
 
Abstract—For the problem of fault tolerant trajectory 

tracking control for a large Flying-Wing (FW) aircraft with 
Linear Parameter-Varying (LPV) model, a gain scheduled 
H∞ controller is designed by dynamic output feedback. 
Robust synthesis of this gain scheduled H∞ control is carried 
out by an affine Parameter Dependent Lyapunov Function 
(PDLF). The problem of trajectory tracking control for the 
LPV plant is transformed into solving an infinite number of 
linear matrix inequalities by the PDLF design, and the 
linear matrix inequalities are solved by convex optimization 
techniques. To overcome model uncertainties due to 
linearization and external disturbances, a radial basis 
function neural network disturbance observer is proposed, 
and to estimate actuator faults, an LPV fault estimator is 
designed. Furthermore, a composite controller is proposed 
to realize fault tolerant trajectory tracking control, which 
combines the LPV control with the fault estimator and 
disturbance observer, as well as an active-set based control 
allocation to avoiding actuator saturation. The approach is 
tested by simulation of two scenarios that show responses of 
the altitude, speed and heading angle to (i) unknown 
disturbances and (ii) actuator faults. The results show that 
the proposed neural network observer based LPV control 
has better performances for both disturbance rejecting and 
fault-tolerant trajectory tracking. 
 

Index Terms—Flying-wing aircraft; linear 
parameter-varying system; neural network; disturbance 
observer; fault tolerant control  

I. INTRODUCTION 
HE flying-wing aircraft configuration has been proposed 
as a creative design for next generation aircraft [1]. 

Compared to the conventional configuration, the flying-wing 
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has potential to meet future needs because of its capabilities 
for lower fuel consumption, smaller noise, carbon emission 
reduction and broader passenger cabin. Modeling and 
control methods of flying-wing aircrafts have been actively 
studied recent years [1, 2].  However, since there is no tail 
wing, there is a short pitch motion arm such that pitch 
balance of the airplane is very hard with potential for lose of 
control in landing; yaw control is also difficult[3]. Therefore, 
the question of how to control  flying-wing aircraft is a 
particular challenge [4]. A feedback flight controller is 
required is to reduce pilot workload, particularly during 
abnormal conditions. 
  Because the aircraft nonlinear dynamics are changing with 
the flight conditions, gain-scheduling is a common appraoch. 
Although this is easily implemented in the engineering 
applications, it does not guarantee the overall closed-loop 
system robustness and nominal stability. A more systematic 
approach to deal with system uncertainty and nonlinearity is 
Linear Parameter-Varying (LPV) control [5, 6]. For example, 
Atoui et al. proposed LPV-based autonomous vehicle lateral 
controllers [5]. Damon proposed a Luenberger LPV observer 
to estimate lateral motorcycle dynamics and the rider action 
[6]. To realize a lane keeping system, Quan et al. proposed 
LPV model based gain-scheduling control with parameter 
reduction[7]. Liu and Sang studied a polytopic model for 
robust model predictive control of an airship with winds and 
state time-delay [8]. Fleps-Dezasse proposed an active fault 
tolerant LPV control to compensate for damper forces that 
may be lost after a failure [9]. It has been shown that stability 
and robustness of the closed-loop system is theoretically 
guaranteed by the LPV controllers[10].  

It is known that the control performance of gain 
scheduling depends heavily on an accurate model. But 
flying-wing aircrafts are subject to a varying center of 
gravity, unknown faults, and other uncertainties. 
Furthermore, due to the short moment arm, they are more 
sensitive to center of gravity changes and to turbulence and 
gusts [4].  

Robust control techniques, especially H∞ , have been 
proposed to handle such external disturbances and 
uncertainties. There are two well-known gain-scheduled H∞ 
control method, this being the Single Quadratic Lyapunov 
Function (SQLF) [11] and the Parameter-Dependent 
Lyapunov Function (PDLF) [12, 13]. Compare with the 
SQLF design, the PDLF method is less conservative when 
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the parameters are changing slowly [14, 15], hence the 
PDLF based LPV design is applied for flight control of the 
flying-wing aircraft.  

The aim here is implement fault-tolerant trajectory 
tracking control for the FW aircraft under gust disturbances 
and unknown actuator faults, and so reduce gust and fault 
sensitiveness for the FW aircraft in a complex operation 
environment. This paper advocates a composite Fault 
Tolerant Trajectory Tracking Control (FTTTC) by using 
Neural Networks Disturbance Observer (NNs-DO) 
combined with a  fault estimator.  

NNs-DO has been used to estimate unknown bounded 
disturbances in the control process [16 17], and the control 
system can actively compensate for them. The advantage of 
the Disturbance observer based Control (DOBC) is that the 
original performances by baseline control are preserved and 
the observable disturbances are compensated without 
resorting to different control strategies [18]. Li et al. 
proposed an adaptive neural network output feedback 
optimized control design for a class of strict-feedback 
nonlinear systems that contain unknown internal dynamics 
and the states that are not measurable by means of barrier 
Lyapunov functions [19].  

Hence, an NNs-DO based PDLF controller is proposed 
to fault tolerant control a flying-wing aircraft. This method is 
used to design the NNs observers to observe disturbances 
and estimate the actuator faults, and to integrate the faults 
and disturbance information into the LPV control scheme to 
reduce their influences. The main contributions of this study 
are listed as follows.  

1) The LPV system of the flying-wing aircraft, under 
unknown disturbance and actuator faults, is robustly 
stabilized using the NNs-DO-PDLF LPV fault control.  An 
H∞ index is included in the NNs-DO-PDLF LPV design to 
reject environment disturbances. The FTTTC design 
problem of the LPV system with the H∞ index and wind 
disturbances can be interpreted as an affine parameter 
dependent Lyapunov function. Compare to a single 
quadratic Lyapunov function (SQLF) design proposed in 
[16], the PDLF method can reduce the conservatism of 
the designed LPV controller.  

2) An RBF-NN disturbance observer is proposed in 
order to approximate model uncertainties and reject 
external disturbances. Unlike [16, 17], the RBF-NN is 
introduced into the DO, thus  the disturbance observer 
improves adaptiveness and precision by the RBF 
neural-network approximation. Meanwhile, An LPV fault 
estimator is proposed to compensate the influence of 
unknown actuator faults.  

3) The flying-wing aircraft has fifteen control surfaces and 
three thrusters (see Fig.1). Hence a further challenge is how 
to efficiently allocate these control effectors. An active set 
based weight square least method is suggested for this 
problem. The fault tolerant control objective can be 
implemented in practice and actuator saturation is reduced. 

The reminder of this paper is organized as follows. In 
Section II, an LPV dynamics model of a flying-wing aircraft 

is established. Section III proposes a NNs-DO PDLF based 
fault tolerant trajectory tracking control design. Section IV 
presents the simulation results as well as the discussions on 
the proposed method. Finally, the conclusion is drawn in 
Section V. 

II. DYNAMICS MODELING  

A. dynamics modeling of flying-wing aircrafts 
The flying-wing aircraft configuration is shown in Fig.1, 

whose wing span 80m and length is 50.8m, and there are 
fifteen flaps for control, and it is assumed that the body is 
rigid. By using the Jacobian linearizing method a linear time 
invariant model [2] and the associated LPV model can be 
obtained.  
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Fig. 1.  Basic structure and control surfaces of a flying-wing aircraft 

The LPV model is given by 
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where A(·), B(·), C(·), and D(·) are given functions of 
scheduled parameters of ρ,  T

1 2= ( ) ( ) ( )nt t t   is 

scheduled parameters meeting i ii
( ) [ , ]t   , 

i
 , i

denote upper and downer bound of ρi, i=1, 2, …, n.  
( ) px t  is the state vector, 2( ) mu t  is the control input 

vector, 2( ) qy t  is the measurement output vector. 
Since gust disturbances and faults often occur during 

flight for the FW aircraft, then the aircraft LPV model with 
disturbances and faults are described as   
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2 21
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 (2) 
where A(·), B1(·), B2(·), C1(·), D11(·), D12(·) and D21(·) are 
given functions of ρ. ( ) qt   is the L2-norm bounded 

input disturbance, 3( ) md t  denotes the unknown 
bounded disturbance, B3 is effective matrix of the 
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disturbance, fa(t) is actuator fault with bounded rate. 
1( ) qz t  is the controlled variable or error vector. 

To simplify the model and reduce computing load, assume 
that (B2, C2, D12, D21) are parameter independent, (A(ρ), B2) 
is quadratically stabilizable, and (A(ρ), C2) is detectable over 
the parameter space Θ. Then the model (2) is rewritten as 

 1 2 3

1 11 12

2 21

( ) ( ) ( ) ( ) ( ) ( )+ ( ) + ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

ax t A x t B t B u t f t B d t
z t C x t D t D u t
y t C x t D t






  


  
  

  
  (3) 

Set 3 2=B B to match the disturbances from the control inputs, 
and the external disturbance can be generated by   

( )= ( )
( ) ( )

d

d

t W t
d t V t
 








                                  (4) 

where ξ is internal auxiliary variable, Wd and Vd are known 
suitable dimensional matrices. A PDLF based nominal 
controller is designed for the affine system (3), 
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(5b) 
where ( )kx t denotes the controller state, and kA , kB , kC , kD  
denote the controller gain matrices. 

Denote T T T
cl kx x x    , if the disturbance d(t) and faults 

fa(t) are neglected, then the closed-loop system, (2) and (5), 
is presented as follows, 
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B. Problem formulation 
To solve bounded disturbances and unknown faults, we 

are now ready to present the fault tolerant trajectory tracking 
control problem:  Find an LPV fault tolerant control such 
that the closed-loop LPV system, (2) and (5), meets: 

(a) robust stablity under conditions of bounded 
disturbances d and unknown faults fa. 

(b) rejection disturbance ω with H∞ index so that 

2 2( ) ( )z t t                            (8) 

for all nonzero 2( ) [0, )t   , and 

                           
2

1/2

0
( ) = ( ) ( )dTz t z t z t t

 
   ,                   (9) 

where γ is a given positive H∞ index, 
2

   denotes L2- norm 

operator.  

III. FAULT TOLERANT TRAJECTORY TRACKING CONTROL DESIGN  

A. Control synthesis based on PDLF 
The objective is to derive sufficient conditions driving the 

closed-loop system (6) meeting requirements of (a) and (b). 
First recall the definition of the asymptotically state invariant 
ellipsoids. 

Lemma 1 [15] A given symmetric matrix polytope, 

( ) p pN   , for which 
1

( )=
r

i i
i

N N 

 , meets ( ) 0N  

for  , if and only if 0iN  , i = 1,2,…,m, where i  is 
calculated by using (19) and (20)(defined later in this 

subsection), where 1 21 2, , , nn                   , 

i and i denote the upper and lower bound of ρi 

respectively. n is the total number of ρ(t).  
The system state matrix ( )A  , 1( )B  , 1( )C   and 11( )D   

in (3) can be written as a convex combination of the matrix 
vertex, i.e., 

1 21 2
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1
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i
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i
i
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C D D C D D

C D C D




 
   
            



 

 
 
 

 

(10)  

where r = 2n, iA , 1i
B  , 1i

C  and 11i
D are the associated 

matrices at each vertex. By expanding the bounded real 
lemma [20] to LPV systems, we get the following conclusion; 
if there exists a positive definite symmetric matrix P such 
that  

( ) ( ) ( ) ( )
( ) ( ) 0
( ) ( )

T T

T T

A P PA PB C
B P I D

C D I

   
  
  

 
 

  
  

         (11) 

 
holds for all admissible parameter trajectories, then the 
system (1) is quadratic stable and guarantees the requirement 

2 2( ) ( )z t t   [20].   

Consider the LPV system = ( )x A x , by using Lyapunov 
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stability theory it can be seen that the LPV system is 
parameter-dependent stable if and only if there exists a 
positive definite symmetric matrix ( )= ( )TP P  such that 

( ) ( ) ( ) ( )+ ( ) 0TA P P A P      , ( , )        (12) 
where 

           1 21 2= , , , nn                  ,                (13) 

i  and i denote the upper and lower bound of θi meeting 

i i   , respectively. ( )P  and ( )P  depend affinely on the 
parameters ρ as[12], 

0 1 1 1 1 2 2( )= + + + + +n n r rP P P P P P P          , r = 2n,  
(14) 

      1 1 1 1 2 2
ˆ ˆ ˆ( )= + + + +n n r rP P P P P P                  (15) 

where iP  and îP  are intermediate variants. Substituting (10) , 
(14) and (15) into (12) yields 
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To calculate αi or βi , the normalized co-ordinate is computed 
as 

( )
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i
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Then the associated polytopic co-ordinates for each vertex 
are computed by[21]. 
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According to Lemma 1, if positive definite symmetric 
matrices iP are done at all vertices,  then the inequality of (16) 
is solved. Therefore, if the existence of a positive definite 
matrix 0iP  , i = 1, 2,…, r satisfies  the following LMIs 

ˆ+ 0T
i i i i kA P P A P    , 0iP                        (21) 

ˆ+2 0T T
i j j i j i i j kA P P A A P P A P                      (22) 

(i, k = 1,2,…, r and 1≤ i < j ≤ r) , 
then the system = ( )x A x  is parameter-dependent stable. 

By using the PDLF of ( )= ( )TV x x P x , we get that an 
LPV controller K(ρ) stabilizes the closed-loop system (6), 
and ensures the H∞ index 

2 2( ) ( )z t t   if and only if 

there exists ( )= ( )TP P   satisfying  

( ) 0P   ,    0T T Td x P x z z
dt

     , 

( , )   ,                                                    (23)                       
then a scaled bounded real lemma inequality is got from 
inequality (23) [12] 
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where = ( , ) ( ) ( ) ( , )T
cl cl clA A P P A        , * denotes a 

symmetric matrix block,  
Since the matrices of

( ), ( , ), ( ), ( ), ( )k k k kP A B C D      , 

1 1 11( , ), ( ), ( ), ( )
cl cl clclA B C D     do not depend affinely 

on parameters ρ, for facilitating the LPV control design, the 
intermediate variables ( )kA  , ( )kB  , ( )kC  and ( )kD   
are set to depend affinely on the parameters ρ as following 
[12] 
 

0 1 1 21 1 2
ˆ ˆ ˆ( )= + + +

n rk k k n k k k r kA A A A A A A            

0 1 1 21 1 2
ˆ ˆ ˆ( )= + + +

n rk k k n k k k r kB B B B B B B            

0 1 1 21 1 2
ˆ ˆ ˆ( )= + + +

n rk k k n k k k r kC C C C C C C            

0 1 1 21 1 2
ˆ ˆ ˆ( )= + + +

n rk k k n k k k r kD D D D D D D           
 ,                                                                                           (25) 
then we obtain 

1( , ) ( ) ( ) ( ) ( ) ( ) ( )T
k kA N R S N M A            

                 2 2( ) ( ) ( ) ( )kR A B D C S                       
2 2( ) ( ) ( ) ( ) ( )T

k k kB C S R B C M          (26) 

 1
2( ) ( ) ( ) ( ) ( )k k kB N B R B D      , 

 2( ) ( ) ( ) ( ) ( )T
k k kC C D C S M      ,            (27) 

where  

1( )= ( )+ ( )N R S   , 

1 1( )= ( ) ( ) ( ) ( )N R S S S         , ( ) ( )M S  , 

( ) ( )M S   .                                                                  (28) 
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The positive definite symmetric matrix pair of ( ( )R  , ( )S  ) 
comes from the parameter-dependent Lyapunov variable of

( )P   as 
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where 1( ) ( ) 0R S   , and rank  1( ) ( )R S p   . 

Eqs(26)~(28) show that the controller matrices of ( , )kA   ,
( )kB  , ( )kC  do not depend affinely on the scheduled 

parameters ρ. For convenience, denote ( ( )R  , ( )S  ) to 
depend affinely on the parameters ρ as 

0 1 1 1 1 2 2( )= + + + n n r rR R R R R R R            , 

0 1 1 1 1 2 2( )= + + + n n r rS S S S S S S            ,  (30) 

1 1 1 1 2 2
ˆ ˆ ˆ( ) + + n n r rR R R R R R             , 

1 1 1 1 2 2
ˆ ˆ ˆ( ) + + n n r rS S S S S S              .   (31) 

where iR  and iS  is
 
mapped into
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jS  respectively as 

(14), j = 1, ... , r, i = 1, ... ,n. Substituting (14), (25)~(31) into 
(24) yields 

2 2( ) ( ) ( ) ( ) ( )
* ( ) ( )
* *
* *

T T T T
k kR R A A C D B

S S
   



   


 







 
1 21 1 2 12

1 2 21 1 12

11 21 12

( ) ( ) ( ) ( )+ ( )

( ) ( ) ( ) ( ) ( ) 0
( ) ( )

*

T T T T
k k

T T T
k k

T T T T
k

R B B D C C D D

B B D D S C C D

I D D D D
I

    

    

  




  
 
 




  

(32) 
where

2 2( )= ( ) ( ) ( ) ( ) ( ) ( )T T T
k kR R A B C A R C B          ,

2 2( )= ( ) ( ) ( ) ( ) ( ) ( )T T T
k kS A S B C S A C B          . 

Substituting (25), (30) and (31) into (32), we get [14]
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By Lemma 1, the LMIs (33) are sufficiently validated at all 
vertices. If iK  (i = 1, 2, …, r) has been obtained by the LMIs 
(33), then the dynamic controller of (5) can be computed 
on-line by using Eqs (26) ~ (28) with instantaneous 
measurement values of ρ and  . 

Remark 1 The parameter derivatives   are sometimes 
unavailable during flight [12]. To overcome this, R(ρ) or S(ρ) 
can be constrained to depend affinely on ρ. This yields 

 ( ) ( ) ( ) ( )= ( ) ( ) ( ) ( ) 0T TR S N M R S N M            

   
                                                                                      (38) 

Then Eq.(26) is rewritten as 

 1
2 2( , ) ( ) ( ) ( ) ( ) ( ) ( )k k kA N A R A B D C S         

2 2( ) ( ) ( ) ( ) ( )T
k k kB C S R B C M       .  (39) 

B. DO and fault estimator based fault tolerant control 
As disturbances and faults may occur at unknown time 

and intensity, an accurate model is impossible to achieve. 
Hence a disturbance observer and a fault one are introduced 
into LPV control. A DO-based FTC is proposed for this 
purpose. The disturbance observer and the fault estimator are 
designed to separately estimate the unknown observable 
disturbances and actuator faults.  

Furthermore, considering some model uncertainties 
except for external disturbances, such as Jacobian 
linearization error, a radial basis function neural network 
(RBF-NN) is approximate to this model uncertainty. The 
structure of the RBF-NN is three layers, first is the input 
layer, the net input is

TT T
NNx e e     , where

d de x x e x x     , , xd denotes the desired state variant. 
Second is the hidden layer, each node performs a 
membership function, whose basis function is presented as 
following Gaussian function 

  2 2( ) exp / 2j NN NN j jh x x c b              (40) 

where bj is the Gaussian function width, jc is the centre value, 
j denotes the node number of the hidden layer. The third is 
the output layer, whose output is 
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 T
NN NNy W h x                                   (41) 

whereW is the best weight vector, whose update law is  
ˆ ( )T

W NNW e h x .                              (42) 
where γw denotes learn rate gain. The model error can be 
presented as  

   *T
NN NNW h x x                       (43) 

where  denotes approximation error, W* is the optimal 
weight matrix. 

Furthermore, a disturbance observer with an RBF 
neural-network approximation is designed to improve 
trajectory tracking precision [17]. 

 
3

2 2

ˆ( ( ) )
ˆˆ     ( ) ( ) ( ) + ( ) ( )

ˆ ( )
ˆ ˆ

d d d d
T

d a

d d

d

z W L x B V

L x A x B u W h x B f

z L x x

d V







  

   

  

 



  

 

  (44) 

where d̂  is disturbance estimation, zd is the internal state, 
and Ld (x) is the observer gains to be designed,  Ŵ is the best 
estimation of the RBF-NN weight vector, ̂  and âf  are 
estimation of ξ and fault fa. The disturbance estimation error 
is denoted by ˆe    , by Eqs (2)-(3) and Eq.(44) the 

derivative e  is 

 3 1( ) ( ) ( ) ( )d d de t W L x B V e t B      .             (45) 

where the term of 1( )B    can be stabilized by the LPV 
controller.  

Provided that the observer dynamics change fast relative 
to the disturbances, select the observer gain Ld(x) is selected 
so that 3( )d d dW L x B V  is Hurwitz, then the disturbance 
estimation error, Eq. (45), is exponentially stable. 

The fault diagnosis estimator is proposed as follows 

 
 

2

2 3

ˆ ( ) ( )+ ( ) ( )

( )= ( ) ( ) ( )+ ( ) ( )

ˆ         ( ) ( ) ( ) ( ) ( ) ( )

a f

f f

f

f t t L x x t

t L x B t L x x t

L x A x t B u t B d t



 

 
 

   


 

 

     (46) 

where ˆ ( )af t is the estimation of fault fa(t), ( )fL x is the 

estimator gain and ( )t is the internal auxiliary variable. The 

fault estimation error is ˆ
f a ae f f  ,  by (2)-(3), (44) and 

Eq.(46) the derivative fe  is given as 

2 3 1
ˆ( ) ( ) ( ) ( )f a a f f d ae t f f L B e t B V e t B f t       
    

(47) 

Usually fa(t) persists only for a limited time, until the fault 
has been diagnosed and the system is reconfigured [22], so 
the fault derivative  is assumed to be bounded. To this end, 

the composite fault tolerant controller with the dynamic 
output feedback (5) is proposed as  

( ) ( ) ( )+ ( )LPV d fv t u t u t u t                        (48) 

and 

( ) ( ) ( ) ( )LPV k k ku C x t D y t   ,               (49) 
ˆ

d du K d .                                           (50) 

where 
+
2 3dK B B  .                                         (51) 
ˆ( )=fu t f                                             (52) 

fu is the fault tolerant control designed by the fault 
estimator, + denotes Moore-Penrose inversion. We attempt 
to find appropriate disturbance observer gain ( )dL x and fault 
estimation gain ( )fL x  to construct a composite controller, 
thus the external disturbances can be reduced and faults is 
compensated, finally, the input of the LPV controller is 
reduced. 

 C. The FTTTC design 
The controller structure including the longitude and lateral 

motions is proposed as in Fig.2,where elon=reflon−[u, h]T, 
elat=reflat−[v, ψ]T ylon=[u,w,q,θ,h]T, ylat= [v,p,r,φ,ψ]T. xT

NNs= 
[xT

ref,xT, xT
k] ,Zylon=[Zu,Zh], Zylat=[Zv,Zψ] , Zδlon=[Zδe,Zδp], 

Zδllat=[Zδa,Zδr]. In this scheme the PDLF approach is applied 
to reduce the LPV design conservatism. The trajectory 
tracking task is implemented by the LPV controller with 
guarantee  H∞ index. Disturbance and actuator faults are 
estimated by the NN-DO and a fault estimator. Control 
allocation is used to realize virtual control by practical 
control surfaces. A pre-filter is introduced to suppress high 
frequency signal inputs. The next section will present the 
LPV controller design.  

Lemma 2 [ Finsler's lemma][23] the following statements 
are equivalent 

(i)                  
0

:
0

T

T

Q B B

Q C C






    
 

 ,                          (53)  

and given the inequality  
(ii)                   + 0T TQ B X C CXB  ,                            (54) 

 is solvable for n mX  if and only if 

0TB QB   , 0TC QC                         (55) 

where m mQ  is a symmetric matrix. B and C are 
matrices whose columns from bases of the null spaces of B 
and C respectively. 
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Fig.2Block diagram of the designed fault tolerant trajectory tracking control 

Lemma 3 [24] Consider the nonlinear system ( , )x f x  is 
continuously differentiable and the Jacobian matrices satisfy

1
( , )f x

x
 




and 2
( , )f x x 






for all ( , )x   ,

 |nx R x r   , R   ,  is real number subset. 

Let k,λ,r0 be positive constant with r0< r/k and define 

 0 0|nx R x r   . Assume that the system trajectory 

meets 0(0) , (0) , , 0tx k x e x t      . Then there is 
a function V: 0 R   such that  the inequalities: 

2 2
1 2c ( ) cx V x x , ,                    (56) 

 
2

3( ) cV f x x
x


 


, .                      (57) 

2
4 5c cV Vx x

x 
 

 
 

，                      (58) 

hold, where ci (i=1,2,..5) is positive constant. Moreover, if all 
the assumptions hold globally (in x), then ( )V x , is defined and 
meets the above conditions on R×Γ. 

Lemma 4 [26]. Assume that A1) d(0)=0; A2) 
2( ), ( ), , /A B d d x    are all continuously differentiable; A3) 

2( )= ( ) ( ) ( ) ( )x t A x t B u t   is exponentially stable. Provide that 
A1)~ A3) are met, then the closed-loop system (3), (44) and (46) 
under the proposed controller (5) with (48)~(52) is 
exponentially stable if the observer gain Ld(x) is selected such 
that   3( ) ( ) ( )d d de t L x B V e t    is exponentially stable for 

all x ∈ Br ={x| || x || < r}, where d is a given sufficiently large 
positive value. 

By using Lemma 3 and 4, we can get following conclusion. 

Theorem 1 The existence composite controller of (48)~(52), 
with a NN observer (44) and a fault estimator (46),  assures the 
closed-loop system  (2) and (5), satisfying desired 

performances of (a) and (b), if the observer gain Ld(x) and Lf(x) 
are appropriately determined such that 3( )d d dW L x B V and

2( )fL x B are Hurwitz respectively,  and the following LMI 
conditions hold for a pair of positive definite symmetric 
matrices ( ( )R  , ( )S  )  

                                 

0T
R R RN N  ,                           (59) 

0T
S S SN N                                (60) 

ˆ 0T
R RRN N                               (61) 

 

ˆ 0T
S SSN N                                (62) 

             
0i

i

R I
I S

 
 

 
 , for i = 1, …, r.           (63) 

rank  1( ) ( )R S p  
                 

(64) 

where 
0

=
0
R

R
N

N
I

 
 
 

,
0

=
0
S

S
N

N
I

 
 
 

, NR and NS denote 

bases of the null spaces of  2 21,C D  and 2 12,T TB D 
  , 

respectively. 

   

1 1

1

ˆ+

*

* *

i i

i

T T
i i i i k i

T
R

A R R A R R B C

I D

I





 
 
    
   

     

 , 

1 1

11

ˆ

*

* *

i i

i

T T
i i i i k i

S

A S S A S S C B

I D

I





  
 
   
 

  

      

 . 

* denotes a symmetric matrix element,  
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1 1 1 1

ˆ 11 11

ˆ( )+2

* 2

* * 2

j i i j

i j

T T
k i j

T T
R

R R R B R B C C

I D D

I





   
 
     
 

  

     

  , 

1 1 1 1

ˆ 11 11

ˆ( ) 2

* 2

* * 2

j i i j

i j

T T
k i j

S

S S S C S C B B

I D D

I





    
 
    
 
  

      

  , 

( )= T T
i j j i j i i jR A R R A A R R A           ,                  (65) 

 
( )= +T T

i j j i j i i jS A S S A A S S A           .                    (66) 

 Proof: The proof of Theorem 1 is shown in Appendix A. 
A general design procedure of the FTTTC is summarized as 

follows: 
Step 1) Design a baseline PDLF LPV controller uLPV  for the 

nominal system (3) without consideration of disturbances and 
faults to obtain satisfactory tracking performances and H∞ 
index. 

Step 2) Design a NN-DO to observe the disturbances online 
by selecting the desired gain Ld(x) and weight matrix Ŵ  of the 
NNs. 

Step 3) Develop a fault estimator to estimate the faults online 
through choosing the estimator gain Lf(x). 

Step 4) Combine the baseline PDLF LPV control with the 
disturbance compensation and the fault tolerant control raised 
by the disturbance observer and fault estimator to formulate the 
composite control law.   

Now consider the trajectory tracking control problem shown 
in Fig.2. A mixed-sensitivity loop-shaping method is applied to 
achieve small tracking error and suppress disturbance effect on 
output, and the mixed-sensitivity criterion is  

1p

u

W S

W KS 

                            (67) 

where performance weighting function Wp and robustness 
weighting function Wu are hand-tuned until the desired 
objectives of the closed-loop system are achieved. K is the 
control gain, S denotes the system sensitivity function, The 
prefilter pre filterW   in Fig.2 is parameterized as 

( ) f
pre filter

f
W s

s


 


,                         (68) 

where 1/τf  denotes time constant of the filter.  

After the affine LPV model, as Eq.(10), is augmented with 
the weighting functions, shown in (67)~(68), a pair of positive 
definite symmetric matrices (R(ρ),S(ρ)) can be achieved by the 
PDLF design using Theorem 1. 

D. Control allocation 
Assumption 2. The input distribution matrix is assumed to 

be factorized as 

2 ( )= ( )v uB B B  ,                             (69) 
where n l

vB  is a constant matrix with full column rank, and 
the time varying matrix ( ) l m

uB   . Assume rank( ( )uB  )=l 
< m for all  . In the nominal mode,   

2 ( ) = ( )v u act v

v

B u B B u B v                    (70) 

According to the flying-wing aircraft configuration, see Fig.1, 
there are fifteen control surfaces of uact to be allocated which 
meet 

6 1

( )C
u act

C

v B u




 
  
 

f
,                        (71) 

2 3 13 14

1 4 12 15

2 3 13 14

1 4 12 15

2 3 13 14

1 4 12 15

0 0
0 0 0 0 0

0 0
=

0 0 0 0 0
0 0

0 0 0 0 0

xf xf xf xf

yf yf yf yf

zf zf zf zf
u

lf lf lf lf

mf mf mf mf

nf nf nf nf

B B B B
B B B B

B B B B
B

B B B B
B B B B

B B B B

 
 
 
 
 
 
 
 
  








  (72) 
where Cf and C are virtual control forces and moments, see 
Fig.2, ifjB denotes control effect parameter of the jth flap, i = x, y, 
z ,l, m, n. To get each control surface and thruster input of the 
practical engineering, a control allocation is suggested to solve 
(71) with following constraints: 

min minmax( ( ) , )act actu t T u T u u u u      
max maxmin( ( ) , )actu t T u T u     (73) 

where umin, umax minu and maxu  denote lower and upper bounds 
of the actuator position and rotating rate, respectively. u  and 
u  are lower and upper bounds of the actuator inputs. T denotes 
sample period. 

An Active Set (AS) based Weight Least Square (WLS) 
allocation method (see Fig.3) is studied to the above control 
allocation problem of (71) and (73) [25].  

 
Fig. 3. Control allocation of the flying-wing aircraft 

First find feasible solution set of the optimization problem  

1 2arg min ( )v u actu u u
u W B u v

 
   

                      
(74) 

Second find the optimal solution that approaches the desired 
value ud 

2arg min ( )u act du
u W u u


 

                         
(75) 

where Wu ,Wv are the weighting matrix for prioritization of 
actuators and virtual control respectively. The 2-norm is
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2
T

act act actu u u . Ω denotes a feasible set. So the control 
allocation scheme of the FW aircraft is presented in Fig.3 

By using the AS control allocation algorithm, the optimal 
inputs u∗ are solved and each control allocation component is 
achieved and incorporated into the FTTTC scheme.  

IV. RESULTS AND DISCUSS 
To validate the proposed algorithm, a Cranfield University 

flying-wing aircraft is studied.  The LPV model is derived by a 
small perturbation linearization method [2],where linearization 
is very simply accomplished by constraining the motion of the 
aeroplane to small perturbations about the trim condition. The 
considered model is a large flying-wing aircraft [16]. The initial 
state is as follows 

0P = [0, 0, 0] T(m), V0 = [192 m/s, 0, 0] T,  
 η0 = [0, 0.1, 0] T(rad), and ω0= [0, 0, 0] T,  

where 0P is position, V0 is body velocity, η0  is attitude and ω0 is 
angular rate. Flight range is within 
( , ) ([167, 218]) ([0,3048])u h     (m/s, m). The actuator 
constraints are δe, δa, δr [−0.436, 0.436] (rad), and δp[0, 1]. 
The state is xlon=[u w q θ h]T, xlat=[v p r φ ψ] T, the control is 
ulon=[δe  δp] T, and ulat=[δa  δr] T. 
 

The LPV model as (1) , where 

0( ) u hA A uA hA   ,                         (76) 

0( ) u hB B uB hB   .                         (77) 

0,lat

0.0022 24.1137 0.3993 9.7010 0
0.0056 0.4853 0.7759 0 0
0.0019 0.5035 0.0269 0 0

0 1.0000 0.1808 0 0
0 0 1.0108 0 0

A

 
   
   
 
 
  

, 

,lat

0.0004 0.0538 1.0138 0.0004 0
0.0000 0.0201 0.0002 0 0

= 0.0000 0.0013 0.0009 0 0
0 0 0.0006 0 0
0 0 0.0000 0 0

uA

   
   
 
 

 
  

 , 

3
,lat

0.0060 1.0744 0.2473 0.0070 0
0.0006 0.3561 0.0375 0 0

=1 e 0.0001 0.0008 0.0142 0 0
0 0 0.0053 0 0

0.0052 0 0.0004 0 0

hA 

 
  
  
 
 
  

, 

0,lat

0.3066 1.6270
0.9725 0.3432
0.0145 0.1193

0 0
0 0

B

 
  
  
 
 
  

, ,lat

0.0038 0.0200
0.0120 0.0042

= 0.0002 0.0015
0 0
0 0

uB

 
  
 
 
 
  

, 

3
,lat

0.0339 0.1797
0.1074 0.0379

=1 e 0.0016 0.0132
0 0
0 0

hB 

 
  
  
 
 
  

; 

To achieve desired performances, the weight functions are 
chosen as follows, 

0.1(0.5 0.1827)=
0.001 0.1827vp

sW
s


 

  , 0.7(0.5 0.1827)=
0.001 0.1827p

sW
s


 

, 

and 

2( 0.1827/2)=
0.001 0.1827au

sW
s




 , 4( 0.1827/2)=
0.001 0.1827ru

sW
s




,   

500 500( ) diag( , )
500 500pre filterW s

s s 
 

.

  The longitudinal motion parameters 0,lonA , ,lonuA , ,lonhA ,

0,lonB , ,lonuB , ,lonhB  and weight functions 
upW ,

hpW ,
puW


,

euW


are the same as [16] . 

Scenario I: trajectory tracking control for an LPV system 
under bounded disturbances d(t).  

Suppose the unknown harmonic disturbance vector d  is as 

 ( ) 0.05sin(0.05 )(rad) 0.1cos(0.05 ) Td t t t , (78) 

where d(t) denotes
e p

T
lond d d 

    
 or  

a r

T
latd d d     . The weight matrices in Eq.(4) are   

0 0.05
0.05 0dW  

   
, 

3.5 0
0 7dlonV  

  
 

, 
0.04 0

0 2dlatV  
  
 

, 

The observer gains in (44) are designed as follows by section 
3.B,  

Ldlon(xlon)= [0 0 1e-4 0 0; 0.8e-4 0 0 0 0]; 

Ldlat(xlat)= [0 0.12 0 0 0; 0 0 0.012 0 0]. 

And the neural network parameters are selected as  
c = [-3 -2 -1 1 2 3; -3 -2 -1 1 2 3;  -3 -2 -1 1 2 3; -3 -2 -1 1 2 3;  
-3 -2 -1 1 2 3;]; h(0)=[0.01,0.01,0.01,0.01,0.01,0.01]T.  γW= 
1/0.1, bj= 1. 

To show the advantages of the proposed algorithm, an LPV 
synthesis control designed by Andrés Marcos et al. [11] is 
used for comparison, where the weight functions are chosen as 
follows 

H V
1 1 1, , =

1 8 1 0.5 1videal ideal ideal idealW W W W
s s s

  
  

  ,

/1.4 0.4 /1.3 0.7 /1.3 0.1= , = , = =
0.004 0.007 0.1H V vp p p p

s s sW W W W
s s s

  
  

  57.3= = = , =1
25e a r p

W W W W    , 0.4=
400inoise

sW
s



(i=1,2,3,4 
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for each output), 

and the lpvsyn function from MATLAB LPV Tools is used to 
obtain the LPV controller. The minimize index γ for the 
velocity, altitude and head angle tracking task by the LPV 
controller are achieved as follows 

γV=0.7727,    γH=0.8836,   γφ= 0.9989 , 
To meet coordination turn requirement, β≈0, and the head 
angle tracking control is realized by using roll angle tracking 
control with 0sin /g V  , g is the gravity acceleration. 
The tracking responses by the LPV synthesis are Fig.4~ Fig.6. 

Now according to theorem 1, the PDLF LPV design gain Ki 
(i = 1, 2, 3, 4) are achieved, and then the dynamic output 
feedback control of (5) is online calculated by using the convex 
combination  (10) of the matrix vertices, and the performances 
obtained through the NNs-DO- PDLF approach are  γlon= 1.01 
and γlat = 2.36. By using the proposed controller, the forward 
velocity, altitude and head angle tracking responses of the 
flying-wing aircraft are given in Fig.4~ Fig.6. 

 
Fig.4. Forward velocity tracking responses under bounded disturbances 
 

 
Fig. 5 Altitude tracking responses under bounded disturbances 

 
Fig. 6 Head angle tracking responses under bounded disturbances 
 

Figs 4~6 show that the commanded forward velocity, 
altitude and head angle have been accurately tracked by the 
NNs-DO-PDLF LPV control. Compared with the conventional 
LPV synthesis design [11], DO – PDLF and NNs PDLF, there 
are smaller steady errors and lower overshoots than those for 
the NNs-DO-PDLF LPV design in speed and head angle 
tracking responses; Furthermore, there are some oscillations of 
LPV synthesis control in forward velocity and yaw angle 
tracking, which show that its tracking performances will 
deteriorate when large amplitude motion occurs following large 
disturbances, so the LPV synthesis has a bit vulnerability. 
Furthermore, there is large oscillation in altitude tracking 
response for the DO-PDLF with control allocation, but the 
response by the NNs-DO-PDLF control is quickly stable, this 
shows that the NNs- DO-PDLF design can reduce effect of 
observable disturbances and make their tracking responses 
more precise. 

By the neural network observer the bounded observable 
disturbances are estimated as following. 

 
Fig. 7 Unknown observable disturbance estimation without control allocation 

Fig.7 shows that estimation values of the disturbances 
approach to the true ones, but there is small deviation from the 
actual value, this is because the disturbance estimation d̂ or ̂
depends on the state as in (44), so it is easy affected by the state. 
But the small estimation errors are within the admissible range. 
Meanwhile, estimations of the harmonic frequency are the 
same as the original disturbances.   

To show the effect of the weight vector of the RBF-NN in 
(42), we chose γw =1, γw =10 and γw =100 for comparison, and 
the simulation results are shown as follows 
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Fig. 8 Head angle tracking responses under different γw 

From Fig.8 it can be seen that the head angle tracking precise 
will improve when the γw increases, but it will produce 
overshoot when γw is over large, so selecting suitable learning 
rate is important. 

Scenario II: Fault tolerant tracking control for an LPV 
system with actuator faults. 

Suppose the disturbance vector d is the same as Scenario I, 
and the unknown actuator fault vector fa is 

 
 

0.0002 0.001 ,  100
( )

0.02 0.1 ,            100

T

a T

t t t
f t

t

   
              

(79) 

where fa are , ( )
e p

T
a lonf t f f 

    
 , , ( ) a r

T
a latf t f f    

(rad). The gains of the fault observer (46) are obtained after 
several design iterations as follows, 

            Lflon(x)= [0 0 1.333e-4 0 0; 1.065e-4 0 0 0 0]; 

Lflat(x)= [0 0.015 0  0 0; 0 0 0.035 0 0]. 

 According to theorem 1, the fault tolerant control gain Ki (i 
= 1, 2, 3, 4) and the associated dynamic controller are achieved. 
The output tracking responses are given as follows by using the 
proposed controller,  

 
Fig. 9 Speed tracking output under actuator faults and disturbances 

 
Fig.10 Position tracking output under actuator faults and disturbances 

 
Fig.11 Attitude output responses under actuator faults and disturbances 
 

 
Fig.12 Angular rate output responses under actuator faults and disturbances 
 

Figs 9~11 show that the reference signals of uref , href and ψref 
are precisely tracked by the NNs-DO-FTC design. Compared 

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

104

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6 104

0 100 200 300 400 500 600 700 800 900 1000
time (s)

0

1000

2000

NoFTC-alloc
FTC-Alloc
NNs-DO-FTC-Alloc
Ref

500 505
2400

2450

0 100 200 300 400 500 600 700 800 900 1000
-40

-20

0

20

0 100 200 300 400 500 600 700 800 900 1000
-10

0

10

0 100 200 300 400 500 600 700 800 900 1000
time (s)

-100

0

100

NoFTC-alloc
FTC-Alloc
NNs-DO-FTC-Alloc
Ref

900 905
-5
0
5

10

0 100 200 300 400 500 600 700 800 900 1000
-10

0

10 NoFTC-Alloc
FTC-Alloc
NNs-DO-FTC-Alloc

100 200 300 400 500 600 700 800 900 1000

0

10

20

0 100 200 300 400 500 600 700 800 900 1000
time (s)

-5

0

5

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3337863



 12 

with PDLF control without fault tolerance, the FTTTC design 
has smaller steady errors and lower overshoots in the output 
responses of forward velocity, altitude and head angle. For the 
only PDLF control without FTC, there are big oscillations in 
the responses of speed, attitude and angular rates, which show 
worse control performances of the only PDLF at high altitude. 
This demonstrates the NNs-DO-PDLF LPV control not only 
has robustness in disturbance rejection, but also has strong fault 
tolerant capability. Comparison DO-PDLF FTC without NNs 
compensation, the tracking responses by the proposed 
NNs-DO-FTC are more approximate to the desired values, but 
this advantage is not obvious. The associated responses of the 
angular rates and control inputs are as in Fig.12 and Fig.13. 
Fig.12 shows that larger oscillations happen in the responses by 
the PDLF design without fault estimation than by the proposed 
FTC and NNs-FTC design. This is because the FTTTC 
compensates the fault effect by fault estimator. The control 
inputs of flaps 4, 12, left and right rudders are shown in Fig.13, 
the deflections of other flaps aren’t listed here. 

 
Fig.13 Inputs of flaps 4, 12 and rudders under Scenario II  
From Figs 13, it can be seen that flaps 4, 12, left and right 

rudders are driven by the FTTTC with control allocation, which 
drives each control surface to improve control effectiveness 
and reduces saturation of each control surface.  

The faults have been observed via fault estimation as in Figs 
14, and the disturbances have also been observed via DOs, 
which are consistent with Fig.7. 

 
(a) 

 
(b) 

Fig.14 Unknown fault estimation with control allocation 
Fig.14 shows that the estimations of actuator faults are 
asymptotically convergent to the true values, although some 
errors occur in the transition stage; this is because the fault 
estimation is changing with the associated states as (46). 

V. CONCLUSION 
This study achieves the fault tolerant trajectory tracking for a 

flying-wing aircraft with bounded disturbances and unknown 
actuator faults. A composite control scheme of the 
NNs-DO-PDLF LPV design is proposed.  The trajectory 
tracking control for the LPV system is designed by a 
mixed-sensitivity loop-shaping method, thus the robust and 
tracking performance can be achieved simultaneously. To 
reduce conservatism of the LPV design, a PDLF LPV control is 
presented, and it can be easily obtained by the LMI technique. 

 To reduce the external disturbances an RBF neural network 
based observer is proposed and the disturbance rejection 
capabilities are improved. An LPV fault estimator is developed 
to estimate the actuator faults, and which is embedded into the 
composite controller to provide a fault tolerant function. Finally 
an active set based weight least square allocation method is 
presented to implement control allocation under actuator 
saturations.  Simulation results of forward speed, altitude and 
head angle tracking control of the flying-wing aircraft validate 
the effectiveness of the proposed FTTTC design. It’s shown 
that the FTTTC is able to accurately tracking the input 
commands even in with bounded disturbances and unknown 
faults. The problem that how to realize trajectory tracking 
under ice and other extreme condition is a new challenge for the 
FW aircraft, physics-informed data-based LPV modeling [28] 
and model-based reinforcement learning control [29] are 
promising methods for future work. 

APPENDIX A 

 PROOF OF THEOREM 1  
Proof:   First the unknown disturbance d(t) and actuator fault 

fa(t) are not considered. By Lemma 2, LMIs (33) are solvable 
for iK  if and only if there exist a pair of positive definite 
symmetric matrices (R(ρ), S(ρ)) defined in (30) satisfying 

   
1

ˆ
1 1 1 1 1

0
r r r r r

T T
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i k i j i k
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(A2) 
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 ,                         (A3) 

Note that (A3) ensures iR , iS >0 and  1 0i iR S   . By 

Lemma 1, (A1) ~ (A3) are sufficiently validated at all vertices 
if (59)~(64) are met. Furthermore, the lowest quadratic H∞ 
index γ is achieved for both the (R(ρ), S) and (R, S(ρ)) cases. 
Hence, the LPV controller uLPV can stabilize the closed-loop 
system (6) by using the parameter dependent Lyapunov 
function V(x)=xTP(ρ)x. 

In order to stabilize the system for any disturbance d(t) and 
any actuator fault fa(t),  a part of the control effort, v(x, d, fa), 
shall linearly depend on the disturbance d and fault fa. Thus, the 
control law can be divided into  

( , , ) ( ) ( ) ( )+ ( ) ( )a LPV d f av x d f u t K x d t K x f t                   (A4) 

Substituting (A4) into the system (3) yields 

1( ) ( ) ( ) ( ) ( )x t A x t B t     

 2 3( ) ( ) ( )+ ( ) + ( )LPV d aB u t K x d t f t B d t        (A5) 
Under condition that 3 2=B B , ( )= 1dK x  , and ( )= 1fK x  , the 
closed-loop system reduces to 

1 2( ) ( ) ( ) ( ) ( ) ( )LPVx t A x t B t B u t                 (A6) 

which is global exponentially stable under an appropriately 
designed controller (5). Since the external disturbance d and 
actuator fault fa are unavailable, they are estimated by the 
disturbance observer (44) and fault estimator (46). Furthermore, 
because the observer gain Ld(x) and Lf(x) are appropriately 
determined such that 3( )d d dW L x B V and 2( )fL x B are 
Hurwitz respectively, the disturbance converges globally 
exponentially, and the fault estimator is globally exponentially 
stable [26]. After replacing the disturbance d and fault fa by 
their estimations in the control law (A4), the closed-loop 
system (A5) becomes 

1 2( ) ( ) ( ) ( ) ( ) ( )LPVx t A x t B t B u t      

   2 2
ˆ ˆ+ ( ) ( ) ( ) ( )aB d t d t B f t f t                         (A7) 

Augmenting (A7) with the observer error dynamics (45) and 
(47) gives the closed-loop system under the composite 
controller, as 

 
 

1 2 2 2

3 1

2 3 1

( ) ( ) ( ) ( ) ( ) ( ) +

( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( ) ( )

LPV d f

d d d
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x t A x t B t B u t B e B e

e t W L x B V e t B

e t f f L x B e t B V e t B f t

 









       

       




 

 





 

(A8) 

where d de V e , ˆ( ) ( )f ae f t f t  . Because the system (A6) is 
exponentially stable, it implies that there exists the parameter 
dependent Lyapunov function 

( )= ( )T
cV x x P x , ( ) 0P   .                 (A9) 

If there are positive definite symmetric matrix solutions ( ( )R  ,
( )S  ) of the LMIs of (59)-(64), then we get 

  0T T
c

d V z z
dt

    , ( ) T T
cV x z z     ,     (A10) 

and 2 2z   , and ( ) 0cV x  . For the error dynamics of the 
disturbance observer, construct a Lyapunov function 

( ) T
oV e e Pe   , then by using Lyapunov theory and it further 

follows from Theorem 1 in Ref.[16],  we get 

( )
T

o d
z z

V e
e e
 

   
        

   
  ,              (A11) 

where 
1 1

1

1 1 1

0

0 ( ) ( )
d T

o PB B P

 

 

  
  
  


 

.  

Therefore, the closed-loop system of (A8) with the NN-DO 
is exponentially stable, which implies that for an initial state x 
and ξ meeting 0|| (0) ||x x , 0|| (0) ||  , and

 
lim ( ) 0
t

x t



 
,

lim ( ) 0
t

e t


 ,where 0x and 0  are given scalars. 

Similarly, for the error dynamics of the fault estimation, we 
can obtain 

( )
T

f f f
f f

z z
V e

e e
   

        
   

  ,              (A12) 

where ( ) T
f f f fV e e Pe is a Lyapunov function candidate, f

is a small positive scalar as in  d  in (A11).  
For the nominal system of (A6) (without consideration of 

disturbance d and fault fa), if the system is exponentially stable, 
then there exists a Lyapunov function Vc(x) such that (56)~(58) 
are feasible for all 0rx , r0≤ r[ 24]. Furthermore, when there 
exist disturbance d and fault fa, since the observer gains Ld(x) 
and Lf(x) are appropriately chosen such that 3( )d d dW L x B V

and 2( )fL x B are Hurwitz respectively, that is, the exponential 
stability of the disturbance observer and the fault estimator 
regardless of x, it implies that there exists a k > 0 and > 0 
such that the trajectory of the observer error dynamic system 
satisfies 

||eξ(t)||≤ k||eξ(0)||e−λt , ∀eξ(0) ∈Ξσ, x , t ≥ 0,   (A13) 
where Ξσ ={eξ ∈ Rn, | ||eξ|| <σ0} with σ0 < σ/k.   It follows from 
Lemma 3 that there exist function ( , )oW e x  and ( , )f fW e x : 

Ξσ ×→R such that  
2 2

1 2

2
3

2
4 5

( , )

,

o

o

o o

b e W e x b e

W
e b e

x
W W

b e b e
e x

  

 

 


 


 



 
 

 

                      (A14) 

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3337863



 14 

for all e  . Define a Lyapunov function candidate 

( , )cV x e for the closed-loop system (A8) without faults as 

( , ) ( ) ( , )c ox e V x W e x                          (A15) 

Taking the derivative of ( , )cV x e along the trajectory of the 
closed-loop system (A8), one can obtain 

( , ) +c o oV W W
x e x x e

x x e 


  
  

  
     

22
3 2 3+ c o o

c
V W W

c x B e f b e
x x x 

   
        

  (A16) 

where 1 2( ) ( ) ( ) ( ) ( ) ( )c LPVf x A x t B t B u t    , 1B 

1max ( )
rx

B 


, 2 2max
rx

B B


 . In addition, based on Eqs. 

(56)~(58), and (A14), we can obtain the following inequalities. 

 2 2
c o c oV W V W

B e B e
x x x x 

     
           

 

3
4 2 5 2c x B e b e B                                     (A17) 

        
2

5 3( ) ( )o o
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           (A18) 

where 3
( )

max
r

c
x

f x
l

x





. Substituting (A17) ~ (A18) into (A16) 

yields 

( , )x e  2
3 4 2+c x c x B e  

3 2 2
5 2 5 3 3b e B b e l x b e     

            
(A19) 

For all e  ,
2

b bl e x l e x    , 

3 2
5 2 5 2b e B b e B    , where  

5 3bl b l  , 0b bl l  , 5 5 0b =b  , then (A19) satisfies 

    22
3 4 2 5 2 3( , ) + bx e c x c B l e x b B b e           

  223
3 5 2 52

c
x b b B c e                                  (A20) 

where  25 4 2 3= / (2 )bc c B l c  . This implies that the 

exponential stability of the closed-loop system under the 
proposed controller is guaranteed by choosing a sufficiently 
large b3 such that 

3 5 2 5 0b b B c                           (A21) 
Consider disturbances with simultaneous actuator faults, 

define the Lyapunov function candidate for the closed-loop 
system of (A8) as 

( , , ) ( ) ( , ) ( , )f c o f fx e e V x W e x W e x                  (A22) 

one has 
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32
3 4 2 4 2 5 2+ + fc x c x B e c x B e b e B     

3 2 22 2
5 3 3 5 2 5 4 3f f fb e l x b e a e B a e l x a e       

 2
3 4 2+ bc x c B l e x     

      22
4 2 5 2 3 5 2 3+ bf f fc B l e x b B b e a B a e       

 2 22 23
3 5 5 2 3+ +

2
c

c x x c e b B b e      

 2 223
6 5 2 3+ +

2 f f
c

x c e a B a e   

    22
3 5 2 5 3 5 2 6= fb b B c e a a B c e                    (A23) 

where ai (i =1,2,…, 5), 5a  and bfl are positive constants 

defined the same as bi , 5b  and bl  in (A14), 

 26 4 2 3= / (2 )bfc c B l c  .                           (A24) 

This means that selecting a sufficiently large b3 and a3 such that 

                 3 5 2 5 0b b B c   , 3 5 2 6 0a a B c                (A25) 

then the exponential stability of the closed-loop system under 
the proposed controller is guaranteed. Hence, we can conclude 
that all the state, disturbance and fault estimate errors from a 
possible arbitrarily large set converges to the origin as t→∞. 
Therefore the results are achieved.                                       □ 
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