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Abstract: Quantitative assessment of feature performance for health monitoring is key to
feature selection. This paper illustrates the application of well-established metrics in the
research community - namely, monotonicity, robustness and prognosability - to the quantitative
performance assessment of features for health monitoring of alternating-current (AC) powered
solenoid operated valves (SOVs). These features are extracted from voltage and current signals
measured on the valves and builds on previous work of the authors. Based on these metrics, the
appropriate features are selected to be used as condition indicators. The selected features are
inputs to a logistic regression model to predict a health index ranging from 0 to 1, which can be
easily monitored and assessed by non-experts. We demonstrated the developed methodology on
the experimental data acquired from accelerated life tests on 48 identical AC-powered SOVs.
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1. INTRODUCTION

Since solenoid operated valves (SOVs) are critical com-
ponents in many industrial applications, there has been
a growing interest in developing technologies to support
the implementation of the Condition Based Maintenance
(CBM) or Predictive Maintenance (PdM) strategies for
SOV, see Jameson et al. (2014). These required technolo-
gies comprise sensing, data acquisition, condition indicator
(CI) construction, health assessment, and remaining useful
life (RUL) prediction. Some technologies based on vari-
ous non-invasive sensing techniques, such as current and
voltage sensors, vibration sensors, 77GHz frequency mod-
ulated continuous wave (FMCW) millimeter-wave radar,
have been proposed in the literature, for examples see
Kryter (1992); Guo et al. (2016); Li et al. (2021); Tod et al.
(2023). The technologies based on current and voltage
signals are preferred in the industry because the sensors
installation is relatively easy.

There is extensive literature on electrical signal based
condition monitoring (CM) and prognosis and health
management (PHM) technologies for direct current (DC)
powered SOVs, see Perotti (2010); Daigle and Goebel
(2011); Filho and Negri (2013); Jo et al. (2020); Tang et al.
(2019). However, the development of electrical signal based
CM and PHM technologies for AC-powered SOVs is still
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very limited and has gained some interest since the last
decade, see Mazaev et al. (2020); Utah and Jung (2020);
Ompusunggu and Hostens (2021); Tod et al. (2023).

An important step in the development of CM and PHM
technology lies in determining features or condition in-
dicators (CIs) extracted from the sensor signals. These
features are useful for diagnostics or tracking the degrada-
tion progress of critical assets/ components under inves-
tigation. Prospective features for critical components, like
rolling element bearings, have been quantitatively evalu-
ated and reported by various researchers in the literature,
for example, see Kumar et al. (2021); Oh et al. (2022).
However, according to the authors’ knowledge, there is
not yet a published work discussing the quantitative eval-
uation of prospective features for AC-powered SOVs.

In our previous works, three different methods to extract
a number of prospective features from the electrical sig-
nals measured on AC-powered SOVs, namely (i) the first-
principle model based method Tod et al. (2023), (ii) the
statistics-based method Mazaev et al. (2020), and (iii) the
physics-inspired feature engineering based method Om-
pusunggu and Hostens (2021), have been proposed and
demonstrated on the datasets obtained from accelerated
life test (ALT) campaigns on 48 identical AC-powered
SOVs. The experimental results showed that some features
are good for diagnostic purposes, namely to identify the
type of failure modes occurring in the valves, while others
display systematic changes during the AC-powered SOV’s

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2023.10.1540



3726

lifetime, which is good for health assessment and progno-
sis.

1.1 Aim and Scope

The aim of this paper is to quantitatively assess the
performance of all the prospective features extracted with
the three aforementioned methods. By doing so, the most
relevant features can be selected in an objective manner.
The selected features are then fused into a health index
(HI) that represents the overall health status of the valves.
Notably, the selected Cls can also be used for prognosis,
but it is out of the scope of this paper.

1.2 Paper Organisation

The remainder of this paper is structured as follows. In
Section 2, we propose the methodology to quantitatively
assess the performance of the prospective features ex-
tracted using three different approaches. In Section 3, we
briefly introduce the test setup and the accelerated life
test campaign of 48 identical AC-powered SOVs. Section
4 is a discussion on the quantitative performance of all the
prospective features obtained after applying the proposed
methodology, based on which we select the most relevant
features for the health assessment of AC-powered SOVs.
In Section 5, we discuss some conclusions drawn from this
work and propose future work.

2. METHODOLOGY

The overall methodology proposed in this paper is illus-
trated in the flowchart in Figure 1. It consists of three
main steps comprising (i) Prospective features extraction
from raw electrical signals, (ii) Relevant feature selection
and (iii) Feature fusion for health assessment. In the first
step, three set of prospective features are computed from
the measured current signal i(¢) and voltage signal wu(¢)
based on three aforementioned methods, which are briefly
discussed in the following sub-section. In the second step,
the computed features are quantitatively assessed using
three established metrics for prognostic features selec-
tion, namely (i) Monotonicity, (ii) Robustness and (iii)
Prognosability. The arithmetic average of the three met-
rics is computed, yielding an overall score which is used for
the feature selection. In the third step, the selected features
are fused into a single value, namely a health index (HI),
using a logistic regression (LR) technique. Notably, the
output of the LR model, i.e. the HI, ranges between 0 and
1, thus allowing an easy and intuitive assessment of the
health status of AC-powered SOVs.

2.1 Feature Extraction

Three different methods for feature extraction from the
AC-powered SOV’s electrical signals have been applied
in previous work, namely based on (i) a first-principle
model, (ii) physics-inspired signal processing and (iii) a
statistical technique. We briefly recapitulate them in the
next paragraphs.

Let i(t) and u(t) be the analog current and voltage signals,
respectively, measured on an AC-powered SOV. Both
signals were acquired through digital data acquisition, so
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Fig. 1. The overall methodology.

we denote the digitized current and voltage with ¢, and
uy, respectively, with k£ = 1,2, ..., n the sampling indices.

First-principle model-based features  In our previous
work Tod et al. (2023), we built a first-principle model
of AC-powered SOVs by coupling the electromagnetic and
mechanic behaviour and we improved this model by taking
into account shading ring fracture and wear of the plunger,
two common reasons for degradation of AC-powered SOVs.
The improved model is schematically shown in Figure 2.
Readers interested in the details of this model are referred
to the previous publication Tod et al. (2023).

We identified shading ring force and Coulomb friction force
as indicators for degradation of shading ring or plunger,
respectively. Through estimation of the shading ring force
and Coulomb friction force from the measured current
signal i and voltage signal uy, we established physical
features or Cls.

Note that the improved first-principle model combined
with measured current and voltage also allows us to
estimate the displacement of the plunger, which represents
the AC-powered SOVs’ health status. Therefore, next to
the shading ring and kinetic Coulomb friction forces,
we also considered two other features as Cls: the area
under the plunger movement curve and the average of
the plunger travel end. In summary, we established four
physical features or Cls extracted from the electric signals
and the first-principle model, which are summarized in
Table 1.

Table 1. Physical features.

Feature Description

Feooulomb Kinetic Coulomb friction force

Fshading Shading ring force

AU DispC  Area under the curve of the plunger movement
DispAve Average of the plunger travel end

Statistics-based features ~ As the input voltage signal
u applied to the SOVs is always the same, it is only
the current signal i that changes as the degradation
progresses. A deviation of the current signal at a given
condition i from its reference current signal at a healthy
condition i could also be an indicator of degradation in
SOVs. To quantify this deviation, let €, = i, —i} be defined
as the current signal deviation.
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Fig. 2. Graphical representation of an AC-powered SOV,
reproduced from Tod et al. (2023).

In this paper, some statistical features are computed from
the measured current signal ix and the current signal
deviation €, as summarised in Table 2.

Table 2. Statistical features.

Description
Root mean square (rms) of the raw current signal i,

Feature

curr_rms
curr__kurt
curr_cf
Res__curr_rms
Res__curr__kurt
Res__curr_cf

Kurtosis of the raw current signal iy,

Crest factor of the raw current signal iy,

Root mean square (rms) of the current signal deviation ey,
Kurtosis of the current signal deviation ey

Crest factor of the current signal deviation ey

Physics-inspired features  Inspired by the profound un-
derstanding of the effects of the degradation on the electro-
mechanical behavior of AC-powered SOVs through the im-
proved first-principle model and the underlying phenom-
ena, some features were defined and a methodology to ex-
tract those features from the measured current and voltage
signals was proposed in our previous work Ompusunggu
and Hostens (2021). Figure 3 graphically illustrates the
features extraction methodology.

The impedance spectrum Z(w) is defined as the ratio
between the voltage spectrum V(w) and the current spec-

3727

trum I (w):

V(w)  FFT [u(t)] (1)
I(w)  FFTI[i(t)]’

where F'F'T denotes the fast Fourier transformation. The
inductance spectrum L(w) is obtained by taking the
imaginary part of the impedance spectrum, i.e. L(w) =
Im ([Z(w)]). Some potential features for condition moni-
toring purposes can be extracted based on the magnitudes
of the impedance and inductance spectra at the AC-source
frequency wg and its higher harmonics. The summary of
the physics-inspired features is listed in Table 3.

Z(w) =

Measured voltage i
_ — FFT _
signal, Vs ) Impedance & ). Set of impedance &
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( B i features
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Fig. 3. Calculation of physics-inspired features.

Table 3. Physics-inspired features.

Feature Description
ImFund The impedance spectrum magnitude
at the fundamental AC-source frequency, |Z(ws)|
IdFund The inductance spectrum magnitude
at the fundamental AC-source frequency, |L(ws)|
ImOdHarm Averaged impedance spectrum magnitudes at odd harmonics
of the AC-source frequency, 22:1 |Z((2k + 1) x ws)|
ImEvHarm Averaged impedance spectrum magnitudes at odd harmonics
of the AC-source frequency, Zi:l |Z(2k x ws)|
IdOdHarm Averaged impedance spectrum magnitudes at odd harmonics

of the AC-source frequency, 22:1 |L((2k + 1) x ws)|
Averaged impedance spectrum magnitudes at odd harmonics
of the AC-source frequency, 22:1 |L(2k x ws)|

IdEvHarm

RZC1D1 The first valley position, see Fig. 3
RA2D2mazx The maximum amplitude of the 24 derivative
of the current signal, d%i(t)/dt?, around the first valley, see Fig. 3
Deltal2 Al + A2, see Fig. 3
Delta34 A3 + A4, see Fig. 3
Delta56 A5 + AG, see Fig. 3
CurrHiSpectHarm  The sum of the higher harmonics

of the normalised current spectrum SHHCS = Zi: \I:Il (kws) |

2.2 Feature Selection Methodology

Since in general the value of each relevant feature is
calculated from measurement data that is periodically
acquired at a predefined time interval At, it is therefore
convenient to treat the feature values as a discrete-time
series quantity. Let X = [z1,...,2;,...,xn] be the vector
representing the discrete-time series feature and T =
[t1, .., tis ..., tn] De the time vector corresponding to the
feature vector, where t; = iAt.
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Monotonicity  As degradation is typically an irreversible
process (no self-healing), a relevant feature is the one
that has a strong correlation with time. The Monotonicity
metric evaluates this trend information and shows which
feature has degradation information of the asset, see Coble
(2010). Since degradation of machinery evolves typically
very non-linear with time, Spearman’s correlation is cho-
sen because it is robust to such non-linearity. Hence, the
Monotonicity metric is defined as the absolute value of
Spearman’s correlation between feature and time, mathe-
matically expressed as, see Carino et al. (2015):

_ 627]:[:1()12 — Tn)

Mon(X) = N(NT—T)

1

(2)

where Xn and fn are the rank sequences of X and T.

Robustness When an engineering asset exhibits a stochas-

tic process, a good feature should be robust to outliers

and noise. The robustness of a feature X is defined as, for
Ln — I_n

example see Kumar et al. (2021):
1
where z,, is the feature value at the time index t,, and x,

is the mean trend value of the feature which is acquired
through the smoothing process.

Prognosability ~ Prognosability is a metric related to the
consistency of the different end-of-life (EoL) feature values
across the fleet. It is defined as the variability of the EoL
feature values relative to the range between initial and
final feature values, see Coble (2010). In the formula, this
reads:
std (X (V) ) ,
Prog(X) =exp | — =1...M
o) = o (e )

(4)
where the index j is the asset number, X; represents the
vector of measurements of a feature on the j** asset, N;
is the number of measured values of the feature on the ;"
asset and M is the number of monitored assets.

Overall performance  The overall performance of each
feature Poyerau(X) is assessed by taking the arithmetic
mean of those metrics being defined as follows:

_ Mon(X) + Rob(X) + Prog(X) 5)
3 )

where Mon(X) and Rob(X) represent the mean mono-
tonicity and robustness metric, respectively.

PO'uerall (X)

2.3 Logistic-Regression (LR) Based Health Assessment

In the maintenance engineering context, a health assess-
ment is the determination of the health status of critical
assets/components. It is custom to quantify the health sta-
tus with a binary value, e.g. 0 or 1, where this categorical
value may be seen as a health index (HI). For AC-powered
SOVs health assessment purposes, one could consider that
the HI of (close to) 1 represents a healthy state, on the
contrary, the HI of (close to) 0 represents a failure state.
This justifies that the HI progressively changes from 1 to
0 as the valves degrade.
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The feature values are not necessarily restricted between
0 and 1, which cannot allow a direct justification and easy
interpretation of the health status of the SOVs by non-
experts (i.e. operators). To this end, the feature values
evolving from a healthy to a failure state need to be
transformed into a HI. In this paper, the logistic regression
(LR) technique is used for the health assessment of AC-
powered SOVs using the selected features obtained from
the previous step in Section 2.2.

The LR can be seen as a process with a two-fold objec-
tive: (i) fusing multiple features (independent variables)
into a single value (i.e. HI) and (ii) restricting the HI
between 0 and 1. The advantage of using the LR is that
only data representing healthy and failure states are re-
quired to estimate the regression coefficients. Thus, the
LR technique is suitable for problems with a limited num-
ber of historical data. As reported in the literature, the
LR technique has been successfully applied to assess the
health status of engineering systems based on extracted
high dimensional features, for examples, see Yan and Lee
(2005); Ompusunggu et al. (2012); Maulana et al. (2023).

Fig. 4 illustrates the steps to determine the HI by fusing
a set of L selected features, represented by a vector F =
1 F F FL]T. As seen in the figure, the selected
features are fused by means of a linear combination using
the LR model parameters 8 = [By (1 [a BL]T
to compute the logarithm of “odds-of-success” g(F) that
is eventually transformed into the HI using a logistic
function.

LR model parameters

RIT| [B=1Bo B B2 ~ BT]

4

Features Set

[F=t K F .

\ 4

) Logarithm of . {g(F) =BTF = fo+BiFy + Poby + -+ i lrL] [—oo + 0]
odds-of-success \ /
i 1
Health index (HI) HI [0 1]

T1te®

Fig. 4. Logistic Regression (LR) in a nutshell.

In the LR context, the model parameters B are identi-
fied using the maximum-likelihood estimator, aiming at
finding a set of parameters for which the probability of
the observed data is maximal, see Czepiel (accessed on
April 2023). The parameter identification is conducted
in an off-line fashion where two sets of features, Fheaithy
and Fgqiure representing healthy and failure states respec-
tively, are used as a training dataset.

3. EXPERIMENT

A solenoid endurance test setup was developed to perform
simultaneous ALTs on 48 AC-powered SOVs, as shown
in Fig. 5. The type of used valves are direct acting 3/2
way normally closed (Burkert Type 6014). The ALTs
were performed at an ambient temperature of 25 °C and
attained by switching the valves on/off at a rate of 1 Hz
for a total duration of approximately 6 weeks. Each valve
is powered by an input AC voltage of 110 V at 50 Hz and
supplied with compressed air at 8 bar in the inlet port.
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(b) Close up view of an air flow sensor

Fig. 5. Test setup for performing simultaneous ALT on 48
valves.

During the ALT campaign, both current and voltage
signals were measured for each valve. Besides, the surface
temperature and air flow rate of the SOV outlet just after
the switch on/off were also measured for each valve as a
means to have the “ground truth data” for labelling the
end of life of each valve in an objective way. More details
of the test campaign are described in Tod et al. (2023).

4. RESULTS AND DISCUSSION

The experimental data obtained from the ALT campaign
discussed in Section 3 were analysed to compute all the
22 features described in Section 2.1. Since only 36 out of
48 valves actually reached the end of useful life during
the ALTs, only of these 36 failed valves we extracted
the features from the measurement data and evaluated
the metrics described in Section 2.2. Figs. 6 - 9 show
the calculated monotonicity, robustness, prognosability,
and overall performance metric, respectively. The vertical
dashed-line in the figures is a user-defined threshold that
visually helps in selecting the most relevant features. For
this case, a threshold of 0.9 was set.

In view of the monotonicity metric, only four features
(RZC1D1, ImFund, IdFund, and FCoulomb) have a
mean value higher than the threshold and exhibit small
variations, as shown in Fig. 6. Regarding the robustness
to outliers, most of the features are robust. 15 features
have a mean value higher than the threshold and exhibit
relatively small variations. However, in view of the prog-
nosability, all the 22 features have the metric lower than
the set threshold. From the overall performance metric,
only the feature F'Coulomb is very close to the threshold
as seen in Fig. 9. Nonetheless, the features RZC1D1,
ImFund, and IdFund are worth to be considered since
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Fig. 6. Monotonicity index of all the calculated features
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Fig. 8. Prognosability index of all the calculated features

the overall performance metric is above 0.8, which is still
relatively high.

Notably, the feature FCoulomb is more computation-
ally expensive than the other three features RZC1D1,
ImFund, and IdFund. Hence, when computational power
is limited, the feature FCoulomb might be less preferred.
To further verify these findings, the top three features,
namely FCoulomb, ImFund, RZC1D1, and the bottom
one IdOdH arm are plotted in Figs. 10 - 13, from the onset
of the degradation to the end of useful life. It is clear from
the figures that the top three features show very clear
trends. As expected, the bottom feature does not show
clear trends.
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Fig. 10. The evolution of the feature F'Coulomb of several
failed valves from the onset of degradation to the
EOL.
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Fig. 11. The evolution of the feature ImFund of several
failed valves from the onset of degradation to the
EOL.

Despite showing clear trends, the feature ImFund still
exhibits occasional outliers which require special attention
when developing a prognostic algorithm using this feature.
However, the variation of this feature value at the end-
of-life is quite small which offers some advantages for
prognostics. Furthermore, the variation of the feature
RZC1D1 value at the end-of-life is quite large. This is
demonstrated by a lower prognosability metric compared
with the other top features, see Fig. 8. Hence, such large
variation might need to be considered when developing a
prognostic algorithm using this feature.

To demonstrate the health assessment of AC-powered
SOVs using the LR technique, the two top features,
FCoulomb and RZC1D1, respectively shown in Fig. 10
and Fig. 12, are fused to model the health index. Note
that one can also fuse the three top features or use single
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Fig. 12. The evolution of the feature RZC1D1 of several
failed valves from the onset of degradation to the
EOL.
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Fig. 13. The evolution of the feature IdOdH arm of several
failed valves.

feature to implement the health assessment using the LR
technique. Figure 14 shows the health index (HI) estimated
using the LR technique of several failed valves from the
degradation onset to the EOL. It is seen in the figure that
the estimated HI of the failed valves decreases from the
value of around 1 to the value around 0 when reaching the
EOL. This kind of representation is useful for non-experts
/ operators where they can easily monitor and interpret
the health status of an AC-powered SOVs by looking at
the HI.

0.8
X
%
< 0.6
<
g 04r
= — Valve#3
| |- - -Valve#10
02 Valve#36
0

Fig. 14. The health index estimated using the LR tech-
nique of several failed valves.

5. CONCLUSION AND FUTURE WORK

Twenty-two prospective features for health monitoring
and assessment of AC-powered solenoid operated valves
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(SOVs) have been quantitatively evaluated using well-
established prognostic feature metrics, namely monotonic-
ity, robustness and prognosability. All these features are
extracted from the electrical signals measured on 48 iden-
tical AC-powered SOVs, using three different methods,
namely based on (i) a first-principle model, (ii) physics-
inspired signal processing and (iii) statistical technique.

Based on the quantitative evaluation results, four fea-
tures, namely FCoulomb, IdFund, ImFund, RZC1D1,
are ranked high because the overall performance metric is
higher than 0.8 (maximum range of 1). To demonstrate the
proposed methodology, as an example, two top features,
FCoulomb and RZC1D1, are fused using the logistic
regression (LR) model to predict a health index (HI) that
ranges from 0 and 1. By transforming the fused features
into the HI, non-experts / operators can easily monitor
and interpret the health status of AC-powered SOVs.

Future work will be developing and evaluating some
prospective algorithms for the remaining useful life (RUL)
prediction of AC-powered SOVs.
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