too much from the average gap of pas
the client votes the global model as malicious. Final
on the result of the majority voting, the central serve
whether to discard the newly obtained global model.

6.2.3. Composite Cleansing

Like composite attacks that manipulate multiple a
FL to enhance their capability, recent defenses als
ine both model updates and weights to systematically
composite attacks.

Authors of DeepSight [148] propose various metric
uate if the upload from a client is malicious. Th
server first computes the pairwise cosine similarities
received updates. Two other metrics, clients’ Divisio
ences (DDif) and NormalizEd UPdate Energy (NEUP)
computed. DDif measures the prediction differences
the global and client models. This is achieved by feed
els with random input on the server. Backdoored m
prone to produce larger activation for the trigger clas
the input is merely random noise [149], which is a tel
for DDif to identify compromised models. NEUP
the update magnitude for neurons in the output laye
data with similar distributions results in models wit
NEUP patterns. Based on the above metrics, DeepSigh
received client models on the central server with HD
[150]. The server also needs to maintain a classifier
NEUP to label client models as either benign or malic
pending on the number of models being labeled as m
the server determines whether to accept or reject a clie
cluster. Models from accepted clusters are deemed a
aggregation.

FLAME [151] is another example of composite defe
thors of FLAME summarize the pipeline of their app
clustering, clipping and noising. In the clustering stage
tral server computes CDs between model updates. HD
is subsequently used to filter out malicious models bas
angular differences derived from CDs. In the clipping
median of remaining models’ updates is chosen as the
clip model updates. In the final noising stage, Gauss
is added to the global model weights to further erase
back doors.
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Table 9: Summarization of defense techniques toward different types of attacks
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efense Method Defense Strategy Type of Attack Attack Strategy
al.[43] (FoolsGold)

lpegin et al.[44]
et al.[49] (Sniper)
Ma et al.[53]

Dynamic learning rate
Cluster for PCA

Clique from Euclidean distance
Rewards based aggregation

D2M
Label Attack

Sample Attack

t al.[72] (GeoMed)
la et al.[73] (RFA)
t al.[62] (MarMed)
al.[62] (MeaMed)

al.[70] (TrimMean)
rd et al.[61] (Krum)
di et al.[65] (Bulyan)
et al.[74] (ELITE)

et al.[79] (WAFFLE)
al.[80] (FedIPR)

Lin et al.[76]
t al.[82] (DAGMM)

Geometric median
Weiszfeld-smoothed geometric median

Dimension-wise median
Mean-around median

Dimension-wise trimmed mean
Euclidean distance
Euclidean distance

Gradient information gain
The server embeds watermarks

Generate secret watermarks on client
Auto-encoder

Gaussian mixture network

M2M
Priori Attack

Posteriori Attack

hu et al.[103]
mikara et al.[117]

ei et al.[121]
t al.[122] (PRECODE)
t al.[102] (FedKL)

Adding noise to gradients
Perturbing data

DP on data
Transform feature representation

Hide the input from gradient

M2D
Attribute Inferenc

Membership Identific
Image Recovery

t al.[136] (Robust-LR)
et al.[138] (DP-FedAvg)

u et al.[139]
et al.[141] (FedRAD)
t al.[145] (CRFL)
ao et al.[146]
et al.[147] (BaFFLe)

t al.[148] (DeepSight)
et al.[151] (FLAME)

Update cleansing
DP

Model pruning
Knowledge distillation

Certified robustness from updates
Certified robustness

Validation on diversified client data
Various metrics

Clustering, clipping and noising

Composite
Updates Attack

Distributed Trigge
Insidious Tamperi

and Future Directions

on
ars, FL has become a transformative paradigm
L models, especially in decentralized envi-

re data privacy and security are critical. Our
e review categorized known FL attacks according
n and target. It provides a clear structure for un-
e scope and depth of FL inherent vulnerabilities:

: These attacks (e.g., label-flipping) manipulate
t the global model. Since FL often relies on
erous potentially untrusted sources, it is highly
uch threats.

s: This type of attack tampers with model
by disrupting the learning process. For example,
cks involve sending malformed or misleading

s, indicating that one or more malicious clients
ntial to degrade the performance of the global
attacks emphasize the importance of a robust
proach in a federated environment.

M2D Attacks: Focus on exploiting vulnerabilities
when models interact with data, such as gradient
where an attacker can infer private data from gradient
Gradient leakage is a prime example where maliciou
exploit the shared model updates to infer sensitive inf
about the training data, emphasizing on the need fo
strategies that mask or generalize gradients.

Composite Attacks: These attacks are more sophis
nature and often combine multiple attack methods or v
enhance their impact. Backdoor injection is a classic
where an attacker subtly introduces a backdoor during
and then exploits it during reasoning.

A summarization of defense techniques toward
types of attacks is provided in Table 9

7.2. Future Directions

As FL continues to evolve, the sophistication of
attacks will continue to increase. By reviewing th
advancements in this domain, we identify several p
research directions that include:
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Robust Aggregation Mechanisms: The aggregation process1434
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attack vectors1489

grate various p1490

adaptive security framework, rather than a solo approach that 1491

develops defenses against specific threats. This multi-pronged 1492

coverage, 1493

laps. As 1494

lizing an 1495

a wide 1496

stem. 1497

1498

we have 1499

rabilities 1500

ated RL, 1501

threats. 1502

to focus 1503

for both 1504

pressing 1505

-specific 1506

federated 1507

mise for 1508

rehensive 1509

1510

1511

lth of in- 1512

r enhanc- 1513

ries from 1514

can help 1515

pants in a 1516

, tailored 1517

designed 1518

alicious 1519

the fields 1520

lving, of- 1521

cols. By 1522

systems 1523

e privacy 1524

learning 1525

ical areas 1526

al to cre- 1527

onment. 1528

1529

, Improving 1530

1531

ever, et al., 1532

penAI blog 1533

1534

. Dhariwal, 1535

age models 1536

1537

odels, NIPs 1538

1539

li, Deep un- 1540

in: ICML, 1541

1542

ients of the 1543

1544

n, B. Poole, 1545

ntial equa- 1546

1547
Jo
ur

na
l P

re
-p

ro
of

e combined to update the global model. Given its
e aggregation step becomes a vulnerable point,

malicious interference. For example, a single
th malicious intentions may submit misleading
the intention of degrading the performance
model. This adverse activity is of particular

2M attacks, of which the Byzantine attack is a
e. In a Byzantine attack, an adversary sends
trategically designed updates to a server with
disrupting the aggregated model. Addressing
ilities requires re-evaluating and redesigning the
regation mechanisms used in FL. By delving

opment of more resilient aggregation strategies,
an be designed to identify, isolate, or reduce the
e malicious updates. These advanced aggregation
ased on robust statistical measures, consensus

even outlier detection methods, can ensure that
f the global model remains intact in the presence
icipants.

rse Attack: In terms of M2D attack methods,
ting that the gradients exchanged between the
client often contain a large amount of redundant
and this redundancy may play a negative role

eness of the attack. If an attacker can filter out
ents, the efficiency of the attack can be dramati-
d, especially in large-scale model training. This
e process eliminates irrelevant and noisy data,
y improving the accuracy of the attack.

ttack Detection: As the complexity and scale
nments continues to grow, automated safety
me critical. Meta-learning [152, 153, 154, 155],
to as “learning to learn”, offers a promising

ress this challenge. By employing meta-learning
stems can be trained to leverage prior knowledge
t types of attacks to quickly adapt to new,
eats. In addition, anomaly detection algorithms
utliers or unusual patterns in traditional datasets
ne-tuned for federated environments. These
monitor incoming model updates from different

es and flag any updates that deviate from the
rn to indicate potential malicious activity. Such
system not only identifies threats, but also
defense mechanisms to immediately counteract
spicious activity, ensuring a smoother and safer

nse Strategies: In the rapidly evolving FL
the need for holistic defense strategies is be-
singly prominent. These strategies advocate the
nd implementation of defense mechanisms that
versatile and capable of responding to multiple
simultaneously. A holistic approach would inte-
rotection measures to create a more resilient and

defense system not only ensures broader security
but also minimizes potential vulnerabilities and over
adversarial tactics become increasingly complex, uti
integrated solution that anticipates and responds to
range of threats will be key to protecting the FL ecosy

Domain-specific Attacks and Defenses Although
witnessed nascent studies on exploiting the vulne
in Federated Recommendation System and Feder
few defenses are proposed to defend against such
Furthermore, a majority of the current research tends
on image classification as the principal learning task
attacks and defenses. This observation underscores a
need and opportunity to delve deeper into domain
threat models and tailored defense strategies for
learning. Investigating this avenue not only holds pro
enhancing security but also ensures the more comp
protection of diverse applications within FL.

Interdisciplinary Approaches: Harnessing the wea
sights from different fields is particularly instructive fo
ing FL systems. For example, frameworks and theo
disciplines such as game theory and behavioral science
to understand the motivations and behaviors of partici
FL environment. By understanding these motivations
incentive structures or deterrence mechanisms can be
to encourage positive contributions and discourage m
or negligent behaviors in FL ecosystems. In addition,
of cryptography and cyber-security are constantly evo
fering a plethora of innovative techniques and proto
integrating these advances into FL, we can strengthen
against identified vulnerabilities and ensure not only th
and integrity of data, but also the trustworthiness of the
process. As the stakes for FL grow, especially in crit
of application, the convergence of these areas is critic
ating a robust, secure and collaborative learning envir

Bibliography

[1] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al.
language understanding by generative pre-training (2018).

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutsk
Language models are unsupervised multitask learners, O
1 (8) (2019) 9.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Langu
are few-shot learners, NIPs 33 (2020) 1877–1901.

[4] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic m
33 (2020) 6840–6851.

[5] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, S. Gangu
supervised learning using nonequilibrium thermodynamics,
PMLR, 2015, pp. 2256–2265.

[6] Y. Song, S. Ermon, Generative modeling by estimating grad
data distribution, NIPs 32 (2019).

[7] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermo
Score-based generative modeling through stochastic differe
tions, arXiv (2020).

22



Journal Pre-proof

[8] G. A. Kaissis, M. R. Makowski, D. Rückert, R. F. Braren, Secure,1548

privacy-preserving and federated machine learning in medical imaging,1549

NMI 2 (6)1550

[9] J. Konečnỳ1551
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