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Abstract
We present a new computationally efficient methodology to estimate the probability of rainfall-induced slope failure based 
on mechanical probabilistic slope stability analyses coupled with a hydrogeological model of the upslope area. The model 
accounts for: (1) uncertainty of geotechnical and hydrogeological parameters; (2) rainfall precipitation recorded over a period 
of time; and (3) the effect of upslope topography. The methodology provides two key outputs: (1) time-varying conditional 
probability of slope failure; and (2) an estimate of the absolute frequency of slope failure over any time period of interest. The 
methodology consists of the following steps: first, characterising the uncertainty of the slope geomaterial strength parameters; 
second, performing limit equilibrium method stability analyses for the realisations of the geomaterial strength parameters 
required to calculate the slope probability of failure by a Monte Carlo Simulation. The stability analyses are performed for 
various phreatic surface heights. These phreatic surfaces are then matched to a phreatic surface time series obtained from 
the 1D Hillslope-Storage Boussinesq model run for the upslope area to generate Factor of Safety (FoS) time series. A time-
varying conditional probability of failure and an absolute frequency of slope failure can then be estimated from these FoS time 
series. We demonstrate this methodology on a road slope cutting in Nepal where geotechnical tests are not readily conducted. 
We believe this methodology improves the reliability of slope safety estimates where site investigation is not possible. Also, 
the methodology enables practitioners to avoid making unrealistic assumptions on the hydrological input. Finally, we find 
that the time-varying failure probability shows marked variations over time as a result of the monsoon wet–dry weather.

Highlights

• Probabilistic slope stability analyses are coupled with a hydrogeological hillslope model to estimate the probability and 
frequency of rainfall-induced slope failure.

• The model accounts for the uncertainty about rainfall using a time-dependent method, and for uncertainty relative to the 
geomaterial properties.

• The model is tested on a road cut slope in Nepal (mountainous area subject to a monsoon season) finding that the cut slope 
will fail every other year.

• Time-varying failure probability shows marked variations over time as a result of the monsoon wet–dry weather.
• The findings indicate that it is important to use a time-dependent system to represent rainfall variability for slope failure 

probability analysis.
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1 Introduction

When roads and railway lines are constructed, they often 
require slope cuttings (also known as cut slopes), especially 
in hilly topography. When cuttings fail, there can be huge 
economic and social consequences, especially when debris 
collides with infrastructure or vehicles. Cutting failures are 
widespread along roads in low- to lower–middle-income 
countries (LIC/LMIC) where natural susceptibility to slope 
failure from heavy rain and hilly topography is exacerbated 
by the inadequate design of cuttings and their stabilisation 
measures. To carry out planning, design and costing of sta-
bilisation measures along transportation infrastructure, it is 
useful for practitioners to have a measure for the stability of 
a cutting (Liu and Wang 2021; Corominas and Moya 2008). 
Factor of Safety (FoS) values are approximate indicators of 
safety based on a single best estimate of the slope conditions 
with the FoS expressing a margin of safety, the value of 
which is highly dependent on the problem considered. For 
example, most geotechnical standards require FoS = 1.3 for 
a slope whilst they typically require FoS = 4 against piping 
failure. One may think that the safety margin against piping 
is much higher but actually the differences in the threshold 
values largely stem from the model and parameter uncertain-
ties. Also, two slopes exhibiting the same FoS can have a 
vastly different probability of failure. Instead, probability of 
failure (P(f)) and its complementary probability of survival 
provide a better metric to estimate a slope’s (lack of) safety 
for practitioners and public authorities since the meaning of 
such metrics is well understood outside the boundaries of 
civil engineering.

Landslide hazard and risk assessment studies often esti-
mate an annual probability of slope failure, often in map 
form (Corominas et al. 2014; Dai et al. 2002; Tang et al. 
2018). Cost assessment studies require a frequency within 
a time window. Annual probability can also be thought of 
as a frequency; a probability set in a reference time frame 
(Tang et al. 2018). These are typically determined either 
through statistical models which involve analysis of land-
slide databases (e.g. Lu et al. (2020); Guzzetti et al. (2008)) 
or mechanistic models which involve slope stability analyses 
(e.g. Lu et al. (2022a)). A drawback of statistical models is 
that they require a large volume of reliable historical data 
which can be difficult (and costly) to attain, especially in the 
context of LIC/LMICs that are often data-poor (particularly 
in terms of data on smaller scale road cuttings). In addition, 
statistical approaches often do not consider the local geology 
and geomaterial conditions and, therefore, only represent the 

average slope conditions over a region. Statistical models 
also have restrictions in terms of planning slope stabilisa-
tion measures as they are necessarily based on a database of 
historic failures. These failures encompass not only a wide 
range of site-specific conditions (e.g. geometry, hydrology 
and material properties) but also of stabilisation measures.

Mechanistic models have been widely used to account 
for uncertainty in geomaterial mechanical properties and 
their spatial variability, in addition to uncertainty in geo-
metric parameters, e.g. position of contact surfaces in a 
multilayered slope. A large number of mechanistic mod-
els have been developed to predict landslides across land-
scapes by coupling hydrological models of varying levels 
of complexity (e.g. SHALSTAB, Montgomery and Dietrich 
(1994), TRIGRS, Baum et al. (2008), GEOtop-FS, Formetta 
et al. (2014)) with the infinite slope model. Even those who 
treat the slope stability component more completely make 
the assumption that failure occurs within the soil or at the 
soil–bedrock boundary (Hess et al. 2017; van Zadelhoff et al. 
2022; Bellugi et al. 2015). These models are not appropri-
ate for cutting failures because of their representation of the 
failure surface. Mechanistic models that better capture the 
failure surface currently do not deal with complex upslope 
topography extending to the watershed for that slope (e.g. 
Manning et al. (2008); Rouainia et al. (2009); Holcombe 
et al. (2012)). Therefore, we suggest that there is a gap in 
literature: complete models that represent upslope hydro-
logical conditions and stability of cuttings both in a high 
level of detail.

Probability of failure given some trigger event can be esti-
mated using mechanistic models by conducting a probabil-
istic stability analysis (Dou et al. 2014; Zhang et al. 2014). 
Thus, the resultant probability of failure is always condi-
tional, though this is not always explicitly recognised. The 
most common triggers of slope failure are pore water pres-
sure and seismic shaking, which are driven by rainfall and 
earthquakes, respectively. These triggers are not binary, but 
they have characteristics (e.g. pore pressure/seismic accel-
eration) and these characteristics both: (1) affect the prob-
ability of failure (i.e. the probability of failure is conditional 
on the trigger characteristics); and (2) vary in space and time 
such that their future values at a given location are highly 
uncertain. Therefore, estimating probability of failure within 
some time window (e.g. annual probability) for a given loca-
tion should account for not only the probability of failure 
conditional on a particular trigger event (P(f|T)) but also the 
probability of that trigger event (or those trigger conditions) 
occurring (P(T)). Further, since multiple trigger events result 
in non-zero failure probability (i.e. P(f|Ti)), occurrence 



A Computationally Efficient Method to Determine the Probability of Rainfall‑Triggered Cut…

1 3

probabilities are required for multiple trigger conditions 
P(Ti), for example in the form of a probability distribution 
of trigger intensities (Mori et al. 2020; Lu et al. 2022a, b). 
Yet many studies do not account for variability in trigger 
intensities and only focus on the variability of the geomate-
rial properties. In these cases, failure probabilities are really 
conditional probabilities (i.e. P(f|T)) and it is essential that 
they are reported as such, with the trigger conditions on 
which they are conditional clearly reported, and that they 
are not interpreted as true probabilities associated with some 
time window (e.g. annual probabilities) from which esti-
mates of hazard or risk can be made. Annual probability of 
a rainfall-triggered slope failure is often assumed to be con-
trolled by the most critical rainfall (the rainfall under which 
the failure probability of the slope is maximum amongst all 
rainfall events in a year) (Lu et al. 2022a; Tang et al. 2018). 
The use of a critical rainfall to represent annual probability 
of failure raises additional concerns regarding its derivation: 
(1) how do we know that this is the most critical rainfall (i.e. 
how do we know that it triggers max P(f|T))?; (2) how do 
we decide what year to use (i.e. large rainfall events could 
be a one in 10-year event, a one in 50-year event or a one in 
100-year event)?

When the variability in trigger characteristics is 
accounted for, this is often done assuming that trigger 
probability is time independent, e.g. modelling pore pres-
sure using rainfall events drawn from an Intensity–Dura-
tion–Frequency (IDF) curve (Holcombe et al. 2012; Lu 
et al. 2022b). IDF curves are joint probability distributions 
of the intensity and duration of storm rainfall. Intensity and 
duration of rainfall are widely considered as the primary 
rainfall characteristics responsible for generating landslide-
triggering pore pressure distributions within slopes (Caine 
1980; Guzzetti et al. 2008). IDF curves are generally based 
on very long records of rainfall and have been used in both 
statistical (e.g. Guzzetti et al. (2008)) and mechanistic (e.g. 
Tang et al. (2018)) rainfall-induced landslide models. Tang 
et al. (2018) determine a conditional slope failure probabil-
ity and annual failure probability (alongside a deterministic 
FoS) of a partially saturated soil slope triggered by rainfall, 
using ‘random rainfall patterns’ (rainfall intensity over time) 
simulated by a random cascade model characterised by an 
IDF curve. They use a probabilistic framework (a Monte 
Carlo Simulation, MCS) to determine the conditional prob-
ability of failure, varying the random rainfall patterns. They 
determine the annual failure probability by multiplying the 
failure probability conditional on a set of rainfall intensities 
(obtained from MCS) with the occurrence probabilities of 
those rainfall intensities (obtained from an IDF curve). De 
Leon and Garduño (2020) account for uncertainty in geo-
material properties and rainfall in determining an annual 
failure probability for soil slopes under heavy rainfall. Soil 
density and strength, rainfall intensity and duration are 

assumed to be stochastic variables, with the soil properties 
assumed to be lognormally distributed and the rainfall inten-
sity is assumed to be an exponential variable (the correla-
tion between intensity and duration is taken into account). 
Mori et al. (2020) also determines the probability of slope 
failure accounting for uncertainty in material properties (soil 
strength and permeability) and trigger variability (rainfall 
intensity from an IDF curve) using a MCS framework. They 
use a smooth particle hydrodynamics stability model with 
random field modelling to capture the spatial correlation of 
the soil properties. They show that variability in saturated 
hydraulic conductivity can have a very strong influence on 
the probability of failure.

A key limitation of IDF curves is that there is often an 
assumption of constant rainfall over the entire duration 
of the storm which results in the shape of the storm time 
series being lost (the method used by Tang et al. (2018) 
relaxes this assumption). In addition, studies that determine 
rainfall-induced slope failure probability using IDF curves 
assume that rainfall is time independent and, therefore, do 
not account for antecedent rainfall conditions. However, this 
is rarely the case. In fact, many processes associated with 
landslide triggering are rarely truly time independent: earth-
quakes trigger aftershocks (e.g. Parsons (2002)), and damage 
rock altering its material properties (e.g. Jones et al. (2021)); 
rainfall events cluster over a range of timescales from days 
to years (e.g. Wang et al. (2005)); and phreatic surfaces are 
influenced by previous rainfall sometimes over weeks or 
months (e.g. (Iverson 2000)). Thus, an alternative to time-
independent sampling becomes necessary where triggers 
display consistent and/or significant time-dependence (e.g. 
areas that experience dry and wet seasons). Some studies 
have sought to address this within an IDF-based framework 
by sampling different antecedent conditions (e.g. Frattini 
et al. (2009)), others generate synthetic time series sampled 
from IDF curves (e.g. Tang et al. (2018)). However, there 
have been surprisingly few attempts to account for the time-
dependent probability due to rainfall sequencing through 
direct simulation of rainfall time series (see Jones et al. 
(2021); Ozturk (2022) for earthquake-triggered equivalents).

In accounting for rainfall variability, a hydrological model 
is required for the derivation of time-dependent pore water 
pressure conditions from the rainfall record. For cuttings, 
this has focussed on representing rainfall infiltration: De 
Leon and Garduño (2020) use a 2D Richard’s Equation (RE) 
solver to model rainfall infiltration on a 2D slope, they do 
not take into account the whole slope domain; Tang et al. 
(2018) perform rainfall infiltration analyses using 2D seep-
age analysis characterised by the soil–water characteristic 
curve and permeability function curve; Mori et al. (2020) 
simulate infiltration into the slope with rainfall intensity 
specified through the Gumbel distribution (where the rate 
of infiltration is dependent on permeability and on pressure 
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head differences of different soil layers). They use transient 
seepage analysis following Darcy’s law. Holcombe et al. 
(2012) are an exception in that they use a 1D RE solver to 
model vertical infiltration but also represent groundwater 
flow below the phreatic surface with an explicit solution to 
the Darcy equation. A drawback of all these methods is that 
they focus on the cutting and do not account for the influence 
of the surrounding topography on the groundwater regime, 
i.e. the effect of hydrogeology and antecedent rainfall on the 
phreatic surface. Current approaches to modelling rainfall 
infiltration and seepage in cuttings have many limitations: 
(1) they are computationally expensive; (2) hydrological 
parameters (e.g. hydraulic conductivity) and their variation 
in space are uncertain and poorly constrained, but have a 
substantial influence on the model output; (3) lateral inputs 
(i.e from upslope) are rarely taken into account. Models that 
predict landslides across landscapes have used a wider range 
of hydrological treatments, some only consider infiltration 
(e.g. Iverson (2000)), but many highlight the importance 
of lateral subsurface flow, representing it either in isolation 
(e.g. Talebi et al. (2008); Montgomery and Dietrich (1994)), 
or in combination with infiltration (though these are compu-
tationally expensive, e.g. Formetta et al. (2014)). However, 
these treatments have not been applied to the problem of 
cutting stability.

In this research, we overcome the aforementioned pit-
falls by choosing a hydrological model that captures some 
of the hillslope hydrological dynamics, but that runs in 
minutes rather than hours. This model uses Boussinesq’s 
groundwater theory to characterise groundwater flow (solv-
ing Darcy’s equation coupled with the conservation of mass 
equation). Boussinesq’s theory provides a diffusion wave 
solution that is less restrictive than other solutions for the 
governing groundwater flow equations (e.g. kinematic wave, 
Fan and Bras (1998); Troch et al. (2002), or by simulating 
steady-state rather than dynamic flow, Beven and Kirkby 
(1979); Talebi et al. (2008)). Note, the Boussinesq equation 
neglects the effect of capillary rise above the groundwater 
table and follows the Dupuit–Forcheimer approximation 
(flow through an unconfined aquifer) that the streamlines 
are approximately parallel to the impermeable boundary 
(Boussinesq 1877). The original 1D Boussinesq theory can-
not account for the 3D geometry of a slope (e.g. convergence 
or divergence, convexity or concavity). But slope geometry 
is known to significantly influence the hydrologic response 
(Troch et al. 2003, Eq. 6).

Fan and Bras (1998) and Troch et al. (2002) have devel-
oped simple models of groundwater flow for more complex 
geometries. Building on Fan and Bras (1998) and Troch 
et al. (2002), Troch et al. (2003) reformulated the equa-
tions of Boussinesq in terms of storage to develop a more 
complete hillslope-storage equation (relative to the previous 
kinematic wave approximations) that is applicable to more 

complex hillslopes. The continuity and Darcy equations of 
the Boussinesq equation are reformulated in terms of storage 
along the hillslope to derive the so-called Hillslope-Storage 
Boussinesq (HSB) equation (see Eq. 1 in Sect. 2.2). By 
introducing soil moisture storage, the 3D groundwater flow 
problem recast as a 1D flow problem for a 1D slope of vari-
able planform width with an inclined planar impermeable 
boundary. The HSB model can be applied to any slopes that 
can be considered as continuous media, such as soil slopes 
and rock slopes with no dominant fracture orientation (as 
dominant fracture orientation would affect the flow motion). 
In these cases, Darcy’s equation and the continuity equation 
are valid.

Further simplifications enable faster numerical or even 
analytical solutions (e.g. Troch et al. (2004); Hilberts et al. 
(2004); Talebi et al. (2008)) but these are unnecessary in 
this case since the Troch et al. (2003) model is already suf-
ficiently fast to run 1000 s of simulations within hours. Thus, 
Troch et al. (2003) HSB model is used in this study to simu-
late dynamic phreatic surface changes in response to rainfall 
time series and to capture the influence of upslope hillslope 
geometry. Paniconi et al. (2003) found that the HSB is able 
to capture the broad shapes of the storage and the outflow 
profiles for all hillslope profiles.

Here we present a computationally efficient mechanis-
tic model for rainfall-triggered slope failure probability 
accounting for trigger variability using rainfall time series 
and upslope influence by coupling to a hillslope hydrologi-
cal model. We choose a mechanistic rather than a statisti-
cal model so that its application is not limited to data-rich 
regions. We believe that this method is novel for establishing 
the frequency of a cutting failure as we develop a model 
that treats both the complexity of the failure mechanics 
and the hillslope hydrology in a computationally efficient 
way enabling efficient large-scale application. Conditional 
probability based on a single representative storm ignores 
known variability/uncertainty in trigger conditions. Our 
model is also novel as it accounts for the uncertainty about 
rainfall using a time-dependent method, as well as account-
ing for uncertainty in geomaterial properties. Where previ-
ous models have sampled from IDFs to generate triggering 
rainfall, we drive our model from real rainfall time series 
to correctly capture failure probability in situations where 
phreatic surface geometry and, thus, failure probability may 
be strongly dependent on antecedent conditions and rainfall 
sequencing. This scenario is particularly prevalent in areas 
that exhibit seasonal weather patterns (e.g. a dry and wet 
season, monsoons). The hydrological model we use accounts 
for lateral inputs by modelling the whole hillslope domain, 
whilst remaining computationally efficient. The model is 
developed by coupling a probabilistic slope stability analysis 
with a hillslope hydrological model to predict time-varying 
phreatic surface conditions resulting from input rainfall over 
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a long time window of >10 years and accounting for the 
entire hillslope topography.

We used our model to estimate the absolute frequency of 
a slope failure over 11 years ( Ff  ), which is closely related to 
annual failure probability, for a road slope in Nepal triggered 
by rainfall. We also explore the limitations of conditional 
probability of failure for a specific pore pressure scenario by 
examining how conditional probability, P(f|T), varies over 
time for a road cut slope in Nepal.

2  Methodology

Our methodology can be divided into three key sections: 

1. Using MCS to determine a FoS distribution with FoS 
as a function of the phreatic surface level and the varied 
geomaterial parameters (Sect. 2.1).

2. Using the HSB model (Troch et al. 2003) to generate 
phreatic surface time series (Sect. 2.2).

3. Combining the outputs of the MCS and HSB model to 
determine time-varying P(f|T) and a Ff  (Sect. 2.3).

First, a MCS is conducted to determine multiple FoS val-
ues that capture the aleatoric uncertainty in the geomate-
rial strength properties, for several seepage scenarios each 
associated with a different phreatic surface height at the 
upslope boundary (explained in Sect. 2.1). The slope geoma-
terial strength is characterised according to the Generalised 
Hoek–Brown (G-H–B) failure criterion which is today the 
most popular criterion to characterise rock mass strength 
(Wyllie and Mah 2017). Also well-constrained estimates of 
some G-H–B parameters can be reliably established from 
geological and geomorphological field observations (Robson 
et al. 2022). Second, relative to slope strength and hydraulic 
conductivity, meteorological information is easier to acquire, 
though in many countries, the network of gauges remains 
sparse. We assume that local daily rainfall is expressed by 
a time series and these data are available in the following 
analysis. The so-called hillslope-storage Boussinesq (HSB) 
equation is solved to generate a phreatic surface time series 
for the slope to account for local hydrological conditions in 
response to rainfall (discussed in Sect. 2.2). By associating 
the phreatic surface level time series from the HSB model 
with those assessed in the MCS, a FoS time series is gener-
ated for each parameter realisation. The time-varying P(f|T) 
and Ff  can then be calculated from the FoS time series (dis-
cussed in Sect. 2.3).

The proposed methodology requires the following input 
data: rainfall time series, G-H–B parameters character-
ising the slope geomaterial, estimates of hydrological 
parameters and slope geometry. Our approach is especially 
advantageous when geotechnical investigation cannot be 

conducted either due to cost or difficult terrain (i.e. moun-
tainous, remote areas). The questions raised over the use a a 
time-dependent model to represent trigger uncertainty, and 
what slope failure probability failure means and how it can 
be used are discussed in Sect. 5.2. The uncertainties and 
assumptions of the model are discussed in Sects. 5.1 and 
5.3, respectively.

An overview of the methodology is presented as a flow-
chart in Fig. 1. Table 1 outlines all the parameter symbols 
used in this paper, categorised by the geotechnical, hydro-
logical and failure frequency model.

2.1  Monte Carlo Simulations

It is well known that model parameters are characterised 
by two sources of uncertainty: (1) the uncertainty due to 
intrinsic material conditions; and (2) spatial variability in the 
analysed domain. For the spatial variability, plenty of experi-
mental evidence shows that all rocks and soils are nonhomo-
geneous (Phoon and Kulhawy 1999a, b). This problem could 
be modelled using random field theory (e.g. Griffiths and 
Fenton (2000); Dyson and Tolooiyan (2019); Gravanis et al. 
(2014)), but this necessitates the definition of length scales 
associated with the variability (spatial correlation lengths). 
These length scales are extremely poorly constrained (Shokri 
et al. 2019) for the most intensively monitored sites glob-
ally; thus, there is a lack of general guidance on reasonable 
length scales of variability for different material properties 
in different settings (e.g. rock types). Furthermore, intensive 
field testing is necessary to estimate these length scales and 
this would be prohibitively expensive. For these reasons, 
we neglect the spatial arrangement of variability and we 
concentrate solely on the intrinsic conditions.

To account for aleatory uncertainty in material properties, 
we represent them as distribution density functions. For an 
assigned phreatic surface level, we perform Monte Carlo 
Simulations (MCS) to propagate the material uncertainties 
to the probability of failure of the slope. The MCS propa-
gate parameter variability captured in probability density 
functions through the stability model to find the conditional 
probability of failure (i.e. the number of realisations which 
failed divided by the total number of realisations) (Fenton 
and Griffiths 2008).

In the MCS, not all material parameters are modified, but 
only those that are significant to stability conditions. For this 
purpose, we conducted a one-at-a-time sensitivity analysis 
to determine which G-H–B parameters the model is most 
sensitive to and, therefore, which G-H–B parameters should 
be varied as part of the MCS. To do so, literature-based 
estimates for the most likely, upper limit and lower limit for 
each parameter were input into the model, and the standard 
deviation (STDEV) in output FoS was computed for each 
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parameter tested. In our case, we found that the FoS is most 
sensitive to the Geological Strength Index (GSI). From a 
physical point of view, a reduction of this quantity represents 
the physical degradation of the exposed rock mass, taking 
into account the blockiness of the mass and its surface condi-
tions (Marinos and Hoek 2000).

The parameters chosen to be varied in the MCS were 
sampled from a lognormal distribution as there is general 
agreement in studies that examine or use rock strength 
distributions that the distribution should be uni-modal 
with many researchers suggesting a lognormal distribu-
tion as a reasonable model for the physical properties of 
rock (Hoek 1998; Parkin and Robinson 1992; Nour et al. 

Fig. 1  Flowchart outlining the 
key steps of methodology to 
estimate the frequency of failure 
and the conditional probability 
of failure. Nr (number of reali-
sations of G-H–B parameters 
varied in the Monte Carlo 
Simulation), Nz (number of 
phreatic surfaces tested in the 
seepage analysis) and Nk (num-
ber of realisations of hydraulic 
conductivity) were deter-
mined through convergence 
tests. Abbreviations: DEM = 
Digital Elevation Model, FE = 
Finite Element, FoS = Factor 
of Safety, G-H–B = Gener-
alised Hoek–Brown, HSB = 
Hillslope-Storage Boussinesq, k 
= hydraulic conductivity, LEM 
= Limit Equilibrium Method, 
MCS = Monte Carlo Simula-
tion, and Z = total head bound-
ary condition
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2002; Massih et al. 2008; Griffiths and Fenton 2009; Pan-
dit et al. 2019), particularly amongst those with a strong 
physical constraint on the distributions lower bound (e.g. 
values cannot be negative). Furthermore, a lognormal dis-
tribution ensures that the random value of the parameter 
will always be positive. In a probabilistic analysis, any 
correlation between parameters should be accounted for 
(Zeng et al. 2014). However, the correlation coefficients 
between the G-H–B parameters are poorly constrained. 
Pan et al. (2017) plot failure probabilities as a function 
of the normalised slope height, corresponding to corre-
lated and independent variables and find that when the 
G-H–B parameter correlations are considered, P(f) is 

slighty reduced. However, Pan et  al. (2017) conclude 
that the influence that these correlations have on the P(f) 
is ‘rather small’ (p. 6). Correlation relationships of the 
G-H–B parameters are neglected in a number of proba-
bilistic slope stability studies (Li et al. 2008, 2012; Pandit 
et al. 2019; Farichah and Hutama 2020). Given the uncer-
tainty in the correlation coefficients between the G-H–B 
parameters, the correlation relationships are also neglected 
here. Nr random realisations of GSI were generated from 
the lognormal distribution (with Nr based on a conver-
gence analysis).

We performed Nr deterministic stability analyses, rep-
resenting each value of GSI, using the Morgenstern-Price 

Table 1  Table of all parameter 
symbols used in this paper

Parameter symbol Description

Geotechnical model
D Disturbance
GSI Geological Strength Index
mi Material constant for intact rock
� Unit weight
�ci Unconfined compressive strength
Hydrological model
Bp Thickness of the permeable layer
Bw Phreatic surface height
k Hydraulic conductivity
L Length of the hillslope (channel to the ridge)
nf Geomaterial porosity
q Flux
r Daily rate of rainfall
ru Water pressure ratio
S Groundwater storage
t Time
w Width of the hillslope
w0 Width of the hillslope at x = 0

x Space
Z Total head boundary condition
� Inclination of the impermeable boundary
� Degree of convergence or divergence towards the toe of the slope
Failure frequency model
Ff Absolute frequency of a slope failure
Nf Number of failures considering all of the FoS time series
Nf (t) Number of failures for a fixed time step for all of the FoS time series
Nk Number of realisations of hydraulic conductivity
Nr Number of realisations of parameters varied in the Monte Carlo Simulation
N(t*) Number of failures in a time period (t*)
Nz Number of phreatic surfaces tested in the seepage analysis
P(f) Probability of failure
P(f|T) Probability of failure conditional on a particular trigger event
P(f|Ti) Probability of failure conditional on multiple trigger events
P(T) Probability of a trigger event
� Rate of landslide occurrence
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(M-P) Limit Equilibrium Method (LEM) using Rocsci-
ence, Slide2. The M-P method was employed here as 
it satisfies all equations of equilibrium (rigorous equilibrium 
method) and is found to be most accurate across different 
slope conditions (Duncan 1996). We used the default half-
sine interslice force function; however, the influence of the 
choice of interslice force is negligible for homogeneous 
slopes (Fredlund and Krahn 1977). A convergence test was 
first carried out to determine the optimal number of slices to 
be used in the LEM. The external boundaries of the model 
were chosen such that they have no effect on the resulting 
FoS.

MCS ( Nr deterministic LEM analyses) were performed for 
the slope cutting for Nz phreatic surfaces imposed at various 
heights to capture phreatic surface variability. The phreatic 
surfaces were generated using Finite Element (FE) steady-state 
seepage analyses. Nz total head boundary conditions at differ-
ent heights, Z, were imposed on the upslope boundary of the 
model. The elevation range in Z is from the ground surface to 
the elevation below which the phreatic surface does not influ-
ence the failure surface and thus the FoS. Z are equally spaced 
between these two elevation limits with the spacing set by the 
mesh element size, since the phreatic surface is insensitive to 
spacing more granular than this. The number of mesh elements 

Fig. 2  Schematic diagram 
highlighting the key elements of 
the probabilistic (system high-
lighted in blue) and hydrologi-
cal (system highlighted in red) 
models. The yellow area of the 
slope shows the stability model 
domain (the external bounda-
ries of the stability model were 
chosen such that they have no 
effect on the resulting FoS). 
Nr Limit Equilibrium Method 
(LEM) analyses are conducted 
representing each realisation 
of GSI for Nz phreatic surfaces 
generated by Finite Element 
(FE) method seepage analyses 
from total head nodes (Z) at 
the upslope boundary of the 
stability model. Nk phreatic sur-
face time series are generated 
through the Hillslope-Storage 
Boussinesq (HSB) model repre-
senting each value of hydraulic 
conductivity (k) (Color figure 
online)
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for the FE analysis was optimised using convergence testing 
on the resultant FoS. We assumed homogeneous, isotropic 
hydraulic conductivity and no vertical inputs (these assump-
tions are taken to simplify our model into 1D, allowing for 
proof of concept for the overall methodology). Unsaturated 
zones in the slope were neglected. The value of hydraulic con-
ductivity (k) prescribed to the model does not affect the result-
ing phreatic surface, nor the FoS since the seepage analysis is 
at steady state. Thus, the analyses did not need to be performed 
at different k realisations.

In summary, we performed Nr × Nz LEM stability analyses 
and we obtain FoS as a function of the phreatic surface level 
Z and the GSI value. For a fixed phreatic surface level, the 
FoS is a monotonically increasing curve with increasing GSI 
and for each Z, we obtain different curves in which the FoS 
reduces with increasing Z. The key steps of the MCS used 
in our model are highlighted in blue in a schematic diagram 
presented in Fig. 2. In the subsequent section, we illustrate the 
model employed to evaluate the phreatic surface level time 
series under unsteady-state conditions.

2.2  Phreatic Surface Time Series

In the methodology presented here, we aim to determine the 
frequency with which the slope experiences each phreatic sur-
face level considered in the previous MCS. For this purpose, 
we use a simple 1D hydrological model to simulate the phre-
atic surface height (and thus total head used in the FE seepage 
analysis) at the upslope boundary of the slope stability model. 
As an input in this model, we considered a rainfall time series 
rather than sampling storms affecting the slope of interest from 
an IDF distribution, to account for the correct timing and shape 
of storms and build up of pore water pressure in the slope (a 
time-dependent system). However, the structure of our model 
is such that a storm-based slope stability analysis could easily 
be performed as an alternative if a suitable IDF were available 
for the site.

The HSB model of Troch et al. (2003) is used to generate a 
phreatic surface time series (evolution of the phreatic surface) 

from the rainfall time series at the location of the upslope 
boundary of the stability model domain in the hillslope. 
Table 1 outlines the input parameters required for the HSB 
model (hydrological model). The boundary conditions are 
presented in Table 2.

All variables depend on time (t) and space (x), with x being 
a distance measured from the channel to the ridge. As per 
the requirements of the HSB model presented by Troch et al. 
(2003), Bp and � are constant. Bw is constrained to be in the 
range between zero (no water) and Bp . This means that no flux 
at the slope surface is modelled.

By combining the continuity equation with Darcy’s 
equation, reformulated in terms of the storage equation 
( S(t, x) = nfwBw ), a version of the HSB partial differential 
equation (Troch et al. 2003) (Eq. 6) of second order in space 
and first order in time is obtained:

For many hillslopes, the relationship between hillslope width 
(i.e the width of the flow strip) and distance upslope can be 
approximated as an exponential function of the form (Troch 
et al. 2003, p. 7):

where w0 is the hillslope width at x = 0 and � is a shape fac-
tor controlling the variation of the width along the x-axis. If 
� = 0 , a constant width profile is obtained (i.e. w(x) = w0 ), 
negative values of � reflect divergent hillslope topography 
with respect to the toe of the slope and positive values reflect 
convergent topography.

Equation 1 is numerically integrated after the initial 
condition and the boundary conditions are imposed. The 
equations are solved using a finite difference method imple-
mented in MATLAB and the main variable computed is the 
storage time series. The phreatic surface time series is then 
computed from the storage.

In situ, k is strongly dependent on the characteristics of 
the geomaterials (e.g. degree of weathering, fragmentation, 
and grain size heterogeneity) so that a deterministic value 
is not physically reasonable. However, spatial variability 
in k would be prohibitively computationally expensive to 
constrain. To account for the variability of k, a statistical 
approach was used so that multiple simulations of the model 
were conducted, each with a unique value of k drawn from 
a lognormal distribution of k. A lognormal distribution is 
chosen to prevent negative values. The lognormal distribu-
tion is characterised by the 1st and 99th percentiles which 
are the lower end and upper end of the k values for the slope, 
allowing for occasional occurrences of values outside the 

(1)
nf
�S

�t
=

k cos �

nf

�

�x

[
S

w

(
�S

�x
−

S

w

�w

�x

)]

+ k sin �
�S

�x
+ nf rw

(2)w(x) = w0 exp (�x)

Table 2  Table of initial and boundary conditions for the hillslope 
hydrological model (Hillslope-Storage Boussinesq model)

Expression Description

Bw(t = 0, x)(x) Initial phreatic surface height
(measured perpendicular to 

the impermeable boundary)
q(t, x = L) = 0 Impermeable flux at the ridge
Bw(t, x = 0) = 0 River level intersects the 

ground surface at the 
channel
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range. A convergence analysis was conducted to determine 
the minimum number of realisations of k required for the 
model ( Nk ). Phreatic surface time series are generated for 
each value of k, using the HSB model. We compare the 
resulting time-varying phreatic surface fluctuations to our 
expectations based on qualitative field observations at the 
site to constrain the values for the 1st and 99th percentiles 
of k. As with Troch et al. (2003), it is assumed that the vari-
ation in k with depth can be approximated as a step function, 
with uniform k geomaterial above an impermeable boundary 
(discussed further in 5.3).

The value of geomaterial porosity ( nf  ) used in the model 
was assumed from an average of literature values for the rock 
type at the site as it is not as variable as k (Singhal and Gupta 
2010) (further discussed in Sect. 5.3). The catchment area 
upslope of the cutting (i.e. the area that would drain through 
it) was defined using a Digital Elevation Model (DEM) in 
ArcGIS (see Fig. 3). In doing so, the watershed was defined 
by projecting a line upslope from the cutting along the line of 
steepest inclination to the ridge (defined at the point where 
inclination goes to zero). This line is the hillslope length 
(L), as depicted in white in Fig. 3. The extent of the slope 
width is defined as where the hillslope switches from convex 
to concave form at a gulley (these slope extents are shown 
in lime green in Fig. 3). The shape factor ( � ) is estimated 

by measuring the width of the hillslope (distance between 
the two slope width extents) at three points along the slope 
length ( w0 , w1 and w2 in Fig. 3) and taking the best-fitting 
exponential of these three widths.

The depth to the impermeable boundary and its incli-
nation were taken based on assumptions as there are few 
constraints that can be drawn from observations at this site 
and there is no accepted theory on the depth of the perme-
able region in a hillslope (discussed as the critical zone) in 
the scientific community (Anderson et al. 2019; Grant and 
Dietrich 2017; Flinchum et al. 2018; Clair et al. 2015). In 
literature, there is general agreement that the impermeable 
boundary tapers in inclination towards the ridge, meaning 
that the permeable layer is thicker at the ridge (Anderson 
et al. 2019; Grant and Dietrich 2017; Flinchum et al. 2018; 
Clair et al. 2015; Anderson et al. 2013; Medwedeff et al. 
2022). Thereby, we assumed that the inclination of the 
impermeable boundary ( � ) is 10◦ lower than the inclination 
of the ground surface. The sensitivity of the model to this 
assumption is explored in Sect. 5.3.

The downslope boundary condition of the HSB model 
implies that the impermeable boundary intersects the ground 
surface at this boundary, in most cases a river at the base 
of the hillslope with the impermeable boundary at the bed 
of the river and a wedge of permeable material extending 
upslope. The impermeable boundary was taken such that 
it intersects the ground surface at the river (the downslope 
boundary of the hillslope). Figure 4 displays a 2D section of 
the hillslope in profile, highlighting the geometrical proper-
ties of the model.

Fig. 3  Hillslope measurements to define catchment area. The extent 
of the slope widths is shown in light green (defined as where the 
hillslope switches from convex to concave form at a gulley), measure-
ments of the slope width ( w0 , w1 and w2 ) are shown in pale pink and 
the length of the slope in white. w0 , w1 and w2 are used to estimate 
the shape factor ( � ). Image sourced from google earth (Color figure 
online)

Fig. 4  Illustration of the Hillslope-Storage Boussinesq slope pro-
file highlighting the geometry of the impermeable boundary. The 
Slide2 stability model domain is shown in yellow (the external 
boundaries were chosen such that they have no effect on the resulting 
FoS). The hillslope length (L) is measured from the channel to the 
ridge. The impermeable boundary is highlighted in brown, where � 
denotes its inclination. The thickness of the permeable layer ( Bp ) is 
measured at the upslope boundary of the Slide2 model so that the 
impermeable boundary is at the level of the river channel at the river 
channel. A potential phreatic surface is shown in blue, with the phre-
atic surface height above the impermeable boundary denoted by Bw 
(Color figure online)
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We obtained an 11-year daily rainfall time series from 
a local meteorological station and duplicated this resulting 
in a 22-year time series to avoid the effects of the condition 
occurred before our analysis on the subsurface flux. If there 
is no information on the phreatic surface, the initial condi-
tion of the phreatic surface is set to a height of zero (i.e. the 
level of the impermeable boundary). The model should be 
spun up to minimise the influence that this assumption could 
have on the model.

The HSB model is written in MATLAB. Nk model simula-
tions are conducted each with a unique value of k, resulting 
in Nk phreatic surface time series. The key steps of the HSB 
model are highlighted in red in a schematic diagram pre-
sented in Fig. 2. The uncertainties and assumptions made in 
the HSB model are discussed in Sect. 5.

2.3  Combining the Models

In this section, we combine the results obtained from 
Sects. 2.1 and 2.2 to obtain the probability of failure and 
the frequency of failure (presented as a schematic dia-
gram in Fig. 5). For an assigned value of k, we discretised 
the phreatic surface time series according to Z values that 
were used to generate the phreatic surfaces for the MCS. 
Prior to doing so, the reference frame of the output of the 
HSB model (total head time series) has to be converted to 
match the horizontal/vertical Cartesian reference frame of 
the phreatic surface total head boundary condition in the 
stability model (Z). This is done by dividing the phreatic 
surface from the HSB model by the cosine of the incli-
nation of the impermeable boundary. Once the reference 
frame conversion is made, the ground level in the phreatic 
surface time series is made equal to the ground level of 
the stability model. By discretising each phreatic surface 
time series according to Z, FoS can be expressed as a 

Fig. 5  A schematic diagram 
highlighting how the outputs of 
the Monte Carlo Simulations 
( Nz FoS distributions) and the 
Hillslope-Storage Boussinesq 
model ( Nk phreatic surface time 
series) are combined to deter-
mine a time-varying conditional 
probability of failure (P(f|T)) 
and a frequency of failure ( Ff )
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discretised function of the phreatic surface for one GSI 
realisation and k realisation; therefore, we obtain a unique 
discretised FoS time series for each GSI realisation and k 
realisation.

Combining the results of the probabilistic stability anal-
yses and the hydrological model in this way significantly 
reduces the computational time that would otherwise be 
required to determine a FoS for every water level in this 
time series for every rock parameter realisation and every 
value of k.

The FoS time series for each realisation is converted to a 
binary ‘failure’ time series with failure for FoS<1 and stabil-
ity for FoS>1.

2.3.1  Method to Determine Time‑Varying Conditional 
Failure Probability

After doing the previous combination, we obtain Nr × Nk dis-
cretised FoS time series. We consider slope failure when the 
FoS is <1. If we denote Nf(t) as the number of failures for a 
fixed time step (t) considering all of the FoS time series then 
P(f|T) (probability accounting for the phreatic surface) for each 
time step P(f|T(t)) is given by

2.3.2  Method to Estimate the Frequency of Failure

Assuming that the slope is returned to its pre-failure condi-
tion after each failure (this assumption is discussed further 
in Sect. 5.3), each ‘failure’ time series is worked through 
chronologically, and when failure occurs the following steps 
are taken: (1) iterate a failure count for that failure time series; 
and (2) zero the failure time series (preventing further failures 

(3)P(f |T(t)) = Nf (t)∕(Nr × Nk)

from being counted) for a number of remediation days (the 
choice of remediation days is discussed further in Sect. 3.3 
whilst the sensitivity of the model output to this parameter is 
tested in Sect. 5.3) to allow time for debris to be cleared and 
the cutting to be reinstated as it was. If we denote Nf  as the 
number of failures considering all of the FoS time series, then 
the number of landslides per the timescale of the rainfall time 
series ( Ff  ) is given by

2.4  Case Study

We demonstrated this methodology on a road cutting on 
the Narayanghat-Mugling road in Chitawan, Nepal (see 
Fig. 6 for map). Nepal has an elevation range of less than 
100 m in the Terai region in the south to up to 8000 m in the 
Himalayan mountains. The region is tectonically active and 
experiences a summer monsoon season for four months of 
the year during which time 80% of Nepal’s annual rainfall 
occurs (Shakya and Nirula 2008). The case study site is at an 
elevation of around 240 m. It is situated in an area of sedi-
mentary to low-grade metamorphic rocks of Proterozic age 
(2500–539 Ma) in the Lesser Himalaya geological region. 
At this site, there is an above-road cut slope around 25 m in 
height and 70◦ inclination made up of weathered phyllite 
(see Fig. 7 for image of cutting). This cut slope exists in a 
valley side hillslope that is inclined at c. 25◦ above the cut-
ting. The road was originally excavated by blasting around 
40 years ago (personal communications with consultant in 
November 2019). A 2 m tall gabion wall constructed along 
the cutting collapsed due to a minor rockfall during the 2019 
monsoon season. Below the road, there is a 15 m long slope 
descending into the Trishuli River.

(4)Ff = Nf∕(Nr × Nk)

Fig. 6  Map showing the loca-
tion of the case study site along 
the Narayanghat-Mugling high-
way in the Chitawan District of 
Nepal
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The slope cutting of exposed rock mass is characterised 
according to G-H–B failure criterion. For all the G-H–B 
parameters and unit weight ( � ), the values for the most 
likely, upper and lower limits of the parameter were esti-
mated based on field observations of the slope and values 
from the literature (outlined in Table 3). GSI is a measure 
of the physical condition of the exposed rock mass (Marinos 
and Hoek 2000), whilst the unconfined compressive strength 
( �ci) accounts for the strength of the rock (Hoek 1998). GSI 
and �ci were estimated according to field observations (the 
rock, phyllite, is disintegrated with a highly weathered sur-
face), using Marinos and Hoek (2000) as guidance. The 
values for the G-H–B material constant, mi  and � were esti-
mated based on expected ranges for the rock type (weathered 
phyllite) taken from literature ( � from Fine (2021) and mi 
from Marinos and Hoek (2000)).

The Disturbance Factor (D) in the G-H–B criterion 
accounts for the blast damage and stress relaxation of a rock 
mass. Despite this cutting being excavated by historical 
blasting, which is likely to have caused disturbance, D was 
taken as zero across the slope for the sake of simplicity. This 
choice is discussed further in Sect. 5.1.

Daily rainfall data spanning an 11-year period from Janu-
ary 2010 to December 2020 recorded at the Sakhar mete-
orological station in the Tanahu district (Gandaki Province) 
were acquired from the Government of Nepal Department 
of Hydrology and Meteorology (Fig. 8). Sakhar meteoro-
logical station is around 13 km from the research site and 
lies at an elevation of around 60 m higher than the road by 
the research site. It should also be noted that no data were 
available from the station for 2013, thus missing data were 
replaced by repeating the 2014 record to enable continuous 

simulation since a break in the simulation would have neces-
sitated re-defining the model initial conditions.

The application of our methodology to this case study is 
discussed in the next section (Sect. 3).

3  Site‑Specific Methodology

3.1  Site‑Specific Probabilistic Slope Stability Model

2D stability analyses were performed using M-P LEM in 
Rocscience, Slide2. Literature-based estimates 
for most likely, upper limit and lower limit values of each 
parameter (outlined in Sect. 2.4) were input to the model, 
and the STDEV in output FoS was computed for each 
parameter tested. For � , the STDEV was found to be negligi-
ble at 0.01, and, therefore, a single value of � was employed. 
The STDEV of the FoS for GSI, mi and �ci were found to be 
0.5, 0.1 and 0.1, respectively.

Fig. 7  Image of road cutting case study along the Narayanghat-Mug-
ling road in Chitawan, Nepal. Image taken in November 2019

Table 3  Most likely, upper and lower limit estimates for values of 
G-H–B parameters and unit weight ( � ) for a slope along the Naray-
anghat-Mugling road based on geological and geomorphological field 
observations

The Hoek–Brown failure criterion include: Geological Strength Index 
(GSI), material constant for intact rock (m

i
 ) and, unconfined com-

pressive strength ( �
ci
)

� GSI m
i

�
ci

[kN/m3] [−] [−] [MPa]

Most likely 24 22 7 25
Lower limit 23 15 4 15
Upper limit 25 30 10 35

Fig. 8  Daily rainfall (m/s) from 2010–2020 recorded at Sakhar mete-
orological station in the district of Tanahu acquired from the Govern-
ment of Nepal Department of Hydrology and Meteorology. Data for 
2013 were missing and have been replaced with a copy of the data 
from 2012 (highlighted in orange) (Color figure online)
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Given that the model exhibits high sensitivity to the GSI 
compared to the other parameters (Pandit et al. 2019; Chen 
and Lin 2019; Hoek 1998; Pan et al. 2017), it was varied 
as part of the MCS. Instead, �ci and m i  were kept constant.

The rock mass of the cutting examined here was identi-
fied through geological observations to be phyllite. Field 
observations at the cutting suggested that GSI ranged from 
15 to 30 based on the GSI charts of Marinos and Hoek 
(2000) as guidance. These values were used to parameterise 
a lognormal distribution assuming that the lower and upper 
limits reflected 1st and 99th percentiles of the distribution, 
respectively. This is to reflect its expected uni-modal form 
and allow for occasional occurrence of values outside the 
typical range (1st and 99th percentiles chosen so that only a 
very small proportion fall outside this range). The lognormal 
distribution of GSI is shown in Fig. 9.

Deterministic stability analyses were performed using 
the M-P 2D LEM in Rocscience, Slide2. A conver-
gence test was first carried out to determine that the optimal 
number of slices to be used in the LEM slope stabilisation 
analyses is 50. The external boundaries of the model were 
chosen such that they have no effect on the resulting FoS. 
By conducting a convergence analysis, we find that the opti-
mal number of realisations of GSI for the MCS is 1000 (i.e. 
Nr = 1000 ). Further realisations result in <1% change in the 
output of the model. See Table 4 for parameter values used 
in each MCS analysis.

FE steady-state seepage analyses were performed in 
Slide2, solving for Darcy’s equation and the continuity 
equation. The mesh for the FE analyses was made up of 
10,000 six-noded triangles (optimised based on convergence 
testing). Total head Z at the upslope boundary ranges from 

92.48 m above river level (when the phreatic surface is at 
the ground surface) to 45 m above river level (below which 
the phreatic surface does not influence the failure surface 
and thus the FoS). Seepage analyses were performed for 25 
total head values ( Nz = 25 ) each with a different Z equally 
spaced from 45 to 92.48 m (see Fig. 10 for model set up).

One thousand deterministic slope stability analyses (vary-
ing the GSI according to the lognormal distribution) were 
carried out for twenty-five phreatic surface scenarios (i.e. 
1000 × 25 LEM stability analyses were conducted). The 
predominant failure mechanisms observed in these analy-
ses were shallow in terms of aspect ratio and constrained to 
the cut slope itself. Figure 11 displays probability density 
functions for the 1000 factors of safety determined through 
these deterministic slope stability analyses for every phreatic 
surface. As expected, the distribution of FoS shifts towards 
lower values as Z increases and the fraction of runs with FoS 
<1, i.e. the conditional probability of failure for that phreatic 
surface scenario increases.

Fig. 9  Lognormal distribution of the Geological Strength Index cat-
egorised in terms of the 1st and 99th percentiles being the lower and 
upper limits of the reasonable range for the cutting made up of phyl-
lite

Table 4  Table displaying values for Generalised Hoek–Brown param-
eter (intact rock parameters, m 

i
 , unconfined compressive strength, 

�
ci
 , and disturbance, D) and unit weight ( � ) used in each deterministic 

analysis

One thousand values of Geological Strength Index (GSI) are sampled 
from a lognormal distribution characterised in terms of its 1st and 
99th percentiles being equal to 15 and 30, respectively, to be used in 
the MCS. The values of � , m 

i
 , �

ci
 and D were taken as constant in the 

MCS

� m
i

�
ci

D GSI
kN/m3 – MPa – –

24 7 25 0 15→30
Constant Constant Constant Constant Varied

Fig. 10  Stability analysis model set up in Rocscience, Slide2. 
Cutting is 25  m in height inclined at 70◦ . The topography upslope 
of the cutting is inclined at 25◦ . Total head boundary condition (Z) 
equally spaced between 45 and 92.48 ms imposed at the ridge side of 
the slope to generate phreatic surfaces
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3.2  Site‑Specific Hillslope Hydrological Model

The cutting examined here is made up of weathered phyllite. 
Phyllite is a crystalline, foliated, low-grade metamorphic 
rock. Such rocks generally have comparatively high porosity 
but low permeability (Singhal and Gupta 2010). Values of k 
for fractured crystalline metamorphic rock were taken from 
Singhal and Gupta (2010) ( 10−9 to 10−5 m/s) and applied in 
the model to predict time-varying phreatic surface fluctua-
tions. We observed no evidence of surface run off at this 
cutting and inferred that surface saturation is rare within or 
upslope of the cutting. Therefore, we imposed a rule that the 
1st percentile value of k cannot result in a phreatic surface 
at the ground level for a sustained amount of time (more 
than a day). This considerably increased the 1st percentile 
of k to 1.7 × 10−6 m/s from the minimum value found in the 
literature ( 10−9 ) which is perhaps indicative of a relatively 
high degree of weathering on the slope. The 99th percentile 
is given as the maximum values for k in metamorphosed 
crystalline rock ( 1 × 10−5 m/s). The 1st and 99th percentiles 
are use to characterise a lognormal distribution of k. Two 
thousand realisations of k ( Nk = 2000 ) are then generated 
from the lognormal distribution. Two thousand is the mini-
mum number of realisations needed in the model determined 
by a convergence analysis.

The value of nf  used in the model was taken from an 
average of fractured crystalline metamorphic rocks (Singhal 
and Gupta 2010). The catchment area upslope of the cut-
ting is defined using the Shuttle Radar Topography Mis-
sion (SRTM) DEM of 1-arc second resolution in ArcGIS. 
The slope width is measured at three places along the slope 
length (at x = 0 plus two random locations further towards 
the ridge, see Fig. 3) to estimate � (by taking the best-fitting 
exponential of these three widths).

Based on the observation that there is no evidence of the 
water table daylighting at the ground surface above the cut-
ting on the hillslope, it is determined that the impermeable 
boundary is at a depth below the ground surface across the 
length of the hillslope. Based on the literature, we assume 
that the impermeable boundary tapers in inclination with 
distance towards the ridge (Anderson et al. 2019; Grant 
and Dietrich 2017; Flinchum et al. 2018; Clair et al. 2015; 
Anderson et al. 2013; Medwedeff et al. 2022). Thereby, it is 
assumed that the impermeable boundary is at an inclination 
of 15◦ , 10◦ lower than the ground surface. The slope profile 
is composed of a planar 25◦ slope with a steeper 70◦ cutting 
near its toe. The impermeable boundary is configured such 
that it intersects the ground surface at the river resulting in 
a permeable layer thickness of c. 51.28 m at the upslope 
boundary of the Slide2 model. The key input parameters 
for the HSB model for this case study are outlined in Table 5.

The rainfall time series is shown in Fig. 8. This is an 
11-year record of daily rainfall. Given that we have no infor-
mation on the phreatic surface, the initial condition of the 
phreatic surface was set to a height of zero. To minimise the 
influence that this assumption could have on the model, the 
model was spun up using a duplication of the 11-year rainfall 
record. We believe that this duration (an additional 11 years) 
is sufficient for the subsurface flux to avoid the effects of the 
conditions that occurred before our analysis.
MATLAB was used to run the HSB model according to 

the method outlined in Sect. 2.2 for 2000 realisations of k 
taken from the lognormal distribution. The model output 
was 2000 phreatic surface time series. Figure 12 displays 
the model output for 100 realisations of k varying from the 
minimum to maximum k in the distribution over 11 years. 
The lower the value of k, the higher the phreatic level time 
series. The effect of the annual variation in rainfall can be 
seen in this figure; during the monsoon season, the phreatic 
surface in the slope increases, and then decreases again dur-
ing the dry season.

Fig. 11  Probability density function of the 1000 factors of safety 
values determined for the cutting for 25 phreatic surface scenarios. 
Phreatic surfaces are determined by carrying out Finite Element (FE) 
method seepage analysis with a boundary condition of total head (Z) 
on the ridge side of the model varying from 45 m in height to 92.48 
m

Table 5  Case study input parameters for the HSB model

The inclination of impermeable boundary is assumed to be less than 
the inclination of the hillslope. The shape factor, initial width and 
length of slope are estimated from a DEM in ArcGIS. Porosity is 
taken as an average of crystalline metamorphic rock from literature

Depth to 
imper-
meable 
boundary

Inclina-
tion of 
imper-
meable 
boundary

Shape 
factor

Initial 
width

Length of 
slope

Material 
porosity

Bp � � w0 L nf

[m] [◦] – [m] [m] [%]

51.28 15 − 0.0008 1619.9 1457.0 7.5
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Figure 13 displays probability density distributions of 
the phreatic surfaces (across all realisations of k) at four 
time steps to showcase the variation in trends: (1) time = 
0.74 years (peak, higher peak values); (2) time = 1.33 years 
(trough, higher peak values); (3) time = 6.80 years (peak, 
lower peak values) and (4) 7.46 years (trough, lower peak 
values). As expected, the spread of the phreatic surfaces at 
the peaks are much higher than those at the troughs. Another 
finding is that at the times where the phreatic surface peaks 
at the highest values, they have a wider spread of values (and 
in the trough following the high peak). Where the peak is 
lower, the spread of values is more constrained (also in the 
trough following the low peak).

3.3  Site‑Specific Model Coupling

To couple the outputs from the probabilistic (the MCS) 
and hillslope hydrological (the HSB) models, the phreatic 
surface time series (output from the HSB) were discretised 
according to 25 Z values ( Nz = 25 ), that were used to gener-
ate the phreatic surfaces for the MCS. Prior to doing so, a 
reference frame convergence is made by dividing the phre-
atic surface from the HSB model by cosine of the inclination 
of the impermeable boundary (15◦ ). By discretising each 
phreatic surface time series according to Z, a unique FoS 
time series can be generated for each GSI realisation and 
k to generate 1000 × 2000 ( Nr × Nk ) FoS time series. The 
FoS time series for each realisation is converted to a binary 
‘failure’ time series with failure for FoS<1 and stability for 
FoS>1.

The time-varying conditional probability of failure 
(P(f|T)) was determined by dividing the number of failures 
(where FoS < 1) for a fixed time step considering all FoS 
time series by the number of realisations of GSI ( Nr = 1000 ) 
and the number of realisations of k ( Nk = 2000 ), according 
to Eq. 3. Thereby, determining a P(f|T) for each time step.

To determine a frequency of failure ( Ff  ), each ‘failure’ 
time series was worked through chronologically, and when 
failure occurs, there is an iteration for the failure count for 
that failure time series and the failure time series is zeroed 
for 90 remediation days preventing further failures from 
being counted in a 90-day window. The timescale for reme-
diation was assumed to be 90 days for Nepal because the 
monsoon season lasts 3 to 4 months and work cannot be car-
ried out during this time. The total number of landslides is 
then summed across all ‘failure’ time series and normalised 
by 1000 realisations ( Nr = 1000 ) and 2000 realisations of 
k ( Nk = 2000 ) to determine a number of landslides per 11 
years (according to Eq. 4).

4  Results

4.1  Time‑Varying Conditional Probability of Failure

Figure. 14 displays the time-varying conditional probability 
of failure determined by following the method outlined in 
Sect. 2.3.1. The figure exhibits similar general trends that 
can be observed in the phreatic surface time series plot 
(Fig. 12). Figure 12 displays annual cyclicity, with peaks 
in the phreatic surfaces in correspondence of the monsoon 
season and troughs in the dry season. The same trend can 
also be observed in Fig. 14, with peaks in the P(f|T) during 
the monsoon season and significant dips during the dry sea-
son. In Fig. 12, it can be seen that the peaks of the phreatic 
surfaces during the monsoon seasons for the first 2 years 
are the highest, and then the peaks of the phreatic surfaces 

Fig. 12  One hundred phreatic surface time series derived using the 
HSB model based on one hundred realisations of k. 50 m represents 
the ground surface and 0 m is the impermeable boundary

Fig. 13  Probability density distributions of phreatic surface height 
above the impermeable surface (across all values of k) at four time 
steps: (1) time = 0.74 years (peak, higher peak values); (2) time = 
1.33 years (trough, higher peak values); (3) time = 6.80 years (peak, 
lower peak values) and (4) 7.46 years (trough, lower peak values). 
The peaks are shown in a solid line, whereas the troughs are in a 
dashed line
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decline every year to the lowest in the 7th year. After the 7th 
year, the peaks of the phreatic surfaces during the monsoon 
season start to increase, and then drop off again in the 10th 
year, followed by a sharp increase for the 11th year.

4.2  Frequency of Failure

By summing all the landslides from each FoS time series, 
and normalising by the number of k realisations ( Nk = 2000 ) 
and the number of realisation ( Nr = 1000 ), it is estimated 
that 5.10 failures of this cutting will occur every 11 years.

As shown by Ross (1972), the rate of landslide occur-
rence ( � ) can be estimated as:

where N(t∗) is the number of failures in a time period t∗ . 
In this case, � = 5.10∕11 = 0.46 , meaning that failure is 
expected at a rate of 0.46 per year (annual Ff  ). This can be 
equated to a failure approximately every other year. Infor-
mal comments from consultants on the Narayanghat-Mug-
ling road suggest that this frequency of failures has been 
observed in the past in the area. This methodology devel-
oped using an 11-year rainfall time series, assumes that this 
Ff  is still valid for years into the future (i.e. in 20 years time).

Probability of failure can be determined from the fre-
quency of failure using simple statistics, following a Pois-
son model which is a continuous-time model including the 
occurrence of random point-events, or in this case landslides 
(Crovelli 2000), the probability of failure can be determined. 

(5)� =
N(t∗)

t∗
According to the Poisson model, the probability of one or 
more landslides during a time t is:

Thereby, it is estimated that the annual probability of failure 
for this cutting is 0.37 ( 1 − exp −0.46×1 = 0.37 ). The prob-
ability of one or more cutting failures occurring in 11 years 
is 0.99 ( 1 − exp −0.46×10 = 0.99 ) and the probability of one or 
more cutting failures occurring in 100 years is close to one 
( 1 − exp −0.46×100 = 1).

Figure 15 displays a histogram of the number of slope 
failures over 11 years into 100 bins of hydraulic conductiv-
ity values. The number of failures were normalised by the 
number of realisations ( Nr = 1000 ) and the size of the bin 
(40 realisations of k). This figure shows that the lower the k 
of the slope, the greater the Ff .

(6)P{N(t) ≥ 1} = 1 − exp −�t

Fig. 14  Time-varying conditional probability of failure (P(f|T)) over 
11 years for the case study site. P(f|T) calculated for every time step 
by dividing the total number of failures across all ‘failure’ time series 
by the number of realisations and number of realisations of hydraulic 
conductivity

Fig. 15  Histogram of the number of landslides in 11 years for the 
case study site binned according to the discretised realisations of 
hydraulic conductivity. There are 40 realisations of k in each bin

Fig. 16  Histogram of the number of landslides in 11 years for the 
case study site binned according to realisations of the Geological 
Strength Index (GSI). There are 40 realisations of GSI in each bin
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Figure 16 displays a histogram of the number of slope 
failures per 11 years into 100 bins of GSI. The number 
of failures were normalised by the number of realisations 
( Nr = 1000 ) and the size of the bin (40 realisations of GSI). 
This figure shows that the lower the GSI of the slope, the 
greater the Ff  as it is reasonable to expect.

5  Discussion

Following the methodology presented in this paper, the time-
varying conditional probability of failure and frequency of 
failure of a slope cutting triggered by rainfall can be esti-
mated. In this section, the uncertainties of the method and 
the sensitivity of the model to key assumptions made are 
discussed.

5.1  Uncertainties

The HSB model contains a large number of assumptions 
necessary to enable a fast and simple solution to the RE. 
Paniconi et al. (2003) carried out a comparison between the 
Hillslope-Storage Boussinesq equation and RE examining 
various hillslope geometries. They determined that the two 
models have closer matches in outcomes for convergent than 
divergent hillslopes, and under drainage conditions than 
recharge conditions. They state that there are “remarkably 
good matches of the diversity of shapes, including peaks and 
spreads, that characterise the storage and outflow dynamics 
of the different hillslopes" (Paniconi et al. 2003) (p. 9). The 
reason for the difference in the outcomes of the recharge 
scenarios is attributed to the role of the unsaturated zone in 
the RE, slowing the vertical transmission of rainfall through 
the hillslope soil. Due to the influence of the unsaturated 
zone, the storage profile simulated by RE is lower than that 
from the HSB model. This relationship is exhibited in the 
hydrographs they present, in that there is a closer match 
between the HSB and RE hydrographs for a convergent 
slope than a divergent slope, as the convergent slope drains 
slower, remaining more saturated, meaning the unsaturated 
zone plays less of an important role. On the other hand, the 
HSB and RE hydrographs for a divergent hillslope exhibit 
greater differences given that divergent slopes are faster 
draining and, therefore, the unsaturated zone plays a more 
important role. Thus, whilst the assumptions of the HSB 
are known to introduce some additional model uncertainty, 
they are necessary to render the approach tractable and this 
additional uncertainty is small in the context of the very 
large uncertainty in material properties (e.g. permeability, 
porosity, and geometry of impermeable layer) for hillslopes 
in general (this cutting is no exception).

The uncertainties in the rock parameters used in the LEM 
analysis are partially accounted for (the parameter values 
used for the probabilistic analysis are themselves uncertain) 
by carrying out probabilistic stability analyses. The assump-
tion of infinite correlation length is also made by neglecting 
local spatial variability in the cutting.

As previously stated, the predominant failure mechanisms 
observed in the LEM stability analyses were shallow in 
terms of aspect ratio and constrained to the cut slope itself. 
Shallow failure of the road cut slope itself is commonly 
observed along this road, as well as multiple other roads in 
Nepal, due to over-steepened cut slopes.

The Narayanghat-Mugling road was historically blasted 
when it was initially excavated. However, disturbance caused 
by blasting is not accounted for. This was decided to keep 
the slope model simple, as this case study is being used 
to demonstrate the methodology presented in this paper. In 
addition, there is no data on the intensity and extent of dam-
age that was caused by blasting. If the blasting was carried 
out in an uncontrolled manner, the disturbance towards the 
face of the cutting may be quite high which can significantly 
reduce the stability of the cutting.

5.2  Probability of Failure

The similarities in the trends of the phreatic surface time 
series (Fig. 12) and the P(f|T) time series (Fig. 14) highlight 
the influence of the phreatic surface level on the P(f|T). The 
phreatic level peaks in the first two monsoon seasons, as the 
rainfall in the previous year during the spin up is very high 
(a copy of the daily rainfall during 2020, see Fig. 8). Based 
on this finding, it can be said that daily rainfall is not the 
key driver of failure, but prolonged heavy rain instead. This 
suggests that it is important to account for rainfall variability 
in time using a time-dependent system (e.g. a rainfall time 
series) for an area that hosts a monsoon season, rather than 
using a time-independent system (e.g. using rainfall events 
drawn from an IDF curve).

The annual cyclicity and variability of the P(f|T) observed 
in Fig. 14 also suggest that annual probability may not be 
representative for an area that hosts a monsoon season and 
has a long-term memory system. If an instantaneous failure 
probability is used in stability analysis and design, it could 
result in dramatically over-conservative or under-conserva-
tive results. For example, we estimated an annual probability 
of failure of 0.37 for this cutting. Looking at the time-var-
ying probability of failure (Fig. 14), this would be a gross 
overestimate of the probability of failure for this cutting for 
the majority of the 11 years analysed.

As discussed, Fig. 14 can be used to observe P(f|T) over 
time and how this reflects fluctuations in the phreatic sur-
face time series. However, it is difficult to estimate a rate of 
slope failure occurrence from this plot as the time-varying 
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conditional probability is not bound by time, and, as dis-
cussed, a rate of occurrence may not be representative of this 
plot. It is not straightforward how to use time-varying P(f|T) 
to inform slope stability design. Moreover, there are not yet 
slope design standards at present expressing threshold values 
in terms of failure probability. Conversely, the Ff  is a much 
more intelligible value, which could be hugely beneficial to 
stability design. For example, Ff  can be used in a cost–ben-
efit analysis where stabilisation measures can be compared 
according to their Ff  value and cost.

5.3  Assumptions

A significant assumption in the HSB model is that flow is 
oriented parallel to the bed slope. This differs from the RE 
model where flow can be resolved in any direction and flow 
direction emerges from the solution (Paniconi et al. 2003). 
Another assumption of the HSB model is that it does not 
account for vertical infiltration meaning that there will be 
an increase in water flux at the toe of the slope as compared 
to a model which accounts for vertical infiltration (e.g. RE) 
(Paniconi et al. 2003).

The model’s sensitivity to the remediation time required 
to return the slope to its pre-failure condition (during which 
FoS<1 does not result in a countable landslide) was tested 
using values of 7–365 days (Table  6). There is a steep 
decline in the number of failures in increasing the number of 
remediation days from 7 to 90 days, this then plateaus after 
90 days. This trend demonstrates that reducing remediation 
time can considerably increase estimated frequency of fail-
ure. It also shows that the cutting used to demonstrate this 
methodology is very unstable, and that if remediation sim-
ply returns it to its pre-failure condition, it will quickly fail 
again. This indicates that slope stabilisation measures are 
necessary. Although the Ff  is strongly sensitive to the reme-
diation time, this assumption can be refined by a practitioner 

working on a project who is likely to have a good knowledge 
of the expected number of days until remediation occurs. It 
is also assumed that the cutting is reinstated to its pre-fail-
ure condition, during each remediation following a failure. 
Although it is unlikely that the slope would be returned to 
exactly the same conditions, it may not be dissimilar.

The 1st and 99th percentiles of the lognormal distribution 
of k were initially defined through evaluating values of k for 
fractured crystalline metamorphic rock from Singhal and 
Gupta (2010) ( 10−9 to 10−5 m/s). The value for the 1st per-
centile was then adjusted based on predictions from the HSB 
model evaluated against the observational constraint that the 
cutting had no evidence of overflow and, therefore, should 
not experience prolonged periods of surface saturation. For 
the case of the 99th percentile, there is no observational 
constraint and, therefore, it is assumed that this value is the 
higher end of values found in literature ( k = 1 × 10−5 m/s). 
The sensitivity of the model to this value is tested (results 
displayed in Table 7). Values tested include 6 × 10−6 to 
2.2 × 10−5 m/s in increments of 4 × 10−6 m/s. Values lower 
than 6 × 10−6 m/s were not tested as these would be too 
close to the 1st percentile ( 1.7 × 10−6 m/s). Values higher 
than 2.2 × 10−5 m/s were not tested as the phreatic surface 
was levelling out at the impermeable boundary. This test 
shows that the greater the value of the 99th percentile of k, 
the lower the Ff  . There is a steep reduction in the Ff  from 
6 × 10−6 to 1.4 × 10−5 m/s, with little change thereafter. The 
range of values of k from literature for fractured crystalline 
rock is wide ( 10−9 to 10−5 m/s), but based on observational 
constraints, the potential range for the cutting is reduced to 
1.7 × 10−6 to 10−5 m/s. Given that this range is at the higher 
end for fractured crystalline rock, it can be said that the cut-
ting is highly fractured.

The HSB model assumes that the variation in k with 
depth can be approximated as a step function, with uniform 
k material above an impermeable boundary. This is clearly 
an approximation, but underpinned by theoretical and obser-
vational studies on the permeable layer sometimes referred 

Table 6  Sensitivity test on how the number of remediation days (days 
after a landslide) affects the frequency of slope failures over 11 years

The percentage difference is calculated using the number of remedia-
tion days chosen for the model (90 days) as the baseline

Remediation days F
f
 Failure/11 years Percentage 

difference 
%

7 61.97 1115
14 27.24 434
30 13.29 161
60 7.15 40
90 5.10 –
180 3.10 − 39
270 2.52 − 51
365 2.21 57

Table 7  Sensitivity of the frequency of failure ( F
f
 ) model to the 99th 

percentile of the lognormal distribution defining hydraulic conductiv-
ity

The percentage difference is calculated using the value used in the 
model ( 1.0 × 10−5 m/s) as the baseline

99th percentile of k m/s F
f
 Failure/11 years Percentage 

difference 
%

6.0 × 10−6 6.82 34
1.0 × 10−5 5.10 –
1.4 × 10−5 3.26 − 36
1.8 × 10−5 2.60 − 49
2.2 × 10−5 2.45 − 52
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to as the critical zone (the weathered mantle between fresh 
bedrock and the atmosphere) (Anderson et al. 2019; Grant 
and Dietrich 2017; Flinchum et al. 2018; Clair et al. 2015). 
Many of these studies note a decline in permeability, fracture 
density or openness, and/or degree of weathering with depth 
and also note that this decline is typically nonlinear (with 
much of the permeability concentrated near the surface; e.g. 
Jiang et al. 2009; Ameli et al. 2016) and/or characterised 
by a sharp boundary between disturbed and fresh bedrock 
(Clair et al. 2015).

Hydraulic conductivity and porosity are linked as they 
are both influenced by the lithology type and the density 
of fractures in the rock, meaning that their values used in a 
model should be correlated. However, we did not correlate 
these values and the value for porosity in the HSB model 
was held constant. This was done so for the sake of simplic-
ity to demonstrate the overall methodology. The value for 
porosity used in the HSB model was estimated as an aver-
age of a range of porosity values for fractured crystalline 
metamorphic rock (5–10%) from Singhal and Gupta (2010). 
The sensitivity of the model to the porosity was tested and 
the results are displayed in Table 8. The higher the value of 
porosity, the lower the frequency of failure. If the porosity 
of the cutting was actually at the lower end of the range for 
fractured crystalline metamorphic rock, the model output 
would remain the same. Alternatively, if the porosity was 
at the higher end, the model would overestimate the fre-
quency of failure by 12%. These differences are relatively 
small compared to the other uncertainties examined here 
suggesting that the model is not too sensitive to porosity for 
this rock type, and thus it is acceptable to select a determin-
istic value for this parameter in this case. The range of poros-
ity values for most rock types generally varies by 5–15% 
(with the exception of basalt and highly weathered crystal-
line rock) (Singhal and Gupta 2010). With this in mind, the 
model is likely to be insensitive to porosity across the range 
of porosity variability found in most rocks and, therefore, 
it is broadly accepted to neglect porosity spatial variability.

Given the lack of in situ hydrological data, we made the 
assumption that the impermeable boundary is at a lower 
inclination than the ground surface, so that the permeable 

layer is thicker towards the ridge based on evidence from lit-
erature (Clair et al. 2015). As with the boundary conditions 
imposed by Troch et al. (2003), the impermeable boundary 
at the river channel is fixed to the depth of the river channel. 
We tested the model’s sensitivity to the inclination of the 
impermeable boundary (see Table 9). Inclinations steeper 
than parallel to the ground surface had not been tested as 
there is no evidence of this subsurface architecture in the lit-
erature (Clair et al. 2015; Riebe et al. 2017; Anderson et al. 
2013; Lebedeva and Brantley 2013; Flinchum et al. 2018; 
Hayes et al. 2019; Medwedeff et al. 2022). Bp (the thickness 
of the permeable layer) was varied with layer inclination, 
to ensure the impermeable boundary intersects the ground 
surface at the river channel.

A steep increase in the Ff  can be observed as the inclina-
tion of the impermeable boundary increases. This correla-
tion is due to increasing the gradient of the impermeable 
boundary resulting in an increased height of the phreatic 
surface leading to greater instability. Increasing the gradi-
ent of the impermeable boundary results in two competing 
drivers: (1) faster and, therefore, thinner lateral subsurface 
flow reducing the height of the phreatic surface; and (2) an 
increased height of the phreatic surface as the phreatic sur-
face is perched on the impermeable boundary (increasing the 
gradient of the impermeable boundary increases its height 
above datum and thus increases the height of the phreatic 
surface above datum). Based on our results (Table 9), it can 
be said that the geometric effect of the height of the bound-
ary on which the subsurface flow is perched increasing has 
a greater effect on the phreatic surface level than that of the 
gradient increasing the flow velocity. The outputs of this sen-
sitivity analysis are slightly biassed towards being sensitive 
given the link between k and the inclination. Different com-
binations of permeability and inclination of the permeable 
layer can lead to the same phreatic surface (Beven 1996). 
The 1st percentile of k was chosen based on the observation-
driven constraint that it should not result in frequent surface 
saturation for the slope. This constraint will be violated by 
some of the realisations of k from the previous distribution 
under scenarios where the bedrock inclination is increased. 
Conversely, the constraint will be over-conservative (and the 

Table 8  Sensitivity test on how the effective porosity in the HSB 
affects frequency of slope failures ( F

f
 ) over 11 years

The percentage difference is calculated using the effective porosity 
chosen for the model (7.5%) as the baseline

Effective porosity % F
f
 Failure/11 years Percentage 

difference 
%

5 5.08 0
7.5 5.10 –
10 4.51 − 12

Table 9  Sensitivity test on how the inclination of the impermeable 
boundary in the HSB effects frequency of slope failures over 11 years

The percentage difference is calculated using the inclination of the 
impermeable boundary chosen for the model (25◦ ) as the baseline

Inclination of impermeable 
boundary ◦

F
f
 Failures/11 years Percentage 

difference 
%

15 5.10 –
20 13.66 168
25 35.34 593
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1st percentile of k over-estimated) for scenarios where the 
bedrock inclination is reduced.

In conclusion, this analysis shows that the methodology 
is particularly sensitive to the number of remediation days 
and the 1st percentile of k (linked with the inclination of the 
impermeable boundary). Given that practitioners should be 
able to confidently estimate the number of remediation days, 
the sensitivity of this input parameter is not a concern.

5.4  Use by Practitioners

The estimation of Ff  can be very useful in cost–benefit anal-
yses where different slope stabilisation measures are consid-
ered. For each measure, a different cost would be incurred 
and a value of Ff  would be calculated.

Although this methodology is not costly nor challeng-
ing in terms of ground investigation, the bulk deterministic 
analyses in LEM can be costly in terms of computational 
time. To carry out the stability analyses (1000 analyses for 
each phreatic surface, of which there were 25), 10 virtual 
machines were used, which each had 32GB and 8 cores, 
running in parallel. Alternative methods could be used to 
conduct the stability analyses using an analytical approach 
and carrying out the probabilistic analysis using a first-
order second-moment (FOSM) method (e.g. Huang 2021). 
However, in using an analytical approach, pore water pres-
sure can only be included as a pore water pressure ratio ( ru ) 
which could result in an unrealistic set of trigger scenarios. 
For this approach, the G-H–B parameters would have to 
be converted to M-C parameters. This conversion can be 
done using the approach presented by Renani and Martin 
(2020) who propose a new equation for the conversion of 
parameters for slope stability analysis based on elastic stress 
analysis. Conversely, the hydrological model is very fast to 
run (2000 values of k takes < five minutes).

6  Conclusion

We introduced a novel computationally efficient methodol-
ogy coupling probabilistic slope stability analyses with the 
Hillslope-Storage Boussinesq hydrological model to esti-
mate the time-varying probability of failure and frequency of 
failure of a cutting triggered by rainfall. Unlike many other 
studies, this method treats both the complexity of the failure 
mechanics and the hillslope hydrology. We aimed to further 
understand the implications of using a time-dependent sys-
tem to represent rainfall variability (a rainfall time series) 
for an area that hosts a monsoon and to further explore the 
implications of using an instantaneous conditional probabil-
ity of failure. The mechanistic model is suitable for use in 
a LIC/LMIC setting. We demonstrate the methodology on 
a road cutting in Nepal in a mountainous area subject to a 

markedly seasonal wet–dry weather. The outcome of fre-
quency of failure methodology suggested that this cutting 
will fail every other year in its current condition. The time-
varying conditional probability of failure showed annual 
cyclicity with the monsoon season (peak in probability of 
failure during the monsoon season) and reflected trends dis-
played in the phreatic surface time series.

Our results point to the need to calculate the phreatic sur-
face to be employed in the seepage analyses of slope stability 
from a hydrogeological model rather than postulating the 
phreatic groundwater level as often done in current prac-
tise. This is for two reasons: (1) the phreatic level is highly 
dependent on the hydrogeology of the upslope which in turn 
is a function of rainfall and geometry of the catchment area; 
(2) the phreatic level exhibits significant variation over time. 
Therefore, we believe a relatively simple model like the 1D 
HSB as we adopted is a good model since it captures the key 
physical drivers of hydraulic flow within the slope without 
being computationally expensive.

These findings indicate that it is important to use a time-
dependent system to represent rainfall variability for slope 
failure probability analysis, rather than a time-independent 
system, e.g. from an Intensity–Duration–Frequency curve. 
Our sensitivity analyses show that the frequency of failure 
is very sensitive to the value chosen to represent the 99th 
percentile of k in the distribution, the inclination of the 
impermeable boundary, the number of remediation days 
between landslide counts and the inclination of the imper-
meable boundary. The number of remediation days can be 
better constrained by knowledge of the typical remediation 
measures employed locally following a failure event. How-
ever, constraining the value for hydraulic conductivity may 
be more difficult and, therefore care should be taken in the 
result if the value for hydraulic conductivity is based on 
assumptions.
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