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Abstract—As machine learning (ML) continuing to gain pop-
ularity, ML-assisted Global Navigation Satellite System (GNSS)
receivers facilitate the performance of Autonomous Systems (AS)
navigation solutions. However, selections of ML is often a trade-
off in practice where empirical knowledge is taken to alleviate
complexities. Therefore, this paper explores decision-making
solutions for maximising determined hardware performance
under quantitative and qualitative considerations. This work
proposes Algorithm Selection and Matching with Fuzzy Analytic
Hierarchy Process (ASM-FAHP) that maps multiple trade-off
concerns into a Multi-Criteria Decision-Making (MCDM) prob-
lem. The ASM-FAHP firstly searches all the possible alternatives
to find possible combinations with hardware resource limitations
taken into account. Afterwards, ASM-FAHP prioritizes the most
significant candidate by constructing a hierarchical structure
with several attributes and scoring with fuzzy numbers. Hereby,
the most suitable ML combinations are determined by calculating
synthesised fuzzy weights per each alternative. The performance
of the ML combination is evaluated by concurrently executing it
on resource-constrained hardware, specifically the Jetson Nano
board. The ML models are trained and tested using high-fidelity
synthetic datasets produced from Spirent GSS7000 simulator
and SimGen while connected to hardware-in-the-loop (HIL). It
has been discovered that when approaching hardware limits, the
selected combination of machine learning algorithms makes full
use of memory resources but sacrifices processing speed.

Index Terms—GNSS receiver design, machine learning, deep
learning, algorithm selection, FAHP

I. INTRODUCTION

Nowadays, the performance of Global Navigation Satellite
System (GNSS) receivers has more requirements in terms of
accuracy, availability, continuity, integrity, as well as Size,
Weight, Power, and Cost (SwaP-C). Moreover, the evolution of
processing hardware platforms brings more opportunities for

This work is performed under the ESA-funded project VTL4AV (NAVISP-
EL1-066 bis).

implementing complex algorithms. Therefore, Machine Learn-
ing (ML) has attracted high potential interest due to relaxing
theoretical assumptions and the possibility of improving GNSS
performance.

Facilitated by self-regression implementations in ML ap-
proaches, ML-associated designs enable efficient identification
of tightly-coupled dependencies by learning action variables
from datasets. By integrating ML method with processing
GNSS data, a few applications are anticipated in different
ways. For instance, the regressor is commonly used to model
error sources induced by ionospheric and troposphere ef-
fects, multipath, clock drift, receiver noise, interference, and
hardware biases [1] along with error compensations through
filtering to reduce degradation effects on accuracy and avail-
ability. The self-learning feature in the spatial domain enables
dynamic parameter estimations and optimisation applicable in
components of GNSS receivers such as acquisition component
to aware RF environment [2], determination of discriminator
thresholds [3], Receiver Autonomous Integrity Monitoring
(RAIM) for intelligent decision-making and scheduling [4],
etc.

Some ML assisted GNSS receivers utilise ML’s forward
propagation features for achieving efficient classification, clus-
tering, forecasting, and anomaly detection applications. After
acquiring prior knowledge from a trained neural network
where hidden features are learned, layers like Softmax will
assign probabilities to each category to decide the existence
of features, determine the feature types, and predict feature
existence. For instance, [5] applied Convolutional Neural
Networks (CNN) and Support Vector Machines (SVM) for
detecting jamming types of Continuous Wave (CW) jammers,
Chirp jammers, Frequency Modulated (FM) jammers, pulse
jammers, and Narrow Band (NB) jamming signals.
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The ML approaches also reveal strong non-linear regression
capabilities that can automatically extract inter-relationships
between features from datasets that alleviate modelling pa-
rameters through theoretical equations. The regression feature
also facilitates the determination of adaptive weights when
fusing multi-sensor outputs. By feeding various data sources
including synthetic datasets, the geographic impact on GNSS
performance could be learned and used for compensating
effects like multipath [6]. The utilisation of multi-data sources
shall maximise the efficiency of data usage regardless of
establishing and analysing relations in between.

Nevertheless, the data-driven approaches have also revealed
intrinsic shortcomings in generating trustworthy outcomes due
to the inability to obtain performance boundaries. Therefore,
usages of ML are usually questionable and the decision of
ML utilisations in GNSS receivers are subjective relying on
judgments from expert knowledge. For some ML application
scenarios, the nonlinearity inspired by uncertain links among
neurons brings higher demands in hardware performance. As
a result, the selection of ML and making decisions on how
different ML algorithms will collaboratively function together
to improve GNSS performance with practical considerations
becomes rather important especially when tradeoffs are taken
into account. Accordingly, the ML pairwise and selection
problem with factors considered, such as uncertainty and
doubts in assessments is demanded in practice which drives
the main motivation for proposing a solution to resolve this
challenge.

In order to assess a finite number of ML algorithm alterna-
tives with a group of ambiguous criteria, Analytic Hierarchy
Process (AHP) was proposed to guide the decision-making by
formulating this selection problem as Multi-Criteria Decision-
Making (MCDM) where characteristics are structured in a
hybridized manner. The principle of AHP is offloading the pri-
mary criterion target to subcriterion objectives and its primary
steps are: identifying organisation decision goals, identifying
attributes in the subcriterion layers, proposition of constraints,
and selecting structure alternatives [7].

Furthermore, to reduce human subjectivity including re-
flexes, preferences and judgments, scoring with fuzzy mem-
bership benefits the decision-making robustness by adding
degrees of uncertainty rather than using crisp numbers. The
exploitation of using fuzzy membership in the AHP is Fuzzy
AHP (FAHP) that to be studied in this paper. [9] investigated
AHP applications by reviewing publications between 2005 and
2009, it is found that the dominant research fields of FAHP
applications are manufacturing, environmental management
and agriculture, energy, transportation, construction and health
care, whilst using FAHP for algorithm selections or for soft-
ware implementations has not been sufficiently investigated.
[11] attempted to apply FAHP to select the best software
architecture designs. [8] studied using FAHP associated with
resource allocation methods to choose optimal software system
configurations.

ML-aided GNSS receivers can process multiple ML ap-
proaches concurrently using efficient memory manipulation

circuit designs like GPUs. However, the SWaP-C constraints
of processors limit the capability to host an unlimited number
of ML algorithms, making it difficult to select appropriate ML
combinations. As a result, the following gaps have been identi-
fied: (1) scarcity of approaches for selecting ML methods and
combinations in the design of GNSS receiver architectures,
(2) utilisation of FAHP brings challenges considering hard-
ware resource constraints, (3) characterisation of the selection
criterion has not been clear.

In this paper, a two-phase scoring and algorithm selection
approach called Algorithm Selection and Matching with Fuzzy
Analytic Hierarchy Process (ASM-FAHP) is proposed to find
the most suitable ML algorithm combinations based on quality
properties with fuzzy integer numbers. The approach addresses
hardware resource constraints in the first phase by formulat-
ing a combinatorial problem through heuristic traversing all
the combinations to rule out those surpassing the necessary
hardware specifications. Afterwards, the approach uses AHP
models that incorporate expert ratings with fuzzy memberships
to score the pre-selected combinations or candidates. The
main contribution of this paper is the first attempt of using
AHP to ML selections for designing GNSS receivers, and
the proposition of a two-phase ASM-FAHP approach where
hardware constraints are considered. Attributes of hierarchical
architecture including the subcritera are demonstrated in this
study with broad considerations. The selected ML algorithms
are evaluated in terms of processing performance.

II. ASM-FAHP METHOD

When dealing with a large number of ML techniques
with unknown quantities, the preliminary stage of selection
is important to narrow down the number of alternatives with
constraints taken into account. Based on the reduced size of
alternatives, rating alternatives assisted with human experts’
knowledge is hence achievable and manageable.

A. Algorithm Selection and Matching with Constraints

This step aims to identify all possible algorithm combina-
tions A with available individual algorithm m ∈ M where
the algorithm m belongs to the space M. Let us consider a
function space F standing for the GNSS functions where ML
can deploy. The ML algorithm for the function f ∈ F consists
of an ML subset {f(i)} ∈ M, where i is the function index.

Fig. 1. Illustrative diagram for the algorithm selection and combination
problem with feature spaces.



Two types of constraints are derived from assumptions
during the selection:

1. The resource utilisation functions Uu(m) assume can be
derived from statistic estimations for the m algorithm, and the
overall computational cost of the selected combination A shall
limit to a certain value Cu where u ∈ U is the index of the U
number of resource utilisation functions.

2. Only one ML algorithm designed for the same use case
will be selected to avoid duplicate features. This assumption
is converted to the constraint which is setting the maximal
number of the selected algorithm among the application group
{f(i)} to be one.

Consequently, the identification of all the possible algorithm
combinations is described:

A =

{
f∈F⋃
i

f(i) ∈ M|∅

}

subject to:
m∈A∑
m

Uu(m) ⩽ Cu, ∀u ∈ U

N({f}) ⩽ 1, ∀f ∈ F

(1)

where the function N is to calculate the number of a set.

B. Fuzzy Analytic Hierarchy Process Background

The typical procedure of applying FAHP to sort candidates
orders follows the following steps [10] in Fig. 2:

Fig. 2. Block diagram of FAHP phase process.

step (1): identification of quality attributes in the form
of hierarchical structures - aims to identify subcriteria to
represent key indicators during selections [11].

The hierarchical structure comprises four levels:
• Goal: ultimate purpose of establishing this hierarchical

structure.
• Criterion: root attributes in fulfilling the goal.
• Subcriterion: branch attributes placed as children of their

root attribute.
• Options: alternatives taken into the selection.
step (2): extraction of comparison matrix - is for specifying

importance weights values among subcriteria to reflect relative
importance in between.

In hierarchical models, the comparison matrix is set up
by offloading importance weight through performing evalu-
ation comparisons between two alternatives and executing the

pairwise comparison to create a pairwise comparison matrix
(PCM) among all the alternatives.

The equation of calculating comparison matrix value a that
describes the pairwise comparison from weights W can be
derived:

aij =
Wi

Wj
(2)

where i and j denote index of criterion.
The comparison matrix then requires a normalisation pro-

cess towards each column described as:

âij =
aij

max(aik, k ∈ j)
, ∀i, j (3)

step (3): consistency check - aims to ensure consistency
between PCMs by calculating its largest eigenvalue λ and its
accordingly eigenvector.

The consistency measurement uses Consistency Index (CI)
definition:

CI =
max(λi, i ∈ n)− n

n− 1
(4)

where n denotes the number of subcriteria.
A good consistency check expects CI value close to 0. The

PCM is unlikely to be completely consistent over parameters,
whilst a certain degree of inconsistency is tolerable. The
Saaty testing assisted with a Random Consistency Index (RI)
table [7] is usually employed to calculate CR for adding the
acceptable errors:

CR =
CI

RI
(5)

CR is compared with an empirical number of 0.1. The
readjustment of PCM values is needed when CR > 0.1 until
PCMs meet the satisfactory number of CR <= 0.1.

After obtaining satisfying consistent PCMs, the synthesised
weights Wi for the ith subcriterion weights wi after fusion
with its parent weights of criterion wi−1 can be derived by:

Wi(j) = wi(j)× wi−1(i) (6)

where the weights are the normalised eigenvector values of
the PCM for the ith subcriterion.

step (4): marking triangular fuzzy number (TFN) with
fuzzy degree of membership - FAHP applies fuzzy number
to measure vagueness in the degree of membership, where
the fuzzy members are the standard fuzzy sets defined on the
set of real number R. The TFN scale with the M = (l,m, n)
triple is defined by the membership function µA(x) for a fuzzy
number A:

µA(x) =


x−l
m−l x ∈ [l,m]
u−x
u−m x ∈ [m, y]

0 otherwise

(7)

where l is the lower bound of the field of the possible evalua-
tion, u is the upper bound of the field, and m is the maximal



grade of µA(x). Satty fuzzy triangle set [7] comprising 9 TFN
scales is applied for measuring member degrees, and the Satty
fuzzy triangle set is illustrated in Fig. 3. It is observed that
two neighbour fuzzy numbers show a common overlapping
area in the fuzzy number set that aims to represent vague
extents during scoring.

Fig. 3. Graph of Satty fuzzy triangle set.

step (5): Calculation of synthesised fuzzy weights - aims to
fuse hybrid TFN to obtain synthesised values per alternatives
through multiplying and summarising the fuzzy scale number
si(j) for the ith candidate over the jth criterion with its
synthesised weights wi(j):

S(i) =
∑
j

si(j)×Wi(j) (8)

Consequently, the ML alternatives can be ranked by order-
ing S values, and the highest rating number stands for the best
ML candidate shall be selected.

III. CASE STUDY FOR GNSS RECEIVER DESIGN

After reviewing publications on ML-facilitated GNSS re-
ceivers, the following ML methods and applications are high-
lighted. ML is used as individual components without the need
for significant architectural modifications:
• Faulty satellite selection and isolation in RAIM
The increasing number of satellites from multi-constellation

contributes to the GNSS performance improvement in terms of
accuracy and availability at a cost of extra computational load,
processing time and hardware requirements. The selection
of high-quality satellites is crucial for reducing computation
complexity and narrowing down the receiving frequency of
interest, especially with tightly-coupled architecture designs.
The proper isolation of satellites facilitates mitigating spoofing
attacks by monitoring the geometric distribution of satellites.
One common implementation of RAIM is calculating Geo-
metric Dilution of Precision (GDOP) approximation where
Support-Vector Regression (SVR) is a common method ap-
plied [12].
• Detection of jamming attacks
Jamming detection can be practically built on the principle

of signal-level analysis for enhancing robustness in receiving
GNSS signals against anti-GNSS environments. The detection
of common signal levels like Continuous Wave (CW) and
chirp signals appears to be possible using absolute signal
level measurements referenced to a noise level (typically based

on analysis of automatic gain control voltages). Measuring
interference signals at lower levels may require additional
spectral analysis to detect jamming or interference, which
can be noticed as an opportunity to integrate ML features in
the signal spectrum. In [5], typical ways of using CNN and
Support-Vector Machine (SVM) methods are investigated to
classify jamming types.
• Detection of spoofing attacks
A spoofer shall generate, manipulate, and transmit false

signal’s waveform, power level, ranging code, and modulated
data contents to match GNSS signals. An ideal GNSS spoofing
signal shall reveal a corrected transmitter power at a relative
distance between the spoofer and receiver to be attacked, as
well as containing the synchronisation messages with phase
offsets from authentic GNSS signals, and its Doppler shift
effect. Regarding ML applications for spoofing detections, [13]
and [14] apply unique SVM and K-Nearest Neighbors (KNN)
neural networks although the network complexity is difficult
to measure.
• NLOS/Multipath classification
Multipath is a major cause of measurement errors in in-

telligent transport applications according to the study [15].
The detection of multipath is the first stage for RAIM to
isolate high multipath affected channels as well as perform
multipath mitigations. [2] regards multipath detection as classi-
fying features generated by Cross-Ambiguity Function (CAF).
[16] explores SVM in separating the type of GNSS pseudor-
ange measurement into three categories, clean, multipath and
NLOS, where Received Signal Strength (RSS), change rate of
RSS, and pseudorange residual are the key indicators for the
multipath/NLOS classifications.
• INS error prediction
The regressor based ML approaches facilitate reducing

stochastic errors in INS models and enable fusion with mul-
tiple sensors for predicting accumulative errors during the
GNSS outrages. SVR [17] and GRU [6] are the popular and
efficient methods in terms of high accuracy performance for
the INS error prediction and fusion, thus are taken into account
in this study.

A possible GNSS receiver architecture design that integrates
the above ML use cases and loosely coupled Inertial Naviga-
tion System (INS) architecture is illustrated in Fig. 4.

Fig. 4. ML-aided GNSS receiver architecture with integration of loosely
coupled architecture.



Fig. 5. Hierarchical structure for ML algorithm combination selection.

A. ASM for ML Selection and Combination

Table I summarises prevalent ML use cases where memory
utilisations are presumed or estimated from literature. During
the simultaneous parallel computations of multiple MLs, mem-
ory utilisation is the dominant computational resource repre-
sentative accounting for out-of-memory (OOM) occurrence.

TABLE I
MEMORY UTILISATION PRESUMPTION FOR ML ALGORITHMS.

Use case ML Memory usage Ref
1 - RAIM SVR - 4 appr. 1 GB [12]
2 - Jamming detection ResNet18 0.69 GB [18] [5]

GoogLeNet 0.87 GB [18] [5]
SVM appr. 1 GB [5]

3 - Spoofing detection SVM appr. 1 GB [13]
KNN appr. 1 GB [14]

4 - Multipath classification DNN- CNN est. 0.69 GB [2]
SVM appr. 1 GB [16]

5 - INS error prediction GRU appr. 1.5 GB [6]
SVR appr. 1 GB [17]

Because of difficulties in sourcing details from references
and uncertainties in obtaining computational requirements on
a case-by-case basis, memory utilization for uncertain ML is
assumed to be around 1 GB. In order to obtain a more accurate
estimation of memory consumption, it is important to replicate
experiments prior to selection. However, rough calculations
can be made.

This study chooses a popular CPU-GPU hybrid platform
NVIDIA Jetson Nano to evaluate the selected ML combina-
tions because of its high-compact portable design and flexibil-
ity to enable a wide range of AI applications. The hardware
specifications for Jetson Nano are Quad-core ARM conrtex-
A57 CPU, NVIDIA Maxwell 128 CUDA cores, Tegra210 sys-
tem on a chip (SoC), and 4 GB memory. The operating system
is Ubuntu 18.04 with software dependencies of OpenCV 4.5.3,
CUDA toolkit 10.2.300, and TensorRT 8.0.1.6.

The idle state of Jetson Nano board usually consumes
around 1.5 GB of memory which leaves 2.5 GB remaining for
processing ML applications. In order to bring up the parallel
computation feature in the Jetson Nano, at least 2 algorithms
shall be selected in A. Hereby, the ASM problem is further
simplified as:

A =

{
f∈F⋃
i

f(i) ∈ M|∅

}

subject to:
m∈A∑
m

Of (m) ⩽ 2.5

N({f}) ⩽ 1, ∀f ∈ F
N({A}) ⩾ 2

(9)

where Of (m) denotes the memory occupation in GB unit of
m algorithm for f use case.

The solver of (9) is developed based on an exhaustive
searching algorithm with the principle of scanning alternatives
m per each function set f sequentially, and filtering out those
that do not satisfy constraints. It is easy to conclude that only 2
algorithms can run simultaneously in Jestson Nano regarding
the constraint RAM size and preassumption of the memory
utilisations. Therefore, the set A comprises of 39 pairs and
rating each would take up considerable time.

B. Attributes Determination and Hierarchical Structure Con-
struction

Given the obtained ML combinations A, the next objective
is sorting the preference of ML combinations following FAHP.
The first action of FAHP is to choose attributes for determining
the combination scores and create hierarchical structures based
on the subcriteria.

The selection of the quality attributes applied for mea-
suring ML algorithm performance refers to ISO/IEC model



Fig. 6. PCMs of subcritera with weighted values.

[11] proposed for describing software quality evaluations.
The ISO/IEC model attributes are identified as functionality,
reliability, usability, efficiency, maintainability, and portabil-
ity. Distinguished from software quality attributes, attributes
for this ML selection scenario in designing GNSS receivers
focus on balancing tradeoffs between the GNSS performance
enhancement and the execution burden.

The following attributes are identified as the dominant
factors during the selection phase of ML algorithms:

• The key performance indicators of measuring perfor-
mance enhancement by incorporating ML into GNSS
modules select accuracy, integrity, availability, and ro-
bustness. Accuracy, integrity and availability factors im-
prove the GNSS positioning accuracy directly, whilst
robustness stands for ability against interference like
jamming, and spoofing.

• The operational cost attribute is extracted to evaluate
the running cost in terms of CPU, GPU, memory, and
other resource requirements such as data parser imple-
mentations to support data exchange between multiple
ML algorithms.

• Explainability measures the degree that humans com-
prehend the underlying mechanisms of ML, where an-
alyzability, testability, and transparency are identified as
subcriterion attributes. Analyzability measures the diffi-
culty of analysing the ML output. Testability evaluates the
difficulty of obtaining ML outcomes. Transparency stands
for difficulty in tracking ML behaviours when generating
the outcomes.

• Reliability of ML indicates the capacity to produce con-
sistent and repeatable results. The reliability is further
characterised by repeatability, resilience to recover faulty
states, and the ability to withstand incidents such as
interference.

• Compatibility represents the adaptability of ML for ad-
ditional use cases and hardware platforms. The compat-
ibility consists of subcriteria of reusability, adaptivity to

hardware, and adaptivity to use scenarios.

The A set contains a large number set of 39 leading to
difficulties in fulfilling a PCM with 39 × 39 dimensions.
The pairwise among those alternatives should be performed
individually for 39 times and also the consistency in the
matrix is difficult to maintain. Therefore, this paper focuses on
scoring towards individual ML rather than ML combinations
because of superposition property of FAHP.

The hierarchical structure is displayed in Fig. 5 where the
ML alternatives are obtained from Table I. The hierarchical
architecture for this demonstration consists of a two-layer
structure defined as criterion Ci and subcriterion Cij respec-
tively.

C. Weights Distribution

The weighting values in PCMs for subcriteria are generated
based on expert scores and (2), and the PCMS for this study
are demonstrated in Fig. 6.

The consistency check following (4) and (5) over the
PCMs proves that the rated weights meet the consistency
requirements by having all the CR values less than 0.1. Table
II records the meticulously calculated values of CI, CR, and
maximum eigenvectors representing the assigned weights.

TABLE II
CI AND CR CALCULATION FOR EACH CRITERION OF PCM.

CI CR Eigenvector
C 0.03 0.03 [0.35, 0.24, 0.09, 0.18, 0.14]
C1 0.02 0.02 [0.25, 0.58, 0.12, 0.05]
C2 0.007 0.008 [0.16, 0.28, 0.50, 0.06]
C3 0.005 0.008 [0.54, 0.30, 0.16]
C4 0 0 [0.1, 0.3, 0.6]
C5 0.002 0.003 [0.58, 0.11, 0.31]

Consequently, the synthesised weights distributed over the
subcriterion Wi can be calculated from (6) by multiplying with
their parent criterion Wi−1. The calculated distributed weights
wi(j) for the subcriterion Cij are summarised in Table III.



TABLE III
DISTRIBUTED WEIGHTS TABLE OVER SUBCRITERA.

C11 C12 C13 C14
w1j 0.0875 0.203 0.042 0.0175

C21 C22 C23 C24
w2j 0.0384 0.0672 0.12 0.0144

C31 C32 C33
w3j 0.0486 0.027 0.0144

C41 C42 C43
w4j 0.018 0.054 0.108

C51 C52 C53
w5j 0.0812 0.0154 0.0434

After analysing the synthesised weighting values of the sub-
criterion Cij , it has been determined that the most important 3
subcritera are integrity, memory utilisation and accuracy. This
indicates that the primary goal of this selection is to find an
ML combination that uses minimal memory while achieving
maximum improvements in terms of integrity and accuracy.

D. Evaluation with Fuzzy Membership

The fuzzy membership numbers are applied as indicators
to measure ML performance. The Satty fuzzy number set
is applied here for demonstration purposes. Table IV has
listed fuzzy numbers for ML alternatives, and the table also
includes calculation results of synthesized fuzzy weights per
each ML alternative following (8). The graphic diagram Fig. 7
illustrates final ranking results among ML alternatives in terms
of member degree.

Fig. 7. Graph of FTP for ML alternatives.

From Table IV, the result of ASM-FAHP indicates the
highest score of 5.7, i.e. applying GRU to predict INS error.
The second highest score of 5.0 is for using CNN to classify
multipath effects. The third best option for ML applications
applies SVM / SVR approaches to perform the multipath
detections again. Regarding the ASM conclusions derived
by resolving (9), the most appropriate ML combination is
hereby using the GRU and CNN combination for INS error
predictions and multipath classifications with considerable
factors balanced during the decision-making stage.

It is worth noting that the selected ML combination is only
applicable to the demonstrated expert scores and the pairwise

weights per subcriterion. During scoring, we deliberately focus
on GNSS performance improvement with fewer concentrations
on reliability and other factors. Obtaining knowledge from
multiple experts shall benefit in reducing bias in judgment
to provide decent outcomes.

IV. VERIFICATION WITH HIL DATASET

For evaluating the operation performance of the selected ML
combination, this paper adopts hardware-in-the-loop (HIL)
testing datasets produced from Spirent GSS7000 simulator,
and SimGen for training and testing neural networks (see
Fig. 8 for HIL setup details). Specifically, the GRU testing
applies the collected synthetic dataset for analysing the ML
operating performance. The ResNet-18 uses image datasets
with input size of 700× 560× 3 pixel dimensions.

Fig. 8. HIL verification architecture.

In this work, the ML operation performance will be mea-
sured using performance indicators such as memory con-
sumption, GPU utilization ratio, CPU temperature, and GPU
temperature. The testing scenarios that need to be performed
have been outlined:
• Multipath classification simulation with CNN for multiple

time periods - to evaluate the CNN execution performance on
the Jestson Nano hardware (see Fig. 9). The testing scenario
will run multipath detection 5 times.

From Fig. 9, it is found that the initial RAM usage of
Jetson Nano is close to the expected amount, consuming
approximately 1500 MB. The RAM consumption of ResNet18
during classifications peaks by around 700 MB when the GPU
engine operating at full capacity. The average time interval
between two classifications is around 4.5 seconds. The CPU
and GPU temperatures show slight changes with absolute
deviations of 3.5◦C and 1.5◦C, respectively.
• Simulation of INS error prediction with GRU implementa-

tion by feeding GNSS performance parameters as inputs and
loading with pre-trained GRU networks - to evaluate GRU
performance on the Jetson Nano. The multipath observables
and parameters include pseudorange, ephemerides, Doppler
shift, C/N0, and elevation from each satellite [6]. The GRU
architecture comprises of 250 hidden units, ReLU, Softmax,



TABLE IV
FUZZY NUMBER VALUE OF ML ALTERNATIVES ON SUBCRITERIA.

Use case ML C11 C12 C13 C14 C21 C22 C23 C24 C31
RAIM SVR 1 7 9 2 5 2 2 2 7 4

Jamming
detection ResNet18 2 3 2 7 8 4 7 2 3 7

GoogLeNet 2 3 2 7 8 4 2 2 3 7
SVM 2 3 2 7 8 2 2 2 3 5

Spoofing
detection SVM 3 3 2 7 8 2 7 2 3 5

KNN 3 3 2 7 8 4 3 4 3 6
NLOS/multipath

detection CNN 4 5 6 6 6 4 2 2 3 7

SVM 4 5 6 6 6 2 7 2 3 5
INS error prediction GRU 5 6 7 6 6 5 2 7 8 3

SVR 5 6 7 6 6 2 7 2 8 4

Use case ML C32 C33 C41 C42 C43 C51 C52 C53 Val S
RAIM SVR 1 2 5 2 4 4 2 7 2 4.524

Jamming
detection ResNet18 2 6 4 7 3 5 7 3 8 4.3579

GoogLeNet 2 6 4 7 3 5 7 3 8 4.0229
SVM 2 5 6 7 3 6 2 7 3 3.3973

Spoofing
detection SVM 3 5 6 7 4 6 2 7 3 3.7863

KNN 3 6 4 7 4 5 6 3 5 4.1239
NLOS/multipath

detection CNN 4 6 4 6 5 5 7 3 8 5.0229

SVM 4 5 6 6 5 6 2 7 3 4.7323
INS error prediction GRU 5 7 5 6 6 4 7 2 7 5.758

SVR 5 2 5 6 6 4 2 7 2 4.7454

Fig. 9. CNN operation performance on Jestson Nano.

and dropout layers. The operation performance of deploying
GRU on Jetson Nano is shown in Fig. 10.

From Fig. 10, it is observed that initialising the GRU
and TensorFlow packages consumes the majority of memory,
approximately 1100 MB. However, the prediction phase only
consumes around 500 MB of memory. The peak of RAM
consumption when executing the GRU-based multipath pre-
diction is 36% higher than multipath classifications because
of extra memory during initialisation. From this demonstra-
tion, it can be observed that GRU processing utilizes lighter

Fig. 10. GRU operation performance on Jestson Nano.

computational resources compared to CNN executions. This
is evident from the GPU utilization ratio figure, where GRU
processing utilizes almost half of what CNN executions use.
• Simulation of concurrent processing for multipath classifi-

cation and INS error predictions - to evaluate the simultaneous
parallel processing capability of deploying CNN and GRU on
the same Jetson Nano. The testing scenario will run multiple
multipath classifications and run INS error predictions at the
same time. The operation performance is illustrated in Fig. 11

Fig. 11 shows that when the RAM reaches saturation, the



Fig. 11. GRU and CNN concurrent operation performance on Jestson Nano.

speed of processing both CNN and GRU slows down even
if the GPU engine is still vacant. The maximum time taken
for a single multipath classification is almost 11 seconds,
which is 2.4 times longer than the time taken without INS
error predictions. The INS error predictions take a total of
24 seconds, which have additional 11 seconds longer than
processing without multipath detections. During the period of
29−53 seconds, the operation performance degrades when the
RAM uses exceeds 3000 MB. The highest RAM consumption
observed is around 3600 MB, which is close to the maximum
hardware RAM capacity of 3964 MB. The CPU and GPU
temperatures display an upward trend, i.e. around 3◦C and
1.5◦C temperature increments over 50 seconds period.

V. CONCLUSION

This paper presents a method, i.e. ASM-FAHP that aims
to resolve the algorithm selection and matching challenges
and select the most efficient ML combinations to optimise
GNSS performance with distinguished considerations. The
proposed solution involves two stages. First, a heuristic search
is conducted to preliminarily identify the combination set
based on MCMD objective functions. A hierarchical structure
is constructed to evaluate multiple attributes. Associated with
expert knowledge, the weight values of subcritera are scored
along with the scores per individual ML alternative with fuzzy
logic numbers. The most appropriate ML combinations are
determined by calculating synthesised values after ensuring
the consistency of PCMs. To confirm the effectiveness of the
selected ML combination, HIL datasets are generated and fed
to neural networks for training. Jetson Nano is used as the
hardware platform to verify ML execution performance. The
results demonstrated that the selected ML combination can be
processed in parallel within the same processing board despite
limited hardware resources. This method can be applied to
various algorithm selection applications and has the potential
to improve functionality and performance of GNSS receivers.
The study will investigate solutions to improve performance,

including adding RAM, optimizing network complexity, static
unrolling, batch processing, and using GPU-accelerated layers.
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