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Abstract—Inspired by risk analysis assistance service and
dynamic capacity management service in U-space service, this
paper investigates a risk-based UAM airspace capacity assess-
ment method using Monte Carlo simulation for future urban
air mobility. The quantitative risk assessment of the flight plan
is divided into three parts: the ground / air risks of the flight
plan and the mid-air collision risk between UAM. Using the
comprehensive risk assessment method, this paper generates
several simulation scenarios in the airspace to be evaluated in
terms of the type of participants, the presence of the detect and
avoid system, and the total number of participants in the airspace,
conducts Monte Carlo simulations, and records the simulation
data for analysis. Through the analysis of simulation data, it
is found that the maximum risk of UAM in airspace increases
with the increase of the number of airspace invaders and the total
number of UAM. However, the maximum risk of UAM in airspace
decreases when the aircraft in airspace contains the detection and
avoid system with the same other conditions. Based on simulation
data, this paper informatively proposes the concept of a 3D risk
surface and a risk-based airspace capacity envelope, using the
horizontal surface formed by a specific risk threshold to cut the
3D risk surface to form an airspace capacity envelope, which
visually describes the number of aircraft that can be contained
in the airspace under a specific risk threshold.

Index Terms—urban air mobility, capacity assessment, Monte
Carlo simulation

I. INTRODUCTION

A. Research background

In the urban aerial environment, the unmanned aircraft

system (UAS) and small manned aircraft are already being

applied for various purposes such as traffic monitoring [1]

nowadays. In addition, they are plans for smart cities in the

near future [2], [3] and a core component of Urban Air

Mobility (UAM) [4].

UAM enables cooperative, highly automated, cargo delivery

or passenger air transportation services in and around urban

areas. In the popularization of UAM, integrating UAM into

urban and suburban airspace is challenging, as it entails risks

from a safety perspective. For the low-altitude urban airspace

of the future, there is an urgent need to address the issue

of how to engage more UAM and operate efficiently while

ensuring mission safety. For complex urban airspace with a

mix of manned aircraft and UAVs, they are currently only

subject to conservative and uniform flight restrictions. Such

restrictions can severely constrain UAM operations, especially

in densely populated areas. A more adaptive and intelligent

approach is needed to identify the maximum number of aircraft

that can be deployed in airspace within an acceptable level of

risk.

B. Previous work

Europe has developed a vision called U-Space to facilitate

the phased introduction of procedures and a set of services for

safe, efficient, and secure access to airspace for large numbers

of drones. In the blueprint of U-space services, risk analysis

assistance and flight plan preparation / optimization are both

identified as extended U2 services in CORUS. Fig. 1 shows

the frame diagram of U-space services. The two red squares

in it represent risk analysis assistance service and dynamic

capacity management service respectively.

Fig. 1. U-space services, the two services marked in red are the services that
can be implemented by the method proposed in this paper [5].

The service called risk analysis assistance will perform

risk assessment to the preliminary flight plan [6]. For risk

assessment, Joint Authorities for Rulemaking on Unmanned

Systems (JARUS) has developed the Specific Operational Risk

Assessment (SORA). It is a novel approach which can evaluate

the risk level of an UAS operation plan [7]. For the risk

assessment to the preliminary flight plan, SORA focuses on

assigning to an UAS operation two classes of risk, a ground

risk class (GRC) and an air risk class (ARC). The SORA

allows operators to utilise certain or mitigating measures to

reduce both risk-classes [8], [9]. Ref [10]–[12] proposes the

concept of risk cost map that associates discretized locations of

the space with a suitable risk cost and the generation of guided

flight plans with the risk cost map. In addition to SORA,
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Ref [13] proposes risk assessment models of UAS over road

networks. Going further, they investigated the feasibility of a

long-range railway inspection mission by UAS [14].

The service called dynamic capacity management aims to

match demand with capacity and has two threads. Demand

may be regulated to match capacity, or capacity may be

changed to match demand. In this service, there is first a

process to predict the number of aircraft that can be accom-

modated in a given airspace and, once the airspace capacity

is obtained, to determine whether the airspace is full. If the

airspace is full, solutions include suggesting delayed flights

or suggesting that some aircraft be diverted out of the full

airspace [15]. The current approach to civil aviation airspace

balancing demand and capacity is to divide the airspace into

sectors. Each sector has a capacity threshold in the form of

a maximum number of aircraft for a given time period. This

threshold is used as a controller workload limit indicator for

each sector, regardless of traffic complexity [16]. As the first

stage of the service, research on airspace capacity estimation

dates back to decades ago [17] research of airport runway

capacity. Subsequently, the capacity estimation theories for

airports [18], regional [19], and terminal areas [20]–[22]

capacity estimation theories have been proposed accordingly.

C. Research gap

For the risk assessment of UAM flight plans, many risk

assessment models are currently targeted at specific objects.

For example, Ref [13] and [14] put forward the risk assessment

of the ground roads for the flight plan; Ref [23]–[26] focus

on the risks of ground areas or buildings; Ref [27] focuses

on risks in airspace. However, in the actual UAM operation

process, there will be air and ground risks, which requires

a risk assessment model to comprehensively assess mission

risks. SORA process is also far from complete. The GRC/ARC

lookup table is based on a simple scoring. Finally, after the risk

assessment of the flight plan, how to optimize it is a problem

to solve.

For the assessment of UAM airspace capacity, most re-

search has focused on civil aircraft and the airport and its

surroundings [18]–[22]. But for the future urban low altitude

airspace, both in terms of the flight performance of air traffic

participants and the mission airspace characteristics of urban

low altitude area are very different from the traditional civil

aviation aircraft and airport environment. Considering the

future mixed mission scenario of manned and unmanned

aircraft for urban air traffic, some scholars have conducted

research on the assessment of UAV capacity in low-altitude

airspace. Ref [28], [29] use a mathematical definition based

on thresholds to estimate the capacity of UAV traffic in low-

altitude uncontrolled airspace based on safety and performance

considerations. But conflict is simply defined as a loss of

minimum separation. However, in actual urban mission flying,

it is also clear that a variety of potential threats cannot be

ignored, rather than focusing solely on the loss of minimal

separation. Future UAM system operations will tend to be free-

flying in nature, i.e. individual aircraft will be responsible for

determining their own routes. The U-space service provider

(USSP) should therefore support user-preferred flight paths

wherever possible [30]. A number of ’self-separation’ design

concepts and decentralised control strategies that transfer

responsibility for these separations to the aircraft have been

proposed to increase the capacity of aircraft [31], [32]. How-

ever, the theoretical methods used to measure such airspace

capacity are not well elaborated.

II. MOTIVATION

Inspired by the risk analysis assistance service and dynamic

capacity management service, the research motivation of this

paper is to combine them to achieve UAM mission airspace

capacity assessment and management. Monte Carlo simulation

is used to randomly generate mission scenarios in airspace and

set risk thresholds to assess the risk of each mission scenario.

A comprehensive risk assessment for air and ground properties

is performed for each scenario, including UAM with known

flight plans and intruders with unknown flight plans. The safety

capacity of the airspace is analyzed by counting the number

of scenarios that exceed a set risk threshold under different

constraints. The assessed risk-based maximum capacity of the

mission airspace provides an important ”capacity” reference

for demand and capacity balancing (DCB) in future UAM

applications. The flow chart of this method is shown in Fig. 2.
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Fig. 2. Flow chart of the proposed risk-based UAM mission airspace capacity
assessment method.



In this paper, as shown in Fig. 2, the entire UAM airspace

capacity assessment methodology is divided into three main

components: mission airspace aircraft and environmental in-

formation extraction, mission airspace aircraft risk assessment,

and sampling-based mission airspace capacity estimation.

For the information extraction step, both static and dy-

namic information related to the mission will be extracted.

Static information includes aircraft performance parameters.

Dynamic information includes historical weather information,

historical population density information and traffic in the

mission area. This information will be stored in the mission

scenario information database for use in subsequent Monte

Carlo simulations.

For the risk assessment step, multiple representative mission

scenarios will be generated using the program. The generation

of scenarios considers the impact of different constraints and

some combination of probability distributions. Constraints

include the density of aircraft in the airspace, the proportion of

structured traffic (aircraft with flight plans) in the airspace, and

whether the aircraft in the airspace includes a Detect and Avoid

(DAA) system. The probability includes the aircraft’s own

failure rate, air collision rate, etc. Environmental information

will be extracted from the scenario information database to

generate simulation scenarios. Generated scenarios will be

assessed for comprehensive risk.

Finally, the number of mission scenarios that exceed the

risk threshold in the simulation is counted according to the

risk threshold, and the probability of occurrence of high-risk

scenarios under different constraints is then analysed. Based on

the probability of occurrence of high-risk scenarios at different

aircraft densities under a given condition, the safe aircraft

capacity of the airspace under that condition can be estimated.

In the field of airspace capacity assessment, this research

innovatively proposes a risk based UAM mission airspace

capacity assessment method. This research uses a mathemat-

ical definition based on risk thresholds to analyze and esti-

mate UAM traffic capacity in urban or suburban low-altitude

airspace from the perspective of air and ground property

safety using sampled data from Monte Carlo simulations. The

airspace security capacity assessed by the research will provide

an important capacity reference for the DCM service.

III. MISSION SCENARIO RISK ASSESSMENT

As mentioned above, this research will combine two ser-

vices, risk analysis assistance and dynamic capacity manage-

ment, to perform a risk-based airspace capacity assessment

of mission UAM in urban airspace. The idea of the research

is to estimate the safe aircraft capacity of the airspace with

different input parameters by using Monte Carlo simulations.

The parameters such as maximum risk and number of sim-

ulations exceeding the defined risk threshold of the airspace

for different airspace aircraft densities, airspace structures and

flight route types will be obtained. In this section, the risk

assessment model for mission scenarios is described.

A. Flight performance extraction

In order to assess the specific value of the risk cost of a

flight plan, it is necessary to estimate the probability of an

aircraft’s accident and the severity of the damage caused. The

probability of an accident is related to the type and size of

the aircraft, and the severity of the accident is related to the

quality of the aircraft and its flight performance.

In this paper, we consider two types of aircraft with different

flight characteristics, namely fixed-wing aircraft and rotorcraft.

For the dimensional data of the aircraft, consider the length

l and width w of the aircraft, wing area S, as well as

the horizontal windward area Ahorizontal and the vertical

projection area Avertical.

In addition to the vehicle size parameters, it is also necessary

to obtain the performance parameters of the vehicle mass m,

cruise speed vcruise, moments of inertia I around each axis,

cruise altitude H , drag coefficient CD, and wing lift coefficient

Cy for fixed-wing aircraft.

B. Weather information extraction

Weather conditions are an essential consideration in the

risk assessment of aircraft. The effect of wind will affect the

flight trajectory or impact speed of the aircraft after failure.

In practice, scholars mainly consider the impact of wind on

flight risk in two ways: weather forecast or real-time wind

information.

According to ref [33], the direction of the wind and the

force of the wind are obtained through the weather forecast

before the flight. However, during the actual flight mission,

the wind situation may be different from the weather forecast.

In that situation, the authors used a stochastic manner to deal

with uncertainty during the evaluation of the ground location

affected by the fall impact. They chose a two-dimensional

parameterization of the wind and the associated assumptions

of the probability distribution, normal distribution for wind

magnitude and uniform distribution for wind heading angle.

Another method is to have real-time information of wind

conditions during the flight. In [34], wind information achieved

by using airborne sensor along with estimation algorithms,

therefore no statistical assumption will be taken.

In this research, we combine the above two methods with

the risk analysis assistance service. In the risk assessment

process, we use wind data from the weather forecast. Also, to

ensure the accuracy of the weather information, it is necessary

to receive sensor information from mission aircraft in the

current airspace in order to make corrections to the weather

information in real time. The resistance Fwind received by the

aircraft in the wind is shown in the following equation. In

order to simplify the evaluation process, it is assumed that the

windward area of the aircraft in all directions of the horizontal

plane is approximately equal, which is Ahorizontal. Where

vwind represents wind speed.

Fwind =
ρv2windCDAhorizontal

2
(1)



C. Mission area information extraction

Once the flight performance parameters and weather param-

eters of the mission aircraft have been obtained, the environ-

mental information of the mission area is also required for

the risk assessment. This includes information on the ground

traffic, population distribution, and human density, as well as

information on the function of the area.

1) Traffic information: The risk value of the aircraft to the

road traffic is not only related to the impact kinetic energy

of the aircraft itself hitting the ground, but also related to

the speed, density of vehicles on the road. The research will

obtain information about the location of the road, the type

of road, and the number of vehicles on the road from the

overpass-turbo. The traffic density information related to time

is obtained through the traffic layer of Google Maps. For risk

assessment, we will combine historical traffic information as

well as dynamic traffic data for road risk assessment.

2) Population information: Human population distribution

behaves as a function of space and time [35]. As described in

[36] and [37], government population data is aggregated for

the protection of privacy. To obtain more accurate population

distribution data, dasymetric mapping is proposed [38], [39].

This method uses auxiliary data to improve the resolution

of population density distribution. Based on this method,

the multi-class dasymmetric mapping method is developed.

The area is partitioned into several residential classes (e.g.,

low density, medium density, high density) associated with

different population densities [40]. According to [35], in cities,

the diurnal population distribution varies depending on the

function of the area.

In this research, the distribution of the ground population is

dynamically predicted according to different type of area and

mission times. The population density data obtained will be

used for UAM assessment of ground-based pedestrian risk.

3) Area function information: Inspired by multi-class

dasymmetric mapping method and the regularity of population

density over time in different functional areas, we propose a

method to assess the distribution of population density over

time by using functional areas as auxiliary data. For the

division of urban areas, we refer to Multidimensional Open

Data of Urban Morphology (MODUM) method.

In addition to the different functional areas of the city center,

the airspace in the vicinity of the airport is a factor that cannot

be ignored. According to [41], the issue of flight planning

risk for urban low-altitude UAVs, and traditional civil aircraft

in the airspace is important for UTM-ATM integration civil

manned aircraft, cruising altitudes are typically between 6,000

and 12,600 metres. However, ordinary urban air traffic aircraft

operate at much lower altitudes than this. Therefore, the most

likely area of conflict between the UAM and the civil aircraft

is near the airport. In this research, airports are divided into

different functional zones, as shown in Fig. 3, and risk is

assessed based on functional zones.

In this research, a mixture of airspace consisting of struc-

tured and unstructured mission aircraft is considered. By

structured mission aircraft we mean aircraft that already have a

Fig. 3. Schematic diagram of the airspace division referring to the DJI GEO
Zones [42].

defined flight plan, while unstructured aircraft refer to airspace

intruders with uncertain flight paths or UAM experiencing

emergencies. Reference to the Temporary Flight Restriction

(TFR) concept proposed by the Federal Aviation Administra-

tion (FAA), in this research, multiple intruders with unknown

flight routes are added to the scenarios and cylindrical TFRs

are set around them.

D. Scenario-specific risk assessment

After obtaining the basic environmental information of the

airspace and the information of the aircraft, a comprehensive

risk assessment of the aircraft in the airspace will be con-

ducted. According to ref [43], there might be three processes

a crash incident will cause fatality: failure of UAM; the failed

UAM hitting other property; and causing fatality damage after

impact. Based on these three processes, the risk cost of UAM

is defined as the number of fatalities per hour in this paper.

1) Risk assessment of UAM to ground and airport area:

The risk cost of UAM to ground property and area near airport

is calculated as Eq. (2).

R = Pcrash · Pimpact · Pfatality (2)

Where R is the risk cost, Pcrash is the probability of failure

of the UAM, Pimpact is the probability of impacting an object

and Pfatality is the fatality rate, which is mainly associated

to the function of kinetic energy.

For the probability of an aircraft crash Pcrash, according

to [44], 1/105 flight hours is used as the commercial aviation

failure rate and 1/104 flight hours for HPV (high-performance

vehicle), 1/103 flight hours for SPV (standard-performance

vehicle).

The probability of impact Pimpact is shown in Eq. (3). It is

a linear function to the number of affected cars, pedestrians

or aircraft. In the equation, Clinear is linear coefficient,

ρcar/people/aircraft is the density of vehicles, pedestrians or

aircraft in the affected area, and Aaffected is the the size of

the affected area.

Pimpact = Clinear · ρcar/people/aircraft ·Aaffected (3)

The fatality rate Pfatality is related to two main factors:

shelter factor cshelter and impact kinetic energy Ek. The

shelter factor defines the shelter level when the aircraft collides

with the ground property. Referring to [45], the fatality rate



Pfatality in this paper is described by Eq. (4) where α is the

impact energy that could cause 50% death with cshelter = 0.50,

which is set to 106 J. β is the impact energy threshold required

to cause fatality as cshelter approaching zero, which is set to

100 J. Ref [42], [46] elaborates on this risk assessment model

and assessment process in detail.

Pfatality =
1

1 +

√

α
β

(

β
Ek

)
1

4cshelter

(4)

2) UAM mid-air collision risk assessment: In addition to

considering the UAM risk to ground property and airport areas,

the risk of mid-air collisions between mission UAM is also a

crucial consideration.

There might be 3 processes a crash incident will cause fa-

tality: mid-air collision of UAM; the failed UAM hitting other

property; and causing fatality damage after impact. Based on

these 3 processes and ref [46], the mid-air collision risk cost

(R) is defined as the (5). Where PMAC is the probability of

UAM mid-air collision, Pimpact is the probability to impact

an object, and Pfatality is the fatality probability, which is

mainly associated to the function of kinetic energy.

R = PMAC · Pimpact · Pfatality (5)

According to the SESAR ATM Barrier Model for mid-

air collision [47], in the timeline of a mid-air collision, the

model has different mitigation layers to prevent that a Strategic

Conflict (SC) successively degenerates into a Tactical Conflict

(TC), then a mid-air collision (MAC). In this research, we

describe the process of mid-air collisions in terms of 3 layers

of defence, which are strategic mitigation, tactical mitigation,

and emergency collision avoidance. Mid-air collisions are

considered to occur when the trajectory of an aerial encounter

can pass right through these 3 layers.

In (5), Pimpact and Pfatality are calculated in a similar way

to the above ground risk assessment process. For UAM mid-air

collision probability PMAC , this can be calculated by (6).

PMAC = PSC|TC · PTC|CA · Pprovidence (6)

In this equation, PSC|TC is the probability that after strate-

gic mitigation, the mid-air encounter still progresses to require

tactical mitigation. PTC|CA is the probability that after tactical

conflict mitigation, the mid-air encounter still progresses to

require emergency collision avoidance. The probability of a

mid-air collision of the aircraft during the phase of emergency

avoidance is regarded as providential Pprovidence. As it is

rather infeasible to model ”providence”, we will assume

a worst-case scenario where a collision must occur if the

encounter between the two aircraft is no longer able to execute

avoidance by the maximum overload that the aircraft can

withstand, i.e. assuming that Pprovidence is 1.

IV. MONTE CARLO SIMULATION

After modelling the risk of UAM operating in urban

airspace, a number of different mission scenarios will be

generated and the probability of having high risk conflicts in

the scenarios will be counted through Monte Carlo simulations

under limited conditions to assess the impact of different

constraints on the capacity of the airspace.

A. Simulation scenarios definition

The mission area for the Monte Carlo simulations is defined

as a rectangular airspace that includes Cranfield University,

Cranfield Airport and the nearby city of Milton Keynes. The

mission area is 10000 metres long and 7500 metres wide. The

time chosen for the airspace capacity assessment is 6pm UK

time. The mission area contains functional areas with different

population densities and distributions, TFR, airport functional

areas, different types of roads.

The UAM parameters that appear in the scenarios are shown

in Table I. Mission UAM include HPV and SPV, and aircraft

types can be classified as rotorcraft and fixed-wing aircraft. In

this airspace, there are structured and unstructured aircraft. As

mentioned above, structured aircraft have a defined flight plan,

whereas unstructured aircraft do not have a defined flight plan

and have an unpredictable future trajectory. As shown in Table

I, the DJI mavic in the scenario is set up as an unstructured

aircraft, which may suddenly appear anywhere in the mission

airspace to simulate the threat of future unauthorised private

aerial photography activity in the city. The remaining aircraft

are structured aircraft and the simulation will generate their

flight plans.

TABLE I
INFORMATION ABOUT THE UAM OPERATING IN SIMULATION SCENARIOS

UAM model Type Performance mission

Amazon Drone SPV Delivery
Cranfield eVTOL eVTOL HPV Transportation

Cranfield twin mapper Drone SPV Surveillance
DJI mavic pro Drone SPV Photography

Ehang 216 eVTOL HPV Air taxi
UMILES concept 2 eVTOL HPV Air taxi

Before generating structured and unstructured aircraft, this

research defines the UAM flight plan as unified standards for

subsequent risk calculation and optimization opinions. For the

purpose of this research, airspace capacity is a concept that

considers time and represents the maximum number of UAM

that can safely operate in a given airspace at a given time. The

simulation will simulate the operation of UAM in the airspace

over a period of one hour. During this hour, simulated UAM

will enter the airspace at any time to perform a mission flight.

The risk assessment of mid-air collisions will also take into

account the current position of the UAM in the airspace at the

moment.

B. Mission UAM generation

In this research, the impact of different aircraft densities,

the proportion of structured and unstructured aircraft existing

in same airspace, and the availability of DAA capability

for structured aircraft in the airspace on the total risk-based

aircraft capacity of the airspace will be investigated.



Using a Python program, a scenario containing 6 structured

aircraft and 4 unstructured aircraft (intruders), not taking into

account the DAA system of structured aircraft is generated,

as shown in Fig. 4. Considering the randomness of gen-

erating flight plans and the manoeuvrability of the aircraft,

this research will randomly select an aircraft from the above

UAM participants and generate midway points randomly with

reference to the maximum turning radius of that aircraft for

a given start and end point, and ensure that the direct angle

between the two flight plan route segments is less than the

maximum turning radius.

In Fig. 4, because the structured aircraft in this mission

scenario do not contain the DAA system, there may be

crossover between flight plans and flight plans may cross the

TFR of unstructured aircraft (intruders).

Fig. 4. Schematic of scenario with 6 structured aircraft and 4 unstructured
aircraft and without DAA system. The red dots are the plan start points, the
blue dots are the plan midpoints and the green dots are the plan end points.
The cyan line segments are the flight route segments. The red circles are TFRs
of the airspace intruders. The coloured areas show the functional areas in the
city. The peach lines are the road traffic network.

All UAM in the generated scenario will be evaluated for

comprehensive risk. The results of the comprehensive risk

assessment for a structured aircraft are shown in Fig. 5. In

the figure, the risk cost of the flight plan to ground vehicles,

ground pedestrians, conventional civil aircraft and airspace

intruder is assessed. The different colours of the flight plan

segments in the chart represent the cost of risk for that

segment. As shown in the coloured bar at the bottom of the

figure, the colours range from green to red to represent the

low to high risk cost.

C. Simulation error input

In order to simulate changes in the external environment and

the UAM’s own sensor errors during the actual mission, this

research will make use of Ardupilot’s Software in the Loop

Simulator. The SITL (software in the loop) simulator allows

users to run drone without any hardware. When running in

SITL, the sensor data comes from a flight dynamics model

in the flight simulator. The structure of the SITL emulator is

shown in Fig. 6 (a), and a screenshot of the simulator running

is shown in Fig. 6 (b).

Fig. 5. Comprehensive risk assessment of the flight plan, considering the
ground traffic and pedestrians, airspace near airports and intruding aircraft.

Fig. 6. Structure of the SITL simulator and its operation in the Mission
Planner ground control station environment [48].

The flight errors obtained through the SITL simulator will

be stored in the error database, and when using Python for

Monte Carlo simulation, data from the error database will be

randomly sampled to simulate the UAM errors during the mis-

sion flight. The reasons for utilising this approach rather than

deploying the mission scenario simulation directly with SITL

simulator are that the SITL simulation graphical interface

contains a lot of unnecessary simulation information, which

has a high level of computational complexity. Additionally, the

SITL simulator only supports flight simulation of one aircraft.

In order to be closer to the actual mission flight situation,



sensor errors, including GPS positioning error, compass head-

ing error, barometer altitude error, and attitude calculation er-

ror caused by vibration are incorporated. The lateral position-

ing error due to GPS position drift and airspeed sensor output

data in the presence of external noise interference collected

during a full SITL simulation mission flight are shown in

Fig. 7. in Fig. 7, (a) and (b) represent the lateral positioning

error and velocity sampling data during the simulation mission

flight. (c) and (d) represent the pitch, roll angle, and heading

angle error during simulation mission flight.

Fig. 7. Errors generated by a one-hour SITL simulated mission flight.

D. Monte-Carlo simulation setup

After completing the definition of the simulation scenarios

and the different input parameters, Monte Carlo simulations

are performed and the simulation results are analysed. In this

research, the simulation will consider the impact of airspace

aircraft density, the proportion of structured / unstructured

aircraft and with / without DAA systems on airspace capacity.

These different influences are combined with each other to

form simulation mission scenarios. The simulation includes

airspace with 5-25 aircraft, 2-4 intruders, with / without DAA

systems for a total of 30 scenarios and 10,000 simulations are

carried out for each mission scenario.

In order to cope with the huge amount of simulation compu-

tation, in addition to deploying the Python simulation program

to different computers for collaborative computation, this

research also makes use of three high-performance computing

platforms, Cranfield University Delta HPC Cluster, Cranfield

University DARTeC HILDA High-Performance Computing

System and Amazon EC2 Elastic Compute Cloud.

The simulation process is divided into four main steps. The

first step is to generate mission scenarios, which involves

generating flight plans and intruders, insertion of randomly

extracted errors from the SITL error library. The second step

is to perform a comprehensive risk assessment of all aircraft

in the scenario and extract the maximum risk value. The

third step is to loop through the first two steps and store the

experimental results. The fourth step is to analyse the data and

generate statistical graphs based on the stored results.

E. Results analysis

The simulation results are shown in Fig. 8 and Fig. 9. Fig. 8

is the simulation result for structured aircraft in the mission

scenario without on-board DAA systems, while Fig. 9 is the

simulation result for structured aircraft in the mission scenario

with on-board DAA systems. To ensure airspace safety, it is

necessary to ensure that the maximum risk of all aircraft in the

scenario is within the risk threshold, so the simulation uses the

maximum risk of all participants in each scenario as the basis

for evaluation. In the two figures, the horizontal coordinate

represents the maximum risk value of the aircraft in the

scenario, which units is defined as the number of fatalities per

hour. The vertical coordinate is the frequency of occurrence

of this risk value in 10,000 simulations. Subplots (a), (b),

(c) represent 5, 10 and 15 structured aircraft in the airspace

respectively. The red, blue, and yellow parts of the 2 figures

represent 2, 3 and 4 airspace intruders respectively. By viewing

the histogram of the frequency distribution of the simulation

results, it can be seen that the data basically conforms to the

normal distribution, showing a ”bell-shaped” distribution curve

with a high middle, low sides and basic symmetry between the

left and right. Therefore, the frequency distribution histograms

are fitted using normal distribution curves, as shown in the

curves in the 2 figures.

Finally, it is notable that in order to show the distribution

of the three intruder population scenarios simultaneously, the

two graphs have been panned for the frequency distribution

histograms, inserting three colored frequency distribution bars

in the same range, which represent three frequency distribu-

tions in the same range.

By comparing Fig. 8 and Fig. 9, it can be found that

when structured aircraft contain DAA systems, the rating of

mission maximum risk emergence is lower relative to scenarios

without DAA systems and becomes more apparent as the

density of aircraft in airspace rises. By comparing the red,

blue, and yellow parts of the two figures, it can be seen that

when the number of unstructured aircraft increases, the density

of aircraft in the airspace will increase, and the maximum

combined risk of aircraft in the airspace will also increase.

Comparing the (a), (b), (c) subplots of the two figures shows

that as the total number of aircraft in the airspace increases,

the maximum risk of the aircraft increases accordingly. And

in terms of the distribution pattern of the maximum risk cost,

when the total number of aircraft in the airspace increases,

the dispersion of the risk-cost distribution of the simulation

results in each case also increases. The reason for this may

be that as the number of aircraft increases, the randomness of

the scenario increases accordingly, requiring a greater number



Fig. 8. Histogram of the frequency distribution of risk per 10000 simulations and fitted curve of the normal distribution for different aircraft densities and
number of intruders without considering the airborne DAA system.

Fig. 9. Histogram of the frequency distribution of risk per 10000 simulations and fitted curve of the normal distribution for different aircraft densities and
number of intruders considering the airborne DAA system.

of experiments to make the risk frequency distribution less

discrete.

According to the normal distribution, 95. 449974% of the

area is within two standard deviations of the mean around

the mean. According to the cumulative distribution function

of the normal distribution, when the risk value is equal to the

mean plus twice the standard deviation, the probability that

the maximum risk of the scenario is less than or equal to that

risk value is 97.724987%. The mean plus twice the standard

deviation of the scenario risk distribution for each mission is

used as the scenario risk boundary.

Based on the risk boundary values under each scenario, the

3D risk surfaces are drawn as shown in Fig. 10 where (a)

does not consider and (b) considers the aircraft on-board DAA

system. With these two sub-figures it can be seen that as the

number of airspace intruders and airspace aircraft increases,

the combined maximum risk to the airspace will increase.

By increasing the input parameters of the scenario and

increasing the number of Monte Carlo simulations, the extent

of this 3D risk surface will increase and the resolution will

increase. A horizontal surface is generated with the set risk

threshold as the z-value to cut this 3D risk surface, and the

horizontal projection of the cut interface is the airspace aircraft

capacity envelope that satisfies this risk threshold condition.

Fig. 10 describes the horizontal projection of the section

after cutting the 3D risk surface using different risk threshold

planes. (a) does not consider and (b) considers the aircraft on-

board DAA system. The different curves in the two figures

represent the safe aircraft capacity envelope in the airspace at

different risk thresholds. The different colours of the curves

correspond to the maximum risk values shown in the rainbow

bar on the right. The horizontal and vertical coordinates of

the points in the area between the curves and the axes are the

unstructured aircraft number and the total aircraft number that

can operate safely in the airspace.

V. CONCLUSIONS AND FURTHER RESEARCH

This paper presents a risk based UAM airspace capacity

assessment method using Monte Carlo simulations. The key

findings are summarized below:

(1) We propose a UAM flight plan risk assessment model

that quantitatively assesses the risk of UAM flight plan to air

and ground and the mid-air collision risk between UAM.

(2) Using Monte Carlo simulations, we explore the impact

of different airspace intruders, the total number of aircraft

in the airspace, and the presence of the DAA system on

the maximum comprehensive risk faced by UAM in airspace

scenarios.

(3) We propose the concept of 3D risk surface and risk-

based airspace capacity envelope, which will help the USSP

or other service user to visually assess the maximum number

of aircraft that can safely operate in the airspace at a given

risk threshold.



Fig. 10. 3D risk surfaces map obtained from a total of 30 scenarios with 10000 Monte Carlo simulations for each scenario with (a) / without (b) considering
the airborne DAA system.

Fig. 11. Airspace capacity envelopes based on the aircraft maximum comprehensive risk threshold with (a) / without (b) considering the airborne DAA
system.

For the generation of airspace simulation scenarios, only

flight plans that cross the mission airspace, i.e., structured

aircraft and unstructured aircraft with unknown flight plan, are

considered in this research. In the future, it will be necessary

to consider more airspace safety capacity considering risk

thresholds under airspace structures such as Full Mix, Layers,

Zones and Tubes [49]. In addition, since each scenario requires

a large number of Monte Carlo simulations in order to analyze

the risk distribution pattern, only up to 20 aircraft and 4

intruders in the airspace are considered in this research.

Subsequent addition of more scenario simulations will increase

the range and resolution of the 3D risk surface, allowing

the airspace security capacity envelope to cover higher risk

thresholds.
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