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Abstract: Machine learning and data intensive methods can be applied to a
plethora of research domains. We apply supervised and unsupervised machine
learning, Monte Carlo simulations and statistical tools to three diverse areas of
research, tackling a range of computational and data analysis challenges unique to

their respective environments.

Using SHERPA — a Monte Carlo event generator — as a Standard Model machine we
generate thousands of particle collision events. We employ a range of neural network
architectures to determine the most powerful discriminating features which eliminate
vast numbers of background events enabling us to calculate new constraints on the

charm Yukawa coupling at the Large Hadron Collider and future projections.

Hartlepool Nuclear Power Station has a rich array of instrumentation that con-
tinuously monitors reactor health as frequently as every second, at all times. We
apply unsupervised machine learning and Bayesian tools to scrutinise anomalous
behaviour in the data which is indicative of instrumentation degradation prior to

instrumentation failure.

JUNE — an agent based epidemiological simulation — is used to extract novel social



mixing matrices at Cox’s Bazar, a refugee camp in Bangladesh containing ~600, 000
displaced people. These contact matrices can be used to understand social interac-

tions and disease spread and therefore provide better utilisation of limited resources.
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Chapter 1

Introduction

Machine learning and data intensive tools can be applied to a plethora of research
domains involving high dimensional and complex datasets. These tools have the
power to distil meaningful and concise information from large datasets. In this
thesis, we will apply supervised and unsupervised machine learning, Monte Carlo
simulations and statistical tools to three diverse areas of research. Each of these
three distinctive projects tackled a range of computational and data analysis issues

which we will address throughout this thesis.

In the first part of this thesis, the introductory chapters will outline the prerequisite
concepts required across the projects. We present methods in supervised and unsu-
pervised machine learning in Chapter 2 which are relevant only in Chapter 5 where
we use supervised machine learning tools to eliminate backgrounds in a cut-flow
analysis and in Chapter 6 where we make use of unsupervised machine learning tools
to understand anomalous trends in time-series data. The explanations of the tech-
niques of machine learning and data intensive science are drawn from the reference
textbook [3]. In Chapter 3 we will review the stochastic simulation tools employed
in Chapter 5 and Chapter 7. In these chapters we make use of SHERPA a particle
physics event generator and JUNE an agent based epidemiological simulation tool.
In Chapter 4 we will outline the key physics concepts relevant for Chapter 5. In this

chapter we largely follow the reference textbooks [4-6].
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Chapter 1. Introduction

o In Chapter 5 of this thesis, we will discuss current and future constraints on

the measurement of charm Yukawa coupling. Many of the concepts introduced
in Chapter 2 and Chapter 3 and Chapter 4 will be utilised in this chapter. We
will use the Monte Carlo event generator SHERPA to produce a vast dataset
of background and signal processes and apply systemic cuts to preferentially
retain signal over background using a selection of neural network architectures.
Then the CLg statistical likelihood profiling method [7,8] is used to extract a
meaningful interpretation of the determined value of the Yukawa coupling, or

to be more precise its upper-bound confidence limit.

In Chapter 6, I present work on the industrial placement undertaken at Hartle-
pool Power Station in collaboration with Durham University Centre for Doc-
toral Training in Data Intensive Science and EDF. The placement was conduc-
ted between 16th September 2020 — 17th April 2021. The keys aims of this
project were to expand upon and explore novel decision support tools which
could be used to indicate reactor and or instrumentation health. We apply
unsupervised machine learning methods introduced in Chapter 2 to explore
the large multi-dimensional time series dataset produced from a large array
of sensors in the cooling system and reactor core at Hartlepool power station.
We test the applicability of these tools to detect changes in the operational
parameters of the instrumentation and the reactor itself. Unexpected or an-
omalous behaviour can be indicative of instrumentation degradation prior to
instrumentation failure. Detection of these behavioural changes allows for
safer operation and efficient replacement of key instrumentation. These new
monitoring techniques were delivered with a demo dashboard which demon-
strates the methods outlined in this chapter for a subset of the operational

data measured at Hartlepool power station.

Lastly, in Chapter 7, I present another industrial placement undertaken with

United Nations (UN) Global Pulse in collaboration with Durham University
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Centre for Doctoral Training in Data Intensive Science. The placement oc-
curred between 17th January 2022 — 17th August 2022. The UN Global Pulse
is a data driven department of the United Nations in which teams of digital
engineers work together with global governments to apply modern data science
and forecasting tools with novel technologies fulfill the goals of the UN in
responding to modern, global challenges [9]. The aim of the placement was to
derive new social mixing contact matrices for Cox’s Bazar using a combination
of survey data and Monte Carlo simulations of the camp. Contact matrices are
particularly useful in understanding social mixing and disease spread and as
these matrices are not well known for the Global South or vulnerable popula-
tions. We develop algorithms within JUNE (an individual based epidemiology
tool discussed in Chapter 3) to understand social mixing and derive contact
matrices Cox’s Bazar, a refugee camp in Bangladesh in which the understand-
ing of social mixing is paramount to limit disease spread and better utilise

limited humanitarian aid.

This thesis aims to tie together a range of data driven tools across a wide range of
domains of research, pulling together robust tools that are regularly exploited in

particle physics to other branches of academic pursuit.






Part 1

Introductory Content






Chapter 2

Machine Learning

Machine learning (ML) is an exceedingly powerful tool to aid in the comprehension
of vast and complex datasets. It is a rapidly evolving field that is applicable across

many areas of research and everyday life [10].

ML is a general catch-all term for algorithms that are able to “learn” without direct
supervision to perform a range of tasks requiring some level of pattern recognition.
A key benefit of ML tools is that the more data we provide during the training stage
the more powerful and accurate they can become, providing the task and dataset

are appropriate.

ML models fall into two general classes, supervised and unsupervised. A supervised
model requires labeled input and output data during the training processes to
inform the learning process whereas an unsupervised model does not and it extracts
structures in the data automatically. Any type of supervised neural network requires
a carefully curated labeled dataset which can be very resource intensive process to
collate. Alternatively, unsupervised methods such as Principal component analysis or
K-means clustering do not, they infer arbitrary classifications based on the underlying

structure of the data.

ML algorithms can be trained for a number of purposes:

o (Classification: An input can be interpreted and classified to a selection of
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categories.

e Dimensional reduction: An multi-dimensional input is transformed into a lower

dimensional representation with minimal loss of information.

o Anomaly detection: A prediction is made as to how representative a new datum

is to the training dataset.

e Prediction: Given an input time series a prediction can be made about the

data in the past or future.

o Data generation: The generation of new artificial data which is representative

of the training dataset.

An intuitive example of a ML algorithm is the Binary Decision Tree (BDT). They
are as powerful as they are computationally quick, and easy to interpret. When
trained the BDT classifies the data with a sequence of simple binary decisions, for
example is the petal length > 70 mm? [11]. This flow of decisions is often depicted

as a branching tree in which every decision creates a new branch.

More complex than the BDT is the Neural Network (NN). NNs are powerful tools
which are able to approximate any function that is defined by the data, however as
the complexity of the data increases so must the NN and the size of the training
set which becomes increasingly challenging to label accurately and efficiently. NNs
however can be trained on artificial data (with appropriate considerations), thus we

turn our attention to Monte Carlo generated data to train models.

2.1 Machine Learning In Context

In this thesis we will apply ML methods to two areas of research. Firstly, we
will apply supervised ML methods to future projections of data produced from the

Large Hadron Collider in Chapter 5. Then in Chapter 6 we apply unsupervised ML
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methods to the vast array of instrumentation at Hartlepool Power Station which

constantly monitor the reactor health.

« In Chapter 5 we turn our attention to the Large Hadron Collider (LHC). The
quantity of data produced at the LHC is astronomical. The raw data generated
at LHCb from each raw event is roughly 50 kB in size and with as many as
40 million proton beam crossings per second we have 1.5 TB of data being
generated every single second. Processing and storing this quantity of data
is not economically or technologically possible thus the LHC uses real-time
data analysis referred to as “triggering”. Triggering is used to discard as much
as 99.999% of the data [12]. Despite discarding so much data there is still
~10PB of data being stored every year which has to be analysed in a smart
way. The method of discarding uninteresting events is a cut-flow, this is when
a series of successive cuts are applied which will reduce the total number
of events in the sample. These cuts can be simple, such as cuts on event
properties for example demanding an anti-k; jet with a minimal py or they
can involve more nuanced relationships derived from complex observables from
highly multidimensional datasets. The choice of observables can be determined
heuristically, for simple datasets using a good physical intuition. However for
increasingly complex datasets machine learning can be a powerful tool. Any
cut-flow should preferentially discard background or uninteresting events over
the signal or otherwise interesting events. At the LHC BDTs and NNs are

particularly popular [13].

The efficiency and interpretability of BDTs makes them well suited as a trigger
level classifier at the LHC. At the LHC they implement a two stage triggering
process. The level 1 trigger is automatic and computationally cheap, it looks at
surface level features of the events such as very high energy particles or particles
in unusual spatial or energetic combinations within the detector. Next, the
level 2 trigger takes the information from a whole event and performs more

sophisticated analyses and checks for signatures in the data which could be
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indicative of new physics.

NNs can be applied to a range of purposes in a high energy physics (HEP)

context [14].

— Classification: Extract signal events from a large background or jet clas-

sification.

— Dimensional reduction: Creating new and interesting observables, or

investigate a dimensional space in which that data has the most variance.

— Anomaly detection: Discover new and interesting physics that are not

representative of some model (e.g. the Standard Model).

— Generative Adversarial Neural Networks (GANs): Generate fast event

generators.

We will apply a range of NN architectures to create an efficient cut-flow which
rejects uninteresting background events preferentially over signal events by
many orders of magnitude. This cut-flow will allow us to place tighter con-
straints on the Yukawa charm coupling using Standard Model Monte Carlo

simulated data.

In Chapter 6 we apply two unsupervised ML methods to provide indicators for
transient behaviour at Hartlepool Power Station. The station has a vast array
of instrumentation sampling data at a frequency no less than several times
per minute. A team of engineers and various tools are already implemented
which monitor these readings live at all time to ensure maximal reactor and
instrumentation conditions. The safe operation at any nuclear power station is
paramount, measuring and understanding every detail of the reaction process

is a key part of ensuring the continued safe operation.

In particular, we examine hourly averaged data over a decade from two reactor
cores which have over three hundred fuel rod monitoring channels each with

thermocouples and control rod position readouts. Further, each reactor comes
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with corresponding cooling systems which monitor: water inlet temperature,
outlet temperature, pressure, saline and chemical contents of the vacuum and
condenser systems. These readings are deeply complex, containing features
sensitive to the power grid demand, ambient temperature, sea temperature
and the weather. The features come with complex correlations and periodic
behaviour and in some cases missing or corrupted readings. All these challenges
have to be addressed before any attempt at applying machine learning methods

can be performed.

We investigate two promising avenues for further research which will aid in
future tools to monitor reactor and instrumentation health. These two ML
methods are complimentary tools which look for anomalies in the data — that
is when a set of data points are no longer well represented by underlying
distributions understood from previous data. In this project we step away from
NNs for the benefit of interpretability, the chosen models provide probabilistic
interpretations from easily understood predefined parameters, compared with

NNs in which the learnt parameters are not always intuitive.

2.2 Neural Networks

While the structure of a NN is dependent on the form of the input data and the
required task the fundamental building blocks remain unchanged. The name and
structure of NNs were inspired by the structure and function of the brain, the neurons
and synapses in the brain are mimicked in the nodes and interconnected layers in a
NN and the firing of neurons is emulated by the activation functions. While this is
obviously a charming analogy in fact the complexity, adaptability and functionality
of the human brain far exceeds any NN to date. A more accurate picture of the
function of a NN is to consider it as learning an approximate function which maps
any input data to the output in which the parameters of the function are stored

within the structure of the NN itself.
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The simplest component of a neural network is the perceptron which consists of an
input layer which takes our data, passes it to a node which performs a set of simple
operations defined by set of parameters stored in that node and returns an output
value. A perceptron is represented graphically in Fig. 2.1.

Ty —

Ty —

Figure 2.1: The perceptron, the building block of any
neural network. A input vector of data = are
transformed by the fitted weights w, bias, b and
chosen activation function o to generate an out-
put value, 7.

The perceptron shown in Fig. 2.1 can alternatively be expressed mathematically as,
=4

g=0(> wa;+b), (2.2.1)
i=1

where x; defines our input data, w; the edge weights, b the bias and finally ¢ the
activation function. Activation functions are introduced to produce a non-linear
response and act as a regulator in the NN. There are a plethora of choices and in
Fig. 2.2 we show a selection of the most common choices which will become important

during the training procedure.

In supervised learning we have a training dataset, X of length N which will have
known output values, Y. We can define a loss function which compares the known
values Y against the predicted outputs Y and informs us how well the NN is per-
forming. The loss function can take a variety of forms; a popular choice is the mean
squared error,

1 X A
Lyise = N Z(yz - yi)2 . (2-2-2)

=1

The performance of the NN can be improved by minimising the loss function with

respect to the model parameters — the weights and biases. This is done by a process
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Figure 2.2: A selection of the most common activation func-
tions. We depict a binary step, linear, rectified

linear unit (ReLU), leaky ReLU, sigmoid, soft-

plus, tanh and tan™".

known as backpropagation in which we evaluate the gradient of the loss function with
respect to the parameters. This gradient can then be used to incrementally change
the value of the parameters in the downwards direction of the loss function landscape
at that location in parameter space. A simple numerical method of updating the

parameters is a gradient descent approach,

¢ =¢—aV,L(¢) . (2.2.3)

Here ¢ defines any parameter in the model with the primed value being its new
updated value, V,, is the partial derivative with respect to ¢ and « is the learning
rate, a positive scalar that defines the stepsize downhill. The learning rate can be
arbitrarily chosen or an optimal value can be selected from a range of values for each
iteration of backpropagation — a line search. This process is iterated and produces a
downward trajectory in the loss landscape towards — ideally — the global minimum
which will be the best set of parameters for the training data and architecture.

Gradient descent is a powerful tool for situations in which the minimum of a loss
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landscape can not be analytically solved. However, poor choices of the learning rate
can yield non-optimal results. If the learning rate is too small, stepsize and therefore
convergence can be slow. Further, we may find ourselves in a local minimum in the
loss landscape as we have scoped a smaller portion of parameter space. Alternatively,
if the learning rate is too large we will jump around the minimum never settling at
the minimum. This is why a line search or a learning rate schedule is used where
we start with a large value and decrease its value as the loss plateaus towards the

minimum.

The training procedure of a NN typically involves splitting the data into (at least')
2 sets, a training set and a validation set. The purpose the training set is to
fit the parameters of the model such that the loss function is minimised whereas
the validation set is used only for validation and model assessment. Having an
independent validation set provides a set of data which the network has never been
exposed so that independent performance metrics can be calculated. A NN can
be described as overfit if the NN performs extremely well for the training set but
poorly for the validation set, this implies that the network is learning the training set
precisely and thus generalises poorly on new unseen data. Having an independent
check allows us to truncate the training process at an optimal point where the loss
is minimised and also when the loss in the validation set is minimised. The training

process is outlined below:

1. Forward pass: X, is passed through the network, calculating the loss function

of all data.
2. Backpropagation: The model parameters are updated.
3. Repeat 1. and 2.: Loop through every batch of data, Xj.

4. Repeat 1., 2. and 3.: Loop for a large number of epochs or until some other

"More sets can be used for hyper-parameter tuning, model selection or a test set which is
carefully curated to contain interesting example data points so that you can compare models with
independent data.
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criteria is satisfied.

If a training set is especially large it is typical to slice it up into batches to mitigate
any hardware bandwidth issues and thus improve overall efficiency. The training
procedure and choice of model architecture leaves us with a large number of hyper-
parameters to consider. Hyper-parameters define the learning process or model
architecture, these include the number of epochs, batch sizes, learning rates and the
initial parameter state which directly affect the learning process. We also have the
number of nodes, hidden layers, choice of activation functions and loss function which
should also be considered carefully as they affect the models” performance for certain
tasks and its susceptibility to overtraining. For example, certain activation functions
generate a non-linear response which improves the NNs ability to model complex non-
linear functions, so we might choose a ReLLU or a sigmoid for certain nodes. However,
a ReLU can take value 0 which sets its value permanently, it therefore becomes a
dead neuron which no longer contributes to the network output. The sigmoid is
susceptible to the vanishing gradient problem. This is where the gradients used
to update the network become increasingly small approaching zero and precision
of the system. This means that the weights of the earlier nodes in the network
become slow to update or they stop updating entirely during the backpropagation
procedure. Long strings of many interconnected nodes are particularly susceptible to
the vanishing gradient problem as the use of the chain rule compounds the effect of
the small gradients. These issues can be mitigated by ensuring weights remain close
to unity by data normalisation, trying different activation functions or alternatively
introducing new structures in large NNs such as recurrent blocks [15] which include

skip connections.

Many techniques exist to speed up the training process, make it more generalisable

and reduce overfitting:

o Feature engineering: Construct features that are independent and contain high

variance.
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o Feature regularisation: Normalise and standardise the input data across the

sample such that their values typically remain in the interval [—1, 1].

o Data augmentation: Use inherent symmetries in the data to create new data
points (e.g. flipping of images) or introducing small changes to the input data

to increase network robustness.

o Weight normalisation: The weights of a node can normalised at each step to

mitigate the vanishing gradient problem.
o Batch randomisation: Shuffie the data points in each batch at every epoch.

e Dropout layers: Introduce dropout layers which will randomly kill neurons in

each batch which serves to reduce overfitting.'

With the key concepts of the perceptron defined, we can begin to construct more
complex architectures. Firstly, we will discuss dense fully connected neural net-
works (DFCNs) which are simple feedforward networks composed of stackings of the
perceptron in height and width forming new hidden layers. Secondly, we discuss
convolutional neural networks (CNNs) which are optimal for datasets which have
grid-like topologies. This could be a time-series or images in which neighbouring
data points contain correlations which should be exploited and learned by the model
by use of convolutional operations. A convolution can be thought of as applying
a filter over an image which may extract features such as edges or perform noise
reduction with blurring, the parameters in these CNNs learn these types of filter
kernels. Lastly, we define recurrent neural networks (RNNs) which process sequential
data in a way that parameters are shared over many nodes or edges. They can be
configured to take inputs of variable sizes and they contain complex structures which
store the state of previous (or future) inputs. Thus they can be powerful tools in

interpreting patterns between present and past (or future) data points.

'Dropout layers only exist at training time and are removed in validation and deployment.
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Figure 2.3: An example dense fully connected feed forward
neural network. Here a vector  of length 4
feeds into the network which has 3 hidden layers
each with depth of 5. A single output value ¢
is calculated.

We will use all of these types of networks in Chapter 5 to maximally exploit subtle

differences between out signal and background classes:

Event observables (cf. Sections 4.5.1 and 5.4 ) — DFCN,

Jet observables (cf. Sections 4.5.2 and 5.4) — DFCN,

Jet images (cf. Section 5.4) — CNN,

Jet particle flows (cf. Sections 3 and 5.4) — RNN,

Vertex observables (cf. Sections 4.5.3 and 5.4.2) — Time distributed - DFCN,

Vertex particle flows (cf. Section 5.4.2) — Time distributed — RNN.

2.2.1 Dense Fully Connected Networks

A DFCN is one which comprises of many layers where every node in each layer is
connected to every node in the next. A model is described as deep if it contains many
hidden layers, this is where the terminology deep learning originates. An example
architecture is shown in Fig. 2.3. In a DFCN we can consider each hidden layer as

learning increasingly abstracted features.
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2.2.2 Convolutional Neural Networks

Convolutional neural networks are powerful tools for data types where the input
data is correlated between neighbouring values in some manner. The networks are
called convolutional as at least one layer performs a convolution calculation instead

of general matrix multiplication, mathematically a convolution is described as,

s(t) = (z % k)(t) = /m(a)k(t —a)da . (2.2.4)

In ML terminology we describe z as the input and % as the kernel and the output
s(t) as the feature map. In the context of CNNs we discretise the input and kernel
to handle discrete data,

S(i) = (zxk)(i) =>_z(a)k(i—a) . (2.2.5)

For two dimensional data such as images we can define a two dimensional convolution,

S(i,j) = (xxk)(i,j) =Y zb:x(a, k(i —a,j—b). (2.2.6)

A two dimensional convolution can be thought of as passing a kernel over an image
and summing element-wise the products of the elements that overlap the kernel as
depicted in Fig. 2.4. The convolution can of course be extended to an arbitrarily
large number of dimensions. It could be suggested that one could use a DFCN
network for image processing, an array describing an image could be flattened into
a one dimensional array and training could commence. However, the properties of
CNN architectures make it well suited for image processing as they have increased
performance with reduced complexity. A CNN is sparsely connected, the nodes of
each layer are not connected to every node of the previous layer which does two
things: the number of calculations is greatly reduced and the receptive field of the
nodes are reduced. The receptive field is the collection of nodes that affect each
other, a reduced receptive field (in the context of kernel filters) forces the early
hidden layers to detect smaller meaningful features like edges first before the more

abstracted features spanning whole images. Secondly, we have parameter sharing,
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Figure 2.4: An algebraic example of two dimensional convo-
lution. This convolution is “valid”, the convolu-
tion is only calculated when the kernel overlaps

the image fully. Figure from [3].

each convolutional layer defines a kernel which acts over many nodes reducing the

complexity of the neural network substantially. Using a DFCN for a purpose well

suited to a CNN is likely to be susceptible to poorer performance, longer training

times and overfitting. A convolutional layer is defined by three steps:

1. Convolution stage,
2. Detector stage,

3. Pooling stage.

The convolution stage we have already discussed it is the stage which performs the

convolution of nodes with a kernel. The detector stage applies activation functions

such as those defined in Fig. 2.2 to the node outputs for the same purposes as the

DFCN — to introduce non-linearity. Lastly, the pooling stage calculates a summary

statistic over a region in the image, for example the average, minimum or maximum

value. Pooling is introduced to enforce translational invariance, we generally wish



34 Chapter 2. Machine Learning

to be sensitive to the feature existing but not to exactly where it exists in the image.
Pooling also reduces the dimensionality of the data flowing through the network
reducing the complexity of the CNN. After a handful of convolutional layers their
outputs can be combined in the architecture to transition into fully connected hidden

layers and finally to the output layer.

2.2.3 Recurrent Neural Networks

Recurrent neural networks are used to process one dimensional sequential data such
as speech, written language or dynamical systems. There are two key differences
between the RNNs and DFCNs: an RNN takes advantage of parameter sharing like
the CNN but also an RNN is “stateful”. A stateful network is one which retains
some information about a past or future state in the data, enforcing connections
between difference features in a time-correlated way. To define the structure of a
RNN we consider a classical dynamically evolving system which is defined by some
function, f with parameters, # that maps the previous state, s to the new one

NO)

s = f(st1.9) . (2.2.7)

In the context of RNNs we can instead consider a hidden layer dynamical state, h

that depends on some driving force, x the features in the data input vector,
O = f(hY 2®.9) . (2.2.8)

This approach is particularly powerful as it allows us to iterate arbitrarily many

times thus we can feed in input data of arbitrary length.

There exist a few choices for how to use the state information, it can be passed
only to other RNN cells in the past or future or alternatively also to other layers
in the network (cf. Fig. 2.5 depicts the state being passed in to other layers and
future RNN cells). Each of these options comes with a unique balancing act between

complexity and training efficiency. Simple RNNs (see Fig. 2.5) have significant draw
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Figure 2.5: An example neural network consisting of a
chain of RNN cells. The state of each cell, h(t)
is fed into the next cell and can be fed to fur-
ther layers deeper in the model.

backs: they are highly susceptible to the vanishing gradient problem and they have
a short-term memory in which they have a hard time retaining information over long
sequences. To combat these issues more complex RNN layers: the Long Short Term
Memory (LSTM) and the Gated Recurrent Unit (GRU) layers were invented. Both
of these comprise of cells which introduce a set of structures known as gates which
calculate thresholds in the data indicating a level of retention or importance. In this
thesis, we will make use of GRUs only. In each GRU cell i, we define a set of input

weights w; ;, recurrent weights 1; ; and biases b; which parameterise the activation of

1,59

the reset and update gates and the hidden layer. u and r correspond to the update

and reset gates activation,

b“+zw” ! +wah§t , (2.2.9)

and
b“rz%J T +Z¢w 0y (2.2.10)

Finally we can define the update equatlon for the state,
K = ul(-t_l)hz(t_l)—l—(l—ugt 1))tanh (b + Zw” T )+ Zw” Jt b h(t b ) , (2.2.11)
j

where 2 is the input vector of features for a time ¢ and hY is the current hidden
layer state vector. Sigmoid, o and tanh are the choice of activation functions used

in the GRU such that the update and reset values are regulated between 0 and 1
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Figure 2.6: Left: A simple RNN which takes information
from the hidden state of the previous cell to
determine its output. Right: A GRU, intro-
ducing an update and reset gate indicated by
the red dashed bounding box. >_ represents the
weighted sum plus bias, + and X are element
wise addition and multiplication and 1— trans-
forms an input x as * — 1 — x. Finally ¢ and
tanh represent the sigmoid and tanh activation
functions.

and the overall cell activation between —1 and 1. This keeps the cell regulated and
allows the update and reset gates to individually ignore features or mark importance

in the state vector.

Finally, we introduce time distributed layers which slice an input vector and apply
the same identical NN layer across each slice. This is a useful tool if we want each
slice of the data to undergo the same transformations from a given layer in the neural
network, thus extracting the same features from each. The outputs from the time

distribution can then be concatenated into dense layers.

2.3 Unsupervised Machine Learning

We have discussed at length neural networks which are an examples of supervised
machine learning, in Chapter 6 we will make use of two examples of unsupervised
learning, Principal Component Analysis (PCA) and Bayesian Online Change Point

Detection (BOCPD) which are tools we employ for anomaly detection.
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2.3.1 Principal Component Analysis

PCA [3] is a powerful unsupervised machine learning tool which transforms a high
dimensional dataset into a lower one by transforming the data along components
containing the most variance 1, 2, ..., k and dropping the lower variance dimensions
k+1,k+2,...,m. Dimensional reduction allows for easier data visualization, quicker
computation and easier model training without loss of information. If we keep k
components containing a threshold variance we can ensure information about the
features is not lost. Intuitively we define the 1** PCA component direction with the

unit vector w as such:

Opey = argmaX{Z(m(i) -w)?} . (2.3.1)

Alternatively the PCA components can be determined by calculating the eigenvectors
v, and eigenvalues )\, of the matrix & - & where & is our n x m matrix dataset with
n rows of samples with m columns of features. The eigenvectors form the weight
matrix W = (v, v, ..., v,,) which are ordered in terms of their eigenvalues such that
Ai > A4 therefore generate a diagonalised matrix A = Diag(A(, Ay, ..., A,,). Then
the transformed data is;

P=W".z. (2.3.2)

Much like the supervised neural networks, PCA performs best on standardised and

centred values which are calculated with the following transformations;

x5 — ()
o= % AT 2.3.3
x%] a(wj) ) ( )

where p(x;) and o(x;) are the mean and standard deviation across all available

samples for feature 7. Nominal data to one standard deviation will now exist in the

range [—1,1].

PCA works under the assumption that the measurements are independent and
stationary. For a non-stationary series, any new data point will be poorly represented

in the transformation thus we can use PCA as a means of anomaly detection. Further,
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Figure 2.7: Operational example of PCA on a dummy data-
set. Left: Depiction the raw data and arrows in-
dicating the PCA component directions. Right:
Normalised and transformed data. Histograms
over each the axis are also shown.

if new data points in general are poorly represented then this might be an indication
of changing distributions in the original, un-transformed data. To quantify this we
introduce two test statistics, the Hotelling-7? statistic and the square predictive
error also known as the () statistic. These statistics are often used to monitor time
dependent processes in various industrial settings [16-18] not dissimilar from the

data in Chapter 6. The T2 statistic is defined as;
T° =z P,A}'Pix . (2.3.4)

Which gives us a measure of deviations of the latent variables as understood within
the first £ PCA variables. If we have large deviations in these latent variables we see
an increase in T2. A constraint can be placed on the values of T? which we deem

an acceptable variation in our data with a confidence limit,

_ k(n*—1)
™ = ka,n—k(Oécrit) . (2.3.5)

Fyn—k(0rir) defines the Fisher-Snedecor distribution with a confidence oy which

for the 99% confidence limit, . = 0.01. The Fisher-Snedecor distribution is a
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continuous probability distribution that is often used as a tool in analysis of variance

or F tests [19]. The @ statistic is defined as such;
Q=2"(I - P,P})x. (2.3.6)

The @ statistic gives us a measure of the goodness of fit of the sample and is directly
related to the models understanding of the noise of the m — k rejected PCA variables.
The @ statistic can also constrain our confidence in the sample data point with the
approximation [20],

1/hg
2o A/ 20508 Osho(1 — h
ag =6, ( R 0(02 0)) : (2.3.7)

01 1

where e.g. 2z, . = 2.33 is the z score required for agy = 0.01 in a two tailed

crit

confidence limit and

26,0,

0, = Z /\§ where i=1,2,3 and hy=1-— 362

j=k+1

(2.3.8)

Comparing the PCA transformed values, 77 and @ statistic enables PCA to be used
as a form of anomaly detection. Any values of large magnitude in the transformed

space or in these statistics then indicates that the data point is badly explained by
the PCA model.

2.3.2 Bayesian Online Change Point Detection

Bayesian modelling is broadly speaking any modelling technique that incorporates a
degree of certainty into the model building. Here we define a Bayesian approach to
detecting “change points” (CPs). A change point is described as a point in the data
at which we see a distinct change in the properties of the underlining distributions
producing that data. There are a plethora of CPs detection algorithms [21], however
a key benefit of a Bayesian approach is the probabilistic nature of the method and

interpretability it provides.
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Figure 2.8: An example piecewise distribution with two
change points located at the red dashed lines.

Consider the example shown in Fig. 2.8 which depicts a piecewise distribution made
from three Gaussian distributions which have different parameters in each of the
three regions. The point at which these underlying parameters (the mean and
variance) change are known as change points. The goal of Bayesian change point
detection (BCPD) is to identify where these CPs lie with some confidence which
depends on our priors the best estimate for the underlying distributions and the
uncertainty on the data and the data itself. BCPD falls into one of two types, online
and offline. Offline requires the full dataset before looking for CPs which typically
means our priors are better informed but we lose the possibility of live forecasting.
Bayesian online change point detection (BOCPD) allows us to actively update our
priors as we collect more data and return probabilistic certainties of CPs. We follow
the methodology of Adams and Mackay [22], making only minor adjustments in how

the sequence parameters are handled.

We describe CPs in data in terms of run lengths [, for every additional data point
if we consider it part of the same distribution [, = [, + 1 i.e. the run length has
increased by one. Alternatively, if we consider the new data point belonging to a
different distribution then [;,; = 0. To take a probabilistic approach, we consider
all possible run lengths, for example a data point at £ = 5 has 6 possible run length

paths (see Fig. 2.9).

New data points continue as a member of the sequence of length [, =t — t .+ of

all previous points, which start at t,,:. A drop to [, = 0 indicates the current run
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Figure 2.9: Example of all possible run length paths
between t = 0 and ¢t = 5.

is truncated and a new sequence begins — there is a CP. The BOCPD algorithm
gives each (¢,1) coordinate a probability value which is normalised to 1 over t of
constant value, these probabilities are mapped to a matrix L(¢,1) which identifies the
most likely ¢ where the underlying distributions have changed. To implement this
procedure, we first have to make an underlying assumption about the distribution
our data originates from, our prior 7r§l). This prior depends on the distribution of
the data in all possible possible run lengths [, at time ¢. It is common to assume that
the data is approximately drawn from a Gaussian distribution with p(x) indicating

the mean of the series & and « is standard error such that,

) = N(:xt | s= o 7)o = max(o at)) S @39)

Next we define a hazard function H this is a hyper-parameter estimator of the

frequency of CPs expected in the series, we can define it as,

H(r) = (2.3.10)

1

A 7
where A is a timescale estimator for a memoryless process where we consider CPs
to be independent. The analysis is not hugely sensitive to this value if the CPs are

clearly defined or the errors are narrow with respect to the magnitude of the data.

The algorithm is as outlined in Alg. 1.
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Alg. 1: The BOCPD algorithm.
Input Data: L(t,1) =0, except L(0,0) =1
t: The active time step

[: The sequence length

if Online then
Observe new datum: x;

for [ € length(z;) do
Calculate mean of sequence: pb = p(z,_; : ;)

Calculate estimated standard deviation of sequence: ¢! = max (at_l : at)

. . !
Determine priors: 7r,§421 = N (@ |1k, o})

Calculate growth probabilities: L(t+ 1,7+ 1) = L(t, l)ﬂgﬂl(l — H)
end
Calculate CP probabilities: L(t + 1,0) = 51 _y L(t,1)mi )1 H
for [ € length(z;) do
. L(t+1,0)
Yoo L(t+1,1)
Update growth probabilities: L(t + 1,1) = P(I)
end

Determine sequence length probabilities: P(()

end
Setnewt: t=t¢t-+1

In this algorithm an additional optimization can be used to improve computational
efficiency, we truncate the series from [ ,;; and above given chm L(t,l) < g for a given
threshold probability 3. Here we take 8 = 107°. This prevents a long probability tail

for large [ and unnecessary computation on vanishingly small probability sequences.

Running the BCPD algorithm on the test dataset (Fig. 2.8) we produce probability
matrix L(¢,[) depicted in Fig. 2.10. We see drops from high sequence lengths [ to
low values around where the CPs are known to exist. It should be noted BOCPD
works only on de-trended or stationary data. A stationary dataset is one in which
the mean and variance do not change over time. If there is any seasonality in the
data it will interpret this as an almost continuous set of CPs because the underlying

distributions are continuously evolving.
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Figure 2.10: Top: Colour map of matrix L(¢,1) with red
indicated l,,,, where the probability is largest
for each time step t. Bottom: An example
piecewise Gaussian data like Fig. 2.8.

2.4 Performance Metrics

Throughout this thesis, we use ML tools to perform classification tasks where we wish
to filter data points into predetermined categories. To determine the effectiveness of
our models it is common to examine a confusion matrix and its associated elements.

A confusion matrix C tells us how data points are classified by our model splitting

1.00
0.50

FP TN 0.25

e,

True label

Z

0.00

P N
Predicted label

Figure 2.11: An example confusion matrix in which data
points of two classes P and N can be classified
into, true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN).

up the results into true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN) and we use these to define other metrics. The confusion

matrices can be normalised C across their rows to present percentage classification
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Figure 2.12: Left: Example ROC Curve from data depicted
in Fig. 2.7. Key threshold choices maximising
each of accuracy A, precision P, recall R and
F1 score are marked. Right: Metrics A, P,
R and F1 as a function of the the decision
boundary 7.

rates into the predicted classes. Accuracy A is defined as,

B TP + TN
~ TP+ TN+FP+FN’

(2.4.1)

which tells us how well we correctly predict data points. However this is not neces-
sarily the best metric depending on the task in hand. Accuracy is a poor metric if
we have unbalanced classes or we care about the relative ratios of TP to FN or FP.

It is worth considering the precision P and recall R metrics,
TP
P=——_——
TP +FP’

TP
~ TP+ FN’

(2.4.2)

R (2.4.3)

P and R can be weighted together to create the F'1 score,

2PR

Fl=——
P+ R’

(2.4.4)

which is a balance between the precision and recall. Receiver Operating Character-
istic (ROC) curves are a powerful way to assess the classifying power of a model,

each point on a ROC curve corresponds to a threshold which leads to a particular
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false positive rate (fpr) and a true positive rate (tpr),

FpP

fop — 2.4,

= rpyTN (2.4.5)
TP

tpr=—— 2.4,

PL= TP T FN (2.4.6)

The threshold can be selected to maximise our chosen metric (accuracy, recall,
precision or F1). In Fig. 2.12 we show the ROC curve produced from data depicted
in Fig. 2.7 where we build a simple classifier using x} as the decision boundary.
The closer the ROC curve pushes towards the top left the better the classifier is
performing, if the ROC curve is a diagonal line the classifier is a random guesser
these are characterised by the area under the curve (AUC). For a binary classifier
an AUC of 1 is a perfect classifier, 0.5 a random guesser and 0 an anti-classifier (i.e.

inverted labels).






Chapter 3

Monte Carlo Simulations

Monte Carlo simulations are computational techniques in which we aim to produce
data representative of reality using stochastic methods. They are particularly power-
ful tools as they can be used to produce artificial data which is based on a series
of priors and model assumptions. The artificial data can be used to scrutinise our
underlying assumptions or theoretical models used to originally create it. Thus, we
have a way to independently check our understandings of the physical word in a

quantitative and statistical way.

Monte Carlo methods are particularly well established in particle physics for the
modelling of high energy collisions. The behaviour of particles can be understood to
follow stochastic processes defined by our theories. The behaviour of people can also
be treated in a similar manner where individuals with certain characteristics exist
in a virtual world and interact. These types of models where every individual is
modeled independently are known as an agent-based models. By treating individual
people as stochastic agents that follow a set of rules and probability distributions
we can understand large groups of people and their behaviour as a community. The
properties of the community and its demographics are determined by the rules which
govern single agents. In the same way that many collision events between many
particles might yield a distribution describing the mass distribution of say, the Higgs

boson, a simulation of many people over several days can yield distributions providing
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insight into attendance rates or social mixing rates at various locations in a virtual
world. In an event generator we gain insight into various physical processes, potential
new physics or rare decays where-as in an agent-based model we analogously gain an
understanding of how different demographics of people interact in different locations
in the simulated virtual world. Therefore, we can employ a Monte Carlo simulation

to understand social mixing of different demographics.

In this thesis we apply these two types of Monte Carlo simulations in two different
domains which we will explore in the two sections of this chapter. In Chapter 5 we
will use SHERPA a general purpose event generator as a Standard Model simulator
with which we can constrain our understanding of the Yukawa Charm coupling.
Then in Chapter 7, we use and build upon JUNE [23] an agent based Monte Carlo

epidemiological framework for modelling social interactions.

3.1 Monte Carlo Event Generators for Particle
Physics

A Monte Carlo event generator is a tool in which we aim to simulate collision
events that occur at various particle colliders using stochastic methods. They are
particularly useful as they provide a way to test our models against experimental
observations, develop new models, create new more robust analysis tools and allow
a greater flexibility and control over processes we want to study. There exist a
large selection of generators, HERWIG [24,25], PYTHIA [26] and SHERPA [27] to focus
particularly on the high energy physics general purpose event generators. The

chronology of event generation can be broken down into the following steps:

1. Hard process: The set of matrix elements are generated (e.g. COMIX [28§],
AMEGIC++ [29]) that define a process are used to sample phase-space points —
a set of incoming and outgoing particles and their four momentum — which are

possible under conservation laws and the relevant parton distribution functions
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(e.g. NNPDF 3.0 PDFs [30] from LHAPDEF [31]). These phase space points
are sampled in a clever way with algorithms such as RAMBO [32] which gives
each phase-space point a probability based on the particle masses and their
distribution in space. This probability provides a weighting which relates the
phase-space point to its contribution to the total cross section of the process.
These weightings can be used to systematically reject or accept space-space
points such that the full phase space is probed efficiently, we call an accepted

point an event and the set of rejected and accepted events trails.

. Parton shower: The parton shower describes the evolution of the high energy

hard scale down to the hadronisation scale (e.g. CSSHOWER [33]). This is the
regime where perturbation theory and our understanding of QED and QCD
can be implemented. We model the parton shower with an evolving scale, the
choice varies by event generator some choices include virtuality, perpendicular
momentum or angular distance. This scale is iteratively reduced by allowing
the partons to undergo splitting in which they produce softer and more collinear
radiation until all of the particles are below the cut off hadronisation scale
~1GeV. The quarks shower gluons but the gluons can themselves shower
gluons or split into quarks generating new flavour content. The splitting
process is defined by the Dokshitzer—Gribov—Lipatov—-Altarelli-Parisi (DGLAP)
equations and the Altarelli-Parisi splitting functions [34-36]. This technology
also models the initial state radiation by backwards evolving the input partons

of the hard process up to the original scale of the partons in the beam.

. Hadronisation: When we reach the hadronisation scale, perturbation theory

breaks down and thus we have to consider empirical non-perturbation models
such as the string (Lund string model [26]) or cluster models [37]. The final
products are required to be colourless due to confinement therefore the partons

have to be clustered into colour neutral objects such as baryons and mesons.

4. Hadronic decays: The hadrons produced may not have a long lifetime and they
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may decay within the detector, it is typical that the majority of the detected
decay products end up as pions and kaons (e.g. SHERPA’s built-in models for

hadron decays).

5. Underlying event: Aside from the hard process we also have to consider the
remnants of the hard process which can themselves interact and therefore
undergo all or some of the above — which should not be overlooked. This can

be incorporated in multiple parton interaction models (e.g. AMISIC++ [38]).

6. Detector simulation (optional): Lastly, the final four momentum objects pro-
duced in the event generator are not representative of real data for several

reasomns:

o Detector geometry: Detector components do not fully enclose the inter-

action vertex as certain components do not span all values of 7.

o Spacial-resolution: The calorimeter cells have a finite size thus, we have
a minimum resolution in (7, ¢) for which we can place particles or distin-

guish them.

e Instrumentation effects: The measurements of induced currents from
particle interactions with the detector are subject to digitisation error
and there is inherent electrical noise which leads to an uncertainty in the

energy measurements.
There exist tools such as DELPHES [39] which can estimate these effects with

energy smearing and position discretisation by summing the energy of tracks

in the discrete calorimeter cells.

We can see these steps outlined in Fig. 3.1
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Figure 3.1: Schematic of a hadron-hadron collision at a had-
ron collider such as the LHC. The incoming
hadrons are indicated by the three green arrows
representing the valence quark content of the
beams. The red blob at the centre indicates the
hard process. The initial state and final state
radiation are shown in blue and red respectively
which are directly connected to the hard process
which constitutes the parton shower. Hadron-
isation is shown by the green blobs after the
final state radiation and then their subsequent
decays from further green blobs. We see the
underlying event indicated by the purple and
cyan blobs. Figure from [5].

3.2 Monte Carlo Simulations for Social Mixing

Agent based models are a class of simulations in which we model the behaviour of
some system by introducing a set of rules and stochastic conditions which determine
the behaviour of individual interacting agents. These types of models are particularly
powerful for understanding disease spread and social interactions and developing

epidemic mitigation strategies [40,41]. By simulating any scenario from the bottom-
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up, we gain an understanding of the emergence of macroscopic properties from
microscopic ones belonging to the agents. In particular, we will look at agent based
models in which the agents are individual people which interact within a virtual
world in various virtual settings. We make use of the JUNE framework [23] which
was built initially to model the COVID-19 pandemic in the United Kingdom as
an independent open-source epidemic model. We will extend the JUNE framework
with a social interaction tracking class which takes virtual contact surveys at every
simulated time step at every virtual venue. JUNE was build with flexibility in mind
such that it can be extended to further settings [42]. JUNE has a large number of
parameters that can be individually changed. Census information, social behaviour
and enforced pandemic measures can all be customised for unique locations or social
behaviours. Many hyper parameters can be tuned to the emerging macroscopic
epidemiological behaviours such as case, death and hospitalisation rates to build a
reliable epidemiological simulation. Alternatively various social policies such as lock

downs or social distancing can be studied for better pandemic mitigation strategies.

Here we present a general outline of the virtual world construction in agent based

models. More details can be found in Section 7.2.2 with more specifics of JUNE.

1. Geography and demography: The virtual population is created using geograph-
ical census data. The framework divides the geography into a hierarchy of

three layers:

o Regions: Areas on the scale of counties.
o Super Areas: Areas containing a few thousand households.

o Areas: Areas containing a few hundred households at most.

The virtual population is constructed by creating the individuals represented
in the census in which each agent has a sex, age and a residential area. Further
attributes can often be assigned if required (and available) such as sexuality,
gender and race. In the location of interest in this project, the only available

data are those of sex, age and residential area.
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2. Household construction: The first venue that the agent will attend is that of
their household. The virtual population is sorted into households of varied
types depending on the distribution of typical household properties and types.
These could include internal household properties such as:

e people per household,
o number of children,
« spousal age gap,

o mother child age gap,
or external properties:

o number of nuclear households,
o number of single parent households,

o number of multi-generational households.
In Section 7.2 we will detail this procedure.

3. Venue construction: The agents can move around the simulation between a
selection of social settings in which they can interact with other agents outside

of their household. There are two classes of venues:

« Assigned venues: Venues which only specific agents are required to attend

on a regular basis, these include workplace or educational settings.

o Unassigned venues: Venues that any agent can attend with a probabilistic
chance depending on their individual characteristics. Examples include

shops and recreational spaces like cinemas, pubs or community centres.

All of the venues are assigned to geographical areas in the model such that
agents generally travel to venues local to them. Assigned venues have specific
agents allocated to that location and they must attend (unless overridden by

social policies or rules e.g. sickness) at the allotted times.
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After the virtual world is constructed, simulations can commence. The simulation
time is divided into discrete timesteps within calendar days. The calendar date
system allows for behavioural differences between weekdays and weekends, this is
particularly important for the workplace and educational settings. An individual in
a typical day is expected to attend an assigned venue, such as 8 hours at work before
they then attend in other venues and return home for the night and remaining hours.
While the assigned venue is predetermined, the other activities are chosen based
on a stochastic process. The probabilities for attending a venue type are modelled
on a Poisson process which depends on the agents characteristic properties. The
particular venue is chosen randomly from the closest of that type of venue up to

some travel limit.

At each time step, the social interaction of the agents at each location in the vir-
tual world can be modelled. Social mixing can be quantified into social mixing
matrices A,; which is the number of contacts in a characteristic time between person
of characteristics ¢ that contacts person of characteristics j. Contact matrices that
represent social mixing patterns in populations are a vital input to epidemiological
models [43,44]. There are many choices of the type and format of these social mixing
matrices, we will address several in Chapter 7 they can depend on normalisation,
characteristic binning and social mixing type [45-47]. Traditionally, contact matrices
are derived using large scale surveys, where participants record the number of con-
tacts they have in different locations and the ages of the people they came into
contact with [48]. In Chapter 7 we will develop a novel mixed-method approach

which combines an agent based model with a light-weight contact survey.

Naturally, agent based models come with a large selection of hyper-parameters which
define the virtual world and the agents behaviour. In this project we ignore the
epidemiological elements of JUNE and the parameters associated to the disease spread
specifically. We focus on tuning parameters relating to that of venue demographics
agent behaviour such that they are representative of reality by comparing against

survey findings conducted in our particular setting.



Chapter 4

Particle Physics

In Chapter 5, we will concern ourselves with methods to improve current constraints
on the upper-bound of the charm Yukawa coupling y. and provide projections on
expected confidence limits as we move into the high luminosity phase of the LHC. In
this chapter we will present the required requisite physics for this goal. A presentation

of the Standard Model (SM) of particle physics can be found in the Appendix A.

4.1 The Charm Yukawa Coupling

In the SM without the Higgs boson there exists no way to introduce mass terms
for the charm quark in a gauge invariant way. In order to generate mass for these
particles we must introduce a scalar field with the following distinctive Lagrangian

term — the Higgs sector Lagrangian,

EHiggs = (DMH)T(DHH) - V(H)
(4.1.1)
= (D, H)"(D"H) — *H'H — \(H'H)*

where we have the covariant derivative,

Y L
Dy =0, — gy B, - ig%WZL . (4.1.2)
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The Higgs field has a scalar potential that depends on two parameters, p and A such
that if 4*> < 0 then there exists a minima in the potential at a non-zero value of the
field. The scalar field transforms in a non-trivial way under SU(2); as a doublet
made up of two scalar complex fields, ¢ and ¢° in terms of four real scalar fields,
¢!, 9% ¢ and ¢*;
H = ¢ = 1 ¢ +ig” . (4.1.3)
#° V2 & + it

Using Eq. (4.1.1) we can show that the potential is minimised for y* < 0 when,

2 2
H?=—H'F=_-E _ " 41.4
] LY (114)

Where we have defined a new quantity v, the vacuum expectation value (VEV) of the
Higgs boson potential and it is experimentally determined to be v ~ 246 GeV [49].
The Higgs field can be re-written under the unitary gauge where ¢* is chosen to
align in the radial direction of the potential and thus h are perturbations uphill from

the VEV;

H 1 0 (4.1.5)
V2 v+h

There is actually flexibility in the gauge choice, the four real fields imply there are in
fact four degrees of freedom, three of these correspond to modes which move along
the equipotential of the Higgs potential which give rise to three massless Goldstone
boson modes. In gauging away these modes the missing degrees of freedom act as
the longitudinal modes of the SM gauge bosons giving them mass. The final mode
(moving in the radial direction) feels a quadratic potential where perturbations, h are
understood to be excitations corresponding to a massive particle, the Higgs boson.
We can show by substitution into Eq. (4.1.1) that coefficients in the quadratic terms

of the Higgs boson, h? equate to the Higgs boson mass,

my, =\ 27 . (4.1.6)

We can further introduce an interaction term between the Higgs boson and the
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fermions — the Yukawa sector Lagrangian.
Lyukawa = _(yu)ijCjiﬁu{{ - (yd)ijCﬁJHd{% - (ye>ijZ£H€{§ +h.c., (4.1.7)

where the indices i and j run over the generations of particles. In Eq. (4.1.7) we
introduce the conjugate Higgs doublet, H = ic?H* to extract the up type quark
fields and we use the Higgs double H to extract the down type quark fields and
leptons. Looking explicitly at the first generation up quark and by substituting in

the Higgs doublet and its conjugate,

Lyvueawa = — (Yu) 1100 Hug — (yu)llﬂRF]qu

= _W\/ZM(uLuR + uguy,) (4.1.8)

— _(yu)llhﬂu . (yu)llyau

V2 V2o
it is possible to read off the mass term, m, = v,v/v2, where y, is the Yukawa
coupling for the up quark. It is straightforward to repeat this process for the
remaining fermions and retrieve similar expressions. Alternatively, we can consider

the Yukawa coupling as a function of the mass,

2
14

As exemplified in Eq. (4.1.9) the Yukawa coupling is directly proportional to the
mass of the particle concerned. Given the hierarchy of the fermion masses this poses
a significant challenge in the determination of the Yukawa coupling to the second-
generation quarks which are considerably lighter than much of the massive content
of the SM. In addition, the event topologies and in particular the jet structures are
not particularly distinctive for processes involving H_, . decays. It is particularity
difficult to extract a significant number of H_,; events as compared to processes
involving H_,;; due to weak event features and the relatively small branching fraction.
Background processes with cross sections many orders of magnitude larger than any
H_, . process can span similar areas of phase-space in significant numbers therefore

making them difficult to eliminate in a cut-flow analysis.
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4.2 Collider Physics

The LHC is the latest particle collider build at CERN it is a 27km ring of super
conducting magnets which accelerates protons to ultra relativistic speeds. Bunches
of these protons collide at key locations around the storage ring where detectors are
placed. Two such detectors are the “A large Toroidal. ApparatuS” (ATLAS) [50] and
“Compact Muon Solenoid” (CMS) [51] detectors. These detectors have an array of
instruments which determine the energy, mass and charge of the outgoing particles

from the collisions.

The collision of two bunches of protons produces extremely complex structures which
can be understood using our understanding of the SM or new physics models. This
defines particle physics phenomenology — the application of theoretical physics to
understand experimental data — one such success story is the discovery of the Higgs
boson. The inclusion of the Higgs boson in the SM was very strongly theoretically
motivated and it was hoped that Tevatron, LEP or (more likely) the future LHC
would discover this particle — which it did in 2012 [52,53]. Further, phenomenology
can be utilised to build Monte Carlo models ( Section 3.1) which simulate the
collisions at real-world or future colliders thus contributing to further tests of the

SM or beyond the Standard Model (BSM) models.

There are a few key points that need to be discussed to understand precisely how
colliders differ from one another. Firstly, consider the beam constituents, if only
leptons are used then any processes relating to QCD and the strong force are much
less accessible than in hadron colliders. However, the beam choice of composite
particles like protons comes at the expense of an uncertainty of the flavour and
momentum of the particles interacting in the hard process. The collision of a parton
from within the proton carries only a fraction of the total energy of the proton which
can be modelled with parton distribution functions (PDFs). The centre of mass
energy determines kinematic viability of processes and it is defined as the sum of

the energies of the colliding particles in the centre of mass frame (e.g. protons at
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the LHC),
Ecn = Vs =1/ (m +p2)? . (4.2.1)

Here we introduce s, the Mandelstam invariant which is the sum of the two beam
four-momenta, p; and p, squared. The four momentum, p = (£, p) is defined by the
beam particle energy, E and three momentum, p. Again, in the case of a proton
proton collision, where the partons involved in the hard-process collision take a
fraction of the energy of the beam, the actual centre of mass energy of the collision
is much less and is also uncertain. The LHC is described as having a centre of mass
energy of 14 TeV however individual collision events only have a centre of mass energy
of a fraction of this. Further, it is not known which constituents have participated in
the collision, this has to be inferred from the event structure and particles detected
in the final state. Alternatively, a collider involving leptons which have no internal
structure and which only interact via the electromagnetic and weak forces therefore
provide a much “cleaner” collision. However, in a circular collider it is important to
discuss synchrotron radiation; charged particles of mass, my and energy, ' moving

in a circular path of radius, R will radiate energy at a rate per turn,

B
OF o« —— . (4.2.2)
mg

Therefore building a circular collider of equivalent energy for a electron collider
compared with proton collider is significantly harder as the rate of loss of beam

energy is astronomically higher.

Luminosity is a measure of the instantaneous rate of collision events per unit time
per cross section. The total number of events for a given instantaneous luminosity
L is,

N =o(s) /Edt . (4.2.3)
The cross section, o(s) is the probability an event will occur at a given centre of mass

energy s. It is more common to discuss the integrated luminosity which is a measure

of the accumulated data at a collider and as it is independent of the cross section. It
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is simply a metric of the total amount of data delivered. The integrated luminosity
naturally increases over run time, but also increases with increased instantaneous
luminosity. Run 1 of the LHC concluded with an integrated luminosity delivered
of 20fb™!, Run 2 with 150fb™! and Run 3 is expected to reach 300fb™'. By 2028
it is expected that the LHC will move into the High-Luminosity phase of the LHC
in which it is expected to achieve an integrated luminosity of 3000 fb™*. The shear
scale of the statistics that this will provide will yield new opportunities to scrutinise

processes under greater sensitivity [54].

Muon
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Calorimeter
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Electromagnetic
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) Radiation
Tracking Tracker

Pixel /SCT detector

Figure 4.1: A cross-section schematic of the ATLAS de-
tector at the LHC [55]

Collision event data is measured at key locations around the storage rings — the
detectors. A cross sectional schematic of the ATLAS detector is shown in Fig. 4.1

where sections of the detector are clearly distinguished into layers [56]:
 Tracking Chamber (Inner Detector),

 Electromagnetic Calorimeter (ECAL),
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« Hadronic Calorimeter (HCAL),

e Muon Spectrometer.

The tracking chamber measures the charged particles, their direction, momentum
and magnitude of charge. This part of the detector is also used to determine impact
parameters of particles to a vertex (see Section 4.3) and determine the primary vertex
of an event, this is particularly useful as it can be used to mitigate and segment pile-
up information. Many bunches of protons collide per second which can cause multiple
collision events per bunch crossing. The ability to distinguish individual collision
events via primary vertex fitting is critical. ECALs are designed to absorb most
of the particles from the collision, those which interact with scintillation material
and produce photons which can be measured. This portion of the detector is most
sensitive to electrons, positrons and photons. HCALs are designed to measure the
hadrons which pass through the ECAL unperturbed. These hadrons collide with the
nuclei in a dense absorber material which can produce secondary particles. These
particles interact with scintillation material producing photons which can be detected.
The decay of these particles is described as a shower which forms structures such
as jets (see Section 4.4) which can be used to examine the identity of the original
hadron producing them. Lastly, we have the Muon Spectrometer which measures
precisely the energy and location of muons which thus far have not interacted with
the detector. This portion of the detector is the largest and outermost portion. All
the information collected by the detector can be used to reconstruct a picture of an

event.

The detector is designed as a cylindrical barrel and therefore we map the direction
of particle tracks to a cylindrical co-ordinate system. We define the beam axis to be
along the z-axis such that event data is transitionally invariant and we define two
angles, the azimuthal angle ¢ and the polar angle, #. A natural set of co-ordinates

to consider that can be mapped onto the surface of the detector are ¢ and the
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pseudorapidity 7,
0
n=—In (tan 2) : (4.2.4)
In particular, differences in these quantities (A¢ and An) are Lorentz invariant for
boosts along the beam axis for relativistic particles. The rapidity difference Ay is
always Lorentz invariant for boosts along the beam axis for any particle where the

rapidity vy,
1, F
y=—In +P:
2 E-—p,

(4.2.5)

We choose to use An such that we can define a measure of angular separation, AR
which is a Lorentz invariant as a function of angular quantities only. This quantity

will be useful for defining jets,

AR = \/An* + A¢” . (4.2.6)

Particles which have large high transverse momentum compared with their rest mass

can be considered relativistic. The transverse momentum is given by,

pr = \/p: + 1 - (4.2.7)

The two incoming beams have equal and opposite momenta entirely in the z axis thus
we know that the total momentum in the frame of the detector is zero. We therefore
know if }° pr # 0 then we have particles that the detector has failed to detect, which
could be neutrinos or alternatively BSM particles, we call this difference from zero
the missing momentum. These quantities can be used to define the dimensions of
the detectors such that we can build realistic and representative analysis in Monte
Carlo generators. For example the Inner Detector of ATLAS is unable to perform
vertex determination with tracks with pr < 0.1 GeV and |n| > 2.5 due to the physical
dimensions of the detector barrel and instrumentation limitations. The Monte Carlo
event generators provide a further avenue for validation of theories of physics we

wish to test and we will discuss them further in Chapter 3.1.
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4.3 Vertex Fitter

In order to fit useful observables such as invariant masses we need to understand
which particles belong to a particular event otherwise the data is contaminated by
pile-up effects. An interesting high-energy collision could be contaminated by other
soft collisions or from other collision events between different protons a single proton-
proton bunch crossings, which makes it difficult to reconstruct the objects in each
event final state. One of many techniques used to tidy the collision data is vertex
fitting, particles sharing the same primary vertex are considered to be constituents of
a single particle collision event. In the case of Monte Carlo simulations the primary
vertex of an event is known by definition, the origin of the co-ordinate system (0,0, 0).
However, in the case of the LHC this position needs to be determined so that the
separate events in pile-up with different primary vertices can be distinguished. The
current method of vertex fitting is adapted from the Adaptive Multi-Vertex fitter
(AMVF) algorithm [57] which takes the reconstructed tracks and an estimate vertex
position and iteratively improves upon the vertex position and gradually down
weights potential outliers (tracks that do not share that vertex). In Fig. 4.2 we see
a schematic for a single event which is defined by its primary vertex which all the
particles in that event share. The figure also shows secondary vertices which result
from the decay of short lived particles produced in the primary vertex. Higher order
vertices can also be produced where particles produced from decays may themselves

decay.

In order to fit a vertex from a set of tracks we have to define a loss function which
assesses the quality of fit. We define the least squares estimator which sums the

(standardised) impact parameters d;(v) of all n tracks from the vertex position v,

(4.3.1)

The impact parameters are the perpendicular distance between the point of closest

approach of the particle track and the vertex and o; is an uncertainty of the impact
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Figure 4.2: Schematic of a a primary and secondary ver-
tex. The green blob represents the hard process
and primary vertex. The red blob a secondary
displaced vertex. d, indicates the impact para-
meter of a particular final state particle to the
primary vertex, indicating its origin is from a
displaced vertex. Figure from [58].

parameter. This loss function can be minimised by taking the derivative with respect

to v and setting it to zero,

- fjxi(v)Xi(”> ~0. (4.3.2)

This expression can be solved for the optimal vertex position exactly or using numer-
ical techniques such as gradient descent or more sophisticated methods like Kalman
filters [59]. This fitting algorithm can be improved upon by weighting the tracks by
down-weighting tracks that are less likely to be associated to the vertex instead of
outright rejecting them. The weights are defined in terms of y; for each track i,

_ 2
e x; /2T

2
(X ) e_Xi/QT + e_XG/QT ( )

Eq. (4.3.3) depends on two hyper parameters, a temperature 7" which controls the
shape of the weight distribution and a cut off o which defines the threshold value

where the weight should equal 0.5 i.e. where a track is considered more likely to be
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an outlier than not.
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Figure 4.3: The distribution of weights for a standardised
distance, x; for a selection of temperatures, T'
which all share the same cut off threshold of

Xc = 25

T is reduced during the procedure as an annealing scheme which helps the vertex
fitter fall into a global minimum. Eq. (4.3.2) can now be modified to incorporate

the weights,

= Zwi(Xi(v)2)Xi(v) év =0. (4.3.4)
This equation can not be solved exactly so we move to iterative procedures in which
an initial vertex position provides a set of weightings which then provides a new
improved vertex position. The procedure is repeated until a convergence stops or
a desired precision is reached. This vertex fitting methodology can be use to fit
primary, secondary and even tertiary vertices for a single event (cf. Fig. 4.2), we
apply the same procedure for higher order vertices by considering a subset of the
particle tracks — for example a jet suspected to be from a b-hadron decay — then we

can retrieve these higher order vertices.
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4.4 Jet Clustering

As unstable and highly energetic particles propagate they can decay into a plethora
of hadrons or soft partons and photons. This collection of particles tend to be
clustered together within 7, ¢ space and we call this collection of particles a jet. To
define a jet quantitatively we need to group together the particle tracks in a way that
is not dependent on the soft or collinear emissions i.e. it is infrared and collinear
safe (see Section 4.5). This is particularly important for Monte Carlo simulations
in which we do not want the jet algorithms to be dependent on stochastic processes
of the parton shower as that could lead to ambiguity in the number of jets or their
properties for example the addition of a soft gluon. Jet algorithms take particles
within a radius R and iteratively combine pairs of them into quasi-particles until
certain criteria are reached; the remaining quasi-particles define the jets. There exist
a selection of jet clustering algorithms and here we will focus on the general class of
kr sequential algorithms. These cluster particles recursively based on its transverse

momenta. We define two variables in momentum space,
dip = p2sz@' ) (4.4.1)
for a distance of one particle to the beam ¢ and

AR;;
4.4.2
R ? ( )

d;j = min{d;, ij}

for a pair of particles (or beam) 7, j. The clustering proceeds iteratively where any
objects with the smallest d;; are clustered, if d;5 < d;; then ¢ is clustered with the
beam otherwise 7, j are clustered together. This is repeated until the smallest d;;
exceeds some cut off value, d. which defines the minimal separation between each
jet to one another and to the beam. This algorithm is parameterised by the cut off
d., the cone-like 