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1 Introduction

The Large Hadron Collider (LHC) offers an unprecedented opportunity to scrutinise a wide
range of observables involving Higgs bosons, electroweak bosons, top quarks, and hadronic
jets with remarkable accuracy. Through precise experimental measurements, we can directly
investigate the fundamental interactions of elementary particles at short distances, pushing
the boundaries of our knowledge and providing valuable insights into the fundamental
interactions that govern the universe. The exploration of LHC physics, particularly in the
absence of new particle discoveries, holds immense significance. By scrutinising the LHC
data with high precision, even the slightest deviations from the predictions of the Standard
Model (SM) can have profound implications for our understanding of the natural world.
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Such small deviations in measurements have the potential to revolutionise our knowledge
and guide us towards physics beyond the Standard Model. Hence, precision phenomenology
emerges as a crucial component in the quest for new physics.

With the anticipated dataset from the High-Luminosity LHC, the statistical uncer-
tainties on many observables will be negligible and percent-level accuracy is likely to be
achieved experimentally. Achieving similar percent-level accuracy for theoretical predictions
requires advancements in fixed-order calculations, parton distribution functions, parton
showers, and the modeling of non-perturbative effects. Ongoing progress is being made in
all these areas. In the realm of perturbative Quantum Chromodynamics (QCD), reaching
the desired level of refinement typically involves extending fixed-order calculations to at
least next-to-next-to-leading order (NNLO) in the strong-coupling expansion.

However, higher-order calculations demand special attention due to the intricate
interplay between real and virtual corrections across different-multiplicity phase spaces [3,
4]. Implicit infrared divergences arise from unresolved real radiation, such as soft or
collinear emissions, and are ultimately cancelled by explicit poles in the virtual matrix
elements. This cancellation takes place through integration over the relevant unresolved
phase space. Subtraction schemes are currently regarded as the most elegant solution to
address these complexities.

At the next-to-leading order (NLO) level, schemes like Catani-Seymour dipole sub-
traction [5] and FKS subtraction [6] were developed in the mid-1990’s. Together with
automated one-loop matrix-element generators [7, 8], these schemes are used for fully-
differential high-multiplicity processes. NLO matching schemes such as MC@NLO [9] and
POWHEG [10, 11] have been developed which systematically combine NLO fixed-order cal-
culations with all-order parton-shower resummation. These innovations laid the foundations
for the state-of-the-art multi-purpose event generators [7, 12–15], see ref. [16] for a review.

At NNLO, the situation is less advanced. Despite recent progress, two-loop matrix
elements represent significant challenges often requiring bespoke integral reduction relations
and the evaluation of new master integrals. At the same time, the pattern of cancellation of
infrared divergences across the different-multiplicity final states is much more complicated.
Several subtraction schemes have been devised [2, 17–22] and the implementation of these
methods is currently done one process at a time. They do not straightforwardly scale to
higher multiplicities.

Among the various methods used for fully-differential NNLO calculations in QCD,
the antenna-subtraction scheme [2, 23, 24] has proven to be highly successful. Initially
proposed for electron-positron annihilation with massless partons, it enabled the calculation
of NNLO corrections to 3-jet production and related event-shape observables at LEP
energies [25–29]. The scheme was extended to handle initial-state radiation relevant to
processes with initial-state hadrons [30–36] and has now been applied to a range of LHC
processes through the parton-level NNLOJET code. The extension of antenna subtraction
for the production of heavy particles at hadron colliders has been studied in refs. [37–44].
Besides its application in fixed-order calculations, the antenna framework has also been
utilised in antenna-shower algorithms [45–50], where it enabled proof-of-concept frameworks
for higher-order corrections [51] and fully-differential NNLO matching [52].
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At N3LO, inclusive [53–63] as well as more differential calculations have started to
emerge [64–74], the latter mainly for 2 → 1 processes via the use of the Projection-to-Born
method [75] or kT-slicing techniques [25] to promote established NNLO calculations to
N3LO. We note that the first steps towards an N3LO antenna subtraction scheme have been
taken in refs. [76, 77]. Nevertheless, at the moment, calculations for higher multiplicities
are currently hindered by the lack of process-independent N3LO subtraction schemes.

In the antenna subtraction scheme, antenna functions are used to subtract specific sets
of unresolved singularities, so that a typical subtraction term has the form

Xℓ
n+2(ih

1 , i3, . . . , in+2, ih
2)
∣∣∣M(. . . , Ih

1 , Ih
2 , . . .)

∣∣∣2 , (1.1)

where Xℓ
n+2 represents an ℓ-loop, (n + 2)-particle antenna, ih

1 and ih
2 represent the hard

radiators, and i3 to in+2 denote the n unresolved particles. As the hard radiators may either
be in the initial or in the final state, final-final (FF), initial-final (IF), and initial-initial (II)
configurations need to be considered in general. M is the reduced matrix element, with n

fewer particles and where Ih
1 and Ih

2 represent the particles obtained through an appropriate
mapping,

{pi1 , pi3 , . . . , pi2} 7→ {pI1 , pI2} (1.2)

with pµ
i representing the four-momentum of particle i. At NLO antennae have n = 1 and

ℓ = 0, at NNLO one needs antennae with n = 2, ℓ = 0 and with n = 1, ℓ = 1, while at
N3LO, one needs antennae with n = 3, ℓ = 0, with n = 2, ℓ = 1 and with n = 1, ℓ = 2.

In the original formulation of the antenna scheme, the antennae were based on matrix
elements describing radiation from processes with two coloured particles: γ∗ → qq̄, χ̃ → g̃g

and H → gg, covering the cases where the coloured particles are massless quarks and gluons.
The corresponding X0

4 , X1
3 and X0

3 antennae are therefore perfect subtraction terms for
the NNLO contributions to processes with two coloured particles. It was straightforward
to utilise these matrix-element-based antennae for processes with three coloured particles,
such as e+e− → 3 jets, pp → V +jet, pp → H+jet, and for the leading colour contributions
to four coloured particle processes like pp → 2 jets. Pushing to the next step, the full colour
pp → 2 jets required significant additional work [78]. Going beyond the current state of the
art with the matrix-element-based antenna approach is a formidable task. This is because
the complexity associated with the subtraction terms becomes increasingly challenging as
the particle multiplicity grows. This complexity stems from two primary reasons.

Firstly, the double-real-radiation antenna functions obtained from matrix elements do
not always indicate which particles act as the hard radiators. This is particularly the case
for antennae involving gluons. To address this issue, sub-antenna functions are introduced.
However, constructing these sub-antenna functions at NNLO is an arduous task and often
involves introducing unphysical denominators that complicate the analytic integration of the
subtraction term. Additionally, analytic integrals are usually known only for the complete
antenna functions. As a result, the assembly of antenna-subtraction terms requires careful
manipulation to ensure that the sub-antenna functions combine appropriately to form the
full antenna functions before integration.

– 3 –
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Secondly, NNLO antenna functions can exhibit spurious limits that need to be eliminated
through explicit counter terms. However, these counter terms can introduce further spurious
limits themselves. Consequently, this can initiate a complex chain of interdependent
subtraction terms that do not necessarily reflect the actual singularity structure of the
underlying process.

Both of these issues are obstacles to a full automation of the antenna-subtraction scheme
at NNLO [79]. In a recent paper [1], we addressed these issues. We introduced a general
algorithm for building antenna functions directly from a specified set of desired infrared
limits with a uniform template, in a way that simplifies the construction of subtraction terms
in general, while still being straightforwardly analytically integrable. We then constructed
a general algorithm to construct real-radiation antenna functions following strictly these
design principles and applied it to the case of single-real and double-real radiation, required
for NLO and NNLO calculations. The technique makes use of an iterative procedure to
remove overlaps between different singular factors that are subsequently projected into
the full phase space. As the technique produces only denominators that match physical
propagators, all antenna functions could straightforwardly be integrated analytically, which
is a cornerstone of the antenna-subtraction method.

In this paper, we extend the general algorithm of ref. [1] to the construction of antennae
with ℓ ̸= 0. Unlike in the solely real-radiation case, the mixed real and virtual antenna
functions contain both explicit and implicit singularities. To illustrate the algorithm, we
construct the real-virtual antennae (n = 1, ℓ = 1) explicitly. The real-virtual antenna
functions are built directly from the relevant one-loop limits, properly accounting for the
overlap between different limits. The universal factorisation properties of multi-particle
loop amplitudes, when one or more particles are unresolved, have been well studied in the
literature [80–83] and serve as an input to the algorithm.

In addition to building a full set of new X1
3 antennae with both hard radiators in the

final state, we demonstrate that the new antenna functions (along with the X0
3 and X0

4 of
ref. [1]) form a complete NNLO subtraction scheme in which the subtraction terms cancel
the explicit singularities in the one- and two-loop matrix elements, without leftover infrared
singularities hiding in the matrix elements (either by undercounting or overcounting). This
means that the new antenna functions have to satisfy particular constraints. First, the
cancellation of poles at the real-virtual level (RV) means that the explicit poles in the X1

3
antenna have to cancel against other RV subtraction terms. In the antenna scheme, these
explicit poles are proportional to X0

3 antennae. Therefore, the X1
3 must have a particular

pole structure multiplying an X0
3 antenna function. At the double-virtual level (VV), the

combinations of integrated antennae coming from the double-real (RR) and RV levels must
match the explicit pole structure of the two-loop matrix elements. In the antenna scheme,
this is encoded through a combination of the J

(2)
2 and J

(1)
2 operators in colour space [36].

Provided that the pole structure from the relevant combination of J
(2)
2 and J

(1)
2 is unchanged,

the subtraction terms will cancel the explicit poles in the two-loop matrix elements.
The current approach to automation of antenna subtraction [79] involves a reformulation

of the colour-ordered antenna subtraction technique in colour space. This method, known
as ‘colourful antenna subtraction’, offers a systematic way to construct antenna subtraction
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terms by working upwards from the most virtual layer, rather than starting from the
maximally real layer and working down. By translating infrared poles of virtual corrections
captured by J

(2)
2 and J

(1)
2 into real-radiation dipole insertions in colour space, the method

efficiently constitutes subtraction terms for single-real radiation up to one-loop level and
for double-real radiation at the tree level. One of the key advantages of this approach
is the avoidance of directly handling the divergent behavior of real-emission corrections.
This feature represents a significant simplification at NNLO. The double-real subtraction
term can be obtained as the final step of a fully automatable procedure, eliminating the
need to deal with the involved infrared structure of double-real radiation matrix elements.
The completion of a consistent set of improved antenna functions for (double-)real and
real-virtual radiation presented here will further reduce the complexity of the subtraction
terms, because they avoid the need to subtract spurious limits, and therefore reduce the
computational overhead associated with precision calculations.

The paper is structured as follows. We outline the design principles for constructing
general Xℓ

n+2 antenna functions in section 2 as well as the principles for matching to the
other elements of an antenna-subtraction scheme. We describe the general construction
algorithm in section 3 and give the specific details for the construction of final-final X1

3 in
section 4. The full set of one-loop unresolved limits and target poles for the X1

3 is given in
section 5. Using the previous sections, we illustrate the algorithm by explicitly constructing
a full set of X1

3 real-virtual antenna functions for hard radiators in the final state in section 6.
Finally, we define the J

(2)
2 and J

(1)
2 operators in this NNLO antenna-subtraction scheme

(out of the new {X0
3 , X0

4 , X1
3}) and compare their pole structure to the generic VV pole

structures in section 7. This demonstrates that the new subtraction terms will cancel the
explicit poles in the two-loop matrix elements and form a complete NNLO subtraction
scheme. We conclude and give an outlook on further work in section 8. For the sake
of completeness, we also enclose appendices listing the tree-level single-unresolved limits,
details of the analytic integration over the final-state antenna phase space, and a list of
integrated X1

3 antenna that are based on the X0
3 antenna of ref. [24].

2 Design principles

Within the antenna-subtraction framework, subtraction terms are constructed using antenna
functions that describe the unresolved partonic radiation (both soft and collinear) emitted
from a pair of hard radiator partons. The construction of an antenna-subtraction term
typically involves the following elements:

• antennae composed of two hard radiators that accurately capture the infrared singu-
larities arising from the emission of n unresolved partons;

• an on-shell momentum mapping that ensures that the invariant mass of the antenna is
preserved while producing the on-shell momenta that appear in the “reduced” matrix
element; and

• a colour factor associated with the specific process and antenna.

– 5 –
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The latter two items on this list have been solved for general processes, while the first is
subject of the current paper and our previous paper [1].

In the following, we will describe the design principles we impose upon a general
idealised Xℓ

n+2 antenna function, with at least one loop. As opposed to the ℓ = 0 case,
antenna functions with additional virtual elements contain explicit poles in the dimensional-
regularisation parameter, ϵ. We therefore impose two different sets of design principles: the
generic design principles discussed in section 2.1; and the antenna-scheme-dependent design
principles discussed in section 2.2. The former principles ensure that the antenna function
has the correct infrared limits, but does not fix these unambiguously. This ambiguity is
resolved by the latter principles which match the explicit singularity structure of the new
antenna functions onto a specific antenna-subtraction scheme.

2.1 Generic design principles

The generic design principles outlined in ref. [1] are sufficient to ensure that the antenna
has the correct infrared limits. Specifically, we impose the following requirements:

I. each antenna function has exactly two hard particles (“radiators”) which cannot
become unresolved;

II. each antenna function captures all (multi-)soft limits of its unresolved particles;

III. where appropriate (multi-)collinear and mixed soft and collinear limits are decomposed
over “neighbouring” antennae;

IV. antenna functions do not contain any spurious (unphysical) limits;

V. antenna functions only contain singular factors corresponding to physical propagators;
and

VI. where appropriate, antenna functions obey physical symmetry relations (such as line
reversal).

As mentioned earlier, the original NNLO antenna functions derived in [2, 23, 24] do not
obey all of these requirements, as they typically violate (some of) these principles. This is
particularly the case for quark-gluon or gluon-gluon antennae because the matrix elements
they are derived from will inevitably have a divergent limit when one of the gluonic radiators
becomes soft (thereby violating principle I).

These principles will form the core of the algorithm for constructing Xℓ
n+2 antennae

with the desired infrared limits.

2.2 Antenna-scheme-dependent design principles

The generic principles are sufficient to produce compact analytic expressions that correctly
capture the unresolved behaviour of ℓ-loop matrix elements in the (multi-)soft and (multi-)
collinear limits. Unlike the ℓ = 0 case, these unresolved limits have explicit singularities,
and therefore the Xℓ

n+2 antennae constructed from them will also carry explicit ϵ-poles.

– 6 –
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However, it is straightforward to find terms that contain explicit singularities but which
do not contribute in any of the unresolved regions. Such terms, can be added to Xℓ

n+2
without violating any of the generic principles. However, doing so will clearly change the
explicit pole structure. This means that the generic principles alone lead to an inherent
ambiguity in defining the Xℓ

n+2 antennae.
If one wishes to design a full subtraction scheme, the real-virtual antenna must both

have the correct unresolved limits and have an explicit pole structure of the correct form
that cancels against other terms in the subtraction scheme. Therefore, we need to resolve the
ambiguity in the explicit ϵ singularities by matching onto a set of target ϵ-pole structures
that ensure that the subtraction terms in each multiplicity layer (a) correctly describe the
unresolved limits of the matrix elements, and (b) precisely cancel the ϵ singularities of the
matrix elements.

To match onto a particular antenna-subtraction scheme, we therefore introduce one
further principle:

VII. where appropriate, combinations of terms that are not singular in the relevant unre-
solved regions can be added to match onto “target poles”, T (ih

1 , i3, . . . , in+2, ih
2).

To illustrate this principle for the case of the X1
3 , “target poles”, T (ih, j, kh), take the

following schematic form within the NNLO antenna-subtraction scheme:

T (ih, j, kh) = 1
ϵ2

(∑
s

(
s

µ2

)−ϵ
)

X0
3 (ih, j, kh). (2.1)

In order to match onto such “target poles”, we are free to add certain combinations of
terms. An example of such a combination of terms is,

1
ϵ2 µ2ϵ

(
s−ϵ

ik + s−ϵ
ijk − (sij + sik)−ϵ − (sik + sjk)−ϵ

)
X0

3 (ih, j, kh), (2.2)

which is not divergent in the soft j, collinear ij and collinear jk limits. It therefore does not
affect the behaviour of the antenna function in those limits. However, adding such a term
clearly affects the explicit poles in the X1

3 antenna as can be seen from the expansion in ϵ,

1
ϵ
ln
(
1 + sijsjk

sijksik

)
X0

3 (ih, j, kh) +O
(
ϵ0
)

. (2.3)

This allows us to match the pole structure of the X1
3 antenna to the other subtraction terms

in a way that cancels the explicit poles at the RV level.
These seven principles are sufficient to devise an algorithm for constructing a general

Xℓ
n+2 antenna function and here we will apply it to the construction of X1

3 antenna functions
with final-final kinematics. We will build the X1

3 antenna functions from the infrared limits
and match them to the NNLO antenna-subtraction scheme. The new X1

3 antenna functions
form the final ingredients for improved final-final antenna-subtraction at NNLO (along
with the results of ref. [1]). To test for the consistency of these ingredients, one has to
integrate the real-virtual antenna over the antenna phase space, and combine all the various
integrated implicit singularities to cancel the explicit singularities of the two-loop matrix
elements. This is detailed in full in section 7.

– 7 –
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3 The algorithm

In ref. [1], we proposed a general algorithm to build (multiple-)real radiation antenna
functions at tree-level. In this paper, we extend this algorithm to the construction of Xℓ

n+2
antenna functions, where ℓ ̸= 0.

Unlike the algorithm for real-radiation antenna functions, the algorithm for Xℓ
n+2

antenna functions has two distinct stages:

Stage 1. In this step we ensure that the antenna function has the correct infrared singular
limits. This stage closely follows the algorithm for real-radiation antennae in ref. [1].
We systematically start from the most singular limit, and build the list of target
functions, {Li}, from relevant (multi-)soft, (multi-)collinear, and soft-collinear limits.
As in ref. [1], we define a down- (P↓

i ) and up-projector (P↑
i ) for each unresolved limit

(Li) to be included. A down-projector P↓
i maps the invariants of the full phase space

to the relevant subspace. An associated up-projector P↑
i restores the full phase space

by re-expressing all variables valid in the sub-space in terms of invariants valid in the
full phase space. It is to be emphasised that down-projectors P↓

i and up-projectors
P↑

i are typically not inverse to each other, as down-projectors destroy information
about less-singular and finite pieces.
The down-projectors are necessary to identify the overlapping region between the an-
tenna function developed so far and the target function associated with the unresolved
limit under consideration. Conversely, up-projectors express the argument in terms
of antenna invariants. Furthermore, through careful selection of the up-projectors,
the antenna function can be exclusively represented using invariants corresponding to
physical propagators.
The set of target functions provides a clear definition of the antenna function’s
behavior in all unresolved limits specific to the particular antenna being considered.
In each unresolved limit, the antenna function must approach the corresponding
target function to accurately capture the singular behavior exhibited by the squared
matrix element. Additionally, the antenna function must remain finite in all limits not
explicitly described by a target function. This crucial aspect guarantees the absence
of spurious singularities (unlike antenna functions extracted directly from physical
matrix elements).
As explained in ref. [1], the algorithm, which ensures the above characteristics and
meets the generic design principles, can be written as

Xℓ
n+2;1 = P↑

1L1 ,

Xℓ
n+2;2 = Xℓ

n+2;1 + P↑
2(L2 − P↓

2Xℓ
n+2;1) ,

...
Xℓ

n+2;N = Xℓ
n+2;N−1 + P↑

N (LN − P↓
N Xℓ

n+2;N−1) ,

(3.1)

where Xℓ
n+2;N is the output of Stage 1.

– 8 –
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Stage 2. The output of Stage 1 guarantees that Xℓ
n+2;N has the chosen unresolved limits

{Li}. However, as discussed above this does not uniquely determine the mixed real-
virtual antenna since one can construct a term (which we will denote by TPoles)
which contains poles in ϵ but does not contribute in any of the unresolved limits.
One is therefore at liberty to define different antenna-subtraction schemes that differ
by explicit ϵ-singular terms that do not affect the unresolved singular limits of the
antenna.

We therefore add an antenna-scheme-dependent Stage 2 that ensures that the Xℓ
n+2

antenna has the correct explicit poles to match onto the other types of subtraction
terms in the desired antenna-subtraction scheme. We fix the scheme by specifying
that the explicit ϵ-poles, match certain defined “target poles”,

T = T (ih
1 , i3, . . . , in+2, ih

2). (3.2)

These target poles must be selected such that the constructed Xℓ
n+2 is more convenient

for use in a wider Nn+ℓLO subtraction scheme. Different schemes would entail different
choices for T .

As in Stage 1, we introduce certain projectors P↓
T , P↑

T (at the relevant perturbative
order) to identify these additional ϵ-singular contributions which meet all the design
principles. Schematically, we can write this final step of the algorithm as

Xℓ
n+2 ≡ Xℓ

n+2;N + P↑
T (T − P↓

T Xℓ
n+2;N ), (3.3)

and we require
P↓

i P↑
T (T − P↓

T Xℓ
n+2;N ) ≡ 0 ∀ i = 1, .., N. (3.4)

For later convenience we define the contribution from Stage 2 to be,

TPoles ≡ P↑
T (T − P↓

T Xℓ
n+2;N ). (3.5)

Taking into account both Stage 1 and Stage 2, the constructed mixed real-virtual
antenna for a given set of infrared limits {Li} and matched to a scheme in which the
required ϵ-poles are defined by T , will satisfy

P↓
i Xℓ

n+2 ≡ Li ∀ i = 1, .., N , (3.6)
P↓

T Xℓ
n+2 ≡ T. (3.7)

4 Construction of real-virtual antenna functions

The above design principles and algorithm have been set-out for the construction of a
general Xℓ

n+2 antenna function. Now we specialise to the case of constructing real-virtual
X1

3 antenna functions. Together with the new X0
3 and X0

4 of ref. [1], the X1
3 functions

complete the re-formulation of all antenna functions necessary for NNLO calculations, which
now meet the design principles.
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Quark-antiquark

qgq̄ X1
3 (ih

q , jg, kh
q̄ ) A1

3(ih, j, kh)
X̃1

3 (ih
q , jg, kh

q̄ ) Ã1
3(ih, j, kh)

X̂1
3 (ih

q , jg, kh
q̄ ) Â1

3(ih, j, kh)
Quark-gluon

qgg X1
3 (ih

q , jg, kh
g ) D1

3(ih, j, kh)
X̃1

3 (ih
q , jg, kh

g ) D̃1
3(ih, j, kh)

X̂1
3 (ih

q , jg, kh
g ) D̂1

3(ih, j, kh)
qQ̄Q X1

3 (ih
q , jQ̄, kh

Q) E1
3(ih, j, kh)

X̃1
3 (ih

q , jQ̄, kh
Q) Ẽ1

3(ih, j, kh)
X̂1

3 (ih
q , jQ̄, kh

Q) Ê1
3(ih, j, kh)

Gluon-gluon

ggg X1
3 (ih

g , jg, kh
g ) F 1

3 (ih, j, kh)
X̂1

3 (ih
g , jg, kh

g ) F̂ 1
3 (ih, j, kh)

gQ̄Q X1
3 (ih

g , jQ̄, kh
Q) G1

3(ih, j, kh)
X̃1

3 (ih
g , jQ̄, kh

Q) G̃1
3(ih, j, kh)

X̂1
3 (ih

g , jQ̄, kh
Q) Ĝ1

3(ih, j, kh)

Table 1. Identification of X1
3 antenna according to the particle type and colour-structures. These

antennae only contain singular limits when particle b (or equivalently momentum j) is unresolved, in
addition to explicit ϵ poles. Antennae are classified as quark-antiquark, quark-gluon and gluon-gluon
according to the particle type of the parents (i.e. after the antenna mapping).

We demonstrate the construction of real-virtual antenna functions X1
3 (ih

a, jb, kh
c ), where

the particle types are denoted by a, b, and c, which carry four-momenta i, j, and k,
respectively. Particles a and c should be hard, and the antenna functions must have the
correct limits when particle b is unresolved. Frequently, we drop explicit reference to the
particle labels in favour of a specific choice of X according to table 1.

For the specific case of X1
3 (ih

a, jb, kh
c ) there are three such limits (meeting the generic

design principles), corresponding to particle b becoming soft, particles a and b becoming
collinear, or particles c and b becoming collinear, so that the list of target functions is,

L1(ih, j, kh) = S
(1)
b (ih, j, kh) ,

L2(ih, j, kh) = P
(1)
ab (ih, j) ,

L3(ih, j, kh) = P
(1)
cb (kh, j) .

(4.1)

The precise definitions of the one-loop soft factor S
(1)
b and the one-loop splitting functions

P
(1)
ab are well known and we organise them in our notation in section 5.
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In addition, in order to match onto a particular antenna-subtraction scheme, we require
a target pole structure, T ≡ T (ih, j, kh). We want to match the constructed X1

3 to the
full NNLO antenna-subtraction scheme, we therefore require the ϵ-poles to have a similar
ϵ-pole structure to ref. [2]. This means a collection of ϵ-poles multiplying X0

3 antennae. By
removing the contribution to the poles from the renormalisation term, we write the full set
of target poles, T (ih, j, kh), for the unrenormalised X1

3 as,

T (ih
q , jg, kh

q̄ ) = −Rϵ

ϵ2 (Sij + Sjk − Sijk)A0
3(ih, j, kh), (4.2)

T̃ (ih
q , jg, kh

q̄ ) = −Rϵ

ϵ2 (Sijk − Sik)A0
3(ih, j, kh), (4.3)

T̂ (ih
q , jg, kh

q̄ ) = 0, (4.4)

T (ih
q , jg, kh

g ) = −Rϵ

ϵ2

(
Sij + S[ik+jk] + Sjk − 2Sijk

)
D0

3(ih, j, kh), (4.5)

T̃ (ih
q , jg, kh

g ) = −Rϵ

ϵ2

(
Sik − S[ik+jk]

)
D0

3(ih, j, kh), (4.6)

T̂ (ih
q , jg, kh

g ) = 0, (4.7)

T (ih
q , jQ̄, kh

Q) = −Rϵ

[ 1
ϵ2 (Sij + Sik − 2Sijk)−

13
6ϵ

Sjk

]
E0

3(ih, j, kh), (4.8)

T̃ (ih
q , jQ̄, kh

Q) = −Rϵ

( 1
ϵ2 + 3

2ϵ

)
SjkE0

3(ih, j, kh), (4.9)

T̂ (ih
q , jQ̄, kh

Q) = −Rϵ
2
3ϵ

SjkE0
3(ih, j, kh), (4.10)

T (ih
g , jg, kh

g ) = −Rϵ

ϵ2 (Sij + Sik + Sjk − 2Sijk)F 0
3 (ih, j, kh), (4.11)

T̂ (ih
g , jg, kh

g ) = 0, (4.12)

T (ih
g , jQ̄, kh

Q) = −Rϵ

[ 1
ϵ2 (Sij + Sik − 2Sijk)−

13
6ϵ

Sjk

]
G0

3(ih, j, kh), (4.13)

T̃ (ih
g , jQ̄, kh

Q) = −Rϵ

( 1
ϵ2 + 3

2ϵ

)
SjkG0

3(ih, j, kh), (4.14)

T̂ (ih
g , jQ̄, kh

Q) = −Rϵ
2
3ϵ

SjkG0
3(ih, j, kh). (4.15)

Here Rϵ is an overall factor defined as

Rϵ = eϵγ Γ2(1− ϵ)Γ(1 + ϵ)
Γ(1− 2ϵ) Re(−1)−ϵ. (4.16)

This factor ensures that the X1
3 antennae derived here have the same overall normalisation as

those in ref. [2]. We have also introduced the convenient notation to separate the loop-type
structures from the unresolved-type structures:

Sij =
(

sij

µ2

)−ϵ

, Sijk =
(

sijk

µ2

)−ϵ

, S[ik+jk] =
(

sik + sjk

µ2

)−ϵ

. (4.17)

The X0
3 (ih, j, kh) antennae appearing in eqs. (4.2)–(4.15) are those constructed in

ref. [1]. Therefore, there are some differences compared to the pole structure in ref. [2]
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precisely due to differences between the definitions of the X0
3 (ih, j, kh) of ref. [1] and the

X0,OLD
3 (ih, j, kh) of ref. [2] (see ref. [1] for a full discussion). This is particularly the case for

the D0
3 and F 0

3 antennae where the unresolved singularities of F 0,OLD
3 are assigned to three

F 0
3 antenna, while the unresolved singularities present in D0,OLD

3 are found by combining
two D0

3 antenna.
Finally, we note that the ϵ-singularities of D1,OLD

3 of ref. [2] are split between D1
3 and a

new type of antenna, D̃1
3,

P↓
T D1,OLD

3 ∼ T (ih
q , jg, kh

g ) + T̃ (ih
q , jg, kh

g ) + (j ↔ k), (4.18)

where ∼ reflects the fact that the l.h.s. multiplies D0,OLD
3 while the r.h.s. multiplies D0

3.

4.1 Template antennae

For convenience, we define a general unrenormalised real-virtual antenna function in terms
of the contributions produced by the various steps of the algorithm. At leading-colour, we
have,

X1
3 (ih, j, kh) = Ssoft(1)(ih, j, kh) + Scol(1)(ih, j; kh) + Scol(1)(kh, j; ih) (4.19)

+ TPoles(ih, j, kh) ,

while the corresponding sub-leading-colour expression is,

X̃1
3 (ih, j, kh) = S̃col(1)(ih, j; kh) + S̃col(1)(kh, j; ih) (4.20)

+ T̃Poles(ih, j, kh) ,

and the quark-loop contribution is,

X̂1
3 (ih, j, kh) = Ŝcol(1)(ih, j; kh) + Ŝcol(1)(kh, j; ih) (4.21)

+ T̂Poles(ih, j, kh) ,

since the one-loop soft factor is only non-zero at leading-colour. The meanings of the
individual terms in eqs. (4.19)–(4.21) will be made clear in the following subsections,
however, we note that in each equation, the first line is produced by Stage 1 of the
algorithm, and the second line is added in Stage 2. Therefore, we expect that

S↓
jTPoles(ih, j, kh) = 0 , (4.22)

C↓
ijTPoles(ih, j, kh) = 0 , (4.23)

C↓
jkTPoles(ih, j, kh) = 0 , (4.24)

and similarly for T̃Poles(ih, j, kh) and T̂Poles(ih, j, kh).
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4.2 Stage 1

All X1
3 (ih, j, kh) antenna functions are defined over the full three-particle phase space,

whereas each unresolved limit lives on a restricted part of phase space: the j soft limit, the
ij collinear limit, and the jk collinear limit.

We define the soft down-projector by its action on integer powers of invariants as

S↓
j :

sij 7→ λsij , sjk 7→ λsjk,

sijk 7→ sik,
(4.25)

and keep only the terms proportional to λ−2.
For the corresponding up-projector S↑

j we choose a trivial mapping which leaves all
variables unchanged. The collinear down-projector acts on integer powers of invariants and
is defined in analogy to eq. (4.16) of ref. [1],

C↓
ij :

sij 7→ λsij ,

sik 7→ (1− xj)(sik + sjk), sjk 7→ xj(sik + sjk), sijk 7→ sik + sjk,
(4.26)

but keeps only terms of order λ−1. The corresponding up-projector is the same as in
eq. (4.17) of [1],

C↑
ij :

xj 7→ sjk/sijk, (1− xj) 7→ sik/sijk,

sik + sjk 7→ sijk.
(4.27)

This up-projector ensures the presence of sijk denominators, which are present in matrix
elements corresponding to physical propagators and means that the same integration tools
for one-loop matrix elements can be used in the integration of the constructed X1

3 over its
Lorentz-invariant antenna phase space.

The subtracted single-unresolved one-loop factors are built from unrenormalised colour-
ordered limits and are given by

Ssoft(1)(ih, j, kh) = S↑
jS

(1)
b (ih, j, kh) , (4.28)

Scol(1)(ih, j; kh) = C↑
ij

(
P

(1)
ab (ih, j)− C↓

ijSsoft(1)(ih, j, kh)
)

, (4.29)

Scol(1)(kh, j; ih) = C↑
kj

(
P

(1)
cb (kh, j)− C↓

kj

(
Ssoft(1)(ih, j, kh) + Scol(1)(ih, j; kh)

))
,

≡ C↑
kj

(
P

(1)
cb (kh, j)− C↓

kjSsoft
(1)(ih, j, kh)

)
, (4.30)

and analogously for the sub-leading colour and quark-flavour contributions. The subscripts
a, b, c represent the particle types which carry momenta i, j, k respectively. The unrenor-
malised one-loop single-unresolved limits are listed in full in section 5. We have used the
feature that the only overlap between the ij- and jk-collinear limits occurs in Ssoft(1) so
that

C↓
kjScol

(1)(ih, j; kh) = 0, (4.31)

which was also observed in ref. [1].
At this point, we have iteratively constructed the quantity

X1
3;3(ih, j, kh) = Ssoft(1)(ih, j, kh) + Scol(1)(ih, j; kh) + Scol(1)(kh, j; ih), (4.32)
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such that,

S↓
jX1

3;3(ih, j, kh) = S
(1)
b (ih, j, kh) , (4.33)

C↓
ijX1

3;3(ih, j, kh) = P
(1)
ab (ih, j) , (4.34)

C↓
jkX1

3;3(ih, j, kh) = P
(1)
cb (kh, j) , (4.35)

which carries all of the desired unresolved limits.

4.3 Stage 2

We now turn to the construction of TPoles(ih, j, kh), which does not contribute to any
unresolved limit but does contain explicit ϵ poles. In the language of section 3, then
schematically

TPoles(ih, j, kh) ≡ P↑
T

(
T (ih, j, kh)− P↓

T X1
3;3(ih,j,kh)

)
. (4.36)

We observe that each of the target pole structures in eqs. (4.2)–(4.15) is of the form,

Poles × X0
3 (ih, j, kh), (4.37)

where Poles is combination of ϵ-poles and factors like s−ϵ
ij . We therefore choose to achieve

Stage 2 through two iterative steps (rather than one), adding a projector for each step:

Step 1 We introduce a projector P↑
X (and the trivial projector P↓

X) to ensure that the
ϵ-poles are proportional to X0

3 (ih, j, kh); and

Step 2 We introduce projectors P↑
ϵ and P↓

ϵ to adjust the pole structure multiplying X0
3 to

match T (ih, j, kh).

Step 1. We define the projector P↑
X such that,

P↑
X :

P
(0)
ab (ih, j) 7→ X0

3 (ih, j, kh),
P

(0)
cb (kh, j) 7→ X0

3 (ih, j, kh).
(4.38)

The inverse projector P↓
X is simply unity.

We define TPolesX(ih, j, kh) to be the contribution arising from the action of P↑
X such

that,

TPolesX(ih, j, kh) = (P↑
X − 1)(Ssoft(1)(ih, j, kh) + Scol(1)(ih, j; kh) + Scol(1)(kh, j; ih)),

= (P↑
X − 1)X1

3;3(ih, j, kh). (4.39)

Ssoft(1)(ih, j, kh) does not contain splitting functions, so the action of P↑
X on Ssoft is trivial,

P↑
XSsoft(1)(ih, j, kh) ≡ Ssoft(1)(ih, j, kh), (4.40)

which guarantees,

S↓
jTPolesX(ih, j, kh) = 0 . (4.41)
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Furthermore, because of the structure of the one-loop splitting functions, we also have

C↓
ijTPolesX(ih, j, kh) = 0 ,

C↓
jkTPolesX(ih, j, kh) = 0 . (4.42)

We will explain more clearly how this is achieved in the specific example of A1
3 in section 4.5.

We also note that following the iterative structure of eq. (3.1), we define the fourth step of
the algorithm to be

X1
3;4(ih, j, kh) = X1

3;3(ih, j, kh) + (P↑
X − 1)X1

3;3(ih, j, kh), (4.43)
≡ P↑

XX1
3;3(ih, j, kh), (4.44)

where X1
3;3(ih, j, kh) is given in eq. (4.32).

Step 2. The operators P↓
ϵ and P↑

ϵ are defined as follows.
P↓

ϵ is defined by Laurent expanding the argument in ϵ and discarding terms of O
(
ϵ0)

and higher.
P↑

ϵ is defined by extending the argument to an all-orders expression in ϵ, which agrees
with the argument up to O

(
ϵ0). This is not a unique action. For the case of the X1

3 we
choose, where possible, for P↑

ϵ to result in linear combinations of {s−ϵ
ik , s−ϵ

ijk, (sik + sjk)−ϵ}
(which are simply-integrable objects) multiplied by simple ϵ-poles and X0

3 . Only two
structures appear in the construction of the X1

3 :

P↑
ϵ

1
ϵ
ln
(
1 + sijsjk

siksijk

)
= 1

ϵ2Λ1(ih, j, kh), (4.45)

P↑
ϵ

2
ϵ
ln
(
1− sjk

sijk

)
= 2

ϵ2Λ2(ih, j, kh), (4.46)

where

Λ1(ih, j, kh) = Sik + Sijk − S[ik+jk] − S[ik+ij], (4.47)
Λ2(ih, j, kh) = Sijk − S[ik+ij], (4.48)

with Sik etc defined as in eq. (4.17).
We define TPolesϵ(ih, j, kh) to be the contribution arising from the action of P↑

ϵ and
P↓

ϵ such that,

TPolesϵ(ih, j, kh) = P↑
ϵ

(
P↓

ϵT (ih, j, kh)− P↓
ϵ

[
Ssoft(1)(ih, j, kh) (4.49)

+ Scol(1)(ih, j; kh) + Scol(1)(kh, j; ih) + TPolesX(ih, j, kh)
])

.

These contributions typically contain a factor which suppresses all the unresolved limits in
the X0

3 to which it multiplies. Λ1 suppresses any contributions to the soft-j limit or the
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collinear-ij or collinear-jk limits. Λ2 suppresses contributions to the soft-j or collinear-jk

limits so that

S↓
jTPolesϵ(ih, j, kh) = 0 ,

C↓
ijTPolesϵ(ih, j, kh) = 0 ,

C↓
jkTPolesϵ(ih, j, kh) = 0 . (4.50)

We will explain more clearly how this works in detail in the specific example of A1
3 in

section 4.5.
In the iterative language of eq. (3.1) the fifth and final step of the algorithm is thus

X1
3;5(ih, j, kh) = X1

3;4(ih, j, kh) + P↑
ϵ

(
P↓

ϵT (ih, j, kh)− P↓
ϵX1

3;4(ih, j, kh)
)

, (4.51)

where we define the complete constructed antenna function,

X1
3 (ih, j, kh) ≡ X1

3;5(ih, j, kh). (4.52)

It is convenient to combine the contributions from eqs. (4.39) and (4.49), to obtain a
single contribution (as in the antenna templates of eqs. (4.19), (4.20) and (4.21)), and we
define

TPoles(ih, j, kh) ≡ TPolesX(ih, j, kh) + TPolesϵ(ih, j, kh). (4.53)

It is to be emphasised again that TPoles(ih, j, kh) does not contribute in any unresolved
limits, but does carry explicit poles in ϵ. Indeed, using eqs. (4.41), (4.42) and (4.50), it is
straightforward to see that

S↓
jTPoles(ih, j, kh) = 0 ,

C↓
ijTPoles(ih, j, kh) = 0 ,

C↓
jkTPoles(ih, j, kh) = 0 . (4.54)

Finally, the algorithm of this paper ensures that

S↓
jX1

3 (ih, j, kh) = S
(1)
b (ih, j, kh) , (4.55)

C↓
ijX1

3 (ih, j, kh) = P
(1)
ab (ih, j) , (4.56)

C↓
jkX1

3 (ih, j, kh) = P
(1)
cb (kh, j) , (4.57)

and

P↓
ϵX1

3 (ih, j, kh) = P↓
ϵT (ih, j, kh) . (4.58)

4.4 Renormalisation

As a final step, we renormalise the antennae at scale µ,

X1
3 (ih, j, kh) 7→ X1

3 (ih, j, kh)− b0
ϵ

X0
3 (ih, j, kh) , (4.59)

X̃1
3 (ih, j, kh) 7→ X̃1

3 (ih, j, kh) , (4.60)

X̂1
3 (ih, j, kh) 7→ X̂1

3 (ih, j, kh)− b0,F

ϵ
X0

3 (ih, j, kh) . (4.61)
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We use the colour decomposition of β0,

β0 = Ncb0 + NF b0,F , (4.62)

where b0 = 11/6 and b0,F = −1/3.

4.5 A1
3 construction in full detail

To make the construction explicit, we work through the construction of A1
3 as an example

before describing the full set of improved real-virtual antenna functions in section 6.
A1

3(ih
q , jg, kh

q̄ ) is the leading-colour antenna function with quark and antiquark hard radiators,
which encapsulates the one-loop limits when the gluon becomes unresolved. The relevant
unresolved limits are

S(1)
g (ih, j, kh), P (1)

qg (ih
q , jg), P (1)

qg (kq̄, jg), (4.63)

which are given in section 5. Additionally, we choose a target for the ϵ-poles before
renormalisation, which is consistent with the above limits but matches the ϵ-pole structures
appearing in the antenna-subtraction scheme. The target pole structure for A1

3 is given by

T (ih
q , jg, kh

q̄ ) =
Rϵ

ϵ2 (Sij + Sjk − Sijk)A0
3(ih, j, kh). (4.64)

We want to match the constructed X1
3 to the full NNLO antenna-subtraction-scheme, we

therefore require the ϵ-poles to have a similar ϵ-pole structure to ref. [2].
We choose to simplify our notation by introducing the following structure

G(w, ϵ) = 2F1 (1, ϵ, 1 + ϵ,−w)− 1,

= −
∞∑

n=1
(−ϵ)nLin (−w) ,

≡ (1 + w)−ϵ
2F1

(
ϵ, ϵ, 1 + ϵ,

w

1 + w

)
− 1, (4.65)

where w = sjk/sik. Note that in the w → 0 limit, G(w, ϵ) vanishes.
Before renormalisation, A1

3 is built iteratively in pieces in the following order:

A1
3(ih

q , jg, kh
q̄ ) = Ssoft(1)(ih

q , jg, kh
q̄ ) + Scol(1)(ih

q , jg; kh
q̄ ) + Scol(1)(kh

q̄ , jg; ih
q ) (4.66)

+ TPoles(ih
q , jg, kh

q̄ ) ,

with the TPoles contribution constructed in two steps as in section 4.3 according to eqs. (4.39)
and (4.49),

TPoles(ih
q , jg, kh

q̄ ) = TPolesX(ih
q , jg, kh

q̄ ) + TPolesϵ(ih
q , jg, kh

q̄ ). (4.67)

The first contribution is simply the one-loop soft factor,

Ssoft(1)(ih
q , jg, kh

q̄ ) = S↑
jS(1)

g (ih, j, kh) = −Rϵ
Γ(1− ϵ)Γ(1 + ϵ)

ϵ2
SijSjk

Sik
S(0)

g (ih, j, kh), (4.68)

where S
(0)
g is the tree-level eikonal factor given in appendix A.
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The second piece is given by the overlap of the one-loop splittting function P
(1)
qg (ih, j)

and the one-loop soft factor Ssoft(1) in the ij collinear limit, projected-up into the full
phase-space:

Scol(1)(ih
q , jg; kh

q̄ )

= C↑
ij

(
P (1)

qg (ih, j)− C↓
ijSsoft(1)(ih

q , jg, kh
q̄ )
)

,

= Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)SijSjk

Sik

(1− ϵ)sjk

sijsijk
+ SijG

(
sjk

sik
, ϵ

)
P (0)

qg (ih
q , jg; kh

q̄ )
]

+ SijRϵ
(sijk − ϵsjk)

sijsijk

1
2(1− 2ϵ) . (4.69)

Here we use the short-hand notation

P
(n)
ab (ih, j; k) = C↑

ijP
(n)
ab (ih, j), (4.70)

to indicate an n-loop splitting function up-projected into the full phase space of the antenna
and the tree-level splitting functions, P

(0)
ab are given in appendix A.

The third contribution is given by

Scol(1)(kh
q̄ , jg; ih

q )

= C↑
kj

(
P (1)

qg (kh
q , jg)− C↓

kj

(
Ssoft(1)(ih

q , jg, kh
q̄ ) + Scol(1)(ih

q , jg; kh
q̄ )
))

,

= C↑
kj

(
P (1)

qg (kh
q , jg)− C↓

kjSsoft
(1)(ih

q , jg, kh
q̄ )
)

,

= Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)SijSjk

Sik

(1− ϵ)sij

sjksijk
+ SjkG

(
sij

sik
, ϵ

)
P (0)

qg (kh
q̄ , jg; ih

q )
]

+ SjkRϵ
(sijk − ϵsij)

sjksijk

1
2(1− 2ϵ) . (4.71)

Recalling from ref. [1] that

A0
3(ih

q , jg, kh
q̄ ) ≡ S(0)

g (ih, j, kh) + (1− ϵ)sjk

sijsijk
+ (1− ϵ)sij

sjksijk
, (4.72)

≡ P (0)
qg (ih

q , jg; kh
q̄ ) +

(1− ϵ)sij

sjksijk
,

≡ P (0)
qg (kh

q̄ , jg; ih
q ) +

(1− ϵ)sjk

sijsijk
,

it is straightforward to see that the terms proportional to SijSjk/Sik in eqs. (4.68), (4.69)
and (4.71), combine to give a term which factorises onto A0

3(ih
q , jg, kh

q̄ ) such that

Ssoft(1)(ih
q , jg, kh

q̄ ) + Scol(1)(ih
q , jg; kh

q̄ ) + Scol(1)(kh
q̄ , jg; ih

q )

= +Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)SijSjk

Sik
A0

3(ih, j, kh)

+ SijG

(
sjk

sik
, ϵ

)
P (0)

qg (ih
q , jg; kh

q̄ ) + SjkG

(
sij

sik
, ϵ

)
P (0)

qg (kh
q̄ , jg; ih

q )
]

+ SijRϵ
(sijk − ϵsjk)

sijsijk

1
2(1− 2ϵ) + SjkRϵ

(sijk − ϵsij)
sjksijk

1
2(1− 2ϵ) . (4.73)
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This combination completes Stage 1 of the algorithm and is to some extent a complete
construction of A1

3, in the sense that it encapsulates the fundamental one-loop unresolved
limits we require of it.

Stage 2 of the algorithm preserves the unresolved limits but includes explicit poles
that do not contribute in these limits. The next piece TPolesX ensures that the explicit
pole structure of the A1

3 factors onto A0
3:

TPolesX(ih
q , jg, kh

q̄ ) = (P↑
X −1)

(
Ssoft(1)(ih

q , jg, kh
q̄ )+Scol(1)(ih

q , jg;kh
q̄ )+Scol(1)(kh

q̄ , jg; ih
q )
)

,

= Rϵ

ϵ2

[
SijG

(
sjk

sik
, ϵ

)(
A0

3(ih
q , jg, kh

q̄ )−P (0)
qg (ih

q , jg;kh
q̄ )
)

+SjkG

(
sij

sik
, ϵ

)(
A0

3(ih
q , jg, kh

q̄ )−P (0)
qg (kh

q̄ , jg; ih
q )
)]

,

= Rϵ

ϵ2

[
SijG

(
sjk

sik
, ϵ

) (1−ϵ)sij

sjksijk
+SjkG

(
sij

sik
, ϵ

) (1−ϵ)sjk

sijsijk

]
. (4.74)

This term vanishes in the unresolved region for the following reason. The first term in the
final line appears to have a singularity in the jk collinear limit due to the 1/sjk factor.
However, in this limit the hypergeometric function G(sjk/sijk, ϵ) approaches zero and this
behaviour therefore suppresses the singularity due to the 1/sjk factor. A similar argument
holds for the second term. As such, neither term in eq. (4.74) contributes to any unresolved
limit, although they evidently do contribute explicit ϵ poles. In summary,

S↓
j

(
1

sijsjk
× G

(
sjk

sik
, ϵ

))
→ 0 ,

S↓
j

(
1

sijsjk
× G

(
sij

sik
, ϵ

))
→ 0 ,

C↓
ij

(
1

sij
× G

(
sij

sik
, ϵ

))
→ 0 ,

C↓
jk

(
1

sjk
× G

(
sjk

sik
, ϵ

))
→ 0 .

The running total for A1
3 is given by

Ssoft(1)(ih
q , jg, kh

q̄ ) + Scol(1)(ih
q , jg; kh

q̄ ) + Scol(1)(kh
q̄ , jg; ih

q ) + TPolesX(ih
q , jg, kh

q̄ )

= +Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)SijSjk

Sik
(4.75)

+ SijG

(
sjk

sik
, ϵ

)
+ SjkG

(
sij

sik
, ϵ

)]
A0

3(ih
q , jg, kh

q̄ ),

+ SijRϵ
(sijk − ϵsjk)

sijsijk

1
2(1− 2ϵ) + SjkRϵ

(sijk − ϵsij)
sjksijk

1
2(1− 2ϵ) .

Effectively, the tree-level splitting functions in eq. (4.73) have been promoted to full A0
3

antenna functions.
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The next contribution, TPolesϵ, is also part of antenna-scheme matching, for which
we have the target pole structure proportional to A0

3, given in eq. (4.64). The resulting
expression is given by

TPolesϵ(ih
q , jg, kh

q̄ ) = P↑
ϵ

(
P↓

ϵT (ih
q , jg, kh

q̄ )− P↓
ϵ

[
Ssoft(1)(ih

q , jg, kh
q̄ ) (4.76)

+ Scol(1)(ih
q , jg; kh

q̄ ) + Scol(1)(kh
q̄ , jg; ih

q ) + TPolesX(ih
q , jg, kh

q̄ )
])

,

= P↑
ϵ

(1
ϵ
ln
(
1 + sijsjk

siksijk

)
A0

3(ih, j, kh)
)

,

= Rϵ

ϵ2 Λ1(ih, j, kh)A0
3(ih, j, kh).

As discussed earlier, the logarithmic structure of Λ1 suppresses all the unresolved limits
present in the A0

3 antenna at every order in ϵ. This structure also carries a 1/ϵ2 factor,
so TPolesϵ(ih

q , jg, kh
q̄ ) contains explicit ϵ poles (which are important for antenna-scheme

matching) but does not contribute in the unresolved limits. In summary,

S↓
j

(
Λ1(ih, j, kh)A0

3(ih, j, kh)
)
→ 0 ,

C↓
ij

(
Λ1(ih, j, kh)A0

3(ih, j, kh)
)
→ 0 ,

C↓
jk

(
Λ1(ih, j, kh)A0

3(ih, j, kh)
)
→ 0 .

Finally, including the renormalisation term and combining terms together we find a
compact expression for A1

3 given by

A1
3(ih, j, kh) = Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)SijSjk

Sik
+ SijG

(
sjk

sik
, ϵ

)
+ SjkG

(
sij

sik
, ϵ

)
+ Λ1(ih, j, kh)

]
A0

3(ih, j, kh)− b0
ϵ

A0
3(ih, j, kh)

+ SijRϵ
(sijk − ϵsjk)

sijsijk

1
2(1− 2ϵ) + SjkRϵ

(sijk − ϵsij)
sjksijk

1
2(1− 2ϵ) .

(4.77)

We see that

S↓
jA1

3(ih, j, kh) = S(1)
g (ih, j, kh) , (4.78)

C↓
ijA1

3(ih, j, kh) = P (1)
qg (ih, j) , (4.79)

C↓
jkA1

3(ih, j, kh) = P (1)
qg (kh, j) , (4.80)

and

P↓
ϵA1

3(ih, j, kh) = P↓
ϵT (ih

q , jg, kh
q̄ ) . (4.81)

5 One-loop single unresolved limits

The universal soft and collinear factorisation properties of multiparticle real-virtual am-
plitudes have been well studied in the literature [80–83]. In this section, we list the
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unrenormalised, colour-ordered unresolved factors at one loop in conventional dimensional
regularisation (CDR), which are consistent with the formulations in [2, 82–87]. The overall
factor Rϵ ensures that the antennae constructed here have the same normalisation as those
in ref. [24].

The full-colour (unrenormalised) one-loop soft factor is given by

S(1)
g (ih, j, kh) = NcS

(1)
g (ih, j, kh)− 1

Nc
S̃(1)

g (ih, j, kh) + NF Ŝ(1)
g (ih, j, kh), (5.1)

where

S(1)
g (ih, j, kh) = −Rϵ

Γ(1− ϵ)Γ(1 + ϵ)
ϵ2

SijSjk

Sik
S(0)

g (ih, j, kh) , (5.2)

S̃(1)
g (ih, j, kh) = 0 , (5.3)

Ŝ(1)
g (ih, j, kh) = 0 , (5.4)

and formally we define any soft factor, where particle b with momentum j is not a gluon,
as zero. The tree-level single-unresolved limits are given in appendix A.

In general, the full-colour (unrenormalised) one-loop splitting function is decomposed
by

P(1)
ab (i, j) = NcP

(1)
ab (i, j)− 1

Nc
P̃

(1)
ab (i, j) + NF P̂

(1)
ab (i, j) . (5.5)

As at leading-order (see appendix A), we organise the splitting functions according to which
particle is a hard-radiator. This means that P(1)

ab (ih, j) is not singular in the limit where
the hard radiator a becomes soft and is directly related to the usual spin-averaged one-loop
splitting functions given in terms of the momentum fraction carried by particle j (xj),
defined with reference to the third particle in the antenna.

The q → qg one-loop splitting functions for i being the hard radiator are given by

P (1)
qg (ih, j) = 1

sij
P (1)

qg (xj) , (5.6)

P̃ (1)
qg (ih, j) = 1

sij
P̃ (1)

qg (xj) , (5.7)

P̂ (1)
qg (ih, j) = 0 , (5.8)

with

P (1)
qg (xj) = Sij

Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)

(
1− xj

xj

)ϵ

+ G

(
xj

1− xj
, ϵ

)]
P (0)

qg (xj)

+ SijRϵ
(1− xjϵ)
2(1− 2ϵ) , (5.9)

P̃ (1)
qg (xj) = −Sij

Rϵ

ϵ2 G

(
xj

1− xj
,−ϵ

)
P (0)

qg (xj)− SijRϵ
(1− xjϵ)
2(1− 2ϵ) . (5.10)

Here G(w, ϵ) is defined in eq. (4.65). It has the property that it vanishes as xj → 0 and has
the ϵ-expansion,

G

(
xj

1− xj
, ϵ

)
= ϵ ln(1− xj)− ϵ2Li2

(
−xj

1− xj

)
+O

(
ϵ3
)

. (5.11)
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The tree-level splitting function P
(0)
qg is given in eq. (A.9). In the complementary case

of j being the hard radiator, all splitting functions vanish identically,

P (1)
qg (i, jh) = 0 , P̃ (1)

qg (i, jh) = 0 , P̂ (1)
qg (i, jh) = 0 . (5.12)

The g → qq̄ one-loop splitting functions are

P
(1)
qq̄ (ih, j) = 1

sij
P

(1)
qq̄ (xj) , (5.13)

P̃
(1)
qq̄ (ih, j) = 1

sij
P̃

(1)
qq̄ (xj) , (5.14)

P̂
(1)
qq̄ (ih, j) = 1

sij
P̂

(1)
qq̄ (xj) , (5.15)

and

P
(1)
qq̄ (i, jh) = 1

sij
P

(1)
qq̄ (1− xj), (5.16)

P̃
(1)
qq̄ (i, jh) = 1

sij
P̃

(1)
qq̄ (1− xj) , (5.17)

P̂
(1)
qq̄ (i, jh) = 1

sij
P̂

(1)
qq̄ (1− xj) . (5.18)

The one-loop splitting functions are given by

P
(1)
qq̄ (xj) = Sij

Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)

(
1− xj

xj

)ϵ

+ 1 + G

(
xj

1− xj
, ϵ

)
− G

(
xj

1− xj
,−ϵ

)

+ ϵ(13− 8ϵ)
2(3− 2ϵ)(1− 2ϵ)

]
P

(0)
qq̄ (xj) , (5.19)

P̃
(1)
qq̄ (xj) = −SijRϵ

[ 1
ϵ2 + 3 + 2ϵ

2ϵ(1− 2ϵ)

]
P

(0)
qq̄ (xj) , (5.20)

P̂
(1)
qq̄ (xj) = SijRϵ

[
− 2(1− ϵ)

ϵ(3− 2ϵ)(1− 2ϵ)

]
P

(0)
qq̄ (xj) , (5.21)

with P
(0)
qq̄ defined in eq. (A.10). Note that the symmetry of P

(1)
qq̄ is preserved:

P
(1)
qq̄ (1− xj) ≡ P

(1)
qq̄ (xj). (5.22)

Finally, the g → gg one-loop splitting functions for i being the hard radiator are given
by

P (1)
gg (ih, j) = 1

sij
P (1),sub

gg (xj) , (5.23)

P̃ (1)
gg (ih, j) = 0 , (5.24)

P̂ (1)
gg (ih, j) = 1

sij
P̂ (1),sub

gg (xj), (5.25)
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while when j is the hard radiator,

P (1)
gg (i, jh) = 1

sij
P (1),sub

gg (1− xj) , (5.26)

P̃ (1)
gg (i, jh) = 0 , (5.27)

P̂ (1)
gg (i, jh) = 1

sij
P̂ (1),sub

gg (1− xj) . (5.28)

Here, the one-loop splitting functions are given in terms of the tree-level splitting function
P

sub,(0)
gg given in eq. (A.11),

P (1),sub
gg (xj) = Sij

Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)

(
1− xj

xj

)ϵ

+ G

(
xj

1− xj
, ϵ

)

− G

(
xj

1− xj
,−ϵ

)]
P sub,(0)

gg (xj)

+ SijRϵ
(1− 2xj(1− xj)ϵ)

2(1− ϵ)(1− 2ϵ)(3− 2ϵ) , (5.29)

P̂ (1),sub
gg (xj) = SijRϵ

( −(1− 2xj(1− xj)ϵ)
2(1− ϵ)2(1− 2ϵ)(3− 2ϵ)

)
, (5.30)

and satisfy

P (1)
gg (xj) = P (1),sub

gg (xj) + P (1),sub
gg (1− xj) , (5.31)

P̂ (1)
gg (xj) = P̂ (1),sub

gg (xj) + P̂ (1),sub
gg (1− xj) . (5.32)

6 Real-virtual antenna functions

In this section, we give compact expressions for the full set of real-virtual antennae. In
deriving these antennae, we have made use of MAPLE, hypexp [88, 89] and FORM [90, 91].

6.1 Quark-antiquark antennae

As shown in table 1, there are three one-loop three-parton antennae with quark-antiquark
parents that describe the emission of a gluon, organised by colour structure: A1

3, Ã1
3, and

Â1
3. The antenna functions constructed here are directly related to the antenna functions

given in ref. [2] by

A1, OLD
3 (iq, jg, kq̄) ∼ A1

3(ih
q , jg, kh

q̄ ) , (6.1)
Ã1, OLD

3 (iq, jg, kq̄) ∼ Ã1
3(ih

q , jg, kh
q̄ ) , (6.2)

Â1, OLD
1 (iq, jg, kq̄) ∼ Â1

3(ih
q , jg, kh

q̄ ) , (6.3)

where ∼ means that they contain the same limits as jg becomes unresolved, although they
may contain different ϵ poles.

In order to build these antennae using the algorithm in section 3, we identify the
particles included in the antenna to specify the limits encapsulated by the X1

3 and identify

– 23 –



J
H
E
P
1
1
(
2
0
2
3
)
1
7
9

the target poles for the X1
3 factorising on to the respective X0

3 (here A0
3). The resulting

formula from the algorithm (copied from above) is given by

A1
3(ih, j, kh) = Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)SijSjk

Sik
+ SijG

(
sjk

sik
, ϵ

)
+ SjkG

(
sij

sik
, ϵ

)
+ Λ1(ih, j, kh)

]
A0

3(ih, j, kh)− b0
ϵ

A0
3(ih, j, kh)

+ SijRϵ
(sijk − ϵsjk)

sijsijk

1
2(1− 2ϵ) + SjkRϵ

(sijk − ϵsij)
sjksijk

1
2(1− 2ϵ) .

(6.4)

Integrating over the single-unresolved antenna phase space (more details are given in
section B), we yield the integrated antenna

A1
3(sijk) = S2

ijk

[
− 1
4ϵ4 − 31

12ϵ3 + 1
ϵ2

(
−53

8 + 11
24π2

)
+ 1

ϵ

(
−659

24 + 22
9 π2 + 23

3 ζ3

)

+
(
−1345

12 + 199
24 π2 + 635

18 ζ3 +
13

1440π4
)
+O (ϵ)

]
. (6.5)

This expansion differs from A1, OLD
3 in eq. (5.18) of ref. [2], starting from the rational part

at O (1/ϵ). In a similar way to the constructed A0
4 in ref. [1], this is simply because the A0

3
given in ref. [1] differs at O (ϵ) from A0, OLD

3 of ref. [2]. The choice of A0
3 impacts the ϵ poles

of A1
3 at both the unintegrated and integrated levels, because A0

3 factorises onto explicit
1/ϵ2 poles in eq. (6.4). If instead the original A0, OLD

3 , of ref. [2], is used in eq. (6.4), the
integrated antenna in eq. (C.1) contains exactly the same poles as A1, OLD

3 in eq. (5.18) of
ref. [2] and differs only at O

(
ϵ0).

Similarly, for the sub-leading-colour qq̄ antenna,

Ã1
3(ih, j, kh) = −Rϵ

ϵ2

[
SijG

(
sjk

sik
,−ϵ

)
+ SjkG

(
sij

sik
,−ϵ

)
− Λ1(ih, j, kh)

]
A0

3(ih, j, kh)

− SijRϵ
(sijk − ϵsjk)

sijsijk

1
2(1− 2ϵ) − SjkRϵ

(sijk − ϵsij)
sjksijk

1
2(1− 2ϵ) , (6.6)

and after integration we find the expression,

Ã1
3(sijk) = S2

ijk

[
+ 1

ϵ2

(
−5
8 + 1

6π2
)
+ 1

ϵ

(
−19

4 + 1
4π2 + 7ζ3

)

+
(
−447

16 + 29
16π2 + 21

2 ζ3 +
7
60π4

)
+O (ϵ)

]
. (6.7)

This expansion only differs from Ã1, OLD
3 in eq. (5.19) of ref. [2] at O

(
ϵ0). In this case, the

choice of A0
3 does not impact the ϵ poles of Ã1

3 because they are at most 1/ϵ and the A0
3

given in ref. [1] differs only at O (ϵ) from A0, OLD
3 of ref. [2].

For the quark-loop qq̄ antenna, there are no unrenormalised unresolved limits and so
the antenna is simply a renormalisation term:

Â1
3(ih, j, kh) = −b0,F

ϵ
A0

3(ih, j, kh) . (6.8)
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The integrated version is given by

Â1
3(sijk) = S2

ijk

[
+ 1
3ϵ3 + 1

2ϵ2 + 1
ϵ

(19
12 − 7

36π2
)

+
(113

24 − 7
24π2 − 25

9 ζ3

)
+O (ϵ)

]
, (6.9)

which only differs from Â1, OLD
1 in eq. (5.20) of ref. [2] at O

(
ϵ0). In this case, the choice

of A0
3 does not impact the ϵ poles of Â1

3 because they are at most 1/ϵ and the A0
3 given in

ref. [1] differs only at O (ϵ) from A0, OLD
3 of ref. [2].

6.2 Quark-gluon antennae

As shown in table 1, there are six one-loop three-parton antennae with quark-gluon parents
organised by colour structure: D1

3, D̃1
3, D̂1

3, E1
3 , Ẽ1

3 , and Ê1
3 . The antenna functions

constructed here are directly related to the antenna functions given in ref. [2] by

D1, OLD
3 (iq, jg, kg) ∼ D1

3(ih
q , jg, kh

g ) + D̃1
3(ih

q , jg, kh
g ) + (j ↔ k) , (6.10)

D̂1, OLD
3 (iq, jg, kq̄) ∼ D̂1

3(ih
q , jg, kh

g ) + D̂1
3(ih

q , kg, jh
g ) , (6.11)

E1, OLD
3 (iq, jQ̄, kQ) ∼ E1

3(ih
q , jQ̄, kh

Q) , (6.12)

Ẽ1, OLD
3 (iq, jQ̄, kQ) ∼ Ẽ1

3(ih
q , jQ̄, kh

Q) , (6.13)

Ê1, OLD
3 (iq, jQ̄, kQ) ∼ Ê1

3(ih
q , jQ̄, kh

Q) . (6.14)

Note that D1, OLD
3 was extracted from an effective Lagrangian describing heavy neutralino

decay into a gluino-gluon pair, where the gluino plays the role of the quark [24]. Firstly,
D1, OLD

3 contains unresolved configurations where either of the gluons can be soft, so this is
decomposed here such that only one gluon can be soft. Secondly, the extracted antennae
D1, OLD

3 (and D0, OLD
4 ) contain both leading-colour and sub-leading colour limits and they

receive special treatment in the antenna scheme. In ref. [1], we effectively split D0, OLD
4

into a combination of D0
4 and D̃0

4 antennae and we perform a similar decomposition here of
D1, OLD

3 into D1
3 and D̃1

3. Due to the absence of a sub-leading colour D̃1, OLD
3 antenna, we

only have target poles, T (ih
q , jg, kh

g ), for the combination of D1
3(ih

q , jg, kh
g ) + D̃1

3(ih
q , jg, kh

g ).
We choose to place the resulting TPolesϵ term in the formula for D1

3. To recap, the
combination of D1

3(ih
q , jg, kh

g )+ D̃1
3(ih

q , jg, kh
g ) have been used to match ϵ poles in the existing

antenna-subtraction-scheme, while D1
3(ih

q , jg, kh
g ) contains the leading-colour limits when j

is unresolved and D̃1
3(ih

q , jg, kh
g ) contains the sub-leading-colour limits when j is unresolved.

This means the two antennae D1
3, D̃1

3 could in principle be used independently in subtraction
terms to cancel relevant one-loop unresolved limits, but the ϵ-pole cancellation may require
specific attention.
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The D1
3 formula is given by

D1
3(ih, j, kh) = Rϵ

ϵ2

[
−Γ(1−ϵ)Γ(1+ϵ)SijSjk

Sik
(6.15)

+SijG

(
sjk

sik
, ϵ

)
+SjkG

(
sij

sik
, ϵ

)
−SjkG

(
sij

sik
,−ϵ

)
+2Λ1(ih, j, kh)

]
D0

3(ih, j, kh)− b0
ϵ

D0
3(ih, j, kh)

+SijRϵ
(sijk −ϵsjk)

sijsijk

1
2(1−2ϵ) +

Rϵ

2(1−ϵ)(1−2ϵ)(3−2ϵ)
Sjk

sjk

(
1−2ϵ

sijsik

s2
ijk

)
,

and after integration we find the expression

D1
3(sijk) = S2

ijk

[
− 1
4ϵ4 − 8

3ϵ3 + 1
ϵ2

(
−1109

144 + 13
24π2

)
+ 1

ϵ

(
−14603

432 + 49
18π2 + 73

6 ζ3

)

+
(
−7985

54 + 8561
864 π2 + 535

12 ζ3 +
79
480π4

)
+O (ϵ)

]
. (6.16)

The D̃1
3 formula is given by

D̃1
3(ih, j, kh) = −Rϵ

ϵ2 SijG

(
sjk

sik
,−ϵ

)
D0

3(ih, j, kh) (6.17)

− SijRϵ
(sijk − ϵsjk)

sijsijk

1
2(1− 2ϵ) ,

and after integration we find the expression

D̃1
3(sijk) = S2

ijk

[
+ 1

ϵ2

(
− 5
16 + 1

12π2
)
+ 1

ϵ

(
−77
48 + 11

72π2 + 5
2ζ3

)

+
(
−983
144 + 941

864π2 + 55
12ζ3 −

7
180π4

)
+O (ϵ)

]
. (6.18)

The combination of 2(D1
3 + D̃1

3) differs from D1, OLD
3 in eq. (6.22) of ref. [2], starting from

O
(
1/ϵ2). In a similar way to the constructed D0

4 and D̃0
4 in ref. [1], this is simply because

the D0
3 given in ref. [1] differs at O

(
ϵ0) from d0, OLD

3 of ref. [2]. The choice of D0
3 impacts the

ϵ poles of D1
3 and D̃1

3 at both the unintegrated and integrated levels because D0
3 factorises

onto explicit 1/ϵ2 poles in eq. (6.15) and eq. (6.17).
The quark-loop qg antenna function is given by

D̂1
3(ih, j, kh) = −Rϵ

Sjk

sjk

1
2(1− ϵ)2(1− 2ϵ)(3− 2ϵ)

(
1− 2ϵ

sijsik

s2
ijk

)

− b0,F

ϵ
D0

3(ih, j, kh), (6.19)

and after integration we find the expression

D̂1
3(sijk) = S2

ijk

[
+ 1
3ϵ3 + 5

9ϵ2 + 1
ϵ

(125
72 − 7

36π2
)
+
(97
18 − 35

108π2 − 25
9 ζ3

)
+O (ϵ)

]
.

(6.20)
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This expansion differs from D̂1, OLD
3 /2 in eq. (6.23) of ref. [2], starting from the rational

part at O (1/ϵ). In the D̂1
3 formula, the poles are at most 1/ϵ and they only appear in the

renormalisation term. The finite difference between D0
3 and d0, OLD

3 from ref. [2] therefore
only impacts the O (1/ϵ) poles.

The E1
3 -type antennae contain contributions to only one limit — the jk collinear limit,

when the Q̄Q pair become collinear and as such they are simpler expressions than the
others. The first antenna is given by

E1
3(ih, j, kh) = −Rϵ

ϵ2

[
SjkG

(
sij

sik
,−ϵ

)
+ SjkG

(
sik

sijk
,−ϵ

)

− Sjk
ϵ(13− 8ϵ)

2(3− 2ϵ)(1− 2ϵ) − 2Λ2(ih, j, kh)
]
E0

3(ih, j, kh)− b0
ϵ

E0
3(ih, j, kh) ,

(6.21)

where the Λ2/ϵ2 term suppresses the only limit in the E0
3 to which it factorises (the jk

collinear limit) and thus only affects the ϵ pole structure of E1
3 . After integration we find

the expression

E1
3 (sijk) = S2

ijk

[
+ 11
18ϵ2 + 1

ϵ

(56
27 − 1

9π2
)
+
(4111

432 − 131
216π2 − 4ζ3

)
+O (ϵ)

]
, (6.22)

which differs from E1, OLD
3 in eq. (6.34) of ref. [2], starting from the rational part at O (1/ϵ).

In the E1
3 formula, the poles are at most 1/ϵ. The finite difference between E0

3 and E0, OLD
3

from ref. [2] therefore only impacts the O (1/ϵ) poles.
The sub-leading-colour antenna is given by

Ẽ1
3(ih, j, kh) = −RϵSjk

[ 1
ϵ2 + (3 + 2ϵ)

2ϵ(1− 2ϵ)

]
E0

3(ih, j, kh) , (6.23)

and after integration we find the expression

Ẽ1
3 (sijk) = S2

ijk

[
+ 1
6ϵ3 + 13

18ϵ2 + 1
ϵ

(613
216 − 1

4π2
)
+
(3359

324 − 13
12π2 − 31

9 ζ3

)
+O (ϵ)

]
,

(6.24)

which differs from Ẽ1, OLD
3 in eq. (6.35) of ref. [2], starting from the rational part at O

(
1/ϵ2).

In the Ẽ1
3 formula, the poles are at most 1/ϵ2. The finite difference between E0

3 and E0, OLD
3

from ref. [2] therefore impacts the O
(
1/ϵ2) poles.

The quark-loop antenna is given by

Ê1
3(ih, j, kh) = −Rϵ

[
Sjk

2(1− ϵ)
ϵ(3− 2ϵ)(1− 2ϵ)

]
E0

3(ih, j, kh)− b0,F

ϵ
E0

3(ih, j, kh), (6.25)

and after integration we find the expression

Ê1
3 (sijk) = S2

ijk

[
+ 1
4ϵ

+
(791
648 − 11

108π2
)
+O (ϵ)

]
, (6.26)
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which differs from Ê1, OLD
3 in eq. (6.36) of ref. [2], starting from the rational part at O (1/ϵ).

In the Ê1
3 formula, the poles are at most 1/ϵ. The finite difference between E0

3 and E0, OLD
3

from ref. [2] therefore impacts the O (1/ϵ) poles of Ê1
3 , although these are the deepest poles

in this case. This is because of cancellations at O
(
1/ϵ2) between the integrals of the first

and second terms in eq. (6.25).

6.3 Gluon-gluon antennae

As shown in table 1, there are five one-loop three-parton antennae with gluon-gluon parents
organised by colour structure: F 1

3 , F̂ 1
3 , G1

3, G̃1
3, and Ĝ1

3. The antenna functions constructed
here are directly related to the antenna functions given in ref. [2] by

F 1, OLD
3 (ig, jg, kg) ∼ F 1

3 (ih
g , jg, kh

g ) + F 1
3 (jh

g , kg, ih
g ) + F 1

3 (kh
g , ig, jh

g ) , (6.27)
F̂ 1, OLD

3 (ig, jg, kg) ∼ F̂ 1
3 (ih

g , jg, kh
g ) + F̂ 1

3 (jh
g , kg, ih

g ) + F̂ 1
3 (kh

g , ig, jh
g ) , (6.28)

G1, OLD
3 (ig, jQ̄, kQ) ∼ G1

3(ih
g , jQ̄, kh

Q) , (6.29)

G̃1, OLD
3 (ig, jQ̄, kQ) ∼ G̃1

3(ih
g , jQ̄, kh

Q) , (6.30)

Ĝ1, OLD
3 (ig, jQ̄, kQ) ∼ Ĝ1

3(ih
g , jQ̄, kh

Q) . (6.31)

Note that F 1, OLD
3 was extracted from an effective Lagrangian describing Higgs boson decay

into gluons [23]. This means that F 1, OLD
3 contains unresolved configurations where any one

of the three gluons can be soft, so this is decomposed here such that only one gluon can be
soft. The same discussion can be applied to F̂ 1

3 .
The resulting formula for the three-gluon one-loop antenna function at leading-colour

is given by

F 1
3 (ih, j, kh) = Rϵ

ϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)SijSjk

Sik

+ SijG

(
sjk

sik
, ϵ

)
− SijG

(
sjk

sik
,−ϵ

)
+ SjkG

(
sij

sik
, ϵ

)
− SjkG

(
sij

sik
,−ϵ

)
(6.32)

+ 2Λ1(ih, j, kh)
]
F 0

3 (ih, j, kh)− b0
ϵ

F 0
3 (ih, j, kh)

+ Rϵ

2(1− ϵ)(1− 2ϵ)(3− 2ϵ)

[
Sij

sij

(
1− 2ϵ

sjksik

s2
ijk

)
+ Sjk

sjk

(
1− 2ϵ

sijsik

s2
ijk

)]
,

and after integration we find the expression

F1
3 (sijk) = S2

ijk

[
− 1
4ϵ4 − 11

4ϵ3 + 1
ϵ2

(
−79

9 + 5
8π2

)
+ 1

ϵ

(
−8339

216 + 55
18π2 + 44

3 ζ3

)

+
(
−73169

432 + 5137
432 π2 + 473

9 ζ3 +
181
1440π4

)
+O (ϵ)

]
. (6.33)

This expansion differs from F1, OLD
3 /3 in eq. (7.22) of ref. [2], starting from the rational part

at O
(
1/ϵ2). In the F 1

3 formula, the poles are at most 1/ϵ2. The finite difference between
F 0

3 and f0, OLD
3 from ref. [2] therefore impacts the O

(
1/ϵ2) poles.
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The quark-loop antenna function is given by

F̂ 1
3 (ih, j, kh) = Rϵ

2(1− ϵ)2(1− 2ϵ)(3− 2ϵ)

[
Sij

sij

(
1− 2ϵ

sjksik

s2
ijk

)

+ Sjk

sjk

(
1− 2ϵ

sijsik

s2
ijk

)]
− b0,F

ϵ
F 0

3 (ih, j, kh) , (6.34)

and after integration we find the expression

F̂1
3 (sijk) = S2

ijk

[
+ 1
3ϵ3 + 11

18ϵ2 + 1
ϵ

(17
9 − 7

36π2
)
+
(437

72 − 77
216π2 − 25

9 ζ3

)
+O (ϵ)

]
.

(6.35)

This expansion differs from F̂1, OLD
3 /3 in eq. (7.23) of ref. [2], starting from the rational

part at O (1/ϵ). In the F̂ 1
3 formula, the poles are at most 1/ϵ and they only appear in the

renormalisation term. The finite difference between F 0
3 and f0, OLD

3 from ref. [2] therefore
only impacts the O (1/ϵ) poles.

The formula for the one-loop gluon-splitting gg antenna function at leading-colour is
given by

G1
3(ih, j, kh) = −Rϵ

ϵ2

[
SjkG

(
sij

sik
,−ϵ

)
+ SjkG

(
sik

sijk
,−ϵ

)

− Sjk
ϵ(13− 8ϵ)

2(3− 2ϵ)(1− 2ϵ) − 2Λ2(ih, j, kh)
]
G0

3(ih, j, kh)− b0
ϵ

G0
3(ih, j, kh) ,

(6.36)

and after integration we find the expression

G1
3(sijk) = S2

ijk

[
+ 11
18ϵ2 + 1

ϵ

(56
27 − 1

9π2
)
+
(4111

432 − 131
216π2 − 4ζ3

)
+O (ϵ)

]
. (6.37)

Firstly, given that E0
3 = G0

3 (from ref. [1]) and that E1
3 and G1

3 encapsulate the same
limits, these formulae (unintegrated and integrated) are identical for the E1

3 - and G1
3- type

antennae:

G1
3(ih, j, kh) = E1

3(ih, j, kh) , (6.38)
G̃1

3(ih, j, kh) = Ẽ1
3(ih, j, kh) , (6.39)

Ĝ1
3(ih, j, kh) = Ê1

3(ih, j, kh) . (6.40)

Therefore the discussion for the G1
3-type antennae is the same as below eq. (6.22), eq. (6.24),

and eq. (6.26), respectively. When the X0,OLD
3 from ref. [2] are used, the G1

3- and E1
3 - type

antennae have a different pole structure but the same collinear limits.
The sub-leading-colour antenna function is given by

G̃1
3(ih, j, kh) = −RϵSjk

[ 1
ϵ2 + (3 + 2ϵ)

2ϵ(1− 2ϵ)

]
G0

3(ih, j, kh) , (6.41)
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and after integration we find the expression

G̃1
3(sijk) = S2

ijk

[
+ 1
6ϵ3 + 13

18ϵ2 + 1
ϵ

(613
216 − 1

4π2
)
+
(3359

324 − 13
12π2 − 31

9 ζ3

)
+O (ϵ)

]
.

(6.42)

See the discussion for eq. (6.24), which also applies to eq. (6.42).
The quark-loop antenna function is given by

Ĝ1
3(ih, j, kh) = −Rϵ

[
Sjk

2(1− ϵ)
ϵ(3− 2ϵ)(1− 2ϵ)

]
G0

3(ih, j, kh)− b0,F

ϵ
G0

3(ih, j, kh) , (6.43)

and after integration we find the expression

Ĝ1
3(sijk) = S2

ijk

[
+ 1
4ϵ

+
(791
648 − 11

108π2
)
+O (ϵ)

]
. (6.44)

See the discussion for eq. (6.26), which also applies to eq. (6.44).

7 Antenna-subtraction scheme consistency checks

In the antenna subtraction scheme, the virtual (NLO) and double-virtual (NNLO) sub-
traction terms can be written in terms of integrated dipoles denoted by J

(1)
2 and J

(2)
2

respectively [36]. These integrated dipoles are formed by systematically combining in-
tegrated antenna-function contributions from the real and real-virtual layers (together
with appropriate mass factorisation terms). The NNLO integrated dipole J

(2)
2 naturally

emerges from the groups of integrated antenna functions (and mass factorisation kernels)
and, together with combinations of J

(1)
2 , reproduces and properly subtracts the explicit

poles of the double-virtual contribution to the NNLO cross section. The integrated dipoles
are therefore intimately related to Catani’s IR singularity operators [92] which describe
the singularities of virtual matrix elements. It is a non-trivial check of an antenna scheme
constructed directly from unresolved limits that the integrated dipoles cancel the explicit
poles of the double-virtual contribution. In this section, we write down expressions for J

(2)
2

(and J
(1)
2 ) and show that they produce the correct pole structure.

We start from the expressions for the integrated dipoles in colour space [79],

J (ℓ)(ϵ) =
∑
(i,j)

J (ℓ)
2 (i, j)Ti · Tj , (7.1)

J (2)(ϵ) =
∑
(q,q̄)

∑
g

J (2)
2 (q, q̄) (Tq + Tq̄) · Tg,

and further divide the J (ℓ)
2 (i, j) according to their colour-structures,

J (1)
2 (q, q̄) = Nc J

(1)
2 (q, q̄) , (7.2)

J (1)
2 (q, g) = NcJ

(1)
2 (q, g) + NF Ĵ2

(1) (q, g) ,

J (1)
2 (g, g) = NcJ

(1)
2 (g, g) + NF Ĵ2

(1) (g, g) ,
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and

J (2)
2 (q, q̄) = N2

c J
(2)
2 (q, q̄)− J̃2

(2) (q, q̄) + NcNF Ĵ2
(2) (q, q̄) , (7.3)

J (2)
2 (q, g) = N2

c J
(2)
2 (q, g) + NcNF Ĵ2

(2) (q, g)− NF

Nc

̂̃
J2

(2)
(q, g) + N2

F
̂̂
J2

(2)
(q, g) ,

J (2)
2 (g, g) = N2

c J
(2)
2 (g, g) + NcNF Ĵ2

(2) (g, g)− NF

Nc

̂̃
J2

(2)
(g, g) + N2

F
̂̂
J2

(2)
(g, g) ,

J (2)
2 (q, q̄) = N2

c

2 J
(2)
2 (q, q̄)− 1

2 J̃2
(2) (q, q̄) .

In order to cancel the singularities of one- and two-loop matrix elements, J (1)
2 and J (2)

2
(J (2)

2 ) must be related to J (1), OLD
2 and J (2), OLD

2 (J (2), OLD
2 ) given in ref. [78]. In particular,

they must satisfy the following identities [79] which ensure that they match the known
singularity structures at one and two loops. At NLO,

J (1)
2 (i, j) = J (1), OLD

2 (i, j) +O
(
ϵ0
)

, (7.4)

and at NNLO,

J (2)
2 (q, q̄)− β0

ϵ
J (1)

2 (q, q̄) = J (2), OLD
2 (q, q̄)− β0

ϵ
J (1), OLD

2 (q, q̄) +O
(
ϵ0
)

, (7.5)

J (2)
2 (g, g)− β0

ϵ
J (1)

2 (g, g) = J (2), OLD
2 (g, g)− β0

ϵ
J (1), OLD

2 (g, g) +O
(
ϵ0
)

, (7.6)

J (2)
2 (q, g) + J (2)

2 (g, q̄)− 2J (2)
2 (q, q̄)− β0

ϵ

(
J (1)

2 (q, g) + J (1)
2 (g, q̄)

)
= J (2), OLD

2 (q, g) + J (2), OLD
2 (g, q̄)− 2J (2), OLD

2 (q, q̄) (7.7)

− β0
ϵ

(
J (1), OLD

2 (q, g) + J (1), OLD
2 (g, q̄)

)
+O

(
ϵ0
)

.

Here we give the new definitions for the J
(1)
2 and J

(2)
2 pertaining to final-final configu-

rations, which satisfy the above identities and are constructed from the integrated versions
of X0

3 and X0
4 presented in ref. [1] and the integrated X1

3 constructed in this paper, thus
completing the set of antenna functions required for the complete final-final (FF) NNLO
subtraction scheme. The J

(1)
2 are defined by

J
(1)
2 (1q, 2q̄) = A0

3(s12), (7.8)

J
(1)
2 (1q, 2g) = D0

3(s12), (7.9)

Ĵ2
(1) (1q, 2g) =

1
2E

0
3 (s12), (7.10)

J
(1)
2 (1g, 2g) = F0

3 (s12), (7.11)

Ĵ2
(1) (1g, 2g) = G0

3(s12), (7.12)
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while the J
(2)
2 are defined below. For qq̄ antennae, the integrated dipoles read

J
(2)
2 (1q, 2q̄) = A0

4(s12) +A1
3(s12) +

b0
ϵ

(
s12
µ2

)−ϵ

A0
3(s12)−

1
2
[
A0

3 ⊗A0
3

]
(s12) , (7.13)

J̃2
(2) (1q, 2q̄) =

1
2Ã

0
4(s12) + 2C0

4(s12) + Ã1
3(s12)−

1
2
[
A0

3 ⊗A0
3

]
(s12) , (7.14)

Ĵ2
(2) (1q, 2q̄) = B0

4(s12) + Â1
3(s12) +

b0,F

ϵ

(
s12
µ2

)−ϵ

A0
3(s12) , (7.15)

J
(2)
2 (1q, 2q̄) =

1
2Ã

0
4(s12) + Ã1

3(s12)−
1
2
[
A0

3 ⊗A0
3

]
(s12) . (7.16)

For qg antennae, the integrated dipoles are given by

J
(2)
2 (1q, 2g) = D0

4(s12) +
1
2D̃

0
4(s12) +D1

3(s12) + D̃1
3(s12) +

b0
ϵ

(
s12
µ2

)−ϵ

D0
3(s12)

−
[
D0

3 ⊗D0
3

]
(s12) , (7.17)

Ĵ2
(2) (1q, 2g) = E0

4 (s12) + E0
4(s12) + D̂1

3(s12) +
1
2E

1
3 (s12) +

b0,F

ϵ

(
s12
µ2

)−ϵ

D0
3(s12)

+ 1
2

b0
ϵ

(
s12
µ2

)−ϵ

E0
3 (s12)−

[
D0

3 ⊗ E0
3

]
(s12) , (7.18)

̂̂
J2

(2)
(1q, 2g) =

1
2 Ê

1
3 (s12) +

1
2

b0,F

ϵ

(
s12
µ2

)−ϵ

E0
3 (s12)−

1
4
[
E0

3 ⊗ E0
3

]
(s12) , (7.19)

̂̃
J2

(2)
(1q, 2g) =

1
2 Ẽ

0
4 (s12) +

1
2 Ẽ

1
3 (s12) . (7.20)

Finally, for gg antennae, the integrated dipoles are

J
(2)
2 (1g, 2g) = F0

4 (s12) +
1
2 F̃

0
4 (s12) + F1

3 (s12) +
b0
ϵ

(
s12
µ2

)−ϵ

F0
3 (s12)

−
[
F0

3 ⊗F0
3

]
(s12) , (7.21)

Ĵ2
(2) (1g, 2g) = G0

4(s12) + 2G0
4(s12) + F̂1

3 (s12) + G1
3(s12) +

b0,F

ϵ

(
s12
µ2

)−ϵ

F0
3 (s12)

+ b0
ϵ

(
s12
µ2

)−ϵ

G0
3(s12)− 2

[
F0

3 ⊗ G0
3

]
(s12) , (7.22)

̂̂
J2

(2)
(1g, 2g) =

1
2H

0
4(s12) + Ĝ1

3(s12) +
b0,F

ϵ

(
s12
µ2

)−ϵ

G0
3(s12)−

[
G0

3 ⊗ G0
3

]
(s12) , (7.23)

̂̃
J2

(2)
(1g, 2g) = G̃0

4(s12) + G̃1
3(s12) . (7.24)

Note that, apart from certain well understood rescalings (such as (1/3)F0
3 7→ F0

3 , (1/2)D0
3 7→

D0
3 and so on), eqs. (7.8)–(7.24) have a very similar structure to those appearing in ref. [36].

We observe that eqs. (7.8)–(7.12) satisfy eq. (7.4). This is no surprise since the integrated
single-real antenna functions differ from those in ref. [24] only in finite pieces.

However, a residual dependence on the choice of single-real antennae is left in the con-
struction of double-real antenna functions and the real-virtual antenna functions constructed
in this paper. The deepest 1/ϵ4 and 1/ϵ3 poles correspond to the universal unresolved
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behaviour and are identical, but the 1/ϵ2 and 1/ϵ poles are potentially different. This is
understood as finite differences in the single-real antennae and should pose no issues in
application to the antenna-subtraction scheme, when used with a consistent set of X0

3 , X0
4 ,

and X1
3 antenna functions. Indeed, this is the case, and we find that eqs. (7.13)–(7.24)

satisfy eq. (7.5), thereby demonstrating the consistency of the NNLO antenna subtraction
scheme based on the antennae derived directly from the desired singular limits presented
here and in ref. [1].

8 Outlook

In this paper, we have extended the algorithm to build higher-order antenna functions
presented in our previous publication ref. [1] to the case where explicit poles in ϵ are present,
pertaining to mixed real and virtual corrections in higher-order calculations. As a proof of
the applicability of our new method, we have explicitly derived all X1

3 antenna functions
describing real-virtual radiation. Together with the real- and double-real antenna functions,
X0

3 and X0
4 , derived in our previous work ref. [1], this completes the derivation of a new

consistent set of antenna functions for NNLO calculations of processes with massless partons
in the final state.

We have identified two complementary sets of design principles relating to mixed real
and virtual antenna functions which we dubbed generic and subtraction-scheme-dependent
design principles. While the former ensures that each antenna function has judicious physical
properties and obeys all unresolved limits, the latter matches the mixed real-virtual antennae
onto the full antenna subtraction scheme. We have explicitly verified the consistency of the
method at NNLO by recalculating the integrated dipoles J

(2)
2 in the new scheme. These

have a direct relation to the general Catani IR singularity operators, and therefore the pole
structure of one- and two-loop matrix elements.

The completion of a consistent set of improved antenna functions for (double-)real and
real-virtual radiation provides an essential step towards the automation of the antenna-
subtraction method at NNLO. This will also be essential for going beyond the current
state-of-the-art and addressing complicated processes such as e+e− → 4 jets. We believe that,
apart from reducing the complexity of subtraction terms, our new antenna functions will
reduce the computational overhead associated with precision calculations. Our assessment
is based on the fact that we have chosen our design principles in such a way that they avoid
the need for spurious subtraction terms as much as possible.

In order to address precision phenomenology at hadron colliders such as the LHC,
NNLO antenna functions for initial-final (IF) and initial-initial (II) configurations are
required. These can be constructed using the same algorithm set-out here and in ref. [1],
using the known IF and II unresolved limits. For the cancellation of poles in virtual and
double-virtual matrix elements, those antenna functions then also need to be integrated
over the respective initial-final and initial-initial antenna phase spaces. We note that a
first step in this direction has recently been taken and the NLO antennae for the IF and II
configurations have been derived using this approach in ref. [93]. A full antenna subtraction
scheme would streamline the calculation of full-colour pp → 3 jets as well as bring other
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processes such as pp → V +2 jets, pp → H+2 jets into scope (as and when the two loop
matrix elements become available).

We have also so far focused our work on antennae with massless particles. Calculations
involving massive quarks, such as bottoms or tops, require antenna functions with massive
particles. Again, these antennae need to be integrated over their respective massive antenna
phase spaces so that they can be used to cancel explicit poles in virtual matrix elements.

We wish to stress that the algorithm presented in this and our previous paper ref. [1]
can straightforwardly be promoted to N3LO calculations, provided that the appropriate
unresolved limits are known analytically. The definition of an antenna-subtraction scheme
for N3LO calculations will require three new types of antenna functions, namely triple-real
(RRR), double-real-virtual (RRV), and real-double-virtual (RVV). While the removal
of overlapping singularities at N3LO may be tedious in practice, we anticipate that our
algorithm provides a suitable baseline for these endeavours.
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A Tree-level single unresolved limits

The tree-level soft factor is given by the eikonal factor for particle b radiated between two
hard radiators (a and c),

S(0)
g (ih, j, kh) = 2sik

sijsjk
, (A.1)

S(0)
q (ih, j, kh) = S

(0)
q̄ (ih, j, kh) = 0. (A.2)

The tree-level splitting functions P
(0)
ab (ih, j) are not singular in the limit where the

hard radiator a becomes soft and are related to the usual spin-averaged splitting functions,
cf. [94, 95], by

P (0)
qg (ih, j) = 1

sij
P (0)

qg (xj), (A.3)

P (0)
qg (i, jh) = 0, (A.4)

P
(0)
qq̄ (ih, j) = 1

sij
P

(0)
qq̄ (xj), (A.5)

P
(0)
qq̄ (i, jh) = 1

sij
P

(0)
qq̄ (1− xj), (A.6)
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P (0)
gg (ih, j) = 1

sij
P sub,(0)

gg (xj), (A.7)

P (0)
gg (i, jh) = 1

sij
P sub,(0)

gg (1− xj), (A.8)

with

P (0)
qg (xj) =

(
2(1− xj)

xj
+ (1− ϵ)xj

)
, (A.9)

P
(0)
qq̄ (xj) =

(
1− 2(1− xj)xj

(1− ϵ)

)
= P

(0)
qq̄ (1− xj), (A.10)

P sub,(0)
gg (xj) =

(
2(1− xj)

xj
+ xj(1− xj)

)
, (A.11)

and

P sub,(0)
gg (xj) + P sub,(0)

gg (1− xj) ≡ P (0)
gg (xj). (A.12)

Here, the momentum fraction xj is defined with reference to the third particle in the
antenna, xj = sjk/(sik + sjk).

B Integration of X1
3

The integrated antenna is obtained by integrating over the antenna phase space,

X 1
3 (sijk) =

(
8π2 (4π)−ϵ eϵγ

) ∫
dΦXijk

X1
3 , (B.1)

with d = 4−2ϵ. As in ref. [2], we have included a normalisation factor to account for powers
of the QCD coupling constant. The antenna phase space is given by

dΦXijk
= 1

16π2
1

Γ(1− ϵ)

(
4π

sijk

)ϵ

sijkdI, (B.2)

with

dI = dyijdyjk (yijyjk(1− yij − yjk))−ϵ , (B.3)

where 0 < yij < 1 and 0 < yjk < 1− yij . Setting yjk = (1− yij)z, then

dI = dyij dz y−ϵ
ij (1− yij)1−2ϵ z−ϵ (1− z)−ϵ, (B.4)

with 0 < yij , z < 1.
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The integrals we encounter are of the form,∫ 1

0
2F1(±ϵ,±ϵ, 1± ϵ, z)zα(1− z)βdz (B.5)

= Γ(α + 1)Γ(β + 1)
Γ(α + β + 2) 3F2(±ϵ,±ϵ, α + 1, 1± ϵ, α + β + 2, 1),∫ 1

0
2F1(±ϵ,±ϵ, 1± ϵ, 1− z)zα(1− z)βdz (B.6)

= Γ(α + 1)Γ(β + 1)
Γ(α + β + 2) 3F2(±ϵ,±ϵ, β + 1, 1± ϵ, α + β + 2, 1),∫ 1

0
zα(1− z)βdz = Γ(α + 1)Γ(β + 1)

Γ(α + β + 2) . (B.7)

C Integrals of X1
3 antennae derived using the X0

3 of ref. [2]

In this appendix, we list the integrals over the antenna phase space of the renormalised X1
3

antenna constructed using the X0
3 antennae of ref. [2].

A1
3(sijk) = S2

ijk

[
− 1
4ϵ4 − 31

12ϵ3 + 1
ϵ2

(
−53

8 + 11
24π2

)
+ 1

ϵ

(
−647

24 + 22
9 π2 + 23

3 ζ3

)

+
(
−1289

12 + 199
24 π2 + 635

18 ζ3 +
13
1440π4

)
+O (ϵ)

]
, (C.1)

Ã1
3(sijk) = S2

ijk

[
+ 1

ϵ2

(
−5
8 + 1

6π2
)
+ 1

ϵ

(
−19

4 + 1
4π2 + 7ζ3

)

+
(
−435

16 + 29
16π2 + 21

2 ζ3 +
7
60π4

)
+O (ϵ)

]
, (C.2)

Â1
3(sijk) = S2

ijk

[
+ 1
3ϵ3 + 1

2ϵ2 + 1
ϵ

(19
12 − 7

36π2
)
+
(109

24 − 7
24π2 − 25

9 ζ3

)
+O (ϵ)

]
, (C.3)

D1
3(sijk) = S2

ijk

[
− 1
4ϵ4 − 8

3ϵ3 + 1
ϵ2

(
−1193

144 + 13
24π2

)
+ 1

ϵ

(
−8473

216 + 49
18π2 + 73

6 ζ3

)

+
(
−18937

108 + 9485
864 π2 + 535

12 ζ3 +
79
480π4

)
+O (ϵ)

]
, (C.4)

D̃1
3(sijk) = S2

ijk

[
+ 1

ϵ2

(
− 5
16 + 1

12π2
)
+ 1

ϵ

(
−13

6 + 11
72π2 + 5

2ζ3

)

+
(
−395

36 + 941
864π2 + 55

12ζ3 −
7

180π4
)
+O (ϵ)

]
, (C.5)

D̂1
3(sijk) = S2

ijk

[
+ 1
3ϵ3 + 5

9ϵ2 + 1
ϵ

(139
72 − 7

36π2
)
+
(443

72 − 35
108π2 − 25

9 ζ3

)
+O (ϵ)

]
,

(C.6)
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E1
3 (sijk) = S2

ijk

[
+ 11
18ϵ2 + 1

ϵ

(74
27 − 1

9π2
)
+
(1441

108 − 149
216π2 − 4ζ3

)
+O (ϵ)

]
, (C.7)

Ẽ1
3 (sijk) = S2

ijk

[
+ 1
6ϵ3 + 35

36ϵ2 + 1
ϵ

(509
108 − 1

4π2
)
+
(1670

81 − 35
24π2 − 31

9 ζ3

)
+O (ϵ)

]
,

(C.8)

Ê1
3 (sijk) = S2

ijk

[
+ 1
3ϵ

+
(172

81 − 11
108π2

)
+O (ϵ)

]
, (C.9)

F1
3 (sijk) = S2

ijk

[
− 1
4ϵ4 − 11

4ϵ3 + 1
ϵ2

(
−85

9 + 5
8π2

)
+ 1

ϵ

(
−9827

216 + 55
18π2 + 44

3 ζ3

)

+
(
−88961

432 + 5665
432 π2 + 473

9 ζ3 +
181
1440π4

)
+O (ϵ)

]
, (C.10)

F̂1
3 (sijk) = S2

ijk

[
+ 1
3ϵ3 + 11

18ϵ2 + 1
ϵ

(19
9 − 7

36π2
)
+
(167

24 − 77
216π2 − 25

9 ζ3

)
+O (ϵ)

]
,

(C.11)

G1
3(sijk) = S2

ijk

[
+ 11
18ϵ2 + 1

ϵ

(169
54 − 1

9π2
)
+
(3355

216 − 161
216π2 − 4ζ3

)
+O (ϵ)

]
, (C.12)

G̃1
3(sijk) = S2

ijk

[
+ 1
6ϵ3 + 41

36ϵ2 + 1
ϵ

(325
54 − 1

4π2
)
+
(9053

324 − 41
24π2 − 31

9 ζ3

)
+O (ϵ)

]
,

(C.13)

Ĝ1
3(sijk) = S2

ijk

[
+ 7
18ϵ

+
(895
324 − 11

108π2
)
+O (ϵ)

]
. (C.14)

For the A-type, E-type and G-type antennae, we find complete agreement with the pole
structure of the analogous integrated antennae given in ref. [2]. For the D-type and F -type
antennae, we have utilised the X0

3 sub-antenna given in eqs. (6.13) and (7.13) of ref. [2]
respectively and therefore the pole structures of the combinations 2

(
D1

3 + D̃1
3

)
,2D̂1

3, 3F1
3

and 3F̂1
3 agrees with the expressions for D1, OLD

3 , D̂1, OLD
3 , F 1, OLD

3 and F̂ 1, OLD
3 respectively,

given by eqs. (6.22), (6.23), (7.22) and (7.23) of ref. [2] respectively to O
(
ϵ0).
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any medium, provided the original author(s) and source are credited.
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