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Abstract: Interpretation of neural activity in response to stimulations received from the surrounding
environment is necessary to realize automatic brain decoding. Analyzing the brain recordings
corresponding to visual stimulation helps to infer the effects of perception occurring by vision on
brain activity. In this paper, the impact of arithmetic concepts on vision-related brain records has
been considered and an efficient convolutional neural network-based generative adversarial network
(CNN-GAN) is proposed to map the electroencephalogram (EEG) to salient parts of the image stimuli.
The first part of the proposed network consists of depth-wise one-dimensional convolution layers
to classify the brain signals into 10 different categories according to Modified National Institute of
Standards and Technology (MNIST) image digits. The output of the CNN part is fed forward to a
fine-tuned GAN in the proposed model. The performance of the proposed CNN part is evaluated
via the visually provoked 14-channel MindBigData recorded by David Vivancos, corresponding to
images of 10 digits. An average accuracy of 95.4% is obtained for the CNN part for classification. The
performance of the proposed CNN-GAN is evaluated based on saliency metrics of SSIM and CC
equal to 92.9% and 97.28%, respectively. Furthermore, the EEG-based reconstruction of MNIST digits
is accomplished by transferring and tuning the improved CNN-GAN’s trained weights.

Keywords: arithmetic content; visual perception; electroencephalogram; deep learning; MNIST

1. Introduction

Neural activity decoding is of great importance in neurocognitive research. Electroen-
cephalography is a popular technique for recording brain activities, and analyzing EEG
results in response to unique stimulation is the objective of brain–computer interface (BCI)
applications. An essential part of the human perception of the surrounding environment
occurs via vision, and inferring the connection between brain response and vision has
been considered in several neuroscience studies. Patterns related to brain signals can be
distinguished, corresponding to various classes of visual stimuli [1–3].

Classifying electroencephalogram (EEG) recordings is the central part of neural decod-
ing, and various methods have been presented for this purpose [4–6]. In recent years, the
deep learning approach has attracted the attention of researchers [7,8], and deep network
applications have been extended to the concept of EEG signal processing in BCI for emotion
recognition [9], fatigue and sleep databases [10], epilepsy diagnosis and treatment [11],
motor movement/imagination databases [12], and SSVEP datasets [13]. Deep learning
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models have also been employed to explore the effect of visual stimulation on brain activity.
For example, sequential LSTMs were used by Simone Palazzo et al. in [14] to realize the
classification of the EEG-ImageNet signals corresponding to the brain activity of human vol-
unteers when displaying a set of images from the ImageNet dataset. In another study [11],
the use of deep network structure has been considered for image reconstruction from
brain signals.

The hemispheric lateralization concept of the brain attracted the attention of Fares
et al. [15], who used the information of hemispheric regions to construct a two-directional
deep neural network for classifying the EEG-ImageNet signals. Nicolae Cudlenco et al.
in [16] considered the Gabor filtering of EEG records to extract hidden features related
to visual concepts in EEG signals. The projection of the entire spectrum on the space of
Gabor wavelets was considered across a relatively large range of frequency bands to extract
discriminative features, and they compared the performance of classification using ridge
regression and deep network approaches. The processing of changes in the shape and
color of objects was explored in a study by Nalin Mathur [17]. EEG data were collected
using a feature-binding experiment that required subjects to detect changes in color and
shape binding after 100 ms and after 1500 ms. The experiment was implemented to predict
two stages of color and shape processing of visual stimuli in brain EEG data recordings.
Familiar and unfamiliar face detection was considered by Lidia Ghosh et al. [18]. A deep
model has been designed by them to quantify the ability of face perception in human
subjects by classifying the EEG responses to facial images.

The brain response to natural visual stimulation was investigated by Ghebreab
et al. [19] and was predicted using EEG responses. Similar research was carried out by Kay
et al. in 2008 [20], but a better accuracy was achieved in 2010 [19]. Visual stimulation effects
of the orientation of images [21], position of objects [22], and color of things [23] on brain
activity have been explored in other studies.

The salient points in a picture have an essential effect on the visual interpretation
occurring in the brain. Ulman and Koch [24], in 1985, proposed the concept of the optical
salient region in an image to identify a region’s dominance in the brain’s visual information
processing. Another model designed to improve understanding of the salient map was
introduced by Itti et al. [25] in 1998. According to this work, a scene’s uniqueness, distinc-
tiveness, and rarity are essential parts of saliency detection. Many visual saliency detection
models have been developed following the model proposed by Itti [25].

Understanding how the salient region influences brain signals is vital in eliciting the
visual system’s function. Although some works have been dedicated to the connection
between the saliency of visual stimulation and brain activity, the relationship between
salient arithmetic content and brain activity has yet to be studied. Furthermore, the use of
time-related information of EEG signals has yet to be considered to extract the connection
between visually evoked brain activity and salient arithmetic content.

The classification step is the critical step to achieve the salient arithmetic content
corresponding to the visual stimuli. This work introduces a deep convolutional network
to recognize the arithmetic category of EEG records. The proposed network consists of
a convolutional network and a generative adversarial network to extract the arithmetic
visual saliency map related to the recorded EEG signals. The overall model realizes the
extraction of salient arithmetic data through visually evoked EEG records.

The achievements in this article can be summarized as follows:

(i) Presentation of an effective deep network to acquire salient arithmetic content of
visual stimulation from EEG recordings.

(ii) Extraction of the arithmetic data is possible using the proposed architecture.
(iii) Presentation of a convolutional deep network for extracting EEG features to recognize

10 patterns of EEG recordings corresponding to 10-digit categories.
(iv) A 14-channel time sample of the EEG dataset is imposed directly as an input signal

to the proposed CNN-GAN. The removal of feature vector extraction step results in
decreasing the computational load.
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(v) It paves the way to connect three modalities: image data, visual salient data, and
EEG signals.

The remaining parts of this article are arranged as follows. Related works to the
saliency models have been explained in Section 2. The details of the MindBigData dataset
and the mathematical precursors related to convolution, GAN, and saliency metrics are
explained in Section 3. Section 4 describes the architectural and structural details of the
proposed EEG-related arithmetic data recognition framework. The investigational results
and validation against other newest methods are provided in Section 5. The conclusions
are in Section 6.

2. Related Work

In early studies about salient content recognition [26,27], the saliency calculation was
performed with pixel contrast. Hu et al. [28], in 2005, considered the geometric features of
different regions and used principal component analysis to estimate the salient subspaces. A
saliency detection method has been proposed with some simple operations of binarization,
threshold decomposing, and edge detection for every pixel by Rosin et al. [29]. Estimating
the salient content has been considered with isocenter clustering and curvedness by Valenti
et al. [30].

Visual attention procedure has been used for modeling the saliency recognition. This
procedure is a selective phenomenon for training the brain to understand the surrounding
environment. Bottom-up pre-attentive feature-based and attentive task-based top-down
processes have been suggested by Neisser [31] in 1967.

Bottom-up models use visual features of orientation, color, and intensity. Zhang
et al. in 2013 [32] and Mauthner et al. in 2015 have proposed some saliency likelihood
calculations for this type of modeling. Top-down saliency models consider the primary
knowledge about features and the intentions corresponding to the brain task. The 2011
model by Zhao et al. [33], the work by Xu et al. [34] in 2014, and the model by Yang
in 2017 [35] are examples of a top-down saliency process. Another category is based
on the combination of top-down and bottom-up approaches. In these models, the top-
down approach helps implement the given task, and the bottom-up technique detects the
salient points.

Many neural networks have been proposed to implement models corresponding to
saliency detection processes. Shengfeng He et al. [36], in their recent work, have assessed
the convolutional neural networks to detect the salient object. The efficiency of these
neural networks in salient object recognition has been analyzed by Ghuanbin et al. [37]. A
one-dimensional convolutional neural network has been proposed by He et al. [36] to solve
the saliency problem. Also, features of decomposed regions corresponding to different
input scales have been imposed to MLP with two dense layers in a work by Yu and Li [37]
in order to obtain a binary label for salient region detection.

Salicon [38] is one of the recent methods based on deep neural networks proposed
for saliency detection. Transfer learning of GoogleNet, VGG-16, and AlexNet has been
used in this model such that the weights of this model have been initialized with transfer
learning. Another recently proposed deep network for saliency modeling is SalNet [39].
This network consists of two shallow and deep networks. The shallow network contains
five convolutional and dense layers. A total of 10 layers have been employed in the deep
part of the SalNet. More than 25 million parameters are trained during the deep learning
process of the network.

Some recent studies have been dedicated to realize the connection between the salient
content and brain activity. A model has been presented by Humbeeck et al. [40] to evaluate
the effect of visual saliency on the amplitude of the EEG recordings. Fixation positions of
the pupil in the eye via the eye-tracker and the brain activity using the EEG device have
been considered in the modeling. The study by Zhen Liang et al. [41] in 2018 presented
an approach based on the model by Tavakoli et al. [42] that shows this interaction with
the use of video stimuli. A good accuracy has been reported in [41] in reconstructing and
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predicting the temporal distributions of the features corresponding to salient regions using
the extracted features of EEG recordings. In robot navigation and object identification in
recorded images by robots by Mao et al. [43], P300 waves of the volunteers have been
considered in identifying the objects of interest. A siamese network has been proposed
in [44] through multimodal learning of image and EEG modalities for visual saliency
detection. A cost function has been defined in the modeling, and its maximization has been
considered to realize the connectedness of the modalities to the salient regions. Different
scales of image masks have been considered for calculating the cost function and estimating
the visual saliency. The mapping between EEG patterns and the salient picture of the
visual stimulation has been realized in [45]. A deep network using a graph-embedded
representation of EEG recordings has been introduced to acquire this map. Functional
connectivity in different brain regions has been considered in exploring the interaction
between visual saliency and brain activity [46].

This article proposes a novel approach for extracting the salient arithmetic content
from visually evoked 14 EEG signals. In the next section, we explain the details of the
database setting and the mathematical preliminaries to implement the proposed method.

3. Materials and Methods

The MindBigData [47] is used in this article, and recording details are explained in
this section. The mathematical precursors of convolution 1-d, dropout, dense, and batch
normalization layers will be presented. Furthermore, the details of generative adversarial
networks, in addition to saliency metrics, are described.

3.1. Database Settings

The MindBigData has been recorded by David Vivancos [47] with the Emotiv EPOC
device. This dataset has been gathered using a 14-channel cap. The placement of the EEG
channel electrodes is shown in Figure 1, and the channel names considered in the recording
procedure are A.F.3, F.7, F.3, FC.5, T.7, P7, O.1 in the left hemisphere and A.F.4, F.8, F.4,
F.C.6, T.8, P8, O.2 in the right hemisphere as shown in dark blue in this figure. The channel
names with details are described in Table 1.
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Table 1. Channel names of Emotiv EPOC.

Channel Name in Left
Hemisphere

Channel Name in Right
Hemisphere Channel Full Name

O1 O2 Occipital

P7 P8 Parietal

T7 T8 Temporal

FC5 FC6 FrontoCentral

F7 F8 Frontal

F3 F4 Frontal

AF3 AF4 Between Prefrontal and Frontal

FP1 FP2 PreFrontal

A total of 9120 brain signals of 2 s captured at a theoretical sampling rate of about
128 samples per second or 128 Hz are selected as MindBig dataset used in this paper. Total
number of samples in each channel used for processing is 250. The brain signals were
captured while a single digit from 0 to 9 corresponding to digits of the Modified National
Institute of Standards and Technology (MNIST) dataset in Figure 2 has been shown for 2 s.
The numbers have been represented on a 65-inch TV screen in a white font over a total
black background. The appearance of digits was random, with a black screen between
them. The number of 9120 EEG records corresponding to 912 signals of each category are
considered for classification and salient arithmetic data extraction.
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3.2. The Layers of Convolutional Neural Networks

The work of Hubel and Wiesel [48] can be considered the most important neural net-
work in machine vision. The origin of this network goes back to the biological experiment
conducted by them in 1962. The research conducted by these two individuals led to the
discovery of simple and compound cells of vision. The identification of vision patterns
was possible based on this study using these two types of cells. Simple cells in the vision
system are responsible for detecting edges and columns in an image’s specific direction
and location. In contrast, the detection capability of composite cells is not limited to a
particular area of the image, and this is possible at any point of the picture. This composite
cell capability is obtained by collecting information from several simple cells. The first
convolutional neural network was proposed based on the concepts of simple and com-
pound vision cells and designed in 1979 by Kunihiko Fukushima [49]. The first project
using these networks was identifying handwritten figures of digits, which was carried out
by Yan LeCun et al. [50,51], and satisfactory results were obtained in the study.

Each deep convolutional network is composed of several layers. The pooling layer is
an essential layer in CNN, which minimizes the spatial size of feature vector maps obtained
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from the convolutional layer. This layer has no training parameter and performs a simple
sampling. The most famous pooling layers are called average pooling and max pooling.
For example, for maximum integration, a predefined window is considered that moves
over the image to select the maximum value and ignore the rest of the numbers. The size
of the filter and the size of the stride step in this layer are considered proportional to the
optimal size for mapping the obtained feature of each layer.

The fully connected layer forms the final layer of CNN networks, which is used to
classify the extracted feature maps. This layer is similarly present in multilayer perceptron
(MLP) networks. After displaying the feature vectors obtained from convolutional layers,
weight vector coefficients are assigned in this layer. The output corresponding to the
number of classes available for classification can be achieved.

The following describes some other commonly used layers in CNN networks, includ-
ing the random elimination layer and the batch normalizer layer. The use of the dropout
layer in CNN networks strongly prevents the phenomenon of data overfitting in the train-
ing process. The function of this layer is to omit some neurons during training randomly.
To optimize the coefficients, these randomly selected neurons are not considered during
the learning process. Mathematically, neurons are discarded with probability (p-1), and
other neurons are retained with probability (p).

The normalization layer is used to normalize the data inside the network. By perform-
ing various calculations on data, the distribution of data will change. The batch normalizer
layer increases the training speed of the network by reducing the internal covariance of
data distribution and accelerates the convergence process. The performance of this layer
will be based on the calculation of the average and variance of data according to (1).

µB = 1
n ∑n

i=1 yl
i

σ2
B = 1

n ∑n
i=1 (y

l
i − µB)

2

ŷl = yl−µB√
(σ2

B+ε)

(1)

3.3. Generative Adversarial Networks

The generative adversarial networks (GANs) [7] include generator and discriminator
networks. The generative model G consists of some layers to fit a random vector y with
probability distribution P(y) into a desired data distribution. The discriminative part, named
D, compares data from the expected distribution and data obtained from the generator
part. These two networks are trained simultaneously, and the training will continue to
see no improvement in network optimization. The cost function of GAN can be described
as follows:

min
Gen

max
Disc

V(D, G) = min
Gen

max
Disc

[
EX P

data(x)
[logDisc(x)] + EY p

y(y)
[log(1− Disc(Gen(y)))]

]
(2)

In this loss e function corresponding to GAN, the desired data are depicted as x,
and the random feature vector employed as input to the generator is represented with
y. The generator’s output is represented by Gen(y), and the work of the discriminator
is shown with Disc(x). The convergence will occur when the loss function according to
each network is as close as possible to 1. The output of the discriminator is represented
by Disc(Gen(y)). The probability distribution of generated data and the desired data is
represented respectively, with Pdata(x) and py(y).

3.4. Evaluation Metrics for Classification and Salient Image Extraction

This section provides a brief description of classification and saliency evaluation met-
rics. The saliency feature map and the ground truth feature vector are two necessary inputs
for calculating the saliency evaluation metrics. The level of similarity can be represented by
considering these metrics.
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The most used metrics for classification are described in (3) as sensitivity, accuracy,
precision, and recall based on true positive (TP), true negative (TN), false positive (FP), and
false negative (FN).

Sensivity = Recall =
TP

FN + TP

Accuracy =
TP + TN

TP + TN + FP + FN

precision =
TP

FP + TP

F1− score =
precision+recall

2
(3)

Cohen’s Kappa coefficient is another metric for classification, as described in (4).

kappa =
2× (TP× TN− FN× FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(4)

Three important metrics for evaluating saliency are described as follows.
Similarity metric (SIM) is used to measure similarity between distributions [52]. Nor-

malization of the input signal vectors is performed, and the sum of minimum values at
each pixel results as S.I.M. The saliency map is shown with S.M and the fixation map is
represented with F.M:

SIM(SM, FM) = Σj min(SMj, FMj) where Σj SMj = Σj (FMj) = 1 (5)

In (5), pixel locations are represented with j. The value of SIM is equal to one for inputs
with identical distributions, while this metric would be zero if there is no similarity and
overlap between distributions.

Another saliency evaluation metric is structural similarity (SS.I.M), calculated using
different windows of an image [53]. The SSIM is computed considering two sampling
windows, m and n, with size L × L:

SSIM(m, n) =
(2× µmµn + k1)(2× σmn + k2)

(µm
2 + µn

2 + k1)(σm2 + σn2 + k2)
(6)

µm: the average of m; σm
2: the variance for m;

µn: the average of n; σn
2: the variance for n;

σmn: the covariance between m and n;
k1 = ((d1)K)

2; k2 = ((d2)K)
2;

K: the variation range of the pixel-intensities (2(bits per pixel) − 1);
d1 = 0.01 and d2 = 0.03.

A metric for assessing the affine connectedness of distributions is Pearso.n’s correlation
coefficient (CC) [52]. CC can be computed as in Equation (7).

CC(FM, SM) = σ(FM, SM)/σ(FM) × σ(SM) (7)

The covariance between FM and SM in (7) is represented with σ(SM, FM). This metric
is unaffected by linear transformations. This evaluation metric would treat false negatives
and false positives equally and, therefore, is a symmetric function. The similar magnitudes
of the saliency map and the reference ground truth would result in high positive values
of CC.
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4. Proposed Convolutional Neural Network-Based Generative Adversarial Network

The details of the proposed convolutional neural network (CNN) for automatic visual
arithmetic content identification from EEG signals and the proposed convolutional neural
network-based generative adversarial network (CNN-GAN) for arithmetic data extraction
from brain activity are elucidated in this section.

4.1. The Proposed Network Architecture

Figure 3 represents the schematic of the CNN fragment to classify the input EEG signal
into the correct category of the MNIST dataset. The visual stimulation related to the MNIST
dataset appears on an LCD to a human volunteer, corresponding to the considered timing
of occurrence for each image and time-lapse between sequential images. The EEG signals
are recorded during the experiment. Normalizing the EEG time samples is performed
considering each EEG channel’s mean and standard deviation. The pre-processed EEG
signals are applied as input to the proposed one-dimensional CNN network.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 3. The block diagram of the layers in proposed CNN. 

Table 2. Details of the CNN network of the proposed architecture. 

Layer 
Number Layer Name 

Activation 
Function 

Size of 
Kernel Strides 

Total Number 
of Weights Output Size 

1 Conv-layer 
Leaky ReLU 
(alpha = 0.1) 5 × 1 1 × 1 14 (1, 14, 14, 250) 

2 Normalization         (1, 14, 14, 250) 

3 Conv-layer Leaky ReLU 
(alpha = 0.1) 5 × 1 1 × 1 10 (1, 10, 14, 250) 

4 Normalization         (1, 10, 14, 250) 

5 Conv-layer Leaky ReLU 
(alpha = 0.1) 

5 × 1 1 × 1 10 (1, 10, 14, 250) 

6 Normalization         (1, 10, 14, 250) 
7 Full-connected         (1, 3500) 
8 Full-connected         (1, 2500) 

The proposed CNN-GAN consists of two fragments of sequential layers, as in Figure 
4. The one-dimensional convolutional layers in the first part of the proposed network 

Figure 3. The block diagram of the layers in proposed CNN.

The structure of the CNN fragment of the network consists of three convolutional
layers, as illustrated in Figure 3. The rectified linear unit is selected for the activation
function in each layer. After each convolutional layer, a dropout and batch normalization
are considered to prevent overfitting. Flattening of the output of the third convolutional
layer is achieved. It is imposed to a linear layer, and the output vector of a dense, full-
connected layer is passed through a log_softmax classifier layer to classify the input EEG
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signal. The output of the linear layer is a vector with 2500 elements, and it is the vector
applieded as input to the next deep network of the proposed CNN-GAN to extract and
obtain the MNIST images used as the stimulation. The details of the CNN network of the
proposed architecture are explained in Table 2.

Table 2. Details of the CNN network of the proposed architecture.

Layer Number Layer Name Activation
Function Size of Kernel Strides Total Number of

Weights Output Size

1 Conv-layer Leaky ReLU
(alpha = 0.1) 5 × 1 1 × 1 14 (1, 14, 14, 250)

2 Normalization (1, 14, 14, 250)

3 Conv-layer Leaky ReLU
(alpha = 0.1) 5 × 1 1 × 1 10 (1, 10, 14, 250)

4 Normalization (1, 10, 14, 250)

5 Conv-layer Leaky ReLU
(alpha = 0.1) 5 × 1 1 × 1 10 (1, 10, 14, 250)

6 Normalization (1, 10, 14, 250)

7 Full-connected (1, 3500)

8 Full-connected (1, 2500)

The proposed CNN-GAN consists of two fragments of sequential layers, as in Figure 4.
The one-dimensional convolutional layers in the first part of the proposed network classify
the EEG signals related to 10 different numbers of MNIST images with arithmetic content.
EEG signal classification happens in this stage, and the signal can be classified according
to the extracted features for 10 categories. After the preprocessing stage of the recorded
EEG signals in response to the visual image with arithmetic content, we have several
deep layers to extract the output vector of the first part of the proposed network to be
applied to the next generator adversarial network. The second part consists of generator
and discriminative networks in order to map the one-dimensional extracted feature vector
of the EEG signal in the first part to the two-dimensional image array. The main layers of
GAN in the proposed technique are two-dimensional convolutional blocks to reconstruct
the salient images.

The salient images are created using the SALICON approach to apply as the ground
reference data of the GAN network. The generative adversarial network is trained, and
the network weights will be determined. After this stage of the procedure, tuning the
weights of the trained network will be performed and transfer learning will be employed
to reconstruct the original visual image stimulation.

The architectural details of the generator and adversarial networks can be seen in
Figure 5. The flattened vector with 2500 elements is passed through a dense layer of
the generator network and four transposed two-dimensional convolution layers. Also, an
additional two-dimensional convolutional layer is needed to fit the output image dimension
to the desired dimension. The adversarial consists of three sequential layers of two-
dimensional convolutional layers. The output of these layers is imposed to the dropout
layer, and then the flattened output vector passes a fully connected layer to judge about
fake or real data.

The structural and dimensional details of layers in the generator are represented in
Figure 6 and Table 3. The input vector dimension is equal to 2500, and after passing through
two dense layers, the output vector dimension is equal to 20,000. The reshaped vector
of dense layer output is applied in the first transposed convolution layer. The number
of kernels in transposed convolutional layers is considered equal to four to have four
two-dimensional outcomes in each layer. Considering different kernels and strides in five
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transposed convolution layers according to Table 3, the dimensions of two-dimensional
outputs are equal to 50 × 50, 100 × 100, and 300 × 300, as illustrated in this table.
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Table 3. The details of the layers in the generator of the proposed CNN-GAN.

Layer Number Layer Name Activation
Function

Size of
Kernel

Number of
Kernels Strides Total Number

of Weights
Output of the

Layer

1 Full-connected 250,000 (1, 100)

2 Full-connected Rectified LU
(0.1) 2,000,000 (1, 20,000)

3 Reshape 0 (1, 50, 50, 8)

4 Conv 2-D
Transposed

Rectified LU
(0.1) 4 × 4 6 2 × 2 768 (1, 100, 100, 6)

5 Conv 2-D
Transposed

Rectified LU
(0.1) 4 × 4 6 3 × 3 768 (1, 300, 300, 6)

6 Conv 2-D
Transposed

Rectified LU
(0.1) 4 × 4 6 1 × 1 768 (1, 300, 300, 6)

7 Conv 2-D
Transposed

Rectified LU
(0.1) 4 × 4 6 1 × 1 768 (1, 300, 300, 6)

8 Conv 2-D Rectified LU
(0.1) 2 × 2 1 2 × 2 33 (1, 299, 299, 1)

Table 4 and Figure 7 describe the convolutional layers’ structural details in the pro-
posed framework’s discriminator part. Three convolutional layers with kernel size of 4
and stride length of 2 have been considered. Two filters have been applied to construct
the output of each convolutional layer. Furthermore, the total number of parameters is
illustrated in Table 4. Flattening of the last convolutional layer is performed to apply to the
final dense full-connected layer.
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Table 4. The details of the layers in the discriminator of the proposed CNN-GAN.

Layer Layer Name Activation
Function Size of Kernel Kernels Stride Total Number

of Weights Output Weight

1 Conv 2-D Rectified LU
(0.1) 4 2 2 32 (None, 150, 150, 2)

2 Dropout
(rate = 0.2) 0 (None, 150, 150, 2)

3 Conv 2-D Rectified LU
(0.1) 4 2 2 130 (None, 75, 75, 2)

4 Dropout
(rate = 0.2) 0 (None, 75, 75, 2)

5 Conv 2-D Rectified LU
(0.1) 4 2 2 130 (None, 38, 38, 2)

6 Dropout
(rate = 0.2) 0 (None, 38, 38, 2)

7 Flattening 0 (1, 2888)

8 Full-connected 2889 (1, 1)
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The procedure to create the original image from brain activity using the salient image
extraction deep network is illustrated in Figure 8. Transferring the network’s trained
parameters for the visual stimulation’s salient image to the proposed architecture in this
figure would result in the original image of visual stimulation. The initialization of the
weights is performed by transferring the weights, and tuning of the weights is performed
through cross-validation to acquire the original image.
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4.2. Training and Evaluation

The training procedure is accomplished through cross-validation to adjust the network
weights of the proposed CNN to the MindBig dataset. The trained parameters of this
part are transferred to the proposed CNN-GAN to extract the salient images of visual
stimulation from EEG recordings. Cross-entropy is utilized as a loss function for the
training phase of CNN, and binary cross-entropy is employed for the training phase of
CNN-GAN. Different parameters have been used through a trial–error technique to find the
optimal values of the proposed architecture. Table 5 represents the values as search scope
for the optimizer, cost function, and learning rate for the CNN and generative adversarial
parts. The corresponding optimal values are obtained with trial and error and illustrated in
this table.

Table 5. Search scope and optimal values in the training procedure.

Parameters Search Scope Optimal Value

Optimizer for CNN SGD, Adam SGD

Loss-function Cross-Entropy, MSE Cross-Entropy

Number of convolutional layers 1, 2, 3, 4 3

Learning-rate for CNN 0.001, 0.01, 0.1 0.001

Weight loss of SGD for CNN part 5 × 10−5, 5 × 10−3 5 × 10−5

Dropout rate of CNN 0.2, 0.3 0.2

Optimizer for GAN SGD, Adam Adam

Learning-rate for GAN 0.01, 0.001, 0.0001, 0.00001 0.0001

Number of 2D-conv transposed layers of generator 4, 3, 2 4

Number of 2D-conv layers of discriminator 4, 3, 2 3

Filters for the first conv-layer in CNN 10, 14, 28 14

Filters for the second conv-layer in CNN 10, 14, 30 10
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5. Results and Discussion

The practical implementation results of the proposed CNN-GAN are discussed in
this section. A laptop with a GTX 1050 GPU, 16 GB RAM, and a Core i7 2.8 GHz CPU is
employed to implement the proposed framework for classification. Furthermore, the recon-
struction procedure is accomplished with Python programming in the Google Colaboratory
platform with fast GPUs.

The train and test accuracy plots of the proposed CNN to classify the MindBig dataset
into 10 categories of visually evoked brain signals corresponding to the numbers between
zero and nine are represented in Figure 9. The train and test loss plots of the proposed
convolutional network are illustrated in Figure 10.
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The accuracy and loss plots are tracked for 530 number of iterations. The convergence
of training and testing of the proposed CNN through the implemented 10-fold cross-
validation is achieved after 420 iterations and the convergence of the CNN training for the
classification of the MindBig dataset is acquired.

Furthermore, the proposed CNN’s efficiency compared to the other state-of-the-art
deep networks is assessed with classification metrics including accuracy, Cohen’s Kappa
coefficient, F1-score, and precision. The results corresponding to the evaluation metrics for
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LSTM [14], GNN [46], and CNN-LSTM are demonstrated in Table 6. A different number
of layers has been considered for LSTM as the search scope, and three layers with 84.3%
accuracy have been reported in this table. Four layers, as chebconv and graph convolutional
layers, have been selected to report the graph neural network (GNN) performance for the
MindBig dataset.

Table 6. Comparison of different methods for classification of the MNIST-EEG.

Evaluation Metrics CNN CNN + LSTM GNN [46] LSTM [14]

Accuracy 95.4% 86.7% 73% 84.3%

Precision 96.7% 87.8% 73.6% 84.52%

F1-score 96.7% 87.8% 73.6% 84.52%

Cohen’s Kappa
Coefficient 96.7% 87.8% 73.6% 84.52%

In addition to LSTM and GNN, a combination of three LSTM layers with two convolu-
tional layers is considered and analyzed. This table confirms the efficiency of the proposed
CNN for the classification of the MindBig dataset.

The accuracy trend plots of train and test procedures in each state-of-the-art method
for MindBig dataset are illustrated in Figures 11 and 12, respectively. As illustrated in these
two figures, the efficiency of the proposed method against other state-of-the-art methods
for classifying the MindBig dataset is observable.

The effect of altering the number of convolution layers in performance and processing
time in the training procedure is shown in Figures 13 and 14. As can be seen, three
convolution layers result in a desirable compromise between the accuracy and processing
time of the proposed CNN.

Another way to assess the performance of the proposed architecture is the repre-
sentation of the confusion matrix. Figure 15 exhibits the corresponding matrix of the
proposed CNN to classify the MindBig dataset. This matrix confirms the efficiency of the
proposed CNN.
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The MindBig dataset consists of 9120 14-channel EEG signals. We can generate a set of
signals through training a generative adversarial network (GAN) and add the generated
signals to the base dataset to evaluate the performance of the proposed CNN. We gener-
ate 50 sets of 10 14-channel EEG signals according to different categories and add these
500 generated signals to the MindBigData. The generator part of the GAN consists of three
transposed convolution 2-D layers, and the discriminator part of the GAN includes three
convolution 2-D layers. The details of layers are presented in Tables 5 and 6.

The training of GAN is performed with 9000 iterations. The test accuracy of the
proposed CNN with the new dataset after 10-fold cross-validation is equal to 90.3%. The
accuracy of the network with the pre-trained weights is performed considering the gen-
erated signals, and the obtained test accuracy is equal to 86.9%. Figure 16 confirms the
proposed network’s efficiency for classifying the new MindBigData with 9620 14-channel
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EEG recordings. The details of the layers related to the generative and discriminator
subnets are presented in Tables 7 and 8, respectively.
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Table 7. The details of layers in the generator of GAN.

Layer Number Layer Name Activation
Function Ouput Size Size of Kernel Strides Number of

Kernels Padding

1 Full-Connected - (7 × 125 × 8)

2 Conv-2D
Transposed

ReLU
(alpha = 0.3) (7, 125, 8) 1 × 4 1 × 1 8 Yes

3 Conv-2D
Transposed

ReLU
(alpha = 0.3) (7, 125, 8) 1 × 4 1 × 1 8 Yes

4 Conv-2D
Transposed

ReLU
(alpha = 0.3) (14, 250, 30) 1 × 4 2 × 2 30 Yes

Table 8. The details of layers in the discriminator of GAN.

Layer
Number Layer Name Activation

Function Output Size Size of
Kernel Strides Number of

Kernels Padding

1 Conv-2D ReLU
(alpha = 0.3) (1, 14, 250, 6) 1 × 4 1 × 1 6 Yes

2 Dropout (0.2) - (1, 14, 250, 6)

3 Conv-2D ReLU
(alpha = 0.3) (1, 7, 125, 6) 1 × 4 2 × 2 6 Yes

4 Dropout (0.2) - (1, 7, 125, 6)

5 Conv-2D ReLU
(alpha = 0.3) (1, 7, 125, 6) 1 × 4 1 × 1 6 Yes

6 Dropout (0.2) - (1, 7, 125, 6)

7 Flatten - (1, 5250)

8 Fully
Connected - (1, 1)
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The evaluation of the proposed CNN-GAN for salient image extraction is accom-
plished in a 10-fold cross-validation considering the SSIM and CC for each image category
of the MNIST dataset. The classification of the EEG database is performed in the first CNN
part of the network, and the extracted feature vector is applied as the input to the next
GAN deep network to extract the salient image corresponding to the visual stimulation.
The results of SSIM and CC are represented in Table 9 and confirm the good performance
of the proposed CNN-GAN for reconstructing the salient visual stimulation.

Table 9. The saliency validation metrics for visual salient reconstruction.

Category Number Arithmetic Category SSIM CC

1 Zero 91.7 95.6

2 One 93.2 98.2

3 Two 95.3 97.1

4 Three 92.4 96.8

5 Four 91.5 96.1

6 Five 91.1 96.8

7 Six 94.8 99.4

8 Seven 93.6 97.7

9 Eight 94.5 99.2

10 Nine 91.8 95.9

- Average 92.9 97.28

The weights of the trained CNN-GAN for salient image extraction from the brain
activity are transferred to the network in order to reconstruct the original image. The
initialization of the parameters is performed in the transfer learning procedure, and the
adjustment of the new weights to reconstruct the visual stimulation images is accomplished
by tracking the loss function of the generator and discriminator networks. The cross-
entropy trend curves corresponding to loss function in salient image and original image
extraction are illustrated in Figure 17. Furthermore, the plots of tracking the CC and SSIM
metrics according to each iteration are represented in this figure considering four categories
in the MNIST dataset.

The results of the extracted salient image and reconstructed original image according
to four visual stimulation groups are represented in Figure 18. Furthermore, the ground
truth image and the actual visual stimulation image are described in this figure. The visual
assessment and the evaluation of the SSIM and CC metrics validate the efficiency and good
performance of the proposed CNN-GAN framework.

Table 10 compares the performance of the proposed CNN-GAN against other valuable
state-of-the-art method methods of SALICON [38], SalNet [39], visual classifier-driven
detector [44], neural-driven detector [44], and GNN-based deep network [45] for saliency
reconstruction. This table confirms the efficiency of the proposed CNN-GAN method.

One of the restrictions of the proposed method to be overcome in future works is
constructing the reference dataset for salient image extraction. This article’s reference data
for visual saliency is gathered by implementing the SALICON technique in the CAFFE
environment compiled to be compatible with the Python programming language. This
would be considered in future works to have salient data using an eye-tracker for tracking
the pupil position to identify the visual salient part in the images.

Another recommendation to be considered in future works is more complicated
arithmetic content for visual stimulation, and EEG records could be analyzed in these
complex situations.

Channel selection is another recommendation to be explored in future works. Study-
ing the effects of different EEG channels in classification and salient arithmetic content



Sensors 2023, 23, 9351 20 of 24

extraction would be beneficial. The channels with the most discriminative data could be
diagnosed through the experiment.
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ground reference data, the extracted salient image from brain activity, the original image, and the
extracted visual stimulation image using the EEG recordings.

Table 10. Comparison of different methods for saliency detection.

Method Dataset SSIM CC

Visual classifier-driven
detector [44] EEG-ImageNet - 17.30%

Neural-driven detector [44] EEG-ImageNet - 35.7%

SalNet [39] ImageNet - 27.10%

SALICON [38] ImageNet - 34.8%

GNN-based deep network [45] EEG-ImageNet 89.46% 99.39%

CNN-GAN MindBigData 92.9% 97.28%
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6. Conclusions

This paper proposes an effective convolutional neural network to extract the arithmetic
visual stimulation utilizing the brain activity recordings provoked by images of 10 different
groups of the MNIST database. The proposed CNN-GAN is trained to extract the salient
arithmetic content corresponding to the visual stimulation utilizing the time samples of
EEG signal recordings. The trained parameters are used as the initialization weights of the
proposed framework to extract the original version of arithmetic visual stimuli images. The
application of this research in BCI projects must be addressed. The implementation of the
proposed method in this article in the real world would be helpful for disabled or blind
subjects to have better interaction with the surrounding environment.
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Nomenclature

BCI Brain–Computer Interface
CNN Convolutional Neural Network
EEG Electroencephalogram
FN False Negative
FP False Positive
GAN Generative Adversarial Network
GNN Graph Neural Network
LSTM Long Short-Term Memory
MNIST Modified National Institute of Standards and Technology
SALIENCY Saliency in Context
SGD Standard Gradient Descent
SIM Similarity
SSIM Structural Similarity
SSVEP Steady-State Visually Evoked Potential
SVM Support Vector Machine
TN True Negative
TP True Positive
VGG Visual Geometry Group
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