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Abstract 

Transposable elements (TEs) are discrete, repetitive sequences of DNA that mobilise within genomes.  

For decades, TEs were dismissed as “junk DNA”, however, it is now clear that these elements have the 

potential to trigger genome instability, cause disease and shape the course of genome evolution.  

L1 elements constitute the only autonomous elements which remain active in the human genome and 

comprises approximately 17% of human DNA. As a retrotransposon, L1 canonically mobilises through 

a “cut and paste” mechanism called target primed reverse transcription (TPRT). Due to the deleterious 

impacts of L1 activity, mammalian cells have evolved a range of mechanisms to supress the 

mobilisation of these elements. The interactions between L1 elements and the host factors which 

regulate them are therefore an area of active research.   

Several DNA repair genes have shown potential as regulators of L1 activity. Moreover, in cell lines 

deficient in non-homologous end-joining, L1 has shown the potential to retrotranspose without its 

ORF2p endonuclease, which is usually a requirement for canonical TPRT. This retrotransposition has 

been termed endonuclease independent (ENi) retrotransposition, and takes place at unrepaired 

double stranded breaks in the DNA. Interestingly, several DNA repair factors have also been identified 

as potential regulators of L1 retrotransposition (both positive and negative), including a number of 

proteins from the Fanconi Anaemia pathway. The relationship between these factors and L1 has yet 

to be fully characterised, and it remains to be seen whether L1 can exploit other DNA lesions in the 

way that it utilises DSBs in ENi retrotransposition. 

This thesis aims to further investigate the relationship between L1 retrotransposition in the 

mammalian genome and DNA repair factors, particularly those comprising the Fanconi Anaemia 

pathway. Using cultured cell retrotransposition assays, I systematically tested a battery of mutant 

element in cells deficient in different proteins of the FANC pathway. In this way, I establish that ENi 

retrotransposition can be observed in a FANC background. I also demonstrate that FANC A deficient 

cells support retrotransposition of several L1 mutants which are immobile in parental cell lines. This 

includes elements with severe ORF1p mutations, mutations in the ORF2p endonuclease domain and 

mutations in the ORF2p PIP box.  Despite testing a range of cell lines deficient in different DNA repair 

factors, including cells deficient in a range of FANC proteins, the retrotransposition of ORF1p, PIP and 

mutants appears to be unique to FANC A. My results are potentially indicative of a unique mechanism 

of retrotransposition in FANC A cells, a phenomena which has precedence in the ENi pathway of 

retrotransposition.  



Mass spectrometry of immunoprecipitated T7-tagged ORF1p, both in FANC A and parental cells, 

demonstrated that a different selection of host factors interact with ORF1p in the two cell lines. 

Several of these have not been previously identified as L1 interactors, including YTHDF2, a protein 

which binds and destabilises m6A-containing RNA. Previous reports suggest that YTHDF2 regulates 

the stability of RNA:DNA hybrids in vivo, and associates with R loop containing loci. Through co-

immunoprecipitation of YTHDF2 with ORF1p, I confirm that the protein interacts with L1 elements in 

vitro.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lay summary 

DNA is the code for life which is shared by every organism. Small units of DNA are known as genes, 

and the combination of genes that each individual has can contribute to their physical characteristics 

as well as their predisposition to various diseases.  The DNA of all living organisms also contains 

transposable elements, sections of genetic material that are capable of mobilising or “jumping” to 

different places in the code. These elements were once labelled as “junk DNA” and dismissed as 

inconsequential to genetic research, however the important role that they play in human health and 

evolution is now becoming apparent. 

Some transposable elements move by cutting and pasting themselves into different sites in the DNA, 

whereas some move through more of a “copy and paste” mechanism. However, the only elements 

which are currently active in humans are the “copy and paste” elements. These elements produce 

proteins which work together to make an incision, or break, in the DNA, and then insert a copy of their 

own sequence into that break. 

These elements behave as “selfish genes” and do not code any immediate benefits for their host 

organism. In fact, their activity is often disruptive. If they copy themselves into important genes, for 

example, they can prevent those genes from functioning correctly, resulting in instability within the 

DNA and increasing the risk of disease, even death. Because of this, our cells have evolved means of 

repressing the activity of transposable elements.  

Fanconi Anaemia is a rare genetic disorder which results in the reduced production of blood cells in 

patients, as well as physical abnormalities and a predisposition to types of Anaemia. The disorder is 

triggered when any of the 21 proteins in the Fanconi Anaemia pathway stop working correctly. 

Recently, research suggests that some proteins in the Fanconi Anaemia pathway may also be involved 

in supressing the activity of transposable elements in human DNA. In this thesis, I demonstrate that 

some of these genes reduce the capability of transposable elements to move or “jump” in living cells 

cultured in the lab.  

By culturing and performing experiments in cells which do not have an important Fanconi Anaemia 

gene, I also showed that transposable elements missing key parts of their code can still move in these 

cells. This is interesting, because it means that removing parts of the Fanconi pathway could enable 

the elements to move in an unusual way. Seeing this difference helps us to better understand how 

the Fanconi Anaemia pathway could be working to repress the transposable elements in normal cells. 

This new, unusual way that transposable elements jump in cells that have defects in the Fanconi 

Anaemia pathway may be happening in Fanconi Anaemia patients and contributing to this disease. 



Further research will be required to clarify this. Nonetheless, this research has taken the field one step 

closer to understanding how transposable elements can influence, and be influenced by, DNA repair 

genes. 
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1.1. Transposable elements in the human genome 

 

1.1.1. An introduction to transposable elements  
 

Transposable elements (TEs) are discrete repetitive DNA sequences which have the ability to mobilise 

within and invade genomes. TEs form a major component of both bacterial and eukaryotic genomes, 

though the specific proportion varies according to species. In eukaryotes, this proportion ranges from 

approximately 5% in yeast to approximately 90% in wheat genomes (Charles et al. 2008). TEs 

contribute to genome instability by a number of mechanisms, ranging from insertions to larger scale 

genomic rearrangements  

Transposable elements are subdivided into two classes according to the mechanism of mobilisation. 

Retrotransposons, or Class I elements, move using a “copy and paste” mechanism, involving the 

reverse transcription of an intermediate retrotransposon mRNA which is integrated into the host 

genome at a new location (Gilbert et al. 2002). The use of an mRNA intermediate distinguishes 

retrotransposons from DNA transposons, the second class of TEs, which mobilise by a simpler “cut and 

paste” process. Though DNA transposons make up approximately 3% of the human genome, they are 

considered “fossils,” as research indicates that no human DNA transposon family has been active in 

the last 37 million years of primate evolution (Pace and Feshotte, 2007)  

An estimated 40% of the human genome is comprised of retrotransposons (Figure 1.1), though this 

figure is likely an underestimation, as ancient elements will have been modified through evolution and 

may no longer be identifiable. Retrotransposons can be divided into long terminal repeat (LTR) 

containing elements, which make up approximately 8.3% of the genome, and non-LTR elements. Non-

LTR elements can be further subdivided into LINEs (long interspersed elements) and SINEs (short 

interspersed elements) and make up approximately a third of the human genome together. (Cordaux 

and Batzer 2009; Lander et al. 2001).  

Within these classes are distinct subfamilies, which show different levels of activity and can be further 

described as either autonomous (able to mobilise through use of their own reverse transcriptase), or 

non-autonomous (requiring the enzymatic machinery of another retrotransposon to mobilise). LINE-

1 (L1) elements are currently the only autonomous, active elements in the human genome and provide 

the enzymatic machinery for the mobilisation of non-autonomous elements. Other prolific elements 

in the human genome include Alus and SVAs (both of which are categorised as SINEs), which are 

represented by approximately 1 million and 3,000 copies in the genome respectively (Ostertag et al. 

2003; Lander et al. 2001).  

https://link.springer.com/article/10.1007/s00299-017-2213-1#ref-CR6
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Elements which have retained their activity through evolution are of a great deal of interest, as they 

continue to generate inter-individual genetic variability and contribute to genomic instability 

processes through a myriad of mechanisms (Beck et al. 2011) . 

 

 

 

 

 

 

Figure 1.1 Transposable elements in the human genome. 

Approximately 45% of the human genome is made up of mobile elements. Of these, 8.3% is made up of LTR 

retrotransposons and 33% is made up of non LTR transposons including L1, Alu and SVA elements (adapted from 

Cordaux and Batzer 2009).  
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1.1.2 L1 elements: active retrotransposition in the human genome 
 

 Any ongoing retrotransposition in the human genome is mediated by the enzymatic 

machinery of active L1 elements, a family of the LINE class of retrotransposons (Furano, 2000). Alu 

elements are believed to be more active, however as non-autonomous elements they still make use 

of the L1 enzymatic machinery to mobilise. There are several subfamilies of L1 elements, distinguished 

by sequence differences that have arisen through evolution. However, the only elements currently 

active in the human genome belong to the human specific subfamily L1HS-Ta (for transcriptionally 

active), the youngest subset of L1s.  L1 elements make up approximately 17% of the genome (Lander 

et al. 2001), though it is estimated that over 99.8% of these have become modified through 

truncations, internal rearrangements and mutations throughout evolution, and are no longer capable 

of mobilisation (Cordaux and Batzer 2009). It is estimated that 80-100 retrotransposition-competent 

L1s continue to impact the genome (Beck et al. 2010; Brouha et al. 2003). Of these, a small proportion 

are highly active or “hot” L1s, which are thought to account for the majority of L1 retrotransposition 

(Brouha et al. 2003).  

In recent years, genomic, molecular and computation approaches have been used to identify active 

L1 elements. Many human specific L1 elements appear to be polymorphic in human populations 

(Streva et al. 2015; Lutz et al. 2003), and many are not represented in the human genome reference 

sequence. Analysis of the in vitro activity of 82 L1 clones from the HGW showed that just six hot L1s 

accounted for 84% of retrotransposition activity. (Brouha et al. 2003) However, a more recent study 

identified 68 L1 elements in the genomes of six individuals of diverse geographical origin, of which 37 

were shown to be “hot” for retrotransposition in a cultured cell assay (Beck et al. 2010; Beck et al. 

2011). This indicates that “hot” L1s may be more abundant in human populations than initially 

thought, and may be an important source of interindividual genetic variation. Thus, understanding the 

dynamics of L1 mobilisation in the human genome is an area of ongoing research. 

In order to ensure evolutionary success, L1 elements must mobilise in a cell type which will allow 

insertions to be passed on to the next generation, such as in the germline and during early 

embryogenesis (Trelogan and Martin 1995; Garcia-Perez et al. 2007). Active retrotransposition in the 

human germline is thought to provide a source of genetic variation and novel genetic material, 

influencing evolutionary processes from the DNA level (Cordaux and Batzer 2009). However, the 

genetic instability and insertional mutagenesis associated with retrotransposition events can be 

deleterious to the individual and the rate of de novo germline insertions is therefore likely under 

evolutionary constraint (Ivancevic et al. 2016). Numerous attempts have been made to establish the 

rate of L1 retrotranposition. Depending on the methodology, estimates range from around 1 in 20 to 

https://genome.cshlp.org/content/27/8/1395.long#ref-85
https://genome.cshlp.org/content/27/8/1395.long#ref-25
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1 in 200 births. Alu insertions are believed to take place more frequently, around 1 in 20 births 

(Cordaux and Batzer, 2009), and SVA insertions less frequently, at around 1 in 900 (Xing et al. 2009) 

As a result of their deleterious impacts, retrotransposons are predominantly subject to epigenetic 

silencing in somatic tissues, and are reactivated during the genome-wide demethylation that occurs 

in early embryogenesis. Indeed, work in human pluripotent stem cells and using mouse models has 

shown that the majority of heritable insertions are generated within these contexts (Babushok et al. 

2006; Garcia-Perez et al. 2007; van den Hurk et al. 2007; Kano et al. 2009; Levin and Moran 2011).  

In recent years, however, a body of research has built up to suggest that retrotransposition may also 

take place in certain somatic tissues and is not limited to embryogenesis in humans. In particular, a 

number of studies suggest that L1 actively retrotransposes in the human brain, potentially 

contributing to somatic mosaicism in adult tissue and generating variation between neurons (Muotri 

et al. 2005; Zhao et al. 2019). Muotri et al. (2005) demonstrated that an engineered human L1 

construct could mobilise in neuronal precursor cells generated from rat neural stem cells. The group 

showed that insertions from these events could influence the expression of neural genes, as well as 

altering cell fate. Furthermore, a study by Faulkner and Bilon (2018) revealed that a subset of L1 

elements could be de-repressed in the soma despite being inactive in the germline.  

 

1.1.3 The impacts of L1 retrotransposition on the human genome 
 

L1 elements, therefore, continue to impact the human genome in a myriad of ways, leading to disease 

and contributing to human evolution. Among other mechanisms, L1 elements can inactivate gene 

function through insertional mutagenesis, the triggering of aberrant splicing, target site deletions, 

recombination and transduction. Figure 1.2 illustrates some additional examples of mechanisms by 

which L1 has been reported to impact the human genome.  

 

 

 

 



21 
 

 

 

 

 

 

 

    

 

 

 

 

 

                                              

   

 

 

 

 

Figure 1.2. Mechanisms by which L1 can impact the human genome.  

a) Insertional mutagenesis by L1 can lead to disease in some instances, as reported in the pathology of 

Haemophilia A (Kazazian et al. 1988) b) transduction by LINE-1 is believed to represent ~1% of the human 

genome (Pickeral et al. 2000) c) molecular biology and DNA sequence analysis has indicated that both LINE 

elements and Alus can act as substrates for gene conversion (Tremblay et al. 2000). d) genomic rearrangements, 

such as unequal homologous recombination, has been reported as a mechanism of L1 mediate genome 

instability (Burwinkle et al. 1998) e) L1 elements have been reported to act in cis modulating the expression of 

host genes (Wanichnopparat et al. 2013) f) Insertion of L1 elements at a genomic site has been reported to cause 

deletion of adjacent genetic material (Gilbert et al. 2002). Deletions range from 1bp to >130bp (Gilbert et al. 

2002; Symer et al. 2002; Gilbert et al. 2005). (Adapted from Cordaux and Batzer 2009). 
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There are many reports linking L1 retrotransposition to disease through various mutagenic processes, 

with examples spanning haemophilia, cancer and diabetes (Kazazian et al. 1988; Miki et al. 1992; 

Martin-Nunez et al. 2014) Though the contribution of L1 to human pathology is still being established, 

Callinan and Batzer (2006) estimate that transposable elements cause ~0.27% of disease mutations 

and L1-mediated retrotransposition events are estimated to account for approximately 1 of every 

1000 spontaneous, pathological mutations in the human genome (Chen et al. 2005; Kazazian et al. 

1998). Reports of L1 mediated disease have been reviewed in Kaer and Speek (2013).  

In 1988, Kazazian et al. published the first description of an endogenous L1 element causing a disease 

through insertional mutagenesis. The group observed L1 insertions in exon 14 of the factor VIII gene 

in two patients with haemophilia A (of 240 analysed). The insertions were 3.8 and 2.3 kilobases and 

generated target site duplications of 12 and 13 nucleotides respectively. Since this study, many 

instances of L1 causing disease through insertional mutagenesis have been reported (Van Den Hurk 

et al. 2003; Mukherjee et al. 2004; Qian et al. 2015; Brouha et al. 2002; Narita et al. 1993; Meischl 

et al. 2000; Lanikova et al. 2013; Morisada et al. 2010; Teugels et al. 2005; Kondo-Iida et al. 1999). 

As well as through insertional mutagenesis, L1 insertions can disrupt the genome via transductions 

(Pickeral et al. 2000). In some cases, transductions take place when RNA polymerase II reads through 

the weak poly A signal of the element to the DNA following the insertion. This is speculated to take 

place in 15-23% of L1 retrotransposition events. (Holmes et al. 1994; Goodier et al. 2000; Pickeral et 

al. 2000; Szak et al. 2002). In other cases, L1 activity can lead to the transduction of regulatory 

sequences. This process can affect gene expression or even result in the formation of new genes if 

different exons come together ectopically (Solyom et al. (2012a). An example of a L1 mediated 

transduction was described by Solyom et al. (2012a), who identified the movement of a novel non-

coding gene into exon 67 of the dystrophin gene.  

 

L1 elements can also cause mutation through a mechanism called “gene breaking’. Gene breaking 

takes place when a L1 inserts into an intron in the antisense orientation, resulting in the splitting of 

the gene into two smaller transcripts (Wheelan et al. 2005). Wheelan et al. (2005) identified three 

genes which appeared to be split by L1 insertions, as well as 12 additional candidates. This 

phenomenon takes place because the presence of the element truncates the transcript from a gene’s 

promoter. These experiments were performed on episomal gene fusions; however, the authors 

propose that the same mechanism could lead to gene breaking in native chromosomal genes. In some 
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cases, L1 elements have also been reported to provide an alternative promoter once they insert into 

a new location (Dunn et al. 2003).  

Alternatively, elements can create genetic rearrangements through ectopic recombination via non-

allelic homologous recombination (NAHR; Beck et al. 2011). An example of this is reported by Wu et 

al. (2014), who observed one large deletion that had taken place in the F9 gene in patients with severe 

Haemophilia B. As it took place between two tandem L1 elements, the group proposed that the 

deletion had been mediated by NAHR. 

 

1.1.4 L1 elements and evolution of the human genome 
 

As well as contributing to disease, the genomic changes mediated by L1 can also influence species 

formation and evolution by altering the structure of the genome (Cordaux and Batzer, 2009). L1 

elements have remained persistently active in the genome for tens of millions of years, slowly 

accumulating in copy number and altering the genome through the previously described mechanisms 

and others (Beck et al. 2011; Cordaux and Batzer, 2009).  In some instances, these changes can result 

in the creation of novel genetic material. For example, cell culture assays have found that L1 mediated 

3’ transductions can result in exon shuffling (Moran et al. 1999), and analysis of the human genome 

has suggested that 0.6-1% of human DNA could be derived from L1 mediated transduction (Goodier 

et al. 2000; Pickeral et al. 2000). Evidence that an SVA mediated transduction was responsible for 

generation of the acyl-malonyl condensing enzyme 1 (AMAC1) gene family has demonstrated the 

potential for retrotransposition activity to create genetic material (Xing et al. 2006).  

Transposable elements can also become recruited into genes in a process called “exonisation” 

(Gonçalves et al. 2017). it has been predicted that the proportion of coding sequences including TEs is 

around 0.1% (Gotea and Makalowski 2006).  

It is also known that L1-mediated recombination can lead to genome deletions, leading in some cases 

to genetic disorders (Gilbert et al. 2002). However, in recent years, as sequencing technologies and 

comparative genomics have become more advanced, we have a better understanding of how L1 

mediated deletions have altered human and other genomes on an evolutionary scale (Sen et al. 2006; 

Cordaux et al. 2008). Work to better understand the impact of L1 on the human genome on an 

evolutionary level is ongoing. 

 
 
 

https://pubmed.ncbi.nlm.nih.gov/?term=Gon%C3%A7alves%20A%5BAuthor%5D
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1.2 The dynamics of L1 retrotransposition 
 

1.2.1 The structure of an active L1 element 
 

A full-length active human L1 element is 6Kb in length (Beck et al. 2011; Figure 1.3). The 5’ UTR region 

of human L1 is approximately 900bp long and contains an RNA polymerase II promoter, as well as a 

binding site for transcription factor YY1, and two binding sites for SOX-family transcription factors 

(Tchénio et al. 2000; Athanikar et al. 2004). Each of these binding sites is required for the activation 

of retrotransposition (Athanikar et al. 2004). 

 

 

Figure 1.3 The structure of an active L1 element 

(Adapted from Zhang et al 2020) 
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The 5’UTR region of the L1 transcript also contains a short open reading frame, ORF0, which was 

identified in 2015 by Denli et al. ORF0 is located on the opposing strand to the subsequent open 

reading frames. ORF0 can form fusion proteins with proximal exons and appears to improve L1 

mobility. Though its exact mechanistic role in TRPT is now known, its transcription by an antisense 

promoter may enhance L1 activity (Denli et al. 2015).  

The 5’ UTR region is followed by two open reading frames, ORF1 and ORF2 (both required for 

retrotransposition (Mathias et al. 1991; Moran et al. 1996)), separated by an inter-ORF spacer. This 

spacer contains two in frame stop codons as well as an in-frame AUG codon with the potential to 

generate short transcripts of 6 amino acids. Mutations within this inter-ORF spacer appear to have 

little impact on retrotransposition (Alisch et al. 2006). 

The human ORF1 encodes a 500 amino acid, 40kDa protein: ORF1p. This protein contains a long coil 

coiled domain, which contains a leucine zipper (Holmes, 1992) upstream of an RNA recognition motif 

(RRM; Khazina and Weichenrieder 2009) and a C-terminal domain (Januszyk et al. 2007), both of which 

are highly conserved. The precise role of ORF1p in retrotransposition has been difficult to determine, 

partly because its evolutionary origin is unclear and also because its structure shares little homology 

with other proteins (Martin et al. 2006). However, from analysis of crystal and NMR solution structures 

it is evident that ORF1p is a highly efficient RNA packaging protein (Januszyk et al. 2011). It shows a 

high affinity for single stranded RNA and DNA, and in particular shows a cis-preference for its own 

transcript (Martin et al. 2006).  Structural analysis has revealed that ORF1p forms dumbbell-like, non-

spherical trimers via the coiled-coil domain (Martin et al. 2003), and that close coordination between 

the RRM and CTD is required for effective RNA binding. ORF1p is also believed to have nucleic acid 

chaperone activity, which may play a role in retrotransposition (Khazina et al. 2011).  

ORF2 encodes a 150kDa protein: ORF1p, which provides the endonuclease and reverse transcriptase 

activities required for canonical retrotransposition (Clements et al. 1998). Biochemical 

characterisation of the ORF1p protein has revealed that the reverse transcriptase is highly processive 

in comparison to similar enzymes (Piskareva et al. 2006) synthesising approximately 620 nucleotides 

per binding event using the L1 transcript as a template.  

 In addition, ORF1p contains a Z-domain and a cysteine rich domain, located close to the RT domain 

and the C terminus respectively. Both of these domains are of unknown function, though mutational 

analysis in cultured cell assays have shown that both regions are required for canonical 

retrotransposition (Christian et al. 2017).   
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At the terminus of an element there is a 3’UTR region, which contains a poly-A tail. Doucet et al. (2015) 

demonstrated that manipulation of the poly A tract in vitro resulted in inhibition of retrotransposition 

in cis. Furthermore, experimentation revealed that the poly A tract allows L1 ORF1p to bind and 

mobilise RNAs in trans. 

 

1.2.2 The mechanism of L1 retrotransposition  
 

L1 elements mobilise by a mechanism called target primed reverse transcription (TPRT). This is a “copy 

and paste mechanism” in contrast to the “cut and paste” mechanism used by DNA transposons. This 

mechanism is depicted in Figure 1.4.  

 

 

Figure 1.4. The process of target primed reverse transcription 

(Adapted from Zhang et al 2020) 
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The first step of TPRT is the transcription of the full-length element, initiated when RNA polymerase II 

binds to the promoter region in the 5’UTR of L1 s (Beck et al. 2011; Hancks and Kazazian 2012; 

Swergold 1990). The L1 mRNA transcript is exported to the cytoplasm, where ORF1 and ORF2 are 

translated into their respective protein products, ORF1p and ORF1p.  

It is known that ORF1p is translated by a conventional cap-dependent mechanism (Dmitriev et al. 

2007), however the difficulty in detecting ORF1p has made characterising ORF1p translation 

challenging. It is thought that ORF1p is expressed as a singularity, not as a fusion protein together with 

ORF1p, as detection with anti-ORF1p antisera indicates a 40kDa product (Leibold et al. 1990; McMillan 

and Singer 1993; Hohjoh and Singer 1996; Goodier et al. 2004; Kulpa and Moran 2005).  

Using a cultured cell retrotransposition assay, Alisch et al. (2006) showed that ORF1p translation is 

initiated at the first in-frame AUG codon. Interestingly though, they observed that mutation of the 

AUG codon to any alternative amino acid does not impair retrotransposition of synthetic and mouse 

L1 transcripts in HeLa, CHO, or rat neural progenitor cells. This suggests that ORF1p translation can 

also begin from alternative codons.  The same study demonstrated that sequences within ORF1p and 

the interORF spacer also appear to be dispensable both for retrotransposition and translation of 

ORF1p. However, mutation of the UAA ORF1p stop codon in a transcript without an interORF spacer 

abrogated retrotransposition, indicating that the presence of this codon is essential for 

retrotransposition and providing further evidence that ORF1p and ORF1p need to be encoded 

separately (Alisch et al. 2006). This series of experiments indicates that ORF1p is translated through 

an unconventional termination re-initiation mechanism that is not dependent on an AUG codon.  

Once translated, both ORF1p and ORF1p show a cis-preference for their own transcripts, associating 

with their encoding mRNA to form a ribonucleoprotein particle (Esnault et al. 2000; Kulpa and Moran 

2006; Wei et al. 2001). This cis preference is critical for ensuring the efficiency of retrotransposition, 

as it reduces the interaction of L1 machinery with unrelated cellular RNAs and RNAs from “fossilised 

L1s (Wei et al. 2001). Once formed, the ribonucleoprotein particle regains access to the nucleus. The 

mechanism of nuclear import is not yet known. However, using an adenoviral vector to deliver an L1 

element into differentiated primary somatic cells and G1/S phase arrested cells, Kubo et al. (2006) 

demonstrated that the process is not dependent on cell-division. 

The endonuclease of ORF1p can now locate and cut the genomic DNA at a specific consensus site, 

3−′AA/TTTT−5′ (Cost and Boeke 1998; Cost et al. 2002; Morrish et al. 2002; Jurka et al. 1997). Often, 

this sequence is preceded by T-tracts of variable length, indicating that the sequence upstream of the 

EN consensus site has the potential to base pair with the polyA tail of the element. The endonuclease 

incision releases a 3’ hydroxyl, which can be used as a primer for the reverse transcription of the new 
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L1 element by the ORF1p reverse transcriptase (Luan et al. 1993; Cost et al. 2002). The factors 

determining the genomic location of the new insertion are not fully known, however, in 2013, Monot 

et al. used a direct L1 extension assay to measure the efficiency of the ribonucleic particle to initiate 

reverse transcription using different primers. Notably, efficient priming was detected with just 4 

matching nucleotides at the 3’ end. Therefore, the specificity of the reverse transcriptase priming and 

cleavage endonuclease enzymes are likely to influence the location of new L1 insertions.  

Once the L1 cDNA copy is inserted into the genomic DNA, an incision is made in the second DNA strand 

and a second copy of the L1 insertion is generated. However, the mechanism by which this process 

takes place is a topic of ongoing research. 

Insertions generated by TPRT often contain ~7–20-bp target-site duplications (TSDs; Szak et al. 2002). 

TSDs are generated because the EN cleaves the second strand a variable distance away from the initial 

nicking site, these staggered gaps are later filled in to form repeat sequences flanking the element. 

(Szak et al. 2002). Approximately 35% of genomic L1 insertions generated by TPRT include the full-

length element (Boissinot et al. 2000), and the rest are 5’ truncated to some degree (Grimaldi et al. 

1984). The cause for this frequent truncation is not known, but it has been speculated that it’s a result 

of a host defence or DNA repair activity, potentially interrupting the reverse transcription process or 

partially degrading the transcript (Beck et al. 2011). 

 

1.2.3 A cultured cell retrotransposition assay to measure retrotransposition 
 

Mobile element activity can be measured by a cultured cell retrotransposition assay using a reporter 

cassette. This assay was developed by Moran et al. (1996) and can be used to quantify activity of many 

types of mobile elements.  Development of the retrotransposition assay was a pivotal moment in L1 

biology because it made the “real time” quantification of retrotransposition possible.  

The assay was first used to characterise the activity of two elements, L1.2 and LRE3, which had been 

identified as the likely source of insertions in Factor VIII (Dombroski et al. 1991) and the dystrophin 

genes (Holmes et al. 1994). Expression in yeast systems had shown that these elements contained 

reverse transcriptase activity and contained two open reading frames (ORF1 and ORF2). Using the 

cultured cell retrotransposition assay, Moran et al. (1996) were able to show that both L1.2 and LRE3 

were capable of high frequency autonomous retrotransposition.  

To do this, Moran et al. (1996) cloned a reporter cassette designed by Freeman et al. (1994) into the 

3’UTR of the L1.2 element, creating a transcript called L1.2mneoI (Figure 1.5).  The reporter gene, 

https://www.sciencedirect.com/science/article/pii/S0092867400819984#BIB13
https://www.sciencedirect.com/science/article/pii/S0092867400819984#BIB25
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mneoI, consists of an antisense copy of the neo gene, which encodes resistance to the antibiotic G418 

and is flanked by its own promoter and polyadenylation signal. Importantly, the antisense neo is 

interrupted by an intron IVS 2 of the γ-globin gene, in the sense orientation. This intron is flanked by 

a splice donor and splice acceptor sites (also in the sense orientation).  

The design of the L1.2mneoI transcript ensures that the gene product of neo will only be expressed 

when the full length of the cassette is expressed, spliced to remove the intron, and reverse transcribed 

into the genome (Moran et al. 1996). Once reintegrated into the genomic DNA, the neo reporter gene 

can be transcribed from its heterologous promoter and encode G418 resistance. In contrast, 

transcripts which originate from the L1.2mneoI promoter can be spliced but will contain an antisense 

copy of neo, and transcripts generated from the neo’s own antisense promoter cannot be spliced due 

to the orientation of the donor and acceptor sites. This ensures that only cells which have harboured 

a full retrotransposition event are resistant to G418 and will survive a period of selection. 

 

 

Figure 1.5. A cultured cell assay to measure L1 retrotransposition 

(Adapted from Moran et al 1996) 

 Moran et al. (1996) cloned L1.2mneoI into an expression vector called pCEP4, which was chosen to 

ensure high levels of expression. pCEP4 replicates at a high copy number and contains a hygromycin 
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gene for the selection of successfully transformed cells. It also contains an origin for bacterial 

replication (Ori) and a selectable marker for prokaryotic cells. The construct was also designed with 

the cytomegalovirus (CMV) immediate-early promoter, which drives a high level of expression. In this 

way, an engineered L1 element in a pCEP4 vector can be transfected into any cell line. After waiting 

48 hours after transfection, the cells were treated with a 12-day period of selection using the antibiotic 

hygromycin. After the period of selection, cells expressing the reporter gene survived and formed 

colonies, which were fixed and stained, whilst cells which have not will remain sensitive to the 

antibiotic and die. By modifying the expression vector, different selection methods can be used to 

adapt the retrotransposition assay to different cell lines.  

 

1.2.4 The formation of a ribonucleoprotein particle is essential for 

retrotransposition 
 

The ribonucleoprotein particle, comprised of ORF1p, ORF1p and the encoding transcripts of each 

protein, is an important intermediate in target primed reverse transcription. In fact, there is a body of 

evidence suggesting that the formation of the particle is essential for retrotransposition (Kulpa and 

Moran 2005). 

In 1990, working with pluripotent embryonic carcinoma cells, Deragon et al. identified that reverse 

transcriptase activity was associated with a macromolecular complex, which had a protein component 

of 37kDa and was detected in a 160,000 G pellet after differential centrifugation. Detection of L1 

mRNA within the complex suggested that this particle was an intermediate of retrotransposition. This 

is thought to be the first recorded detection of the RNP.  

Soon after, ORF1p and L1 mRNA were detected in other cell lines with high levels of endogenous L1, 

including F9 teratocarcinoma cells (Martin et al. 1991) and 2102EP embryonic carcinoma cells (Hohjoh 

and Singer, 1996). Together, these studies consolidated the theory of an RNP TPRT intermediate, 

however they did not distinguish between the RNP of a retrotransposition competent element or a 

retrotransposition defective element. To characterise a functional RNP, Kulpa and Moran (2005) 

engineered an epitope tagged ORF1p element and used cultured cell retrotransposition assays to 

observe the behaviour of mutant and wild type ORF1p.  

Using differential centrifugation in extracts of HeLa cells, Kulpa and Moran (2005) confirmed that the 

epitope tagged ORF1p (etORF1p) localised to a cytoplasmic RNP and appeared to co-migrate with L1 

RNA. They observed that catalytic mutations in the RT and EN domains of ORF1p did not appear to 
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affect localisation of etORF1p to the RNP. Furthermore, introducing a frameshift induced stop 

mutation into the amino terminus of ORF1p, which has been shown to prevent ORF2 synthesis, also 

did nothing to disrupt localisation of etORF1p to the RNP. ORF1p therefore appears to be dispensable 

for the formation of the RNP.  

Kulpa and Moran also tested the impact of a series of ORF1p mutants on formation of the RNP with 

etORF1p. Three mutations in highly conserved amino acids in the carboxyl domain of ORF1p 

(REKG235-238, RR261-262 and YPAKLS282-287) have been previously shown to abrogate 

retrotransposition in a cultured cell assay. These mutations also appeared to obstruct the ability of 

etORF1p to localise to the RNP, as the tagged construct was no longer present in the 160 000 G 

sedimentation pellet. This data suggests that mutations in the carboxyl terminus of ORF1p disrupt 

interactions between ORF1p and L1 RNA, preventing the formation of the RNP. 

 Kulpa and Moran also tested a series of mutations altering a di-arginine motif of ORF1p. Mutation of 

both arginine residues to lysine resulted in the reduction of retrotransposition to less than 1% of the 

wild type level, as did a R262K mutation. Interestingly, each of these mutant constructs were detected 

in the 160 000 G pellet, suggesting that the RNP had successfully formed. The identification of the 

mutant constructs in the RNP pellet despite the abrogation of retrotransposition indicates that 

formation of the RNP, though necessary, is not sufficient for L1 retrotransposition.  

These findings have advanced our understanding of the role of the ribonucleoprotein particle in TPRT 

and suggest that ORF1p may play an additional role downstream in the pathway. What this role is and 

the mechanistic impacts of the described ORF1p mutations remains to be elucidated.  

 

1.2.5 The structure and function of ORF1p 
 

Multiple studies have shown that mutations in ORF1p are detrimental to retrotransposition and can 

restrict retrotransposition with the same severity as mutations in the much more highly conserved 

ORF1p reverse transcriptase (Martin et al. 2005; Kulpa and Moran 2005; Martin et al. 2006).  

 The first coding sequence for ORF1p was identified from a mouse element called L1Md-A2 (Loeb et 

al. 1986). Since then, the ORF1p proteins of many different L1 elements (from various mammals and 

related elements in fish) have been analysed. Mammalian L1ORF1p consists of three domains, a 

coiled-coil domain, which allows the protein to form homo-trimers in a dumbbell shaped 

configuration, an RRM (RNA recognition motif) and a basic, conserved, C-terminal domain, which is 

thought to be involved in nucleic acid binding and chaperone activities (Martin et al. 2003; Martin et 
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al. 2006). In human L1 elements, the coiled-coil domain contains a leucine zipper (L1 elements from 

different organisms have poor sequence similarity in this region) and is preceded by a 51 residue-long 

N terminal region. There is also a 15-residue tail at the C terminus of L1ORF1p that can be truncated 

without impacting retrotransposition.  

In the previously described study by Kulpa and Moran (2005), mutating two conserved motifs in the 

carboxyl domain abrogated efficient retrotransposition and prevented the association of ORF1p with 

the RNP. It is thought that these mutations disrupted the ability of the protein to bind back to its 

encoding transcript in order to form this critical retrotransposition intermediate. NMR structures of 

the CTD domain of ORF1p have shown that the protein appears to have three discrete arrangements, 

resting, lifting and twisting (Januszyk et al. 2007). Theoretically, the lifting motion would open up the 

RRM cleft, facilitating nucleic acid binding. In the twisting configuration, the nucleic acid would be 

locked into place. In the resting position, basic patches of the coiled coil domain would be exposed for 

further potential nucleic acid binding (Januszyk et al. 2007). In this way, the flexible structure of the 

protein is likely related to nucleic acid chaperone activity. It is not known precisely how mutating the 

AA and REKG motif in the carboxyl domain disrupts this structure and the binding of the template. 

However, structure based mutational analysis that combined RNA binding assays with cultured cell 

retrotransposition assays revealed that this structured flexibility is crucial for retrotransposition 

(Januszyk et al. 2007). 

L1ORF1p also shows a strong resemblance to other coiled coil proteins, including the SNARE proteins 

found in eukaryotes (Sutton et al. 1998; Khazina and Weichenrieder 2018) the bacterial protein M1 

(McNamara et al. 2008) and the influenza hemagglutinin protein (Chen et al. 1999). All of these 

proteins form homotypic trimers and have functions relating to membrane fusion. Furthermore, Horn 

et al. (2017) have shown that an interaction between l1ORF1p and the ESCRT membrane budding 

complex, which is generally involved in cellular trafficking and membrane fusion, is required for 

retrotransposition. It has therefore been speculated that l1ORF1p could have a function related to 

membrane fusion in an uncharacterised part of the L1 retrotransposition cycle (Khazina and 

Weichenrieder 2018).  

X-ray crystallography of the ORF1p trimer has shown that the coiled coil domain mediates L1ORF1p 

trimerisation and enables the flexible attachment of the RRM and CTD domains (Khazina and 

Weichenrieder, 2009). Combining biophysical and cell-based techniques, Khazina and Weichenrieder 

(2009) determined the physical structure for the entire coiled coil domain of ORF1p. Coiled coil 

domains are made up of bundles of alpha helices, each helix constructed from seven amino acids. The 

centre of the helical bundle is usually made up of hydrophobic residues, leading to a hydrophobic core 

https://www.jbc.org/article/S0021-9258(18)80976-0/fulltext
https://www.jbc.org/article/S0021-9258(18)80976-0/fulltext
https://www.jbc.org/article/S0021-9258(18)80976-0/fulltext
https://pubmed.ncbi.nlm.nih.gov/?term=Weichenrieder%20O%5BAuthor%5D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940361/#bib74
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940361/#bib13
https://pubmed.ncbi.nlm.nih.gov/?term=Weichenrieder%20O%5BAuthor%5D
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which is important for the stability of the structure. Interestingly, the N-terminal heptads of the coiled 

coil domain appear to exhibit metastability, needing to switch between partially and fully structured 

states. The authors propose that this feature could explain the strong sensitivity of the protein to 

mutation within these domains, despite being less evolutionarily conserved that ORF1p. 

 

1.2.6 ORF1p has been difficult to characterise experimentally 
 

In contrast to ORF1p, the expression of ORF1p has been poorly characterised in human cell lines and 

tissues. It is believed that ORF1p is expressed at a much lower level than ORF1p, with as little as one 

molecule of ORF1p generated per L1 RNA transcript, and an estimated ratio of 30 ORF1p molecules 

for every ORF1p molecule (Wei et al. 2001). In fact, the RNP retrotransposition intermediate is 

believed to contain many ORF1p molecules, just one ORF1p molecule and one L1 mRNA. A study 

investigating the expression and cellular localisation of ORF1p and ORF1p detected ORF1p in 97% of 

cells, whereas ORF1p was detected in approximately 10% of cells (Mita et al. 2018). 

As such, the detection of ORF1p has been highly challenging in both an in vitro and an in vivo context 

(Dai et al. 2014), whilst ORF1p has been relatively easy to detect by western blotting (both with 

antibodies directed both to the endogenous protein and to proteins with epitope tags, including TAP, 

T7 and Flag tags, immunoprecipitation, mass-spectrometry and T7 RNA polymerase expression assays 

(Bratthauer et al. 1994; Rodic et al. 2014; An et al. 2011).  

Attempts to detect ORF1p by western blot have had mixed success. Kirilyuk et al. (2008) successfully 

detected ORF1p in rat chloroleukemia (RCL) cells after generating monoclonal antibodies directed to 

recombinant ORF1p and ORF1p. Detection of a 150 kDa band with weak signal intensity appeared 

consistent with the relatively low expression of ORF1p in comparison with ORF1, potentially due to 

the unconventional translation, re-initiation of ORF1p transcription (Alisch et al. 2006). However, 

many efforts have been fruitless, and the difficulty in isolating ORF1p has made identification of 

proteomic interactors and regulators challenging (Dai et al. 2014).  

 

 

1.2.7 The enzymatic activity of ORF1p in TRPT 
 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kirilyuk%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18073200
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ORF1p contains the enzymatic machinery required for target primed reverse transcription. It is 

believed to function as one contiguous protein (Alisch et al. 2006). An apurinic/apyrimidic (AP) 

endonuclease, first identified by Feng et al. (1996), is located at the N terminus of the protein. The 

group identified several conserved AP endonuclease motifs and demonstrated that the domain could 

convert supercoiled DNA into open circle, and preferentially cleaved sites similar to L1 target sites in 

vitro. When 2.6ng of L1 EN was incubated with 0.2ug of supercoiled DNA, 50% of it was converted into 

open circle DNA.   

Adjacent to the EN domain is a Z domain (Kines et al. 2014). This, and the sequence at the C terminus 

of the EN domain, are thought to modulate the activity of the EN domain during retrotransposition, 

as the addition of these sequences to the EN domain reduced EN-induced DNA damage in vitro (Kines 

et al. 2014). Further experimentation will be needed to see how this sequence between the EN domain 

and the RT domain affects retrotransposition and whether cellular factors may be interacting with the 

element via this sequence.  

The EN activity of ORF1p is physically coupled to its reverse transcriptase activity, which has also been 

shown to be required for retrotransposition (Moran et al. 1996). Unlike retroviral RTs, the ORF1p 

reverse transcriptase has been shown to be highly processive, producing a transcript up to 5 times 

longer than that of the Moloney murine leukaemia virus when tested in processive, in vitro conditions 

(Piskareva et al. 2006). 

 

1.2.8 Expression of ORF1p is linked to cellular toxicity. 
 

Expression of L1 has been linked to cellular toxicity through a number of mechanisms (Gasior et al. 

2006; Wallace et al. 2008; Belgnaoui et al. 2006). This toxicity appears to be primarily associated with 

the expression of L1 proteins, with Gasior et al. (2006) estimating that L1 expression generates 10-

fold more DSBs than insertions. Expression of the element results in an increase in γ-H2AX foci (a 

histone marker that indicates ionising radiation and DSBs), and a COMET assay in HeLa cells showed 

that expression of L1 resulted in a direct increase in DSBs (Gasior et al. 2006). In the same study, 

expression of L1 (but not empty vector, or EN- transcripts) also lead to cell cycle arrest at G2, reducing 

the number of cells which enter mitosis. 

Gasior et al. (2006) observed that abrogation of the EN domain of ORF1p reduced the cellular toxicity, 

while mutation of the RT domain had no notable effect. This indicates that the ORF1p endonuclease 

is a driver of L1 induced toxicity, most likely through the generation of nicks in the genomic DNA, as 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760205/#R4
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opposed to a deleterious effect from the generation of cDNA intermediates by the RT domain. More 

recent experiments, however, have suggested that the RT domain can also induce a substantial 

number of DSBs, though to a lesser degree than the EN domain (Wallace et al. 2008)  

 As expected, these effects can be fatal to cells. DNA damage induced by expression of the L1 element 

was also observed to induce apoptosis in cancer cells (Belgnaoui et al. 2006). Interestingly, the same 

study demonstrated that L1 induced DSBS are usually repaired 48 hours post transfection leading to 

speculation that DNA repair proteins are upregulated as part of the L1 lifecycle. 

Interestingly, the EN domain of ORF1p has been observed to tolerate multiple mutations before its 

toxicity is mitigated. Kines et al. (2016) analysed a full length L1 in order to identify naturally occurring 

mutations from the EN domain. A range of mutations were observed, some of which were believed to 

be structurally important and others which were thought to act as sites for phosphorylation by 

different kinases. A subset of these mutations was tested for their ability to impact endonuclease 

activity, induce H2AX phosphorylation and drive Alu retrotransposition. Surprisingly, almost all of the 

mutated endonucleases were still capable of inducing DNA damage. Seemingly, many of these 

putative phosphorylation sites are not necessarily related to the capacity of the ORF1p EN to generate 

DNA damage, or to drive retrotransposition of Alu elements. 

 

1.2.9 Identification of a PCNA interaction protein box in ORF1p 
 

Proliferating Cell Nuclear Antigen (PCNA), a sliding clamp that improves the processivity of DNA 

polymerase, has been identified as a high specificity interactor of ORF1p (Taylor et al. 2013; Mita et 

al. 2018). In 2013, Taylor et al. identified a canonical PCNA-interaction protein (PIP) box, located 

between the EN and RT domains of ORF1p, from residues 407-415. The group identified four amino 

acids I407, I411, Y414, and Y415, which were highly conserved across species. Pull-down experiments 

revealed that mutation of some of these residues to alanine disrupted the co-precipitation of PCNA 

with ORF1p. 

 Cultured cell retrotransposition assays revealed that mutations disrupting the ORF1p/PCNA 

interaction also led to reduction in retrotransposition. Mutation of a less conserved residue in the PIP 

box, Q408A, did not prevent the ORF1p/PCNA interaction, and did not lead to the subsequent 

reduction in retrotransposition. Reducing the expression of endogenous PCNA using short hairpin 

RNAs also led to a reduction in retrotransposition. Together, these data suggest that interaction of 

ORF1p with the PIP domain is required for retrotransposition  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760205/#R4
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These studies validate a role for PCNA in the lifecycle of L1, likely during or following TPRT (Taylor et 

al. 2013). The precise nature of this role, however, is currently under investigation. 

 

 

1.3 The endonuclease independent pathway of retrotransposition 
 

As well as TPRT, a second pathway of L1 retrotransposition has been recently described. Using a 

retrotransposition assay in CHO-KI cells, Morrish et al. (2002), noted that two constructs with mutated 

residues in the endonuclease site (Asp205Ala and His230Ala) were still capable of retrotransposition, 

at 19% and 5% of wild type levels respectively. In HeLa cells, these mutations had been observed to 

reduce retrotransposition levels to <5% of wild type levels, likely due to the abolishment of 

endonuclease activity. This mechanism of retrotransposition was termed “endonuclease-independent 

retrotransposition” (ENi) as it could take place without a functional EN domain. 

Because the L1 lifecycle involves ORF1p and ORF1p showing a cis-preference for their own mRNA, 

Morrish et al. (2002) hypothesised that it is unlikely that the proteins are being complemented in trans 

to complete TPRT. Potentially, the elements were exploiting breaks that were already present in the 

DNA, instead of creating new DNA incisions using the EN domain. 

This theory aligned with a previous study by Teng et al. (1996) in yeast Saccharomyces cerevisiae, 

which had shown that DSBs could be fixed by insertions in the break site by a functional reverse 

transcriptase (either of the yeast Ty1 element, the human L1, or Crithidia CREl). Similarly, Voliva et al. 

(1984) had previously suggested that L1 could disperse through the genome through the “patching” 

of broken chromosomes. This mechanism would ensure that the L1 element was useful to its host and 

would therefore undergo positive selection.  

To further understand the mechanism of ENi retrotransposition, Morrish et al. (2002) tested whether 

proteins from the non-homologous end joining (NHEJ) pathway of DNA repair were required to 

generate an ENi insertion. Using cultured cell retrotransposition assays, the group investigated L1 

retrotransposition in XR-1 cells, a Chinese hamster ovary cell line mutated in XRCC4 and lacking ligase 

IV activity. Li et al. (1995) had previously shown that this cell line has impaired double stranded break 

repair and is also unable to perform normal V(D)J recombination.   

The group observed that both EN mutant transcripts (Asp205Ala/L1.3 and His230Ala/L1.3) showed 

increased levels of retrotransposition in comparison with their activity in wild type cells (89.2% and 

52.1% of wild type L1.3 levels, respectively). The EN mutants were also tested in hamster cells lacking 
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DNA-PKcs activity due to a mutation in the DNA-PKcs gene. Again, the EN mutants showed increased 

levels of retrotransposition in V3 cells. In the parental cell lines, ENi retrotransposition only took place 

at low levels. The group also observed that when a portion of chromosome 5 was present containing 

a functional copy of XRCC4, ENi retrotransposition was reduced. Interestingly, assays in irs1SF cells, 

which are unable to perform homologous recombination due to a mutation in XRCC3, did not show 

an increase in ENi retrotransposition, indicating that this pathway is specifically triggered by defects 

in the NHEJ pathway, rather than recombination pathways in general. 

Structural analysis of insertions generated by wild type L1.3 in XR-1 cells indicated that they were 

derived from canonical TPRT. ENi insertions, however, were structurally distinct. Firstly, the insertion 

sites were not the canonical L1 consensus site. In addition, they lacked the target site duplications 

characteristic of L1 insertions and exhibited deletions at the target site raging from 11bp and to 1.5kb. 

Though the insertions were truncated at the 5’ end, which is conventional, they lacked a poly A tail 

and were 3’ truncated. Two of the insertions analysed also contained additional nucleotides at the 5’ 

end, and two contained additional nucleotides at the 3’ end. Comparisons with EN insertions from V3 

cell lines showed similar structural abnormalities, indicating that the mechanism of ENi 

retrotransposition is likely similar for both cell lines.  

When analysing insertions from the parental, NHEJ competent, cell line, the group once again found 

a small number of insertions with 3’ and 5’ truncations and lacking TSDs. This indicates that the 

mechanism of ENi retrotransposition can take place in NHEJ competent cells, though the rate of 

retrotransposition may be lower.  

As reports are primarily based on in vitro studies, the frequency at which ENi retrotransposition is 

happening in vivo is currently unknown (though one could speculate that genomic ENi insertions 

would be identifiable due to their structural hallmarks). Furthermore, as these experiments were 

performed in hamster cells, it is currently unclear whether the results could be extrapolated to 

humans, due to differences in DNA repair pathways between the two organisms. Priestly et al. (1998), 

have previously shown that NHEJ in rodent cells requires 50-fold less concentration of protein than in 

human cells. It could therefore be expected that the rate of ENi would be lower in human cells, as the 

L1 element has more competition from DNA repair proteins.  

Similar to previous speculation about L1 elements “patching” up breaks in chromosomes, the authors 

propose that the EN deficient element is exploiting breaks in the DNA which have been left unresolved 

due to a lack of functional DNA repair. Breaks that arose during the G1 or early s phase of the cell cycle 

would leave an open 3’ hydroxyl which could be exploited as a primer by the reverse transcriptase of 
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the L1 element. Priming could potentially take place from an internal site within the L1 RNA, without 

necessarily requiring micro-complementarity between the target DNA and the L1 cDNA. 

In line with this data, a further study by Morrish et al. (2007) demonstrated that ENi retrotransposition 

takes place at mammalian telomeres. These studies were performed in V3 cells, which, as well as a 

deficiency in DNA-Pkcs, contain dysfunctional telomeres. The authors noted that approximately 30% 

of ENi retrotransposition events take place next to certain sequence adjacent to a telomere repeat 

(5'-TTAGGG-3'). The authors therefore propose that as well as double stranded DNA breaks, L1 

elements can exploit dysfunctional telomeres as a substrate for ENi retrotransposition. Expression of 

a dominant negative TERF2 protein, which is reported to disrupt telomere capping, allowed the 

detection of ENi retrotransposition events, indicating that it is the deficiency in telomere function 

which is allowing the abnormal retrotransposition.  

The authors also investigated whether ENi retrotransposition could take place at functional telomeres. 

Though they identified some faint bands by southern blotting, sequencing suggested that these were 

nonspecific products and suggest that wild type L1 events seem to initiate by conventional TPRT. 

A model depicting ENi retrotransposition is shown in Figure 1.6. 

 

 

 

Figure 1.6. The mechanism of endonuclease independent retrotransposition 
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1.4 L1 activity is regulated by host factors in the human genome.  

Because of the various ways in which L1 elements can disrupt gene function, L1 retrotransposition is 

regulated by host factors at several stages of its lifecycle (Goodier and Kazazian 2008). Importantly, L1 

retrotransposons are able to mobilise in the germline, which is how insertions are transmitted from 

generation to generation (Cordaux and Batzer 2009). This germline retrotransposition also means that 

L1 elements have the potential to influence the evolution of the mammalian genome (Cordaux and 

Batzer 2009). L1 elements have a range of expression during the germline cycle, and are subject to 

regulation by host factors both pre transcriptionally and post transcriptionally (Wang 2017).  

 

1.4.1 Transcriptional regulation of LINE- 1 
 

The most effective regulation of L1 is transcriptional regulation. Several mechanisms to 

transcriptionally repress L1 retrotransposition have been identified in germline cells. These include 

DNA methylation (Kaneda et al. 2004), histone modification (Day et al. 2010) and the fetal Piwi-

interacting RNA (piRNA) pathway (Aravin et al. 2007).  

 

During development, there are two stages where CpG methylation becomes removed from L1: in 

embryos (prior to implantation) and in migrating primordial germ cells (Messerschmidt et al. 2014). 

Otherwise, this methylation contributes to the repression of L1 elements. In humans there are three 

primary DNA methyltransferases: DNMT1, DNMT3A, and DNMT3B (in mice there is a fourth called 

DNMT3C) (Lyko et al. 2018). DNMT1 is responsible for maintenance of methylation, whereas DNMT3A 

and DNMT3B are responsible for de novo methylation in animal development (Lyko et al. 2018). 

Studies have shown that both DNMT3A and DNMT3B are required for de novo methylation of L1 

elements (Kaneda et al. 2004; Kato et al. 2007). DNMT3L, which is a homologue of DNMT3A/B and is 

expressed in oocytes in females and spermatogonia in males, may also play an important role in the 

methylation of repetitive elements (Bourc’his et al. 2001; Hata et al. 2002; Bourc’his and Bestor 2004). 

In fact, deletion of DNMT3L results in the loss of do novo methylation at L1 elements (Bourc’his and 

Bestor 2004). In males, by birth, most full length L1 elements are re-methylated. It is thought that L1 

elements remain hypermethylated throughout the onset of meiosis (Oakes et al. 2007).  
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The piRNA pathway is important for the transcriptional regulation of L1 elements during epigenetic 

reprogramming (Pezic et al. 2014). Though the pathway was originally identified in drosophila (Aravin 

et al 2001; Vagin et al. 2006), subsequent research has shown that they are active in a number of 

species, including humans. The PIWI pathway is made up of two central components, the PIWI 

proteins and the PIWI interacting RNAs (piRNAs), which are small non-coding RNAs which are highly 

expressed in the germline (Aravin et al. 2006; Aravin et al. 2008). The PIWI proteins bind these piRNAs 

to form piRNA ribonucleoprotein (piRNP) or piRNA‐induced silencing complexes (piRISCs)(Aravin et al. 

2006). The pathway works through RNA interference, similar to the microRNA pathway, and targets 

and represses mRNA transcripts, including those of retrotransposons. (Aravin et al. 2008; Sijen and 

Plasterk 2003; Ernst et al. 2017) 

 

 The fetal piRNA pathway is a related pathway which functions primarily in fetus cells (Williams et al. 

2015). It mediates transcriptional silencing primarily through methylation, though experimentation in 

mouse germ cells has shown that the pathway can also mediate repressive histone modifications 

(Williams et al. 2015). Deletion of Mili and Miwi 2, which are key components of the pathway, appears 

to reduce methylation of transposable elements but not of global methylation patterns, 

demonstrating a degree of specificity towards repetitive elements (Aravin et al. 2007; Nerkirk et al. 

2017).  

 

In mouse ES cells, histone methylation appears to play an important role in regulation of L1 elements. 

Day et al. (2010) observed through high throughput sequencing analysis that the histone marks 

H3K9me3 and H3K27me3 were associated with repression of retrotransposition. Similarly, 

experimentation in mouse ES cells has revealed that SETDB1 and SUV39H1/SUV39H2, which mediate 

the trimethylation of H3K9, are involved in the repression of L1 elements (Bulut-Karslioglu et al. 2014). 

A study by Garcia Perez et al. (2010) investigated the silencing of engineered L1 elements in human 

embryonic carcinoma cells. The group showed that treating the cells with histone deacetylases 

reversed L1 silencing, indicating that regulation was taking place at the chromatin level. Interestingly, 

promoting differentiation in this cell line inhibits the silencing of reporter genes, indicating that 

mechanisms of silencing are likely to be different in pluripotent and differentiated cells.  

  

Two histone marks in particular are believed to mediate L1 repression, H2A/H4R3me2 and H3K9me2. 

Kim et al. (2014) showed that in primordial germ cells, the symmetric methylation of arginine 3 of 

histones H2A and H4 is important for repression of retrotransposition. These modifications are 
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mediated by protein arginine methyltransferase 5 (PRMT5). Kim et al. (2014) show that this marker is 

dominant during the global demethylation, a time when the genome is most vulnerable to 

retrotransposition activity.  

 

Finally, L1 elements can also be silenced through the activity of zinc finger proteins, a diverse family 

of transcription factors that can bind target sequences through KRAB zinc finger binding domain. The 

most prominent subgroup is the KRAB-zinc finger proteins (KRAB-ZFPs), which are distinguished 

by the Kruppel-associated box (KRAB) domain (Urrutia et al. 2003). KRAB-ZFPs have been found to 

repress both endogenous and exogenous retroviruses in both human and mouse ESCs (Rowe et al. 

2010). KRAB-ZFPS bind to specific retrotransposition sequences, and recruit KAP1 which facilitates the 

repressive H3K9me3 histone modification at these sites by SETDB1 (Friedman et al. 1996; Rowe et al. 

2010). Because of the high specificity required for KRAB-ZFPS to bind L1, certain L1 subfamilies have 

been found to be more vulnerable to KAP-mediated repression than others. As the sequence of the 

element has evolved over time to create new sub types, modifications in the KRAB-ZFP binding sites 

have allowed some younger families to “escape” this regulation (Jacobs et al. 2014; Castro-Diaz et al. 

2014).  

 

rfo1.5 DNA repair in the human genome. 
 

The stability and integrity of DNA are vitally important to life. DNA is subject to insult both from 

environmental and internal metabolic processes. UV radiation and tobacco smoke are known causes 

of DNA damage, as are reactive oxygen species and free radicals generated through cellular 

metabolism (Reviewed in Huang and Zhou 2021). Even DNA replication during cell division is an error 

prone process. Through these factors, errors can arise either in the form of DNA damage or mutation. 

Mutation is a change in the base sequence of the DNA, whereas DNA damage is physical abnormality 

in the DNA that can be detected by an enzyme. It is estimated that DNA suffers tens of thousands of 

lesions every day.   

The eukaryotic cell cycle includes a number of checkpoints, at which point the cell uses specified 

internal cues to determine whether to proceed with division A variety of DNA repair processes are 

constantly active within cells to maintain genomic integrity in the face of these disruptions. A 

reduction of DNA repair in mammalian genomes is associated with accelerated aging and disease 

(Reviewed in Huang and Zhou 2021). Indeed, deficiency in specific DNA repair pathways is a common 

causative factor in various types of cancer.  
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Due to the universal important of genome integrity, many DNA repair processes are highly conserved 

in eukaryotic cells. The mechanism of DNA repair used depends on the type of lesion. Pyrimidine 

dimers, for example, caused by UV radiation, are repaired by a process called nucleotide excision 

repair, which involves almost 30 proteins (Kemp et al. 2012; Lloyd et al. 2005). Base excision repair 

(BER), on the other hand, targets damage caused by free radicals generated during metabolism. A 

further pathway, mismatch repair, identifies and resolves incorrect bases which have been mis-

incorporated by the DNA polymerase (Stojic et al. 2004). 

Double stranded breaks, which are highly deleterious and can result from ionising radiation, are 

resolved either using non-homologous end joining (NHEJ) or homologous recombination repair (HRR; 

Hefferin et al. 2005). HRR is used when there is a template strand available to the cellular machinery 

in order to identify the sequence, whereas NHEJ is used when no such template is available, and is a 

more error prone form of DNA repair (Hefferin et al. 2005).  

Several DNA repair pathways are interconnected, and proteins may feature in different DNA damage 

response pathways or facilitate cross talk allowing the coordination of a specialised response (Huang 

and Zhou 2021). Extensive communication also exists between the DNA damage response and RNA 

processing pathways, DNA proliferation pathways and cell death. Disruption of this communication 

can lead to genomic instability and tumorigenesis. It is perhaps not surprising, then, that several DNA 

repair proteins have also been identified as potential regulators of L1 retrotransposition. 

 

1.5.1 DNA repair proteins regulate retrotransposition.  
 

The signalling cascades linked to DNA repair are complex, and as such, L1 elements can be impacted 

by a number of cellular events that take place in relation to DNA damage.  This thesis is primarily 

concerned by the relationship between the Fanconi Anaemia DNA repair pathway and L1 

retrotransposition, however specific proteins from a number of different DNA repair pathways have 

been directly linked to the regulation of retrotransposition. This section outlines the research which 

provides a precedence for the regulation of L1 by DNA repair proteins.  

 

 

1.5.1.1. Nucleotide excision repair (NER) pathway 
 

The Nucleotide Excision Repair (NER) pathway is a key repair pathway which works to process 3’ flaps 

and to remove the bulky adducts caused by exposure to UV light. Several proteins from this pathway 



43 
 

have been found to influence L1 retrotransposition. In cultured cell assays in CHO UV20s cells 

expression of ERCC1/XPF, a key component of NER, led to a reduction of retrotransposition (Gasior 

and Deininger 2008), indicating that the protein may serve as a negative regulator.  Separately, Servant 

et al. (2017) demonstrated that XPD and XPA, two other core proteins in the NER pathway, also have 

the capacity to limit retrotransposition in cultured cell assays. Retrotransposition was elevated in cells 

mutant for the two proteins, and complementation with the wild type proteins appeared to reduce 

retrotransposition to wild type levels. A similar effect was seen with XPC, an NER protein involved in 

the binding of DNA lesions (Servant 2017). 

 

 

1.5.1.1. Non-homologous end joining pathway 
 

Non-homologous end joining (NHEJ) is a mechanism of DNA repair which resolves double stranded 

breaks (DSBS) in DNA (Hefferin et al. 2005). In mammalian cells, NHEJ is the primary pathway for the 

repair of these lesions. Unlike, homologous recombination, NHEJ does not require a homologous 

sequence to direct the DNA repair. Recently, Suzuki et al. (2009) examined the retrotransposition 

frequencies of two types of LINE, the zebrafish ZfL2-2 and human L1 in a series of mutant DT40 cells. 

Mutant cell lines tested included Ku70, Artemis, LigIV, all of which are proteins involved in the NHEJ 

pathway. Retrotransposition levels of both the zebrafish and L1 element were reduced in all of the 

NHEJ mutant cells in comparison to the wild type control.  

1.5.1.2 BRCA1 identified as a L1 inhibitor 
 

BRCA1 encodes the Breast cancer type 1 susceptibility protein, which is involved in a number of DNA 

repair processed including homologous recombination and the Fanconi Anaemia DNA repair 

pathway (Garcia-Higuera et al. 2001) 

In 2020, Mita et al. undertook a global siRNA screen in HeLa-M2 cells to identify cellular factors 

regulating retrotransposition. The study, which made use of an siRNA, image based 

retrotransposition assay, identified 790 “inhibitors”, of which depletion increased retrotransposition 

levels. The group also identified 1,133 “supporters” of which depletion reduced retrotransposition. 

Gene ontology (GO) term analysis of the inhibitors revealed that the gene function was enriched for 

DNA repair proteins. A CRISPR screen by Liu et al. (2017) in human chronic myeloid leukaemia K562 

and HeLa cells using an L1-G418R retrotransposition reporter identified several overlapping genes 

with the siRNA screen by Mita et al. that were involved in DNA repair processes.  

https://scholar.google.com/citations?user=UoiBQYsAAAAJ&hl=en&oi=sra
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After performing secondary validation of the DNA repair genes, the group observed a strong inhibitory 

effect of BRCA1. BRCA1 helps to protect replication forks from degradation by nucleases (Daza-Martin 

et al. 2019) and is often found at stalled replication forks. This finding lead Mita et al. 2020 to 

hypothesise about a “battleground” at replication forks between HR and L1 retrotransposons. In such 

instances, HR and FANCC components may be functionally competing with L1 retrotransposition. 

Activities of the HR proteins, such as formation of complexes for DNA end resection, could form 

physical barriers to TRPT (Mita et al. 2020). Furthermore, both pathways are active during the S/G2 

phase when retrotransposition would be taking place (Mita et al. 2018). Because of the complex and 

as yet unclear nature of the relationship between DNA repair and L1 retrotransposition, such 

mechanistic insights into these interactions are intriguing. 

 

Importantly, Mita et al. (2020) and several other studies also identified several proteins from the 

Fanconi Anaemia pathway as potential L1 regulators. The Fanconi Anaemia pathway and its role in the 

regulation of L1 retrotransposition is a key theme of this these, and the next section will go on to 

discuss the pathway in detail.  

 

1.6 The Fanconi Anaemia pathway of DNA repair 

The Fanconi Anaemia pathway is a DNA repair pathway involved in the resolution of DNA interstrand 

cross links (ICLS). The pathway is made up of 22 genes, and mutation in any one of these (with the 

exception of the X chromosomal FANCB) is associated with the rare genetic disorder Fanconi Anaemia 

(Reviewed in Ceccaldi et al. 2016). Fanconi Anaemia is autosomal recessive, and affects approximately 

1 in every 1000 people. Hallmarks include bone marrow failure, congenital abnormalities such as 

skeletal defects and a predisposition to cancer (Ceccaldi et al. 2016).    

ICLs are highly toxic DNA lesions which can arise following exposure to environmental mutagens. They 

are created when an irreversible covalent linkage forms between bases on the two strands of DNA 

(Lopez-Martinez et al. 2016). This linkage prevents the separation of DNA strands which is required 

for replication and transcription and can lead to abnormalities such as R loops and stalled replication 

forks. The FANC pathway is currently the only known mechanism for the resolution of ICLS and, 

indeed, cells deficient in the Fanconi Anaemia pathway are hypersensitive to DNA crosslinking agents 

such as mitomycin C (MMC) and diepoxybutane (DEB; Auerbach et al. 1998).  

To repair cross links, the Fanconi Anaemia proteins coordinate the activities of three key DNA repair 

pathways, including the Nucleotide excision repair pathway (NER), homologous recombination (HR) 

and translesion synthesis (TLS; Ceccaldi et al. 2016). Depending on their function, the 22 FA genes 
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have been categorised into three different groups. The FA core complex, an E3 ubiquitin ligase, makes 

up the first group. This complex comprises FANCA, B, C, E, F, G, L, FAAP20 and FAAP100 (Kolinjivadi et 

al. 2020). A second group includes the heterodimeric complex of FANCD2 and FANCI (Kolinjivadi et al. 

2020). Finally, group III includes a range of proteins including repair factors such as nucleases (FANCP 

(SLX4) and FANCQ (ERCC4)), trans-lesion synthesis polymerases (FANCV (REV7) and polymerase ζ)) and 

HR factors ((FANCD1 (BRCA2), FANCJ (BRIP1), FANCN (PALB2), FANCO (RAD51C), FANCR (RAD51), 

FANCS (BRCA1) and FANCU (XRCC2); Kolinjivadi et al. 2020).  
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Figure 1.7. The Fanconi Anaemia pathway repairs interstrand cross links 

(Adapter from Fang et al 2020) 
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1.6.1 The mechanism of ICL repair by the Fanconi Anaemia pathway 

Crosslinks repaired by the Fanconi Anaemia pathway can only be repaired in the S phase of the cell 

cycle, coupled with replication (Knipscheer et al. 2009). In many cases, the presence of an ICL causes 

stalling of a replication fork, which leads to the detection of the lesion by an “anchor complex” made 

up of FANCM, FAAP24, MHF1 and MHF2 complex (Kolinjivadi et al. 2020). FANCM is thought to play a 

critical role in the detection of ICLS, and contains an N-terminal DEAH domain which is activated by 

branched oligos (Coulthard et al. 2013). Biochemical evidence suggests that UHRF1 is also involved in 

lesion sensing (Liang et al. 2015). Activation of this anchor complex recruits the core Fanconi Anaemia 

complex, which comprises FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL and FANCM to the 

lesion, where it monoubiquitinates the downstream FANCI and FANCD2 heterodimer (Walden and 

Deans 2014; D’Andrea and Grompe 2003; Meetei et al. 2004). 

The Fanconi core complex is made up of three subcomplexes (Huang et al. 2014). The BL100 complex 

includes FANCB, FANCL and FAAP100, and is involved in directing the assembly of the whole core 

complex (Kolinjivadi et al. 2020). The CEF complex (including FANCC, FANCE, and FANCF), is 

responsible for the formation of a bridge facilitating the interaction between the core complex in its 

entirety and FANCD2 (Sweuc et al. 2017). Finally, there is the AG20 complex (comprising FANCA, 

FANCG and FAA20) which is thought to be required for localisation of the complex to the nucleus, but 

not for the ubiquitin ligase activity (Huang et al. 2014; Kolinjivadi et al. 2020). 

 The E3 ubiquitin ligase activity of the core complex is provided by FANCL (Meetei et al. 2003), which 

catalyses the conjugation of ubiquitin to lysine 561 of FANCD2 and lysine 523 of FANCI (Garcia-Higuera 

et al. 2001).  Ubiquitin Conjugating Enzyme E2 T (UBE2T) is thought to provide the E2 enzyme activity 

required for FANCL-mediated ubiquitination (Machida et al. 2006). There is evidence that UBE2T 

undergoes autoubiquitination in vivo and that DNA damage in cells depleted of UBE2T leads to the 

accumulation of abnormal chromosomes characteristic of Fanconi Anaemia (Machida et al. 2006). 

Autoubiquitination of UBE2T is stimulated by the presence of FANCL, and could be one mechanism by 

which the Fanconi Anaemia pathway negatively regulates itself (Machida et al. 2006).  

When a replication fork becomes stalled at an ICL, some of the replication machinery needs to be 

removed in order to repair the lesion. Breast cancer type 1 susceptibility protein (BRCA1)/FANCS 

works to remove the helicase CMG complex from the stalled fork, which allows the fork to move up 

to within just one nucleotide of the ICL. Once ubiquitylated, FANCD2 functions as a landing pad for 
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SLX/FANCP (Kim et al. 2012), which in turn acts as a scaffolding protein for DNA endonucleases 

MUS81, SLX1 and XPF/ERCC4/FANCQ (Kolinjivadi et al. 2020). Nucleolytic cleavage by these 

endonucleases leaves a DNA adduct, as the crosslinked nucleotide remains bound to the 

complementary strand, and a double stranded DNA break. DNA translesion synthetase polymerases 

REV1, REV7/FANCV and REV3 bypass the DNA adduct, and repair of the double stranded DNA break is 

mediated by homologous recombination (Li et al. 2021), using the newly ligated DNA duplex as a 

template (Kolinjivadi et al. 2020). At some point, deubiquitylation of the FANCD2-FANCI complex by 

USP1–UAF1 takes place, though the exact timing of this is currently unknown. In this way, the FA 

pathway coordinates the action of multiple different DNA repair factors to resolve the ICL. 

 

1.6.2 The Fanconi Anaemia pathway may also work to resolve stalled replication 

forks 

As highlighted in the above section, replication forks running into ICLs or other unusual structures 

often become stalled. As well as indirectly removing stalled forks through the resolution of ICLS, there 

is also some evidence that the FA pathway works to resolve stalled forks directly. Indeed, Howlett et 

al. (2005) and Hussain et al. (2004) have shown that the FA pathway is activated upon exposure to 

hydroxyurea (HU) or APH, which are known to cause stalling of replication forks (and are not believed 

to cause ICLs). Treatment with mitomycin C, a chemotherapeutic agent which induces hypersensitivity 

in FANCC ells, is also thought to affect the architecture of the replication fork and the rate of 

replication (Zellweger et al. 2015).  

Zellweger et al. (2015) showed that exposure to genotoxic agents can lead to the formation of 

reversed forks (RVFs), a four-way junction formed from replicating nascent DNA. RVFs facilitate 

reorganisation after stalling in order to allow the restart of replication, however, their accumulation 

can also be deleterious. Work by Zellweger et al. (2015), has shown that fork reversal is dependent on 

RAD51 (FANCR) and isolation of Proteins enriched On Nascent DNA (iPOND) analysis performed in 

cells exposed to HU indicate that RAD51 is associated with stalled replication forks (Kolinjivadi et al. 

2017). RAD51, together with BRCA1 and BRCA2, (key components of the homologous end joining and 

FANC pathways), were found to play a key role in fork protection through the stabilisation of nascent 

DNA (Schlacher et al. 2012). This finding was further supported by electron microscopy experiments 

in frog egg extracts, which captured replication forks at several intermediate stages (Hashimoto et al. 

2010). This study found that RAD51 prevents the accumulation of ssDNA gaps at replication forks and 

protects DNA from degradation, enabling the resumption of DNA synthesis.  
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Several studies have suggested that FANCD2 also associates with BRCA1 and RAD51, and possibly has 

a function at stalled replication forks (Taniguchi et al. 2002; Kais et al. 2016; Michl et al. 2016). FANCD2 

appears to maintain fork stability in tumours lacking BRCA1/BRCA2, and may also limit replication 

stress in cells lacking BRCA2. A particularly compelling study was performed by Tonzi et al. (2018), in 

FANCD2 deficient patient fibroblasts. The cells showed impaired fork restart that was rescued by 

complementation with FANCD2. Following exposure to HU for 5 h, the FANCD2 mutant cells had 

significantly shorter tracks of nascent DNA than healthy cells. The authors propose that this difference 

is caused by increased MRE11 mediated degradation of DNA in the FANCD2 deficient cells. 

Finally, a specific role for FANCJ in fork protection is also emerging. FANCJ is a helicase from the iron 

sulphur family, and its loss has been implicated in hereditary breast and ovarian cancer (Cantor et al. 

2004; Litman et al. 2005; Minion et al. 2015). Analysis of patient derived mutations has shown that 

helicase activity is required for ICL repair and iPOND analysis has identified FANCJ as a replication fork 

associated protein (Peng et al. 2018). Fork degradation has also been observed in patient cells that 

were null for FANCJ. It is thought that FANCJ and the fork remodeller helicase-like transcription factor 

(HLTF) work together to balance degradation at the replication fork and to facilitate continuous DNA 

synthesis, especially during replication stress. 

1.6.3 R loops in Fanconi Anaemia  
 

As well as repairing DNA lesions such as ICLs and stalled replication forks, it is thought that the Fanconi 

Anaemia pathway protects the genome from a type of DNA lesion called an R loop. An R loop is a three 

stranded structure that is made up of a DNA: RNA hybrid bound by nucleic acid base pairing, and a 

displaced single strand of DNA (Figure 1.7). These structures can be involved in transcription and 

replication but can also generate genomic instability. R loops can be resolved through RNase H 

(reviewed in Cerritelli and Crouch 2009) or Senataxin (Boulé and Zakian 2007), or prevented by 

proteins such as Topo I, the THO complex or the SRSF splicing factor (Aguilera et al. 2012). These 

protective measures are important for the maintenance of genome stability, as the accumulation of R 

loops can act as a barrier to replication fork progression and cause replication stress (Gan et al. 2011; 

Wellinger et al. 2006).  

 

 

 

 

 

https://www.sciencedirect.com/science/article/pii/S109727651200305X#bib11
https://www.sciencedirect.com/science/article/pii/S109727651200305X#bib10
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Figure 1.8. The structure of an R loop 

 

Because of the role of BRCA1 and BRCA2 in the FA pathway to resolve ICLs, Garcia Rubio et al. (2015) 

investigated whether R loops were a source of genomic instability in FA cells, and whether the FA 

pathway has a role in the regulation of R-loops. To do this, the group performed DRIP-PCR (DNA-RNA 

immunoprecipitation PCR) in human genes, APOE, RPL13A, EGR1 and BTBD1 in cells derived from FA 

patients. These genes are regions which have previously been observed to contain accumulations of 

R loops (Ginno et al. 2013). In all four genes, significantly higher frequencies of DNA: RNA hybrids were 

observed in cells lacking FANCA. Treatment with RNAse H, which resolves R loops through the 

degradation of RNA, reduced the frequency of the R loops, confirming that the signal observed was 

resulting from DNA: RNA hybrids. A similar effect was reported in a well characterised PD20 human 

fibroblast cell line from a FANCD2-/- patient.  

In 2019, Chang et al. performed a trigenic genome wide interaction screen in yeast to identify factors 

involved in the suppression of R loops. The screen was performed in cells lacking RNH1 and RNH201, 

and genes were identified which affected the fitness of the cells in this context. The pool of genes 

identified in the screen was enriched for DNA replication fork maintenance factors. The screen 

determined that depletion of MRE11, RAD50, or NBS1 resulted in R loop dependent DNA damage. The 

authors speculated that MRN supressed R loops through the recruitment of FA factors. Depletion of 

FANCD2 by siRNA resulted in an increase in R loops, in line with previous work which has linked MRN 

to FA pathway activation (Roques et al. 2009) and the regulation of R loops by the FA pathway (Garcia 

Rubio et al. 2015).  

Schwab et al. (2015) had previously suggested that the helicase FANCM has the ability to resolve R 

loops in vitro. Supporting this theory, Chang et al. (2019) observed through CHIP-cPCR that FANCM 

was binding to loci associated with R loops. The R loop is therefore another lesion linked to the FANC 

phenotype. 
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1.6.4 Additional roles of Fanconi Anaemia proteins 
 

It has been thought since the 1980s that the Fanconi pathway may play a cytoprotective role in 

addition to its function in the repair of ICLS. Studies have implicated FA proteins in the protection of 

cells from ROS (Schindler and Hoehn, 1988), deprivation of growth factors (Haneline et al. 1998) and 

exposure to inflammatory cytokines (Cumming et al. 1996).  

A number of studies have been performed on FANCC in particular. Reports as early as 1996 (Yamashita 

et al. 1996) have indicated that the protein may have cryoprotective roles independent of its function 

in resolving ICLS. FANCC has been shown to protect against pro-inflammatory cytokine-induced cell 

death through interactions with interferon signalling proteins such as signal transducer and activator 

of transcription 1 (STAT1),  protein kinase R (PKR) and stress-inducible heat shock protein 70 (HSPA1A; 

Pang et al. 2000; Pang et al. 2002). FANCC has also been shown to protect against toxicity caused by 

withdrawal of growth factors in haematopoietic cells (Cumming et al. 1996).  

Analysis of the link between genotype and phenotype in FANC patients has shown that individuals 

carrying a c.67delG mutant in FANCC have a milder disease than patients harbouring a FANCC which 

supresses both roles in DDR and additional functions (Neveling et al. 2009; Sumpter et al. 2016). This 

suggests that FANCC has different roles, and alteration of them can influence the severity of the 

disease. 

Several FANC proteins have also been associated with autophagy, an important pathway for cellular 

homeostasis (Orvedahl et al. 2010). Autophagy is important for the removal of faulty proteins, 

damaged organelles and pathogens. Its deregulation has been linked with multiple diseases. In a 

genome-wide screen Orvedahl et al. 2011) identified FANCC, FANCF and FANCL as potential regulators 

of autophagy. Further experimentation indicated that FANCC is required for a particular form of 

selective autophagy called virophagy, which cells use to degrade viruses or virus-derived antigens. 

Other FANC proteins have also been implicated in cellular responses outside of DDR. FANCI, for 

example, is believed to be involved in the response to replication stress through regulating the firing 

of dormant origins in response to treatment with hydroxyurea (Chen et al. 2015). Though these origins 

of replication are normally silent, reports found that they can be utilised following the disruption of 

replication.  Interestingly, FANCD2 appears to inhibit this activity. In an independent process, FANCD2 

and BLM appear to work together to supress firing from dormant origins (Chaudhury et al. 2013). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576063/#JCS204909C46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576063/#JCS204909C12
https://jcs.biologists.org/content/130/16/2657#ref-37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576063/#JCS204909C36
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This work shows that there is a precedent for FANC proteins to be involved in cellular processes 

outside of the FA pathway. 

1.7 The Fanconi Anaemia pathway may regulate L1 retrotransposition.  
 

Several studies have indicated that members of the Fanconi Anaemia pathway could play a role in the 

regulation of retrotransposition (Mita et al. 2020; Liu et al. 2018). A previously mentioned whole 

genome siRNA screen performed by Mita et al. (2020) identified several FA factors as inhibitors of 

retrotransposition. The strongest effect was seen in BRCA2, PALB2, and FANCB. siRNA depletion of 

these proteins was observed to increase retrotransposition approximately 3-fold. In contrast, siRNA 

depletion of FANCJ and FANCC was found to reduce retrotransposition, indicating that these proteins 

are “supporters” of L1 mobility. Analysis of retrotransposition using a luciferase reporter corroborated 

that FANCJ behaves differently to the other tested L1 proteins. A cluster of the FA proteins had 

previously been identified as potential L1 regulators in a genome wide screen performed by Liu et al. 

(2018). 

The authors argue this data supports a model where L1 can exploit stalled replication forks as a site 

for retrotransposition. As retrotransposition is mainly believed to take place during S phase, the model 

is plausible (Mita et al. 2018). L1 retrotransposition assay in cells treated with varying concentrations 

of aphidicolin (APH) a DNA polymerase inhibitor that creates stalled replication forks, L1 

retrotransposition increased with the concentration of APH, indicating that L1 may be recruited to 

stalled forks during S phase of the cell cycle.  

The strongest effect seen in the siRNA screen was the depletion of BRCA1. Use of a reporter assay 

with BRCA1-null ovarian carcinoma cell line UWB1.289 and an isogenic cell line expressing of wild-type 

BRCA1 (UWB1.289+BRCA1), showed that expression of BRCA1 led to severely restricted L1 activity. 

The endonuclease independent activity of the element was also measured in both cell lines. 

Intriguingly, depletion of BRCA and FANCD2 led to an increase in the amount of endonuclease 

independent retrotransposition. This effect was confirmed using knockdowns of BRCA1 and FANCD2, 

and using a system with a different reporter gene.  Interestingly, knockdown of BRCA2 led to a 

reduction in L1 endonuclease dependent retrotransposition, despite the fact that it increased 

endonuclease independent activity  

Previous work by Mita et al. (2018) has suggested that L1 proteins localise to replication forks. This 

would support an interaction of L1 proteins with FA factors, which are known to act at stalled 

replication forks. Immunoblot analysis revealed that ORF1p is recruited to chromatin during S phase 

along with UPF1 and PCNA. Mass spectrometry analysis also confirmed that the ORF1p/PCNA 
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complex interacts with TOP1, RPA1 and PARP1, all of which are known to localise to stalled 

replication forks (Taylor et al. 2018). Mita et al. (2018) had speculated that L1 RNPs are recruited to 

replication forks during S phase, and that the stalled forks may help to mediate retrotransposition. 

The group also performed isolation of proteins on nascent DNA (iPOND) analysis, combined with 

immunoblotting in Hela cells which expressed both recoded (ORFEUS) and non-recoded (L1rp) L1. 

ORF1p from both elements appeared to localise to replication forks. Due to its much lower 

expression profile, ORF1p was unsurprisingly not detected.  

Further evidence that the Fanconi pathway is involved in the regulation of L1 comes from a cellular 

model of Fanconi Anaemia which is deficient in SLX4 (FANCP; Bregnard et al. 2016). SLX4 is believed 

to be involved in the regulation of pathogen stimulated cytokine production and directs the repair of 

DSBs by assembling several proteins into a complex named SLX4com. L1 DNA extracted from both 

RA3331 cells and RA3331 SLX4- cells and quantified by PCR or southern blot, revealed that RA3331 

cells had higher levels of L1 DNA in comparison to RA3331 SLX4- cells, indicating that L1 DNA 

accumulates in the absence of SLX4. The group also tested for an interaction between ORF1p and 

SLX4 by immunoprecipitation with an N-terminally FLAG and HA tagged SLX4 protein. ORF1p was 

detected in the sample containing wild type SLX4, but not the mutant of the SAP domain. This 

indicates that ORF1p interacts with SLX4 and likely through the SAP domain. A cultured cell assay in 

HeLa cells using an SLX4 construct and a SAP mutant showed that the wild type protein restricts 

retrotransposition of L1. This result was also confirmed with a luciferase reporter system. 

Furthermore, this effect could be rescued by complementing the mutant cells with SLX4 protein. 

 

 

1.7.1 L1 retrotransposition at replication forks.  
 

Mita et al. have proposed that stalled replication forks could be exploited as sites for 

retrotransposition. The group found evidence suggesting that factors involved in fork protection are 

needed for BRCA1 mediated repression of LINE1. When Mita et al. (2020) knocked down BRCA2, 

which plays a key role in fork protection, they observed that cells with depleted BRCA1 had similar 

levels of retrotransposition to wild type cells. Furthermore, both RPA1 and RAD51 appear to restrict 

L1 retrotransposition. Depletion of BOD1L, which is important for the stabilisation of RAD51 at 

damaged replication forks, also abrogated BRCA1 induced L1 repression. (Higgs et al. 2015).  This 

finding suggests that coating of the fork by RAD51 is important for the inhibition of L1 by BRCA1. 
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 Mita et al. (2020) believe their findings could be explained by a model wherein DNA2 and CtIP play a 

BRCA1 dependent role in fork protection. In this model CtIP cuts the stalled fork and DNA2 partially 

degrades the DNA. Concordantly, the group found that retrotransposition levels in the absence of 

BRCA1, DNA2 and CtIP were similar to those in cells depleted with BRCA by siRNA. This would 

suggest that L1 can exploit replication forks which are not “coated” or protected by BRCA1 or DNA2.  

 

 

1.8. Aims of this thesis  

 

The relationship between DNA repair pathways and L1 retrotransposition is complex. DNA repair 

factors are increasingly being identified as modulators of L1 retrotransposition, and several studies 

have demonstrated how retrotransposition is mechanistically altered against different DNA repair 

backgrounds. 

In this thesis, I aim to shed further light on the relationship between DNA repair pathways and 

retrotransposition of L1 elements. My experiments will focus on addressing three primary aims: 

 

1. To determine which L1 domains are required for retrotransposition in a FANC background.  

2. To determine whether FANC proteins demonstrate the capacity to regulate L1.   

3. To identify new L1 interactors in a FANCC context.  
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Materials and methods 
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2.1 General reagents.  
 

Chemicals were purchased from Sigma Aldrich, BDH Laboratory Supplies (AnalaR, VWR), Fisher 

Chemicals, and Amersham Biosciences (GE Healthcare). Enzymes were obtained from New England 

Biolabs, Promega and Roche. Cell culture material was purchased from Gibco (Invitrogen) or Sigma-

Aldrich unless otherwise stated. 

 

2.2 Cell culture methods:  
 

Cell lines used in this thesis and the cell culture conditions are listed in Table 2.1. For passaging, cells 

were detached using a mixture of Trypsin and Versene (ratio 1:1) and a 3-minute incubation at 37 

degrees. Trypsin mix was inactivated using an equal amount of cell culture media and cells were 

pelleted at 1200 rpm, washed with PBS and then resuspended in the appropriate cell culture media. 

Cells were passaged at a ratio of 1:4 – 1:18, depending on the growth of the individual cell line.  

 

Table 2.1 Cell culture drug stock solutions. 

Drug Solvent Stock 

concentration 

Working 

concentration 

Manufacturer 

Neomycin H2O 250 mg/ml  500 µg/ml Sigma-Aldrich 

Blasticidin H2O 10 mg/ml 2 µg/ml Sigma-Aldrich 

Mitomycin C H2O 1.2 nM 5–360 nM Sigma-Aldrich 
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2.2.1 Cell lines used in this thesis 
 

Table 2.2 Cell lines used in this thesis 

 

Cell line  Cell culture media Media supplements  Cell culture 

conditions 

Source  

VH4 DMEM, Low Glucose, 

Pyruvate 

(Thermofisher 

scientific catalogue 

number 11885084) 

10% Fetal Bovine serum,  

1% non-Essential amino 

acids 

100 U/ml Penicillin, 100 

μg/ml Streptomycin  

 

37°C,  

5% CO2,  

normoxic  

  

Jose-Garcia Perez 

Lab Genyo, 

Granada, Spain. 

ANKN and PD2DF 

are human 

fibroblasts derived 

from patients with 

Fanconi Anaemia, 

these were gifted 

to the Jose-Garcia 

Perez lab from Dr. 

Niall Howlett 

(University of 

Rhode island) 

V79 

VH4 + FANCA  

XR-1 

4364 

CLV5B 

CLV5B+FANCC  

PD20F DMEM high glucose 

(Thermofisher 

scientific catalogue 

no. 11965084) 

10% Fetal Bovine serum, 

1% non-Essential amino 

acids 

 

100 U/ml Penicillin, 100 

μg/ml Streptomycin  

 

37°C,  

5% CO2,  

Normoxic  

  

ANKN 

HAP1  DMEM/F12 

(Thermofisher 

scientific 

catalogue no. 

11320033) 

20% Fetal Bovine serum 

100 U/ml Penicillin, 100 

μg/ml streptomycin  

 

37°C,  

5% CO2,  

Normoxic  

 

Prof. Alexander 

Ruzov 

(Nottingham 

University, UK 

YTHDF2 Prof. Alexander 

Ruzov 

(Nottingham 

University, UK 
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2.2.2 Preservation of cell lines.  
 

For storage, cell lines were grown to a confluency of 70% and then pelleted at 1200 rpm and washed 

with PBS. Cells were frozen in quantities of 1-4x106 in 2ml cryostat tubes, in 500ul of FBS containing 

10% DMSO. After transfer to freezing mix, cells were stored overnight in polystyrene boxes at 70 

degrees, before being moved to liquid nitrogen.  

2.2.3 Transfection of cell lines for retrotransposition assay  
 

2.2.3.1 Transfection of human cell lines for cultured cell retrotransposition 

assay. 
 

Human cell lines were plated in six-well tissue culture plates 24 hours prior to transfection at seeding 

density of 4x104. Transfection was performed using FuGene 6 (Promega corporation). Transfection 

mix was made by first mixing 97 ul Opti-MEM Medium (Thermo Fisher Scientific, 31985062) per well 

to be transfected, with 1 µG plasmid DNA and leaving to incubate for 5 minutes at RT. Next, 3ul of 

FuGene 6 was added to make a total volume of 100ul transfection mix per well, and mix was left to 

incubate at RT for a further 20 minutes. Transfection mix was added to wells drip wise while rotating 

tissue culture plate. Cells were incubated in transfection mix for 24 hours before being washed and 

transferred to normal tissue culture media.  

 

2.2.3.2 Transfection of hamster cell lines.  
 

Transfection was largely performed at described above, using FuGene 6 as the transfection reagent. 

Hamster cells were seeded at a density of 4x104 8 hours before transfecting. The 8h time window 

between plating and transfection was determined empirically by through experimentation, in order 

to maximise transfection efficiency.  
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2.2.3.4 Transfection of hamster cells for co-immunoprecipitation  
 

Cells were plated at a density of 8.5x 105 per 10cm dish, in cell culture media made up without 

antibiotics, to be 80% confluent. 8 hours after plating, transfection was performed using 

Lipofectamine 2000 transfection reagent (Invitrogen, Life Technologies. Catalogue no. 11668019). 

Conditions for transfection were optimised empirically.  

For each 10cm plate, 15ug of DNA was diluted into 1.5ml of Opti-MEM reduced serum media, mixed, 

and allowed to incubate at RT for 5 minutes. In a separate falcon tube, 1.5ml of Opti-MEM media was 

mixed with 33ul of Lipofectamine and allowed to incubate for 5 minutes. Next, the diluted DNA was 

combined with the diluted lipofectamine, and allowed to incubate at RT for 20 minutes. For each 10cm 

plate, 3ml of transfection mix was added while the plate was gently rotated to mix. Cells were left in 

transfection mixture for 24 hours before it was removed and replaced with cell culture media.  

 

 

2.2.4 Measurement of transfection efficiency  
 

To quantify transfection efficiency, a co-transfection was performed alongside the cultured cell 

retrotransposition assay. Each DNA plasmid to be transfected was mixed 0.5ug to 0.5ug with a plasmid 

which comprised of the CEP-4 vector, containing the EGFP reporter gene. Transfection was performed 

according to the protocol described above. 24 hours following transfection, the Opti-MEM mix was 

replaced with standard cell media. 48 hours following transfection, cells were harvested by washing 

twice with PBS and trypsinisation for three minutes at RT. Trypsin was neutralised using an equal 

volume of PBS supplemented with 20% FBS and cells were pelleted using centrifugation at 1200 rpm. 

Pellet was resuspended in 200 ul of PBS supplemented with 20% FBS and kept on ice.  

The percentage of cells expressing GFP following the transfection was measured using the BD Accuri 

flow cytometer.  

 

 

 

 

https://www.thermofisher.com/order/catalog/product/11668019
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When scaling transfections up or down to different tissue culture vessels, the following relative 

surface areas were used. Experiments were predominantly performed in 6 well plates or 10cm dishes, 

however other vessels were used in addition. 

Table 2.3 Relative surface area of different cell culture vessels used in conversion 

Culture Vessel  24-well  12-
well  

6-well  60 mm  100 mm  150 mm  T25  T75  

Surface area 
(cm2)  

2  4  9  28.2  78.5  176.7  25  75  

Ratio to 24-
well plate  

1  2  4.5  14.1  39.25  88.35  12.5  37.5  

 

 

2.2.5 Cultured cell retrotransposition assay.  
 

LINE-1 retrotransposition assays were carried out in triplicate with at least three biological replicates. 

The protocol was carried out as previously described (Moran et al 1996). Cells were plated and 

transfected according to the protocol described above and according to the specific cell line. Cells 

were left to incubate in transfection mix for 24 hours and then mix was replaced with normal culture 

media. 

After 48 hours, cell culture media was replaced with media supplemented with 400ug/ul G418. Cells 

were kept under selection with G418 for 12 days, using a new media solution every other day. On the 

13th day of selection, media was aspirated and cells were washed with PBS. Colonies were incubated 

in a PBS solution with 2% formaldehyde for 30 minutes at RT to fix the cells. Fixed colonies were 

stained by treatment with 0.1% Crystal Violet (W/V) for 10 minutes at room temperature.  

For all experiments a co-transfection with pCEP-EGFP was performed in parallel to generate a 

transfection efficiency for each plasmid.  
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2.2.6 Mitomycin C Sensitivity assay.  
 

MMC was obtained from Sigma Aldrich (Cat. No. M4287-2MG), from Streptomyces caespitosus. 

Dilutions of 1.2mM were made in distilled water and stored at -80 degrees in an opaque container to 

protect from light. MMC was diluted to 50 nM, 75 nM, 100 nM and 200 nM in distilled water. For the 

duration of the experiment, solutions containing MMC were wrapped in foil and all experimentation 

was carried out in limited light to minimise photosensitivity, as MMC is unstable, fresh dilutions were 

prepared for each experiment.    

Cells were seeded at densities of 1x 104 in human FANCC ell lines and 4 x 104 in hamster FANCC ell 

lines, the day before treatment with MMC. Treatment with MMC was maintained for 72 hours, with 

each condition in triplicate. Following treatment, cells were maintained overnight in standard cell 

culture media (no longer than 18 hours).  

Cells were incubated for 10 mins at RT with mild agitation in 1ml fixing solution per well (Distilled 

water with 10% Acetic Acid and 10% Methanol). Fixed colonies were washed twice with distilled water 

then treated with 2% Crystal violet solution. Cells were left to dry overnight, then, to visualise, 500ul 

of dissolving solution was added to each well (methanol with 1% w/v SDS). Plates were sealed with 

parafilm then left to incubate for 2 hours with mild shaking at RT.  

From each well, 100ul of solution was transferred to a 96 well plate. The OD595 of each sample was 

measured using a spectrophotometer and a Bradford protein ladder for reference.  

2.2.7 Generation of FANCC complemented cells  
 

FANCA complemented cells were generated using retroviruses. Briefly, 4x104 FANCA deficient cells 

were plated per 10cm plate, and 18h later cells were washed twice with PBS1x and infected with each 

corresponding virus in the presence of polybrene. Antibiotic selection was used to select cells 

expressing the complementing FANC gene (or a control), and was started 48h after infection. After 

selection and generation of clonal cell lines, we used MMC to test the efficiency of the 

complementation. MMC treatments were conducted as described (Howlett et al., 2009). Briefly, 

5x103 cells were plated per well in a 12-well dish in triplicate. We plated parental cells (if available), 

FANC-mutant cells, and complemented clonal lines (or controls). 18h after plating, we treated cells 

with 0, 50, 75, 100 and 200 nM MMC during 72h. We used MMC from Streptomyces caespitosus 

(Sigma) and a fresh stock solution was prepared for each assay. 72h after treatment, cells were 

washed, fixed with acetic acid-methanol, and stained with 0.1% (w/v) crystal violet during 10 minutes. 

After staining, plates were washed with distilled water and dried overnight. Next day, crystal violet 
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was dissolved from wells using 250 μl of 1% (w/g) sodium dodecyl sulphate SDS in Methanol during 

2h at room temperature. 100 μl from each well were transferred to a well of a 96-well plate and OD595 

values were determined using a spectrophotometer.  The value obtained with parental cells (or a wild 

type control) treated with 0nM MMC was assigned 100%, and the rest of values are referred to this 

control 

 

2.3 Nucleic acid methods  
 

2.3.1 Quantification of nucleic acids. 
 

To quantify the concentration of nucleic acids in all experiments, a Nanodrop 1000 UV-Vis 

Spectrophotometer (Thermo Fisher Scientific) was used. For each sample, 1ul was placed on the 

Nanodrop and the optical density at 260nm was measured. To determine the purity of the samples, 

light absorbance at three ratios 230 nm, 260 nm and 280 nm, was measured. These values are 

indicated in two ratios The 260/280 ratio reflects the amount of contaminating protein relative to 

nucleic acid, and should be 1.8-2.2. The 260/230 ratio shows other contaminants such as salts or lipids, 

and should be >1.7.  

 

2.3.2 Gel electrophoresis for visualisation of nucleic acids  
 

Nucleic acids were analysed using agarose gel electrophoresis. Gels were made by dissolving 1.5% 

agarose (Hi-Pure Low EEO agarose, Biogene) in 0.5% TBE by heating for 2 minutes in a microwave 

oven. After cooling solution under cold water, Ethidium Bromide was added to a concentration of 0.5 

μg/ml. Prior to loading, DNA samples were mixed with 6X Gel loading dye (New England Biolabs 

B7024S). Gels were run at 5 volts/cm voltage. To visualise the resolution of the nucleic acids by size, a 

UV transilluminator was used (BioDoc-It System, UVP). Molecular weight was estimated using a 1Kb 

DNA ladder (Invitrogen) for reference.  

 

2.3.3 Plasmids used in this thesis  
 

Table 2.4 Plasmids used in this thesis 
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Name of plasmid Description Figure reference 

pAD2TEI pCEP6 vector with CMV and Neo cassette, 

contains ORF1p-T7 and ORF1p-TAP  

Figure 4.3 

pAD2TEI-102 pCEP6 vector with CMV promoter and Neo 

cassette, contains mutant ORF1p-T7 (REKG to 

AAAA) and ORF1p-TAP 

Figure 4.3 

pAD2TEI-105 pCEP6 vector with CMV promoter and Neo 

cassette, contains mutant ORF1p-T7 (ARR to AAA) 

and ORF1p-TAP 

Figure 4.3 

pAD2TEI-106 pCEP6 vector with CMV promoter and Neo 

cassette, contains mutant ORF1p-T7 (ARR to AKK) 

and ORF1p-TAP 

Figure 4.3 

pAD2TEI-107 pCEP6 vector with CMV promoter and Neo 

cassette, contains mutant ORF1p-T7 (ARR to AKR) 

and ORF1p-TAP 

Figure 4.3 

pAD2TEI-108 pCEP6 vector with CMV promoter and Neo 

cassette, contains mutant ORF1p-T7 (ARR to ARK) 

and ORF1p-TAP 

Figure 4.3 

pAD2TEI-135 pCEP6 vector with CMV promoter and Neo 

cassette, contains ORF1p-T7 and RT mutant 

ORF1p-TAP (D702A) 

Figure 4.1 

pAD2TEI-136 pCEP6 vector with CMV promoter and Neo 

cassette, contains ORF1p-T7 and EN mutant 

ORF1p-TAP (H230A) 

Figure 4.1 

pAD2TEI-PIP6 pCEP6 vector with CMV promoter and Neo 

cassette, contains ORF1p-T7 and mutant ORF1p-

TAP (PIP6) 

Figure 4.1 

pAD2TEI-162 pCEP6 vector with CMV promoter and Neo 

cassette, contains ORF1p-T7 and mutant ORF1p-

TAP (C-dom mutant) 

Figure 4.1 

pSA500 pCEP6 vector with CMV promoter and Neo 

cassette, contains ORF1p-TAP (C-dom mutant) 

Figure 4.7 

pSA500-D205Aà ENm  pCEP6 vector with CMV promoter and Neo 

cassette, contains ORF1p-TAP (EN mutant-D205A) 

Figure 4.7 
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pSA500-H230Aà ENm  pCEP6 vector with CMV promoter and Neo 

cassette, contains EN mutant (H230A) ORF1p-TAP 

Figure 4.7 

pSA500-YY414/15AA pCEP6 vector with CMV promoter and Neo 

cassette, contains PIP mutant ORF1p-TAP 

Figure 4.7 

pSA500-D702A pCEP6 vector with CMV promoter and Neo 

cassette, contains RT mutant ORF1p-TAP 

Figure 4.7 

pSA500-

H230A/D702A 

pCEP6 vector with CMV promoter and Neo 

cassette, contains RT and EN mutant ORF1p-TAP 

Figure 4.7 

JJ101/L1.3 pCEP6 vector with CMV promoter and BLAST 

cassette, contains WT L1 

Figure 4.1 

JJ101/L1.3-D205A  pCEP6 vector with CMV promoter and BLAST 

cassette, contains ORF1p and EN mutant ORF1p 

Figure 4.1 

JJ101/L1.3-

YY414/15FF  

pCEP6 vector with CMV promoter and BLAST 

cassette, contains ORF1p and PIP mutant ORF1p 

Figure 4.1 

JJ101/L1.3 

RTm(D702A)- 

pCEP6 vector with CMV promoter and BLAST 

cassette, contains ORF1p and RT mutant ORF1p 

Figure 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

2.4 Protein methods 
 

2.4.1 Immunoprecipitation 
 

The buffers used for the immunoprecipitation are shown in Table 2.3. During the immunoprecipitation 

protocol, all samples, tubes and buffers kept ice cold. Complete protease inhibitors (1X) are added on 

the day.  

Table 2.5 Immunoprecipitation buffers used in this thesis 

Buffer  Ingredients 

Lysis Buffer  20 mM HEPES [pH 7.5], 150 mM NaCl, 0.5% NP40,1mM EDTA, H20 

Complete protease inhibitors 1X 

5X Binding buffer  20 mM HEPES [pH 7.5], 150 mM NaCl, 1 mM EDTA, H20, Complete 

protease inhibitors to 1X 

Wash buffer 20 mM HEPES [pH 7.5], 150 mM NaCl, 0.1% NP40,1mM EDTA, H20 

Complete protease inhibitors 1X 

 

Cells were harvested by spinning at 1200 RPM and washing twice with ice cold PBS. Pellet was 

resuspended in 60ul of Lysis buffer and transferred into a 2ml pre-cooled Eppendorf tube. Lysate was 

then maintained at constant agitation for 20 minutes at 4 degrees. Centrifuge in a micro centrifuge at 

4°C, 13,000rpm for 10 min, lysate was transferred into a new microcentrifuge tube, leaving a sticky 

chromatin pellet behind. Supernatant was diluted at a ratio of 1:4 in 5X binding buffer. Next, 6ug/IP 

(6ul) of immunoprecipitating antibody (T7, abcam9138) or isotype control antibody (IgG) was added 

to the lysate and incubated at 4°C with gentle rotation for 2h. 

Immunoprecipitation was performed using 10ul of protein G beads per sample. Beads were washed 

prior to use with 1ml Wash Buffer and separated from buffer using a magnetic rack. Beads were mixed 

with IP samples and mix was incubated O/N rotating at 4 degrees.  

Lysate was next separated from beads using a magnetic rack. Supernatant was discarded or saved for 

western blotting. Beads were washed 2X with wash buffer. Finally, beads were washed once more 

with TBS and transferred to a fresh Eppendorf tube.  
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2.4.2 Western blotting 
 

Table 2.6 Reagents used in western blotting 

 

 

 

 

 

 

 

 

 

 

 

2.4.2.1 Generation of lysate from whole cells.  
 

Mammalian cells were harvested using trypsin and pelleted by centrifugation at 1200rpm. Cells were 

lysed using 30-60ul of lysis buffer (depending on size of the pellet). Cells were subjected to sonication 

by Diagenode Bioruptor 300 Sonicator device at 4 degrees (sonication was performed in two rounds 

of 30 seconds with a 30 second gap in between). Sample was then centrifuged at 17,000 x g for 30 min 

at 4˚C. Supernatant was removed for storage at -80 degrees Celsius.  

 

 

 

 

 

Buffer  Chemicals used for preparation  

10X TBE  0.89 M Tris base, 0.89 M boric acid, 20 mM 
EDTA  

10X TBS  0.5 M Tris base, 1.5 M NaCl (pH adjusted to 
7.5 with HCl)  

20X SSC  3 M NaCl, 0.3 M sodium citrate (pH 
adjusted to 7 with HCl)  

1X urea lysis buffer  8 M urea, 50 mM Tris (pH 7.5), 150 mM β-
mercaptoethanol, cOmplete mini EDTA-
free protease inhibitor cocktail (Roche, 
catalogue number 04693159001)  

10X Tris-glycine SDS-PAGE running buffer  250 mM Tris base, 1.92 M glycine, 1% 
(w/v) SDS  

1X immunoblotting transfer buffer  25 mM Tris base, 192 mM glycine, 0.1% 
(w/v) SDS, 20% (v/v) methanol  

4X SDS protein sample loading buffer  0.5 M Tris-HCl (pH 6.8), 50% (v/v) glycerol, 
2% (w/v) SDS, 0.1% (w/v) bromophenol 
blue  

1X TE  10 mM Tris-HCl (pH 8), 1 mM EDTA  
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2.4.2.2. Quantification of protein in whole cell lysate 
 

Before downstream experimentation, Quick Start Bradford Protein Assay (Bio-rad) was used to 

quantify the protein concentration in a sample. Protein samples at defined concentrations (BSA 

concentration range of 0.2, 0.4, 0.6, 0.8 and 1.0 mg/ml), provided by the manufacturer, were used to 

generate a standard ladder for reference. In the same plate as the protein ladder, 10ul of lysate was 

mixed with 190ul Bradford Dye Reagent. Using a spectrophotometer, absorbance at 595 nm (A595) was 

measured. Protein concentrations of lysate were determined using the absorbance readings of the 

standard proteins for reference.  

 

2.4.2.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) for protein resolution  
 

IN preparation for western blotting, Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed on whole cell lysates to resolve proteins according to molecular weight. 

Gels in this thesis were either home-made, or bought pre-cast using the 4–12% Bis-Tris NuPAGE® 

Novex (Invitrogen) gel system. 

To make homemade gels, a resolving gel and a stacking gel were made separately. For A 10% resolving 

gel, 375 mM Tris (pH 8.8), 0.1% (w/v) SDS, 0.1% (w/v) ammonium persulphate,  

0.04 μl/ml TEMED and 10% acrylamide). The stacking gel was made using 125 mM Tris (pH 6.8), 0.1% 

SDS, 0.1% ammonium persulphate, 4.2% acrylamide/bisacrylamide and 1 μl/ml TEMED. 

For pre-cast NuPAGE gels, the XCell SureLock™ Mini-Cell gel running chamber was used (Thermo fisher 

scientific, Catalogue number: EI0001) and gels were run using NuPAGE MOPS SDS running buffer 

(Thermo Fisher Scientific, NP0001) for Bis-Tris NuPAGE® gels.  For homemade gels, the Bio-rad Mini-

PROTEAN® Tetra Vertical Electrophoresis system (catalogue number 1658000FC) was used.   

Prior to electrophoresis, samples were denatured in a heat block at 95 degrees using 1X SDS protein 

sample loading buffer. For size reference, samples were loaded onto gel alongside Precision Plus 

Protein All Blue Prestained Protein Standards (Bio-Rad). Gel was run at 145 V for 1 hour and 30 minutes 

or until proteins were appropriately resolved.   
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2.4.2.4 Immunoblotting  
 

Following SDS-PAGE, gels were processed in a Mini-Trans-Blot Cell system (Bio-Rad) to allow transfer 

of protein to a nitrocellulose membrane (Amersham). Transfer was performed at 4 degrees in an 

immunoblotting (Table 2.6) transfer buffer, at 100 V for 1 hour.  

Following the protein transfer, the nitrocellulose membrane was incubated with a blocking solution 

containing 5% milk solution (prepared using Marvel milk powder, Premier Foods) in TBS/T (1X TBS 

with 0.1% TWEEN 20), for 1 hour at room temperature with gentle agitation. After blocking, the 

nitrocellulose membrane was incubated in primary antibody, diluted to the appropriate concentration 

in blocking buffer. Treatment with primary antibodies was performed overnight, at 4 degrees in a 50 

ml Falcon tube with constant, gentle rotation.  

The next morning, the nitrocellulose membrane was washed 3X with TBS/T. Each wash was performed 

for 15 minutes at room temperature, with constant agitation. Next the membrane was incubated for 

1 hour with secondary antibody, diluted to the appropriate concentration in blocking buffer. 

Incubation with secondary antibody was performed at room temperature in a 50 ml falcon tube. 

Secondary antibodies were horseradish peroxidase (HRP)-labelled, and selected for compatibility with 

primary antibodies.  

The HRP signal from bound secondary antibody was detected using Amersham ECL Prime Western 

Blotting Reagent (GE Healthcare LifeSciences). The nitrocellulose membrane was incubated for 5 

minutes at room temperature in an Imaging solution was made up using a 1:1 ratio of solutions A and 

B (contained in the kit). Approximately 2 ml of ECL solution was used for 20cm of nitrocellulose 

membrane, gently applied to ensure even distribution across the membrane. Excess liquid was 

removed through blotting with Wattman paper. The membrane was then imaged using the 

ImageQuant LAS 4000 camera system, which measures the chemiluminescence signal. Optimal 

exposure was chosen by testing a range of exposures with different time intervals. Alternatively, the 

membrane was placed between two sheets of acetate paper and exposed to photographic film (Kodak 

Biomax XAR Film), developed using Konika SRX-101A Developer. 
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2.5 Microbial methods   
 

2.5.1 Growth of bacteria  

 

E. coli strains were grown at 37˚C in/on Luria-Bertani (LB) medium (10 g/l tryptone, 5 g/l yeast extract, 

10 g/l NaCl, 1 g/l glucose). To maintain selection for plasmid DNA in transformed cells, the relevant 

antibiotic (s; Table 2.4) were added to LB at the required concentration. 

Table 2.7 Working concentrations of antibiotics 

Antibiotic  Stock 

concentration  

Working 

concentration  

Solvent  

Ampicillin  50 mg/ml  50 μg/ml  dH2O  

Kanamycin  10 mg/ml  10 μg/ml  dH2O  

 

 

2.5.2 Transformation of E. coli 
 

E. coli were transformed by adding 1ug of plasmid or 2.5ug of ligation mixture to 25ul of ultra, 

chemically competent bacterial cells. The mix was incubated for 30 minutes on ice before a 45 second 

42-degree heat shock.  Bacteria was incubated on ice for another 2 minutes, before a further 

incubation of 60 minutes at 37 degrees.  100ul of transformed bacteria is then spread onto an LB -agar 

plate treated with the appropriate antibiotic.  
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2.5.3 Generation of ultra-competent cells. 
  

Ultracompetent cells for recovery assay were generated using XL1-blue super competent cells (Agilent 

catalogue number: 200249).  

Buffers used for the procedure are detailed in Table 2.8. SOB was autoclaved prior to used and TB was 

filtered using 0.2mm filter. Centrifuge bottles for bacteria were autoclaved prior to protocol, as were 

1.5 ml Eppendorf tubes.  

Table 2.8 Buffers for generation of ultracompetent cells  

1L SOB + glycine  For 1 L, weight and mix: 20g Tryptone, 5g Yeast 

Extract, 0.5g NaCl, 625ul 4M KCl, 10g Glycine. PH 

was adjusted to 7 using NaOH.  

At room temp, add 10ml of 1M MgCl 

 

100 ml TB 10mM PIPES, CaCl2.2H2O 15 mM, KCl 250mM, 

pH to 6.7 using 150-200ul 10M KOH, add 1.09 g 

MnCl2.4H2O 

 

Frozen XL-Blue cells were spread onto an LB agar plate and incubated overnight at 37 degrees. 

250 ml of sterilised SOB + Glycine was inoculated with 10-12 colonies from the agar plate. Cells were 

incubated at 20 degrees with shaking of 140-160 rpm. Measurement was performed with a 

spectrometer to determine when the cells had reached OD600 of 0.94. Doubling rate of the cells took 

approximately 3 hours.  

Flask was removed from incubator and put on ice for 10 minutes. Cells were then pelleted in a 

sterilised flask at 2500 x g for 10 min at 4°C. Supernatant was removed and cells were gently 

resuspended in 80ml of ice-cold TB. Cells were left again on ice for 10 min before pelleting at 2500 x 

g for 10 min at 4°C.  Supernatant was removed and cells were resuspended in 10ml ice cold TB. 10ml 

of TB+14%DMSO (Sigma Aldrich catalogue number: 200244). Cells were incubated on ice for a further 

10 mins. A dry ice/ethanol bath was prepared in a Styrofoam box, and sterilised 1.5 ml Eppendorf 

tubes were pre-cooled in the bath. Cells were aliquoted into Eppendorfs at 500ul per tube, once 

frozen, cells were quickly transferred to -80 degrees.  
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2.5.4 Testing of ultracompetent cells.  
 

Efficiency of ultracompetent cells was tested through transformation with pUC18 DNA (Agilent) using 

the following conditions.  0.1, 1, or 10 pg of pUC18 control DNA was added to one aliquot of cells and 

tubes were swirled gently.  Tubes were incubated on ice for 30 minutes.  Tubes were heat pulsed in a 

42°C water bath for 45 seconds, then incubated on ice for 2 minutes. 0.9 ml of preheated SOB medium 

was added and tubes were incubated at 37°C for 1 hour with shaking at 225–250 rpm. Cells were 

centrifuged at 500 rpm for 5 minutes and 250ul of supernatant was removed. Cells were resuspended 

in remaining 250 µl of the transformation mixture and plated on LB–ampicillin agar plates. Plates were 

incubated overnight at 37 degrees.  

Guidelines to measure efficiency of ultracompetent cells are shown in Table 2.6 in colony forming 

units (cfu) per µg 

Table 2.9 Criteria used for generation of ultracompetent cells. 

 

 

 

 

 

2.6 DNA methods  
 

2.6.1 In house DNA sequencing 
 

DNA sequencing Dye terminator sequencing reactions (ABI) were performed and processed by the 

Institute of Genetics and Molecular Medicine (IGMM) sequencing service on a 3130/3730 genetic 

analyser (Applied Biosystems). DNA sequencing data was analysed using Sequencher 5.4.6 (Gene 

Codes Corp.) and SnapGene (Dotmatics) 

 

2.6.2 Primers for sequencing L1 plasmids 
 

0.1 pg pBSKS 100 colonies 109 cfu/µg. 

1 pg pBSKS 100 colonies 108 cfu/µg. 

10 pg pBSKS :100 colonies 107 cfu/µg. 
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Table 2.10 Primers for sequencing L1 plasmids 

Primer  Sequence 

-5’UTRs.5’  Cagctcaaggaggcctgcctgc 

-5’UTRas5’  Gcaggcaggcctccttgagctg 

JA8s5’  Ccaaaagtagataaaacc 

-JA8as5’ Ggttttatctacttttgg 

-ORF1As5’ Gcctctcctcctccaaaggaacg 

-ORF1Aas5’ Cgttcctttggaggaggagaggc 

-ORF1Bs5’ Atgggactatgtgaaaagacc 

-ORF1Bas5’ Ggtcttttcacatagtcccat 

-1598new-s5’ Gcaggccaacgttcagattcagg 

-1598new-as5’ Cctgaatctgaacgttggcctgc 

-ORF1Cs5’ Ggaagcgctaaacatggaaag 

-ORF1Cas5’ Ctttccatgtttagcgcttcc 

-IGs5’ Ggaagaaactgcatcaactaatg 

-IGas5’ Cattagttgatgcagtttcttcc 

-Bgl2s5’ gcaggggttgcaatcctagtctctg 

-Bgl2as5’ cagagactaggattgcaacccctgc 

-ORF2As5’ Atcaaaagagacaaagaaggc 

-ORF2Aas5’ Gccttctttgtctcttttgat 

-ORF2Bs5’ Cagaactctccaccccaaatc 

-ORF2Bas5’ Gatttggggtggagagttctg 

-jORF2Cs5’ Gacaccctaacatcacaattaa 
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-jORF2Cas5’ Ttaattgtgatgttagggtgtc 

-jORF2Ds5’ Ccagatggattcacagccgaattc 

-jORF2Das5’ Gaattcggctgtgaatccatctgg 

-jORF2Es5’ Caataaattaggtattgatgggac 

-jORF2Eas5’ Gtcccatcaatacctaatttattg 

-jORF2Fs5’ ggaagaatcaatatcgtgaaaatg 

-jORF2Fas5’ Cattttcacgatattgattcttcc 

-jORF2Gs5’ Caccttatacaaaaatcaattc 

-jORF2Gas5’ Gaattgatttttgtataaggtg 

-jORF2Hs. Gatatcatctcacaccagttag 

-jORF2Has. Ctaactggtgtgagatgatatc 

-jORF2Is5’ Gactggattaagaaaatgtg 

-jORF2Ias5’ Cacattttcttaatccagtc 

-jORF2Js5’ Cattagtgggtgcagcgcacc 

-jORF2Jas5’  Ggtgcgctgcacccactaatg 
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2.6.3 Small scale purification of plasmid DNA 
 

Plasmid DNA was prepared using the QIAprep Spin Miniprep Kit (Qiagen) following the manufacturer’s 

instructions. DNA was extracted from 5 ml of stationary phase E. coli culture 99 and eluted in 50 µl of 

elution buffer (10mM Tris-HCl pH 8.5) or DNAse/RNAse-free distilled water (Gibco). 

 

2.6.4 Large scale purification of plasmid DNA 
 

For larger scale preparation of plasmid DNA, the ZymoPURE II Plasmid Maxiprep Kit (Zymo Research) 

was used. DNA was extracted from 100-150 ml of stationary phase E. coli following the manufacturer’s 

instructions and eluted in 400 µl of the provided elution buffer 

 

2.6.5. Restriction digests 
 

 Plasmid DNA was digested with the appropriate restriction endonuclease in the buffer supplied by 

the manufacturer (NEB or Roche). To ensure complete restriction digestion before subsequent cloning 

steps, the digest was performed in a 100 µl of buffer with 2–5 µg of DNA and 20 U of the appropriate 

enzyme(s) overnight at the appropriate temperature, generally 37°C. For double digests, the optimal 

buffer conditions were selected for both enzymes using the manufacturer’s guidelines. 

 

 2.6.5. Purification of restriction digested DNA  

DNA fragments produced by restriction digestion were resolved by agarose gel electrophoresis. The 

desired DNA fragment was excised from the gel using a scalpel and purified using the QIAquick Gel 

Extraction kit (Qiagen) according to the manufacturer’s instructions. DNA was eluted in 30 μl elution 

buffer and stored indefinitely at –20˚C. 

 

2.6.6 Ligation of digested DNA 
 

 Ligation of DNA molecules Ligation reactions contained: 100–200 ng of vector DNA, 2–3X this molar 

amount of insert DNA, 1 U T4 DNA Ligase (Roche) and 1X Ligation Buffer (Roche). Following incubation 

for 4–5 h at room temperature, 1 μl ligation mixture was used to transform E. coli (Section 2.2.2.2) 
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2.7 Mass Spectrometry 
 

Immunoprecipitation samples were prepared for mass spectrometry as described in Methods section 

2.1 

The sample were incubated for 3 h at 37°C and stopped by freezing on dry ice for subsequent liquid 

chromatography (LC)-tandem MS (MS/MS; performed by Alex Von Kriegsheim, IGMM Mass 

Spectrometry facility; Section 2.5.11.2). 

To prepare samples for MS analysis, an 8 M urea buffer with 100 mM Tris (pH 8.5) was added to 

samples to a final concentration of 2 M urea, followed by addition of a 1 M DTT to a final concentration 

of 10 mM. Samples were evaporated in a SpeedVac Concentrator™ (Thermo Scientific), resuspended 

in 12 μl 0.1% TFA buffer and analysed by MS. The tryptic peptides were analysed on a mass 

spectrometer connected to an Ultimate Ultra3000 chromatography system (Thermo Scientific) 

incorporating an autosampler. For each sample, 5 μl of the tryptic peptides were loaded on a 

homemade column (100 mm length, 75 μm inside diameter) packed with 1.9 μm ReprosilAQ C18 (Dr. 

Maisch HPLC) and separated by an increasing acetonitrile gradient (3%–32%) at a flow rate of 250 

nl/min 

The mass spectrometer was operated in positive ion mode with a capillary temperature of 220°C, with 

2,000 V applied to the column. Data were acquired with the mass spectrometer operating in automatic 

data-dependent switching mode, selecting the 12 most intense ions prior to tandem MS (MS/MS) 

analysis. Mass spectra were analysed and label-free quantitation performed using the MaxQuant 

Software package (Tyanova et al., 2016).  

 

 

 

 

 

 

 



78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 

 

 

 

 

 

 

                                           Chapter 3 

 

 

 

Optimising a cultured cell 

retrotransposition assay in Chinese 

hamster cell lines 
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3.1 Introduction 
 

This thesis aims to investigate L1 retrotransposition in the context of Fanconi Anaemia. To do this, I 

will test the frequency at which a series of mutant L1 elements move in cell lines that exhibit a FANC 

phenotype. In this way, I will be able to probe the mechanism of retrotransposition in a FANCC context 

by testing how mutating different domains of the element impact the efficiency of retrotransposition 

in these cells. The cultured cell retrotransposition assay will therefore be a fundamental technique in 

this thesis.  

The retrotransposition assay is a highly sensitive tool that can be used to quantify efficiency of mobility 

in different contexts (Moran et al. 1996). It is a versatile tool, and has been vital in determining 

domains of L1 which are vital for retrotransposition. Different factors, such as transfection efficiency 

or seeding density, can alter the sensitivity of the assay and should be considered (Moran et al. 1996; 

Kopera et al. 2016). In this chapter, I aim to optimise the assay in several key cell lines, in order to 

ensure that the foundational experiments I perform are robust. Furthermore, as I plan to investigate 

whether the FANC phenotype alters the capacity of mutant L1 elements to move, I want the assay to 

be sufficiently sensitive to pick up rare retrotransposition events. 

My foundational experiments were performed in two cell lines, VH4 and V79. V79 is a Chinese hamster 

ovary (CHO) cell line (Jones et al. 1994). A mutation of that FANCA gene in this line generated the VH4 

cells (Overkamp et al. 1993; Telleman et al. 1996). As FANCA is mutated in 65% of FANC patients 

(Morgan et al., 1999)(Solomon et al 2015), I chose to investigate L1 retrotransposition first in these 

cells. Furthermore, having the parental line for comparison provides a good control, and we know that 

CHO cells support high levels of retrotransposition. In addition, previous work on endonuclease 

independent retrotransposition was performed in hamster cells.  making them an excellent context in 

which to perform these experiments.   
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3.2 Cells deficient in Fanconi anaemia are hypersensitive to Mitomycin C    
 

Due to the role of the Fanconi Anaemia pathway in repairing ICLS, cells deficient in FANC proteins 

exhibit a well-documented hypersensitivity to Mitomycin C (MMC; Overkamp et al. 1993). Treatment 

of FANCC ells with MMC results in an increase in apoptosis, chromosome breakage and cell cycle arrest 

at G2 (Zdzienicka et al. 1990).  

To investigate L1 retrotransposition in FANCC ells, I used VH4 Chinese hamster cells which are deficient 

in FANCA (Overkamp et al. 1993; Telleman et al. 1996). The cell line has been reported to exhibit a 

Fanconi Anaemia phenotype, due to the loss of function of the protein (Zdzienicka et al. 1990).  These 

cells are derived from the Chinese hamster cell line V79, which has been extensively used to 

investigate DNA damage and repair (Bradley et al. 1981; Chaung et al. 1997; Boorstein et al. 1992). 

The cell line was key for foundational experiments in this research because FANCA is mutated in 65% 

of FANC patients and also because hamster cells support a high level of L1 retrotransposition (Morrish 

et al. 2002).  
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Figure 3.1: Sensitivity of FANCA deficient (VH4) cells to MMC in comparison with the parental (V79) 

cell line. A cell line deficient in FANCA and a parental line were tested for their relative sensitivity to crosslinking 

agent MMC. After a 24-hour treatment with MMC, surviving cells were fixed, stained and quantified using a 

spectrophotometer. Error bars indicate standard error of the mean (SEM) and this experiment was performed 

three times. 
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https://pubmed.ncbi.nlm.nih.gov/?term=Zdzienicka+MZ&cauthor_id=2267631
https://pubmed.ncbi.nlm.nih.gov/?term=Zdzienicka+MZ&cauthor_id=2267631
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As expected, FANCA cells demonstrated a much higher sensitivity to MMC than the parental cell line 

with a functional Fanconi Anaemia pathway (Figure 3.1). This confirms that the cell line used is 

reflecting the expected Fanconi phenotype.  

3.3 Optimisation of parameters for a retrotransposition assay in FANCA 

deficient cells. 
 

To test L1 retrotransposition in FANCA deficient cells, a cultured cell retrotransposition assay was used 

(as described by Moran et al. 1996). The retrotransposition assay is a sensitive tool, which is highly 

useful for quantifying retrotransposition in different cell lines and testing the mobility of different 

elements. In order to optimise the sensitivity of the assay, however, several variables need to be 

controlled for. As I planned to carry out several critical experiments in a FANCA deficient cell line (VH4) 

and a parental line (V79). I performed a series of experiments to optimise the retrotransposition assay 

in these cell lines.  

Firstly, I performed a death curve to optimise the concentration of antibiotic to be used in the assay 

(Figure 3.2). Critically, the antibiotic should be of a high enough concentration that cells which don’t 

express the resistance gene are killed within the 12-day selection period. If, however, the 

concentration is too high, then even cells expressing the reporter gene may be adversely affected.   
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Figure 3.2: Death Curve of FANCA deficient (VH4) and parental (V79) cells using G418. A death curve 

was performed in FANCA deficient cells and the parental line to establish the optimal concentration of antibiotics 

to use in the cultured cell retrotransposition assay. Cells were treated with different concentrations of G418 for 

a selection period of 12 days, with media changes on alternating days.  Error bars represent the SEM and the 

experiment was repeated three times. The lowest concentration that resulted in complete cell death was 

selected for future experiments, in this case 400ng/ul for both cell lines.  

 

Based on the death curve shown in Figure 3.2 I decided that 400ng/ul was an optimal choice of G418 

concentration to use for the retrotransposition assay. This was the minimal concentration that killed 

all cells after a 12-day period of selection.  
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3.4 Optimising the transfection of VH4 and V79 cells.  
 

In initial experiments with the VH4 and V79 cells, transfection efficiency was lower than expected (1-

5%). As a high transfection efficiency improves the sensitivity of the assay to detect low levels of 

retrotransposition, I tested a range of conditions to maximise the number of cells transfected for 

future experiments. Three widely used reagents were tested, each at two concentrations (Figure 3.3). 

When measuring transfection efficiency, cell count was also taken into account to determine the 

degree of toxicity following transfection. Though transfection was more efficient using Lipofectamine 

2000, this reagent caused notably more toxicity than FuGene6, as can be seen by the lower cell count 

at FACS, despite the same seeding density. Transfection with either FuGene6 or FuGene HD generated 

a similar efficiency. 

 Further experimentation showed that an 8h time delay between plating and transfection provided 

better transfection efficiency that a 24 h time delay. Similarly, a reverse transfection protocol, where 

cells were immediately transfected after plating, improved transfection efficiency.  
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Figure 3.3: Optimisation of transfection efficiency in FANCA (VH4) and parental (V79) cell line.   

a) Transfection efficiency following the use of three different reagents, at two concentrations, in FANCA 

mutant and parental cell line  

b) Cell count measured by FACS, following the use of three different reagents, at two concentrations in 

FANCA mutant and parental cell line.  

c) Transfection efficiency in FANCA mutant and parental cell line with different time delays between 

plating and transfection.  
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3.5 Optimising the seeding density  
 

Thirdly, I performed an assay to determine the optimal seeding density in the FANCA deficient and 

parental cell line. A density should be chosen that is not too high, or surviving colonies will be very 

densely packed on the plate and less distinct from each other, making them difficult to count 

accurately. If the density is too low, the cells may be too sparse and the assay will be less sensitive to 

lower levels of retrotransposition (Moran et al. 1996).  

To do this, I plated both FANCA deficient and parental cell line at four different seeding densities and 

transfected with a wild type LINE-1 element. The results are shown in Figure 3.4.  
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Figure 3.4: Optimisation of seeding density in FANCA deficient and parental cell line 

The number of colony forming units (CFU) following a retrotransposition assay (introduced in Figure 1.5) 

performed with four different seeding densities (x-axis). Either FANCA deficient or parental cells were 

transfected with a wild type L1 element. G418-resistant colonies were visualised by staining with crystal violet. 

CFU: colony forming units. 
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Following this series of assays, I concluded that 20,000 cells was an optimal seeding density for this 

cell line. Lower densities may make it more difficult to detect low-efficiency retrotransposition, and 

higher numbers may make it more difficult to accurately count colonies and therefore assess relative 

retrotransposition rates.  

 

3.6 Optimising retrotransposition cell culture assay in FANCA complemented 

and NHEJ deficient cell lines.  
 

A key experiment of this thesis is the comparison of retrotransposition in FANCA deficient cells and 

FANCA deficient cells complemented with FANCA. This control confirms that any unusual 

retrotransposition in FANCA deficient cells results from the absence of FANCA and not from secondary 

DNA damage associated with the FANC phenotype.  

The FANCA cell line was generated by members of the Jose Garcia Perez lab, by infection with a Murine 

Leukaemia Virus (MLV)-derived vector expressing the mouse FANCA cDNA. 48 hours after infection, 

antibiotic selection was used to select for cells expressing FANCA.  

For these experiments I also include CLV5B (a FANCC cell line which is also derived from the parental 

V79 cells, similarly to VH4 celle) for comparison, as well as CLV5B cells complemented with FANCC. As 

these cells share a parental line with VH4 cells, as well as a hypersensitivity to MMC (Morell 2016).  
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Figure 3.5: Development of a cell line complemented with FANCA.  

Error bars in all figures represent SEM and each experiment was performed three times 

a) Scheme of how FANCA complemented cell line was developed. This work was performed by members 

of the JGP lab.  

b) MMC sensitivity assay performed in FANCA (VH4) and FANCA comp cells after generation of FANCA 

complemented cell line in comparison with FANCC deficient (CLV5B) and FANCC complemented cell 

line.  

c) MMC sensitivity assay showing FANCA complemented cells in comparison with FANCA (VH4) and 

parental cell line.  
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Following generation of the cell line, the FANC phenotype was confirmed with a MMC sensitivity assay. 

FANCA complemented cells showed a reduced sensitivity to MMC comparable to other 

complemented cell lines, including FANCC deficient CLV5B (Figure 3.5B) and the parental cell line, V79.  

As this cell line is part of key experiments to this thesis, I also optimised the retrotransposition assay 

in these cells. Alongside these experiments, I also optimised the assay in a NHEJ defective cell line, XR-

1, and its parental line 4364. This CHO hamster cell line contains a mutation in XRCC4 which renders 

it defective in double strand break repair and V(D)J recombination (Giaccia et al. 1990; Zdzienicka et 

al.  1992; Pergola et al. 1993). This cell line is key in this thesis for distinguishing FANC specific effects 

from effects resulting from other defects in DNA damage repair, thus it was important to optimise the 

experiments in this cell line.  

Firstly, I performed a death curve using the antibiotic G418, in order to determine which concentration 

is sufficient for the selection stage of the assay.  
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Figure 3.6: Death curve to identify the optimal antibiotic concentration in FANCA complemented 

cells, NHEJ deficient (XR1) and parental (4364) cells. XR1 and 4364 cell lines were treated with G418 for 

12 days, when the number of colony forming units was counted. Error bars represent the SEM and this 

experiment was performed three times. 

 

As previously observed with the VH4 and V79 cells, 400ng/ul is the lowest concentration of G418 that 

kills all plated cells within a 12-day selection period, and was therefore used for subsequent assays 

with these cell lines.      

I also performed a series of experiments to maximise the transfection efficiency of these three cell 

lines.  
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Figure 3.7: Optimisation of transfection efficiency in FANCA complemented, NHEJ deficient (XR-1) 

and parental (4364) cell lines. Each experiment was performed three times and error bars represent 

the SEM. 

a) Transfection efficiency following the use of three different reagents, at two concentrations, in FANCA 

comp, NHEJ mutant (XR-1) and the XR-1 parental (4364) cell lines  

b) Transfection efficiency in FANCA comp, NHEJ mutant (XR-1) and the XR-1 parental (4364) cell lines with 

different time delays between plating and transfection.  

c) Cell count measured by FACS, following the use of three different reagents, at two concentrations in 

FANCA comp, NHEJ mutant (XR-1) and the XR-1 parental (4364) cell lines  
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As previously observed with the CHO cell lines VH4 and V79, Lipofectamine 2000 was the reagent that 

generated the highest transfection efficiencies. However, as can be seen from the cell count at FACS 

(Figure 3.7b) a low number of cells survived the transfection, indicating high toxicity. FuGene6 offers 

a good efficiency with a lower degree of toxicity to the cells. Notably, reverse transfection, where cells 

were transfected immediately after plating, increased the transfection efficiency in all three cell lines, 

particularly in XR-1 and 4364. In addition, 4364 consistently exhibited a lower transfection efficiency 

than the XR-1 cell line, emphasising the importance of normalising results from the retrotransposition 

assay by transfection efficiency when comparing between cell lines.  

 

3.7 Main Conclusions 
 

Primarily, this work has determined the optimal parameters for cell-based assays in five cell lines that 

are key to my thesis. These findings provide a solid basis for subsequent experiments, ensuring that 

the assay is sensitive enough to detect rare retrotransposition events and effectively quantify 

variations in L1 activity.  

 

3.8 Discussion 
 

In this chapter, I discuss the optimisation of the cell based retrotransposition assay in five cell lines 

that are key to this thesis. As cell-based assays form the basis of much of my experimental work, 

establishing the parameters to optimise their sensitivity is an important foundation for my thesis.  

Initially, I observed low transfection efficiency with the VH4 and V79 cell lines. As previously 

mentioned, low transfection efficiencies can limit the sensitivity of the assay, as rare or low-efficiency 

retrotransposition events will only be recorded if a high number of cells express the L1 element. 

Reducing the time delay between plating and transfection to 8h increased the average transfection 

efficiency in these CHO cell lines, as did performing a reverse transfection. 

I also observed some variation in how amenable different cell lines were to transfection. XR-1, for 

example, appeared to transfect more easily than the cell line it was derived from, 4364. This difference 

highlights the importance of normalising retrotransposition rate according to the transfection 

efficiency for each plasmid. To account for this and other differences between cell lines, for example 
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the rate of proliferation, measures of retrotransposition are taken relative to the retrotransposition 

rate of a wild type element in that cell line.  

This series of experiments also showed the importance of seeding density to the outcome of the assay. 

As seen in Figure 3.4, a high seeding density results in the cells being very densely packed on the plate 

and can make counting distinct colonies difficult. For the cell lines tested in this chapter, seeding 

20,000 cells appears to generate a good number of wild type colonies.  
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4.1 Introduction  
 

For a L1 element to mobilise through canonical TPRT, both open reading frames, ORF1 and ORF2 are 

required. The reverse transcriptase activity of ORF2 is an absolute requirement for retrotransposition 

and typically the EN domain of ORF1p is also required (Mathias et al. 1991; Moran et al. 1996). Despite 

the role of ORF1 in TPRT not yet being fully established, it is known that the protein is a nucleic acid 

chaperone, and abolition of the chaperone activity also abrogates retrotransposition (Kolosha and 

Martin 2003; Martin et al. 2005). In addition to this, mutations which prevent ORF1p from binding 

back to its transcript to form the ribonucleoprotein particle also prevent efficient retrotransposition. 

A key paper by Kulpa and Moran (2005) demonstrated this, and established the RNP as a necessary 

retrotransposition intermediate.  

In recent years, an alternative mechanism of retrotransposition called endonuclease independent 

retrotransposition (ENi), has been identified. In 2002, Morrish et al. demonstrated that LINE-1 

elements can mobilise without needing a functional EN domain to create an incision in the genomic 

DNA. Experimentation using cultured cell retrotransposition assays showed that the frequency of ENi 

retrotransposition increases in cells which are deficient in DNA repair (For example XR-1 cells, which 

harbour XRCC4 mutations and lack DSB repair). L1 elements without a functional EN domain were able 

to mobilise with a relatively high efficiency in these cells, leading the group to hypothesise that the EN 

deficient elements were exploiting unrepaired gaps in the genomic DNA as insertion sites. 

This work has demonstrated that in certain cellular contexts, different L1 domains might be required 

for retrotransposition. Not only this, but there is a body of work demonstrating that some DNA repair 

pathways might be directly be involved in the regulation of L1 retrotransposition (Mita et al. 2020; Liu 

et al. 2018). It is evident that the complex relationship between DNA repair proteins and L1 

retrotransposition remains to be better established. 

To further investigate the relationship between DNA repair and L1 retrotransposition in the human 

genome, we decided to explore the nature of retrotransposition in FA cells. 

 The FA pathway is primarily concerned with the repair of ICLs, and cells mutated in this pathway 

exhibit a hypersensitivity to crosslinking agents such as MMC.  As well as this function, there is 

evidence that some of the 21 proteins in the FA pathway have additional roles. Mutations in the 

FANCA gene account for nearly 65% of all known FA cases (Morgan et al. 1999)(Solomon et al. 2015), 

though a broad range of mutations in the FA pathway have been identified in patients (Neveling et al. 

2009). 
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Recently, a whole –genome siRNA screen using image based retrotransposition assays in HeLa cells, 

identified 15 members of the FA family, including FANCA, as potential regulators of L1 

retrotransposition (Mita et al. 2018). Most FA factors operated as inhibitors of L1 activity, though a 

small number appeared to enhance retrotransposition levels. The group validated FANCA and 10 other 

bone fide FA proteins as inhibitors of retrotransposition. A previous genome-wide CRISPR Cas9 screen 

by Liu et al. (2017), had already identified several of these proteins, including FANCA, as inhibitors of 

retrotransposition. 

I therefore wanted to investigate L1 retrotransposition in FA cells for several reasons: to test the 

possibility that FA proteins are regulators of L1 activity, to identify whether ENi retrotransposition 

takes place in FA cells, and to determine if there are other domains which are not required for 

retrotransposition in a FA context. The aim of these experiments is to improve our understanding of 

the relationship between L1 retrotransposition and FA repair proteins. As FANCA has been identified 

previously as a regulator of L1, and is mutated in a majority of FA patients (Morgan al., 1999) I decided 

to test a series of L1 elements for their retrotransposition rates in FANCA cells and a parental line.  

4.2 Research Aims  
 

In summary, the main research aims of this chapter are threefold:  

A) To identify how loss of FANCA impacts RC-L1 retrotransposition 

B) To determine whether ENi takes place in a FANCA deficient context 

C) To identify which other L1 domains are required for retrotransposition in FANCA deficient 

cells.  
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4.3 Testing wild type retrotransposition in FANCA (VH4) and parental V79 cells.  
 

As several studies have indicated that FANCA could be a potential suppressor of L1 retrotransposition 

(Liu et al. 2017; Tristan Ramos et al. 2020; Mita et al. 2020), I wanted to test how knocking out FANCA 

impacts the retrotransposition rate of a wild type L1 element. We hypothesised that deletion of 

FANCA would result in a higher rate of retrotransposition of a wild type element.  

To test this hypothesis, I used a cultured cell retrotransposition assay to measure the activity of 

JM101/L1.3, a retrotransposition competent element cloned into a pCEP4 vector.  The activity of the 

cassette was measured in two CHO cell lines: V79 and a FANCA deficient derivative, VH4. These cell 

lines were used because they support a high level of retrotransposition, and because having access to 

the parental cell line enables a better control for cellular differences.  

The results are shown in Figure 4.1. After adjusting for variation in transfection efficiency between 

the two cell lines and between the different plasmids, the WT L1 element is approximately 45% more 

active in the FANCA mutant line than the WT parental. This suggests that FANCA can act as a negative 

regulator of L1 retrotransposition in Chinese hamster cells. During the preparation of this thesis, a 

study by Tristan Ramos et al. (2020) showed that depleting FANCA by siRNA significantly increased 

levels of L1 retrotransposition in U2OS cells, without increases in toxicity or clonability. Using a 

different method, Liu et al. (2018), also found that knocking out FANCA (using a CRISPR/Cas9 genome 

wide screen) lead to elevated L1 retrotransposition, this time in K562 cells (a human immortalised 

leukaemia cell line (Rutherford et al. 1981)). Therefore, my results support findings in the wider 

literature that FANCA acts as a suppressor of L1.  
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Figure 4.1: Testing wild type L1 retrotransposition in FANCA (VH4) and parental (V79) cells 

Quantification of L1 retrotransposition in a Chinese hamster cell line (V79) and a derivative deficient in FANCA 
(VH4) demonstrated that FANCA cells support significantly higher levels of wild type retrotransposition. 
Quantification of retrotransposition of a synthetic WT L1 element (pAD2TEI -101), an RT mutant (RTm; 
pAD2TEI-105) and PT2Neo, a plasmid which includes only the reporter gene (without an L1 transcript) are 
shown. The number of colony forming units (CFU) per well was quantified and a mean was taken over three 
technical replicates. These values have been adjusted to control for differences in transfection efficiency and 
this experiment was performed three times. * indicates p<0.05, Student’s t-test. Representative plates 

showing neomycin-resistant colonies stained with crystal violet are shown below the graph. 

 

To control for any secondary effects due to DNA damage resulting from the FA phenotype, I wanted 

to see if I could rescue the observed effect using VH4 cells that had been complemented with FANCA. 

The purpose of this experiment was to confirm that the elevated retrotransposition was specifically a 

result of loss of FANCA.  To do this, I performed the same assay as previously described with the FANCA 

complemented cell line. The results are shown in Figure 4.2.  
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Complementation with FANCA significantly reduced retrotransposition of wild type L1, indicating that 

expression of the protein successfully rescued the elevated L1 retrotransposition shown in VH4 cells. 

This indicates that the effect is a direct result of FANCA loss and not a secondary effect of DNA damage.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Complementation with FANCA rescues elevated retrotransposition in VH4 cells.  

The retrotransposition of wild type element L1.3 was quantified by a cultured cell retrotransposition assay in a 

Chinese hamster cell line (V79), a derivative deficient in FANCA (VH4) and VH4 cells complemented with FANCA. 

The number of colony forming units (CFU) per well was quantified and a mean was taken over three technical 

replicates. These values have been adjusted to control for differences in transfection efficiency and this 

experiment was performed three times. VH4 and V79 data was plotted in Figure 4.1 and is shown again for 

comparison. * indicates p<0.05, Student’s t-test. Representative plates showing neomycin-resistant colonies 

stained with crystal violet are shown below the graph. 
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4.4. Testing a battery of ORF1p mutants in FANCA mutant cells.  
 

The first section of this chapter indicated that FANCA could serve as a negative regulator of wild type 

L1 retrotransposition. Next, I wanted to identify whether retrotransposition in a FA context required 

the same domains that are fundamental for TPRT. There is precedence for this, as key studies have 

shown that the mechanism of mobility can be altered in cell lines deficient in DNA repair proteins 

(Moran et al. 2007; Moran et al. 2005). As such, I was interested to see whether the deletion of FANCA 

would enable retrotransposition of elements which would otherwise be retrotransposition 

incompetent.  

I began this line of investigation with a focus on ORF1. In 2005, Kulpa and Moran tested a series of 

ORF1p mutant L1 elements for their capacity to retrotranspose in HeLa cells. They identified two 

classes of mutants. Class I mutants derived from the REKG or ARR motif prevented the correct 

formation of the RNP. Following a process of differential centrifugation, ORF1p could no longer be 

detected in the centrifugal fraction which contained the particle. These mutations abrogated 

retrotransposition of the element, which aligns with data indicating that the RNP is an essential 

retrotransposition intermediate.  

 The mutants were generated from three highly conserved amino acid motifs in the carboxyl domain 

of ORF1 (REKG235-238, RR261-262 and YPAKLS282-287). Because the impacts of these ORF1 

mutations on canonical retrotransposition have been well characterised, I wanted to see how they 

would impact retrotransposition in a FANCA deficient context. A scheme describing the ORF1p 

mutants I tested is shown in Figure 4.3.  I tested this series of mutants in the VH4 and V79 cell line 

Figure 4.4.  

It is worth noting that in Figure 4.4 the CFU of generated by each L1 plasmid in a particular cell line 

are normalised against the CFU of the wild type L1 in the same cell line. This is to account for 

differences which may be accounted for by variation between cell lines rather than  between cell lines. 

Thus, in each cell line the retrotransposition frequency of each mutant L1 is shown as a percentage of 

its wild type activity. This method will be used in each experiment where the mobilisation of different 

mutant L1s is compared.  However, as this calculation masks differences between the wild type 

retrotransposition frequency in the different cell lines, Figure 4.3, and other figures focusing on wild 

type elements, do not employ this normalisation. 
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Figure 4.3: Scheme of previously characterised ORF1 mutants  

A) A series of ORF1 mutations and their retrotransposition rates as previously characterised in HeLa cells 

(Kulpa and Moran 2005).Kulpa and Moran (2005) separated these mutants into two categories, Class I 

and Class II (as depicted above), where Class 1 mutants abrogate retrotransposition and Class II mutants 

reduce retrotransposition.  Two conserved motifs in ORF1 are depicted,  the mutations derived from 

them and the RT frequency of those mutants. Percentages indicate the frequency of retrotransposition 

of these mutants relative to the wild type L1 element. 

B) Diagram depicting the ARR motif  

C) Diagram depicting the REKG motif which is altered in the pAD2TEI ORF1 mutant  
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Figure 4.4: Testing type 1 ORF1 mutations in FANCA deficient and parental cell lines  

The retrotransposition of two severe ORF1 mutants was quantified by a cultured cell retrotransposition assay in 

a Chinese hamster cell line (V79) and a derivative deficient in FANCA (VH4). The number of colony forming units 

(CFU) per well was quantified for each element as a percentage of WT L1 activity and an average was taken over 

three technical replicates. These values have been adjusted to control for differences in transfection efficiency 

and this experiment was performed three times. * indicates p<0.05, Student’s t-test.  Representative plates 

showing neomycin-resistant colonies stained with crystal violet are shown below the graph. 

 

Interestingly, the class I mutants showed significantly different rates of retrotransposition between 

the VH4 and V79 cell lines. In the V79 cells, retrotransposition rates were comparable to those found 

by Kulpa and Moran (2005) in HeLa cells (0-0.5% of wild type levels). In that experiment, ORF1p was 

undetectable in a RNP isolated by differential centrifugation, implying that the mutation prevented 

the localisation of the protein to the RNP retrotransposition intermediate. Interestingly, in the 

absence of FANCA, retrotransposition was significantly higher, around 20% of wild type levels. This 
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suggests that FANCA can support some retrotransposition of mutant elements which harbour severe 

ORF1 mutations and likely have diminished capacity to form an RNP. 

Of the class II mutants, there was a less distinct difference between the two cell lines. The ORF1 

mutant (ARR-AKK) jumped at a similar rate in VH4 and V79 cells. pAD107, mobilised on average at 40% 

of wild type levels in a FANCA knock out context, which is substantially higher than the 2.6% recorded 

by Kulpa and Moran (2005) in HeLa cells. However, this was not significantly less than the rates 

detected in the parental cell line. These findings imply that the loss of FANCA has a more substantial 

impact on the capacity of severely mutated L1 elements to retrotranspose.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Testing type II ORF1p mutations in FANCA deficient (VH4) and parental (V79) cell lines  

 The retrotransposition of two more ORf1 mutants was quantified by a cultured cell retrotransposition assay in 

a Chinese hamster cell line (V79) and a derivative deficient in FANCA (VH4). The number of colony forming 

units (CFU) per well was quantified for each element as a percentage of WT L1 activity and an average was 

taken over three technical replicates.  These values have been adjusted to control for differences in 

transfection efficiency and this experiment was performed three times. Representative plates showing 
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neomycin-resistant colonies stained with crystal violet are shown below the graph. Note that wild type panels 

for VH4 and V79 were previously shown in Figure 4.4 but is displayed again here for comparison purposes.  

4.5. Rescuing unusual retrotransposition in VH4 cells with complementation 

using FANCA.  
 

As the retrotransposition of severe REKG>AAAA and ARR>AAA ORF1p mutants in VH4 cells was 

unexpected, we wanted to identify whether it was directly a result of FANCA deficiency and not a 

secondary effect of DNA damage resulting from the FA phenotype. I therefore repeated the above 

assay with FANCA complemented cells to see if I could rescue the increased retrotransposition of the 

mutant elements.  

As seen in Figure 4.6, complementation by FANCA restored retrotransposition rates to levels more 

comparable with the v79, parental cell line. This confirms that the increased retrotransposition is likely 

a direct result of the loss of FANCA.  

 

Figure 4.6: Rescuing increased retrotransposition of ORF1 L1 elements with FANCA 

complementation.  

The retrotransposition of a battery of ORF1 mutants was measured in VH4, V79 and VH4 cells complemented 

with FANCA. The number of colony forming units (CFU) per well was quantified for each element as a percentage 
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of WT L1 activity and an average was taken over three technical replicates. These values have been adjusted to 

control for differences in transfection efficiency and this experiment was performed three times.   The VH4 and 

V79 values were previously plotted in Figure 4.4 and Figure 4.5 and are shown here for comparison. * indicates 

p<0.05, Student’s t-test.  Representative plates showing neomycin-resistant colonies stained with crystal violet 

are shown below the graph. 

 

4.6 Testing ORF2 only retrotransposition in FANCA (VH4) and parental (V79) 

cells.  
 

 The mobilisation of the two Class I ORF1 mutant elements in VH4 cells (REKG>AAAA 

and ARR>AAA) is particularly interesting, because the ORF1p of these elements is reported to have a 

compromised ability to localise to the RNP (Kulpa and Moran 2005). As the RNP is a vital intermediate 

of conventional TPRT, this raised the possibility that VH4 cells may support an alternative mechanism 

of retrotransposition. As previously discussed, the role of ORF1p in retrotransposition has not been 

fully elucidated. It is not clear, for example, whether ORF1 is essential for retrotransposition outside 

of its role in the formation of the RNP. Therefore, I decided to test whether VH4 cells could support 

retrotransposition of a series of ORF1p only plasmids.  

In this assay, I tested a series of plasmids derived from the pSA500 cassette (Figure 4.7). This series 

includes four ORF1p only plasmids with several different mutations. As overexpression of ORF2 can 

lead to high levels of toxicity due to the activity of the endonuclease domain (Gasior et al. 2006), I 

tested two endonuclease mutants to determine whether reducing toxicity of ORF1p would alter the 

degree of retrotransposition. I also tested a RT mutant as a negative control and a double mutant, 

which contained alterations in both the EN and the RT domains. As a positive control, the wild type 

JM101/L1.3 plasmid was used. Finally, an endonuclease mutant derived from JM101/L1.3 was tested 

as a positive control for ENi retrotransposition in this assay. The results are shown in Figure 4.7.  

Consistent with previous findings, the wild type element showed good levels of retrotransposition in 

both cell lines, with a slightly higher rate of retrotransposition in VH4 cells. An endonuclease mutant 

element also mobilised significantly more in VH4 cells, supporting the theory that FA mutant cells can 

support endonuclease independent retrotransposition. However, the ORF2 only plasmids, derived 

from the pSA500 cassette, showed no retrotransposition activity. Notably, the EN domain mutant, 

which should have reduced toxicity, also did not support any retrotransposition.  

These findings indicate that ORF1p is still required for retrotransposition in VH4 cells. This is interesting 

in light of my previous data, which suggests that severe mutants of ORF can still mobilise in this 

context, suggesting that ORF1 may have an additional role in TRPT to localisation to the RNP.  
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Figure 4.7 Testing ORF2 only retrotransposition in FANCA (VH4) and parental (V79) cells.  

A) The scheme of the pSA500 cassette that was used to measure ORF1p only retrotransposition  

B) Retrotransposition of a series of plasmids containing only ORF2 and either an endonuclease mutant (ENm: 

H230A), a PIP box mutant (PIPm: YY414/15AA) or a reverse transcriptase mutant (RTm :D702A) was measured 

in FANCA (VH4) and parental (V79) cells. The number of colony forming units (CFU) per well was quantified for 

each element as a percentage of WT L1 activity and an average was taken over three technical replicates. These 

values have been adjusted to control for differences in transfection efficiency and this experiment was 

performed three times.  Representative plates showing neomycin-resistant colonies stained with crystal violet 

are shown below the graph. 
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4.7 Testing EN mutants in FANCA deficient cells.  
 

As previously discussed, several studies have found evidence for endonuclease independent 

retrotransposition including Morrish et al. (2002), Morrish et al. (2007) and Sen et al. (2007). 

Mutations of the endonuclease domain in wild type cells appear to reduce retrotransposition to 

approximately 0.8-5% of wild type levels. In cells which are deficient in DNA repair, however, 

retrotransposition can reach up to 90% of wild type levels. The rate of ENi retrotransposition in a FA 

context has not yet been identified, however. Therefore, I wanted to investigate EN independent 

retrotransposition in FANCA mutant cells.  

Previous studies investigating endonuclease independent retrotransposition have focused on two 

elements which harbour missense mutations in the active site of the endonuclease domain: ENm-L1, 

D205A/L1.3 and ENm-L1, H230A/L1.3. Both mutations have been previously reported to disrupt in 

vitro endonuclease activity, in HeLa cells reducing retrotransposition to 0.5% of wild type levels 

(Morrish et al. 2002). In these assays, I also include elements with the RT mutant D702A, L1 elements 

which harbour catalytic mutants in the reverse transcriptase domain are retrotransposition defective 

and primarily serve as a negative control. As shown in Figure 4.8, VH4 cells supported increased 

endonuclease independent retrotransposition of both EN mutants, with higher levels of 

retrotransposition by the D205A/L1.3 mutant.  
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       Figure 4.8: Testing Endonuclease mutants in VH4 and parental cells. 

a) The scheme of the L1.3 cassette that was used to measure ORF1p only retrotransposition 

b) Retrotransposition of a series of plasmids containing two different EN mutants was measured in 

VH4 and V79 cells. The number of colony forming units (CFU) per well was quantified and an 

average was taken over three technical replicates. These values have been adjusted to control for 

differences in transfection efficiency and this experiment was performed three times.    
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4.8 Testing other ORF2 mutants in FANCA deficient cells.  
 

As well as the battery of ORF1p mutants and ORF1p only retrotransposition, there are several domains 

in ORF2 that were of interest to investigate. ORF2 has several key domains which have been 

experimentally determined to be required for retrotransposition (Mathias et al. 1991), including the 

EN domain, the PIP domain, the RT domain and the C terminal domain (Moran et al. 1996). 

In 2013, using an affinity proteomics study, Taylor et al. demonstrated that PCNA, the polymerase-

delta-associated sliding DNA clamp, interacts with ORF1p via a PIP box motif, during or shortly after 

TPRT. This binding of PCNA to ORF1p was not affected by the loss of ORF1. Cultured cell assays 

revealed that the PIP domain was required for retrotransposition of a wild type L1 element in both 

HeLa and HEK293T cells. Line-1 elements mutated in the PIP domain have not been tested in FANCA 

deficient cells, therefore I wanted to investigate whether this domain is required in a FANCC context. 

The PIP mutant used has been previously found to obstruct the interaction between PCNA and L1.  

In addition, I wanted to investigate movement of elements with mutations in the C terminus of the 

ORF1p domain. This domain contains three conserved C residues and a H residue. Previous studies 

have shown that the C terminus is important for retrotransposition (Moran et al. 1996), though the 

exact function of this domain in TPRT is not yet known.  Using plasmids derived from pAD2TEI, I 

measured the retrotransposition of a PIP mutant, an RT mutant and a C terminal mutant. The results 

are shown in Figure 4.9  

 

 

 

 

 

 

 

 

 

 

 

 



112 
 

 

 

0.0

0.5

1.0

1.5

C
F

U
 (

%
 o

f 
w

ild
ty

p
e)

Vh4

V79

 

 

 

 

 

  

 

Figure 4.9 Measuring retrotransposition of ORF2 mutants in FANCA (VH4) and parental (V79) cells 

The retrotransposition of several ORF2 mutants: RTm (D702A), ENm (H230A), PIPm (YY414/15AA) and C 

terminus (C1143S, C1147S) was quantified by a cultured cell retrotransposition assay in a Chinese hamster cell 

line (V79) and a derivative deficient in FANCA (VH4). The number of colony forming units (CFU) per well was 

quantified for each element as a percentage of WT L1 activity and an average was taken over three technical 

replicates. These values have been adjusted to control for differences in transfection efficiency and this 

experiment was performed three times.   * indicates p<0.05, Student’s t-test.  Representative plates showing 

neomycin-resistant colonies stained with crystal violet are shown below the graph. Note that wild type panels 

were previously shown in Figure 4.4 and 4.5 but are shown here again for comparison.  

 

 

 

As expected, no retrotransposition was observed in the reverse transcriptase mutant in either cell line. 
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of the PIP mutant. This suggests that a proportion of retrotransposition events are happening in the 

absence of FANCA which do not require a functional PIP domain, suggesting that the involvement of 

PCNA may be altered during retrotransposition in a FA context.  

The C terminal mutant, which harboured alterations in the conserved residues C1143S, 

C1147S, did not retrotranspose either in VH4 or V79 cells. Providing further evidence that these 

residues are important even in cell lines deficient in DNA repair proteins.  

As confirmed in previous experiments, VH4 cells also supported increased retrotransposition of the 

H230A endonuclease mutant. 

Together, these experiments suggest that some domains of ORF1p, including the PIP and EN domain, 

are not required for retrotransposition in FANCA deficient cells. To substantiate these findings, I 

repeated the assay in the VH4 cells complemented with FANCA. The results are shown in Figure 4.8 

Complementation with FANCA successfully rescued the abnormal retrotransposition observed in VH4 

cells, indicating that this effect is a direct result of loss of FANCA, and not an indirect result of 

secondary DNA damage resulting from the FA phenotype.  
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Figure 4.10 Increased retrotransposition of ORF2 mutants is rescued by complementation with 

FANCA.  

Retrotransposition of several ORF2 mutants was measured in three cell lines, FANCA mutant (VH4), parental 

(V79) and FANCA complemented (VH4 + FANCA). The number of colony forming units (CFU) per well was 

quantified for each element as a percentage of WT L1 activity and an average was taken over three technical 

replicates. These values have been adjusted to control for differences in transfection efficiency and this 

experiment was performed three times. FANC A mutant and Parental data were previously shown in Figure 4.9 

but are displayed again here for comparison purposes.   **** indicates p<0.001, Student’s t-test 
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4.9 Main conclusions  
 

To conclude, the main findings from this chapter are as follows. Firstly, I have demonstrated that 

FANCA can serve as a negative regulator of wild type L1 retrotransposition. This effect can be rescued 

using complementation with FANCA.  

Secondly, FANCA mutant cells can support retrotransposition of several ORF1 mutants. In particular 

VH4 cells support significantly higher levels of a severe ORF1 mutant than a parental cell line. This 

finding is of particular interest, as the ORF1 mutant has been shown to abrogate formation of the RNP, 

which is a required retrotransposition intermediate for TPRT. Complementation with FANCA rescues 

this unusual retrotransposition.  

Thirdly, my results show that ORF1 is still required as a whole for retrotransposition in VH4 cells, as 

demonstrated with a retrotransposition assay using variations of an ORF2 only plasmid.  

Finally, I have shown that VH4 cells support retrotransposition of several ORF2 mutants. This includes 

two endonuclease mutants and a PIP mutant. This effect is rescued by complementation with FANCA.  

 

4.10 Discussion 

 

 The first notable finding from the work in this chapter is the increase in wild type retrotransposition 

following deletion of FANCA. This finding is supported by previous reports which have proposed 

FANCA as a potential regulator of L1 retrotransposition (Mita et al. 2018; Liu et al. 2018; Tristan Ramos 

et al. 2020). The mechanism by which FANCA could modulate retrotransposition is not yet known. The 

protein forms part of the core Fanconi complex, along with seven other FA proteins. This complex 

primarily functions as an E3 ligase, catalysing the ubiquitination of FANCD2. It is not known whether 

FANCA uniquely serves as a regulator of L1, or if this capacity is shared by other FA proteins, potentially 

those in the core complex. Indeed, genome wide screens have identified multiple FA proteins as 

interactors (Mita et al. 2018; Liu et al. 2018). In addition, Cherubini et al. (2011) found that the FA 

pathway is activated by adenoviral infection, independently of the canonical DNA repair response. It 

is therefore possible that the FA pathway could be triggered in a similar manner by retrotransposition 

intermediates.  

Several proteins in the FA pathway have demonstrated individual additive functions outside of their 

contribution to the pathway, and the regulatory effects of FANCA could therefore be additional to its 

function in the core complex. Notably, Yuan et al. (2012) have shown that purified FANCA has an 
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intrinsic affinity for nucleic acids. The protein was observed to bind to both ssDNA and dsDNA, with a 

significantly higher affinity for single stranded transcripts. It is therefore conceivable that FANCA could 

modulate L1 activity through some form of direct interaction, though the details of this remain to be 

elucidated.  

Interesting questions moving forward from this finding would therefore be 1) is the regulation of L1 

by FANCA shared by other FA proteins? 2) Does FANCA bind the L1 transcript? 

A second discussion point from this body of work is the abnormal retrotransposition reported in VH4 

cells. Overall, this cell line supported increased retrotransposition from a range of mutants, including 

a severe ORF1 mutant which has been shown to prevent localisation of ORF1p to the RNP, usually an 

essential retrotransposition intermediate (Kulpa and Moran 2005). Notably, deletion of ORF1 entirely 

abrogated retrotransposition, both in VH4 cells and the parental line, indicating that there is more 

complexity to the function of ORF1 in retrotransposition than facilitating formation of the RNP. 

Though unlikely, as the modified amino acid motifs are highly conserved, there is a slim possibility that 

these mutants do not behave as previously reported in VH4 and V79 cells as in other cell lines, and a 

future experiment to confirm this would further consolidate this conclusion. Nonetheless, the 

retrotransposition of the ORF1p mutant suggests that an alternative mechanism of mobility to TPRT 

could be taking place in these cells.  

In addition, the VH4 cells also supported retrotransposition of a PIP mutant, raising the possibility that 

the role of PCNA may be altered in these retrotransposition events. The rescue of these abnormalities 

with FANCA complementation suggests that these findings are a genuine result of deletion of the 

protein. This rescue is a critical control, as FA cells harbour large amounts of secondary DNA damage 

due to the loss of the pathway. Thus, it is very important to demonstrate that the loss of the protein 

is caused the observed effect, and not unrelated DNA damage.   

It is also worth noting that the FA mutant cells support ENi retrotransposition, similar to that observed 

by Morrish et al. (2002) and (2007). This indicates that L1 may be able to exploit other types of DNA 

lesion than the double stranded breaks found in NHEJ deficient cells, and shows that ENi 

retrotransposition might be possible in a variety of cell lines.   

Investigation into the characteristics of these retrotransposition events is of interest, as these domains 

are usually vital for efficient mobilisation via TPRT. Structural hallmarks in these insertions could 

provide more insight into the mechanism of L1 mobilisation taking place, and whether this is common 

between mutant and wild type L1 elements against a FA background.  
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Previously it was thought that V79 Chinese hamster cells were devoid of p53 activity and that p53 

inactivation was required for efficient ENi, however these studies were mostly performed in HCT116 

colorectal cancer cell lines and NHEJ-deficient XR-1 hamster cell lines and extrapolated to V79 cells 

(Moro et al. 1995; Chuang et al. 1997). Experiments in Jose Garcia Perez’s lab based on my results with 

V79 and VH4 cells suggest that V79 and VH4 cells are proficient for p53 activation based on 

phosphorylation of p53 serine-15 in response to etoposide, and that co-expression of a dominant-

negative form of p53 (s.Morell unpublished) in the L1 retrotransposition assay in V79 and VH4 cells 

did not significantly alter L1 mobility. Thus, it seems likely that ENi retrotransposition in V79 and VH4 

cells is independent of p53 activity 
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Investigating the activity of mutant L1 

in different DNA damage response 

contexts 
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5.1 Introduction 

 

Fanconi Anaemia (FA) is caused by the biallelic inactivation of one of 22  genes that form the FA/BRCA 

pathway of DNA repair (Moreno et al. 2021). In response to DNA lesions during replication, most FA 

proteins associate to form the “core complex”, which is required to signal/activate DNA repair 

(reviewed in Ceccaldi et al. 2016).  In the previous chapter, I had identified that FANCA mutant cells 

support unusual pathways of L1 retrotransposition, suggesting that FANCA, part of the “core 

complex”, could be involved in the regulation of L1 activity. Notably, FANCA is the most frequently 

mutated gene in patients (>65% of all characterised; Levran et al. 2005). These data further suggest 

that L1 mobilization might be inherently deregulated in FA patients. However, from these experiments 

it is not clear whether FANCA might be unique in this respect. Thus, I next explored whether a similar 

phenotype might be associated with additional members of the FA “core complex”, with members of 

FA subcomplexes, or with alternative DNA repair pathways. 

Remarkably, several FA proteins are known to have additional roles outside the FA/BRCA pathway of 

DNA repair, which is critical for the repairing of interstrand DNA crosslinks (reviewed in Ceccaldi et al. 

2016).  Therefore, it’s possible that any L1 regulatory function of FANCA could be additional to its role 

in the core FA complex. However, recent genome wide screens have also identified other FA proteins 

as potential L1 interactors/regulators, suggesting that other proteins in the pathway could share this 

regulatory capacity (Liu et al. 2018; Mita et al. 2021). The FA pathway and the overlap of functionality 

between these different proteins is still being elucidated. 

Additionally, I also wanted to determine whether the alternative Endonuclease independent (ENi) 

pathway of L1 integration activated in FANCA cells is mechanistically related to ENi retrotransposition 

reported in Non-Homologous End Joining (NHEJ) mutant cells (Morrish et al. (2002); Morrish et al. 

(2007)). Furthermore, it is currently unknown if additional pathways of alternative L1 

retrotransposition activated in FA cells (i.e., ORF1p- and PIP-independent retrotransposition) could 

also occur in NHEJ mutant cells.  
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5.2 Aims 
 

The experiments included in this chapter was designed to answer the following research questions:  

1. Do NHEJ mutant cells support the unusual pathways of L1 retrotransposition characterised in 

FANCA mutant cells (ORF1p-, EN-, and PIP-independent integration)? 

2. Can other FA mutant cells support the unusual pathways of L1 retrotransposition 

characterised in FANCA mutant cells (ORF1p-, EN-, and PIP-independent integration)? 

 

5.3 Several FA proteins have been identified as potential L1 regulators.  

 

I was interested to determine whether deletion of other FA proteins would result in a similar 

retrotransposition phenotype, similar to those found in the previous chapter using FANCA mutant 

cells.  As previously discussed, several large-scale studies seeking to identify L1 regulators have 

identified several FA proteins (Liu et al. 2018; Mita et al. 2020). It is therefore plausible that other 

proteins within the FA/BRCA pathway of DNA repair could also regulate retrotransposition, and that 

their deletion could activate the mobilisation of LINE-1 elements using non-canonical pathways (i.e., 

ORF1p-, EN- and PIP-independent retrotransposition). The FA proteins which have been identified in 

previous studies as regulators of L1 retrotransposition are shown in Table 5.1. Intriguingly, while most 

FA proteins were shown to negatively impact L1 retrotransposition (i.e., repressors), other FA 

members, like FANCI and C, were shown to positively regulate retrotransposition (i.e., activators, 

Table 5.1). 
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Table 5.1 FA proteins previously identified as L1 regulators. 

 

Protein  Study  Positive/Negative 
regulator 

FANCI Liu et al. 2018 
Mita et al. 2020 

Positive 

FANCL  Liu et al. 2018 
Mita et al. 2020 

Negative 

FANCB Liu et al. 2018 
Mita et al. 2020 

Negative 

FANCD2  Liu et al. 2018 
Mita et al. 2020 

Negative 

BRCA1 Liu et al. 2018 
Mita et al. 2020 

Negative 

FANCC Liu et al. 2018 Positive 

FANCG  Liu et al. 2018 
Mita et al. 2020 

Negative 

FANCE Liu et al. 2018 
Mita et al. 2020 

Negative 

FANCF Liu et al. 2018 Negative 

FANCM  Liu et al. 2018 
Mita et al. 2020 

 

BRCA2 Liu et al. 2018 
Mita et al. 2020 

Negative 

UBE2T Liu et al. 2018 
Mita et al. 2020 

Positive 

FANCA  Liu et al. 2018 
Mita et al. 2020 

Negative 

FANCJ  Mita et al. 2020  

PALB2 Mita et al. 2020 Negative 

 

 

   

 

One candidate FANC member which was identified by Mita et al. (2020) and validated as a negative 

regulator of retrotransposition, was FANCC. Like FANCA, FANCC assembles into the core complex 
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which facilitates the monoubiquitination of FANCD2.  Therefore, I decided to investigate whether L1 

retrotransposition is deregulated in FANCC mutant cells. To do that, I used hamster lung FANCC KO 

(CLV5B) and parental (V79) cells, and the battery of WT and mutant L1 elements described previously. 

Prior to this series of experiments, I performed a Mitomycin C (MMC) sensitivity assay on CLV5B cells 

alongside their parental line. The results are shown in Figure 5.1, demonstrating that, as expected and 

similar to VH4 cells, CLV5B cells exhibit hypersensitivity to MMC (i.e., a classical FA phenotype).  
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Figure 5.1 Mitomycin C (MMC) sensitivity assay in FANCC (CLV5B) and parental (V79) cells.  

CLV5B and V79 cells were tested for their relative sensitivity to the crosslinking agent MMC. After a 24-hour 

treatment using different concentrations of MMC, surviving cells were fixed, stained and quantified using a 

spectrophotometer. Error bars indicate SEM and this experiment was performed three times. 

 

Once confirmed as FA cells, I first tested whether FANCC also acts as a negative regulator of WT L1 

retrotransposition. To do this, I measured WT L1 retrotransposition in CLV5B cells in comparison to 

parental V79 cells, using plasmids tagged with mneoI (i.e., activate resistance to G418). I tested the 

retrotransposition of three plasmids: pAD2TE1-101/L1.3, a WT active human L1 element (Sassaman 

et al. 1997), pAD2TE1-135/L1.3, an RT-mutant allelic vector (acting as a negative control), and pT2 

Neo, a plasmid that constitutively expresses the NEO reporter gene, serving as a positive control (i.e., 

Parental (V79) 

FANCC mutant (CLV5B) 

44) 
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allows to control for differences in the formation of antibiotic-resistant foci). The results of these 

experiments are shown in Figure 5.2. Notably, I observed that the WT L1 element retrotransposed 

significantly more in CLV5B cells, indicating that, similarly to FANCA, FANCC has the capacity to restrict 

WT L1 retrotransposition. Indeed, these results align with findings by Tristan Ramos (2020) suggesting 

that depletion of FANCC with siRNAs increases wild type L1 retrotransposition. This experiment should 

also help to deduce whether FANCA regulation of L1 is related to the role of FANCA in the FA pathway 

 

 

 

 

 

 

                                        

Figure 5.2 FANCC regulates WT L1 retrotransposition  

Human L1 retrotransposition in FANCC mutant (CLV5B) and parental cells (V79). In the assay, I used engineered 

L1 vectors containing epitope tags in L1-ORF1p and L1-ORF1p (T7 and TAP, respectively; both epitopes were 

cloned in the C-terminus) and that were tagged with mneoI; pAD2TE1-101, WT L1; pAD2TE1-135, RT mutant. To 

control for the formation of G418-resistant foci in FANCC and parental cells, I used pT2Neo, a plasmid which 

express the NEO reporter gene. The number of colony forming units (CFU) per well was quantified for each 

element and an average was taken over three technical replicates. These values have been adjusted to control 

for differences in transfection efficiency and this experiment was performed three times (shown are average +/-

Parental (V79) 

FANCC mutant (CLV5B) 

44) 

* 
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SD).  * indicates p<0.05, Student’s t-test. The V79 data has been previously show but is displayed again here for 

comparison purposes.  

 

 

 

 

5.4 Testing the retrotransposition of L1-ORF1p mutant elements in FANCC 

deficient cells.  

 

A prominent finding in Chapter 4 was the retrotransposition of severe L1-ORF1p mutants in FANCA 

deficient cells. As FANCC deficient cells showed a similar increase in WT L1 retrotransposition, I wanted 

to test whether it would also support the unexpected retrotransposition of L1-ORF1p mutants as 

might be expected if this form of retrotransposition is a general features of FA proteins. Therefore, as 

part of the core FA complex, FANCC was a good candidate for these experiments.  

Thus, I transfected the same battery of L1-ORF1p mutants (tested in FANCA deficient cells, see Figure 

5.2) in CLV5B and parental V79 cells. As above, the L1-ORF1p mutant vectors, and the WT-L1, were 

cloned in the pAD2TE1 backbone (contains T7 and TAP epitope tags in L1-ORF1p and L1-ORF1p, 

respectively, and that were tagged with mneoI); the series of plasmid tested include pAD2TE1-

101/L1.3, the WT L1 element, pAD2TE1-102/L1.3 and pAD2TE1/105/L1.3, two severe class I L1-ORF1p 

mutants, as well as pAD2TE1-106/L1.3 and pAD2TE1-107/L1.3, which are less severe class II L1-ORF1p 

mutant elements. As internal controls, cells were also transfected with pAD2TE1-135/L1.3 (RT-mutant 

L1 element) and pT2neo (constitutive NEO expression). 

In contrast to what I observed in FANCA mutant hamster cells (VH4 cells), there was not a significant 

difference between the retrotransposition of L1-ORF1p mutant elements between CLV5B (FANCC 

mutant) and parental cells (Figure 5.3). Indeed, I found that retrotransposition of two class I L1-ORF1p 

mutants (pAD2TE1-102/L1.3 and pAD2TE1-105/L1.3) was negligible in both CLV5B and V79 cells 

(approximately 1% and 3% of L1-WT, respectively Figure 5.3). More similar to what I reported in 

FANCA mutant cells, I found that the two class II L1-ORF1p mutants (pAD2TE1-106/L1.3 and pAD2TE1-

107/L1.3, Figure 5.3) retrotransposed at similarly low levels in FANCC deficient and parental cells 

(approximately -50% of L1-WT, Figure 5.3). Altogether, these data suggest that the ability of FANCA 

mutant cells to support retrotransposition of severe L1-ORF1p mutant elements (i.e., L1-ORF1pi-

retrotransposition) is not a general feature of FA proteins.  
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Figure 5.3 Testing a series of L1-ORF1p mutants in FANCC deficient cells.   

The retrotransposition of a WT-L1 (pAD2TE1-101) and of several class I (pAD2TE1-102 & 105) and class II 

(pAD2TE1-106 & 107) L1-ORF1p mutants was quantified using the cell culture retrotransposition assay, using 

parental hamster lung cells (V79) and a derivative deficient in FANCC (CLV5B). The number of colony forming 

units (CFU) per well was quantified for each element as a percentage of WT L1 activity and an average was taken 

over three technical replicates These values have been adjusted to control for differences in transfection 

efficiency and this experiment was performed three times (shown are mean +/- SD).  
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5.5 Testing the retrotransposition of L1-ORF1p mutant elements in NHEJ 

deficient cells.  
 

As discussed, a prominent finding in Chapter 4 was the discovery of L1-ORF1pi-retrotransposition in 

FANCA deficient cells (that is that severe L1-ORF1p mutants could retrotranspose in FANCA deficient 

cells). One of the key questions in this chapter was to investigate whether this phenotype was unique 

to the FA pathway or could be observed when other DNA repair pathways are inactivated. I therefore 

decided to examine whether L1-ORF1pi-retrotransposition could be detected in cells deficient in the 

Non-Homologous End Joining (NHEJ) pathway of DNA repair. To conduct this key experiment, I used 

hamster XR-1 cells (Stamato et al. 1983), Chinese hamster cells deficient in XRCC4 and lacking DNA 

ligase IV activity, two proteins which are necessary for NHEJ (Stamato et al. 1983). As a control, I used 

the parental cell line of XR-1 cells, 4364 cells (Stamato et al. 1983). Notably, previous studies using XR-

1 and additional NHEJ deficient cell lines (i.e., DNAPKcs deficient cells) revealed that that NHEJ 

deficient cells could support elevated levels of ENi L1-retrotransposition (Morrish et al. 2002; Morrish 

et al. 2007), so whether they could also support retrotransposition of severe L1-ORF1p mutants was 

a matter of interest.  

As above, I transfected the same series of engineered L1 vectors (pAD2TE1 series) in 4364 and XR-1 

cells, and I selected cells harbouring de novo insertions using G418 selection. Interestingly, as 

observed with FANCC mutant cells, there were no significant differences between the 

retrotransposition of L1-ORF1p mutant elements in NHEJ-mutant cells and the parental cell line 

(Figure 5.4). Controls revealed that EN-mutant L1s could retrotranspose in XR-1 cells but not in 

parental cells (data not shown but see below). In XR-1 cells, L1-ORF1p mutants retrotransposed at 0.6-

2% of WT-L1 levels, similar to the rates reported in HeLa cells by Kulpa and Moran (2005). These data 

suggests that loss of activity of Ligase IV and XRCC4 does not have the same impact on 

retrotransposition as deletion of FANCA. Thus, the capacity to support L1-ORF1pi-retrotransposition 

does not appear to be generalisable to cells with defects in DNA repair in general.  
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Figure 5.4 Testing a series of L1-ORF1p mutants in NHEJ deficient cells.   

The retrotransposition of a WT-L1 (pAD2TE1-101) and of several class I (pAD2TE1-102 & 105) and class II 

(pAD2TE1-106 & 107) L1-ORF1p mutants was quantified using the cell culture retrotransposition assay, using 

parental hamster ovary cells (4364) and a derivative deficient in XRCC4/DNAligase IV (XR-1). The number of 

colony forming units (CFU) per well was quantified for each element as a percentage of WT L1 activity and an 

average was taken over three technical replicates. These values have been adjusted to control for differences in 

transfection efficiency and this experiment was performed three times (shown are mean +/- SD).  
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5.6 Testing the retrotransposition of L1-ORF1p mutant elements in human FA 

deficient cells.  
 

Having tested the mobilisation of L1-ORF1p mutants in hamster NHEJ and FA deficient cells, and to 

confirm that L1-ORF1pi-retrotransposition is unique to FANCA deficient cells, I decided to investigate 

other proteins of the FA pathway, but using human cells. So far, all the cell lines used in this thesis 

were derived from hamster, which support high levels of human L1 retrotransposition; however, the 

use of model organisms allow to isolate mutant cells but also parental cells, which provide a specific 

control. However, to examine potential differences between human and rodent cells, I next analysed 

L1 retrotransposition (of WT and L1-ORF1p mutant elements) in two FA cell lines derived from human 

patients: ANKN (deficient in FANCI) and PD20F cells (deficient in FANCD2).  

Notably, FANCI and D2 proteins, which are not part of the “FA core” complex, are interesting to 

investigate because they play unique and key roles in the FA pathway, outside of the core complex 

(Ceccaldi et al. 2016). In response to DNA damage, the FA core complex monoubiquitinates FANCD2, 

and this activated isoform of the protein forms a complex with FANCI (Smogorzewska et al. 2007). The 

FANCI:FANCD2 complex is loaded onto chromatin in a coating that is thought to provide protection 

for stalled DNA (Ceccaldi et al. 2016). Consistently, both proteins share a similar sequence and are 

likely to be derived from a common ancestor (Smogorzewska et al. 2007). Notably, FANCI is also 

monoubiquitinated, and studies have shown that ubiquitination of each protein is important for 

maintaining ubiquitination of the other (Smogorzewska et al. 2007).   

Interestingly, a recent genome wide Loss of Function (LOF) CRISPR screen by Liu et al. (2018) identified 

both FANCI and FANCD2 as potential suppressors of L1 activity, as did an siRNA screen by Mita et al. 

(2021; Table 5.1). I therefore wanted to investigate L1-ORF1pi-retrotransposition in these cell lines, 

using the battery of mutant elements that I’ve previously tested in other cell lines. Because these 

human cell lines are fibroblasts isolated from human patients, I do not have a parental line. However, 

we can still measure the rate of retrotransposition of mutant elements as a percentage of WT-L1 

retrotransposition in the same cell line. Additionally, cDNA complementation can be used to confirm 

phenotypes. The results of these experiments are shown in Figures 5.5 and 5.6; remarkably, we 

observed similar retrotransposition rates in both cell lines, potentially due to their similar sequence 

and overlapping function. In fact, while we observed elevated levels of WT-L1 retrotransposition in 

FANCI and D2 deficient cells (Figure 5.5 & 5.6), all the L1-ORF1p mutants tested, class I or class II, 

retrotransposed at background levels, ranging from 0.02-0.06% the level of the WT-L1 (Figure 5.5 & 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Smogorzewska%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17412408
https://www.ncbi.nlm.nih.gov/pubmed/?term=Smogorzewska%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17412408
https://www.ncbi.nlm.nih.gov/pubmed/?term=Smogorzewska%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17412408
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5.6). Consistently, for the class II L1-ORF1p mutants, these rates were lower than in any of the other 

cell lines tested.  

In summary, data included in this thesis have revealed that FANCA and FANCC deficient cells 

accommodate elevated levels of WT-L1 retrotransposition. Additionally, these data further revealed 

that FANCA deficient cells are unique among the cell lines tested thus far in accommodating elevated 

levels of L1-ORF1p mutant elements (i.e., L1-ORF1pi-retrotransposition).  
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Figure 5.5 Testing a series of L1-ORF1p mutants in FANCI deficient cells.   

The retrotransposition of a WT-L1 (pAD2TE1-101) and of several class I (pAD2TE1-102 & 105) and class II 

(pAD2TE1-106 & 107) L1-ORF1p mutants was quantified using the cell culture retrotransposition assay, using 

FANCI deficient human cells. The number of colony forming units (CFU) per well was quantified for each element 

as a percentage of WT L1 activity and an average was taken over three technical replicates. These values have 

been adjusted to control for differences in transfection efficiency and this experiment was performed three 

times (shown are mean+/- SD).  
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Figure 5.6 Testing a series of L1-ORF1p mutants in FANCD2 deficient cells.   

The retrotransposition of a WT-L1 (pAD2TE1-101) and of several class I (pAD2TE1-102 & 105) and class II 

(pAD2TE1-106 & 107) L1-ORF1p mutants was quantified using the cell culture retrotransposition assay, using 

FANCD2 deficient human cells. The number of colony forming units (CFU) per well was quantified for each 

element as a percentage of WT L1 activity and an average was taken over three technical replicates. These values 

have been adjusted to control for differences in transfection efficiency and this experiment was performed three 

times (shown are mean +/- SD).  
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5.7 Testing the retrotransposition of L1-ORF1p mutants in FANCC mutant cells.  
 

To further explore the extent of L1 deregulation in FA mutant cells, I next investigated whether L1-

ORF2 mutant elements could retrotranspose in FANCC deficient cells. As described in Chapter 4, I 

found that elements carrying mutations in the EN and PIP domains of L1-ORF1p retrotransposed at a 

high level in FANCA deficient cells, and that these phenotypes (i.e., ENi- and PIPi-retrotransposition) 

could be rescued upon complementing cells with rodent FANCA cDNA (see Chapter 4). 

To explore ENi and PIPi-retrotransposition in FANCC deficient cells, I used engineered pAD2TE1 L1 

vectors (containing T7 and TAP carboxyl-terminal epitope tags in L1-ORF1p and L1-ORF1p, 

respectively, and the mneoI retrotransposition indicator cassette) carrying missense inactivating 

mutations in the EN and PIP domains of L1-ORF1p (D/HMoreA and YY414/15AA, respectively). As 

controls, FANCC deficient (CLV5B) and parental (V79) cells were transfected with a WT-L1, and RT-

mutant allelic plasmid or with pT2neo (Figure 5.7). As previously observed, I detected significant 

higher retrotransposition of WT-L1s in FANCC deficient cells when compared to parental cells (Figure 

5.7). Notably, I found that FANCC deficient cells accommodate elevated levels of ENi-

retrotransposition, at similar levels as those previously observed in FANCA deficient cells 

(approximately 35-40% of WT-L1, Figure 5.7). Interestingly, the L1-ORF1p PIP-mutant element 

retrotransposed at background levels in FANCC deficient and parental cells (Figure 5.7), in stark 

contrast with FANCA deficient cells. In sum, upon exploring if FANCC deficient cells might support the 

unusual retrotransposition of L1-ORF1p mutant elements, I found that only ENi-retrotransposition 

seems to be prevalent in FANCC mutant cells.  
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Figure 5.7 Testing a series of L1-ORF1p mutants in FANCC deficient cells.   

The retrotransposition of a WT-L1 (pAD2TE1-101) and of several L1-ORF1p mutants (EN-mutant, D/H230A; PIP-

mutant, YY414/15AA; and RT-mutant, D702A) was quantified using the cell culture retrotransposition assay, 

using FANCC deficient (CLV5B) and parental (V79) hamster cells. The number of colony forming units (CFU) per 

well was quantified for each element as a percentage of WT L1 activity and an average was taken over three 

technical replicates. These values have been adjusted to control for differences in transfection efficiency and 

this experiment was performed three times (shown are mean +/- SD). * indicates p<0.05, Student’s t-test 
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5.8 Testing the retrotransposition of L1-ORF1p mutants in NHEJ cells.  
 

Collectively, the data in this thesis indicates that FANCA deficient cells are permissive for multiple 

alternative pathways of L1 integration, while FANCC, D2 and I deficient cells support ENi-

retrotransposition but not L1-ORF1pi- or PIPi-retrotransposition. To compare the extent of ENi-

retrotransposition with NHEJ mutant cells, I next tested how my series of L1-ORF1p mutant elements 

behave in XR-1 cells (deficient in XRCC4/DNALig4), using parental cells (4364 cells) as a control. These 

and other NHEJ-mutant cells were previously shown to support ENi-retrotransposition (Morrish et al. 

2002; Morrish et al. 2007); however, whether PIPi-retrotransposition can occur in NHEJ-mutant cells 

remains to be determined.  

Using pAD2TE1 L1 vectors, I found that NHEJ deficient cells supported elevated levels of ENi-

retrotransposition (Figure 5.10). However, retrotransposition of the PIP mutant L1 in these cells was 

negligible, with values <1% of WT-L1 (Figure 5.10). Thus, consistent with previous reports (Morrish et 

al. 2002; Morrish et al. 2007), deletion of XRCC4/DNA Ligase IV appears to enable retrotransposition 

of EN mutant elements, but not other types of mutant elements tested in this thesis. 

Collectively, my data suggest that FANCA deficient cells can accommodate L1-ORF1pi-, ENi- and PIPi-

retrotransposition, while ENi-retrotransposition is observed in several other FA complementation 

groups (C, D2 and I), and in NHEJ mutant cells (XRCC4/DNALig_4 and DNAPKcs mutant cells; Morrish 

et al. 2002; Morrish et al. 2007). Indeed, based on these findings, I speculate that PIPi- and L1-ORF1pi-

retrotransposition take place by a fundamentally different mechanism than ENi-retrotransposition.  

Notably, my data extend previous studies (Morrish et al. 2002; Morrish et al. 2007; Flasch et al. 2019) 

and further confirm a clear functional interaction between DNA repair pathways and ENi-

retrotransposition. However, it is worth noting that the level of ENi-retrotransposition reported in FA 

deficient cells is proportionately less than in NHEJ mutant cells (XR-1 cells), which supported ENi 

retrotransposition at around 60% of WT-L1 levels. I further speculate that this difference may relate 

to the types of DNA lesions accumulated in the different cell types, and how efficiently L1 can exploit 

these lesions to initiate retrotransposition 
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Figure 5.10 Testing a series of L1-ORF1p mutants in NHEJ deficient cells.   

The retrotransposition of a WT-L1 (pAD2TE1-101) and of several L1-ORF1p mutants (EN-mutant, D/H230A; PIP-

mutant, YY414/15AA; and RT-mutant, D702A) was quantified using the cell culture retrotransposition assay, 

using hamster NHEJ deficient cells (XR-1, deficient in XRCC4/DNALig_4). The number of colony forming units 

(CFU) per well was quantified and an average was taken over three technical replicates. These values have been 

adjusted to control for differences in transfection efficiency and this experiment was performed three times 

(shown are average +/- SD). * indicates p<0.05, Student’s t-test 
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5.9 Testing the retrotransposition of L1-ORF1p mutants in FA deficient human 

cells. 
Given that FANCA, FANCA and DNA repair pathway mutant cell lines support ENi-retrotransposition, I 

next wanted to test whether the patient cell lines with mutations in the non-core FA complex 

components FANCI and FANCD2 that I used earlier also support ENi-retrotransposition. Notably, and 

similar to the other cell lines deficient in DNA repair proteins tested in this thesis, FANCI and D2 

deficient cells supported elevated ENi retrotransposition (Figure 5.8 & 5.9). The retrotransposition 

rates of the endonuclease mutant element were approximately 20% of WT/L1 levels (Figure 5.8 & 

5.9). Remarkably, as observed in hamster FANCC deficient cells, no PIPi-retrotransposition was 

observed in human FA cells, with retrotransposition levels <1% of WT-L1 levels (Figure 5.8 & 5.9). 

Thus, I conclude that while ENi-retrotransposition is elevated in all FA deficient lines tested, L1-

ORF1pi- and PIPi-retrotransposition is restricted to FANCA cells.  
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Figure 5.8 Testing a series of L1-ORF1p mutants in FANCI deficient cells.   

The retrotransposition of a WT-L1 (pAD2TE1-101) and of several L1-ORF1p mutants (EN-mutant, D/H230A; PIP-

mutant, YY414/15AA; and RT-mutant, D702A) was quantified using the cell culture retrotransposition assay, 

using human FANCI deficient cells. The number of colony forming units (CFU) per well was quantified for each 

element as a percentage of WT L1 activity and an average was taken over three technical replicates. These values 

have been adjusted to control for differences in transfection efficiency and this experiment was performed three 

times (shown are average +/- SD).  
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Figure 5.9 Testing a series of L1-ORF1p mutants in FANCD2 deficient cells.   

The retrotransposition of a WT-L1 (pAD2TE1-101) and of several L1-ORF1p mutants (EN-mutant, D/H230A; PIP-

mutant, YY414/15AA; and RT-mutant, D702A) was quantified using the cell culture retrotransposition assay, 

using human FANCD2 deficient cells. The number of colony forming units (CFU) per well was quantified and an 

average was taken over three technical replicates. These values have been adjusted to control for differences in 

transfection efficiency and this experiment was performed three times (shown are average +/- SD).  
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5.10 Testing for an interaction between FA proteins and L1 encoded proteins 
 

From this work so far, there is evidence to suggest that FANCA is a regulator of L1 retrotransposition, 

and loss of the protein enables a unique mechanism of retrotransposition which does not appear to 

require the formation of a canonical L1-RNP, or the enzymatic activities of the EN and PIP domains of 

L1-ORF1p. In this chapter, my results demonstrate that these results do not extrapolate to NHEJ 

deficient cells or to other FA proteins, even FANCC, which also forms part of the core complex. Several 

large-scale screens have identified FANCA as a potential regulator of L1 but it is not known whether 

FANCA regulate L1 retrotransposition through direct interaction with L1 or by more indirect 

mechanisms. As deletion of FANCA enables mobilisation of L1-ORF1p mutant L1s, I wanted to test if 

FANCA could interact with L1-ORF1p. Alongside this experiment, I investigated whether another 

protein, FANCI, which is not part of the “core FA” complex, would interact L1-ORF1p. FANCI has also 

been identified as a potential L1 regulator, but in contrast to FANCA, FANCI deficient cells can only 

support ENi-retrotransposition.  

To examine interaction of FA proteins with L1-encoded proteins, I used co-immunoprecipitation and 

specific antibodies to endogenously expressed FA proteins. Notably, the engineered L1 vectors used 

in this Chapter, pAD2TE1 series, contain T7- and TAP-epitope tags in L1-ORF1p and L1-ORF1p, 

respectively (see scheme in Figure 5.11a), allowing me to use robust and specific antibodies to detect 

L1-ORF1p on immunoprecipitates, using western-blotting. Thus, I transfected HEK293T cells with the 

WT-L1 plasmid where the C-terminus of L1-ORF1p bears a T7 tag. I then used anti-FANCA, anti-FANCI 

or control non-specific IgG antibodies to immunoprecipitate these proteins from transfected cells, and 

Western blotted the immunoprecipitates with anti-T7 antibodies to assess whether T7-tagged L1-

ORF1p co-immunoprecipitates with these FA proteins 

 

T7-tagged L1-ORF1p appeared to be more enriched in anti-FANCI or anti-FANCA immunoprecipitates 

than in control IgG immunoprecipitates (Figure 5.11b&c), indicating that there is some interaction 

between L1-ORF1p and the FA proteins. I noticed a minor and non-specific binding of L1-ORF1p either 

to the control IgG or to protein G beads in WCLs incubated with the IgG control in both co-IPs (Figure 

5.11b&c. Whether the observed interaction is dependent on the formation of a L1-RNP, or whether 

the interaction occur through RNA and/or accessory proteins, remains to be determined. However, 

when considering the distinct retrotransposition phenotypes observed in FANCA and I deficient cells, 

I speculate that the interaction of FA proteins with L1-ORF1p might not be relevant to mechanistically 

distinguish ENi-retrotransposition from L1-ORF1pi- or PIPi-retrotransposition. 
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Figure 5.10 Co-immunoprecipitation of FA proteins and T7 tagged L1-ORF1p.  

a) Scheme of pAD2TE1-101/L1.3. See text for additional details. 

b&c) Co-immunoprecipitation of FANCA (b) and I (c) with L1-ORF1p. Co-Ips were performed in HEK293T cells 

transfected with pAD2TE1-101/L1.3 using an antibody to FANCA (b), FANCI (c) or an IgG antibody (b&c) as a 

negative control. Samples were resolved using SDS-PAGE, transferred and blotted with an anti-T7 antibody. 
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5.11 Main conclusions 
 

To conclude, this chapter provides further evidence that FANCA deficient cells support unique 

retrotransposition pathways of integration, such as L1-ORF1pi- and PIPi-retrotransposition. Indeed, 

the L1-ORF1p mutants which mobilised in FANCA cells were not active in NHEJ deficient cells, or in 

other cells deficient in FA proteins. Neither was the PIP mutant element. As expected, EN mutant 

elements were consistently active in cell lines deficient in DNA repair proteins. 

 

 

5.12 Discussion  
 

In this chapter, building from data presented in the previous chapter, I examined how penetrant was 

the L1 phenotype described in FANCA deficient cells. Although I found that there is a unique 

phenotype associated with FANCA cells and a more generic phenotype in FANCC, D2 and I cells, as 

well as in NHEJ mutant cells, this series of experiments brought several interesting conclusions. Firstly, 

I was able to establish that FANCC also limits L1 retrotransposition. This aligns with data by Tristan 

Ramos (2020), which demonstrated restriction of L1 retrotransposition by FANCC using siRNAs. 

Interestingly, a genome wide siRNA screen by Mita et al. 2020 identified FANCC as a positive regulator 

of L1. Thus, the nature of the relationship may be context dependent or require further 

experimentation to elucidate.  

I was also able to establish that the capacity to support retrotransposition of severe L1-ORF1p mutant 

elements is not shared by cells deficient in NHEJ proteins, or indeed other proteins in the FA pathway, 

including FANCC. D2 and I. This suggests that, unlike ENi-retrotransposition, ORF1pi-

retrotransposition is not a generic feature of cells deficient in DNA repair or FA cells. Similarly, I also 

established that PIPi-retrotransposition is unique to FANCA cells, not being neither a generic feature 

of cells deficient in DNA repair or FA cells. 

During ENi retrotransposition, it is theorised that elements are exploiting lesions resulting from the 

lack of DNA repair proteins. Mobilising into these DNA breaks means that the element does not need 

its own endonuclease to create an incision in the DNA to initiate integration. (Morrish et al. 2002) It is 

possible, then, that FA related lesions could be exploited by the element in a similar way, explaining 

why these elements can move without domains which are usually required for retrotransposition. As 

the FA pathway plays a key role in preventing replication fork collapse, FA cells are characterised by 

the delayed repair kinetics of double stranded breaks as well as accumulations in stalled replication 
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forks and R loops (Houghtaling et al. 2005; Garcia-Rubio et al. 2015; Renaud et al. 2016). Indeed, I 

speculate that the marked differences in how penetrant is the L1 phenotype in FA cells might be 

directly related to the main type of DNA lesion accumulated in FA cells and in NHEJ cells. 

R-loops are transcription associated DNA: RNA hybrids, which contribute to genome instability in FA 

cells (Garcia-Rubio et al. 2015). Some FA proteins, including FANCD2, interact directly with R-loops. 

One possibility from my findings is that LINE-1 elements could somehow exploit R-loops to facilitate 

the abnormal retrotransposition I observed here. However, in this case we would expect to see the 

abnormal retrotransposition in each of the cells with a FA phenotype, as these should all exhibit 

increased R-loops. Experimentation in FANCC mutant cells demonstrated an increase in wild type 

retrotransposition, but not an increase in ORF1pi- or PIPi-retrotransposition. Thus, it is possible that 

FANCC also works as a negative regulator of LINE-1 activity, but does not support a mechanism of 

retrotransposition which negates the need for the PIP domain or formation of a canonical RNP. 

An average human genome contains 80-100 active L1s, and their activity continues to impact the 

human genome. Notably, patients carrying biallelic inactivating mutations in FANCA cells may have a 

significantly higher pool of active L1s in their genomes, as elements carrying mutations in L1-ORF1p 

and some domains of L1-ORF1p (EN and PIP) could retrotranspose in patients. Intriguingly, FANCA is 

by far the most commonly mutated gene in FA patients (>65% of all patients) and it seems paradoxical 

that this particular mutation is associated with the highest rate of endogenous retrotransposition, 

which can drive mutagenesis. Interestingly, ENi-retrotransposition is thought to represent an ancestral 

mechanism of L1 insertion, used prior to the capture/evolution of an EN domain by LINEs (Malik et al. 

1999), as a basic mechanism of DNA repair that can repair DSBs (i.e., how a band aid is used on a cut; 

Eikbush et al. 2002). Accurate and error-free DNA repair is instrumental through genome evolution, 

and DNA repair is a heavily regulated process. However, the accumulation of DSBs has been associated 

with genomic instability, lethality and carcinogenesis (Peirce et al. 2001), and repairing DSBs through 

retrotransposition definitively represents a better scenario than accumulating DSBs. Thus, the 

apparent paradoxical activation of a large pool of L1 elements in cells from FANCA patients might be 

associated with DNA-repair processes, explaining why FANCA might be the most common mutation 

characterized in patients. However, the rarity of the disease and its genetic complexity (i.e., reported 

founder effects (Garcia de Teresa 2019), are factors that could explain the high prevalence of FANCA 

mutations, and future studies are warranted to solidify this hypothesis. 

Finally, my research supports previous proteomic work suggesting that FANCI can interact with L1-

ORF1p. Additionally, here I demonstrated that antibodies to FANCA and FANCI can co-IP exogenously 

expressed L1-ORF1p, consistent with several large screens that have identified both of these proteins 
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as potential L1 regulators. At a mechanistic level, the fact that FANCA and FANCI can both interact 

with L1-ORF1p but the associated L1 phenotypes are so distinct, suggests the possibility that FANCA 

and FANCI interact with different domains of ORF1p and regulate retrotransposition through distinct 

ORF1p-dependent mechanisms. 
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Chapter 6 

 

 

 

Towards a mechanism for L1 

retrotransposition in a FA context 
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6.1 Introduction  
 

The use of mutant L1 elements in retrotransposition assays revealed that retrotransposition in FA 

deficient cells can take place via a different mechanism/s to canonical TPRT. On one hand, cell based 

retrotransposition assays in cell lines deficient in FANCA, C, D2 and I revealed that mutant L1s lacking 

an ENdonuclease (EN) domain can retrotranspose using an EN-independent (ENi) mechanism, but that 

this mechanism is distinct from ENi-retrotransposition reported in Non-Homologous End Joining 

(NHEJ) deficient cells (Morrish et al. 2007; Morrish et al. 2002). In fact, ENi-retrotransposition in FA 

cells does not require p53 inactivation and the hallmarks associated with de novo retrotransposition 

events are similar for EN-proficient (i.e., Wild type L1s) and EN-deficient L1s (EN mutant L1s) (S.Morell 

, unpublished). Notably, throughout the characterization of >100 de novo L1 insertions from WT- and 

EN-mutant L1s, our lab found that insertions in FA cells are often associated with long Target Site 

Duplications (TSDs, >100bp) flanking the integrated L1, DNA deletion processes at the site of 

integration and can be associated with complex DNA rearrangements at the site of integration (i.e., 

presence of palindromic sequences captured at the 5´end of de novo insertions). In contrast, ENi-

retrotransposition in NHEJ cells requires p53 inactivation (Coufal et al. 2011) and retrotransposition 

hallmarks of EN-proficient (i.e., Wild type L1s) and EN-deficient L1s (EN mutant L1s) are very different 

in structure: while WT-events are canonical (have a polyA tail and normal size TSDs(2-20bp)), ENi-

events are often 3´truncated and are associated with alterations at the site of integration (deletions 

and inversions).  

Remarkably, besides ENi-retrotransposition, the data included in this Thesis also uncovered that 

FANCA deficient cells can accommodate the retrotransposition of L1-ORF1p and PCNA Interaction 

Protein (PIP)-mutant L1s, suggesting that the main L1 retrotranposition mechanisms are different in 

FANCA deficient cells than in other FA complementation groups or in NHEJ-mutant cells. In sum, while 

FANCC, D2 and I mutant cells, as well as NHEJ mutant cells, can accommodate ENi-retrotransposition, 

FANCA cells can accommodate ENi-, L1-ORF1pi- and PIPi-retrotransposition. Notably, FANCA is the 

most commonly mutated gene in patients (>65% of patients), further suggesting that L1 deregulation 

could be an important determinant for the reported genomic instability of FA patients. 

In this Chapter, I decided to investigate the mechanism of L1 deregulation in FA cells, focusing on 

FANCA cells because of its dramatic retrotransposition phenotype. I speculate that L1 elements could 

use a particular kind of DNA lesion accumulated in FA cells to promote their integration, similarly to 
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how EN-mutant L1 elements are thought to exploit increased numbers of unrepaired Single and 

Double Strand Breaks (SSBs/DSBs) in NHEJ mutant cells as sites of integration (Morrish et al. 2007; 

Morrish et al. 2002). Consistent with this hypothesis, FA cells are known to accumulate several 

particular lesions which are characteristic of the FA phenotype. One example are stalled replication 

forks. Replication forks naturally stall as they come across DNA lesions, and in particular in the 

encountering of interstrand cross-links (ICLs), which are typically overproduced in FA cells (Renaudin 

and Rosselli 2020). The FA pathway plays a key role in restarting stalled forks and as such the depletion 

of the pathway results in a build-up of stalled forks. This safeguarding activity of the FANC/BRCA 

pathway of DNA repair is believed to take place through cross talk with other pathways, including the 

mTOR pathway (Nolan et al. 2021) and the translesion synthesis pathway (Renaud and Rosseli 2013). 

A recent paper by Mita et al. (2020) measured L1 retrotransposition frequency in cells treated with 

different concentrations of aphidicolin (APH) which is known to slow and stall fork progression 

(Ikagami et al. 1978). They observed an increase in L1 insertions as the APH caused cells to build up at 

S phase, potentially indicating that L1 is recruited to stalled forks and is able to utilise them as 

integration substrates.  

Similar to ICLs, FA cells also accumulate R-loops, a DNA lesion made up from an RNA: DNA hybrid and 

a displaced ssDNA (Garcio Rubio et al. 2015). Thus, it is possible that R-loop structures would represent 

a good substrate to promote L1 retrotransposition, particularly as they leave stretches of exposed 

ssDNAs (i.e., exposed 3´OH groups).  

While my work throughout this Thesis has highlighted unusual features of retrotransposition in FANCA 

cells, I have not, to this point, investigated the potential mechanism/s of L1 deregulation. In this 

chapter, I applied several experimental approaches to further investigate mechanistic aspects of L1 

retrotransposition in FANCA deficient cells. First, I decided to use Proteomics to further unveil L1 

regulation in FA cells; briefly, I used L1-ORF1p epitope-tagged L1 constructs to perform mass 

spectrometry analyses to identify candidate host factors which may facilitate a different mechanism 

of retrotransposition in FA cells (comparing with parental). Interestingly, these analyses uncovered L1-

ORF1p specific interactors associated with the metabolism of R-loops, a DNA lesion frequently 

accumulated in FA cells. Thus, in the second part of this chapter, I also wish to investigate the 

relationship between L1 retrotransposition regulation and the metabolism of R-, to explore one 

potential mechanism behind the altered frequencies of retrotransposition in FANCA cells. In short, my 

research questions for this chapter are as follows:  
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Aims:  

1. Do different networks of host factors interact with L1-ORF1p in FANCA deficient (VH4) and 

parental (V79) cells? 

2. Does L1 retrotransposition occur at accumulated R-loops in FANCA deficient cells? (i.e., does 

the alteration of R-loop levels influence the rate of L1 retrotransposition in FA cells?). 
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6.2 L1-ORF1p proteomic studies in FANC A deficient cells: identification of host 

interactors with L1-ORF1p.  
 

Throughout this Thesis, I exploited several engineered L1 vectors, the pAD2TE1 vector series, to 

investigate L1 deregulation in a panel of DNA repair deficient cell lines. Notably, in pAD2TE1 vectors, 

L1-encoded ORFs contain unique T7 (L1-ORF1p) and TAP (L1-ORF1p) epitope tags at their carboxyl 

terminus, allowing me to use these same vectors on proteomic studies. Notably, previous studies 

revealed how L1 proteomic approaches represent a valid approach to identify a wide array of L1 

regulators (Taylor et al. 2016; Taylor et al. 2018; Mita et al. 2018; Dai et al. 2014; Taylor et al. 2013). 

However, these same studies described a significant limitation of proteomic approaches, as only L1-

ORF1p is expressed at a level compatible with the requirements of immunoprecipitation/mass 

spectrometry protocols, at least when proteins are expressed from the natural full-length bicistronic 

L1 RNA. In fact, this limitation is associated with how poorly L1-ORF1p is translated  from the 

bicistronic L1 RNA (Alisch et al. 2006). However, I reasoned that I would be able to use pAD2TE1 

vectors to identify L1-ORF1p interactors in FA cells. Intriguingly, I demonstrated that FANCA deficient 

cells could support retrotransposition of L1-ORF1p mutant elements, further supporting that the 

identification of L1-ORF1p interactors in FANCA deficient cells might clarify the mechanism by which 

L1 retrotransposition occurs in VH4 cells. I therefore tested whether L1-ORF1p could interact with a 

different set of proteins in FANCA deficient cells when compared with the parental cell line (Figure 

6.1). To do this, I transfected FANCA (VH4) and parental (V79) cells with the pAD2TE1 vector containing 

a WT-L1 (pAD2TE1/101-L1.3) and then performed co-immunoprecipitation using the anti-T7 specific 

antibody (i.e., pull down of L1-ORF1p using a T7 antibody, Figure 6.1). Western-blot controls 

confirmed successful immunoprecipitation of L1-ORF1p, and of associated host factors, in FANCA 

deficient and parental cells (Figure 6.1) 

After the completion of QC experiments, the sample containing L1-ORF1p and bound interactors was 

then analysed using mass spectrometry (Figure 6.1). In the mass spectrometry analyses, L1-ORF1p and 

interactors were analysed in triplicate, using isotypic IgG (triplicate) as an internal negative control. 
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Figure 6.1: Immunoprecipitation of L1-ORF1p-T7 interactors 

a) Flow chart of the methodology used to immunoprecipitate L1-ORF1p using a T7 tag and an anti-T7 

antibody. Upper and lower bands are presumed to be heavy chain (HC) and light chain (LC) of the antibody) 

See text for additional details. 

b) Western Blot demonstrating the presence of T7 tagged ORF1p in IP on protein G beads following pull 

down. 

 

Notably, bioinformatic analyses using the proteomic datasets revealed a good correlation among the 

biological replicates for L1-ORF1p samples, both in VH4 and V79 cells. 
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To define the pool of specific L1-ORF1p interactors in FANCA deficient (VH4) and parental (V79) cells, 

I used a pipeline that included several inclusion criteria steps. Briefly, interactors were defined as 

proteins of a log Fold Change (log2FC) of more than 1, and with a p-value of <0.05.  

Remarkably, proteomic experiments in FANCA deficient (VH4) and parental (V79) cells identified a 

selection of proteins which were significantly enriched in the L1-ORF1p samples (i.e., T7 antibody, 

Figure 6.2&6.3) as opposed to the negative control (i.e., Ig G antibody, Figure 6.2&6.3). As expected, 

L1-ORF1p was heavily enriched in the sample containing the T7 antibody in comparison to the negative 

control, together with additional host factors (Figure 6.2&6.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Volcano plot showing MS analysis of proteins following immunoprecipitation of L1-

ORF1p-T7 in FANCA (VH4) cells. P-value of <0.05 (-log10), indicating significance of the hit, is plotted against 

fold enrichment (log2) of the protein in a sample, representing results from 3 independent experiments. Several 

of the most enriched proteins (shown as red dots) are indicated in the graph. See text for additional details. 

ORF1p 

YTHDF2 PUM1 

MAPK4 

LARP1 

SLU7 
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Figure 6.3: Volcano plot showing MS analysis of proteins following immunoprecipitation of L1-

ORF1p in parental (V79) cells. P-value of <0.05 (-log10), indicating significance of the hit, is plotted against 

fold enrichment (log2) of the protein in a sample, representing results from 3 independent experiments. Several 

of the most enriched proteins (shown as red dots) are indicated in the graph. See text for additional details. 

A list of the proteins which was found to be significantly enriched (defined as having a log Fold Change 

(log2FC) of more than 1, and with a p-value of <0.05) after a pull down with a T7 antibody is shown in 

Table 6.1. Of these interactors, 36 were common between the two cell lines, 24 were unique to FANCA 

cells and 31 were unique to the parental cell line.  

 

 

ORF1p 

CAPRIN 1 

RBM14 

LARP 1 

DNMT3a 
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Interestingly, several of the interactors shared between both cell lines were previously identified as 

L1-interactors in human cell lines. (Taylor et al. 2013; Dai et al. 2014; Taylor et al. 2016; Taylor et al. 

2018; Mita et al. 2018) 

 

 

Table 6.1 List of significantly enriched ORF1p-T7 interactors in FANCA and parental cells  

 

ORF1p interactors 

FANCA (VH4)  Parental (V79) Common 

UPF1 KHSRP RPL35 SMARCC2 LARP1 PABPC4 

MAP4K4 DDX5 RPL19 RPS11 PUM1 SF3B2 

CREBBP ARHGEF2 G3BP2 TARDBP ANKRD17 SF1 

SEC23B OTUD4 ARID1A SMARCB1 ATXN2L EIF2S2 

NUFIP2 U2AF2 TFG KHDRBS1 RPS21 RPL26 

CALML5 CFL1 RPL18 TCP1 RPL15 RBM14 

NFAT5  HNRNPA1 ABCF1 RPS27L G3BP1 

PABPC1  SRSF6 TSR1 ATAD3A RPL21 

ZC3H11A  HNRNPM DNMT3A EIF4G1 RPL6 

WDR33  RPL39P5 DNAJC2 CAPRIN1 SNRNP70 

SRSF2  SMARCA4 NCOA5 FAM120A RPL9P9 

YTHDF2  NONO SERPINH1 SERBP1 SMARCC1 

EEF2  ALYREF PSMD2 CHD8 FXR2 

GAPDH  CHD8  FXR1 HNRNPK 

TUBA1B  RPS27  SF3B1 RPS26 

YBX1  SMARCE1  BAIAP2 ATAD3B 

DNAJA1  DDX3X  HSPA9 DDX17 

RPL8  CAV1  SEC24C RPL29 

 

 

 

Overall, proteomic experiments in FANCA deficient cells identified 61 significantly enriched L1-ORF1p 

interactors. However, ~60% of them were identified in previous L1 proteomic studies using other cell 

lines, confirming the reliability of our approach and data (Taylor et al. 2013; Dai et al. 2014; Taylor et 

al. 2016; Taylor et al. 2018; Mita et al. 2018). Notably, GO term analyses of these proteins revealed 

that 31 of these are involved in mRNA metabolic processes, while 21 are involved in catabolic mRNA 
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processes (enriched functional pathways identified in these analyses are shown in Figure 6.4). It is 

possible that some of these genes could be involved in the regulation of the stability of the L1 

transcript. LA related protein 1 (LARP1), for example, which is one of the most significantly enriched 

proteins in the sample, is known to regulated the stability and translation of mRNAs by binding the 

cap of the mRNA and preventing the binding of the translation initiation factor eIF4F (Lahr et al. 2017). 

Another enriched protein, PUM1, acts as a post transcriptional repressor by binding the 3’ UTR or 

mRNA targets (Liu et al. 2018). 

As expected, several of these proteins were also identified as L1 interactors in MS analyses using the 

parental cell line, which indicates that they are unlikely to be associated with the unusual 

retrotransposition associated with FANCA deficient cells. Consistently, previous proteomic studies in 

human cells  revealed how the cellular background can influence the number and nature of L1-ORF1p 

interactors (Goodier et al. 2007; Mita et al. 2020). 
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Figure 6.4: GO term analysis of functional pathways enriched in L1-ORF1p interactors identified in 

FANCA cells. A GO term analysis of enriched pathways for L1-ORF1p interactors was performed using the online 

tool ShinyGO. Cricetulus griseus (Chinese hamster) was used as the reference species. 
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6.3 A comparative analysis of host factors previously identified in L1 proteomic 

studies. 
 

As previously mentioned, a large number of the factors identified in this study had been previously 

reported as potential L1 interactors. Table 6.2 highlights the number of factors which had been 

previously identified in the experiments described in this chapter. Table 5.3 lists which previous study 

identified which host factors 

 

Table 6.2 Previously identified L1 interactors from the current study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of VH4 interactors previously identified 36 (59%) 

Number of V79 interactors previously identified 40 (60%) 

Number of common interactors previously identified 24 (68%) 
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Table 6.3 Overlapping L1 interactors listed by study 

 

Found in FANCA 

mutant cells only 

Found in parental cells 

only 

Found in both cell 

lines 

Taylor et al. (2013) Goodier 

et al. 

(2013) 

Liu et al. 

(2018) 

Taylor et al. 

(2018) 

Mita et al. 

(2021) 

CALML5 EEF2 DDX5 UPF1 PABPC1 NCOAS 

OTUD4     GAPDH YBX1 PABPC1 UPF1  

DDX5 YBX1 HNRNPA1 PABPC4 PABPC4  

CFL1 RPL8 DDX17 SMARCC1   

ZC3H11A KHSRP LARP1 DNMT3A   

PABPC1 NONO SRSF6    

RPL35 DDX3X HNRNPK    

RPL19 RPS11 FAM120A    

RPL18 PSMD2 SF3B1    

RPS27 TARDBP SNRNP70    

HNRNPA1 KHDRBS1 SERBP1    

HNRNPM TCP1     

NCOA5 PABPC4     

LARP1 RPS21     

SF3B2 RPS27L     

RPL15 FRX1     

ATAD3A BAIAP2     

SF3B1 RPL21     

RBM14 SNRNP70     

RPL6 SERBP1     
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In contrast, I also identified proteins of high biological interest which were uniquely enriched in the 

FANCA mutant (VH4) sample, including YTHDF2 (Figure 6.2 and Table 6.1). Indeed, YTHDF2 is 

functionally involved in mRNA metabolism and catabolism (Du et al. 2016), together with DDX5; DDX5 

is an RNA helicase found in P-bodies and stress granules, and is thought to be involved in the 

degradation and suppression of mRNAs (Xing et al. 2019). Consistently, there is ample literature 

demonstrating a clear connection between P-bodies and the metabolism of L1-RNPs (Goodier et al. 

2007; Doucet et al. 2010).   

YTHDF2 is involved in a number of biological processes but primarily, it is concerned with the reading 

of the N6-methyladenosine (m6A) modification (Wang and Lu 2021). m6A is a reversible post-

translational modification which regulates the degradation of RNA transcripts. Of the >150 known 

modifications which take place on cellular RNAs, m6A is thought to be the most prevalent (Wang and 

Lu 2021) and is a dynamic and reversible modification. 

YTHDF2 has been previously found to be involved in the regulation of R-loops (i.e., genomic RNA: DNA 

hybrids); additionally, and consistently, YTHDF2 has been found to associate with R-loops in vitro. 

Remarkably, increasing experimental evidence has demonstrated that R-loops are over accumulated 

in cells exhibiting a FA phenotype (Okamoto et al. 2019). Thus, I therefore decided to further explore 

the interaction between YTHDF2 and L1-ORF1p, with the ultimate goal of testing whether R-loops 

might represent potential sites for L1 retrotransposition in FA cells. However, and prior to further 

investigate the role of YTHDF2 and R-loops in the regulation of L1 retrotransposition, I decided to 

analyse whether YTHDF2 and R-loops are relevant for other DNA repair cells (i.e., NHEJ cells, which 

also support ENi-retrotransposition, see next section).  

 

 

 

RPL9P9 HSPA9     

SMARCC1 ATAD3B     

FRX1 HNRNPK     

RPL29      
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6.4 L1-ORF1p proteomic studies in NHEJ-deficient cells: identification of host 

interactors with L1-ORF1p.  
 

To investigate the mechanism of L1 deregulation that I uncovered in FA deficient cells, I used 

proteomics to investigated the collection of host factors interacting with L1-RNPs in FANCA mutant 

cells, using parental cells as controls. I reasoned that by exploring host factors associated with L1-RNPs 

in FA deficient cells, and because we used parental cells as a control, I could use proteomics to identify 

host factors that specifically associate with L1-RNPs in the context of this DNA repair cellular 

deficiency, ultimately allowing me to investigate the mechanism of L1 deregulation in FA patients. In 

doing that, I uncovered host factors that have never been associated with L1-ORF1p in previous 

proteomic studies (around 10 studies published prior to the writing of my Thesis (Taylor et al. 2013;  

Moldovan and Moran 2015; Mita et al. 2018; Taylor et al. 2018; Ardeljan et al. 2019; Vuong et al. 2019; 

Briggs et al. 2021). A limitation of the above approach is that part of the L1 deregulation phenotypes 

described in FA deficient cells has also been reported for cells containing mutations in a different DNA 

repair pathway: that is ENi-retrotransposition, reported in NHEJ-mutant and FA mutant cells (Morrish 

et al. 2002; Morrish et al. 2007). Thus, and although the L1 phenotypes associated with FANCA mutant 

cells goes beyond ENi-retrotransposition, I wanted to identify whether the proteins of interest I 

identified in FA cells would also be identified as L1-ORF1p interactors in a different cellular 

background, which is also a DNA repair cellular deficiency.  

To do this, I used the same optimised immunoprecipitation/MS protocol using T7-tagged L1-ORF1p 

(i.e., pAD2TE1 vectors) in hamster XR-1 cells, NHEJ mutant cells carrying mutations in XRCC4/DNA Lig 

IV, and using their parental cell line, 4364, as a control (Stamato et al. 1983; Li et al. 1995). At 

difference with hamster FANCA deficient cells (VH4), XR-1 is a hamster cell line deficient in NHEJ DNA 

repair that I previously demonstrated that it does not support retrotransposition of L1-ORF1p or L1-

PIP mutant elements. Thus, seeing which interactors are common between XR-1 and VH4 cells would 

allow to highlight L1-ORF1p interactors which might be associated with deficiency in DNA repair but 

not specifically in a FA background.  
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Table 6.4 List of significantly enriched ORF1p-T7 interactors in NHEJ deficient (XR-1) and parental 

(4634) cells 

ORF1p-T7 interactors 

Parental (4364) Previously Identified 
NHEJ deficient 
(XR-1) Previously Identified Common 

SFPQ  LRRC47  RPL13 

RPS3  NCBP3  SMARCC2 

AHCY  UBR4   RPS11 

SMARCB1 V79 screen (Table6.1) CFL1 VH4 screen (Table6.1)  TSR1 

SMARCC2 V79 screen (Table6.1) SMARCC2 V79 screen (Table6.1)  

EIF4B Goodier et al 2013 CDC42BPA    

POLR1A  ALDH2    

MCM3 Liu et al 2018 POLR1A    

RPS12 Taylor et al 2013 DDX23 Goodier et al 2013   

RPS11 
V79 screen (Table6.1) 
Taylor et al 2013 RPS11 

V79 screen (Table6.1) 
Taylor et al 2013  

DNAJB1  KIF2C    

ATP5F1A  FUS    

PSMA1  GKAP1    

PSMA3  LDHA    

MSN  HSP90AB4P    

TSR1 
V79 screen (Table6.1) 
Taylor et al 2013 TSR1 

V79 screen (Table6.1) 
Taylor et al 2013  

DDX6 
Taylor et al 2018, 
Taylor et al 2013 SF3B1 

Taylor et al 2013, 
Goodier et al 2013   

DNMT1 Liu et al 2018 SRP72 Liu et al 2018   

U2AF2 VH4 screen (Table6.1) RBBP7    

RPL13 Taylor et al 2013 LARP7 Taylor et al 2018   

TLN1  HP1BP3    

RBM19  PABPC4 Liu et al 2018   

MYO5A  RPL19 V79 screen (Table6.1)   

CRYBG1  TUBA1B VH4 screen (Table6.1)   

RPL19 
V79 screen (Table6.1) 
Taylor et al 2013 RPL13 Taylor et al 2013   

RPL35 
V79 screen (Table6.1) 
Taylor et al 2013    

RPL18 
V79 screen (Table6.1) 
Taylor et al 2013    

RPL39P5 V79 screen (Table6.1)    
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As above, I used 3 biological replicas from XR-1 and 4364 cells in MS experiments, for T7 and isotypic 

IgG IPs; next, I used the same bioinformatic pipeline to analyse L1-ORF1p interactors in NHEJ mutant 

cells (and parental cells as controls). In fact, I found 25 and 28 host-factors that specifically interact 

with L1-RNPs in XR-1 and 4364 cells, respectively. Of the 25 proteins found in the NHEJ deficient cells, 

8 had been identified in previously published screens (Table 6.4) (Taylor et al. 2013; Goodier et al 2013 

Liu et al. 2018; Taylor et al, 2018). There were 8 proteins in the list which were previously identified 

by my previous screen in V79 cells (the parental line of VH4; Table 6.1). 

Of the 28 host factors proteins found in the parental line, 11 had been identified in previously 

published screens (Table 6.4) Taylor et al. 2013; Liu et al. 2018; Taylor et al, 2018). There were 4 

proteins which were previously identified in my previous screen in V79 cells (Table 6.1). 

Notably, the vast majority of interactors identified in the FANCA (VH4) screen were not identified in 

NHEJ deficient (XR-1) cells and vice versa, suggesting that ORF1p is likely interacting with a slightly 

different set of proteins in these two cell lines. By contrast, the screens in NHEJ cells and the parental 

line had a number of shared hits with V79, the parental CHO line of VH4. A GO term analysis for 

enriched functional pathways in NHEJ deficient cells (Figure 6.5) also shows distinct processes from 

those found in L1-ORF1p interactors in FANCA cells (Figure 6.4).  Importantly, this variation in results 

also highlight the importance of the cellular milieu in MS experiments, demonstrating how different 

cell lines can generate different impressions. YTHDF2, a protein of interest identified in FA cells, is also 

absent here, indicating that it could be FA specific interactor of the L1-RNP. Thus, I decided to continue 

investigating YTHDF2 with regard to L1 retrotransposition in FA cells. 
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Figure 6.5: GO term analysis of functional pathways enriched in L1-ORF1p interactors identified in 
NHEJ mutant cells. A GO term analysis of enriched pathways for L1-ORF1p interactors was performed using 

the online tool ShinyGO. Cricetulus griseus (Chinese hamster) was used as the reference species. 
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6.5 The role of YTHDF2 in the regulation of L1 retrotransposition in FA deficient 

cells. 
 

Following the MS analyses summarised earlier in this chapter, I decided to further investigate YTH N6-

Methyladenosine RNA Binding Protein 2 (YTHDF2) as a protein of potential interest.  I speculate that 

YTHDF2 could be associated with the L1 deregulation phenotype reported in FANCA mutant cells. 

Indeed, the interaction between L1-ORF1p (i.e., L1-RNPs) and YTHDF2 was significantly enriched 

specifically in FANCA deficient cells and not in the parental cell line or in other DNA repair deficient 

cell lines (NHEJ mutant cells).  

YTHDF2 works together with YTHDF1 and YTHDF3 to destabilise m6A containing RNAs through de-

adenylation (Shi et al. 2017). Though the three proteins have been observed to work together to 

degrade the same transcripts, YTHDF2 is believed to be the primarily regulatory protein. In fact, de-

adenylation by YTHDF2 is one of two main pathways of mRNA destabilisation (Wang and Lu 2021). In 

some cases, YTHDF2 is also believed to perform endoribonucleolytic cleavage of RNAs via a complex 

it forms with HRSP12 and ribonuclease (RNase) P/mitochondrial RNA-processing (MRP; 

endoribonuclease) complex (Park et al. 2019).  Notably, YTHDF2 has also been found to be deregulated 

in many cancers, including hepatocellular carcinoma (HCC), pancreatic cancer, and acute myeloid 

leukaemia (Dai et al. 2021).   

6.6 Testing for an interaction between YTHDF2 and ORF1p  
 

Following the detection of YTHDF2 as a L1-ORF1p interactor by mass spectrometry, specifically in 

FANCA deficient cells, I next wanted to validate their interaction using co-immunoprecipitation. 

Briefly, following the methodology/approach laid out in Figure 6.1, I transfected HEK293T cells with 

plasmid pAD2TE1-101/L1.3, which contains an active human L1 element in which L1-ORF1p has been 

tagged with a T7 epitope tag. Next, using an antibody to YTHDF2 or a control antibody of the same 

isotype, I performed a pull down with magnetic protein G beads. Remarkably, western-blotting using 

the anti-T7 antibody confirmed interaction of L1-ORF1p with YTHDF2 (Figure 6.10, left side, IP lane); 

as expected, L1-ORF1p was not pull down when using the isotypic Ig G control, although we found 

some weak interaction with either Ig G or the magnetic protein G beads used in the IP (Figure 10, right 

side, IP lane). Whether the interaction between L1-RNPs and YTHDF2 involve the L1 RNA and/or L1-

ORF1p remains to be determined, but these results corroborate the MS findings previously described 

in this chapter. It is worth mentioning that the interaction between L1-ORF1p and YTHDF2 was found 

only in FANCA deficient cells, although we could corroborate such interaction using HEK293T. To the 

best of my knowledge, this is the first known finding of an interaction between YTHDF2 and L1-ORF1p.  
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Figure 6.6 Co-immunoprecipitation of YTHDF2 and L1-ORF1p. A co-immunoprecipitation was performed 

in HEK293T cells transfected with plasmid pAD2TE1-101/L1.3, using an antibody to YTHDF2 or isotypic IgG as a 
control. After IP/washes, samples were resolved by SDS-PAGE, transferred and blotted for L1-ORF1p using the 
anti T7 antibody. The Input (inp), flow through (FT) and Immunoprecipitated (IP) samples are shown from left to 
right for each antibody.  This experiment was performed three times 

 

6.7 Investigating LINE-1 retrotransposition in YTHDF2 KO cells 
 

After confirming the interaction between YTHDF2 and L1-ORF1p, I decided to test the role of this 

protein in regulating L1 retrotransposition. Interestingly, the m6A modification has also recently been 

found to regulate the stability of DNA: RNA hybrids (Abakir et al. 2020). Abakir and colleagues 

demonstrated, though immunostaining with an anti-m6A antibody, that this mark was present on the 

RNA components of RNA: DNA hybrids in human pluripotent stem cells (hPSCs); in fact, they were able 

to identify YTHDF2 on the majority of RNA: DNA hybrids found in these cells. Notably, some of these 

hybrids correspond with R-loop structures, which accumulate to a high degree in FA deficient cells, 

and it is therefore of interest that YTHDF2 was observed to interact directly with these hybrids through 

immunostaining experiments. Consistently, depletion of YTHDF2 leads to an accumulation of R loops 

in hPSCs. In light of these data, identifying YTHDF2 as an L1-ORF1p interactor uniquely in FANCA 

deficient cells is an interesting finding. Thus, and to further investigate the role of YTHDF2 and R-loops 

in regulating retroelement activity, I decided to test LINE-1 retrotransposition in YTHDF2 KO cells, a 

generous gift of Prof. Alexander Ruzov (Nottingham University, UK).  

In the recent YTHDF2 study described above, Abakir and colleagues generated a KO cell line using 

CRISPR/Cas9 genome editing tools and HAP-1 cells (Abakir et al. 2020). Briefly, HAP1 cells were derived 

from a patient suffering chronic myelogenous leukaemia (CML) and are widely used in biological 

studies, in particular to generate KO models, because these cells have a near-haploid genome (except 

for chromosomes 8 and 15 (Kotecki et al. 1999)). Thus, I used the parental HAP1 line and a derivative 

37 

kDa 
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KO subline to investigate the role of YTHDF2 on L1 retrotransposition (Abakir et al. 2020). Because L1 

retrotransposition in HAP1 cells has not been reported, I first established experimental conditions that 

would allow me to investigate L1 retrotransposition in these cells and in the YTHDF2 KO subline. 

Notably, I was able to recapitulate human L1 retrotransposition in parental HAP1 cells and in the 

YTHDF2 KO subline (Figure 6.7 and see below). However, preliminary experiments in HAP1 and 

YTHDF2 KO cells revealed some difficultly in generating sufficient transfection efficiency of plasmids 

that would allow me to robustly measure L1 retrotransposition. While the parental line generated 

transfection efficiencies ranging from 12-15% and CFU ranging from 40-60 at a seeding density of 

40,000 cells, the number of colonies in the YTHDF2 KO cell line were much lower (transfection 

efficiency initially ranged from 1-3% and the CFU from a wild type L1 element was 4-5, Figure 6.7). In 

order to optimise the transfection of these cells, I therefore tried a number of different conditions of 

transfection, including: i) testing three different lipid-based transfection reagents (FuGene 6, FuGene 

HD and Lipofectamine 2000); ii) different concentrations of these reagents and plated cells; and, iii) 

different methods of transfection (reverse transfection vs transfecting 16-18 hours after plating). The 

main results from the optimization experiments are shown in Figure 6.7 where I was able to increase 

the transfection efficiency of parental HAP1 and YTHDF2 KO cells to approximately 10%, using reverse 

transfection and Lipofectamine (Figure 6.7). 
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Figure 6.7. Optimisation of transfection efficiency in parental HAP 1 and YTHDF2 KO cells. (A) Initial 

experiments showed that the retrotransposition frequency of L1 in YTHDF2 KO cells was substantially less than 
in the parental line (HAP1). (B) Transfection efficiency in HAP1 and YTHDF2 KO cells after transfection with either 
Lipofectamine, FuGene 6 or FuGene HD at two different concentrations. (C) Transfection efficiency in HAP1 and 
YTHDF2 KO cells using Lipofectamine 2000and reverse transfection, conventional transfection 8h after plating 
or after 8h or conventional transfection 24h after plating.  

 

After optimising transfection to around 9-10%, I next tested the series of L1-ORF1p mutants (i.e., 

pAD2TE1 series vectors) in both lines, parental HAP1 and YTHDF2 KO cells. While WT-L1 

retrotransposition was readily detected in parental HAP1 cells, and at a much lower level in YTHDF2 

KO cells (Figure 6.8), no retrotransposition activity was found for any of the L1-ORF1p mutants tested 

(Figure 6.8). An important limitation in these experiments is the sensitivity of L1 retrotransposition 

assays in YTHDF2 KO cells, with very low rates of retrotransposition even for the WT-L1, prohibiting 

me from exploring whether some of the L1-ORF1p mutants might retrotranspose at a low level in 

YTHDF2 KO cells (Figure 6.8). In the future, further optimisation of transfection and of the L1 assay in 

YTHDF2 KO cells would increase the chance of detecting rare retrotransposition events.    



170 
 

Wild type 

  

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Retrotransposition of L1-ORF1p mutants in HAP1 and YTHDF2 KO cells. Shown are 

representative retrotransposition results of four L1-ORF1p mutant elements and of a WT-L1 in HAP1 cells (top) 
and YTHDF2 KO cells (bottom). The graph shows the quantification of retrotransposition assays. The number of 
colony forming units (CFU) per well was quantified and an average was taken over three technical replicates. 
These values have been adjusted to control for differences in transfection efficiency and this experiment was 
performed three independent times.    

 

Although the sensitivity of the L1 assay might not be high enough in HAP1 and YTHDF2 KO cells, I next 

tested L1-ORF1p mutants in assay. As described before, I used pAD2TE1 vectors containing 

inactivating mutations in the EN, RT and PIP domains of L1-ORF1p, together with the WT-L1. Again, no 

retrotransposition was detected for any of the L1-ORF1p mutants tested, possibly due to the limited 

sensitivity of the assay in HAP1 and YTHDF2 KO cells (Figure 6.7). 
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Figure 6.9: Retrotransposition of L1-ORF1p mutants in HAP1 and YTHDF2 KO cells. Shown are 

representative retrotransposition results of three L1-ORF1p mutant elements and of a WT-L1 in HAP1 cells (top) 
and YTHDF2 KO cells (bottom). The graph shows the quantification of retrotransposition assays.). The number 
of colony forming units (CFU) per well was quantified for each element as a percentage of WT L1 activity and an 
average was taken over three technical replicates. These values have been adjusted to control for differences in 
transfection efficiency and this experiment was performed three independent times.    

 

In sum, while I was able to confirm the interaction between L1-ORF1p and YTHDF2 in cultured cells, 

the retrotransposition rates observed in HAP1 and YTHDF2 KO cells are too low to allow comparing 

the frequency of mobilization of several L1 mutant elements. 

 

 

 

 

 

 

6.8 R-loops, FA deficient cells and deregulated L1 retrotransposition  
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In recent years, the FA phenotype has increasingly become associated with the accumulation of R 

loops (Okamoto et al. 2019). R loops are a structure formed from a RNA: DNA hybrid and a ssDNA, in 

genomic DNA. These structures form naturally during mitochondrial replication and during 

transcription, when a strand of RNA invades a DNA duplex, displacing one of the strands (reviewed in 

García-Muse and Aguilera 2016). Unlike the RNA: DNA duplexes which form during transcription, R-

loops can reach lengths of up to 500 bp, disrupting chromatin organisation and generating genetic 

instability (Duquette et al. 2004). The FA pathway is believed to be one of several mechanisms evolved 

to process R-loops effectively, reducing the risk of DNA damage (Garcia-Rubio et al. 2015). 

Consistently, deleterious R-loops often form at fragile sites of large genes (Barlow et al. 2013) and the 

FA pathway is believed to play a key role in resolving these. Notably, a study by Garcio-Rubio et al. 

(2015) found that R-loops accumulate in cells depleted of FANCA or FANCD2. This finding was reported 

both in primary patient cell lines and in murine cells. Furthermore, DNA damage was found to be 

mediated by R-loops in FANCD2 depleted HeLa cells.  

The relationship between R-loops and LINE-1 retrotransposition is currently unclear. On one hand, 

LINE-1 elements have been found to be R-loop “hotspots”, indicating that R-loops could be involved 

with LINE-1 transcriptional repression (Yan et al. 2020). Additionally, given the reported accumulation 

of R-loops in FA cells, it is possible that LINE-1 elements could exploit this type of lesion to initiate 

integration, in the same way as SSBs/DSBs are presumably used by EN-mutant L1s to integrate in NHEJ 

mutant cells (i.e., ENi-retrotransposition). In fact, if LINE-1 elements were able to exploit R-loops as 

integration substrates, or to functionally interact with these structures in vivo, this might explain the 

L1 deregulation phenotype reported in some FA deficient cells. Thus, a functional interaction between 

L1-RNPs and R-loops might explain why some FA cells support increased LINE-1 retrotransposition and 

potentially why FANCA cells support L1-ORF1p-independent, EN-independent and PIP-independent 

retrotransposition. I therefore wanted to investigate a functional interaction between R-loops and 

LINE-1 retrotransposition. 

Notably, I was able to confirm an interaction between L1-ORF1p and YTHDF2 in cultured cells; 

however, due to technical limitations, I was unable to use YTHDF2 KO cells to further support a 

functional interaction between YTHDF2, R-loops and L1 retroelements, at least using HAP1 cells. 

Furthermore, it is worth noting that the interaction between L1-ORF1p and YTHDF2 was only found in 

FANCA deficient cells, suggesting that the impact of YTHDF2 and R-loops might only occur in FA mutant 

cells. Because of these limitations, I decided to use a reciprocal strategy to explore a functional 

interaction between YTHDF2, R-loops and L1 retroelements. Briefly, as described by Abakir and 

colleagues, YTHDF2 KO cells accumulate R-loops in genomic DNA, leading to genomic instability 

(Abakir et al. 2020). Thus, I reasoned that overexpression of YTHDF2 would reduce R-loop levels, 
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specifically in FANCA deficient cells, allowing me to explore whether reducing R-loops could rescue 

the L1 phenotype reported in these cells (i.e., L1-ORF1p-independent, EN-independent and PIP-

independent retrotransposition).  

To test whether YTHDF2 overexpression interfere with L1 retrotransposition, I used an engineered L1 

retrotransposition assay that is based on the activation of the blasticidin S deaminase gene after a 

round of retrotransposition (Morrish et al. 2002) (i.e., L1s tagged with the mblastI retrotransposition 

indicator cassette; pJJ101 vector series). Consistently, using mblastI-tagged L1s, the number of 

blasticidin (blast) resistant foci can be used to quantify retrotransposition in cultured cells. 

Remarkably, because of the kinetic of blast selection, our lab previously demonstrated that the L1 

mblastI-based assay is ideal to score retrotransposition in the first 72h after transfection (Tristan 

Ramos 2020). Indeed, because overexpression of proteins from exogenous plasmids typically peaks 

48-72h after transfection, I reasoned that mblastI-tagged L1 vectors are the best and more robust tool 

to explore the effect of YTHDF2 overexpression on L1 retrotransposition. Additionally, among the L1 

mutant elements tested in FA cells in this Thesis, I decided to use the EN-mutant L1 to explore the 

impact of YTHDF2 overexpression on L1 deregulation, simply because the EN-mutant L1 

retrotransposed at the highest level in FANCA deficient cells. Initially, I decided to use HeLa cells to 

explore the impact of YTHDF2 overexpression on L1 retrotransposition (Figure 6.10); however, I found 

similar levels of WT-L1 retrotransposition in HeLa cells co-transfected with a plasmid overexpressing 

HA-tagged YTHDF2 (N-terminus) or with the empty vector (pCMV-HA, Figure 6.10). Consistent with its 

mutant nature, no significant retrotransposition was found with the EN-mutant L1 in any of the 

conditions tested (Figure 6.10).  
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Figure 6.10: Overexpression of YTHDF2 and L1 Retrotransposition in HeLa cells. Shown are 

representative retrotransposition results in HeLa cells after transfecting a WT-L1 (left side) or of an EN-mutant 
L1 (D205A, right side) with a plasmid overexpressing HA-tagged YTHDF2, or with the empty vector as a negative 
control (pCMV-HA, indicated in the top). The graph shows the quantification of retrotransposition assays. The 
number of colony forming units (CFU) per well was quantified and an average was taken over four technical 
replicates. These values have been adjusted to control for differences in transfection efficiency and this 
experiment was performed three independent times.    

 

However, because the interaction of L1-RNPs and YTHDF2 was only found in FANCA deficient cells, I 

decided to test the effect of YTHDF2 overexpression in FANCA deficient (VH4) and parental cells 

(V79B), using the experimental approach used in HeLa cells. Consistent with the results observed in 

HeLa cells, I found the same trend in parental V79B hamster cells (Figure 6.11); in fact, I found no 

significant differences in the rate of WT-L1 retrotransposition when parental cells were co-transfected 

with HA-tagged YTHDF2 or with the empty vector control (Figure 6.11). Further consistent with data 

reported in HeLa cells, the EN-mutant L1 retrotransposed at background levels in all conditions tested 

(Figure 6.11). 
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Figure 6.11: Overexpression of YTHDF2 and L1 Retrotransposition in V79B cells. Shown are 

representative retrotransposition results in V79B cells after transfecting a WT-L1 (left side) or of an EN-mutant 
L1 (D205A, right side) with a plasmid overexpressing HA-tagged YTHDF2, or with the empty vector as a negative 
control (pCMV-HA, indicated in the top). The graph shows the quantification of retrotransposition assays. The 
number of colony forming units (CFU) per well was quantified and an average was taken over four technical 
replicates. These values have been adjusted to control for differences in transfection efficiency and this 
experiment was performed three independent times.    

 

Finally, I tested the effect of YTHDF2 overexpression on WT-L1 and EN-mutant L1 retrotransposition 

in FANCA deficient cells (Figure 6.12). Remarkably, at difference with HeLa and V79B cells, I found that 

YTHDF2 overexpression in VH4 cells lead to significant lower retrotransposition levels of a WT-L1 and 

of an EN-mutant L1 (D205A, (Figure 6.12)). Indeed, YTHDF2 overexpression in FANCA deficient cells 

reduced WT-L1 and EN-mutant L1 retrotransposition 5 and 10-fold, respectively, when compared with 

empty vector co-transfected cells. Altogether, the above data suggest that WT-L1 and ENi-L1 

retrotransposition is significantly reduced when cellular R-loop levels are reduced in FANCA deficient 

cells. Furthermore, this data is consistent with the retrotransposition data observed in YTHDF2 KO 

HAP1 cells, despite any technical limitation. In fact, I speculate that the regulatory role of YTHDF2 on 

L1 retrotransposition is specific for FANCA deficient cells, further suggesting that genomic R-loops act 

as a “dominant integration substrate” for L1-RNPs during retrotransposition, explaining why mutant 

L1s can retrotranspose in FANCA cells. 
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Figure 6.12: Overexpression of YTHDF2 and L1 Retrotransposition in VH4 cells. Shown are 

representative retrotransposition results in FANCA deficient cells (VH4) after transfecting a WT-L1 (left side) or 
of an EN-mutant L1 (D205A, right side) with a plasmid overexpressing HA-tagged YTHDF2, or with the empty 
vector as a negative control (pCMV-HA, indicated in the top). The graph shows the quantification of 
retrotransposition assays. The number of colony forming units (CFU) per well was quantified and an average was 
taken over four technical replicates. These values have been adjusted to control for differences in transfection 
efficiency and this experiment was performed three independent times.    

 

Collectively, the above data suggest that R-loops could act as “dominant integration sites” in FANCA 

deficient cells. Alternatively, YTHDF2 could bind ORF1 in FANCA cells and sequester it into non-

retrotransposition-competent complexes. To narrow down the potential explanations, I next explored 

whether reducing R-loops using an alternative strategy could also rescue the L1-deregulation 

phenotype of FANCA cells. To do that, I exploited mblastI-tagged L1s and the co-

transfection/retrotransposition assay optimised above, to explore the effect of overexpressing RNase 

H1. In fact, cellular RNase H1 is a protein involved in the resolution of R-loops, and therefore depletion 

of RNase H1 activity results in increased R-loops (Okamoto et al. 2019; Garcia-Rubio et al. 2019). In 

these assays, I used vectors expressing the cDNA of the nuclear isoform of human RNaseH1 (hRH1 in 

Figure 6.13) or a catalytic dead RnaseH1 allelic mutant (D119N missense mutation in the hRNaseH1 

catalytic site), used as an internal negative control (hRH1mutant in Figure 6.13). Additionally, I 

overexpress E. coli RNase H1 (rnhA gene) in cultured cells to reduce the levels of cellular R-loops, as 

reported (Okamoto et al. 2019; Garcia-Rubio et al. 2019). As above, I first tested the impact of RNase 

* 
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H1 overexpression on L1 retrotransposition using human HeLa cells; notably, I didn’t observe any 

impact on WT-L1 retrotransposition upon overexpressing nuclear human RNase H1. Unexpectedly, I 

found that overexpression of E. coli RNase H1 significantly reduced WT-L1 retrotransposition >10 fold 

when compared with cells co-transfected with an allelic inactive RNase H1 mutant (D70N missense 

mutation in the rnhA catalytic site). However, additional controls revealed that overexpression of E. 

coli RNase H1 (rnhA gene) significantly reduced the number of blast-resistant foci in HeLa cells co-

transfected with the pcDNA6.1 vector, which constitutively express the blast deaminase gene and is 

routinely used to control toxicity/clonability issues in drug selection-based assays. Notably, no 

toxicity/changes in clonability were found in HeLa cells co-transfected with nuclear human RNaseH1, 

or with the inactive allelic control. Thus, we excluded vectors overexpressing E. coli RNase H1 in further 

experimentation, as the induced cellular toxicity difficult quantifying retrotransposition. 

Next, I tested the effect of overexpressing human nuclear RNase H1 in parental V79B cells; notably, I 

observed the same trend detected in human HeLa cells, where WT-L1 retrotransposition levels were 

not affected by the overexpression of human RNase H1 (or the catalytic dead allele, see Figure 6.13). 

As expected, no significant retrotransposition was found for the EN-mutant L1 in any of the conditions 

tested (Figure 6.13). 

 

 

Figure 6.13: Overexpression of human nuclear RNaseH1 and L1 Retrotransposition in V79B cells. 
Shown are representative retrotransposition results in parental cells (V79B) after transfecting a WT-L1 or of an 
EN-mutant L1 (D205A) with a plasmid overexpressing RnaseH1 (hR1), or a catalytic dead allelic vector as a 
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negative control (hR1mutant). The graph shows the quantification of retrotransposition assays. The number of 
colony forming units (CFU) per well was quantified and an average was taken over four technical replicates. 
These values have been adjusted to control for differences in transfection efficiency and this experiment was 
performed four independent times.    

 

Remarkably, I found that overexpression of human nuclear RNase H1 significantly reduced the WT-L1 

and ENi-L1 retrotransposition in FANCA deficient cells, at similar levels as those detected in YTHDF2 

overexpression experiments (Figure 6.14).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Overexpression of human nuclear RNaseH1 and L1 Retrotransposition in VH4 cells. 
Shown are representative retrotransposition results in FANCA deficient cells (VH4) after transfecting a WT-L1 or 
of an EN-mutant L1 (D205A) with a plasmid overexpressing RNaseH1 (hR1), or a catalytic dead allelic vector as a 
negative control (hR1mutant). The graph shows the quantification of retrotransposition assays. The number of 
colony forming units (CFU) per well was quantified and an average was taken over four technical replicates. 
These values have been adjusted to control for differences in transfection efficiency and this experiment was 
performed four independent times.    

 

In fact, I found that retrotransposition of the WT- and of the EN-mutant L1 was reduced 3 and 5-fold, 

respectively, when compared with cells transfected with the catalytic dead allelic construct (Figure 

6.14). In sum, transfecting VH4 cells with a plasmid overexpressing RNase H1 led to decreased 

retrotransposition, indicating that L1 could somehow utilise unresolved R loops or replication 

complexes during Okazaki fragment processing, in order to mobilise (Figure 6.15).  

* 
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Figure 6.15: Model of L1 Retrotransposition in WT and FA deficient cells. See text for additional 

details. 

 

 

6.9 Discussion 
 

In this chapter, I have investigated new aspects of retrotransposition in FANCA deficient cells. An MS 

analysis investigating the interactors of L1-ORF1p revealed several new proteins of interest which have 

not been previously identified in similar proteomic studies. I focused subsequent investigation on the 

n6 N6-Methyladenosine regulator YTHDF2, due to the connection between R-loops and the FA 

phenotype. Using co-immunoprecipitation, I successfully validated this interaction. However, further 

work will be required to test how dynamic the interaction between YTHDF2 and L1-ORF1p might be, 
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and whether L1 RNAs, or others, are also involved in this interaction. Similarly, because the functional 

interaction between L1-ORF1p and YTHDF2 might be relevant only in a FA background, further 

research is needed to unveil how YTHDF2 could regulate biological processes in a cellular milieu-

dependent manner. Because the cellular background seems to be very relevant in the mechanism of 

YTHDF2 regulation of retrotransposition, I investigated the impact of YTHDF2 and R-loops in FANCA 

cells, using parental cells as a control. Indeed, doing that turned out to be quite important, as I found 

that the connection of L1 with R-loops and YTHDF2 only occur in FANCA deficient cells, as least for the 

regulation of ENi-retrotransposition.  

Further investigation into the relationship between R-loops and L1 retrotransposition provides 

preliminary evidence to suggest that L1 elements could exploit these structures for mobilisation. An 

interplay between L1 elements and these structures could explain in part why L1 elements have 

different dynamics in some cells with a FA phenotype, which have accumulations of these lesions.  

That said, a recent paper showed that L1 elements could exploit stalled replication forks (Mita et al. 

2020) which are also found at an increased degree in FA cells. Thus, there are likely several genetic 

features in these cells which could result in deregulated retrotransposition. However, preliminary 

experiments by colleagues at my lab revealed that stalled replication forks do not represent major 

insertion sites for L1, at least when arrest is induced with aphidicolin (unpublished data). Thus, I 

propose that investigating the relationship between replication forks and L1 would be an interesting 

area of research, complementary to this work.  

 

From a mechanistic angle, several pieces of evidence in my Thesis strongly suggest that L1 

retrotransposition in FA deficient cells might predominantly occur at R-loops/Okazaki replication 

complexes (see model in Figure 6.15). First, overexpression of YTHDF2, a reader of m6A modified 

RNAs enriched in R-loops that promote RNA degradation, can significantly reduce WT-L1 and ENi-L1 

retrotransposition specifically in FANCA cells, an effect not observed in parental cells. Second, 

overexpression of human nuclear RNaseH1, which naturally resolve R-loops by degrading the RNA of 

hybryds, reduce WT-L1 and ENi-L1 retrotransposition specifically in FANCA cells, an effect that again 

was not observed in parental cells. Third, and unexpectedly, WT-L1 and ENi-L1 insertions are 

associated with the same atypical hallmarks of retrotransposition. In fact, the characterization of >100 

de novo retrotransposition events in FA cells using WT- and EN-mutant L1s revealed that insertions 

are associated with atypical retrotransposition hallmarks (i.e., presence of long TSDs, deletions at the 

insertion site, 5´ capture of palindromic DNA sequences, etc)(S. Morell unpublished). Unexpectedly, 

these atypical hallmarks were found for WT-L1 and ENi-L1 retrotransposition events, further 
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suggesting that DNA lessions accumulated in FA cells, that is R-loops, are dominant to dictate their 

mode/site of integration (see model in Figure 6.15)(S. Morell unpublished).  

The first steps of the TPRT process led to the formation of an RNA: cDNA hybrid covalently attached 

to genomic DNA; a structure similar to an R-loop (see model in Figure 6.15). Similarly, after the 

completion of 1st cDNA synthesis, it is thought that RNAseH2 degrade the L1 RNA from the hybrid 

(Benitez‐Guijarro et al. 2018), to allow TPRT to progress (i.e., second strand cDNA synthesis)(this 

structure functionally resemble the processing of Okazaki fragments during DNA replication (see 

model in Figure 6.15). With these considerations, I speculate that in FA deficient cells L1 

retrotransposition intermediates (L1-RNPs) might start reverse transcription from exposed 3´OH in R-

loops/replication processes, somehow resembling steps that occur during top strand cleaving and 

second strand cDNA synthesis during canonical TPRT retrotransposition (see model in Figure 6.15). In 

other words, during TPRT in parental/WT cells, the initiation of L1 reverse transcription requires 

cleaving of the bottom strand of genomic DNA; however, I speculate that the initiation of reverse 

transcription in FA cells mimic second strand cDNA synthesis, explaining why mutant L1 elements can 

retrotranspose at high levels in FA deficient cells, especially mutants in enzymatic activities required 

before second strand cDNA synthesis. Consistent with this hypothesis, the EN domain of L1-ORF1p is 

not strictly required to cleave top strand of gDNA to initiate second strand cDNA synthesis, as revealed 

by EN-mutant L1s being able to retrotranspose in NHEJ and FA cells. Further consistent with this 

hypothesis, the enzymatic activities associated with all L1 mutants active in FANCA cells [the main role 

of L1-ORF1p is to form a functional L1-RNP, the main role of the EN domain of L1-ORF1p is to cleave 

gDNA to initiate TPRT, and the main role of the PIP domain is to access gDNA/facilitate initiation of 1st 

strand cDNA synthesis], are all required/involved prior to the initiation of second strand cDNA 

synthesis (see model in Figure 6.15).  

From an evolutionary angle, and consistent with the presumed later origin of the EN domain in L1-

ORF1p (Malik et al. 1999), the mechanism of L1 integration observed in FA cells resemble an ancient 

mechanism of integration used prior to the acquisition of the EN domain, targeting replication 

complexes and R-loops structures (see model in Figure 6.15).  
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7.1 Summary of the findings in this thesis 

 

The relationship between L1 retrotransposons and DNA repair factors in the human genome is 

currently an area of active research.  There is increasing evidence that several DNA repair factors can 

serve as direct and indirect regulators of L1 retrotransposition, though the precise nature and context 

of this regulation has yet to be described. Furthermore, several studies have demonstrated that L1 

elements harbouring different mutations can mobilise in cellular backgrounds deficient in DNA repair 

proteins. In cells deficient in NHEJ proteins, Morrish et al. (2007) demonstrated that L1 elements can 

mobilise independently of the endonuclease domain, raising further questions about the mechanism 

by which DNA repair proteins could potentially restrict L1 retrotransposition.  

In this thesis, I tested a battery of L1 mutants in order to identify whether they were capable of 

mobilisation in different cellular contexts. These included a series of ORF1 mutants which had been 

previously characterised in HeLa cells. These mutants are of interest as they were observed either to 

reduce or abrogate retrotransposition in HeLa cells (Kulpa and Moran 2005). While the exact 

mechanism for this is not known, it is believed to be through inhibition of the association of ORF1p 

with the L1 transcript, which is necessary for formation of the ribonucleoprotein particle. A key finding 

of this thesis is that cells deficient in FANCA protein unexpectedly support retrotransposition of severe 

ORF1p mutants. Importantly, this effect was rescued in a FANCA complemented cell line. Subsequent 

testing of ORF1p only elements in FANCA revealed that despite the mobilisation of severe ORF1p 

mutants, some functions of ORF1 were still required. As soon as the ORF1p domain was removed 

entirely, retrotransposition of the element was completely abrogated.   

I tested these mutants in a range of cell lines, including lines deficient in FANCC, NHEJ proteins, FANCI 

and FANCD. However, the retrotransposition of ORF1p mutants that I observed was thus far unique 

to FANCA deficient cells. I did observe, however, that both FANCC and FANCA deficiency appeared to 

increase the total number of retrotransposition events in comparison to the parental cell lines. This 

suggests that both FANCC and FANCA could exhibit the capacity to restrict L1 retrotransposition 

I also tested a series of ORF1p mutants in these cell lines. This included a PIP mutant, an endonuclease 

mutant and an RT mutant. In line with data produced by Morrish et al. (2007), elements with an 

endonuclease mutation showed the capacity to mobilise in a number of cell lines deficient in DNA 

repair. Every FANCC ell line tested with these mutants showed the capacity to support endonuclease 

independent retrotransposition, as did a NHEJ deficient cell line. Conversely, the wild type cell lines 

tested always exhibited negligible endonuclease independent retrotransposition. This finding expands 
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upon previous work in the field, by demonstrating that endonuclease independent retrotransposition 

is not unique to the cell lines it was originally discovered in.  

The PIP mutant was identified in 2013 by Taylor et al. The group determined that this discrete 

sequence, located between the EN and the RT domain, was required to mediate the interaction 

between PCNA and ORF1p. Mutations in the PIP domain abrogated retrotransposition to negligible 

levels, suggesting that the PCNA/ORF1p interaction is required for retrotransposition. Using cultured 

cell retrotransposition assays, I tested the mobilisation of a PIP mutant element across a range of 

FANCC ell lines. Interestingly, I observed that FANCA mutant cells supported retrotransposition of the 

PIP mutant at 16% of wild type levels. This unusual retrotransposition was rescued by 

complementation with FANCA protein. Activity of a PIP mutant element has not been previously 

reported, and was not observed in any of the other cell lines I tested, indicating that the capacity to 

support PIP mutant retrotransposition could be unique to FANCA cells.  

Having built up a body of data around the capacity of different L1 elements to mobilise in different 

cell lines, and which L1 domains are required in different cellular contexts, I wanted to further 

investigate the relationship between the FANC pathway and the L1 element. Several FANC proteins 

have previously been implicated as regulators of L1 retrotransposition, and the unusual patterns of 

retrotransposition I observe when these proteins are knocked out indicates a possibility that their 

absence could alter the mechanism of mobilisation. Because the absence of FANCA in particular 

enabled retrotransposition of ORF1p mutant, PIP mutant and endonuclease mutant elements, I 

performed a pull down in a FANCA deficient cells and a parental line using ORF1p. Using this line of 

enquiry, I hoped I could determine whether a different selection of ORF1p interactors would be 

present in the mutant cell lines. This pull down revealed several ORF1p interactors which have not 

been previously identified in L1 screens, including YTHDF2, a protein which recognises and binds N6-

methyladenosine (m6A)-containing RNAs, regulating their stability (Wang and Lu 2021). Validation of 

this finding by co-immunoprecipitation with T7 tagged ORF1p provided further evidence for this 

interaction in vitro. I also provide evidence for an in vitro interaction between ORF1p and FANCA, and 

ORF1p and FANCI.  

Finally, I investigated the possibility that increased R-loops could increase the frequency of ENi 

retrotransposition. Overexpression of human nuclease RNaseH1, which supresses R-loops, reduced 

both WT-LINE-1 and ENi-LINE-1 retrotransposition in FANCA deficient cells. 

 

 



187 
 

7.2 The role of ORF1p and the ribonucleoprotein particle in retrotransposition 
 

Though it is known that ORF1p is required for canonical retrotransposition, its precise role in TPRT 

remains to be elucidated. ORF1p is believed to function as a nucleic acid chaperone and is also 

required for the formation of the ribonucleoprotein particle (Kulpa and Moran 2005; Khazina et al. 

2011). The RNP itself is a key intermediate and has been found to be required for retrotransposition 

(Kulpa and Moran 2005). The fact that severe ORF1p mutants, which have previously been 

demonstrated to prevent formation of the RNP, can retrotranspose in FANCA cells, may indicate a 

different mechanistic role for the RNP in this cell line.  Interestingly, my experiments demonstrate that 

there is substantial difference in the retrotransposition capacity of an element severely mutated in 

ORF1p, and an element which is missing the ORF1p altogether. Indeed, transfection of an ORF1p only 

element resulted in negligible retrotransposition levels in both FANCA and parental cell lines. It should 

be noted that cell lines expressing ORF2 only cassettes have been reported to exhibit higher levels of 

apoptosis as a result of toxicity, presumably induced by the enzymatic activity of the domain (Gasior 

et al. 2006). Therefore, it is possible that this toxicity also reduced the observable retrotransposition 

events.  

The fact that FANCA cells tolerate severe ORF1p mutants which cannot form an RNP, but not removal 

of the ORF1 domain entirely, could indicate ORF1p provides important functional role in TPRT outside 

of formation of the ribonucleoprotein particle. This would support research by Kulpa and Moran 

(2005) who previously characterised these mutants, and observed that while the correct formation of 

an RNP was required for efficient retrotransposition, it was not sufficient. 

Kulpa and Moran observed the behaviour of these mutants using an epitope tagged ORF1p. In contrast 

to previous approaches, which tended to use in vitro expression systems or cell lines expressing high 

levels of ORF1 transcript, this epitope tagged approach ensured that the RNPs being characterised 

were bone fide retrotransposition intermediates. As previously discussed, the Class I ORF1p mutants 

prevented the detection of ORF1p in the sedimentation fraction containing the RNP. A study on the 

mouse ORF1p (Martin et al. 2005) found that a mutation analogous to the human class I 261AA 

mutation (mouse RR297-298AA) reduces the affinity of ORF1p to bind and fold RNA by 25%. 

Therefore, this mutant could be altering the stability of the RNP through affecting the association of 

ORF1p with its RNA transcript.  

Interestingly, analysis of the PCNA/ORF1p interactome by Mita et al. (2020) discussed in further detail 

below) suggests that ORF1p is exported from the nucleus during s phase, and that retrotransposition 

is primarily mediated by RNPs which are depleted of the protein. ORF1p may not be required for the 
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first steps of TPRT, including the creation of an incision in the DNA and the reverse transcription of a 

new L1 transcript. This scenario could potentially explain why PCNA, as well as other proteins known 

to interact with ORF1p in the nucleus, were not detected in the ORF1p pull down I performed in FANCA 

and parental cells.  

 Together, these findings may indicate that the FANC background influences whether a canonical RNP 

is required for retrotransposition, but not the downstream mechanism potentially impacted by the 

class II mutants. How the absence of FANCA could enable retrotransposition of elements without a 

canonical or stable RNP remains unclear, though it is conceivable that if FANCA acts as a repressor of 

L1 retrotransposition, its absence may enable retrotransposition in less optimal conditions. As the 

precise functional effect of the Cass I mutations is not known, it remains possible that they could 

prevent a post-translational modification of ORF1 which could alter how they interact with host 

factors such as FANCA.   

A limitation of my experiments is a reliance on cell-based assays, predominantly performed in CHO 

cell lines. It cannot be ruled out that the ORF1p mutants behave differently in hamster cells than the 

HeLa cells used by Kulpa and Moran (2005), or interact differently with the host DDR pathways. The 

ORF1p mutants I tested are variations on highly conserved amino acid motifs (Kulpa and Moran 2005), 

and mechanistic binding back of ORF1p to its own transcript to form the RNP during TPRT is thought 

to be largely conserved between rodents and humans (Kolosha and Martin 1997). Thus, I would expect 

the mutants to have a similar effect mechanistically in my cell lines as that previously reported. 

However, further experiments to consolidate the behaviour of the ORF1p mutants in hamster cells 

would address this caveat. In addition, the DDR in rodents can differ to that of humans. For example, 

Priestly et al. (1998) observed that NHEJ activity is reduced by 50% in hamster cells. The reduced 

concentration of DDR host factors at DNA lesions may enable L1 elements to compete more effectively 

to exploit various DNA lesions as sites for retrotransposition. Further experiments in human FANCA 

cells and in vivo experiments would help to address these issues.    

 

 

 

 

 



189 
 

 

7.3 The role of the PIP box, and the ORF1p/PCNA interaction  
 

A further key finding in this thesis was a mobilisation of L1 elements with a mutant PIP domain against 

a FANCA deficient background. The PIP box has been observed to mediate the interaction between 

PCNA and ORF1p (Taylor et al. 2013) and was observed to be necessary for retrotransposition in HeLa 

and HEK293T cells. PCNA is a sliding DNA clamp and an essential accessory for DNA replication 

(Reviewed Bruck and O’Donnell 2001). Acting primarily at the replication fork, the toroidal shaped 

protein behaves as a scaffold, encircling the DNA and recruiting and retaining various factors required 

for repair and replication of DNA (Krishna et al. 1994). The enzyme is a required processivity factor for 

DNA polymerase. Though PCNA is a known interactor of ORF1p (Taylor et al. 2013), its mechanistic 

role in retrotransposition has yet to be fully elucidated.  

Mita et al. (2020) sought to better understand the dynamics of the PCNA-ORF2 interaction by isolating 

the complex and characterising the PCNA-ORF1p interactome through mass spectrometry. This 

experiment confirmed that the nuclear L1 complex is predominantly depleted of ORF1p and 

associated with replication fork proteins such as MCM3, MCM5 and MCM6, providing further 

evidence that PCNA is a high specificity interactor for ORF1p. This could explain why, in ORF1p pull 

down I performed in FANCA cells, PCNA was not detected as an interactor. It also implies that FANCA 

or a downstream factor is likely to be interacting with L1 at different stages in its lifecycle.  

A series of biochemical and functional analyses by Mita et al. led to the hypothesis that ORF1p is 

recruited to chromatin during S phase and localises to sites of DNA replication with PCNA and 

replication fork proteins such as TOP1, RPA1, and PARP1. Interestingly, Taylor et al. 2013 

demonstrated that PCNA does not interact with ORF1p mutated in its endonuclease or reverse 

transcriptase domains, leading to the hypothesis that ORF1p recruits PCNA after the initial steps of 

TPRT have taken place. Mita el al 2020, therefore propose a model in which L1 RNPS localise to 

replication forks during S phase, some of these begin the process of retrotransposition. PCNA, which 

is at hand in the replication fork, could potentially be recruited and utilised to repair new L1 

cDNA/genomic DNA junctions. 

In the series of experiments, I performed in this thesis, retrotransposition of the PIP box mutant was 

unique to cells deficient in FANCA. This indicates that the phenomenon could be related to an activity 

of the protein itself, rather than a general FA phenotype in these cells. While, conceivably, the increase 

in stalled replication forks characteristic of FA cells could aid retrotransposition, it does not explain 

why the retrotransposition of PIP mutants is not observed in FANCC cells. One hypothesis could be 
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that during canonical TPRT, PCNA helps to recruit L1 to stalled replication forks In FANCA deficient 

cells, where stalled forks accumulate, an increased number of elements would be able to 

retrotranspose without this recruitment. 

The possibility that elements could be exploiting stalled replication forks was tested by Mita et al. by 

measuring retrotransposition after treatment with Aphidicolin, a chemical which leads to the 

generation of stalled forks. The group observed that L1 insertions increase as APH treatment causes 

cells to accumulate in S phase. 

 

7.4 FANC proteins as regulators of L1 retrotransposition  
 

A number of previous studies have identified different FANC proteins as potential regulators of L1 

retrotransposition (Liu et al. 2018; Mita et al. 2020). Tristan-Ramos et al. (2020) directly observed that 

cells in which FANCA or FANCC is knocked down supported higher levels of L1 retrotransposition. In 

both cases, complementation with the respective protein rescued the observed effect.  

My data corroborates both of these findings. I observe higher levels of wild type L1 retrotransposition 

in cells deficient in FANCA than in a parental cell line, and was able to rescue this effect with FANCA 

complemented cells. Similarly, I observe higher levels of retrotransposition by wild type elements in 

FANCD efficient cells in comparison to a parental cell line. Interestingly, FANCA has also demonstrated 

an affinity for single-stranded RNAs (Yuan et al. 2012), which could provide one potential means by 

which the protein could mediate suppression of L1 activity.  

Several genome-wide studies searching for potential L1 interactors have been conducted (Taylor et al. 

2013; Dai et al. 2014; Taylor et al. 2016; Taylor et al. 2018; Mita et al. 2018). FANCC and FANCA have 

been identified as potential interactors by two of these studies (Liu et al. 2018) and (Mita et al. 2020). 

Mita et al. (2020) also performed secondary validation on a number of factors that they identified to 

determine if an effect on retrotransposition could be seen. Therefore, together with the evidence 

presented in this thesis, there seems to be good support for these proteins as direct or indirect 

repressors of retrotransposition. The rescuing of this effect with complemented cells demonstrates 

that this finding is not because of secondary DNA damage caused by the FANC phenotype.  

As well as FANCA and C numerous other FANC proteins have been identified as potential repressors 

of retrotransposition, and some as activators. Table 5.1 summarises these findings in more detail. The 

proteins identified feature in different stages in the FANC pathway, some are part of the core complex, 

and some downstream. FANCD2, which is mono-ubiquitinated during the resolution of ICLS by the 
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FANC pathway (D’Andrea and Grompe 2003; Meetei et al. 2004; Walden and Deans 2014), has itself 

also been identified as a potential L1 interactor. It therefore seems that the FANC pathway could be 

interacting with L1 retrotransposition at multiple stages. It is not yet clear whether the core proteins 

could be interacting with/repressing L1 as one complex, or as individuals. As many of the FANC 

proteins have roles outside of their part of the FANC pathway (Sumpter et al. 2017), it is also unclear 

if this forms part of a secondary function or a result of the pathway as a whole. 

 

7.5 YTHDF2 as a potential negative regulator of retrotransposition  
 

One of the primary candidates I identified as a potential interactor of ORF1p was YTHDF2. Of the 

proteins that were significantly enriched in the sample in comparison to the negative control, YTHDF2 

had one of the higher fold changes.  

There are several reasons why this protein is interesting with regard to this research. YTHDF2 works 

to destabilise RNA containing the m6A modification, through recruitment of the CCR4-NOT 

deadenylase complex (Du et al. 2016; Wang and Lu 2021). Methylation at the M6A is one of the most 

abundant RNA modifications and has also been found to destabilise RNA: DNA hybrids (Reviewed in 

He et al. 2021). Furthermore, YTHDF2 has been found to interact with R-loop containing loci in vitro, 

and knocking out YTHDF2 results in an increase in the number of R-loops (Okamoto et al. 2019). I have 

already discussed the possibility that L1 uses R-loops to mobilise in Chapter 6: Figure 6.15. 

Interestingly, the m6A 'writer' METTL3 has been observed to increase retrotransposition, while 

ALKBH5, the “eraser”, appears to remove it (Hwang et al. 2021). The group hypothesise that L1 

“hijacks” this modification system to facilitate retrotransposition, which would corroborate my finding 

that YTHDF2 could serve as a negative regulator of retrotransposition. An additional study (Xiong et 

al. 2021) identified a substantial number of L1 elements containing the modification through a 

technique called MINT-seq, similarly noting that the modification facilitates retrotransposition. Hwang 

et al. (2021) demonstrate that the modification serves as a docking site for Eukaryotic Initiation factor 

(EIF), which was identified as an L1-ORF1p interactor in my proteomic screens in both FANCA mutant 

(VH4) and parental (V79) cells. It can therefore also be conceived that regulation of L1 by YTHDF2 is 

related to the modification, and that the protein interacts with and degrades L1 elements which 

contain this marker. It remains unclear why YTHDF2 would reduce L1 retrotransposition primarily in 

FA cells in this instance, unless L1 obtains more m6A in a FA context. 
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7.6 A potential model: R-loops as a site for insertion. 
 

Recently, there has been substantial interest in R loops, a structure that is made up of a RNA: DNA 

hybrid and a displaced single strand of DNA. R loops represent a source of genetic instability in 

mammalian cells, and can also contribute to a number of important biological processes. To prevent 

the formation of these structures, our cells have evolved a number of protective mechanisms. One 

protein involved in the prevention of R-loops is BRCA1, or FANCD1 of the FANC pathway. In fact, 

Garcio-Rubio have shown that the FANCA pathway removes R-loops and suggests that protecting cells 

from R-loops might be one major function of the pathway. 

Previous studies have demonstrated that the L1 is capable of exploiting a variety of different lesions 

as sites for retrotransposition. ENi retrotransposition has been observed at unrepaired double 

stranded breaks and telomeres. It is possible that the L1 element could be exploiting the accumulated 

R-loops in FANCC ells as sites for retrotransposition. Indeed, my work demonstrates that 

overexpression of RNAaseH1, which cleaves RNA: DNA hybrids, leads to the reduction of wild type and 

ENiretrotransposition.  

It cannot be ruled out that overexpression of RNAseH1 reduces L1 retrotransposition via another 

mechanism. In addition, though this model might explain some of the increased retrotransposition we 

see in FANCC ells, it is still unclear why I observe different results depending on which FANC protein is 

deleted. This may be due to differing contributions of the proteins to the overall pathway, or it might 

indicate that certain proteins, FANCA for example, play a more direct regulatory role.  

While there are limited studies investigating the relationship between RNAseH1 and L1, Benitez-

guijarro et al. (2018) observed that RNAseH2 promotes L1 retrotransposition. RNAseH2 also degrades 

DNA: RNA hybrids, and catalyses the majority of RNAse activity in the nucleus. Notably, RNAseH2 is 

mutated in Aicardi-Goutières syndrome (AGS), an autosomal recessive inflammatory encephalopathy 

related to errors in DNA metabolism. Cristini et al. (2022) demonstrate that RNAseH2 aids the 

resolution of transcriptional R-loops, and Benitez-Guijarro showed that overexpression of RNAseH2 

increased retrotransposition in HeLa and U2OS cells. Thus, the evidence suggests that the suppression 

of L1 activity by RNAseH1 is specific to the FANCC context.  
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7.7 Future work and outstanding questions 
 

This thesis contributes to the current understanding of the relationship between the FANC pathway 

and L1 retrotransposition. However, there are still outstanding questions.  

In this thesis I have demonstrated that FANCA mutant cells support retrotransposition of L1 elements 

mutated in a number of domains. While we can speculate, the mechanistic implications of this finding 

remain to be elucidated. There are several lines of enquiry that could provide further insight. Having 

established that FANCA interacts with ORF1p in vitro, it would be interesting to investigate whether 

mutating certain domains of the protein affects this interaction. This would help to deduce whether 

FANCA is binding ORF1p through particular motifs, such as one of the conserved amino acid motifs in 

the carboxyl terminus (REKG235-238, RR261-262 and YPAKLS282-287) (Kulpa and Moran 2005). It 

would also be interesting to determine whether binding of FANCA affects the formation of the RNP. 

This could be tested using a similar rationale to that of Kulpa and Moran: cells could be transfected 

with a construct overexpressing FANCA. Then, using western blotting and differential centrifugation it 

could be determined whether ORF1p sediments with the RNP (in the 160,000 g cytoplasmic fraction 

(Kulpa and Moran 2005).  

Furthermore, it would be interesting to determine whether other members of the FANC pathway also 

interact with ORF1p. Indeed, as shown in Table 5.1, a number of FANCF actors have been identified 

as potential regulators of L1 retrotransposition. However, the mechanistic basis of this regulation is 

not known, including whether it is mediated by direct interaction with L1. Among the cell lines tested 

in this thesis, the FANCA mutant was the only one which supported retrotransposition of ORF1p 

mutants and the PIP mutant. This could be a direct or indirect result of a particular activity of FANCA, 

for example direct regulation of the L1 element. Alternatively, other proteins in the core FA complex, 

or in the pathway as a whole, could also interact with L1 directly.  

It also would be interesting to perform in vivo immunofluorescence experiments to identify whether 

FANCA co-localises with the RNP during the retrotransposition cycle. This might provide further insight 

into whether FANCA and ORF1p are interacting in vivo and how modifications of the L1 cassette, for 

example through the ORF1p mutations, impact this interaction. 

Another important finding in this thesis was the identification of YTHDF2 as a potential ORF1p 

interactor. Having better optimised the retrotransposition assay in YTHDF2 cells and their parental 

line, I would like to better establish whether a range of different ORF1p mutant elements can 

retrotranspose efficiently in these cell lines.  
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Indeed, if these mutants are also able to retrotranspose in YTHDF2 mutant cells, it would indicate the 

possibility of a connection between the protein and the unusual retrotransposition I see in FANCA 

deficient cells. It could be that YTHDF2 negatively regulates retrotransposition in cooperation with 

FANCA, and that in the absence of this protein thus enables mobilisation of these elements. 

Furthermore, it would be interesting to investigate which specific conditions facilitate the interaction 

between ORF1p and YTHDF2. My data suggests that YTHDF2 could interact more with ORF1p in FANCD 

deficient cells, however it’s not clear what is causing that distinction. Testing whether a higher 

proportion of L1 elements contain the m6A modification in FA cells would provide further insight, as 

well as investigating whether YTHDF2 is upregulated in a FA context.  

I would also like to further characterise the insertions that were generated by the ORF1p mutant 

elements. Studies have shown that ENm insertions have some distinct characteristics providing clues 

about the mechanism they were generated by.  

My work also demonstrated that overexpression of human nuclear RNAseH1, which supresses R-

loops, leads to a reduction of both wild type and ENiretrotransposition. This led to the development 

of the model shown in Figure 6.15 would also like to further investigate whether the overexpression 

of RNAse H1 would also lead to a reduction in the abnormal retrotransposition I observed in FANCC 

ells during this thesis, for example of ORF1p mutants or the PIP mutant. This might indicate whether 

the increased retrotransposition I observe is related to the increase in R-loops or another 

characteristic of the FANCC ells. Furthermore, it would be interesting to repeat these experiments 

with RNAseH2, as Benitez-Guijarro previously found that overexpression of the protein resulted in an 

increase in L1 activity. Repeating this experiment in a FANCC context would better illuminate the 

relationship between the FANC pathway, L1 retrotransposition and R-loops 
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