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                                   Abstract 

 

Ismail Abdel Mageed Mohamed 

Extended Entropy Maximisation and Queueing Systems with Heavy-tailed 

Distributions 

 

Keywords: Entropy, belief functions, belief updates, uncertain reasoning, M/G/1 queue 

in stability phase, generalized entropies, extensive and non-extensive maximum 

entropy formalisms, information geometry, information length, transient queueing 

systems. 

 

Numerous studies on Queueing systems, such as Internet traffic flows, have shown to 

be bursty, self-similar and/or long-range dependent, because of  the heavy (long) tails 

for the various distributions of interest, including intermittent intervals and queue 

lengths. Other studies have addressed vacation in no-customers’ queueing system or 

when the server fails. These patterns are important for capacity planning, performance 

prediction, and optimization of networks and have a negative impact on their effective 

functioning. Heavy-tailed distributions have been commonly used by 

telecommunication engineers to create workloads for simulation studies, which, 

regrettably, may show peculiar queueing characteristics. To cost-effectively examine 
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the impacts of different network patterns on  heavy- tailed  queues, new and reliable 

analytical approaches need to be developed. 

It is decided to establish a brand-new analytical framework based on 

optimizing  entropy functionals, such as those of Shannon, Rényi, Tsallis, and others 

that have been  suggested within  statistical physics and information theory, subject to 

suitable linear and non-linear system constraints. In both discrete and continuous time 

domains, new heavy tail analytic performance distributions will be developed, with a 

focus on those exhibiting the power law behaviour seen in many Internet scenarios. 

 

The exposition of two major revolutionary approaches, namely the unification of 

information geometry and classical queueing systems and  unifying information length 

theory with transient queueing systems. After conclusions, open problems arising from 

this thesis and limitations are introduced as future work.  
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1. Introduction 

Entropy as a concept is both thermodynamic and information theoretic. Indeed, 

entropy has influenced and inspired new innovations in communication systems, and 

the design of algorithms. It is valuable to note that not only in thermodynamics, but 

probably in all of science, entropy is a one-of-a -kind quantity.  

Entropy is a concept used to quantify the level of randomness or disorder in a system. 

It has diverse interpretations and applications in various fields like physics, chemistry, 

biology, sociology, and information theory. Entropy can be defined either 

thermodynamically, considering system properties like temperature and pressure, or 

statistically, as a measure of molecular disorder. It is an extensive property, meaning 

it scales with the size or extent of the system, and its units are typically expressed as 

J/Kmol or cal/Kmol. 

1.1 Motivation behind review of Entropy applications  

The great scope of applications of Entropy can be difficult to analyse in depth. 

Therefore, for the reader to comprehend the significance of entropy, a general 

understanding of entropy and its applications is necessary. We also examined the 

justifications for entropy's inclusion in the domains of computers, engineering, 

queueing theory, and information theory. Entropy is an all-encompassing concept that, 

depending on the context, can mean several things. Additionally, a variational principle 

connects them fundamentally in a unique way. Entropy also exhibits some universality.  

This is a reference to the idea that entropy and other metrics like compressibility or 

complexity often appear to be connected or overlap. This is valid, for instance, for 

algorithmic complexity and Lempel-Ziv complexity in information theory. The 

motivation for reviewing entropy applications also came from the mathematical 
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intractability and the significance of employing entropy as a powerful tool to find better 

alternative solutions to many problems.   

1.2 From Shannon till now, a brief  

(Shannon 1948) argued that his newly invented function is unique because it is the 

only one that meets three fundamental axioms (Cunha et al. 2020). Generalized 

entropies were first introduced by (Jelinek, Tuladhar, et al., 2021; Amigó, et al., 2018; 

Teixeira, and L. Antunes, 2021). However,  research has shown that these generalised 

entropies also showed new solutions subject to weak conditionalization or agreement 

with various axiomatizations. 

Shannon's concept of average was narrower than Rényi's. There is a great scope of 

applicability of  entropies to systems with complexity emerging from physics as well as 

dynamical systems stemming from  suppressing the fourth Shannon-Khinchin axiom 

(Korbel et al. 2018). Notably, the concepts of basic space in dynamical systems theory 

were derived from statistical mechanics. 

It is true that Shannon used a wholly probabilistic framework to prove the existence of 

information theory.ٌۭLandauer’s concept was necessary to resolve Maxwell's dilemma  

(Zhang et al. 2021). Furthermore, Kolmogorov's research on Bernoulli shifts was 

influenced by Shannon's invention. In return, symbolic dynamics has provided 

unanticipated benefits to information theory. Entropy and Lie ergodic theory meet 

these three domains at their junction, where there has been and continues to be cross-

pollination. 

Approximate entropy and Ergodic theory (Arbabi and Mezic 2017; Montesinos et al. 

2018), directional entropy (Burget 2018,Zunino and Kulp 2017), entropy as an arrow 

of time (Gomes and Carneiro 2021; Donglai et al. 2018), switch entropy (Zhang and 
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Shang 2020), they are all proposed to address novel open problems in many scientific 

fields such as  multi-scale analysis and synchronization, etc. For an in-depth account, 

including historical information, please consult the excellent review (Manish 2020) and 

its references.  

There are many identified gaps in the existing knowledge, which was the main drives 

to undertake the current research in this thesis to find solutions and fill in these gaps. 

The work of (El-Affendi and Kouvatsos 1983) was only basic, where the Shannonian 

formalism of stable(non-time dependent)  𝑀/𝐺/1 queue was derived. Since then, no 

research was done by using more generalized forms of entropies, which was a real 

motivation to proceed with the Rényian and the Tsallisian cases.  

On another note, the lack of info-geometric  analysis of queueing systems has 

triggered the enthusiasm to undertake this novel path of research, rather than following 

the classical approach to analyze queueing systems. 

More importantly, in the case of Transient(or  time-dependent) queueing systems, 

there was no existing knowledge on the information length of these time-dependent 

queueing systems. Therefore, it was necessary to fill in this gap, towards a novel 

information length theory of  transient queueing systems.    

It is to be noted that the contributions of this thesis  have demonstrated the possible 

use of generalised entropy functionals in the investigation and modelling of the 

performance of high-speed networks with HQTs. 

Because of this, the sections on engineering, computer science, statistical mechanics, 

queueing theory, information theory  and knowledge transfer that follow provide a brief 

introduction of entropy applications in each of these disciplines. 

1.3 Entropy applications to Information Theory 
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The most celebrated paper (Shannon 1948) was the corner stone of both information theory 

andٌۭinformationٌۭcontent,ٌۭwhereٌۭShannon’sٌۭentropyٌۭ(Cunhaٌۭetٌۭal.ٌۭ2020)ٌۭwasٌۭfirstٌۭintroduced.ٌۭ

First, the amount of information, or just information, is given by:  

                                       𝐼 =  𝐾 𝑙𝑛(𝑀)                                                                                   (1.1)       

In this case, I represent all the information included in a message (a string), and M represents 

all possible messages in a finite collection of messages that can contain the message. A 

constant 𝐾 is used to convert from one base of logarithms to another. This is equivalent to 

switching between units of information (bits, trits, nuts, etc.). Therefore, by choosing the 

correct value for K, you can  obtain any information unit using any logarithmic base. The 

following example shows how to find I  from equation (1.1) (Cunha et al. 2020). Thus, 

Shannon entropy 𝐻 reads as 

             𝐻 = −𝐾∑ 𝑝(𝑖)𝑙𝑛𝑝(𝑖), 𝑖 = 1,2, … , 𝑛𝑖                                      (1.2)                                                                             

𝑝(𝑖) serves as the probability of symbol 𝑖. Shannon entropy 𝐻 and amount of 

information 𝐼 are linked by: 𝐼 = 𝑁.𝐻, where 𝑁 is the number of symbols in the 

message. 

Shannon’sٌۭworkٌۭwasٌۭtheٌۭmotivationٌۭfor many profound scientists to relate and develop 

links between thermodynamic entropy, information entropy and information. It has 

been revealed that information (Rex 2017) equals negentropy, which was the start to 

obtain the solution of Maxwell demon problem. Following  Brillouin, it was announced 

that those irreversible logical operations (Eftimiadi and Trimigliozzi 2019), which 

contributed towards the establishment of the Landauer principle (Jizba and Korbel 

2020). (González-Espinoza et al. 2020; Palu et al. 2020) undertook a thorough 

analysis to find how information and entropy relate quantitatively. The behaviour of 

complexity is similar to the entropy’sٌۭtimeٌۭderivative (Theodore 2022). Moreover, the 



5 
 

study of how thermodynamic entropy and information are related to the impact of 

entropy production on stochastic thermodynamic processes was carried out by 

(Theodore 2022; Scharfenaker and Yang 2020; Wijesuriya et al. 2021; Landi and 

Paternostro 2021): 

 

            𝐻 + 𝐼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  𝐻𝑚𝑎𝑥 = 𝐼𝑚𝑎𝑥                                                        (1.3) 

where 𝐻 defines entropy 𝐼 is information, and  𝐼𝑚𝑎𝑥 serves as the maximum value of 

information. Consequently:ٌۭ“aٌۭloss of entropy is compensated by an equal information 

gain”ٌۭ (González-Espinoza et al. 2020). The maximum value of information, 𝐼𝑚𝑎𝑥  is 

contained in a book, regardless of how much of it is known. The amount of known 

information 𝐼 rises as we read  the book, whereas the amount of unknown information, 

or entropy 𝐻, falls. When the book is finished, 𝐼 reaches 𝐼𝑚𝑎𝑥 ,which serves as the  

maximum value. 

Shannon's entropy is a concept in information theory that measures the level of 

uncertainty or unpredictability in a message. It is directly related to the amount of 

information contained in the message. As we read a book, the known information 

increases, reducing the unknown information or entropy. Researchers have explored 

the relationship between thermodynamic entropy and information, finding that a 

decrease in entropy is balanced by an increase in information. This understanding 

forms the basis for further research discussed in chapter 4 of the thesis. 

1.4 Entropy applications to Queueing Theory 

Each stochastic process involves a changing probability distribution over time, which 

has the effect of changing the entropy or uncertainty of the probability distribution as  
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well. This leads to a very intriguing query: Is it feasible to investigate the evolution of  

uncertainty over time? The birth-and-death process, which forms the basis of the 

typical analysis of queueing systems, requires that the mean rate at which consumers 

enter and exit the system be equal.  

(El-Affendi and Kouvatsos 1983) used the ME formalism to analyse the 𝑀/𝐺/1 and 

𝐺/𝑀/1 queueing systems at equilibrium and discovered the jobs' closed form 

expression in the 𝑀/𝐺/1 queue as well as the associated service time 

distribution.(Guiasu 1986) used ME requirements for the known mean values to devise 

a probabilistic model for the underlying queue. 

Following  (El-Affendi and Kouvatsos 1983), the 𝐺/𝑀/1 queue illustrates the queue 

length in a system with a general (meaning arbitrary) distribution of interarrival times 

and an exponential distribution of service times for each job. Whereas an 𝑀/𝐺/1 

queue(El-Affendi and Kouvatsos 1983), is a queue model with Markovian arrivals 

(modulated by a Poisson process), General distribution service times, and a single 

server. 

To demonstrate how  uncertainty fluctuates with the queue settings, we wish to create 

a measure of this uncertainty. Taking these factors into account, (Kapur 1986) 

investigated these types of fluctuations using a variety of entropy measures and came 

up with some intriguing findings. Research into discrete-time queues that deal with two 

single server queues has been done in (Kempa and Marjasz 2021). The inspiration for 

all these measurements came from Shannon's (Cunha et al. 2020) fundamental 

entropy measure. Several of these measures were implemented because of (Jelinek 

and Tuladhar, et al., 2021; Kapur 1986; Chakraborti et al., 2021; Rapisarda et al., 

2019; Tahmasebi, 2020; Deppoman, 2020; Wang et al., 2020; Toomaj and Di 
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Crescenzo, 2020), among other factors. These measurements can help in 

understanding how uncertainty behaves in the various queueing system states, as 

demonstrated by (Singh et al. 2021). 

The concept of maximum entropy, sometimes known as PME, is a potential tool for 

analysing complex queuing models in a variety of contexts. Combining the principle of 

sufficient reason, PMEs can be used to determine equilibrium probabilities with 

respect to the underlying distribution’sٌۭmomentsٌۭconstraints. An exact queue length 

distribution may be derived, as in  𝑀/𝑀/1 system model. 

A considerable number of publications have helped shape the idea of using PME for 

the analysis of different  schemes of queues. The measurement of uncertainty is the 

idea of maximum entropy, which Shannon first stated in the context of information 

theory (Cunha et al., 2020), and which Jaynes later expanded (Jizba and Korbel 2020). 

Cross-entropy maximisation and PME in system modelling are axiomatized by Shore 

and Johnson (Ghosh 2020). (Cantor 1984) considered a multi-server queue that was 

in a steady state and gave information theoretic analysis based on PME for a queue 

that was running concurrently. The maximisation of entropy was used by (Kouvatsos 

1985; Jain et al. 2021) to discuss general queuing networks. By engaging PME, 

(Kouvatsos 1986;Guiasu 1986 ), the maximum entropy flow in networks is computed 

in Gabriel (2017). The applicability of maximal entropy to the moment's problem was 

highlighted by (Zhang et al. 2020). 

The analysis of vacation queueing models in various frameworks was covered by 

(Panta et al.2021). Notably, a novel closed form expression for the maximized entropic 

solution for a stable 𝐺/𝐺/1 queue was obtained by (Kouvatsos 1988), which has 

revealed the impact of moment constraints on the derivations. The ideal entropy 
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analysis was derived by (Huang et al. 2018). Additionally, (Chauhan 2018) employed 

PME to analyse the queue size distribution for the unstable 𝑀𝑋/(𝐺1, 𝐺2)/1  model with 

the Bernoulli vacation schedule.Numerous works that addressed PME-based queuing 

models were constrained to dealing with certain queuing scenarios, and the results 

were frequently acquired in implicit form. 

Briefly, the principle of maximum entropy (PME) is a tool used to analyze complex 

queuing models in various contexts. It can be used to determine equilibrium 

probabilities with respect to the underlying distribution's moments constraints, and an 

exact queue length distribution may be derived. Many publications have explored the 

use of PME for the analysis of different queuing schemes, and it has been applied to 

various queuing models, including the 𝑀/𝐺/1 and 𝐺/𝑀/1 queueing systems, as well as 

general queuing networks. 

1.5 Applications of Entropy to Engineering 

Even if the applicability of entropy as a concept has been extended over many fields 

(Kapur 1993), there are still further areas where it could be used. There are several 

packages of entropy in commercial engineering. For example, research problems 

have been studied subjectively by proposing a suitable entropy-primarily totally based 

technique, such as the dispatching problem (Marvizadeh 2013) of a fabric dealing with 

gadget in terms of Automatic Guided Vehicles (AGV) in a discrete component 

production gadget. The dispatching problem manner allocating AGVs to facilitate 

shifting requests to assure the green component glide withinside the manufacturing 

facility. Based on Kullback-Leibler directed divergence, an entropy-primarily based 

total aid allocation algorithm that effectively recollect the result of ability actions at the 
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load stability of the manufacturing facility earlier than the allocation of resources had 

been employed (Marvizadeh 2013). 

The suggested algorithms are appropriate to implement and attempt to reduce the 

burden inside the manufacturing unit even as pleasing the flow requests generated 

with the aid of using the manufacturing unit paintings centres. Additionally, 

(Marvizadeh 2013) investigates rating and choice very well primarily based totally on 

the implied overall performance measure. Combining PME and Kullback-Leibler 

directed divergence concepts to provide an algorithm composed of two stages for this 

problem. The proposed technique can no longer anticipate any priori distribution 

assumed with the aid of using Bayesian methods, and in the end, it affords a rating of 

structures primarily based totally on their located overall performance measures. 

Moreover, an entropy-primarily totally based criterion for evaluating alternatives. The 

comparison (Marvizadeh 2013) is primarily based totally on directed divergence 

among alternatives’ٌۭcumulativeٌۭpossibility distributions between being introduced. To 

identify the causal connections in complex structures by considering the internal 

composition alignment of the temporal structure, a novel information-theoretic 

measure known as the coupling entropy was employed (Zhao and Shang 2015). To 

determine the degree of uncertainty in the coupling between two time series, an 

asymmetric association measure based on permutations is used. In the examination 

of Hénon maps, where various noises are introduced to assess its accuracy and 

sensitivity, it is discovered that the coupling entropy is effective. Characterizing   neural 

membrane mutual coupling with the help of entropy-based iterative learning 

identification has been devised (Tang et al. 2020). (Melin et al. 2020) used the concept 

of design complexity to examine the concept of entropy's substantial significance to 

engineering design theory and methodology. 
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In summary, Entropy is a concept that has been applied in various fields, including 

engineering. In manufacturing systems, entropy-based algorithms have been 

developed to allocate resources and optimize the flow of components. Additionally, 

entropy has been used to identify causal connections in complex structures, such as 

neural membrane mutual coupling, and to examine the significance of entropy in 

engineering design theory and methodology. 

 

1.6 Applications of Entropy to Computer Science 

The conceptualization of Information is a mathematical discipline (Goodfellow et 

al.2016) that worried about transmitting information through a loud channel. In 

standard, this may be hired to calculate entropy, which quantifies the statistics in an 

occasion and a random variable. Concepts are worried with information compression, 

which is called supply coding. In addition, it offers that transmitting and storing it in a 

manner this is strong to errors, that's called mistakes correction or channel coding 

(Avand and Moradi 2021). Additionally, entropy is employed as the premise for 

strategies that include characteristic selection, constructing choice trees, and, in a 

wider standard scope, becoming type models (Brownlee 2020).  Following 

(Goodfellow et al.2016), low information(unsurprising) would contribute to a high 

probability event, whereas high information(unsurprising) is a descriptor of a low 

probability event. 

The primary instinct supporting information theory is learning the occurrence of a likely 

event is less informative than learning the occurrence of an unlikely event.  An entropy-

based image segmentation approach (Barbieri et al. 2009) was introduced and an 

application to Google Earth’sٌۭextractedٌۭcolourٌۭimagesٌۭwasٌۭprovided. 
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It is the available entropy variations that kindled the motivation (Asokan and Anitha 

2019) to reveal that Tsallis entropy has been found preferable for thresholding and 

clustering. 

Investigating the strength of cryptographic keys is in fact a continuous challenge for 

both academic and industrial practise. The difficulties in generating and evaluating the 

available entropy for cryptographic needs are discussed in (Ershadi et al. 2019). 

Furthermore, (Ershadi et al. 2019) encouraged the development of new spectrum 

estimate algorithms by considering conventional entropy estimation in cryptography 

applications. 

Based on the theoretical analysis and experimental results, it is found that the 

Exploration Entropy (Xin et al. 2020) contains more information in comparison to the 

existing analytical methods used to analyse and manage the training process of 

Reinforcement Learning (RL), which illustrates the strength of this new technique. 

To summarize, information theory is a mathematical discipline that deals with 

transmitting information through a noisy channel. Entropy measures theٌۭinformation’sٌۭ 

amount in an event or a random variable. It has applications in image segmentation, 

cryptography, and reinforcement learning, where it is used to improve the efficiency 

and accuracy of algorithms. 

1.7 Applications of Entropy to Statistical Mechanics 

Boltzmann’sٌۭ pioneeringٌۭ work (Merriam 2021) is credited with investigating the 

characteristics of gas bodies and seeing them as systems made up of many 

molecules. Properties like total volume, total molecule count, and total energy are 

examples of macro-states. The position and speed of individual molecules are 
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examples of the qualities that define micro-states. We propose the existence of gas 

body’sٌۭmoleculesٌۭin separate states to make the explanation more straightforward. 

Boltzmann applied the "principle of indifference", which was applied by Boltzmann, 

where  it is  assumed that all micro-states occur with equal probability. The formula for 

Boltzmann’sٌۭ distributionٌۭ canٌۭ nowٌۭ beٌۭ usedٌۭ toٌۭ investigateٌۭ variousٌۭ propertiesٌۭ ofٌۭ gasٌۭ

bodies. 

It is noted (Jizba and Korbel 2020) that Boltzmann's logic can be extended to situations 

unrelated to statistical mechanics and reinterpreted using information theory. 

Statistical mechanics "may be stemming from statistical inference," he warned. To 

measure how uncertain, we are about the system, Jaynes (Shore and Johnson 1980) 

proposed employing Shannonian entropy to replace Boltzmann's thermodynamic 

entropy. It is important to remember that PME asserts that, given known descriptive 

statistics, the probability distribution with the highest entropy best embodies the state 

of the art in statistical inference. 

In brief, Boltzmann's pioneering work investigated the characteristics of gas bodies 

and saw them as systems made up of many molecules. He proposed the existence of 

gas body's molecules in separate states to explain the position and speed of individual 

molecules, which define micro-states. Boltzmann's principle of indifference assumes 

that all micro-states occur with equal probability, and his formula for Boltzmann's 

distribution can be used to investigate various properties of gas bodies. Additionally, 

Boltzmann's logic can be extended to situations unrelated to statistical mechanics and 

reinterpreted using information theory, which can measure the uncertainty of a system.  

1.8 Entropy Applications to Knowledge Transfer (KT)  
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Many people hold the opinion that knowledge transfer (KT) is an essential step in 

knowledge management. Examples of these crucial types of KT include 

intergenerational knowledge transfer (IGT) (Cyr and Choo 2010; Leistner 2010; 

Nonaka and Takeuchi 1995; Bratianu 2011; Lefter et al.2011). The fact that the KT 

process involves intricate interconnections across the three basic categories of 

knowledge—rational, emotional, and spiritual knowledge—should be given more 

consideration (Bratianu, 2018a; Bratianu and Bejinaru, 2019, 2020). A presentation of 

knowledge entropy (KE) as a concept  and a description of  how it may be used to 

measure complexity based on the connection with the thermodynamic phenomena 

discussed above, of information management and to explain knowledge transfer. We 

define KE as follows, based on the formula for information entropy introduced by 

Shannon in 1948:  

𝐾𝐸 =  −𝐶 ∑ 𝑝𝑖𝑖 𝑙𝑛𝑝𝑖                                                                (1.4) 

Here, the measurement is calibrated to a certain scale and environment using an 

arbitrary positive constant called C. We can suppose that 𝑝1, … , 𝑝𝑛  it depicts the 

knowledge’sٌٌۭۭdistributionٌۭ within any  organisation by hypothesizing that all employees 

own the knowledge or being sources of the knowledge. You can consider that 

distribution using both space and time. Information entropy reaches its greatest value 

and knowledge dynamics are in equilibrium when all these probabilities are equal. But 

since each person is unique and has unique experiences, emotions, and spiritual 

levels, such a circumstance is not feasible. Since there is not a knowledge 

management measure that can quantify absolute knowledge for everyone, relative 

values for knowledge that are specified in relation to a particular level of knowledge 

can be utilised instead. When evaluating the effectiveness of KT within programmes 

for training or for information-sharing activities inside organisations or communities of 
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practise, the concept of KE can be quite helpful (Wenger 1998). Managers can decide 

on their tactics for raising knowledge entropy, which promotes creativity, by measuring 

the distribution of knowledge inside a particular department or organisation. 

Researchers can also demonstrate methods for fostering intellectual capital and 

building intelligent organisations by assessing knowledge entropy (Bratianu 2018; 

Bratianu 2013). 

According to Bratianu (2019), KE depicts the likely distribution of knowledge within a 

certain organisation at a particular period. Even while we think of organisational 

knowledge as being like a field, it rests with specific individuals, yielding an individual 

knowledge’sٌۭ distributionٌۭ  for a specified  time. The innovation process and the 

fundamental competences that contribute to competitive advantage are impacted by 

the dynamic nature of this distribution and its variations. From the perspective of 

mathematical modelling, knowledge entropy and information entropy are comparable, 

but from a semantic perspective, they are completely unrelated. 

The modern trend of research only investigates KE without conducting empirical 

research, which led to its limitation. The knowledge probability distribution function has 

a somewhat ambiguous interpretation when viewed mathematically, and there are 

some useful techniques for gathering important information and calculating the 

knowledge entropy indicator in each situation and at a specific moment. Additional 

study should focus on creating workable techniques for calculating knowledge entropy 

and knowledge distribution probability sets. To further understand the relationship 

between KE as a concept and a certain organization's performance, more empirical 

research is also required. 
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The topic of measuring recognition knowledge—particularly categorization 

knowledge—and how it changes was discussed in (Hou 2018). Three premises served 

as the foundation for this discussion. The equation suggested to characterise the 

impact of knowledge on uncertainty was used to generate two formulas for evaluating 

the levels of knowledge for recognition in two scenarios. In addition, by looking into 

how ignorance evolves in the face of uncertainty, the idea of knowledge entropy was 

established, and its formula was given. We looked at its resemblance to Boltzmann's 

entropy and how it differed from Shannon's entropy. Based on a mathematical 

examination, proof was found to back up the following conclusions: 

• Learning results in a reduction in knowledge entropy. 

• The distinctiveness of the people's rating order increases with decreasing 

knowledge entropy. 

• A group's collective knowledge level is not always equal to the sum of its members' 

individual knowledge levels. 

• If a person's desire for knowledge never increases, their knowledge entropy will 

never rise. 

 

The two most frequent knowledge transfer (KT) techniques used in organisations and 

organisational networks are personalization and codification (Sudhindra et al 2017). 

(Sudhindra et al 2017) have suggested a theoretical model of KT to analyse 

organisations' (KT) processes in terms of the method for exchanging tacit knowledge 

(i.e., gained knowledge without living the actual experience) and the associated 

information content. The concepts of tacitness and information content, as well as their 

impact on the choice of KT methods, have been described using Shannon's entropy, 

an idea from information theory. Notably, (Sudhindra et al. 2017) has aided with: 
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• Using information content to anticipate the choice of the KT mechanism. 

• Development of an intuitive explanation for the tacit-explicit continuum as well 

as a tacitness expression. 

• The creation of a KT theoretical model that can be put into practice to predict 

which KT mechanisms will be used in real-world situations, as well as the 

characterization of product variety in terms of information content. 

• Figure 1.1 depicts the KT model (Sudhindra et al. 2017), which combines 

personalisation and codification techniques. As can be seen, the KT process is 

determined by two critical constructs: tacitness and the volume of information 

content. When people and businesses operate across larger geographic areas, 

individualised interactions become more expensive, and codification 

techniques take over as the standard KT. However, three key challenges may 

limit the implementation of personalisation. Individualised interactions become 

more expensive as people and businesses operate across larger geographic 

areas and codification tactics become the standard KT. However, there are 

three key barriers that can restrict the use of personalization. 
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Figure 1.1. Schematic depiction of the KT model (Sudhindra et al. 2017) 

So, section 1.9  discusses the importance of knowledge transfer (KT) in knowledge 

management, including intergenerational knowledge transfer (IGT). The concept of 

knowledge entropy (KE) is introduced to measure the complexity of knowledge 

distribution within an organization, which can be useful for evaluating the effectiveness 

of KT programs. The KT model (Sudhindra et al. 2017) is also presented, which 

combines personalization and codification techniques and is determined by the 

constructs of tacitness and information content. 

The aim of this research is to develop a cutting-edge approach to unify uncertain 

reasoning theory with information theory. More potentially, to reveal the information 

theoretic impact on queueing systems and to open new grounds to contemporary 

queueing theory through information geometry and information length theory. 

To this end, the main objectives of the current research include: 
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• To investigate RGEs properties in the discrete case through an analytic 

approach. 

• To maximize Rényi entropy under some constraints to reveal the closed form 

non-extensive formalism of the stable 𝑀/𝐺/1 and to reveal the unknown impact 

of non-extensivity to the performance of the underlying queue, 

• To trigger and inspire how a stable queue, namely 𝑀/𝐺/1 is impacted by 

information geometry? 

• To set up a first-time ever mathematical investigation to uncover the information 

length of a time-dependent (Transient) queue, namely, 𝑀/𝑀/∞. 

1.9 Contributions of the thesis 

The current thesis has added several major contributions to the  corpus of existing 

knowledge, which are listed as follows: 

• Advancing  the  class of Rényian  Generalized Entropies Extended Properties 

and Finding PV-updates in the Discrete Time Domain are obtained1. Over the 

past few years, the literature has mostly focused on the continuous-time domain 

when describing the properties of the family of Rényi's generalized entropies 

(RGEs) that are categorized as being information theoretic, particularly as 

probabilistic procedures for inductive inference. 

 

 

_________________________________________________________________ 

1This provides the solution to the open problem investigating the extension of  the class of Rényian  

Generalized Entropies’ٌۭproperties  and Finding PV-updates in the Discrete Time Domain (Mageed  

and   Kouvatsos  2011). 
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• An original extension of these properties to the discrete-time domain, a 

generalization of an analytical result on the interpretation of maximum entropy 

(ME) formalism as a consistency requirement, and a methodology for 

determining probability vector updates (PV-updates) based on previous 

information-theoretic findings on minimum cross entropy. Most importantly, this 

work would significantly add to the knowledge since it opens new doors to the 

discretization of the RGEs properties rather than being confined to examining 

these properties from a continuous domain perspective. 

• The provision of novel comprehensive unification of information theory and 

queueing systems, which is proven to be mathematically credible by employing 

the four consistency axioms of inductive inference2.  

In mathematical terms, a new knowledge regarding the information theoretic 

influence of the non-extensive parameter for analyzing stable queueing systems 

has been established.  

• Technically speaking, the upper and lower bounds of the data information length 

of a transient 𝑀/𝑀/∞  queuing system are derived to present a novel 

connection between Information Length Theory (ILT) and Transient Queueing 

Systems (TQSs). In this context, it is shown that the upper and lower bounds 

acquired are both (𝑛, 𝑡)-dependent, with n = 0,1, 2,..... If 𝑡 serves as the time-

dependent server usage of the transient  𝑀/𝑀/∞ queuing system, then the 

latter derived upper and lower bounds (𝑈𝐵(𝑛, 𝑡), 𝐿𝐵(𝑛, 𝑡)) respectively) are both 

dependent on 𝑛. 

___________________________________________________________________ 

2This is a breakthrough which unifies Information theory with Queueing Theory, by showing the non-    

extensive information theoretic impact on the overall performance of stable queueing systems  

(Kouvatsos and Mageed  2021a). 
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A typical numerical experiment is also proposed to demonstrate the influence of 

time on the behaviour of the developed 𝑈𝐵(𝑛, 𝑡) and 𝐿𝐵(𝑛, 𝑡) for various values 

of n. As a result, two new state probabilities—the Rényian and Tsallisian 

formalisms for the stable M/G/1 queue—have been produced because of a 

demonstrated significant influence. To make the newly discovered solutions 

precise, new underlying families of underlying Rényian and Tsallisian service 

probability density functions(PDFs) as well as cumulative distribution functions 

were derived. More intriguingly, it is demonstrated that the impact of information 

theory also applies to the newly created squared coefficients of variation in the 

Rényi and Tsallis situations. 

• More importantly, we have demonstrated the plausibility of our derived solutions 

by demonstrating how the consistency axioms were used to reason about them. 

Mathematically speaking, we demonstrated that three axioms are satisfied and 

that the non-extensivity influence only led to the defiance of one axiom. This is 

a giant step towards revealing the hidden information-theoretic impact on the 

performance of stable queueing systems. 

• A new discovery of Info-geometric Queueing Theory (IGQT) is devised3. This 

revolutionary approach reveals how queueing theory can be combined with 

diverse areas of mathematics, such as differential geometry, information theory, 

matrix theory, and information geometry (IG). 

 

_________________________________________________________________ 

3 As far as theٌۭauthor’sٌۭknowledge allows, the influential  info-geometric role  in analysing  stable  

queue   manifolds that is revealed by the author of this thesis for the first time ever in literature(Mageed  

and Kouvatsos 2019; Mageed and Kouvatsos 2021). 
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More crucially, the application of info-geometric approaches to queueing theory 

offers a potent method for examining queue stability and enabling the use of 

cutting-edge IG techniques to fundamentally alter traditional queueing theory. 

• The determination of the information length of the 𝑀/𝑀/∞ transient queue, 

which contributes to the unification of Information Length Theory (ILT) and 

Transient Queueing Systems, we make a significant advancement towards the 

quantification of the number of statistical variations corresponding to a specified 

temporal range for transient 𝑀/𝑀/∞  transient queueing systems (TQSs).  

1.10 The Structure of the Thesis 

Chapter 2 presents the supporting information for the contributions of this thesis. We 

begin by introducing Rényi entropy and uncertain reasoning. The second section 

explains ME, along with its derivation for discrete ME distributions. The Performance 

Analysis of Transient Queueing Systems and a summary of ME solutions for queueing 

system performance distributions are presented. This chapter ends with a succinct, 

detailed explanation of information geometry and theoretical context for information 

length. Advancements to theٌۭ classٌۭ ofٌۭ Rényi’sٌۭ Generalizedٌۭ Entropies Extended 

Properties and Finding PV-updates in the Discrete Time Domain are characterized in 

Chapter 3. In Chapter 4, it is demonstrated that a heavy-tailed stable 𝑀/𝐺/1 queue 

exists using non-extensive maximum entropy formalisms and inductive reasoning. The 

impact of info-geometric analysis on the stable 𝑀/𝐺/1 queue manifold is determined 

in Chapter 5.  In Chapter 6, both lower and upper bounds of information length of the 

transient 𝑀/𝑀/∞ transient queueing system are determined. Chapter 7 draws 

conclusions combined with  limitations and emerging open problems from this study 

are discussed.  Following chapter 7, we have Appendices of the detailed proofs. 

Chapter 7 is followed by appendices of the detailed proofs. 
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2. Review of literature  

The underlying information for the contributions of this thesis is presented within the 

current chapter. We start by overviewing Rényi entropy and uncertain reasoning. The 

second section then introduces the Maximum Entropy (ME) principle and includes its 

derivation for discrete ME distributions. The third section contains a summary of ME 

solutions for queueing system performance distributions, focusing on both GGeo and 

truncated GGeo (GGeoT) ME solutions, as well as a summary of Performance Analysis 

of Transient Queueing Systems. In the fourth section, a short review on stable 

queueing systems with two real-life applications of the transient 𝑀/𝑀/∞ queueing 

system are provided. In the fifth section, a concise, in-depth description of information 

geometry is provided. A conceptual background for information length is introduced in 

the sixth section. Existing research gaps, combined with aims and objectives are 

highlighted in section seven. Finally, section eight provides a summary of the chapter. 

2.1 Rényi Entropy and Uncertain Reasoning 

The development of novel measures for quantifying complexity in the time-frequency 

plane and  signal information was motivated by Rényi's generalized  entropies(RGEs). 

RGEs strongly resemble the concept of complexity that is utilised when visually 

inspecting time-frequency images(Flandrin et al. 2018; Saulig et al. 2017).  

RGEs (Flandrin et al. 2018; Saulig et al. 2017)are defined to be the family of entropy 

measures,  Hq,R(p) 

                                                    Hq,R(p) =
c

1−q
ln∑ (𝑝(𝑛))𝑞∞

𝑛=0   , 𝑞 ≠ 1                      (2.1) 

For any constant  c> 0, 𝑝(𝑛) to denote the steady state probability at state 𝑛. 
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These measures are excellent candidates for time frequency analysis because they 

have a number of additional intriguing and beneficial characteristics, including 

accounting, cross-component, and transformation invariances. In (Saulig et al. 2017), 

a thorough investigation of the characteristics combined with  an illustration of  

applicability of RGEs is presented, with a focus on the mathematical underpinnings of 

quadratic time-frequency representations. It was determined that there are signals for 

the Wigner distribution for which the measurements are not clearly specified (Saulig 

et al. 2017). 

(Zitnick 2003) provided an expanded entropy and mutual information estimator for 

Rényi's definitions of entropy, which include Shannon's concepts as special instances. 

To effectively maximise Rényi's quadratic entropy in response to a defined set of linear 

equations restrictions, a measure that is a member of the family of Rényi's entropies 

was proposed  (Zitnick 2003) by forbidding the probability estimates to be in the range 

from 0 to 1.  

It was hypothesized (Anderson et al. 2021) that  coherent-state inputs reduce the 

Rényian outcome entropy. Notably, (Sason 2018) suggested a theorem to generalize 

the Tunstall codes (Tunstall 1968) utilizing the Rényi's entropy, which enhances the 

importance of this determination and builds a formula to reduce redundancy. 

Furthermore, the repercussions of two various meanings of shared info to the 

generalization of capability and price distortion work were analysed (Sason 2018) and 

prolonged the credibility of Tunstall's theorem (Tunstall 1968) to countable alphabet. 

The range of Rényi's inference procedures in distinct opportunity was discovered ( 

Hawes 2007) to have frontiers of minimax at some point as well as the restricted centre 

of the mass inference procedure 𝐶𝑀∞ at the various other points. Formulas for 



24 
 

determining minimax as well as maximin could be discovered in (Hawes 2007),which 

rank over those of ME for inferring ideas worth, which are logical varieties when the 

agent's understanding is on its own revealed simply in logical varieties. 

 

Figure 2.1: Timeline of entropy, (c.f., Ribeiro, et al.2021) 

In the circumstance of the nonparametric issue of estimating Rényi's entropy as well 

as shared info (MI), based upon a finite example attracted coming from an unidentified, 

constant circulation over 𝑅𝑑 ( the d- fold up Cartesian item of genuine varieties R), 

certainly there are lots of requests that utilize such estimators. Each entropy estimator 

as well as shared info estimators have been utilized for subspace evaluation through 

(Van Hulle  2008) as well as picture enrolment through (Uffink 1995). Furthermore, a 

course of estimators for the Shannon's as well as Rényi's info of multi-dimensional 

possibility thickness were made on a proposal in (Nanda and Choudhury 2021). 
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Notably, (Kumar and Choudhury 2011)  have also utilised their newly proposed  𝐿𝛼
𝛽

 

measure to demonstrate a coding theorem for a discrete noiseless channel. 

Probabilityٌۭ theoristsٌۭ typicallyٌۭ refixٌۭ theٌۭ issueٌۭ throughٌۭ presentingٌۭ someٌۭ ‘natural'ٌۭ

presumptions based upon the ideas of equi-probabilities, self-reliance and so on. If 

theseٌۭpresumptionsٌۭareٌۭactuallyٌۭ‘close'ٌۭtoٌۭtruth,ٌۭtheٌۭpossibilityٌۭ the service is actually 

frequently ideal, in which situations utilizing an idea features method is of no utilization. 

A design standing for quantified ideas, based upon supposed idea features, was 

presented of (Dempster 1997) as well as opened the method to the derivation of novel 

results, some which are currently checked listed below. Details that outline 

computational problems like appraisal located bodies, quick Möbius change as well as 

approximate techniques can be discovered (Paris 1994). Details that the Shafer's 

design (Paris and Vencovska 1992; JiroušekٌۭandٌۭShenoyٌۭ2018) offered the structure 

for the advancement of a brand-new mathematical concept of proof, based upon using 

idea features. This design, as opposed to those based upon possibility techniques of 

inference (Jelinek, and Tuladhar et al. 2021;Tunstall 1968) was utilized in various self-

controls (nonetheless, it is based upon various interpretations (JiroušekٌۭandٌۭShenoyٌۭ

2018; Van Hulle 2008), like  

1.A possibility design (Van Hulle 2008) based upon the mathematical concept of tips 

( Nanda and Chowdhury (2021).   

2.A transferable idea design (Smets et al.1991) 

The complication in between these different interpretations discusses very most 

mistakes experienced in the literary works, where writers evaluate the rooting 

concepts of Shafer's (Dempster 1997;Smets et al.1991) design. 
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The Belief (Bel) function (Paris 1994) is defined by assuming that it obeys the 

probability axioms. Fix a finite propositional language L and call the set of sentences 

for this language SL. In this case, 

For all  θ, ϕ ϵ SL, we define Bel:  SL → [0,1] as a probability function on SL and it 

should satisfy the following:  

1.If ⊢ (𝜃 ↔ ∅), then Bel(𝜃) = 𝐵𝑒𝑙(∅) 

2.If ⊢ 𝜃, then  Bel(𝜃) = 1, 𝑎𝑛𝑑 𝐵𝑒𝑙(¬𝜃) = 0 

3.I𝑓 ⊢  (𝜃⋀∅) is false, then Bel (𝜃⋁∅) = Bel(𝜃) + 𝐵𝑒𝑙(∅)  

Let us define the set 𝑉𝐿(𝐾) (Paris 1994). , 𝑉𝐿(𝐾) = {𝑥→ ∈ 𝑅𝐽/𝑥→𝐴𝐾= 𝑏𝑘
→  , 𝑥→  ≥ 0} 

2.2 Conceptualization of ME  

As a statistical inference technique, Jaynes developed the ME principle (Jaynes 1957; 

Jaynes 1978). More interestingly, "frequentist" and "Bayesian" are the two core 

techniques in statistical inference. 

The latter, (Cox 2006) typically incorporates a universal probabilistic concept. 

Subjective (personalistic) and objective Bayesian methods are subsets of the 

Bayesian method. Probabilities are viewed as representations of (rational) people's 

levels of individual belief in subjective Bayesianism. Probabilities, on the other hand, 

are viewed as representations of a state of knowledge in objective Bayesianism that 

is unaffected by an individual's personality. 

According to the frequentist perspective, in a random experiment, probabilities are 

seen as observable and verifiable frequencies (Jaynes 2003). 

According to the ME principle, this inference technique is objective Bayesian, because 

prior knowledge is considered and probability assignments are provided 
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independently of people's personalities and emotions, as well as independent of 

experiments. 

Notably, ME suggests, based on prior knowledge, inferring the probability distribution 

of a random quantity, which is frequently assumed to take the form of the random 

quantity's moments. Prior moment and normalization (Jaynes 1957) data are 

frequently satisfied by a wide variety of distributions. So, which of these distributions 

should be chosen to arrive at the best or most logical conclusion? The data-driven 

distribution. The "unbiased" (or "least biased") distribution is defined in this context as 

the distribution that is "maximally non-committal to unknown information". 

Now, we arrive at the Shannonian entropy, 𝐻 (known to be the distribution's entropy), 

which is read as 

𝐻(…𝑝−2, 𝑝−1, 𝑝0, 𝑝1,𝑝2…) =  −∑ 𝑝𝑛𝑙𝑛𝑝𝑛
∞
𝑛=−∞ , 𝑛 = ⋯ ,−2,−1,0,1,2…          (2.2) 

where the stationary occurrences or state probabilities are represented by the 𝑝𝑛
′ s, 

𝑝𝑛
′ ,𝑛 ∈ ℤ. 

Shannon's entropy is a valid information measure because it meets several postulates, 

including those stated in (Csiszár 2008), with references providing the relevant proofs. 

The prior information must be accurate enough to allow us to determine whether the 

least biased inference meets it. Moments and boundaries are two examples of such 

prior knowledge. "The first moment of the random value (RV) is presumably less than 

0.6," for example, is inadmissible information. 

Given previous moment data, the ME principle (Shore and Johnson 1980) generates 

only one distribution inference. See (Jaynes 1978; Fang et al. 1997) for a more 

detailed account. 
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Consistent differences between the inferred distribution and the observed probability 

point to a poorly constrained ME issue formulation in which all erroneous information 

has been associated to the constraints (Jaynes 1968). There is a wide range of ME 

applications to numerous scientific disciplines. See (Shore and Johnson 1980). 

2.2.1 Distributions of discrete ME 

Given that this thesis uses the ME principle in that context, discrete ME distributions 

are produced below. Consider a RV,𝑁, when it comes to modeling any quantity in the 

discrete domain of any underlying system or process, using the derivation in (Jaynes 

1957), then the probabilities 𝑝𝑛= 𝑃(𝑁 = 𝑛), 𝑛 =.ٌۭ.ٌۭ.ٌۭ,ٌۭ−2,ٌۭ−1,0,1,2ٌۭ…ٌۭareٌۭunknownٌۭandٌۭ

need to be found. N maps integers a sample space, S, for example, 𝑆 = ℤ. Assume 

that the only prior knowledge of normalization and repenting N by its moments, 

𝐸[𝑓𝑖(𝑛)],𝑖 =ٌۭ1,2,3ٌۭ…ٌۭ𝑚 . 

Probability averages or sample moments can be used as the moments of the 

distribution inferences, 𝐸[𝑓𝑖(𝑛)].It is to be noted that Bayesian and likelihood criteria, 

as well as hypothesis testing, have been used to establish the validity of employing 

sample moments (Jaynes 1978). Maximizing Shannon's entropy (c.f., (2.2)) subject to 

the constraints 

∑ 𝑓𝑖(𝑛)𝑝𝑛
∞
𝑛=−∞ = 𝐸[𝑓𝑖(𝑛)]                                                       (2.3) 

Normalization is determined by: 

∑ 𝑝𝑛
∞
𝑛=−∞ = 1.0                                            (2.4) 

is a constrained nonlinear optimization problem that can be solved with the help of a Lagrange 

multiplier. The Lagrange function 𝐿(𝑝), 𝑝 = (𝑖 …𝑝−2, 𝑝−1, 𝑝0, 𝑝1,𝑝2…),can be written in the 

form:  



29 
 

𝐿(𝑝) =  −∑ 𝑝𝑛𝑙𝑛𝑝𝑛
∞
𝑛=−∞ + ∑ 𝛽𝑖(∑ 𝑓𝑖(𝑛)𝑝𝑛 −

∞
𝑛=−∞ 𝐸[𝑓𝑖(𝑛)])

𝑚
𝑖=0        (2.5) 

Here, 𝛽0  serves as the Lagrangian multiplier linked to normalization, whereas 𝑚 

moment constraints are related to the Lagrangian multipliers 𝛽𝑖. Thus, for all 𝑛, 𝑓0(𝑛) = 

1. By setting 𝜕𝐿/(𝜕𝑝𝑛 ) = 0, 𝑛 =.ٌۭ.ٌۭ .ٌۭ ,ٌۭ−2,ٌۭ−1,0,1,2,ٌۭ…,ٌۭtheٌۭstateٌۭprobabilities, 𝑝𝑛
′ 𝑠, at 

which entropy is maximised are determined. Hence, ME  solution is devised by: 

𝑝𝑛 = 𝑒
−∑ 𝛽𝑖(∑ 𝑓𝑖(𝑛)𝑝𝑛

∞
𝑛=−∞ )𝑚

𝑖=0 , 𝑛 =.ٌۭ.ٌۭ.,ٌۭ−2,ٌۭ−1,0,1,2,ٌۭ…𝑚                               (2.6) 

Denoting the normalization constant as (1 𝑍⁄ ), equation (2.6) can be written as 

𝑝𝑛 = 
1

𝑍
𝑒−∑ 𝛽𝑖(∑ 𝑓𝑖(𝑛)𝑝𝑛

∞
𝑛=−∞ )𝑚

𝑖=0 , 𝑛 =.ٌۭ.ٌۭ.,ٌۭ−2,ٌۭ−1,0,1,2,ٌۭ…𝑚                               (2.7) 

If 𝑍 is given by the normalising constant's inverse, 

𝑍 =  ∑ 𝑒−∑ 𝛽𝑖(∑ 𝑓𝑖(𝑛)𝑝𝑛
∞
𝑛=−∞ )𝑚

𝑖=0∞
𝑛=−∞ , 𝑛 =.ٌۭ.ٌۭ.,ٌۭ−2,ٌۭ−1,0,1,2,ٌۭ…𝑚                               (2.8) 

The following partial derivative can be used to obtain 𝛽𝑖(c. f. , Equ. (2.6))𝑖 = 1,2,3…𝑚 . 

−
𝜕𝛽0

𝜕𝛽𝑖
= 𝐸[𝑓𝑖(𝑛)], 𝑖 = 1,2,3…𝑚                                                     (2.9)     

     where    𝛽0 = 𝑙𝑛𝑍.   

In mathematical terms, we can introduce the Lagrangian coefficients, 𝑥 = 𝑒−𝛽𝑖 . 

Additionally, the following general product from a discrete ME distribution is 

produced by the latter replacement in (2.7). 

𝑝𝑛 = 
1

𝑍
∏ 𝑥𝑖

𝑓𝑖(𝑛)𝑚
𝑖=1 , 𝑛 =.ٌۭ.ٌۭ.,ٌۭ−2,ٌۭ−1,0,1,2,ٌۭ…𝑚                               (2.10) 

where  𝑍 =  ∑ (∏ 𝑥𝑖
𝑓𝑖(𝑛)𝑚

𝑖=1
∞
𝑛=−∞ ). 

Consider the scenario where the initial moment of 𝑁, 𝐸(𝑁), is known. This moment is 

represented as an information constraint by: 
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∑ 𝑛𝑝𝑛 = 𝐸(𝑁), 𝑛 = 0,1,2…∞
𝑛=0                                                                    (2.11)  

The normalization is read as 

∑ 𝑝𝑛
∞
𝑛=0 = 1.0                                                                              (2.12) 

Consequently, the discrete ME distribution is thus obtained as follows: 

      𝑝𝑛 = 𝑥1
𝑛, 𝑛 =1,2,ٌۭ…𝑚                                          (2.13) 

𝑥1= 𝜆/𝜇, with both 𝜆 being the mean arrival rate  and 𝜇 as the  mean service rate of the 

underlying queueing system. 

When the normalising condition (2.12) is used, the formula for (2.13) can be changed 

to 

𝑝𝑛 = (1 − 𝑥1) 𝑥1
𝑛, 𝑛 =1,2,ٌۭ…𝑚                                          (2.14) 

It represents the well-known modified geometric. Additionally, when the first moment 

formula is used, we can rewrite (2.13) as  

𝑝𝑛 = (
1

1+𝐸(𝑁)
) (

𝐸(𝑁)

1+𝐸(𝑁)
)
𝑛

                                                   (2.15) 

2.3 ME Queueing System Performance Distributions Solutions 

The length of the queue as well as ME solution have identified residence and waiting 

times as queueing system performance variables for inferring distributions. The 𝑄𝐿𝐷 

of the 𝑀/𝑀/1 queue can be seen in equation (2.13)( Beneš 1965; Cantor et al. 1986). 

Following Shore (1982), ME solutions matching all the performance distributions of the 

𝑀/𝐺/1 queue included the MQL, 𝑝0 with more other appropriate constraints. In the 

instance of the 𝑀/𝑀/1 queue, several of these more recent ME methods seem to be 

precise. 



31 
 

Additionally, (Lopez-Herrero 2002) has investigated ME solutions corresponding to 

𝑀/𝐺/1 retrial queue including  both first and second ordinary moments. For different 

scenarios for the establishment of ME solutions for different categories of queueing 

systems, see (Walstra 1985; Cantor et al. 1986). 

The ME solution to the 𝑄𝐿𝐷′𝑠 𝑜𝑓 𝑀/𝐺/𝑐, 𝐺/𝑀/𝑐, 𝑎𝑛𝑑 𝐺/𝐺/𝑐 queues included the 

𝑀𝑄𝐿 and set of state probabilities {𝑝0, 𝑝1,ٌۭ…ٌۭ 𝑝𝑐−1 } (Wu and Chan 1989). It was 

discovered that the ME solution offered an accurate inference of the 𝑄𝐿𝐷 of the 𝐺/𝑀/𝑐 

queue. The 𝑀𝑄𝐿, mean buffer length, and P(𝑎𝑙𝑙 𝑐 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑏𝑢𝑠𝑦) were employed in a 

ME solution to precisely describe the 𝑄𝐿𝐷 of the M/M/c queue in Arizona et al. (1991). 

The odds of having at least j tasks of class I in service and approximate marginal 

𝑀𝑄𝐿𝑠 were used in ME solutions(Kouvatsos and Tabet-Aouel 1994) to approximate 

the 𝑄𝐿𝐷𝑠 of multiple class 𝐺/𝐺/𝑐 queues following the pre-emptive 

resume(PR)scheduling discipline.  

(Wang et al. 2002; Ke and Lin 2008; Yang et al. 2011) have employed both 𝑀𝑄𝐿 and 

server utilisation in ME solutions through  approximating the marginal 𝑄𝐿𝐷′𝑠 of the N-

policy 𝑀/𝐺/1 queue with removable server. 

2.3.1 ME Analytic Solutions for the Typical Infinite-Capacity Queues 

ME solutions  have been developed by (Shore 1982; El-Affendi and Kouvatsos 1983; 

Guiasu 1986) to address  𝑄𝐿𝐷 of the standard 𝑀/𝐺/1 queue. The  mean service time 

rate, 𝜇 and the squared coefficient of variation(SCV), 𝐶𝑠
2 represent a fundamental set 

of well-known queueing parameters in these ME solutions. The generalised geometric 

(GGeo) ME 𝑄𝐿𝐷 was developed for a stable 𝑀/𝐺/1 queueing system in (El-Affendi 

and Kouvatsos 1983). Along with the 𝑀𝑄𝐿 and normalisation prior information 

requirements, the GGeo expressly includes the queue stability. When a queue's 
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average effective arrival rate matches its average effective departure rate, as 

measured by 

 𝜆 = 𝜇(1ٌۭ−ٌۭ𝑝0 )                                                       (2.16)  

where 𝑝0 is the lower boundary state probability and 𝜆 serves as the mean-arrival rate. 

When  𝜆 > 𝜇, instability results.  

As a previous moment information constraint, the queue stability requirement can be 

added as follows4    

∑ ℎ(𝑛)𝑝𝑛 = 𝑝0 = 1 −
𝜆

𝜇
, ℎ(𝑛) = {

1, 𝑛 = 0
0,  𝑛 ≠ 0…

∞
𝑛=0                                                            (2.17)  

Using 𝑝0 and first moment constraints, ME formalism (2.10) provides GGeo 

expression. 

𝑝𝑛 = {

1

𝑍
(
1

𝑦
), 𝑛 = 0

1

𝑍
𝑥𝑛,  𝑛 = 1,2,3…

                                                     (2.18) 

Putting  (1/𝑦z) = 𝑝0  in (2.18) would transform (2.18)to be in the form 

𝑝𝑛 = {
𝑝0           , 𝑛 = 0
𝑝0𝑦𝑥

𝑛,  𝑛 = 1,2,3…
                                                          (2.19) 

Note that 𝑝0  isٌۭequatedٌۭtoٌۭ1ٌۭ∕ٌۭ(𝑍𝑦). Thus, the result in the re-parameterised  GGeo 

(Kouvatsos 1988) is: 

 

 

_________________________________________________________________________________ 

4Since they are both comparable prior information constraints that result in the same ME inference, the 

server utilisation constraint, ‘1 − 𝑝0’ٌۭ,can be used in place of the ‘𝑝0’ٌۭ prior information constraint.  
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𝑝𝑛 = {
𝑝0                                              , 𝑛 = 0

(
(1−𝑝0)

2

𝐸(𝑁)−(1−𝑝0)
)(
𝐸(𝑁)−(1−𝑝0

𝐸(𝑁)
)
𝑛
,  𝑛 = 1,2,3…

                                                          (2.20) 

The GE CDF that makes 𝑝𝑛of (2.20) exact (El-Affendi and Kouvatsos 1983) is 

determined by: 

𝐹𝑡 = 1 −
2

1+𝐶𝑠
2 𝑒

−
2

1+𝐶𝑠
2𝜇𝑡, 𝑡 ≥ 0, 𝜇 > 1                                                (2.21) 

 

 

Figure. 2.2 : (GE) CDF  corresponding profiles to mean rates of 𝜇 = 0.1 and 𝜇 = 0.5, respectively, from 

top to bottom, 𝐶𝑠
2= [1, 200]. 
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For Cs
2  >1.0, the 𝐺𝐸 CDF has been thoroughly examined (Kouvatsos 1988; Kouvatsos 

1994)5.The 𝐺𝐸/𝐺𝐸/1 queue, which has matching first two moments for 𝐶𝑠
2, 𝐶𝑎

2 > 1.0 

was studied by (Kouvatsos 1988; Kouvatsos and Tabet-Aouel 1994). 

 

Figure 2.3:  The GE-type service time distribution with parameters (for 1/𝜇, Cs
2 >1). 

2.3.2 ME closed form analytic representations for Typical Finite-Capacity 

Queues 

There has also been analysis using the ME principle for the 𝑄𝐿𝐷′𝑠 of several stable queues 

with finite capacity(Kouvatsos 1986b; Kouvatsos 1986a). The stability condition for the 

𝐺/𝐺/1/𝐾 queue is written as  

                                    𝜆(1 − 𝑝𝐾
𝐾) = 𝜇(1ٌۭ−𝑝0

𝐾)                                                                      (2.22) 

𝑝0
𝐾 and 𝑝𝐾

𝐾  serve as  the temporal fractions at which the underlying queueing system with  

finite-capacity is empty(full), respectively. 

Additionally, we have 𝜆 and 𝜇.  Prior moment information constraints6 can be used to describe 

the boundary state probabilities, 𝑝0
𝐾and 𝑝𝐾

𝐾, as follows: 

___________________________________________________________________ 

5The GE distribution's interpretations and comparative performance bounds when 𝐶𝑠
2  < 1 .0 are 

provided in (Kouvatsos 1988; Kouvatsos 1994). 

6Theٌۭserverٌۭutilisationٌۭconstraint,ٌۭ(1ٌۭ−ٌۭ𝑝0
𝐾), is equal to the 𝑝0

𝐾 prior information constraint in the infinite 

capacity situation. 
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∑ 𝑢𝐾
′ (𝑛)𝑝𝑛

𝐾 = 𝑝0
𝐾 =

𝜇−𝜆(1−𝑝𝐾
𝐾)

𝜇
,𝐾

𝑛=0           𝑢𝐾
′ (𝑛) = {

1, 𝑛 = 0
0,  𝑛 = 1,2…𝐾

                             (2.23) 

and 

∑ 𝑓𝐾(𝑛)𝑝𝑛
𝐾 = 𝑝𝐾

𝐾 = 𝑝
0
=

𝜆(1+𝑝0
𝐾)−𝜇

𝜇
,𝐾

𝑛=0 𝑓𝐾(𝑛) = {
1, 𝑛 = 𝐾
0,  𝑛 = 1,2…𝐾 − 1

                       (2.24) 

Respectively. 

According to  (Kouvatsos 1986a; Kouvatsos1986b), the GGeoT is determined by 

  𝑝𝑛
𝐾 = {

𝑝0
𝐾,                                       𝑛 = 0   

𝑝0
𝐾 𝑦𝐾(𝑥𝐾)

𝑛,     𝑛 = 1,2,3…𝐾 − 1

𝑝0
𝐾   𝑧𝐾𝑦𝐾(𝑥𝐾)

𝐾,                    𝑛 = 𝐾

                                          (2.25) 

These asymptotic approximations are used in future research to roughly analyse 

complex queueing systems using the ME principle; see, for example (Kouvatsos and 

Almond 1988; Kouvatsos and Denazis 1993; Kouvatsos and Awan et al. 2003). 

Considering the GGeoT distribution (2.25) of their values given by, 𝐸[𝑁𝐾], 𝑝0
𝐾and 𝑝𝐾

𝐾, if 

we equalize the expressions of suitable moments, ∑ 𝑓𝐾(𝑛)𝑝𝑛
𝐾,𝐾

𝑛=0  𝑛 = 0, we obtain 

(1−𝑝0
𝐾−𝑝𝐾

𝐾)(1−𝑥𝐾)

(1−(𝑥𝐾)𝐾−1)
(
1−(𝑥𝐾)

𝐾+1

(1−𝑥𝐾)2
+
(𝐾+1)(𝑥𝐾)

𝐾

(1−𝑥𝐾)
− 𝐾(𝑥𝐾)

𝐾−1) + 𝐾𝑝𝐾
𝐾 − 𝐸[𝑁𝐾] = 0,               (2.26) 

𝑦𝐾 =
(1−𝑝0

𝐾−𝑝𝐾
𝐾)(1−𝑥𝐾)

𝑝0
𝐾𝑥𝐾(1−(𝑥𝐾)𝐾−1)

                                                                                             (2.27) 

and 

𝑧𝐾 =
𝑝𝐾
𝐾

𝑝0
𝐾(𝑥𝐾)𝐾𝑦𝐾

                                                                                             (2.28) 

Based on (Kouvatsos 1986b; Kouvatsos 1986a), the expression for 𝑝0
𝐾 and the stability 

requirement can then be used to obtain an asymptotic approximation for the parameter 

 𝑧𝐾 (2.22) (Kouvatsos 1986b). 
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2.3.3 Performance Analysis of Transient queueing Systems 

Queuing systems frequently use time-dependent parameter adjustments. The theory 

of time-dependent queueing system analysis is credited to (Kolmogorov 1931). The 

usefulness of time-dependent queueing systems has been raised numerous times in 

a wide range of scientific fields. As a result, such an analysis is difficult because Little's 

law and other well-known steady-state queueing system relations must be 

reconstructed (Bertsimas and Mourtzinou 1997). 

Performance evaluation systems are commonly developed in response to real-world 

problems. As a result, many publications describe an assessment approach as well 

as how it is used to address a real-world problem. A variety of techniques were used 

to assess no spatial dimension  time-dependent performance of single-stage queuing 

systems (Alfa 1979; Chung and Min 2014; Alnowibet and Perros 2006; Van de 

Coevering 1995; Tarabia 2000). 

There are several approaches of performance evaluation within the literature. The 

Chapman-Kolmogorov equations refer to a system of differential equations (DEs) that 

interpret the dynamic behaviour of a Markovian queueing system (CKEs). The 

𝑀(𝑡)/𝑀(𝑡)/𝑐 system's dynamic behaviour is described by the following DEs: 

𝑝0
′ (𝑡) =  𝜇(𝑡). 𝑝1(𝑡)  −  𝜆(𝑡). 𝑝0(𝑡),    𝑛 = 0 

𝑝𝑛
′ (𝑡) = (𝑛 + 1)𝜇(𝑡). 𝑝𝑛+1(𝑡) +  𝜆(𝑡). 𝑝𝑛−1(𝑡) − (𝜆(𝑡) + 𝑛𝜇(𝑡)). 𝑝𝑛(𝑡),    1 ≤ 𝑛 < 𝑐 

𝑝𝑛
′ (𝑡) = 𝑐𝜇(𝑡). 𝑝𝑛+1(𝑡) +  𝜆(𝑡). 𝑝𝑛−1(𝑡) − (𝜆(𝑡) + 𝑐𝜇(𝑡)). 𝑝𝑛(𝑡),    𝑛 ≥ 𝑐      (2.29) 

The exact solutions for equations (2.28) only exist in some special cases, for example, 

when 𝑐 → ∞. It is to be noted that the numerical solution of these DEs could be 

undertaken either by Runge Kutta or Euler techniques. It has been suggested that we 
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could approximate systems with infinite waiting rooms(i.e., 𝑐 → ∞) by employing a 

system with a sufficiently large waiting room that is finite. 

By restructuring (2.29), we might be able to get the 𝑘-th moment differential equation 

(MDE): 

𝐸[𝐿𝑠(𝑡)]′ = ∑ 𝑛∞
𝑛=0 𝑝𝑛

′ (𝑡) = 𝜆(𝑡) − 𝑐𝜇(𝑡) +  𝜇(𝑡). ∑ (𝑐 − 𝑛𝑐−1
𝑛=0 )𝑝𝑛(𝑡)                          (2.30) 

 𝑉𝑎𝑟[𝐿𝑠(𝑡)]′ = ∑ (𝑛 − 𝐸[𝐿𝑠(𝑡)])2∞
𝑛=0 𝑝𝑛

′ (𝑡) 

=  𝜆(𝑡) + 𝑐𝜇(𝑡) −  𝜇(𝑡). ∑ (2𝐸[𝐿𝑠(𝑡)] + 1 − 2𝑛𝑐−1
𝑛=0 )(𝑐 − 𝑛)𝑝𝑛(𝑡)            (2.31) 

where 𝐸[𝐿𝑠(𝑡)], 𝑉𝑎𝑟[𝐿𝑠(𝑡)] serve as   the first moment and the variance of 𝑀(𝑡)/𝑀(𝑡)/𝑐 

system respectively. 

2.3.3.1 Modelling with piecewise constant parameters-based techniques 

These techniques are divided into the following Piecewise stationary models (PSM) 

descriptors: 

(i)PSM with independent periods 

The approaches vary when it comes to  determining the analysed interval length 𝑙 and 

the input parameters that correspond to performance computations. The advantage of 

these techniques is based on their low complexity in computations, specifically in the 

case of existing exact solutions for steady state for the underlying system 

configuration. 

(ii) PSM with linked periods 

(Stolletz 2008a;Stolletz 2008b) extended the stationary backlog -carryover approxi- 

mation(SBC) to analyse the 𝑀(𝑡)/𝐺(𝑡)/1 system. For a more detailed explanation 

(Selinka, et al. 2006; Stolletz 2013). 
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(iii) Piecewise transient models(PTM) 

These techniques are transient models- based  (TMB) that are employed in the 

analysis of consecutive intervals whose input parameters are constant. See  

(Choudhury, et al. 1997; Upton and Tripathi 1982) for more information. 

More fundamentally, modified system characteristics-based techniques can be 

categorized as: 

(i) Modified overload approach (MOL) 

The number of jobs in an infinite -server system is interpreted by MOL techniques 

through leveraging the DE's well-known solution. There are four network models in 

this framework: queueing, fluid, diffusion, and simulation. To elaborate, asymptotic 

queueing models have traditionally been used. For more information, see (Feldman, 

et al. 2008; Ingolfsson, et al. 2007; Yom-Tov and Mandelbaum 2014).  

(ii) Modified job characteristics (MJC) 

In the MJC category, the fluid approximation (FA), the pointwise stationary fluid flow 

approximation (PSFFA), and the diffusion approximation (DIFF) replace the discrete 

task with the continuum. Different methods are used to explain probability theory. 

Uniform acceleration (UA), a fourth method, modifies job arrival and service rates. The 

idea behind fluid approximation is to replace randomly arriving discrete jobs with a 

deterministic continuum. This continuum can be thought of as a time-varying fluid 

flowing into a reservoir. Deterministic reservoir outflow approximates service 

processes. The reservoir's fluid level approximates the number of jobs in the system; 

for a more detailed explanation, see (Aguir et al. 2004; Hampshire et al. 2009; 

Worthington and Wall 1999). 



39 
 

To increase traffic density. Figure 2.4 depicts such transformations used in the 

analysis of the time-dependent queueing systems. As a result of the Coordinate 

Transformation Technique (CTT), the performance at the end of an interval is used as 

an initial condition in subsequent interval fluid approximations CTT. Dependencies 

between successive approximations are included in CTT, as presented for time-

dependent queues (Mauro and  Pompigna 2020). 

The time-varying traffic intensity shape, on the other hand, is limited to rectangular 

peaks and off-peak periods with zero traffic intensity. SBC and CTT consider system 

performance's temporal behaviour, including dependencies between consecutive 

intervals. It can also be used to provide the performance  evaluation of overloaded 

systems for a limited time (Kimber and Hollis 1978; Stolletz 2008a). 

The CCT describes the overload situation using a model based in part on the 

deterministic fluid approximation, which provides an accurate performance 

approximation for the congestion period. 

The gained additional relevance of the FA approach  is justified by the fact that FA is 

an integral part of other analytic techniques, for example CTT, and within PSFFA, 

which is explained in the following paragraph.  
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Figure 2.4: coordinate transformation method with respect to 𝜌 

PSFFA theory provides an interesting combination between steady-state queueing 

formalism and deterministic fluid approximation and integrates stochastics. For a more 

detailed survey on PSFFA, see (Agnew 1976, Chen, et al. 2013; Cosmetatos 1976; 

Xu, et al. 2014). 

In DIFF, the interactable discrete stochastic process 𝐿𝑠(𝑡) is replaced mathematically 

with a Brownian motion( a continuous stochastic process 𝜒(𝑡)). The stochastic process 

𝜒(𝑡) is prescribed for any non-empty system by the diffusion equation ( known as the 

Kolmogorov or Fokker-Planck) equation:  

𝜕𝑓(𝑥,𝑡)

𝜕𝑡
= 

𝑎(𝑡)

2

𝜕2𝑓(𝑥,𝑡)

𝜕𝑥2
− 𝑏(𝑡)

𝜕𝑓(𝑥,𝑡)

𝜕𝑥
                                             (2.31) 

Eq. (2.31), which uses 𝑥 as a continuous estimate of the number of jobs in the system 

and 𝑓(𝑥, 𝑡) as a time-dependent probability density function. The partial differential 

equation (2.31) has straightforward solutions depending on 𝑎(𝑡), 𝑏(𝑡), and the 

boundary conditions; otherwise, it needs to be solved numerically (Clarke 1956; 
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Czachórski, et al. 2010; Czachórski, et al. 2009; Di Crescenzo and Nobile 1995;Duda 

1986; Massey and Pender 2013).  

It is to be noted that the arrival and service rates are raised concurrently while 

maintaining a constant ratio by  the uniform acceleration (UA) technique. UA could be 

thought of as steady-state analysis's non-stationary counterpart (Massey 2002). The 

PSA, the fluid approximation, and the diffusion approximation are all rigorously justified 

by the UA results. These findings imply that the PSA performs well for underloaded 

queues (Flick and Liao 2010), and that the fluid approximation performs well as an 

approximation for overloaded queues(Mandelbaum and Massey 1995). These results 

also support the central tenet of the CTT. 

Time-dependent queueing systems have several uses in service, aviation and land 

traffic, and IT systems, among other fields (Schwartz, et al. 2016). The currently in use 

assessment techniques frequently rely on discrete-time methods, stationary models, 

or fluid approximations. Notably, certain evaluation techniques are restricted to a 

particular field of application. For example, the PSFFA is mostly utilised for truck 

handling facilities, whereas the analysis of road traffic systems mostly uses CTT. Only 

theٌۭtheoreticalٌۭworkٌۭofٌۭ(Parlarٌۭ1984)ٌۭaddressesٌۭserviceٌۭrates’ٌۭoptimization,ٌۭwhichٌۭisٌۭaٌۭ

possible area for further study. Another unexplored area is the time-dependent choice 

of whether to provide waiting areas, which (Hampshire, et al. 2009) introduce in the 

context of a call centre. In conclusion, this review demonstrates that time-dependent 

queues have a wide range of applications.   

     The following section provides a short review on queueing systems with two real- 

life applications of the transient(time-depenent) 𝑀/𝑀/∞ queueing system. 
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2.4. Short review on stable queueing systems with two real-life applications of 

the transient 𝑴/𝑴/∞ queueing system 

2.4.1 Basic queues 

A basic queueing system is a service system where customers arrive and require 

service from servers. Customers may join a queue if all servers are busy, and the order 

in which customers are served is determined by the queue discipline. Queueing 

models are mathematical descriptions of these systems, making assumptions about 

arrival and service processes, number of servers, and queue organization. These 

models help calculate performance measures to design or improve service systems. 

In queueing theory, utilization is a measure of productivity and is calculated as the 

average number of busy servers divided by the total number of servers. Higher 

utilization levels lead to longer wait times, with delays increasing at an increasing rate 

as utilization increases. System size and variability also play a role, with larger 

systems experiencing shorter delays and higher variability leading to longer delays at 

any given utilization level. These principles have implications for capacity planning and 

evaluating service systems (Green 2003). 

The Poisson process is a commonly used model for arrivals in queueing systems. It 

assumes that customers arrive one at a time, the probability of arrival is independent 

of when other customers arrived, and the probability of arrival at a given time is 

independent of the time. This model is often applicable in various contexts, such as 

emergency rooms and customer service call centers, and can be tested for goodness 

of fit using statistical measures (Green et al 2005). 

In the context of steady (non-time dependent) queues, namely these queues with non-

time dependent probability density function. For example, the M/M/s or Erlang delay 
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model is a commonly used queueing model in service systems. It assumes a single 

queue with unlimited waiting room that serves s identical servers. In this model, 

customer arrivals follow a Poisson process with a constant rate, and the service 

duration, such as the length of stay or provider time for a patient, is assumed to have 

an exponential distribution. These assumptions are referred to as Markovian, hence 

the use of the two "M's" in the model notation (Green and Nguyen 2001). 

The M/M/s system assumes an exponential distribution for service time, where the 

coefficient of variation (CV) is equal to one. Even if the actual CV of service time is 

slightly different from one, the M/M/s model can still provide reasonable estimates of 

delay. However, if the CV is significantly different from one, the M/M/s model may 

either underestimate or overestimate actual delays. In such cases, when the arrival 

process follows a Poisson distribution and there is only one server, the average delay 

can be calculated using the M/G/1 system formula, another well-known none-time 

dependent queue (Green et al 2005). 

More fundamentally, the transient(time-dependent) queue follows a time-dependent 

probabilistic distribution, as an example, we have 𝑴/𝑴/∞  queue. 

2.4.2 𝑴/𝑴/∞ queueing system and the  computation of the common average 

time for unsaturated site visitors flows beneath double-parking situations. 

Double parking (DP) violations of industrial trucks whilst they load and dump at 

transport places with inadequate curb side area may have huge poor effect on site 

visitors.  Motivated by the need to examine such effect on urban streets, (Gao and 

Ozbay 2016) make use of parking violation facts for New York City in conjunction with 

discipline facts accrued the usage of video recording and adopts a complete modelling 

technique that mixes to be had facts with varieties of fashions.  Another implied 
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approach was the micro-simulation version (Gao and Ozbay 2016) advanced and 

calibrated to examine personal and mixed outcomes of diverse explanatory variables.  

The research undertaken (Gao and Ozbay 2016) employed a macroscopic 𝑀/𝑀/∞ 

queueing version and micro-simulation for estimating common tour time with inside 

the presence of double-parking activities.  

Under uncongested site visitors` situations without downstream blocking off, making 

use of the 𝑀/𝑀/∞ queueing version produced an amazing match with the sphere 

facts.  Overall, the 𝑀/𝑀/∞ queueing version is a powerful technique to compute the 

common average time for unsaturated site visitors flows beneath double-parking 

situations.  Micro-simulation is a greater effective device than the 𝑀/𝑀/∞ queueing 

version for comparing such congested situations and may be used to study person 

and mixed outcomes of diverse explanatory variables.  

 

Figure 2.5.  How DP occurs in the sites under investigation(Gao and Ozbay 2016) 
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2.4.3. Application of 𝑴/𝑴/∞ birth–death process to  quantitively interpret the 

Wavelet  Dynamics in Atrial Fibrillation and Phase singularity. 

It has been hypothesized that the determined range of PS or wavelets in AF might be 

ruled with the aid of using a not unusual set of renewal rate constants 𝜆𝑓 (for PS or 

wavelet formation) and 𝜆𝑑 (PS or wavelet destruction), with steady-state population 

dynamicsٌۭ modelledٌۭ asٌۭ anٌۭ M/M/∞ٌۭ birth–death manner. It has been demonstrated 

(Dharmaprani et al. 2021):  

(1) that 𝜆𝑓 and 𝜆𝑑  may be blended in a Markov 𝑀/𝑀/∞ manner to as it should be a 

version  of the determined common range and population distribution of PS and 

wavelets in all structures at unique scales of mapping; and  

(2) that slowing of the constants denoting rates, namely 𝜆𝑓  and 𝜆𝑑 is related to slower 

mixing rates of the 𝑀/𝑀/∞ birth–death matrix, presenting an interpretation of 

spontaneous AF termination.  

 

Figure 2.6. The birth-death process of  a transient 𝑀/𝑀/∞  queueing system 

(Dharmaprani et al.2021) 

It is worth mentioning that 𝜆𝑓 and 𝜆𝑑   (PS rates of formation and destruction 

respectively) are related by the following steady-state equation of the 𝑀/𝑀/∞ birth–

death process (Kleinrock 1976) 

𝑁 = 
𝜆𝑓 

 𝜆𝑑
                                                                                              (2.32) 
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provided that 𝑁 serves as the average number of PS and wavelets. Additionally, the 

PS and wavelet population distribution is characterized by the steady state 

probability  𝑝𝑛 (Kleinrock 1976) of getting a wavelet population or a phase singularity 

with size 𝑛 is determined by: 

𝑝𝑛 = 
(
𝜆𝑓 

 𝜆𝑑
)𝑛𝑒

−
𝜆𝑓 

 𝜆𝑑

𝑛!
                                                (2.33) 

 

Figure 2.7. How a mapped field impacts view size (Dharmaprani et al.2021) 
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It has been conjectured by (Dharmaprani et al.2021) that both equations (2.32) and 

(2.33) provide a strong characterization of the overall dynamics of  PS and wavelet 

population. 

𝑀/𝑀/∞ birth–death techniques offer a singular quantitative representational 

framework to conceptualize and recognize PS and wavelet population dynamics in AF. 

This conceptual paradigm (Quah et al., 2020) has been proven to be used in all types 

of AF studies, at a lot of one-of-a-kind scales and densities of mapping, offering 

possibilities for scientific application. 

2.5 Information Geometry 

Information geometry (IG) (Amari, 1985) is based on the application of non-Euclidean 

geometry approaches to stochastic processes and probability theories. IG rethinks a 

probability distribution family in terms of a statistical manifold (SM).  Additionally, IG 

revolutionises the way we describe probability density functions by studying their 

corresponding SMs to enable the provision of the geometric metric. This overall novel 

approach is significantly crucial as it visualizes SM as a coordinate system. A manifold 

is a topological finite-dimensional Cartesian space,  ℝ𝑛  , where an infinite-dimensional 

manifold exists (Baez 2021).  ℝ𝑛   is, as can be seen, a topological space. Surprisingly, 

the description of SMs is intuitively supported by IG. As a result, the visualisation of 

the derived geometric figures demonstrates the significance of IG (Nielsen 2020). 

Amari (1985) defined information geometry as the application of non-Euclidean 

geometry approaches to stochastic processes and probability theories. In terms of a 

statistical manifold, IG rethinks a probability distribution family (SM). IG has also been 

used to investigate SMs, where the geometric metric provides a novel description of 

the probability density function, which is critical in SM and can be visualised as a 
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coordinate system. A manifold is a finite-dimensional topological Cartesian space, in 

which an infinite-dimensional manifold exists (Baez 2021). As can be seen,  ℝ𝑛   is a 

topological space. Surprisingly, IG intuitively supports the description of SMs. As a 

result, visualising the derived geometric figures demonstrates the importance of IG 

(Nielsen 2020). 

Figure 2.8 depicts 𝜃 ̂ (the parameter inference) of a model from data and looks at it to 

represent a decision-making algorithm: If we have a category of models 𝑀 =

{𝑚𝜃}𝜃𝜖{𝜃1,𝜃2,..,𝜃𝑛}  that best fits the data, then what are the parameters {𝜃1, 𝜃2, . . , 𝜃𝑛} to 

make this holds for the probability density function of the geometric manifold 

distribution under investigation? The differential-geometric manifold structure 𝑀 of IG 

can be used to create decision rules. (Amari 1985) investigated the exponential 

distribution families, whereas (Dodson 1999) studied and revealed the geometric 

structures of some special exponential distributions.  

 

Figure 2.8: SM Parametrization (c.f., Nielsen, 2020) 

The (IME) is a square matrix that is analogous to the ordinary exponential function and 

is used to solve linear differential equation systems. Furthermore, the matrix 

exponential is important in Lie groups (Hall 2015).  

The real motivation for us taking this path of research was based on IG of a stable 

M/D/1 queue and introducing a geometric structure on the set of M/D/1 queues by 

utilising the properties of queue length paths (Nakagawa 2002), which is, to the best 
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of our knowledge, the only research paper in the literature. Moreover, the geometric 

approach was used to study the invariance and equivariance of figures in a coordinate-

free approach (Kondor and Trivedi 2018). 

Ricci curvature is used to measure the deviation of the Riemannian metric (RM) from 

the standard Euclidean metric (EM) (Nielsen 2020). Furthermore, scalar curvature is 

used to calculate the difference in volume between a geodesic ball and a Euclidean 

ball of the same radius. 

 

Figureٌۭ2.9:ٌٌۭۭOnٌۭcurvedٌۭsurfaces,ٌۭgeometricٌۭgeodesicsٌۭ(Nortonٌۭ2020). 

 

The RM tensor of a statistical model's parameter manifold is defined by the Fisher 

information metric. We can possibly utilize it to compute gap of information between 

measurements. 

Kullback's Divergence, or KD (Regli and Silva 2018), is a relatively simple objective to 

optimize. However, because KD considers the log-likelihood ratio p/q, it tends to 

penalize the region more where 𝑝 >  𝑞 — that is, overestimating the true posterior is 

penalized more than underestimating it for any given region. The derived 

approximation tends to undercover regions of low probability in the target model 

(Turner & Sahani, 2011), while focusing on several modes based on the constraints. 

(Amari, 2012) has developed power EP (Minka 2005) and the black-box alpha 

divergence (Hernandez-Lobato et al., 2016) in the context of variational inference. The 
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Rényi divergence (Rényi et al., 1961; Van Erven and Harremos, 2014) will be the 

primary focus. 

𝐷𝑅
𝛾
(𝑝||𝑞) =  

1

(𝛾−1)
𝑙𝑛 (∑ (𝑝(𝑛))

𝛾∞
𝑛=0 (𝑞(𝑛))

1−𝛾
)                                                    (2.34) 

Variational Inference VI by Rényi is investigated in (Li and Turner 2016). More 

advancements on theory of traditional VI on complex models were determined by 

(Depeweg et al., 2016).Outliers in the training data also cause problems for KD (Ghosh 

et al. 2017). See (Basu et al. 1998; Ghosh and Basu 2016) for a more detailed account 

on different categories of divergence measures. 

The AB-divergence was introduced and investigated by (Cichocki et al. 2011): 

𝐷𝑠,𝐴𝐵
𝛾,𝜂

(𝑝||𝑞) =
1

𝜂(𝜂+𝛾)
𝑙𝑛 (∑ (𝑝(𝑛))

𝛾+𝜂∞
𝑛=0 )+ 

1

𝛾(𝜂+𝛾)
𝑙𝑛 (∑ (𝑞(𝑛))

𝛾+𝜂∞
𝑛=0 ) −

1

𝛾𝜂
𝑙𝑛(∑ (𝑝(𝑛))

𝛾∞
𝑛=0 (𝑞(𝑛))

𝜂
)                                                                                  (2.35) 

for (𝛾, 𝜂)ϵℝ2 such that 𝛾 ≠ 0, 𝜂 ≠ 0 𝑎𝑛𝑑  𝛾 + 𝜂 ≠ 0. 

The authors (Cichocki et al. 2011) have presented a novel (dis)similarity measure, 

namely 𝑫𝒔,𝑨𝑩
𝜸,𝜼

(𝒑||𝒒) (c.f., (2.35)) , where it  has been illustrated (Cichocki et al. 2011) 

that 𝐷𝑠,𝐴𝐵
𝛾,𝜂

(𝑝||𝑞) is potentially robust. More intriguingly, the recent extension of classical 

linear metric learning methods has taken two distinct paths: deep metric learning 

(Cilingir et al. 2020) methods for learning data embedding using neural networks, and 

Bregman divergence learning approaches for learning more general divergence 

measures such as divergences over distributions. 
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Figure 2.10:  Classical linear metric learning methods (Cilingir et al. 2020) 

 

2.6 Information Length Theory 

Since Shannon entropy is not an ideal descriptor(Chamorro et al 2022) of the occurring 

statistical variations within a time series, this has created a great motivation for using 

other different information theoretic concepts , for example Fisher Information (Zegers 

2015; Ly et al 2017; Frieden 2004), differential entropy (Michalowicz et al 2013), the 

Kullback-Leibler divergence (KD) (Van Erven and Harremos 2014), or the information 

length (IL) (Kim 2018; Kim and Hollerbach 2017). The total number of statistical 

variations for each specified temporal range can be calculated using IL. IL is superior 

to other information metrics like differential entropy since it depicts evolution path 

dependency between two states (PDFs) (Nicholson et al 2020). The beauty of IL 

metric is based on  its capability to track the variability (Chamorro et al 2022) through 

the evolution of time series via time-dependent probability density functions (PDFs). 

Additionally,ٌۭIL’sٌۭformalismٌۭintroducesٌۭaٌۭfascinatingٌۭconnectionٌۭbetweenٌۭinformationٌۭ

geometry and stochastic processes (Heseltine and Kim 2019). More interestingly, IL 

has numerous applications for quantum, fluid, and biological processes (Kim 2019). 

On the other hand, IL metric was the real motivation behind the provision of a novel 

info-geometric measure of casual information rate (Kim and Guel-Cortez 2021). The 
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significance of IL for stochastic thermodynamics is further discussed (Kim 2021), 

particularly in connection to its effects on the production of entropy or free energy in 

the non-autonomous Ornstein-Uhlenbeck process. To end, (Guel-Cortez  and Kim 

2020; Guel-Cortez  and Kim 2021) present an analysis of the IL calculation of linear 

stochastic autonomous processes, which facilitates the range of applicability, 

facilitating application to various  scenarios in engineering  and demonstrating that IL 

can be employed for the abruption of event prediction.  

2.6.1 IL as a concept  

Mathematically speaking, if 𝑥 serves as a nth- order stochastic variable and 𝑝(𝑥, 𝑡) is 

a time-dependent PDF of 𝑥, then the Information Length ℒ(𝑡) corresponding to its 

evolution from the initial time 𝑡0 = 0 to the final time 𝑡𝐹 = 𝑡 is devised by 

ℒ(𝑡) = ∫
𝑑𝑡1

𝜏(𝑡1)
= ∫ √(휀(𝑡1))𝑑𝑡1

𝑡

0

𝑡

0
                       (2.36) 

휀(𝑡1) =  ∫ℝ𝑛 (
1

𝑝(𝑥,𝑡1)
[
𝜕𝑝(𝑥,𝑡1)

𝜕𝑡1
]2)𝑑𝑥                           (2.37) 

provided that √(휀(𝑡) serves as the root-mean- squared fluctuating energy rate.  

Having a closer look at (2.36), it is essential to note that 𝜏(𝑡) serves as a dynamic 

temporal unit which provides the correlation time over which the changes of 𝑝(𝑥, 𝑡) 

take place (Nicholson et al 2020). Moreover, 𝜏(𝑡) acts as a time unit in the statistical 

space. Having said that, √(휀(𝑡) =
1

𝜏(𝑡) 
 is the quantification of the average rate of  

information’sٌۭchangeٌۭinٌۭtime,ٌۭorٌۭtheٌۭinformationٌۭvelocity(Kimٌۭ2021).ٌۭ 

To understand the interpretation of ℒ, it is more favourable to calculate its underlying 

value of the corresponding physical process’ٌۭmathematicalٌۭmodel. Considering the 

first order stochastic process described by Langevin equation: 
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𝑑𝑥

𝑑𝑡
= −𝛾(𝑡)(𝑥 − 𝑓(𝑡)) + 𝜉                             (2.38) 

𝑥 serves as a random variable,  𝑓  defines a deterministic force,  𝜉 represents a 

short-correlated random force satisfying that: 

<  𝜉(𝑡)𝜉(𝑡1) > = 2𝐷𝛿(𝑡 − 𝑡1) and < 𝜉(𝑡) > = 0                             (2.39) 

where 𝐷 serves as  the amplitude (temperature) of the deterministic 

force(stochastic nose) 𝜉 

It is to be noted that equation (2.38) is so popular to be used as a descriptor of the 

motion of a particle under a harmonic potential in the form: 

 𝑉(𝑥) =  
1

2
𝛾(𝑥 − 𝑓(𝑡))2                                               (2.40) 

Following (Heseltine and Kim 2016; Kim et al 2016), it is found that: 

휀(𝑡) =
(
𝑑𝛽

𝑑𝑡
)2

2𝛽2
+ 2𝛽(

𝑑𝑦

𝑑𝑡
)2                                                  (2.41) 

𝑝(𝑥, 𝑡) =  √
𝛽

𝜋
𝑒−(𝛽(𝑥−𝑦))

2
, 𝑦(𝑡) = < 𝑥 > = 𝑥(0)𝑒−𝐺(𝑡) + 𝐹(𝑡) 

   
1

2𝛽(𝑡)
= < (𝑥(𝑡) − 𝑦(𝑡))2 > =  ∫ 2𝐷 𝑒−2(𝐺(𝑡)−𝐺(𝑡1))𝑑𝑡1

𝑡

0
, 

𝐹(𝑡) = ∫  𝑒−(𝐺(𝑡)−𝐺(𝑡1))𝛾(𝑡1)𝑓(𝑡1)𝑑𝑡1
𝑡

0
,                                                                  (2.42) 

provided that 𝐺(𝑡) =  ∫ 2𝐷 𝛾(𝑡′
𝑡

0
)𝑑𝑡′.  

Considering equation (2.38), it is clear that 휀(𝑡) is dependent on the changes in both 

mean and variance defined by the corresponding dynamics of equation (2.33), 

portraying the changes of  𝑝(𝑥, 𝑡) in a three-dimensional space (𝑡, 𝑥, 𝑝(𝑥, 𝑡)) as in figure 

2.11, where the variation of the information velocity, √(휀(𝑡) would occur along the path 
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starting initially from the state probability density function   𝑝(𝑥, 𝑡0) to the final state at 

𝑝(𝑥, 𝑡𝐹) as a descriptor of the speed limit from the statistical deviations of the 

observables(Nicholson 2020). Therefore, the temporal integral of √(휀(𝑡) provides the 

changes in the mean  𝑦  and the variance  
1

2𝛽(𝑡)
 that take place along the path. 

 

Figure 2.11: A graph depicting the evolution of 𝑝(𝑥, 𝑡) over time 𝑡. ℒ(𝑡) computes the 

total amount of statistical changes on 𝑝(𝑥, 𝑡) from 𝑡0 to 𝑡𝐹 (Chamorro and colleagues, 

2022). 

Fundamentally, employing differential entropy (Michalowicz 2013), may not enable us 

to observe the occurring temporal statistical variations. This is a direct implication of 

theٌۭlocality’sٌۭdeficiencyٌۭsinceٌۭdifferentialٌۭentropyٌۭisٌۭmainlyٌۭforٌۭtheٌۭquantification of the 

differences between any two given PDFs disregarding any intermediate states 

(Heseltine and Kim 2019). In a different symbolism, it only notifies us of the differences 

that have an influence on the underlying system's general development. IL ℒ(𝑡), on 

the other hand, measures any localised changes that occur along the system's course 

(Kim 2018; Kim and Hollerbach 2017). More crucially, IL has been touted as a cutting-

edge technique for depicting an attractor structure and as a potent metric that can 
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unite geometry and stochasticity (Guel-Cortez and Kim 2020; Heseltine and Kim 

2019). From the point of stable equilibrium, the equivalent value of 𝑙𝑖𝑚𝑡→∞ ℒ(𝑡) would 

grow linearly depending on where the starting state's mean PDF 𝑝(𝑥, 0) is located (Kim 

and Hollerbach 2017; Hollerbach et al 2018).Notably, this strongly underlines that IL 

preserves the underlying Gaussian process' linear geometry. by utilising equation 

(2.36).More importantly, this particular property is lost when employing any other 

information metric(Guel-Cortez  and Kim 2020 ;Heseltine and  Kim  2019).By using 

definition, this emphasises that IL is a one-dimensional, model-free measure (2.36). 

Since IL is independent of data type, it may be devised by calculating the time-variant 

PDF of a time series (Chamorro et al 2022). 

2.7 Existing research gaps 

This thesis is aimed to fill several research gaps in the literature. To start with, the 

continuous time domain for the class of Rényi generalized entropies has left several 

unsolved open problems, such as the inability to explore many information-theoretic 

properties for this class. More fundamentally, this specific continuous time domain was 

impossible to extend the limit theorem beyond the origin point. 

Notably, the Shannonian entropic formalism for the stable 𝑀/𝐺/1 queue was the only 

known case in the literature since 1983. But what about the more generalized 

formalisms for Rényi and Tsallis entropic measures? This is a potential research gap 

in information-theoretic queueing theory. 

Additionally, there is only a single paper in the literature on the info-geometric impact 

on the stable 𝑀/𝐷/1 queue, which leaves the literature with numerous unanswered 

questions on the info-geometric analysis on stable queues.  
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Finally, the fact that there was no research in the literature on the information length 

theory of transient queues, has generated an exceptional motivation to undertake this 

novel research track. 

To this end, the current thesis aims to answer the above-mentioned open problems to 

fill these research gaps. 

2.8 Chapter summary 

The current provides an overview of Rényi entropy and uncertain reasoning, followed 

by an introduction to the Maximum Entropy (ME) principle and its application to 

discrete ME distributions. It also summarizes ME solutions for queueing system 

performance distributions, stable queueing systems with two real -life applications of 

the transient 𝑀/𝑀/∞ queue. Additionally, the chapter reviews  information geometry 

and information length theory, while highlighting existing research gaps and the aims 

and objectives of the study. 
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3.  Properties of Discrete Rényi's Generalized 

Entropies Extended Properties and  PV-updates  

 

This chapter investigates the properties of Rényi's generalised entropies (RGEs) and 

their applications in information theory. It highlights that while these properties have 

been extensively studied in the continuous-time domain, this chapter presents an 

original extension of these properties into the discrete-time domain. It also provides 

Probability Vector Updates (PV-updates) and their connection to prior information-

theoretic results on minimum cross entropy. 

3.1 Introduction 

One of the pillars of information theory is the investigation of the characteristics of 

Rényi's generalised entropies (RGEs) in both continuous and discrete time domains. 

They make it possible for more applications to be made in various domain in science 

and engineering. This includes inference and statistical mechanics, 

telecommunications networks, medicine, and other branches of human knowledge. 

Several researchers have reported on the properties of RGEs on the continuous-time 

domain at the real line's origin (Kybic 2006). In addition, (Paris 1994) proposed 

inference processes based on the definition of RGEs, 𝐻𝑞 
𝐿  in continuous-time domain, 

where 𝐻𝑞
𝐿  is Rényi's generalised entropy, L denotes a finite language (i.e., a finite set 

of propositional variables), and  𝑞 (−1,∞) is the order of RGE (which is the parameter 

of the power in the definition of RGE). The theoretical result of RGEs, 𝐻𝑞 
𝐿 , 

i.e., lim
𝑞→𝑎

𝐻𝑞 
𝐿  =  𝐻𝑎 

𝐿  , was only proved for order 𝑎 = 0 (Uffink 1995). Hence, the 

usefulness of their associated proofs is of limited value. 
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More fundamentally, the current chapter deals with the extension of a general theorem 

for the class of RGEs in the discrete-time domain over real numbers, where the 

corresponding Probability Vector Updates, namely PV-updates of the class of RGEs 

are devised. Hence, a more general novel proof for all 𝑎 (−1,) is devised for the 

class of RGEs,  𝐻𝑞
𝐿 in the discrete time domain. See (Uffink 1995) for a more detailed 

account on these properties. Moreover, a generalisation of the results reported in 

(Paris and Vencovska 1992) is carried out, enabling the computation of the PV-

updates with respect to the class of RGEs.  

The current chapter focuses on providing comprehensive proofs for the extended 

properties of Rényi's Generalized Entropies, as well as deriving PV-updates in the 

Discrete Time Domain. Additionally, the chapter presents the full proofs of an 

expanded version of the limit theorem and offers physical interpretations for these 

extended properties. In principle, this chapter primarily contributes to employing the 

discrete case of RGEs to solve an open problem (Paris and Vencovska 1992) that has 

been reported to be unsolvable by using the continuous case, namely the limit 

theorem, ., lim
𝑞→𝑎

𝐻𝑞 
𝐿  =  𝐻𝑎 

𝐿 . 

 

3.2 Background and definitions.  

3.2.1 A closer look at uncertain reasoning  

Rényi`s entropies encouraged the deduction of latest measures for assessing sign 

facts and intricacy within the time-recurrence plan. As implemented with a time–

frequency representation (TFR) from the Cohen`s class (Boashash and Ouelha 2108; 

Jurdana et al.  2021) the Rényi's entropies alter closely to the concept of intricacy that 

it's far applied even as outwardly reviewing time-recurrence pictures. These actions 
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have a few extra intriguing and helpful properties, like transformation invariances, 

cross-part and cross-component and accounting, that motivated researchers to 

choose them for time frequency analysis. A fundamental detailed investigation of the 

properties and a few expected uses of Rényi's entropies is accounted for in (Jurdana 

et al. 2021), with accentuation on the underlying mathematical framework for  time 

frequencyٌۭrepresentationsٌۭofٌۭtheٌۭsecondٌۭorder.ٌۭSpecifically,ٌۭforٌۭWigner’sٌۭcirculation,ٌۭitٌۭ

was laid out that there exist signals for which the actions are not obvious (Boashash 

and Ouelha 2108). An extended entropy and mutual information estimator were 

announced in (Tarighi et al 2022) for Rényi's meanings of entropy, which includes 

those of Shannon's as exceptional cases. 

Rather than utilizing the standard proportion of entropy (first proposed by Shannon), 

an action that exists in the group of Rényi's entropies was proposed in (Tarighi et al 

2022) by permitting the likelihood evaluations to sometimes lie outside the reach from 

0 to 1, to effectively expand Rényi's quadratic entropy corresponding to requirements 

communicated in the form of linear equations. 

In a deeper insight, it is revealed by (Giovannetti et al 2004) that  the minimization of 

Rényi’s output entropy  can be a consequence of coherent-state inputs. Looking at the 

more general case, namely arbitrary input states and non-integer orders. Moreover, it 

has been shown that the  upper bound implied by the conjecture is compatible with 

the entropic lower bound obtained by (Giovannetti et al 2004). Furthermore, (Aggarwal 

2005) suggested a different approach to using theٌۭRényi’sٌۭentropyٌۭtoٌۭgeneralizeٌۭtheٌۭ

Tunstallٌۭcodesٌۭ(Tunstallٌۭ1968),ٌۭwhichٌۭillustratesٌۭtheٌۭinfluentialٌۭroleٌۭofٌۭRényi’sٌۭentropyٌۭ

by devolving an algorithmic minimization of redundancy. Additionally, the validity of 

Tunstall's theorem (Trunstall 1968) was extended to the countable alphabet by 



60 
 

(Aggarwal 2005) through examining the effects of two different definitions of mutual 

information on the generalisation of capacity and rate distortion function. 

According to (Hawes 2007), the spectrum of Rényi's inference processes in discrete 

time has limits of minimax at one end and the limit centre of mass inference process 

𝐶𝑀∞at the other. It was discovered that a different series of procedures had the limit 

maximin. Maximin is the dual of minimax. However, when compared to maximum 

entropy (ME), it exhibits traits that are superior to those of minimax. (Hawes 2007) 

provides algorithms for computing minimax and maximin, which have the benefit over 

those of ME in that they can infer belief values, which are rational numbers when the 

agent's knowledge is stated exclusively in terms of rational numbers. 

There are several applications that use these estimators in the context of the 

nonparametric problem of estimating Rényi's entropy and mutual information (MI), 

based on a limited sample selected from an unknown, continuous distribution over 

ℝ𝑑  ( the d- fold Cartesian product of real numbers ℝ). (Van Hulled 2008; Uffink 1995) 

have both employed entropy estimators and mutual information estimators for 

subspace analysis and picture registration, respectively. A class of estimators for the 

Shannon's and Rényi's data on multi-dimensional probability density was also offered 

by Leonenko (2010). 

When developing an expert system, we need a rationale for picking an  element from 

𝑉𝐿(𝐾) . Choosing a particular reasoning process N. For consistent (i.e., non-trivial) K 

[(i.e.,  𝑉𝐿(𝐾) ≠ ∅], in practice it is very rare if 𝑉𝐿(𝐾)is a singleton (i.e., a set with one 

element). 

3.2.2. Definitions (Paris 1994) 
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1. For any finite language L, define a family of inference processes  NL.  Within this 

context, NL2(K) agrees with  NL1(K) on SL1 for L1 ⊆ L2 (equivalently, SL1 ⊆ SL2 and 

CL1 ⊆ CL2). Additionally, K∈ CL1.4. MDL stands for minimum distance inference 

process, MDL = that x→ ∈ VL(K) where ∑ xi
2J

i=1  is minimal. 

2. If maximum entropy is rewritten as an inference process , defined by  MEL , which 

is determined by  

MEL(K) = that 𝑥→   satisfying the maximality of the entropy−∑ 𝑥𝑖𝑙𝑜𝑔𝑥𝑖
𝐽
𝑖=1  (Take 

 𝑥𝑙𝑜𝑔𝑥 = 0   when 𝑥 = 0). 

3. If maximum entropy is rewritten as a transfer probability process, then we write it in 

short as MTP. This is  read as: 

MTP(K) =  x→ ∈ VL(K)      satisfying the maximality of  ∑ √xi
J
i=1   

4. Let G be the collection of constraints where {Belσ(αi) = 0: i∈ 𝐼}, 𝐼𝐿(𝐾) = {𝑖: ∀𝑥→ ∈

VL(K), 𝑥𝑖 = 0}. If 𝑁𝐿 = the maximal uniquely defined point 𝑥→ ∈ VL(K) of FL,FL  serves 

as  a function from   ℚ𝐿 into a set that is ordered linearly.This translates to the  

obstinacy of  NL. 

5.The minimum cross entropy update of the consistent K+Kσ  with respect to an open-

minded inference process N by choosing <  Belσ(α1), … ,  Bel
σ(𝛼𝐽) > to be that  x→ ∈

VL(Kσ ) at which the function 

𝐼( x→, 𝑁(𝐾)) =  ∑ 𝑥𝑖
𝐽
𝑖=1 log(𝑥𝑖 𝑁(𝐾)(𝛼𝑖)⁄ ) =  ∑ (𝑥𝑖

𝐽
𝑖=1 log(𝑥𝑖)−𝑥𝑖log 𝑁(𝐾)(𝛼𝑖))     (3.1) 

is minimal. It is agreed that 0𝑙𝑜𝑔0 = 0. 

3.3 Background theorems 

3.3.1 Functional continuity theorem  
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For some continuous strictly concave(convex) function F: ℚ𝐿  → ℝ, if the inference 

process N on L satisfies N(K) = that 𝑥→ ∈ 𝑉𝐿(𝐾)at which 𝐹(𝑥→)  is maximal(minimal), 

then N is continuous (PARIS 1994). 

3.3.2. Properties of Maximum Entropy ME  

It has been conjectured (Paris 1994) that only ME is continuous, obstinate, open-

minded. Additionally, ME satisfies the relativization, independence, renaming and 

irrelevant information (Paris 1994). (Paris 2003) used a novel approach by 

incorporating a "common sense principle" to provide a second reasoning for this 

choice. As an illustration, let's say a scientist was shown a slide under the microscope, 

that was  unquestionably displaying a follicular pattern, this implies Belσ(F) =1, where 

 Belσ(𝜃) for 𝜃 ∈SL represents the scientist's conviction that 𝜎 has a property 𝜃.  

           In this manner, theٌۭnew,ٌۭunique,ٌۭbeliefsٌۭaboutٌۭσٌۭobtainٌۭsimilarٌۭstatusٌۭasٌۭ theٌۭ

overall information explanations. In broad terms, an expert now defines constraints 

Kσ on  Belσ. Consequently, we must upload to K constraints, every Belσ(θ) change 

through Bel ((s⋀θ)/Bel(s). Thus, it appears logical to keep in mind the updated belief 

that 𝜎 has a property θ, known as  Belσ(θ), to be: 

            N(K+Kσ(S))(S∧ θ)∕ N(K + Kσ(S))(S)                                   (3.2) 

           Tragically, K+Kσ(S) presentlyٌۭexcludesٌۭoneٌۭsignificantٌۭextraٌۭconvictionٌۭσ,ٌۭthatٌۭ

‘beingٌۭlikeٌۭσٌۭ'isٌۭimpossible.ٌۭToٌۭbeٌۭsure,ٌۭbeliefٌۭinٌۭitٌۭoughtٌۭto be basically 'infinitesimal' 

given that one is sufficiently hard. This exclusion can create perplexing outcomes in 

small models, albeit in enormous, true models it would make an irrelevant difference. 

To address this, we add 

Bel(S) = 휀 to K+Kσ(S)                                    (3.3) 



63 
 

3.4 Extended Properties for RGEs into the Discrete-time Domain 

This current section extends the proofs of several properties of RGEs from the 

continuous case into the discrete case. In this context, the main problem of the study 

is composed of the following mechanism: For 𝑞 >  −1, 𝑞 ≠  0, we write 𝐻𝑞
𝐿(𝐾) as 

𝐻𝑞
𝐿(𝐾) =  that  x→ ∈ 𝑉𝐿(𝐾) for which (∑ 𝑥𝑖

𝑞+1𝐽
𝑖=1 )−1/𝑞 is maximal             (3.4) 

Also, we define 𝑈0
𝐿 to be ME. We start by giving the definition of each property  given, 

along with its physical interpretation and investigation of these properties of the RGE 

in the discrete-time domain. Salient proofs are introduced, and the full proofs are 

detailed in the Appendices chapter.  

3.4.1 Uniqueness property 

Essentially, on the premise of this saying, ''If a similar issue is tackled two times 

similarly, we expect similar response in the two cases i.e., the arrangement ought to 

be clear'' (Rödder 2019). Thus, we can compose this as: 

𝐻𝑞
𝐿 is unique if there exits ∈ 𝑉𝐿(𝐾)  satisfying the maximality of (∑ 𝑥𝑖

𝑞+1𝐽
𝑖=1 )−1/𝑞 

The salient proof of 3.4.1 

The proof covers three possibilities: 

First possibility: 𝑞 > 0.  

Second possibility:  𝑞 = 0.  

Third possibility: 0 >  𝑞 > −1  
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The sketch of proof of the first case starts by showing the convexity of  𝑥𝑞+1 on [0,1]. 

The second step is to show the convexity of  ∑ 𝑥𝑖
𝑞+1𝐽=2𝑛

𝑖=1  on   ℚ𝐿, meaning that for all  0 

≤ 𝜆 ≤1, i= 1, ..., J = 2𝑛, 𝑎→, 𝑏→ ∈ ℚ𝐿, 

            ∑ (𝜆𝑎𝑖 + (1 − 𝜆)𝑏𝑖)
𝑞+1

𝑖  ≤ 𝜆∑ 𝑎𝑖
𝑞+1

𝑖   + (1−𝜆) ∑ 𝑏𝑖
𝑞+1

𝑖                                     (3.5) 

Which proves the required result by contradiction. By 𝐻0 
𝐿   = ME, case 2 is immediately 

proved (Paris 2003). The proof of case 3 is like that of case 1. The full proof of 

uniqueness Property can be seen in the Appendices chapter. 

3.4.2 The Null Limit Theorem 

lim
𝑞→0

𝐻𝑞 
𝐿  = ME                                                   (3.6) 

The proof starts by showing the : (i) Uniform convergence i.e., that if  given 휀 > 0 ∃𝛿 >

0 such that if  

|q|< 𝛿, 𝑥→ ∈ ℚ𝐿, then   |(1/q)log(∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1 )−∑ 𝑥𝑖𝑙𝑜𝑔𝑥𝑖
𝐽
𝑖=1 |<  휀                              (3.7) 

(ii) If 𝑎→(𝑞) = < 𝑎1
(𝑞), . . , 𝑎𝐽

(𝑞) > is the point in 𝑉𝐿(𝐾) at which  𝑙𝑜𝑔(∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1 )
−
1

𝑞   is its 

maximum, then    𝑙𝑖𝑚𝑞→0𝑎
→(𝑞) = 𝑎→(0). 

Part (i) was shown by using the Taylor expansion for 𝑜𝑔(∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1 )
−
1

𝑞  around   𝑞 = 0. 

Then the proof continues to show that: [𝑑2/d𝑡 2log(∑  𝑥i
t+1)]𝑡=𝜃𝑥→

𝐽
𝑖=1   has an 

independent of 𝑥→ upper bound, which was carried out with the help of elementary 

mathematical analysis. In a similar fashion, the proof can be devised for q < 0.  

Asٌۭforٌۭ(ii),ٌۭlet’sٌۭproposeٌۭtheٌۭcontradictingٌۭstatementٌۭ,ٌۭi.e.,ٌۭ∃a subsequence 𝑎→(𝑞𝑛) when 

𝑞𝑛 ↘ 0 such that lim
𝑛→∞

𝑎→(𝑞𝑛) =𝑏→ ≠ 𝑎→(0). Since 𝑏→ ≠ 𝑎→(0), ∃a positive number 

𝜂 ∈(0,1) such that ∑ 𝑏𝑖𝑖 𝑙𝑜𝑔𝑏𝑖  − ∑ 𝑎𝑖
(0)

𝑖 𝑙𝑜𝑔𝑎𝑖
(0)
> 𝜂 > 0 and 𝑏→ ∈ VL(K)(Since 
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𝑉𝐿(𝐾) is compact). Following this argument leads to 1 ∕|𝑞𝑛𝑙𝑜 𝑔(∑ (𝑎𝑖
(0))1+𝑟𝑛𝑖 ) | <

1 ∕|𝑞𝑛 log(∑ (𝑎𝑖
(0))1+𝑞𝑛𝑖 ) |. This provides the converse argument. Following the same 

analogy, we can obtain the proof for 𝑞𝑛 ↗ 0. 

Proof:  See   Appendices chapter for full proof. 

3.4.3 The Limit Theory 

 lim
𝑞→𝑎

𝐻𝑞 
𝐿  =  𝐻𝑎 

𝐿                     ∀ − 1 < 𝑎 < ∞                                              (3.8) 

The proof is obtained in the following sequence. Firstly, we have shown the uniform 

convergence. In other words, if given 휀 > 0  ∃𝛿 > 0  such that if  |𝑞 − 𝑎| < 𝛿,   then  

  | ∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1   −∑ 𝑥𝑖
𝑎+1𝐽

𝑖=1  |< 휀    for all  𝑥→  ∈ ℚ𝐿                                 (3.9) 

This was done by using the Taylor expansion for ∑ 𝑥𝐽
𝑖=1 𝑖

𝑞+1
  around 𝑞 = 𝑎 and showing 

that ∑ 𝑥𝐽
𝑖=1 𝑖

𝑎+1
 𝑙𝑜𝑔𝑥𝑖   and  [∑ 𝑥𝐽

𝑖=1 𝑖

𝑡+1
  (𝑙𝑜𝑔𝑥𝑖  )

2  ]𝑡 = 𝜃𝑥→    has an independent of 

𝑥→ upper bound. A similar argument works for  𝑞 < 𝑎. Secondly, we proved that if  

𝑏→(𝑞) = < 𝑏1
→(𝑞)

, … , 𝑏𝐽
→(𝑞)

>  is the point in 𝑉𝐿(𝐾) at which ∑ 𝑥𝐽
𝑖=1 𝑖

𝑞+1
  is maximal 

(minimal), then   𝑙𝑖𝑚𝑟→𝑎    𝑏
→(𝑞) =  𝑏→(𝑎). This is proven by contradiction by assuming  

the existence of a  subsequence 𝑏→(𝑞𝑛)  when 𝑞𝑛     ↘ 𝑎 such that  𝑙𝑖𝑚𝑛→∞ 𝑏→(𝑞𝑛) =

𝑐→ ≠ 𝑏→(𝑎), ∃  a positive number 𝜂 𝜖 (0,1) such that we have ∑ 𝑐𝑖
𝑎+1

𝑖   − ∑  (𝑏𝑖
(𝑎)
)𝑎+1𝑖   

> 𝜂 > 0 and 𝑐→ ∈  𝑉𝐿(𝐾) (Since 𝑉𝐿(𝐾)  is compact). Putting all the threads together 

leads to the required contradiction: 

 ∑  (𝑏𝑖
(𝑎)
)1+ 𝑞𝑛      𝑖 < ∑  (𝑏𝑖

( 𝑞𝑛 ))1+ 𝑞𝑛  𝑖                                     (3.10) 

A similar argument works for  𝑞𝑛    ↗ 𝑎.    

For the full proof please see the Appendices chapter. 
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3.4.4. Extended properties of RGEs in the discrete case 

3.4.4.1. The physical interpretation of irrelevant information 

Suppose that 𝐾1, 𝐾2  ∈ CL,  𝜃 ∈ SL , but either no propositional variable appears inٌۭθٌۭ

or any sentence in 𝐾1 additionally appears in 𝐾2 .Then 𝑁(𝐾1 + 𝐾2 )(𝜃 )  =  N(𝐾1 )(𝜃 ) 

This principle may well be physically translated as knowledge entirely irrelevant to 

the problem in hand can be ignored (Hawes 2007). 

Firstly, 𝐻0 = ME satisfies irrelevant information by equation (3.6). Let 𝑞 > 0 and 𝐾1be 

the set of constraints 𝑥 + 𝑦 + 𝑧 = 1(𝑠𝑜 𝐵𝑒𝑙(¬𝑝1 ∧ ¬𝑝2) = 0 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐𝑎𝑙𝑙𝑦)  𝑁𝑦 + 𝑧 =

𝑓 where 𝑁 > 1 is large and 𝑓 =
1

1+(
𝑁

𝑁−1
)1∕𝑞

  .From which it follows that 

 𝑈𝑞
𝐿(𝐾1)(𝑝1 ∧ ¬𝑝2) = 0                                                       (3.11) 

Letting 

 𝑥1 = 𝐵𝑒𝑙(𝑝1 ∧ 𝑝2 ∧ 𝑝3), 𝑦1 = 𝐵𝑒𝑙(𝑝1 ∧ ¬𝑝2 ∧ 𝑝3), 𝑧1 = 𝐵𝑒𝑙(¬𝑝1 ∧ ¬𝑝2 ∧ 𝑝3), 𝑥2 =

𝐵𝑒𝑙(𝑝1 ∧ 𝑝2 ∧ ¬𝑝3),𝑦2 = 𝐵𝑒𝑙(𝑝1 ∧ ¬𝑝2 ∧ ¬𝑝3),𝑧1 = 𝐵𝑒𝑙(¬𝑝1 ∧ ¬𝑝2 ∧ ¬𝑝3),           (3.12) 

and  𝐾2be the set of constraints 𝐾1+ 𝐵𝑒𝑙(𝑝3) = 𝑑 . As we go along the proof, by 

assuming that 𝑈𝑞
𝐿 satisfied irrelevant information. Then, by language invariance, 

    𝐻𝑞
𝐿(𝐾2)(𝑝1 ∧ ¬𝑝2) = 𝐻𝑞

𝐿(p(𝑝1 ∧ ¬𝑝2) = 0                                 (3.13) 

Therefore, by obstinacy 𝐻𝑞(𝐾2) =  𝐻𝑞(𝐾3) where 𝐾3 is the set of constraints:                 

  𝑦1 + 𝑦2 =  0 𝑔𝑖𝑣𝑖𝑛𝑔 𝑧1  = 𝑓 − 𝑧2,   𝑥1 + 𝑥2 + 𝑧1 + 𝑧2 = 1 𝑔𝑖𝑣𝑖𝑛𝑔 𝑥1 = 𝑑 − 𝑓 + 𝑧2,𝑧1 + 𝑧2 

= 𝑓,   𝑥1 + 𝑧1 = 𝑑 𝑔𝑖𝑣𝑖𝑛𝑔 𝑥2  = 1 − 𝑑 − 𝑧2. From which it follows few steps of the proof  

that if 휀 > 0 is very small and 

𝑥1
′ = 𝑑 − 𝑓 + (𝑁 − 1)휀, 𝑥2

′ = 1 − 𝑑, 𝑦1
′ = 휀, 𝑦2

′ = 0,   𝑧1
′ = 𝑓 − 𝑁휀, 𝑧2

′ = 0                     (3.14) 
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We get a contradiction. In other   words, 𝐻𝑞
𝐿 cannot satisfy irrelevant information.  

Finally, we consolidate our proof by setting a counter example to show that  𝐻−1∕2 fails 

to satisfy irrelevant information. 

Check the Appendices chapter for the more detailed proof. 

3.4.4.2. The open –mindedness property  

Define K  ∈ CL, 𝜃 ∈ SL such that K+Bel(𝜃) ≠ 0 is consistent, then  𝑁(𝐾)(𝜃) ≠ 0  

This is justified (Hawes 2007) by assuming that our knowledge does not compel us to 

be in a situation when Bel () = 0, then we may not infer that belief as this would falsify 

 unnecessarily. Therefore, if accepting that Bel () = 0 is an extreme view, then open-

mindedness is a favourable property of an inference process. 

Proof: 

We know that 𝐻0
𝐿 = 𝑀𝐸 is open-minded by (3.3.2).  For −1 < 𝑞 < 0, suppose 

 𝐻𝑞
𝐿(K) = 𝜌→, 𝐻𝑞

𝐿(K)(𝜃) = 0                               (3.15) 

whilst there is 𝑎→ ∈ 𝑉𝐿(K) with 𝑎𝑗 > 0  for 𝛼𝑗 ∈ 𝑆𝜃. Then for 휀 small, 

 𝜌→ +휀(𝑎→ − 𝜌→)  ∈ 𝑉𝐿(K)                                     (3.16) 

and by the choice of 𝜌→, 

 ∑  𝜌𝑖
𝑞+1

𝑖 − ∑ (𝜌𝑖 + 휀(𝑎𝑖 − 𝜌𝑖))
𝑞+1

𝑖 > 0                                (3.17) 

Implies 

 (𝑞 + 1)휀 ∑ (𝑎𝑖 − 𝜌𝑖)(𝜌𝑖 + 𝜆휀(𝑎𝑖 − 𝜌𝑖))
𝑞

𝑖 < 0                   (3.18)          

 for some 0 < 𝜆 < 1, by the mean value theorem. (3.18) could be written in the form: 
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0 > [∑ (𝑎𝑖 − 𝜌𝑖)(𝜌𝑖 + 𝜆휀(𝑎𝑖 − 𝜌𝑖))
𝑞

𝛼𝑖>0,𝜌𝑖=0 + ∑ (𝑎𝑖   − 𝜌𝑖)(𝜌𝑖 + 𝜆휀(𝑎𝑖 − 𝜌𝑖))
𝑞

𝜌𝑖>0 ]            (3.19)                                              

The second term in (3.19) is bounded as 휀 ↘ 0. To see this we must notice that:  

 |∑ (𝑎𝑖 − 𝜌𝑖)(𝜌𝑖 + 𝜆휀(𝑎𝑖 − 𝜌𝑖))
𝑞

𝜌𝑖>0
|ٌۭ≤ٌۭ∑ |(𝑎𝑖 − 𝜌𝑖)|(𝜌𝑖 + 휀)

𝑞
𝜌𝑖>0

    

                                                       ≤ٌۭ∑ |(𝑎𝑖 − 𝜌𝑖)|(𝜌𝑖 ∕ 2)
𝑞

𝜌𝑖>0
 

                                                       ≤∑ (3𝜌𝑖 2⁄ )𝑞  (𝑓𝑜𝑟 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑠𝑚𝑎𝑙𝑙 휀 )  𝜌𝑖>0
 (3.20) 

(Since |(𝑎𝑖 − 𝜌𝑖)| ≤ 1 holds for all 𝑖 =1, 2,…, J). On the other hand, the first sum in 

(3.19) equals ∑ 𝑎𝑖(𝜆휀𝑎𝑖)
𝑞

𝛼𝑖>0
which tends to infinity as 휀 tends towards zero (since 

there is at least one such 𝑎𝑖). Therefore, the right-hand side of (3.19) tends to infinity 

whenever 휀 ↘ 0), giving the required contradiction.  

Counter example to open-mindedness for q > 0 

Put 𝑥𝑖 = 𝐵𝑒𝑙(𝛼𝑖)for i =1,2,3,.., 2n  and  

K  =  {
 𝑥𝑖 = 0                𝑖 = 4,5, . . , 2n   
𝑥2 = 휀 − 4휀𝑥1                              

                                 (3.21) 

where 휀 > 0 is very small (just how small will depend on r). The possible range of 

values of 𝑥1 is [0,1∕ 4]. Now since 

   𝑥1 + 𝑥2 + 𝑥3 = 1, 𝑥3 = (1 − 휀) + 𝑥1(4휀 − 1)                          (3.22) 

So on K, 

𝑥1
𝑞+1

+𝑥2
𝑞+1

+𝑥3
𝑞+1 

= [𝑥1
𝑞+1 + (휀 − 4휀𝑥1 )

𝑞+1  + 𝑥3
𝑞+1

  ]  = 𝑔(𝑥1)                    (3.23) 

Differentiating 𝑔 with respect to 𝑥1 gives 

𝑑𝑔 𝑑𝑥1⁄ =(𝑞 + 1)[ 𝑥1
𝑞 − 4휀(휀 − 4휀𝑥1 )

𝑞 − (1 − 4휀) ((1 − 휀)+ 𝑥1(4휀 − 1))
𝑞]  < 0     (3.24) 

since for 𝑥1 ∈ [0,1 4⁄ ] 

           𝑥1
𝑞
 ≤ (1 ∕ 4)𝑞 < (1 − 4휀) ((1 − 휀)− 1 ∕ 4(1 − 4휀))𝑞 (recall  휀 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 ) 
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                ≤  (1 ∕ 4)𝑞 < (1 − 4휀) ((1 − 휀)− 𝑥1(1 − 4휀))
𝑞                                                 (3.25) 

It follows that the value of 𝐻𝑞
𝐿(𝐾)(𝛼1) will be 1 ∕ 4, and hence 𝐻𝑞

𝐿(𝐾)(𝑥2) = 0, 

contradicting open-mindedness. 

3.4.4.3. The physical interpretation of renaming principle 

Suppose   𝐾1, 𝐾2 ∈ CL, 

𝐾1 ={∑  𝑞
𝑗=1 𝑎𝑗𝑖  𝐵𝑒𝑙 (𝛾𝑗) = 𝑏𝑖|𝑖= 1,2,…,m}                          (3.26) 

 where 𝑎𝑗𝑖  , 𝑏𝑖 are real and 𝜃𝑗 ∈ ℝ. 

 𝐾2= {∑  𝑞
𝑗=1 𝑎𝑗𝑖  𝐵𝑒𝑙 (𝛿𝑗) = 𝑏𝑖|𝑖 = 1,2,….,m}                         (3.27) 

 where 𝛾1, . . , 𝛾𝐽  , 𝛿1, , . . , 𝛿𝐽 are permutations of  𝛼1, … . , 𝛼𝐽. Then, 

𝑁(𝐾1)( 𝛾𝑗)  =  N(𝐾1 )(𝛿𝑗 )                                      (3.28) 

Simply means that changing the names we call things should not change the 

probabilities we assign to them (Hawes 2007). 

Proof: 

Suppose 𝐾1, 𝐾2 ∈ 𝐶𝐿, 

𝐾1= {∑ 𝑎𝑗𝑖
2𝑛

𝑗=1 𝐵𝑒𝑙(𝛼𝑗) =  𝑏𝑖| 𝑖 = 1,… ,𝑚},𝐾2= {∑ 𝑎𝑗𝑖
𝑞
𝑗=1 𝐵𝑒𝑙(𝛾𝑗) =  𝑏𝑖| 𝑖 = 1,… ,𝑚}   (3.29) 

where 𝛾𝑗 are permutations of the atoms 𝛼𝑗 of L. We prove that: 

 𝐻𝑞
𝐿(𝐾1)(𝛼𝑗) = 𝐻𝑞

𝐿(𝐾2)(𝛾𝑗), j =1,2,3..., 2𝑛                                (3.30) 

 We have 

  𝐻𝑞
𝐿(𝐾1) = 𝑡ℎ𝑎𝑡 < 𝑥1, 𝑥2, … , 𝑥2𝑛 >                                      (3.31) 

such that 𝑥𝑗 ≥ 0,∑ 𝑎𝑗𝑖
2𝑛

𝑖=1 𝑥𝑗 = 𝑏𝑖 for 𝑖 = 1, . . , 𝑚 for which (∑ (𝑥𝑗
𝑞+1)

−1

𝑞𝐽
𝑗=1 ) is maximal.  

We know that 𝛾𝑗 is a permutation of 𝛼𝑗, in other words, 𝛾𝑗 = 𝛼𝜎(𝑗), for some 

permutation 𝜎 of {1,2, 3,.., 2𝑛}. Hence 
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 𝐻𝑞
𝐿(𝐾1) = that  < 𝑥1, 𝑥2, … , 𝑥2𝑛 > such that 𝑥𝑗 ≥ 0, ∑ 𝑎𝑗𝑖

2𝑛

𝑖=1 𝑥𝜎(𝑗) = 𝑏𝑖 for 𝑖 = 1,𝑚 for  

which (∑ (𝑥𝜎(𝑗)
𝑞+1)

−1

𝑞𝐽
𝑗=1 ) is maximal, which is essentially the same thing.  

Therefore, the vector < 𝑥1, 𝑥2, … , 𝑥2𝑛 > such that 

 𝐻𝑞
𝐿(𝐾2) = < 𝑥𝜎−1(1), 𝑥𝜎−1(2), … , 𝑥𝜎−1(2

𝑛) > =  𝐻𝑞
𝐿(𝐾1)                              (3.32) 

From which it follows that  𝐻𝑞
𝐿(𝐾1)(𝛼𝑗) = 𝐻𝑞

𝐿(𝐾2)(𝛼𝜎(𝑗)). QED 

3.4.4.4. The obstinacy principle 

Suppose 𝐾1, 𝐾2 ∈ CL and 𝑁(𝐾1) satisfies  𝐾2 .  Then: 

 𝑁(𝐾1 + 𝐾2 )  =  N(𝐾1 )                                            (3.33) 

Getting evidence to back up what we already think shouldn't change our minds (Hawes 

2007).   

Clearly obstinacy of  𝐻𝑞
𝐿 holds as it is a maximum  inference process(c.f., part 7 of 

definition (3.2.2).  

3.4.4.5. The relativisation principle 

Suppose 𝐾1, 𝐾2 ∈ 𝐶𝐿, 0 < 𝑐 < 1  and 

 𝐾1 = {𝐵𝑒𝑙(∅) = 𝑐} +{∑  𝑞
𝑗=1 𝑎𝑗𝑖  𝐵𝑒𝑙 (𝜃𝑖/∅) = 𝑏𝑖:i= 1,2,….,m}             (3.34) 

and 

 𝐾2= 𝐾1 + {∑  𝑞
𝑗=1 𝑎𝑗𝑖  𝐵𝑒𝑙 (𝛿𝑗) = 𝑏𝑖: i= 1,2,….,m}                (3.35) 

Then for 𝜃 ∈ 𝑆𝐿, 

𝑁(𝐾1)(𝜃/∅)  =  𝑁(𝐾2)(𝜃/∅)                                   (3.36) 

The probability one would assign to such events should only be based on the 

knowledge one would have in certain circumstances (Hawes 2007).  

The salient proof of 3.4.4.5 
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The proof starts by perfectly choosing the sets 𝐾1,𝐾2 ∈ 𝐶𝐿, 0 < 𝑐 < 1,  𝐾¢
2   = 𝐾¢

1 
, 𝐾1

¢¢, 

and  𝐾2 
¢¢  .   The proof continues to show the consistency of  𝐾2

¢¢ .  Having this done, the 

proof goes further to investigate the following cases:                                                                                                                                          

Case 1:  ∞ > 𝑞 > 0.The proof of case 1 is carried out by showing: 

𝐸(𝑥→)  ≥   𝐸(𝑐𝜌→  + (1 − 𝑐)𝜏→)  ≥ 𝐸(𝜈→)                             (3.37) 

 which implies,  𝜈𝑖  =  𝜌𝑖  𝑐  for   𝑖 = 1, … , ℎ. Following a similar argument shows that: 

                      𝐻𝑞 
𝐿  (𝐾1)(𝜃 ∧ 𝜙) =     𝐻𝑞 

𝐿  (𝐾2)(𝜃 ∧ ∅)   for  𝜃 ∈ SL                             (3.38) 

and the result follows. The remaining cases for 𝑞 = 0 and  −1 < 𝑞 < 0  are immediate. 

For the detailed lengthy proof of (3.4.4.5), the reader is kindly advised to see the full 

proof in Appendices chapter. 

3.4.4.6. Principle of independence 

In the special case of {𝑝1 , 𝑝2, 𝑝3} and K = {Bel(𝑝1)= a, Bel(𝑝2/𝑝1) = b, Bel(𝑝3/𝑝1) = c}, 

whenever a > 0, if 

 𝑁𝐿(K) (𝑝2⋀𝑝3/𝑝1) = b c = 𝑁𝐿(K) (𝑝2/𝑝1). 𝑁
𝐿(K)(𝑝3/𝑝1)                         (3.39) 

then 𝑁𝐿(K) satisfies the principle of independence. 

In mathematical logic, independence refers to the improvability of a sentence from 

other sentences (Hawes 2007). 

The salient proof of 3.4.4.6 

The proof starts by considering the set:  

 K = {(Bel(𝑝1)  = 1, Bel(𝑝2 ∕ 𝑝1)= b, Bel(𝑝3 ∕ 𝑝1) = b}                            (3.40) 

 and by showing that  for, then: 

  𝐻𝑞
𝐿(K) (𝑝2 ∧ 𝑝3|𝑝1)  ≠ 𝑏

2                                      (3.41) 
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will hold for the following cases: 

1. 𝑞 = 0.     2. −1 < 𝑞, 𝑞 ≠ 0 

The first case is immediate by theorem (3.4.2)  

As for the remaining cases, assume  𝑞 > 0 (the case for −1 < 𝑞 < 0 is similar) and let: 

 𝑥1= 𝐵𝑒𝑙(𝑝1 ∧ 𝑝2 ∧ 𝑝3)                                                  (3.42) 

 𝑥2=𝐵𝑒𝑙(𝑝1 ∧ 𝑝2 ∧ ¬𝑝3)                                                 (3.43) 

 𝑥3=𝐵𝑒𝑙(𝑝1 ∧ ¬𝑝2 ∧ 𝑝3)                                                 (3.44) 

 𝑥4= 𝐵𝑒𝑙(𝑝1 ∧ ¬𝑝2 ∧ ¬𝑝3)                                             (3.45)                                                                                 

,𝑥5, 𝑥6, 𝑥7, 𝑥8 for the remaining atoms, would yield after lengthy calculations, 

 𝑉𝐿(𝐾) = {< 𝑥1, 𝑏 − 𝑥1, 𝑏 − 𝑥1, 1 − 2𝑏+𝑥1, 0,0,0,0 >|1 ≥ 𝑥1  ≥ 0, 1 ≥ 1 − 2𝑏+𝑥1  ≥

0,1 ≥ 𝑏 − 𝑥1   ≥ 0}                                                                                                             (3.46) 

 Assuming 𝑏 <
1

2
  and sorting out the inequalities defining 𝑉𝐿(K) implies 

 𝑉𝐿(𝐾) = {< 𝑥1, 𝑏 − 𝑥1, 𝑏 − 𝑥1, 1 − 2𝑏+𝑥1, 0,0,0,0 >| 𝑥1  ∈ [0, 𝑏]}            (3.47) 

 The proof proceeds to compute  x→ ∈ 𝑉𝐿(𝐾)  at which (𝑥1) = ∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1 is minimum. 

Carrying out the steps of calculations shows that 𝑥1 = 𝑏
2 will give a minimum value of 

𝑓𝑞 < 𝑥1, 𝑥2, … , 𝑥𝐽 >. This implies: 

 (𝑏𝑞)2 − 2𝑏𝑞(1 − 𝑏)𝑞+((1 − 𝑏)𝑞)2 ⇔ (𝑏𝑞−(1 − 𝑏)𝑞)2 = 0   

                                                                    ⟺ (𝑏𝑞 −(1 − 𝑏)𝑞 = 0 ⇔ 𝑏 =
1

2
                              (3.48) 

which  is a contradiction. So, since 0 < 𝑏2 < 𝑏 (recall the range of 𝑥1 here is [0,b]) this 

cannot not be a minimum point of 𝑓𝑞(𝑥1
→). Therefore, we have 

𝑁𝐿(K)(𝑝2 ∧ 𝑝3|𝑝1)≠ 𝐻𝑞
𝐿(K)(𝑝2|𝑝1). 𝐻𝑞

𝐿(K)(𝑝3|𝑝1) = 𝑏2 (Since 𝐻𝑞
𝐿(K)(𝑝1) = 1)    (3.49) 

Hence, 𝐻𝑞
𝐿 does not satisfy independence at  q  = 0. The full proof is found in  the 

Appendices chapter.  
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3.4.4.7. Principle of language invariance 

Let  𝐿 be a finite language and  𝑁𝐿 be a family of inference processes. Then,  𝑁𝐿 is 

language invariant if 𝐿1 ⊑ 𝐿2 (so  𝑆𝐿1 ⊑ 𝑆𝐿2 and 𝐶𝐿1 ⊑ 𝐶𝐿2)and 𝐾 ∈ 𝐶 𝐿1 implies  that  

𝑁𝐿2(𝐾) agrees with 𝑁𝐿1(𝐾) on 𝑆𝐿1. The motivation behind language invariance is that 

this principle may be of interest to the finite language L at any time, but behind the fact 

that a rational choice of beliefs in that language should be able to extend to larger 

languages.  Finally, there is no clear reason to assume that the relationships are finite, 

and L already contains them all. (Hawes 2007). 

Proof 

It is done if we show: 

   𝐻𝑞
𝐿(K)(𝛼𝑖) = 𝐻𝑞

𝐿′(𝐾)(𝛼𝑖)                                           (3.50) 

where L= {𝑝1, … , 𝑝𝑛}, 𝐿′ = L∪{𝑝𝑛+1}, K∈ 𝐶𝐿 and, as usual, 𝐴𝑡𝐿={𝛼1, … , 𝛼𝐽}. Let 𝛽2𝑗−1 = 

𝛼𝑗 ∧ 𝑝𝑛+1 and 𝛽2𝑗 = 𝛼𝑗 ∧ ¬𝑝𝑛+1, so the 𝛽2𝑗  for  k =1,...,2J are the atoms of 𝐿′. Now we 

notice that by the way 𝑉𝐿(K) is formed, 

< 𝑥1, . . , 𝑥2𝐽 > ∈ 𝑉
𝐿′(K)⟺< 𝑥1+𝑥2, … , 𝑥2𝐽−1+𝑥2𝐽 >∈ 𝑉

𝐿(K)                              (3.51) 

 So 𝐼𝐿
′
(K) = {2j−1,2𝑗|𝑗 ∈ 𝐼𝐿(𝐾)}. Now, let us suppose that 𝐻𝑞

𝐿(K) = < 𝜏1, 𝜏2,.., 𝜏𝐽 >∈

𝑉𝐿(K), 

 𝐻𝑞
𝐿′(K) = < 𝜌1, 𝜌2, . . , 𝜌2𝐽 > ∈ 𝑉

𝐿′(K). Then, by the definition, we need to study the 

following cases: 

Case 1: 𝑞 > 0.             Case 2:  𝑞 = 0.    Case 3: 0 > 𝑞 > −1 

As for case 1, we have by the definition: 

                   

 (∑ 𝜏𝑗
𝑞+1

𝑗 )
−1∕𝑞

≥ (∑ (𝜌2𝑗−1 + 𝜌2𝑗)
𝑞+1

𝑗 )−1∕𝑞(By < 𝜌1 + 𝜌2, . . , 𝜌2𝐽−1 + 𝜌2𝐽 > ∈ 𝑉
𝐿  (3.52) 

or equivalently  

∑ 𝜏𝑗
𝑞+1

𝑗 ≤ ∑ (𝜌2𝑗−1 + 𝜌2𝑗)
𝑞+1

𝑗 = 2𝑞+1(∑ (𝜌2𝑗−1 2⁄ + 𝜌2𝑗 2⁄ )
𝑞+1

𝑗  
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             ≤  2𝑞+1(1 2⁄ . ∑ (𝜌2𝑗−1)
𝑞+1

𝑗 + 1 ∕ 2. ∑ (𝜌2𝑗)
𝑞+1

𝑗 )  (since 𝑥𝑞+1 is convex whenever 

q   > 0) 

            ≤ 2𝑞+1(1 2⁄ . ∑ (𝜏𝑗 ∕ 2)
𝑞+1

𝑗 + 1 ∕ 2. ∑ (𝜏𝑗 ∕ 2)
𝑞+1

𝑗 )(since  𝐻𝑞
𝐿(𝐾) =  𝑥→ ∈

            𝑉𝐿(𝐾)  for  which   ∑ 𝑥𝑖
𝑞+1 𝐽

𝑖=1   is minimum, where 𝑞 > 0, <
𝜏1

2
,
𝜏1

2
,
𝜏2

2
,
𝜏2

2
, … ,

𝜏𝐽

2
,
𝜏𝐽

2
>

 ∈ 𝑉𝐿
′
(K)) 

           ≤ 2𝑞+1(2.1 ∕ 2. ∑ (𝜏𝑗 2⁄ )
𝑞+1

𝑗 ) =  ∑ 𝜏𝑗
𝑞+1

𝑗                                                                 (3.53) 

Hence by the uniqueness of the minimum points: 

   (𝜌2𝑗−1 + 𝜌2𝑗) ∕ 2 = 𝜌2𝑗−1 = 𝜌2𝑗 = 𝜏𝑗 2⁄                                (3.54) 

and the result follows since for 𝑞 > 0, one gets: 

          𝐻𝑞
𝐿(K)(𝛼𝑖) =  𝜏𝑖 = 𝜌2𝑖−1 + 𝜌2𝑖    = 𝐻𝑞

𝐿′(K)(𝛽2𝑖−1) + 𝐻𝑞
𝐿′(K)(𝛽2𝑖)     = 𝐻𝑞

𝐿′(K)(𝛼𝑖)    (3.55) 

As for case 2, we know that 𝐻0
𝐿(K) = ME which is language invariant by theorem (3.4.2). 

Finally, the proof of case 3 is like case 1. So, we have 𝐻𝑞
𝐿 a language invariant for all 

𝑞 > −1. 

 

3.4.4.8. The principle of continuity  

The Blaschke metric(Pearl 1990), ∆ is defined by ∆(C,D) = inf {𝛿:∀𝑥→ ∈ C ∃𝑦→ ∈

D, 𝖨𝑥→ − 𝑦→𝖨≤ 𝛿 & ∀𝑦→ ∈ C ∃𝑥→ ∈ D, 𝖨𝑥→ − 𝑦→𝖨 ≤ 𝛿}, with 𝖨𝑥→ − 𝑦→𝖨 to define the usual 

Euclidean distance between the two points 𝑥→, 𝑦→   and any arbitrary convex subsets 

C, D of the set ℚ𝐿 = { 𝑥→ ∈ ℝ𝐽: 𝑥→ ≥ 0,∑ 𝑥𝑖
𝑗
𝑖=1  =1}.The continuity requirement (Pearl 

1990) that an inference process N, as a function of the convex set 

𝑉𝐿(𝐾), is continuous with respect to this Blaschke metric, i.e., if 𝜃 ∈ 𝑆𝐿, 𝐾, 𝐾𝑖  ∈ 𝐶𝐿 for 

𝑖 ∈  ℕ and lim
𝑖→∞

∆(𝑉𝐿(𝐾), 𝑉𝐿(𝐾𝑖)) = 0  then lim
𝑖→∞

𝑁(𝐾𝑖)(𝜃) = 𝑁(𝐾)(𝜃). It makes sense 

that an inference process must satisfy the continuity concept, meaning that a 
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microscopic change in the inferences is independent of a microscopic change in the 

information. One could contend that the rational agent's knowledge is positively 

varying a bit and that it would be absurd for those variations to result in appreciable 

changes in the belief inferred. Finding appropriate topology foundations of knowledge 

addressing  the query "when are knowledge bases adjacent to each other?" is 

challenging when specifying this attribute. Saying that any two knowledge bases,  𝐾1 

and  𝐾2, are closed if and only if their coefficients in the constraints are near is an 

obvious initial effort. Let them each have a matrix of coefficients A and B, and let's say 

that 𝑐𝑗𝑖. Assuming that D is the matrix of knowledge base that was near C, it should 

not be close to A. Therefore, knowledge content must be considered in our concept of 

closeness (Hawes 2007). 

Proof: 

In case 3, within the proof of the uniqueness property (c.f.,3.4.1), we have  𝐻𝑞
𝐿(𝐾) =

 that  x→ ∈ 𝑉𝐿(𝐾) for which the maximality of (∑ 𝑥𝑖
𝑞+1)𝑖  combined with the strictly 

concaveness of the  function (∑ 𝑥𝑖
𝑞+1)𝑖  hold. So, by (3.4.1), we have 𝐻𝑞

𝐿 is continuous 

for 0 > 𝑞 > −1.  From the definition, we have 𝐻0
𝐿 = ME which is continuous by the 

functional continuity theorem (c.f., 3.3.1). Finally, we have already proved that for 𝑞 >

0,  then  𝐻𝑞
𝐿(𝐾) =  that  x→ ∈ 𝑉𝐿(K)  for which the maximality of (∑ 𝑥𝑖

𝑞+1)𝑖  as well as 

strictly concaveness of the function (∑ 𝑥𝑖
𝑞+1)𝑖  are satisfied. So, by (3.4.2), we conclude 

that  𝐻𝑞
𝐿(K) is continuous for  𝑞 > 0. Therefore,  𝐻𝑞

𝐿(K) is continuous for all 𝑞 > −1. 

Now, we come to introduce another contribution in the current paper, which is finding 

the PV-updates of the family of RGEs in the case. 
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3.5. Finding PV-Updates 

Belief functions provide an approach that assimilates the influence of new evidence 

into a state of partial knowledge or partial belief. Encoding the initial state as a belief 

function and the evidence as a belief function, then the updated state of belief, 

accounting for the impact of the new evidence (Pearl 1990). 

Define the PV-update of K+Kσ(S)  with respect to an inference process N by 

          𝐵𝑒𝑙𝜎(𝜃) =  𝑙𝑖𝑚
𝜀↘0

𝑁(K+𝐾𝜎(S))+( Bel(S) = 휀)(𝜃|𝑆)                                         (3.56) 

For a more detailed survey on PV- updates, the reader is advised to see (Paris 1994; 

Paris &Vencovska1992). Recalling the definition of PV- Updates, we must clarify why 

we study PV-updates?  The importance of PV-updates appears clearly from the 

findings approached by (Paris 1994), which are as follows: 

TheٌۭconsistencyٌۭforٌۭεٌۭsmallٌۭfollowsٌۭfromٌۭtheٌۭconsistencyٌۭofٌۭK+ٌۭKσ(S) and that for N = 

ME the limit 

          Belσ(θ) =  lim
ε↘0

N(K+Kσ(S)) + ( Bel(S) = 휀)(𝜃|𝑆)                           (3.57) 

Always exists and, furthermore, in this case PV-updating agrees with minimum cross 

entropy updating (with respect to ME) and if we accept the earlier arguments for the 

choice of the maximum entropy inference process and we further accept the 

reasonableness of identifying 𝐵𝑒𝑙0
 () with 𝐵𝑒𝑙0 (/S) then this provides a justification 

for minimum cross entropy with respect to ME. The PV updates for RGEs in the 

discrete time domain can be found in this section. Reworking the outcomes of the 

previous theorem is the issue that the next theorem is trying to solve (Paris and 

Vencovska1992). by modifying them for the discrete case for all  𝑞 ∈ (−1,∞) and the 

class of Rényi Generalized Entropies 𝑈𝑞
𝐿  . It is a fact that a directly analogous finding 
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is satisfied by 𝐻𝑞
𝐿 with 𝑞 ∈ (-1,0), specifically with the notation of (Yager 2018), with N 

= 𝐻𝑟
𝐿, Belσ(θ) = 𝑈𝑟(𝐾

𝜎 + G)(θ)(see Theorem 3 of Paris and Vencovska1992), and 

directly comparable conclusion for 𝑞 =  −1/2 (named MTP in (previously discussed 

in, Paris and Vencovska1992, p.9) (as in Theorem 3 of Paris and Vencovska1992). 

Notably, the continuous time domain case for and the class of Rényi Generalized 

Entropies 𝑈𝑞
𝐿   was unable to solve the PV-updates beyond 𝑞 =  −1/2 (c.f., Paris and 

Vencovska1992, p.9). Therefore, the primary contribution of the following theorem is 

generalising the open interval research done by (Paris 1994; Paris and Vencovska 

1992; Hawes 2007) on the open interval (-1,0).  

Theorem    Belσ(θ) = 𝐻𝑞(𝐾𝜎 + G)(θ) 

To see this, we first observe, as in the case of 𝐻−1/2
𝐿  covered in (Paris and 

Vencovska1992), 

 lim
𝜀↘0

𝛾→ (휀) =  𝛽→                                          (3.58) 

where  𝛽→ = 𝐻𝑞
𝐿(𝐾), the 2J –vector  𝜏→(휀), 𝜌→(휀) = 𝐻𝑞

𝐿′((K+Kσ(S))+ (Bel(S) = 휀) and 

  𝛽→(휀) = 𝜏→(휀) + 𝜌→(휀). 

Now, let: 

   𝜗→ = 𝐻𝑞
𝐿(𝐾𝜎 + G)(𝜃)                                            (3.59) 

and  

 𝐻𝑞
𝐿(𝛽→(휀),  𝑦→, 휀)  = ∑ ((𝛽𝑖(휀) − 휀𝑦𝑖)

𝑞+1      + (휀𝑦𝑖)
𝑞+1)𝑖∉𝐼𝐿(𝐾)  

                             = ∑ [(𝛽𝑖(휀))
𝑞+1      + (휀𝑦𝑖)

𝑞+1
𝑖∉𝐼𝐿(𝐾) +휀(𝑞 + 1)𝑦𝑖(𝛽𝑖  − 휀𝜃𝑦𝑖)

𝑞]      (3.60) 

for some 𝜃 = 𝜃(𝛽→(휀),  𝑦→, 휀), 0 ≤ 𝜃 ≤ 1.Suppose that  
𝜌→(𝜀)

𝜀
  had some subsequence 

𝜌→(𝜀𝑛)

𝜀𝑛
  converging to 𝜏→ ≠ 𝜗→ .Then for some positive  𝛼,  

  ∑ 𝜏𝑖
𝑞+1 +𝑖∉𝐼𝐿(𝐾) 𝛼 < ∑ 𝜗𝑖

𝑞+1 𝑖∉𝐼𝐿(𝐾)                          (3.61) 
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Therefore, we have for large n, 

 ∑ 𝜗𝑖
𝑞+1  >𝑖∉𝐼𝐿(𝐾)  ∑ (

𝜌→(𝜀𝑛)

𝜀𝑛
)
𝑞+1

+𝑖∉𝐼𝐿(𝐾)
𝛼

2
                               (3.62) 

 By the open-mindedness of  𝐻𝑞
𝐿, it follows that  𝛽𝑖  for 𝑖 ∉ 𝐼𝐿(𝐾) are positive. Therefore,  

𝛽𝑖(휀𝑛) for 𝑖 ∉ 𝐼𝐿(𝐾)  have a bound which is far from zero, hence it holds that for a fixed 

𝐴 and all 𝑛,  𝑖 ∉ 𝐼𝐿(𝐾), 0 ≤ 𝑦𝑖 ≤ 1, (𝛽𝑖(휀𝑛)  − 휀𝑛𝜃𝑦𝑖)
𝑞 < 𝐴. Hence for  n sufficiently large , we 

have 

[𝐻𝑞
𝐿(𝛽→(휀𝑛), 𝜗

→ , 휀𝑛) − 𝐻𝑞
𝐿(𝛽→(휀𝑛),

𝜌→(𝜀𝑛)

𝜀𝑛
  , 휀𝑛)]   

                  ≥ [휀𝑛
𝑞+1∑ (𝜗𝑖

𝑞+1 − (
𝜌→(𝜀𝑛)

𝜀𝑛
)
𝑞+1

)𝑖∉𝐼𝐿(𝐾) −  2(q+1) 𝐴휀𝑛𝘐 𝐼
𝐿(𝐾) 𝘐 ] 

                  ≥ 0                                                                                                                      (3.63) 

Since (0 < 𝑞 + 1 <1), which contradicts the selection of  𝛽→(휀𝑛),𝜌→(휀𝑛).  The case 

𝐻𝑞
𝐿  for q = 1  is already being investigated by (Paris 1994; Paris and Vencovska 

1992). For all other positive values of 𝑞 the query continues to be open. 

3.6 Chapter Summary 

This chapter focuses on the theory of uncertain reasoning and explores inference 

processes based on RGEs. It investigates the properties of these entropies in the 

discrete time domain and aims to define and analyze their behaviour. The chapter also 

discusses principles such as continuity, relativization, independence, and others, and 

seeks to update previous results to the class of RGEs in the discrete case . 

Additionally, it determines the PV-updates for this class. 
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4. Heavy-Tailed Stable 𝑴/𝑮/𝟏 Queue and Inductive 

Inferences Using Non-Extensive Maximum Entropy 

Formalisms 

 

This chapter is devoted to the establishment of a new knowledge of information 

theoretic impact of the non-extensive parameter for investigating stable queueing 

systems. Consequently, a revealed influential impact has generated two novel state 

probabilities, namely the Rényian and Tsallisian closed form expressions  solutions 

for the underlying stable 𝑀/𝐺/1 queueing system. Additionally, a new underlying q-

dependent families of underlying Rényian and Tsallisian service PDFs and cumulative 

distribution functions were derived and proven to make the newly derived solutions 

exact. More interestingly, it is shown that the information theoretic impact extends to 

the newly generated squared coefficients of variation in both Rényi and Tsallis cases. 

More potentially, we have proven that our derived solutions are credible by showing 

that they are reasoned by employing the consistency axioms. In mathematical terms, 

we proved that three axioms are satisfied and only one axiom was defied because of 

the non-extensivity impact.  

4.1 Introduction 

In both information theoretic and statistical physics terms, the provision of analytic 

inductive inference non-extensive ME-entropy (NME) closed form expressions for 

'long-range' interactions physical systems of non-extensive information theoretic order 

were undertaken by (Rényi 1961; Tsallis 1988). Their work was an advancement of the 
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information theoretic Shannonian "extensive" ME(EME) solutions depicting 

interactions of "short range”ٌۭprovided by (Shannon 1948). 

      The state probabilities {p(n),ٌۭnٌۭ=ٌۭ0,1,2,ٌۭ…}ٌۭofٌۭaٌۭstableٌۭ𝑀/𝐺/1 queue were derived by 

maximising the EME functional, subject to two respective sets of mean value 

constraints, namely 

Normalisation, ∑ p(n)n = 1 and Pollaczeck-Khinchin (P-K) mean queue length (MQL),  

  < n > =   ∑ np(n)n  (Shore 1982)   and  𝜌 = 1−𝑝(0)                                                        (4.1)                                                          

𝜌  serves as server utilization, (SU)(El-Affendi and Kouvatsos 1983).More importantly,    

for a stable 𝑀/𝐺/1 queueing system ,EME closed form expression for the steady state  

probability along with both service time probability  PDF and cumulative(CDF) distribu- 

tion  functions that make their provided analytic solution exact were devised by  (El 

Affendi and Kouvatsos 1983),  whose corresponding  CDF had the following form:  

𝐹𝑠(𝑡) = 𝑃(𝑆 ≤ 𝑡) = 1 − 𝜏𝑠𝑒𝑥 𝑝(−𝜇𝑡 𝜏𝑠)                                                 (4.2) 

𝜏𝑠 = 
2

1+𝐶𝑆
2                                                                                                      (4.3)   

𝜇 serves as the mean service rate and Cs
2  denotes the squared coefficient of variation,  

(SCV) of the service times. For more details see (El-Affendi and Kouvatsos 1983;  

Kouvatsos 1986; Kouvatsos  1988)).  The evaluation of long-rangeٌۭinteractions’ 

Tsallisian closed form solution based on the axioms of consistency as well as the  

applicability of Shannonian /Tsallisian ME solutions in analysing several heavy-tailed  

bursty queues were developed in (Kouvatsos 2010;Kouvatsos 2011). 

4.2 General Systems and Inductive ME Formalisms 

4.2.1 ‘Classical’ Shannon’s EME Formalism with ‘Short-Range’ Interactions 

The EME Shannonian entropic functional(Shannon 1948), H1,S(p)  for any general 

physical system Q depicting short range interactions, is given by: 
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H1,S(p)  = −c ∑ p1,S(Sn) log p1,S(Sn)                                                            Sn∈S (4.4) 

with   constant c> 0 and {p1,S(Sn), Sn ∈ S = {Sn , n = 0, 1, 2, … } to denote EME state 

probabilities for finite or countably infinite set S of configurations or states{Sn , n =

 0, 1, 2,… }. 

The short-range interactions have potential interpretations in Statistical 

Physics(Statistics 2007). More interestingly, traffic flows in queues with short-range 

dependence (SRD) have been explored in (Kleinrock 1976). 

4.2.2 Rényi’s and Tsallis’s NME Formalisms with Long-Range Interactions 

For a general system Q with an integer number of possible (microscopic) 

configurations or states N (> 0) and "long-range interactions," such as gravity in 

statistical physics (see Statistics 2007), energy and entropy are no longer significant 

quantities. This makes the physical system Q more complex because the state 

probability distribution linked to, say, energy can no longer be predicted by maximising 

the Shannon's extensive entropy, H1,S(p), due to its heavy tails and power law 

behaviour. 

To this end, for the afore-mentioned physical system Q with a finite or countably infinite 

set 𝑆 of configurations or states {𝑆𝑛 , 𝑛 = 0, 1, 2, … } andٌۭ ‘long-rangeٌۭ interactions’ٌۭ

proposed by (Tsallis 1988) and (Rényi 1961) NME functionals are defined by   

                                                   Hq,T(p) =  
c

q−1
{1 − ∑ pq,T(Sn)

q
Sn∈S }                                        (4.5) 

                                                    Hq,R(p) =
c

1−q
ln{∑ pq,R(Sn)

q
Sn∈S }                                             (4.6) 

respectively, for any constant  c> 0.  

4.3  EME Consistency Axioms coined with EME formalisms 

The undertaken method (Shore 1982; Shore 1980)) was built  on the main hypothesis 

:ٌۭ“When there are several techniques to analyse a physical system Q that take into 

account the same prior knowledge limitations, using the EME principle should result 
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in consistent state probabilities for the system”. For a more detailed account on the 

physical interpretation of these axioms (see Shore 1980; Statistics 2007). 

In a broader sense, we have explored the credibility of  both derived Rényian and 

Tsallisian NME formalisms by employing these axioms of consistency. See 

appendices chapter for more details. Fundamentally, this strongly supports the 

suitability of these novel derivations to quantitively investigate heavy-tailed queue 

dynamic systems with long range interaction. 

4.4. Long-Range Interactions’ Stable M/G/1  Queue 

This section develops new analytical solutions for the steady state probabilities of a 

stable M/G/1  queueing system according to the normalisation, SU, and MQL criteria 

using Rényi and Tsallis' generalised NME formalisms. 

The notation used throughout the analysis is as follows: 

• 𝑋 =  𝑆 (𝑆ℎ𝑎𝑛𝑛𝑜𝑛) 𝑤𝑖𝑡ℎ 𝑞 = 1, 𝑇 (Tsallis) 𝑎𝑛𝑑 𝑅 (Rényi) 𝑤𝑖𝑡ℎ 0.5 < 𝑞 < 1; 

• 𝑝𝑞,𝑋(𝑛), steady state probability of having n jobs in the 𝑀/𝐺/1 𝑞𝑢𝑒𝑢𝑒, 𝑛 = 0, 1, 2, … ; 

• 𝜆,mean arrival rate;  𝜇, mean service rate; 𝜌 = 𝜆/𝜇, 𝑆𝑈;< 𝑛 > = ∑ 𝑛𝑝𝑞,𝑋(𝑛),𝑀𝑄𝐿
∞
𝑛=0 ; 

• 𝐶𝑠,𝑞,𝑋
2 , 𝑆𝐶𝑉 of the 𝐺𝐸 − type service (s) time distribution, 𝐺𝐸𝑞,𝑋; 

• 𝑓𝑠,𝑞,𝑋(𝑡) 𝑎𝑛𝑑 𝐹𝑠,𝑞,𝑋(𝑡), Probability density and cumulative functions of the service  

             time distribution; 

• 𝐹𝑠,𝑞,𝑋
∗ (𝜃 ), Laplace transform of 𝑓𝑠,𝑞,𝑋(𝑡). 

4.4.1 Foundation notation: The Shannonian EME State Probability of Stable 

𝑴/𝑮/𝟏  Queue 

The 𝑀/𝐺/1  queue’sٌۭ EMEٌۭ steady state probability that maximises Shannon 

entropy(El-Affendi and Kouvatsos 1983) 

                                 𝐻(𝑝1,𝑆) = −∑ 𝑝1,𝑆(𝑛) ln(𝑝1,𝑆)
∞
𝑛=0                                             (4.7)                                             
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Under prior information  and mean value constraints: 

• ∑ 𝑝1,𝑆(𝑛) = 1
∞
𝑛=0                                                                                                                                       (4.8) 

• SU, 

 𝑝1,𝑆(0) = ∑ ℎ(𝑛)𝑝1,𝑆(𝑛)
∞
𝑛=0 = 1 −  𝜌, 𝜌 =   

λ

μ
                                                                     (4.9) 

 

where 

                         ℎ(𝑛) =  {
1                       𝑛 = 0
0                𝑛 = 1,2, …

                                                             (4.10) 

• P-K MQL,  

               < 𝑛 > =  ∑ 𝑛𝑝1,𝑆(𝑛) =  
𝜌

2
∞
𝑛=0 (1 +

1+𝜌𝐶𝑠,1,𝑆
2

1−𝜌
)                                                                  (4.11) 

is given by 

                                                           𝑝1,𝑆(𝑛) =   {
𝑝1,𝑆(0),                        𝑛 = 0

𝑝1,𝑆(0)𝜏𝑠𝑥
𝑛                𝑛 > 0

                             (4.12)                                                 

where 𝑝1,𝑆(0) = 1 − ρ, τs = 2/(1+ 𝐶𝑠,1,𝑆
2 ) and 𝑥 =

<𝑛>− 𝜌

<𝑛>
. 

4.4.2 The Stable 𝑴/𝑮/𝟏 Queue’s Rényian and Tsallisian NME Steady State 

Probabilities 

Theorem 4.1 

The Rényian and Tsallisian NME steady-state probabilities of stable 𝑀/𝐺/1  queueing 

system, 𝑝𝑞,𝑋(𝑛), 𝑛 = 0,1,2, … ,X = R, T, respectively, subject to (4.8), (4.9) and (4.11) 

constraints are determined by 

𝑝𝑞,𝑅(𝑛) =  {
𝑝𝑞,𝑅(0)              𝑛 = 0

𝑝𝑞,𝑅(0)𝜏𝑠
1

𝑞𝑥𝑛    𝑛 > 0
                                          (4.13)                                
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                    𝑝𝑞,𝑇(𝑛) =  {
     𝑝𝑞,𝑇(0)            𝑛 = 0

𝑝𝑞,𝑇(0)𝜏𝑠
𝑞𝑥𝑛        𝑛 > 0

                                           (4.14) 

Such that                             

           𝑝𝑞,𝑅(0) = 𝑝𝑞,𝑇(0) = 1 − 𝜌                                                         (4.15) 

Here 𝜏𝑠 and x serve as  Lagrange’sٌۭmultipliersٌۭunder (4.9) and  (4.11) constraints are 

devised by 

𝜏𝑠  =
2

1+ 𝐶𝑠,1,𝑆
2                                                                                                                                    (4.16) 

𝑥  =

{
 
 

 
 

𝜌

(𝜌+(1−𝜌)(
2

1+Cs,1,S
2 )

1
𝑞
)

,      Rényi                                               

𝜌

(𝜌+(1−𝜌)(
2

1+Cs,1,S
2 )

𝑞

)

,    Tsallis
                        (4.17) 

    with 

ρ(1−𝑥)

(1−𝜌)𝑥
= {τs

1

q, Rényi  
τs
q, Tsallis 

                                                                                                                (4.18) 

Proof 

TheٌۭmaximizationٌۭofٌٌۭۭRényi’sٌۭentropyٌۭunderٌۭconstraintsٌۭ(4.8),ٌۭ(4.9)ٌۭandٌۭ(4.11)ٌۭputsٌۭ

the Lagrangian into the following form: 

[
𝑞

(1−𝑞)(∑ (𝑝𝑞,𝑅(𝑛))
𝑞

∞
𝑛=0 )

∑ (𝑝𝑞,𝑅(𝑛))
𝑞−1

∞
𝑛=0 − 𝛼(∑ ℎ(𝑛)∞

𝑛=0 ) − 𝛽(∑ 1∞
𝑛=0 ) − 𝛾(∑ 𝑛∞

𝑛=0 )]= 0  (4.19) 

Hence, 𝑝𝑞,𝑅(𝑛) reads as follows: 

                                                𝑝𝑞,𝑅(𝑛) = 𝑎(1 + 𝑏
(1−𝑞)

𝑞
𝑛)

1

𝑞−1                                                       (4.20) 

Satisfying that 
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𝑎 = (
(1−𝑞)(∑ (𝑝𝑞,𝑅(𝑛))

𝑞
∞
𝑛=0 )

𝑞
) ( 𝛼ℎ(𝑛) + 𝛽))

1

𝑞−1,  𝑏 =  
𝛾

( 𝛼ℎ(𝑛)+𝛽)

(1−𝑞)

𝑞
          (4.21) 

Equ.(4.20) implies: 

𝑎 = 𝑝𝑞,𝑅(0)                                         (4.22) 

Therefore, pq,R(n) is:  

𝑝𝑞,𝑅(𝑛) = 𝑝(0) (1 + 𝑏
(1−𝑞)

𝑞
𝑛)

1

𝑞−1
  , 𝑏 >  0 and 𝑞 > 0, 𝑞 ≠ 1                                   (4.23) 

We can re-write the analytic formula (4.23) by replacing the expression  

(1 + 𝑏
(1−𝑞)

𝑞
𝑛)

1

𝑞−1 with its equivalent expression, 𝜏𝑠
1

𝑞𝑥𝑛 . We arrive at the formula: 

    𝑝𝑞,𝑅(𝑛) =    𝑝𝑞,𝑅(0)𝜏𝑠
1

𝑞𝑥𝑛                                                            (4.24)          

where     

𝜏𝑠
1

𝑞𝑥𝑛  = (1 + 𝑏
(1−𝑞)

𝑞
𝑛)

1

𝑞−1
                                                        (4.25)                                                                             

Combining constraint (4.8)with the derived formula (4.21), together with 𝑀/𝐺/1  

queue analysis that 

1 =  𝑝(0) + 𝑝(0)𝜏𝑠
1

𝑞
𝑥

(1−𝑥)
 ⟹ 𝜏𝑠

1

𝑞 =
ρ(1−𝑥)

(1−𝜌)𝑥
 , 𝜏𝑠 =

2

(1+𝑦𝑠 )
 , 𝑦𝑠 =

(𝐶𝑠,𝑞,𝑅
2 −1)

2
                     (4.26)      

Moreover, 𝜏𝑠  =
2

1+ 𝐶𝑠,𝑞,𝑅
2   and 𝜏𝑠

1

𝑞 =
ρ(1−𝑥)

(1−𝜌)𝑥
, which clearly implies  𝑥 =  

𝜌

(𝜌+(1−𝜌)(
2

1+Cs,1,S
2 )

1
𝑞
)

. 

FocusingٌۭonٌۭtheٌۭmaximisationٌۭofٌۭTsallis’sٌۭNMEٌۭfunctional,ٌۭsubjectٌۭtoٌۭconstraintsٌۭ

(4.8), (4.9) and (4.11), the corresponding Lagrangian equation is 
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[𝑞 ∑ (𝑝𝑞,𝑇(𝑛))
𝑞−1

∞
𝑛=0 − 𝛼′(∑ ℎ(𝑛))∞

𝑛=0 ) − 𝛽′(∑ 1∞
𝑛=0 ) − 𝛾′(∑ 𝑛∞

𝑛=0 )]= 0                   (4.27) 

where 𝑝𝑞,𝑇(𝑛)  is in the form 

𝑝𝑞,𝑇(𝑛) = 𝑎′(1 + 𝑤(1 − 𝑞)𝑛)
1

𝑞−1                                            (4.28) 

and 

𝑎′ = [(
1

𝑞
) (𝛼′ℎ(𝑛) + 𝛽′)]

1

𝑞−1, 𝑤 =  
𝛾′

(𝛼′ℎ(𝑛)+𝛽′)
(1 − 𝑞)                                 (4.29) 

From (4.28) – (4.29), we obtain that:   

𝑎′ = 𝑝𝑞,𝑇(0)                                                                                               (4.30) 

Hence, it is implied that: 

𝑝𝑞,𝑇(𝑛) = 𝑝𝑞,𝑇(0)(1 + 𝑤𝑞(1 − 𝑞)𝑛)
1

𝑞−1 𝑏 > 0 , 𝑞 > 0, 𝑞 ≠ 1                                   (4.31) 

Hence, we can re-write (4.31) in the form 

𝑝𝑞,𝑇(𝑛) =    𝑝𝑞,𝑇(0)𝜏𝑠
𝑞𝑥𝑛                                                                                 (4.32) 

where 

                                                       𝜏𝑠
𝑞𝑥𝑛 = (1 + 𝑤𝑞(1 − 𝑞)𝑛)

1

𝑞−1                                                

(4.33) 

Engaging (4.8) and (4.21), we have 

1 =  𝑝𝑞,𝑇(0) + 𝑝𝑞,𝑇(0)𝜏𝑠
𝑞

𝑥

(1 − 𝑥)
 

Hence,  

𝜏𝑠
𝑞 =

𝜌(1−𝑥)

(1−𝜌)𝑥
                                                                        (4.34) 
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Moreover, it is clearly follows that: 

𝑥 =  
𝜌

(𝜌+(1−𝜌)(
2

1+𝐶𝑠,1,𝑆
2 )

𝑞

)

                                                            (4.35) 

4.4.3. Closed form expressions of Rényian and Tsallisian time probability 

density functions  

This section deals with the derivation of  both Rényian and Tsallisian service time 

PDFs that make {𝑝𝑞,𝑅(𝑛), 𝑝𝑞,𝑇(𝑛), 𝑛 = 0, 1,2, . .}, respectively,(see (4.13) and (4.14)) 

exact. 

4.4.3.1  𝒇𝒔,𝒒,𝑹(𝒕) 𝒂𝒏𝒅 𝒇𝒔,𝒒,𝑻(𝒕) 

Theorem 4.2 

If given 𝑝𝑞,𝑅(𝑛), 𝑝𝑞,𝑇(𝑛)  of (4.13) and (4.15) respectively, are exact whenever the 

corresponding closed form expressions 𝑓𝑠,𝑞,𝑅(𝑡) 𝑎𝑛𝑑 𝑓𝑠,𝑞,𝑇(𝑡) are determined by 

𝑓𝑠,𝑞,𝑅(𝑡) = (1 − 𝜏𝑠
1

𝑞) 𝑢0(𝑡) +  𝜇𝜏𝑠
2

𝑞𝑒−𝜇𝑡𝜏𝑠
1
𝑞
                                                        (4.36) 

  𝑓𝑠,𝑞,𝑇(𝑡) = (1 − 𝜏𝑠
𝑞)𝑢0(𝑡) +  𝜇𝜏𝑠

2𝑞𝑒−𝜇𝑡𝜏𝑠
𝑞
                                           (4.37) 

 

 𝑢0(𝑡) serves as  

 

u0(t) =  {
∞,    t = 0
0,     t ≠ 0

  , ∫ u0(t) = 1
∞

−∞
and     τs  =  

2

1+Cs,1,S
2                                           (4.38) 

Proof 

Following (Kleinrock 1976), we can write the Rényian  z-transform 𝑄𝑞,𝑅(𝑧)  of 

𝑝𝑞,𝑅(𝑛) of (4.13) is  

𝑄𝑞,𝑅(𝑧) =  ∑ 𝑝𝑞,𝑅(𝑛)𝑧
𝑛∞

𝑛=0 , |z| < 1                                       (4.39) 

Hence, by replacing 𝑝𝑞,𝑅(𝑛) of (4.13) into (4.39), it follows that : 
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𝑄𝑞,𝑅(𝑧) = ∑ 𝑝𝑞,𝑅(𝑛)𝑧
𝑛∞

𝑛=0 = 𝑝𝑞,𝑅(0) +
𝑝𝑞,𝑅(0)𝜏𝑠

1
𝑞𝑥𝑧

(1−𝑥𝑧)
     =

𝑝𝑞,𝑅(0)(1−𝑥𝑧(1−𝜏𝑠

1
𝑞))

1−𝑥𝑧
                (4.40) 

Engaging  P/K transformation  (Kleinrock 1976), we get 

𝑄𝑞,𝑅(𝑧) =  
𝑝𝑞,𝑅(0)(1−𝑧)(𝐹𝑠,𝑞,𝑅

∗ (𝜆−𝜆𝑧)

𝐹𝑠,𝑞,𝑅
∗ (𝜆−𝜆𝑧)−𝑧

                                         (4.41) 

where 

      𝐹𝑠,𝑞,𝑅
∗ (𝜃) = 𝐸[𝑒−𝜃𝑠] =  ∫ 𝑒−𝜃𝑡𝑓𝑠,𝑞,𝑅

∞

0
(𝑡)𝑑𝑡                                                      (4.42) 

is the 𝑓𝑠,𝑞,𝑅(𝑡)’s Laplace-Stieltjes transform. Clearly,Qq,R(0) = pq,R(0) and 𝑄𝑞,𝑅(1) = 1. 

Engaging (4.40) and (4.41), we have 

                                                           𝐹𝑠,𝑞,𝑅
∗ (𝜆 − 𝜆𝑧) =  

𝜇𝜏𝑠

1
𝑞+(𝜆−𝜆𝑧)(1−𝜏𝑠)

1
𝑞

𝜇𝜏𝑠

1
𝑞+(𝜆−𝜆𝑧)

                            (4.43)   

Substituting 𝜃 for (𝜆 − 𝜆𝑧), the expression (4.43) becomes:  

              𝐹𝑠,𝑞,𝑅
∗ (𝜃) =  

𝜇𝜏𝑠

1
𝑞+𝜃(1−𝜏𝑠

1
𝑞)

𝜇(𝜏𝑠)
1
𝑞+𝜃

                                                           (4.44) 

By inverting Laplace-StieltjesTransform, 𝐹𝑠,𝑞,𝑅
∗ (𝜃) the GEq,R−type PDF 𝑓𝑠,𝑞,𝑅(𝑡)(see 

(4.40)) of Theorem 4.2 is devised. 

In a similar analogy to the logical consequence of the undertaken proof in the  

Rényian  case, the NME solution 𝑝𝑞,𝑇(𝑛), 𝑛 = 0,1,2,...  has the z-transform Q(z),  

𝑄𝑞,𝑇(𝑧) = ∑ 𝑝𝑞,𝑇(𝑛)𝑧
𝑛∞

𝑛=0  =
𝑝𝑞,𝑇(0)(1−𝑥𝑧(1−𝜏𝑠

𝑞))

1−𝑥𝑧
                                    (4.45) 

Using the P/K transform equation 

𝑄𝑞,𝑇(𝑧) =  
𝑝𝑞,𝑇(0)(1−𝑧)(𝐹𝑠,𝑞,𝑇

∗ (𝜆−𝜆𝑧))

𝐹𝑠,𝑞,𝑇
∗ (𝜆−𝜆𝑧)−𝑧

                                                                                    (4.46) 



89 
 

where 𝐹𝑠,𝑞,𝑇
∗ (𝜃) = 𝐸[𝑒−𝜃𝑠] =  ∫ 𝑒−𝜃𝑡𝑓𝑠,𝑞,𝑇

∞

0
(𝑡)𝑑𝑡                                                                  (4.47) 

serves  as the of the service time distribution PDF’sٌۭLaplace-Stieltjes transform. We 

have 

𝑄𝑞,𝑇(0) = 𝑝𝑞,𝑇(0) 𝑎𝑛𝑑 𝑄𝑞,𝑇(1) = 1 

By (4.45) and (4.46), we have 

                                            𝐹𝑠,𝑞,𝑇
∗ (𝜆 − 𝜆𝑧) =  

𝜇(𝜏𝑠)
𝑞+(𝜆−𝜆𝑧)(1−(𝜏𝑠)

𝑞)

𝜇(𝜏𝑠)𝑞+(𝜆−𝜆𝑧)
                                           (4.48)                  

by replacing  𝜃 for (𝜆 − 𝜆𝑧), (4.58) re-writes to 

 𝐹𝑠,𝑞,𝑇
∗ (𝜃) =  

𝜇𝜏𝑠
𝑞+𝜃(1−𝜏𝑠

𝑞)

𝜇(𝜏𝑠)𝑞+𝜃
                                                   (4.49) 

The inversion of  Laplace-Stieltjes transform implies that  PDF 𝑓𝑠,𝑞,𝑇(𝑡)(see (4.37)) of 

Theorem 4.2 is devised. 

The following Corollary 4.2.1 deals with the characterisation of the CDFs, 

{𝐹𝑠,𝑞.𝑇(t), 𝐹𝑠,𝑞.𝑇(t)}. 

Corollary 4.2.1 

The CDFs of the service times  GEq,R and GEq,T types PDFs (c.f., (4.36) and (4.37)) 

are respectively  determined by 

𝐹𝑠,𝑞,𝑅(𝑡) = 1 − 𝜏𝑠
1

𝑞𝑒−𝜇𝜏𝑠
1
𝑞𝑡                                                        (4.50) 

𝐹𝑠,𝑞,𝑇(𝑡) =1 − 𝜏𝑠
𝑞𝑒−𝜇𝜏𝑠

𝑞𝑡                                                         (4.51) 

where τs = 2/(1+ Cs,1,S
2 ). 

Proof 

We have 
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𝐹𝑠,𝑞,𝑅(𝑡)= ∫  𝑓𝑠,𝑞,𝑅(𝑥)
𝑡

0
𝑑𝑥= ∫ (1 − 𝜏𝑠

1

𝑞) 𝑢0(𝑥)
𝑡

0
𝑑𝑥 + 𝜇𝜏𝑠

2

𝑞 ∫ 𝑒−𝜇𝜏𝑠
1
𝑞𝑥𝑡

0
𝑑𝑥 

              = (1 − 𝜏𝑠
1

𝑞) + 
𝜇𝜏𝑠

2
𝑞

𝜇𝜏𝑠

1
𝑞

(1 − 𝑒−𝜇𝜏𝑠
1
𝑞𝑡) 

              = (1 − 𝜏𝑠
1

𝑞) + 𝜏𝑠
1

𝑞(1 − 𝑒−𝜇𝜏𝑠
1
𝑞𝑡) 

                 =  1 − 𝜏𝑠
1

𝑞𝑒−𝜇𝜏𝑠
1
𝑞𝑡 (See (4.50))                                                               

Moreover,ٌٌۭۭTsallis’sٌۭserviceٌۭtimeٌۭCDF, 𝐹𝑠,𝑞,𝑇(𝑡) is characterised as follows: 

𝐹𝑠,𝑞,𝑇(𝑡) = ∫  𝑓𝑠,𝑞,𝑇(𝑥)
𝑡

0
𝑑𝑥 = ∫ (1 − 𝜏𝑠

𝑞)𝑢0(𝑥)
𝑡

0
𝑑𝑥 + 𝜇𝜏𝑠

2𝑞 ∫ 𝑒−𝜇𝜏𝑠
𝑞𝑥𝑡

0
𝑑𝑥 

             = (1 − 𝜏𝑠
𝑞) + 

𝜇𝜏𝑠
2𝑞

𝜇𝜏𝑠𝑞
(1 − 𝑒−𝜇𝜏𝑠

𝑞𝑡) 

            = (1 − 𝜏𝑠
𝑞) + 𝜏𝑠

𝑞(1 − 𝑒−𝜇𝜏𝑠
𝑞𝑡) 

                =  1 − 𝜏𝑠
𝑞𝑒−𝜇𝜏𝑠

𝑞𝑡 (See (4.51))                                                                 

 

It is to be noted that as 𝑞 → 1, both derived CDFs of (4.50) and (4.51) tend to the 

limiting Shannonian CDF case of (El-Affendi and Kouvatsos 1983), 𝐹𝑠,𝑞,𝑇(𝑡)= 1 −

𝜏𝑠𝑒
−𝜏𝑠𝜇𝑡 with  𝜏𝑠 =

2

𝐶𝑠,1,𝑆
2 +1

. 

Corollary 4.2.2 

The SCVs of the service time corresponding to service time PDFs of (4.42) and 

(4.43) are given by: 

 

                 𝐸(𝑠𝑞,𝑅) =
1

𝜇
                                                        (4.52) 

                𝐸(𝑠𝑞,𝑅
2 ) =

2

𝜇2𝜏𝑠

1
𝑞

                                                         (4.53) 
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               𝐶𝑠,𝑞,𝑅
2 =

𝐸(𝑠𝑞,𝑅
2 )

(𝐸(𝑆𝑞,𝑅))2
− 1 =  

(2−𝜏𝑠

1
𝑞)

𝜏𝑠

1
𝑞

                                      (4.54) 

𝐸(𝑆𝑞,𝑇) =
1

𝜇
                                                                              (4.55) 

              𝐸(𝑠𝑞,𝑇
2 ) =

2

𝜇2𝜏𝑠𝑞
                                                                       (4.56) 

               𝐶𝑠,𝑞,𝑇
2 =

𝐸(𝑆𝑞,𝑇
2 )

(𝐸(𝑆𝑞,𝑇))
2 − 1 =      

(2−𝜏𝑠
𝑞)

𝜏𝑠𝑞
                                      (4.57) 

where  𝜏𝑠 = 2/(1+ 𝐶𝑠,1,𝑆
2 ). 

Proof 

We have 

𝐸(𝑆𝑞,𝑅) =  ∫ 𝑡
∞

0
𝑓𝑠(𝑡)𝑑𝑡 =  ∫ 𝑡𝜇𝜏𝑠

2

𝑞
∞

0
𝑒−𝜇𝜏𝑠

1
𝑞𝑡𝑑𝑡 = 𝜇𝜏𝑠

2

𝑞 ∫ 𝑡
∞

0
𝑒−𝜇𝜏𝑠

1
𝑞𝑡𝑑𝑡                       (4.58)                               

The gamma function, 𝛤(𝑚) is given by 

                                                       𝛤(𝑚) =  ∫ 𝑤𝑚−1∞

0
𝑒−𝑤𝑑𝑤                                           (4.59)  

Substituting 𝑤 = 𝜇𝜏𝑠
1

𝑞𝑡  on (4.59), we have, 𝐸(sR) =
𝜇𝜏𝑠

2
𝑞

𝜇2𝜏𝑠

2
𝑞

 𝛤(2) = 
1

𝜇
(because Γ(2) = 1) 

Moreover, it can be seen that:  

𝐸(𝑠𝑞,𝑅
2 ) =  ∫ 𝑡2

∞

0
𝑓𝑠(𝑡)𝑑𝑡 =   ∫ 𝑡2𝜇𝜏𝑠

2

𝑞
∞

0
𝑒−𝜇𝜏𝑠

1
𝑞𝑡𝑑𝑡 =     𝜇(𝜏𝑠)

2

𝑞 ∫ 𝑡2
∞

0
𝑒−𝜇𝜏𝑠

1
𝑞𝑡𝑑𝑡              (4.60) 

and setting  w = 𝜇𝜏𝑠
1

𝑞𝑡, 𝐸(𝑠𝑞,𝑅
2 ) is given by (4.53) and subsequently, 𝐶𝑠,𝑞,𝑅

2  by (4.54). 

Engaging an analogous approach, (4.55) – (4.57)ٌۭforٌۭTsallis’sٌۭcaseٌۭcanٌۭbeٌۭobtained. 
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4.5. Two Case Studies with explanations 

This section gives two case studies that serve as examples of how 𝑝𝑞,𝑇(𝑛)  and 

𝑝𝑞,𝑅(𝑛) (c. f. , (4.13)and (4.14)) can be used numerically to two different areas to get 

conclusions about a stable  heavy-tailed 𝑀/𝐺/1 queueing system. 

• Case Study 1 

An exploration of the queue tails of pq,R(n) and pq,T(n)(c.f., (4.13) and (4.14) in 

connection with  the impact of  non – extensive order q, which causes a depicted long-

range interaction is undertaken in case study 1. 

In principle, it performs numerical tests in this context and plots state probabilities vs 

n = 1, 2, with i) 𝜇= 0.75 ii)𝜇 = 1.00 (i.e., SU, =75%). Selected original Cs,1,S
2 = 2, 5, 10, 

20, and 50, were employed in (4.15) (such that 𝑞 → 1) and order q "long-range" 

interactions of order q (c.f., Figures (4.1)- (4.10)). 

The queue tails of 𝑝𝑞,𝑅(𝑛) and 𝑝𝑞,𝑇(𝑛), (c.f., (4.13) and (4.14)) are investigated in Case 

Study 1 in relation to the impact of q, 𝑛 = 1, 2,...In principle, it performs numerical tests 

in this context and plots state probabilities vs n = 1, 2,... with i)𝜇= 0.75 ii)𝜇 = 1.00 (i.e., 

SU, =75%) combined with Cs,1,S
2 = 2, 5, 10, 20, and 50, were employed in  constraint 

(4.11)(with q=1) and with an order q  "long-range" interactions (c.f., Figures (4.1)- 

(4.6)). 

Potentially, heavy queue tails are captured by both Rényian  and Tsallisian  

formalisms(c.f., (4.13) and (4.14))  because of the  significant impact of the non-

extensive exponent q (c.f., Figures (4.1)-(4.5)). 

Clearly, this manifests the influential impact of the information theoretic  non-

extensivity that is entwined with  the provision of longer ranges of interactions to cause 

the heavy queue tails phenomena by both Rényian  and Tsallisian  formalisms. 
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More interestingly, it was clear that the queue tails in the Rényian case were heavier 

than that of Tsallisian. Additionally, by the progressive increase of  𝐶𝑠,1,𝑆
2 , these 

depicted heavy tails are flattened progressively until they take a linearity 

phase(straight lines, corresponding to  𝐶𝑠,1,𝑆
2 = 50). It is to be noted that the progressive 

increase of 𝑞 impacts the Rényian formalism to exhibit heavier queue tails, whereas q 

→ 1.00, the Tsallisian case depicts heavier queue tails by the increase of q. 

Both  pq,R(n), pq,T(n) can be seen to capture large queue tails (cf., Figures (4.1)-(4.5)) 

as a direct consequence of the non-extensivity of the order q, which causes 'long-

range' interactions. Tsallis' state probability 𝑝𝑞,𝑇(𝑛), 𝑛 = 1,2, …, on the other hand, 

captures lighter queue tails than Rényi's state probability 𝑝𝑞,𝑅(𝑛), 𝑛 = 1,2, …,  𝐶𝑠,1,𝑆
2  = 

2, 5, 10, 20, and 50  for all combined values of both SCVs, and information order 𝑞 = 

0.55, 0.70, 0.85, and 1.00, as needed. By the progressive rise of   𝐶𝑠,1,𝑆
2 , the heavy tails 

become "flatter," and the corresponding curves transform into straight lines (linearity 

phase) (c.f., 𝐶𝑠,1,𝑆
2 = 50). 

 

                         Figure 4.1: 𝑇𝑠𝑎𝑙𝑙𝑖𝑠𝑖𝑎𝑛  𝑎𝑛𝑑 𝑅é𝑛𝑦𝑖𝑎𝑛 𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑚𝑠  vs n for 𝐶𝑠,1,𝑆
2  = 2 
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Figure 4.2:  Tsallisian  and Rényian formalisms  vs n for 𝐶𝑠,1,𝑆
2  = 5 

 
 

Figure 4.3: 𝑇𝑠𝑎𝑙𝑙𝑖𝑠𝑖𝑎𝑛  𝑎𝑛𝑑 𝑅é𝑛𝑦𝑖𝑎𝑛 𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑚𝑠  vs n for 𝐶𝑠,1,𝑆
2  = 10 
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Figure 4.4: 𝑇𝑠𝑎𝑙𝑙𝑖𝑠𝑖𝑎𝑛  𝑎𝑛𝑑 𝑅é𝑛𝑦𝑖𝑎𝑛 𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑚𝑠  vs n for 𝐶𝑠,1,𝑆
2  = 20 

 

Figure 4.5: 𝑇𝑠𝑎𝑙𝑙𝑖𝑠𝑖𝑎𝑛  𝑎𝑛𝑑 𝑅é𝑛𝑦𝑖𝑎𝑛 𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑚𝑠  vs n for 𝐶𝑠,1,𝑆
2  = 50 

 

• Case Study 2 

In principle, this case study investigates how q impacts the behaviour of Cs,q,R
2  and Cs,q,T

2  

(c.f., (4.54), (4.57)) for our chosen values of  Cs,1,S
2 . 
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The curves of q vs  Rényian  and Tsallisian SCVs , with q = 0.55, 0.70, 0.85, and 1.00 

for each SCV, and Cs,1,S
2  = 2, 5, 10, are drawn because of the numerical experiments 

shown in Figure (4.6). The limiting case of the SCVs Cs,q,R
2  and Cs,q,T

2 vs q in Figure (4.6) 

is convergent which agrees with our expectations at Cs,1,S
2  (as  𝑞 → 1). This holds by 

the progressive increase of  both Cs,1,S
2  and q.  Clearly, the lower variability of 

Cs,q,T
2  compared to Cs,q,R

2  can be seen from Figure (4.6), which illustrates that 

Cs,q,T
2 < 𝐶s,q,R 

2  as  q increases. 

 

 

Figure 4.6 : q vs Rényian  and Tsallisian SCVs  for original Cs,1,S
2  = 2,5,10 

 

4.6 Chapter Summary 

This chapter is pivotal to the establishment of contemporary information theoretic 

queueing theory. Briefly, it contributes to revealing that the Rényian and Tsallisian 

formalisms of the underlying stable 𝑀/𝐺/1 queueing system are characterized by a of  

q-dependent families, which reduce to the only available formalism in the literature, 

namely the Shannonian formalism. 
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More intriguingly, we have derived both the service time distribution and cumulative 

functions that make these formalisms exact. We have also extended the undertaken 

research to the provision of new-to the knowledge Rényian and Tsallisian squared 

coefficients of variation. The credibility of our formalisms had been proven by using 

the four well-known consistency axioms. 

Future research pathways include the exploration of more new formalisms for the 

stable 𝑀/𝐺/1  queueing systems and other available queueing systems in the 

literature, by employing other generalized entropies.  
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5. The Influential Role of Information Geometry on 

The Analysis of The Stable 𝑴/𝑮/𝟏 Queue Manifold 

 

This chapter unifies queueing theory with several mathematical fields, including 

differential geometry, information theory, matrix theory, and information geometry (IG). 

More importantly, the application of info-geometric techniques to queueing theory is a 

powerful approach to studying the stability of  queues and  allowing to revolutionize  

classical queueing theory by employing  innovative IG techniques. 

  

5.1 Introduction  

The appeal of information geometry (IG) lies in the way differential geometry (DG) is 

used to describe the structure of statistical models. Fundamentally, based on the IG, 

we are stepping ahead to a new era of Info-Geometric Queueing Theory (IGQT). 

Numerous study areas, including statistical inference, stochastic control, and neural 

networks, make extensive use of information geometry (IG). 

Geodesics are representations of straight lines in Euclidean space and resemble them 

in many ways. Following the celebrated theory of Einsteinian General Relativity (GR), 

Geodesic objects move through curved space-time, which causes the ideal time 

between two points to be extremely long. Thus, the geometry of curved space and the 

geometry of space-time are both explained by the same mathematics. A geodesic line 

is a "straight line on a curved surface" that minimises the distance between two points. 

5.2 Main Definitions in Information Geometry 

Definition 5.2.1 𝒏 − 𝐝𝐢𝐦𝐞𝐧𝐬𝐢𝐨𝐧𝐚𝐥 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧 𝐦𝐚𝐧𝐢𝐟𝐨𝐥𝐝 (Li et al. 2007)  
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1.If 𝑥 specifies a random variable in a sample space 𝑋 with a probability density 

function  𝑝(𝑥, 𝜃) , then we define an 𝑛 −dimensional distribution manifold M to be 

written as 𝑀 = {𝑙𝑛𝑝(𝑥, 𝜃)| = (𝜃1, 𝜃2, . . , 𝜃𝑛) ∈ ℝ
𝑛}. It is to be noted that 𝜃 = (𝜃1, 𝜃2, . . , 𝜃𝑛) 

are called system coordinates. 

Definition 5.2.2  Potential Function (Li et al 2007)   

The potential function Ψ(𝜃) of definition (5.2.1) is defined to be the standalone part of 

coordinates alone 𝑜𝑓 (− 𝑙𝑛 𝑝(𝑥;  𝜃)) that only contains coordinates. 

Definition 5.2.3  The Fisher’s metric(FM), or  Fisher Information matrix (FIM) 

and 𝜶-Connection (Dodson 2005) 

1. For Ψ(𝜃) (c.f., definition 5.2.2),FIM is the nxn matrix devised by   

[𝑔𝑖𝑗] = [
∂2

∂𝜃𝑖 ∂𝜃𝑗
(Ψ(𝜃))] ,     𝑖, 𝑗 = 1,2,3, …                                                                   (5.1) 

We are here performing partial differentiation with respect to 𝜃   coordinates.  

2. The inverse matrix of [𝑔𝑖𝑗] of (5.1) is defined by 

 [𝑔𝑖𝑗]= ([𝑔 𝑖𝑗]) )
−1 = 

𝑎𝑑𝑗[𝑔𝑖𝑗]

∆
, ∆= det[𝑔𝑖𝑗]                                                                         (5.2) 

3. FIM of Equ. (5.1) is implicitly characterized by 

(𝑑𝑠)2 = ∑ 𝑔𝑖𝑗
𝑛
𝑖,𝑗=1 (𝑑𝜃𝑖)(𝑑𝜃𝑗)                                                                                   (5.3) 

4. The 𝛼(or ∇(α))-connection is defined for each 𝛼ϵℝ by 

 

Γ𝑖𝑗,𝑘
(𝛼)

 = (
1−𝛼

2
)(𝜕𝑖𝜕𝑗𝜕𝑘(Ψ(𝜃)))                                                              (5.4) 

Provided that 𝛹(𝜃) is the potential function (c.f., definition 5.2.2) and 𝜕𝑖 = 
𝜕

𝜕𝜃𝑖
. 

Definition 5.2.4 Kullback’s Divergence (KD), 𝑲(𝒑, 𝒒) ( Li et al 2007)   
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On the manifold M, for any two points  𝑝(𝑥; 𝜃𝑝) and 𝑞(𝑥; 𝜃𝑞), 𝐾(𝑝, 𝑞) is given by: 

  𝐾(𝑝, 𝑞) =  𝐸𝜃𝑝 [𝑙 𝑛 (
𝑝(𝑥;𝜃𝑝)

𝑞(𝑥;𝜃𝑞)
)]   =   ∫ 𝑝(𝑥; 𝜃𝑝)𝑙 𝑛 (

𝑝(𝑥;𝜃𝑝)

𝑞(𝑥;𝜃𝑞)
) 𝑑𝑥                             (5.5) 

Provided that 𝐸𝜃𝑝 is value of the expectation, J-divergence,  𝐽(𝑝, 𝑞) is written as 

   𝐽(𝑝, 𝑞) =  𝐸𝜃𝑝 [𝑙 𝑛 (
𝑝(𝑥;𝜃𝑝)

𝑞(𝑥;𝜃𝑞)
)]= ∫ (𝑝(𝑥; 𝜃𝑝) − 𝑞(𝑥; 𝜃𝑞) ) 𝑙 𝑛 (

𝑝(𝑥;𝜃𝑝)

𝑞(𝑥;𝜃𝑞)
) 𝑑𝑥                       (5.6)                           

Definition 5.2.5  The 𝛼 , the 𝛼 − Ricci   and the 𝛼 − sectional curvature tensors ( Li et 

al 2007)   

1. The 𝛼 − curvature Riemannian Tensors,  𝑅𝑖𝑗𝑘𝑙
(𝛼)

 for coordinates 𝜃 , 𝑖, 𝑗, 𝑘, 𝑙, 𝑠, 𝑡 =

1,2,3, ….  and curvature parameter, 𝛼  are determined by 

 𝑅𝑖𝑗𝑘𝑙
(𝛼) = [(𝜕𝑗𝛤𝑖𝑘

𝑠(𝛼) − 𝜕𝑖𝛤𝑗𝑘
𝑠(𝛼))𝑔𝑠𝑙 + (𝛤𝑗𝑡,𝑙

(𝛼)𝛤𝑖𝑘
𝑡(𝛼) − 𝛤𝑖𝑡,𝑙

(𝛼)𝛤𝑗𝑘
𝑡(𝛼))], 

 with 𝛤𝑖𝑗
𝑘(𝛼) = 𝛤𝑖𝑗,𝑠

(𝛼)𝑔𝑠𝑘                                                                                                          (5.7) 

2. The Ricci Tensors (𝛼 − Ricci  curvatures),  𝑅𝑖𝑘
(𝛼)

  are  

 𝑅𝑖𝑘
(𝛼)

=  𝑅𝑖𝑗𝑘𝑙
(𝛼)
𝑔𝑗𝑙 , 𝑤𝑖𝑡ℎ  𝑅𝑖𝑗𝑘𝑙

(𝛼) (c. f. , (5.7))                                        (5.8)                                                    

3.  We define 𝐾𝑖𝑗𝑖𝑗
(𝛼)

 , namely, the 𝛼 − sectional curvatures tensors as follows 

𝐾𝑖𝑗𝑖𝑗
(𝛼)

= 
𝑅𝑖𝑗𝑖𝑗
(𝛼)

(𝑔𝑖𝑖)(𝑔𝑗𝑗)−(𝑔𝑖𝑗)
2 , 𝑖, 𝑗 = 1,2, … , 𝑛                                        (5.9)                                    

When  𝑛 = 2, the 𝛼 −  sectional curvature  𝐾1212
(𝛼)

  = 𝐾(𝛼)is known a𝑠 𝛼 −

 Gaussian curvature tensor and is given by: 

 𝐾(𝛼) = 
𝑅1212
(𝛼)

𝑑𝑒𝑡(𝑔𝑖𝑗)
                                                 (5.10)      

Definition 5.2.6  The Physical interpretation of  Ricci curvature Tensor (RCT) 
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1. RCT could be looked at as a contraction (Loveridge 2016) of the Riemannian Tensor 

(c.f., (5.7)). 

2. RCT (Rudelius 2012) is a descriptor of the extent of the difference between the 

volume of a geodesic ball on the surface and the corresponding volume of a geodesic 

ball in Euclidean space for an oriented Riemannian manifold M. 

3. Following (Ollivier 2010), RCT  provides a measure of the contraction of the 

evolution of volumes subjected to geodesic flow. The Bonnet Myers theorem (Ollivier 

2010) states that for a positive RCT, then a sphere is less positively curved than 

Riemannian manifold. Furthermore, this reduces the diameter of the underlying 

manifold. 

 

 

Figure 5.1: RCT offers a description of the difference  between the volume of the 

conical regions in the manifold and their analogous conical regions in Euclidean space 

(Thomas 2015) 

As in figure 5.1, instead of examining how the volume of a whole ball within the 

manifold differs from that of a ball in Euclidean space, we examine the volume of only 

a sliver of the ball - an angular sector or cone centred around some direction 𝑣 from 

the ball's centre. RCT illustrates how the volume of a sliver of a ball in the manifold at 

point 𝑥 in direction 𝑣 differs from the comparable angular sector in Euclidean space. 
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Definition 5.2.7  The matrix exponential of Fisher information  (Gunawardena 

2006) 

1. Given a linear system of differential equations 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥                                      (5.11) 

provided that x  is a vector of  n-dimensions vector and A is an nxn matrix. The matrix 

exponential,  𝑒𝐴   given by 

 𝑒𝐴  = ∑
𝐴𝑖

𝑖!

∞
𝑖=0 =  𝐼 + 𝐴 +

𝐴2

2!
+⋯+

𝐴𝑘

𝑘!
+....                                       (5.12)                                                                              

Provides the solution satisfying (5.11).  

2.  A’sٌٌٌۭۭۭcharacteristic polynomial is  

Φ(𝛿) = det(A − δI)                                 (5.13) 

then, the set of eigen values, 𝛿 of A  corresponding to (5.13) are: 

Φ(𝛿) = (𝛿) = det(A − δI) = 0                           (5.14)              

The eigen value 𝛿  corresponding to the eigen vector x satisfies: 

𝐴𝑥 =  𝛿 𝑥                           (5.15) 

Additionally,   𝑒𝐴  reads as  

  𝑒𝐴  = 𝑇  𝑒𝐷  𝑇−1                                                                                           (5.16) 

𝐷 is the diagonal matrix of A's eigenvalues, and 𝑇 is the matrix whose corresponding 

columns are A's eigenvectors. 

5.3 FIM for a  stable 𝑴/𝑮/𝟏  QM,  and its inverse 

According to (El-Affendi and Kouvatsos 1983), the maximum entropy (ME) state 

probability of a stable 𝑀/𝐺/1 queue (c.f., Figure 5.2), under normalisation, mean 

queue length (𝑀𝑄𝐿), L, and server utilisation, 𝜌(<1) constraints is determined by 
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Figure 5.2:  A Stable 𝑀/𝐺/1 queue 

𝑝(𝑛) = {
1 − 𝜌,                    𝑛 = 0
(1 − 𝜌)𝑔𝑥𝑛  ,       𝑛 ≥ 1

                                                 (5.17) 

with 𝑔 =
𝜌2

(𝐿−𝜌)(1−𝜌)
, 𝑥 =  

𝐿−𝜌

𝐿
 and 𝐿 =

𝜌

2
(1 +

1+𝜌𝐶𝑠
2

1−𝜌
) (𝑀𝑄𝐿 of Pollaczeck-Khinchin 

formula of a stable 𝑀/𝐺/1 queue), 𝜌 = 1 – 𝑝(0) (server utilisation) and 𝐶𝑠
2 (SCV of the 

service times). 

Expression (5.17) can be rewritten as  

𝑝(𝑛) =  {

1 − 𝜌,                    𝑛 = 0

2𝜌(
1+𝜌𝛽

1−𝜌
−1)𝑛−1

((
1+𝜌𝛽

1−𝜌
+1)𝑛

,       𝑛 ≥ 1                                 
                             (5.18) 

Provided that  𝛽 =  𝐶𝑠
2. 

Theorem 1  For a stable 𝑀/𝐺/1 QM, this is true: 

(i) FIM is determined by  

[𝑔𝑖𝑗] =  (

1

(1−𝜌)2
0

0       
−1

(𝛽+1)2

)                           (5.19) 

(ii) The Fisher Information Metric is given by 

(𝑑𝑠)2=   (
1

(1−𝜌)2
)(𝑑𝜌)2 - 

−1

(𝛽+1)2
(𝑑𝛽)2                                  (5.20)                                                          

(iii) The inverse of [𝑔𝑖𝑗] (c.f., (5.19)), [𝑔𝑖𝑗] is devised by 
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[𝑔𝑖𝑗] = ([𝑔𝑖𝑗]) )
−1 = 

𝑎𝑑𝑗[𝑔𝑖𝑗]

∆
   =     (

(1 − 𝜌)2 0

0       −(𝛽 + 1)2
)         (5.21)                                                                           

Proof 

(i) Based upon  (5.17), we have two cases 

Case I:  For 𝑛 = 0, 𝑝(𝑛) = 1 − 𝜌. Thus,we have a one-dimensional  coordinate 

system in this case that will be one dimensional , for which we obtain that: 

ℒ(𝑥; 𝜃) = 𝑙 𝑛(𝑝(𝑥; 𝜃)) =  𝑙 𝑛(1 − 𝜌) , 𝜃 =  𝜃1 =  𝜌                                                  (5.22) 

Thus, the potential function Ψ(𝜃) is:  

 

Ψ(𝜃) = −𝑙 𝑛(1 − 𝜌)                                                                      (5.23)                                 

Hence, 

𝜕1 = 
𝜕Ψ

𝜕𝜌
= 

1

1−𝜌
                                                                         (5.24)                                                                                                       

𝜕1𝜕1 = 
𝜕2Ψ

𝜕𝜌2
= 

1

(1−𝜌)2
                              (5.25) 

FIM is determined by: 

[𝑔𝑖𝑗] = [
𝜕2Ψ

𝜕𝜌2
]= [

1

(1−𝜌)2
]                             (5.26) 

[𝑔𝑖𝑗] is determined by: 

[𝑔𝑖𝑗] = [𝑔𝑖𝑗]
−1 = [(1 − 𝜌)2]                            (5.27)                                                                                                              

Additionally, it holds that: 

Γ11,1
(𝛼)

 = ( 
1−𝛼

2
)(𝜕1𝜕1𝜕1(Ψ(𝜃))) = (

1−𝛼

(1−𝜌)3
)                               (5.28)                                                          

      Γ11
1(𝛼)

=Γ11,1
(𝛼) (𝑔11) = 

1−𝛼

(1−𝜌)3
)((1 − 𝜌)2) = 

1−𝛼

(1−𝜌)
                                                (5.29) 

   Γ11
1(0)

  =  
1

(1−𝜌)
                                                         (5.30)  
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Case II: when 𝑛 ≥ 1, 𝑝(𝑛) =
2𝜌(

1+𝜌𝛽

1−𝜌
−1)𝑛−1

((
1+𝜌𝛽

1−𝜌
+1)𝑛

. Hence, the coordinate system in this case 

will be two dimensional and it clearly holds that: 

ℒ(𝑥; 𝜃) = 𝑙 𝑛(𝑝(𝑥; 𝜃)) = (𝑙𝑛2 + 𝑙 𝑛(𝜌) + (𝑛 − 1)𝑙 𝑛 (
1+𝜌𝛽

1−𝜌
− 1) − 𝑛𝑙𝑛 (

1+𝜌𝛽

1−𝜌
+ 1)     (5.31)                     

where    𝜃 =  (𝜃1, 𝜃2) = (𝜌, 𝛽). 

The potential function Ψ(𝜃) is devised as 

Ψ(𝜃) =  𝑙 𝑛 (
1+𝜌𝛽

1−𝜌
− 1) − 𝑙𝑛2 − 𝑙 𝑛(𝜌)                      (5.32) 

By analogy to the above proof, after some algebraic manipulation, it clearly follows 

that the FIM is given by  

[𝑔𝑖𝑗]= (

1

(1−𝜌)2
0

0       
−1

(𝛽+1)2

)                                        (c.f., (5.19)) 

(ii) By following analogous algebraic analysis to that of i), it can be established that the 

square of the arc length of ii) is given by 

(𝑑𝑠)2 = ∑ 𝑔𝑖𝑗
𝑛
𝑖,𝑗=1 (𝑑𝜃𝑖)(𝑑𝜃𝑗)=(

1

(1−𝜌)2
)(𝑑𝜌)2 −

1

 (𝛽+1)2
(𝑑𝛽)2              (c.f., (5.20)) 

(iii) Similarly, after some lengthy analytic derivations, the determinant of the FIM  will 

be given by ∆= det[𝑔𝑖𝑗] = −
1

(𝛽+1)2(1−𝜌)2
≠ 0. Hence, the inverse matrix of FIM exists.  

To this end, after some algebraic steps, it follows that the inverse matrix of FIM is 

expressed by: 

[𝑔𝑖𝑗] = (
(1 − 𝜌)2 0

0       −(𝛽 + 1)2
)                                (c.f., (5.21)) 

5.4 𝐓𝐡𝐞 𝜶(or 𝛁(𝛂))-connection of stable 𝑴/𝑮/𝟏 QM 

Following equation (5.4), it holds that: 

 Γ11,1
(𝛼)

=   
(1−𝛼)

(1−𝜌)3
                                                    (5.33) 
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By the same argument, the remaining components are obtained. By using equation 

(5.7), we can derive the expression: 

𝛤11
1(𝛼) = 𝛤11,1

(𝛼)𝑔11 + 𝛤11,2
(𝛼)𝑔21,  

After some calculations, we have 

𝛤11
1(𝛼) = 

1−𝛼

(1−𝜌)3
(1 − 𝜌)2= 

1−𝛼

(1−𝜌)
, 𝛤11

1(0) = 
1

(1−𝜌)
                          (5.34) 

 𝛤22
2(𝛼) = 𝛤22,1

(𝛼)𝑔21 + 𝛤22,2
(𝛼)𝑔22  

and after some more calculations 

𝛤22
2(𝛼) = −(

1−𝛼

(1+𝛽)3
)(1 + 𝛽)2=−

1−𝛼

(1+𝛽)
, 𝛤22

2(0) = − 
1

(1+𝛽)
                                                           (5.35) 

Engaging the same logic, we can derive the remaining components to compute the 

Ricci curvature tensor, RCT of the stable 𝑀/𝐺/1.  

Notably, these derivations are essentially needed to get the analytic expression of 

RCT in section 5.6.  

 

5.5 The KD and the JD of the stable 𝑴/𝑮/𝟏 QM 

According to equation (5.5), after some few algebraic calculations,  KD  is expressed 

at 𝑛 = 0, we have: 

𝐾(𝑝, 𝑞) =  𝐸𝜃𝑝 [𝑙 𝑛 (
𝑝(𝑥;𝜃𝑝)

𝑞(𝑥;𝜃𝑞)
)] = 𝑙𝑛(

1−𝜌𝑝

1−𝜌𝑞
)                                  (5.36) 

and for 𝑛 = 1,2,3, …. 

 

         𝐾(𝑝, 𝑞) =  𝑙𝑛 ((
1−𝜌𝑝

1−𝜌𝑞
) (

1+𝛽𝑞

1+𝛽𝑝
))((

𝜌𝑞[2+𝜌𝑞(𝛽𝑞−1)]

𝜌𝑝[2+𝜌𝑝(𝛽𝑝−1)]
) (

1+𝛽𝑞

1+𝛽𝑝
))

𝐿𝑝

                 (5.37) 

where 𝐿𝑝  is the corresponding MQL of Pollaczeck-Khinchin Formula of a stable 

𝑀/𝐺/1 QM at 𝑝, 𝑖. 𝑒.  𝐿𝑝 = ∑ 𝑛𝑝(𝑛)∞
𝑛=0  (c.f., (5.17)). 

This could be summarized in the more compact form: 
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         𝐾(𝑝, 𝑞) =

{
 
 

 
 𝑙𝑛 (

1−𝜌𝑝

1−𝜌𝑞
) ,                                                                                 𝑛 = 0

𝑙𝑛 ((
1−𝜌𝑝

1−𝜌𝑞
) (

1+𝛽𝑞

1+𝛽𝑝
))((

𝜌𝑞[2+𝜌𝑞(𝛽𝑞−1)]

𝜌𝑝[2+𝜌𝑝(𝛽𝑝−1)]
) (

1+𝛽𝑞

1+𝛽𝑝
))

𝐿𝑝

,   𝑛 = 1,2,3, . .

    (5.38) 

More interestingly, in a similar fashion, the JD is derived in the two possible cases : 

Case 1:   𝑛 = 0 

𝐽(𝑝, 𝑞) =  𝐾(𝑝, 𝑞) + 𝐾(𝑞, 𝑝) =  𝑙𝑛 (
1−𝜌𝑝

1−𝜌𝑞
) + 𝑙𝑛 (

1−𝜌𝑞

1−𝜌𝑝
) = 0                                (5.39) 

Case 2:   𝑛 = 1,2,3, … 

𝐽(𝑝, 𝑞) =  𝐾(𝑝, 𝑞) + 𝐾(𝑞, 𝑝) =   

= (𝑙𝑛 ((
1 − 𝜌𝑝

1 − 𝜌𝑞
)(
1 + 𝛽𝑞

1 + 𝛽𝑝
))((

𝜌𝑞[2 + 𝜌𝑞(𝛽𝑞 − 1)]

𝜌𝑝[2 + 𝜌𝑝(𝛽𝑝 − 1)]
) (
1 + 𝛽𝑞

1 + 𝛽𝑝
))

𝐿𝑝

+  𝑙𝑛 ((
1 − 𝜌𝑞

1 − 𝜌𝑝
)(
1 + 𝛽𝑝

1 + 𝛽𝑞
))((

𝜌𝑝[2 + 𝜌𝑝(𝛽𝑝 − 1)]

𝜌𝑞[2 + 𝜌𝑞(𝛽𝑞 − 1)]
) (
1 + 𝛽𝑞

1 + 𝛽𝑝
))

𝐿𝑞

) 

= (((
𝜌𝑞[2+𝜌𝑞(𝛽𝑞−1)]

𝜌𝑝[2+𝜌𝑝(𝛽𝑝−1)]
) (

1+𝛽𝑞

1+𝛽𝑝
))

𝐿𝑝

+ ((
𝜌𝑝[2+𝜌𝑝(𝛽𝑝−1)]

𝜌𝑞[2+𝜌𝑞(𝛽𝑞−1)]
) (

1+𝛽𝑞

1+𝛽𝑝
))

𝐿𝑞

) ≠ 0                   (5.40) 

 

Equation (5.40) shows that 𝐽(𝑝, 𝑞) of stable 𝑀/𝐺/1 QM is generally non-zero. This is 

never the case at the initial steady state phase, when  𝑛 = 0. 

 

5.6 The 𝜶 −Gaussian  and RICCI  curvature tensors of the stable 𝑴/𝑮/𝟏 QM  

In this section, it is devised that the stable 𝑀/𝐺/1 QM has a zero  𝛼 −Gaussian 

curvature tensor, 𝐾(𝛼) for all the values of the curvature parameter 𝛼 as well as having  

a  non-zero Ricci curvature tensor. 

Theorem 2   The stable 𝑀/𝐺/1 QM has  

i) a zero  𝛼 −Gaussian curvature tensor and   ii) Has a non-zero Ricci curvature tensor 
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Proof  

Case i), by definition (5.10),  it is enough to show that the  𝛼 −Gaussian curvature: 

 𝐾(𝛼) = 
𝑅1212
(𝛼)

𝑑𝑒𝑡(𝑔𝑖𝑗)
  = 0                                                     (5.41)                                                 

To this end, the expression  𝑅𝑖𝑗𝑘𝑙
(𝛼)

 is given by: 

 

 𝑅𝑖𝑗𝑘𝑙
(𝛼) = [(𝜕𝑗𝛤𝑖𝑘

𝑠(𝛼) − 𝜕𝑖𝛤𝑗𝑘
𝑠(𝛼))𝑔𝑠𝑙 + (𝛤𝑗𝑡,𝑙

(𝛼)𝛤𝑖𝑘
𝑡(𝛼) − 𝛤𝑖𝑡,𝑙

(𝛼)𝛤𝑗𝑘
𝑡(𝛼))], 

 and 𝛼 is the curvature parameter with 𝛤𝑖𝑗
𝑘(𝛼) = 𝛤𝑖𝑗,𝑠

(𝛼)𝑔𝑠𝑘(c.f., (5.7) 

Specifically,    

 𝑅1212
(𝛼)

= [(𝜕2(𝛤11
1(𝛼) + 𝛤11

2(𝛼)) − 𝜕1(𝛤21
1(𝛼) + 𝛤21

2(𝛼)))(𝑔12 + 𝑔22)

+ (𝛤21,2 
(𝛼) 𝛤11

1(𝛼) + 𝛤22,2 
(𝛼) 𝛤11

2(𝛼)) − (𝛤11,2 
(𝛼) 𝛤21

1(𝛼) + 𝛤12,2 
(𝛼) 𝛤21

2(𝛼))] 

 

            = [(
𝜕

𝜕𝛽
(
1−𝛼

1−𝜌
+ 0) −

𝜕

𝜕𝜌
(0 −

1

(𝛽+1)2
))))(𝑔12 + 𝑔22) + 0]= 0                        (5.42)                                          

𝑑𝑒𝑡(𝑔𝑖𝑗) =  −
1

(𝛽+1)2(1−𝜌)2
≠ 0 . Hence, 𝐾(𝛼) = 

𝑅1212
(𝛼)

𝑑𝑒𝑡(𝑔𝑖𝑗)
= 0. Thus i) follows.  

Case ii) We need to show that at least one of the components of   𝛼 − RCs,  𝑅𝑖𝑘
(𝛼)

  are 

given by: 

 𝑅𝑖𝑘
(𝛼)

=  𝑅𝑖𝑗𝑘𝑙
(𝛼)
𝑔𝑗𝑙 , 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3, … . , 𝑛                                  (c.f.,(5.9)) 

is non-zero. To this end,  𝑅11
(𝛼)

 is expressed by: 

 𝑅11
(𝛼)

=  𝑅1212
(𝛼)

𝑔11 +  𝑅1112
(𝛼)

𝑔12 +  𝑅1211
(𝛼)

𝑔21 +  𝑅1212
(𝛼)

𝑔22                               (5.43)                           

Engaging the same procedure as in (5.43), after some manipulation, one gets 

𝑅11
(𝛼)

= 0                                        (5.44) 

Similarly,  
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𝑅12
(𝛼)

= 𝑅22
(𝛼)

= 0                                        (5.45) 

Additionally,  𝑅21
(𝛼)

 is determined by: 

 𝑅21
(𝛼)

=  𝑅2111
(𝛼)

𝑔11 +  𝑅2112
(𝛼)

𝑔12 +  𝑅2211
(𝛼)

𝑔21 +  𝑅2212
(𝛼)

𝑔22                                 (5.46) 

Moreover,  𝑔11 = (1 − 𝜌)2, 𝑔22 = −(𝛽 + 1)2 

Following some lengthy calculations, it is obtained that: 

𝑅21
(𝛼)

= −
(1−𝛼)2

(1−𝜌)4
(1 − 𝜌)2 + 0 + 0 − (𝛽 + 1)2(0) = −

(1−𝛼)2

(1−𝜌)2
  ≠ 0                             (5.47) 

Hence, ii) follows. 

From (5.47), it holds that:  

  𝑅21
(0)
= −

1

(1−𝜌)2
                                                                                          (5.48)  

Clearly,   𝑅21
(0)

 is 𝜌 −dependent. As  𝜌 → 1,  𝑅21
(0)
→ −∞.  This illustrates the influential 

impact of (stability)( instability) of the two dimensional stable  𝑀/𝐺/1  QM. Clearly, 

figure 5.3 reveals that the stability (equivalently, 1 > 𝜌 > 0) of the underlying stable  

𝑀/𝐺/1  QM impacts RCT to be an increasing function in (server utilization)𝜌. More 

interestingly, figure 5.4 strongly supports the fact that the instability 

phase(equivalently, 𝜌 ≥ 1) of the  stable  𝑀/𝐺/1  QM enforces RCT to be a decreasing 

function in 𝜌. 

More fundamentally, this illustrates how RCT impacts the stability dynamics of 

𝑀/𝐺/1 QM. 
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Figure 5.3: The 𝑀/𝐺/1 QM's stability phase forces Ricci Curvature (RCT) to be an 

increasing function in 𝜌 

 

Figure 5.4: The 𝑀/𝐺/1 QM's instability phase forces Ricci Curvature (RCT) to be a 

decreasing function in 𝜌. 
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The presented  data portrait in  both figures 5.3 and 5.4 is  collectively combined in 

figure 5.5. 

 

Figure 5.5 : The influential impact of  (stability)instability phase of the 𝑀/𝐺/1  QM on 

the behaviour of Ricci Curvature (RCT). 

In the following theorem, 𝒆𝑭𝑰𝑴𝒔𝒕𝒂𝒃𝒍𝒆 𝑴/𝑮/𝟏 𝑸𝑴 servesٌۭasٌۭtheٌۭexponentialٌۭmatrixٌۭofٌۭtheٌۭFIMٌۭ

ofٌۭstableٌۭ𝑀/𝐺/1ٌۭQM. 

5.7 𝒆𝑭𝑰𝑴𝒔𝒕𝒂𝒃𝒍𝒆 𝑴/𝑮/𝟏 𝑸𝑴 

Theorem 3 𝒆𝑭𝑰𝑴𝒔𝒕𝒂𝒃𝒍𝒆 𝑴/𝑮/𝟏 𝑸𝑴ٌۭsolvesٌۭaٌۭdifferentialٌۭequationٌۭofٌۭtheٌۭform:ٌٌٌٌٌۭۭۭۭۭ 

𝑑𝑥 

𝑑𝑡
 = Ax                                                            (5.49) 

Proof         

By equation (5.19) of Theorem 1, we have  

[𝑔𝑖𝑗]= (

1

(1−𝜌)2
0

0       
−1

(𝛽+1)2

)                                                              (c.f., (5.19)) 
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Re-writing  [𝑔𝑖𝑗], yields 

  

[𝑔𝑖𝑗] =  (
𝑎 0
0  𝑏

) , 𝑎 = (
1

(1−𝜌)2
) , 𝑏 =  

−1

(𝛽+1)2
                                                                      (5.50)  

Hence 

Φ(𝛿) = (𝛿) = det([𝑔𝑖𝑗] − δI) = det (
𝑎 − 𝛿 0
0  𝑏 − 𝛿

) = 0                                   (5.51) 

Thus, we have 

𝛿2 − (𝑎 + 𝑏)𝛿 + 𝑎𝑏 = 0                                                                 (5.52) 

Hence, the eigenvalues are given by 𝛿1,2 = 𝑎, 𝑏. Therefore, the diagonal matrix D is 

given by  

𝐷 =   (
𝛿1   0
0     𝛿2

)                                                  (5.53) 

For 
 
 𝛿1,2 = 𝑎, 𝑏 , the corresponding eigen vectors are (1

0
) , (0

1
). Clearly, it follows that 

the matrix:                                                        

T = 𝑇−1 = unity matrix 𝐼 = (
1 0
0 1

)                                                                            (5.54)  

 

Hence, 𝒆𝑭𝑰𝑴𝒔𝒕𝒂𝒃𝒍𝒆 𝑴/𝑮/𝟏 𝑸𝑴 isٌۭdevisedٌۭby: 

𝑒𝐴 = 𝑇𝑒𝐷𝑇−1 = (
𝑒𝑎 0
0  𝑒𝑏

)                                      (5.55)                                                                            

By (5.5), it follows that: 

𝑑𝑥

𝑑𝑡 
  = Ax                                                          (c.f., (5.49)) 

 

5.8 Chapter Summary 

        Information geometry has been successfully used to obtain the orthogonal 

decomposition of probability distributions with exponential or mixed groups have a 

natural hierarchical structure(see Amari, 2001). Decomposing a stochastic 
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dependency onto several random variables is a common example. They have a 

complex network of dependencies in general. A broad class hierarchy specifies 

orthogonal decomposition, which includes both exponential and mixed families. As an 

example, we decompose higher-order Markov chain dependencies into the sum of the 

dependencies of various lower-order Markov chains. A single server, such as the 

𝑀/𝐺 /1 system, is straightforward and can serve as a preliminary model (Hamasha et 

al 2016).  

        Based on the preceding discussion, our new approach to revealing the significant 

impact of IG on queuing theory clarified the lost connection. The stability of the queuing 

theory (Rachev 1989) problem is concerned with the continuity of the mapping F from 

set U of the input flow to set V of the output flow. First, if U and V have a metric 

structure, we use probability theory to estimate the coefficient of F- continuity. 

Following that, we evaluate the error term in the approximation of the input flow with a 

simpler one while observing some functionals of the empirical input flow distribution. 

This demonstrates the power of a new approach in determining the exact stability and 

instability phases of the underlying 𝑀/𝐺/1  queueing system for the first time. 

Classic Queueing theory is revolutionized by our innovative techniques since we are 

considering queues as manifolds, considering 𝛼 as a curvature parameter and an 

underlying stable 𝑀/𝐺/1 QM connection parameter. In the metric connection (see 

Jefferson 2018), the inner product is preserved by translation of the two vectors, thus 

preserving its importance in Riemannian geometry. Both metric and symmetric 

connections are Riemannian manifolds and generally exist infinitely. 
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More surprisingly, in general, the non-metricityٌۭofٌۭstatisticalٌۭmanifolds’ٌۭnaturalٌۭmetricsٌۭ

is justified by the Riemannian connection on a curved surface that is defined by the 

special case 𝛼 = 0, ∇(𝛼)is from the Fisher metric point of view (however, ∇(𝛼))can be 

any value of 𝛼. On the other hand, it is symmetric.     

The exponentiation of a matrix (Lee 1950)corresponds to their respective Jordan 

block’sٌۭpowers.ٌۭItٌۭisٌۭaٌۭfactٌۭthat this interpretation applies to 𝑒𝑋 and  all analytic functions 

𝑓 that that are applicable to matrices. It is also beneficial to rethink a matrix exponential 

as a "system solution for ordinary differential equations (ODEs)".   

Potentially as a future work,  we can  develop further advancements to  info- geometric 

queuing theory by  analysing the stability of 𝐺/𝐺/1 queue  manifold (Dodson, 2005; 

Kouvatsos1988). Additionally, we can investigate applications of manifolds and  

information geometry to various statistical manifolds and transient queueing systems. 
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6. The Upper and Lower Bounds of The Data 

Information Length of Transient 𝑀/𝑀/∞  Queuing 

System 

In this chapter, an exposition of a novel link between Information Length Theory (ILT) 

and Transient Queueing Systems (TQSs) is undertaken by  deriving both upper and 

lower bounds of the data information length of a  transient  𝑀/𝑀/∞ queuing system. 

In this context, it is revealed that if 𝜌(𝑡) serves as the time-dependent server utilization 

of the transient 𝑀/𝑀/∞ queuing system, then the latter obtained upper and lower 

bounds(𝑈𝐵(𝑛, 𝑡), 𝐿𝐵(𝑛, 𝑡)) respectively) are both (𝑛, 𝜌(𝑡))-dependent, 𝑛 = 0,1, 2, … .. 

Additionally, a typical numerical experiment is conjectured to illustrate the significant 

impact of time on behaviour of the devised 𝑈𝐵(𝑛, 𝑡) and 𝐿𝐵(𝑛, 𝑡) for different values 

of 𝑛.  

6.1 The Poisson process 

One of the most popular counting (Pishro-Nik  2014)methods is the Poisson process. 

It is typically employed in situations when we are counting the occurrences of specific 

events that seem to occur at a certain rate but are completely random (without a 

certain structure). For instance, let's say we know from past data that there are two 

earthquakes that happen in a specific region every month. The timing of earthquakes 

appears to be completely random except for this information. Thus, we draw the 

conclusion that the Poisson process may serve as a useful earthquake model. Models 

have  

• Photons arriving on a photodiode. 



116 
 

• The quantity of auto accidents at a location or in a region. 

• The position of users in a wireless network. 

• Requests for certain publications on a web server. 

• The start of conflicts. 

A random process is called Poisson process (Pishro-Nik  2014)with the rate 𝜇 if it 

satisfies the following definition: 

For a fixed 𝝁 > 0,𝒕 ∈ (𝟎,∞), we define a counting process to be Poissonian 

with rates 𝝁 when it satisfies the following: 

1. 𝑵(𝟎) = 𝟎; 

2. the underlying increments of 𝑵(𝒕) are independent, 

3. within any interval having a length 𝝑 > 𝟎, the associated number of arrivals 

must follow a Poissonian (𝝁𝝑) distribution. 

Specifically, if  

𝑇𝑛 =∑ 𝑋𝑖
𝑛
𝑖=1 , 𝑇𝑛 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑛, 𝜇)                                      (6.1) 

provided that 𝑋𝑖′𝑠 serve as  to be randomized independent variables satisfying 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜇) variables. Then, 

𝐸[𝑇𝑛] =  
1

𝜇
                                                                                        (6.2) 

𝑉𝑎𝑟[𝑇𝑛] =  
1

𝜇2
                                                                                    (6.3) 

This provides a simulation approach for a Poissonian process of a rate 𝜇. We start 

with the generated 𝑋𝑖 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜇) to obtain the corresponding service times                              

𝑇1 = 𝑋1,                                                                              (6.4) 

𝑇2 = 𝑋1 + 𝑋2,                                                                     (6.5) 
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𝑇3 = 𝑋1 + 𝑋2 + 𝑋3,                                                            (6.6) 

. 

. 

. 

Additionally, 𝑇𝑛 must follow (6.2) and (6.3). 

6.2. The transient 𝑴/𝑴/∞  queue and IL 

The 𝑀/𝑀/∞ queue (c., f., Harrison et al., 1992) is a multi-server queueing model 

used in queueing theory, an emerging applied probabilistic discipline, where every 

arrival receives instant service and does not wait, as demonstrated by figure 6.1. 

According to (Kumar et al. 2014; Kulkarni 2016), the Poisson distributed service time 

with mean 𝜇 and mean arrival rate i𝑠 𝜆 in  the 𝑀/𝑀/∞  queueing system's transient 

probability is given by: 

𝑝𝑛(𝑡) =  
[
𝜆

𝜇
(1−𝑒−𝜇𝑡)]𝑛

𝑛!
exp {−

𝜆

𝜇
(1 − 𝑒−𝜇𝑡)}, 𝑛 = 0,1,2, ….                                                (6.7) 

Notably, as 𝑡 → ∞, 𝑝𝑛(𝑡) of Equ. (6.7) converges to  

𝑝𝑛 = 
𝜌𝑛

𝑛!
𝑒−𝜌, 𝑛 = 0,1,2, ….                                                           (6.8) 

𝜌 serves as the server utilization of the underlying queue. 

 

Figure 6.1. The state space diagram for the 𝑀/𝑀/∞  chain 

Recalling that the information length (IL) is defined to be: 
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ℒ(𝑡) = ∫
𝑑𝑡1

𝜏(𝑡1)
= ∫ √(휀(𝑡1))𝑑𝑡1

𝑡

0

𝑡

0
                             (c.f., 2.34)) 

휀(𝑡1) =  ∫ℝ𝑛 (
1

𝑝(𝑥,𝑡1)
[
𝜕𝑝(𝑥,𝑡1)

𝜕𝑡1
]2)𝑑𝑥                           (c.f., 2.35)) 

If ℒ𝑀/𝑀/∞ serves as the  IL of the transient 𝑀/𝑀/∞  queuing system, then the  

following theorems are  devoted to  the derivation of the lower and upper bounds of 

ℒ𝑀/𝑀/∞,namely (𝐿𝐵(𝑛, 𝑡), 𝑈𝐵(𝑛, 𝑡)respectively). 

Theorem 6.1  

The  IL of the transient 𝑀/𝑀/∞  queuing system , ℒ𝑀/𝑀/∞ satisfies the following 

inequality: 

 
2(𝑛+1)(𝜌(𝑡))

3
2

3√𝑛!
> ℒ𝑀/𝑀/∞ (𝑡) >    (

𝜎𝜇𝑛

2𝑛𝑛!
)∫ 𝑡𝑛𝑒−𝜌(𝑡)

𝑡

0
𝜌.(𝑡)(𝜌(𝑡)) 𝑛𝑑𝑡                   (6.9)                                    

Proof 

 We have 

𝑝𝑛(𝑥, 𝑡) =  
[
𝜆

𝜇
(1−𝑒−𝜇𝑡)]𝑛

𝑛!
exp {−

𝜆

𝜇
(1 − 𝑒−𝜇𝑡)}                                                      (c.f., (6.7)) 

     =
𝑥𝑛

𝑛!
𝑒−𝑥, 𝑥(𝑡) =  

𝜆

𝜇
(1 − 𝑒−𝜇𝑡) = 𝜌(𝑡)(1 − 𝑒−𝜇𝑡)  (𝑠𝑖𝑛𝑐𝑒 𝜌(𝑡) =  

𝜆(𝑡)

𝜇
  )             (6.10) 

By the definition, we have 𝜇 > 0,which implies that 𝑒−𝜇𝑡 < 1.Hence, 𝑥(𝑡) < 𝜌(𝑡) 

follows. Then, we have the real number 𝜎 ∈(0,1) satisfying: 

𝑥(𝑡) = 𝜎𝜌(𝑡)                                             (6.11) 

Consequently,  

                                    
𝜕𝑝𝑛(𝑡)

𝜕𝑡
 = 

𝜎𝑥𝑛−1𝜌.(𝑡)

𝑛!
𝑒−𝑥(𝑛 − 𝑥)                              (6.12) 
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[
𝜕𝑝𝑛(𝑥, 𝑡)

𝜕𝑡
]
2

𝑝𝑛(𝑥, 𝑡)
=  

(
𝜎𝑥𝑛−1𝜌.(𝑡)

𝑛! 𝑒−𝑥(𝑛 − 𝑥))

2

𝑥𝑛

𝑛! 𝑒
−𝑥

 

                                = 
𝜎2𝑥𝑛−2𝜌.2(𝑡)

𝑛!
𝑒−𝑥(𝑛 − 𝑥)2  

                     = 
𝜎2𝑥𝑛−2𝜌.2(𝑡)

𝑛!
𝑒−𝑥(𝑛2 − 2𝑛𝑥 + 𝑥2) 

                                   ≤ (
𝜎2𝜌.2(𝑡)

𝑛!
)(𝑛2 + 1) (Since  𝑒−𝑥 ≤ 1, 𝑥 ∈ (0,1)) 

                                   < (
𝜌.2(𝑡)

𝑛!
)(𝑛2 + 1)(since  𝜎 ∈ (0,1))                                                   (6.13)                                               

Hence, it follows that: 

ℒ𝑀/𝑀/∞ < ∫√(∫
(𝑛 + 1)2𝜌.2(𝑡)

𝑛!
𝑑𝑥)

𝑡

0

𝑑𝑡 

                =
(𝑛 + 1)

√𝑛!
∫(√∫ 𝑑𝑥]

𝑡

0

) 𝜌.(𝑡)𝑑𝑡 

                 =
(𝑛 + 1)

√𝑛!
 ∫(√𝑥)

𝑡

0

)𝜌.(𝑡)𝑑𝑡 

                          = 
(𝑛+1)

√𝑛!
 ∫ √

𝜆

𝜉
(1 − 𝑒−𝜇𝑡)𝜌.(𝑡)𝑑𝑡

𝑡

0
 

                             <  
(𝑛+1)

√𝑛!
 ∫ √(𝜌(𝑡)𝜌.(𝑡)𝑑𝑡
𝑡

0
 (Since 𝑒−𝜇𝑡 ∈ (0,1) 

                              =  
2(𝑛+1)(𝜌(𝑡))

3
2

3√𝑛!
                                                                                (6.14) 

On the other hand, by 𝑥 < 𝜌(𝑡)𝑎𝑛𝑑 𝑥 < 1 , we have 
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[
𝜕𝑝𝑛(𝑥, 𝑡)

𝜕𝑡
]
2

𝑝𝑛(𝑥, 𝑡)
  =  

𝜎2𝑥𝑛−2𝜌.2(𝑡)

𝑛!
𝑒−𝑥(𝑛 − 𝑥)2 > 𝑒−2𝑥 (

𝜎2𝑥𝑛−2𝜌.2(𝑡)

𝑛!
) (𝑛 − 1)2

> 𝑒−2𝜌(𝑡) (
𝜎2𝑥2𝑛−1𝜌.2(𝑡)

𝑛!
) (𝑛 − 1)2 

                                            >  𝜎2𝑒−2𝜌(𝑡) 𝜌.2(𝑡) (
𝑥2𝑛−1

(𝑛!)2
) (𝑛 − 1)2                                     (6.15) 

Thus, it follows that: 

(√∫
[
𝜕𝑝𝑛(𝑥,𝑡)

𝜕𝑡
]
2

𝑝𝑛(𝑥,𝑡)
𝑑𝑥) > [∫ 𝜎2𝑒−2𝜌(𝑡)𝜌.2(𝑡) (

𝑥2𝑛−1

(𝑛!)2
) (𝑛 − 1)2] 𝑑𝑥 >  𝜎𝜌.(𝑡) 𝑒−𝜌(𝑡) (

𝑥𝑛

𝑛!
)    (6.16)             

Hence, 

           ℒ𝑀/𝑀/∞(𝑡) >   (
𝜎

𝑛!
)∫𝜌.(𝑡)𝑒−𝜌(𝑡)

𝑡

0

(𝜌(𝑡)(1 − 𝑒−𝜇𝑡)) 𝑛𝑑𝑡  

                                 >   (
𝜎

𝑛!
) ∫ 𝑒−𝜌(𝑡)     

𝑡

0
(Since, (1 − 𝑒−𝜇𝑡) >

𝜇𝑡

2
          (c. f. , Ovler, et al. 2010)) 

                                 =   (
𝜎𝜇𝑛

2𝑛𝑛!
) ∫ 𝑡𝑛𝑒−𝜌(𝑡)

𝑡

0
𝜌.(𝑡)(𝜌(𝑡)) 𝑛𝑑𝑡                                            (6.17)                                                 

Therefore,  

 
2(𝑛+1)(𝜌(𝑡))

3
2

3√𝑛!
> ℒ𝑀/𝑀/∞ (𝑡) >    (

𝜎𝜇𝑛

2𝑛𝑛!
)∫ 𝑡𝑛𝑒−𝜌(𝑡)

𝑡

0
𝜌.(𝑡)(𝜌(𝑡)) 𝑛𝑑𝑡                (c.f., (6.9)) 

In what follows, an illustration of the temporal impact as well as the potential impact 

of 𝑛 on the behaviour of both 𝐿𝐵(𝑛, 𝑡)and 𝑈𝐵(𝑛, 𝑡), 

𝑈𝐵(𝑛, 𝑡) =
2(𝑛+1)(𝜌(𝑡))

3
2

3√𝑛!
  and    𝐿𝐵(𝑛, 𝑡) =   (

𝜎𝜇𝑛

2𝑛𝑛!
)∫ 𝑡𝑛𝑒−𝜌(𝑡)

𝑡

0
𝜌.(𝑡)(𝜌(𝑡)) 𝑛𝑑𝑡         (6.18) 
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6.3 Numerical Experiments 

By choosing 𝜎 = 
1

2
, 𝜌(𝑡) =  

1

𝑡
, 𝜇  =2, it can be easily verified that these proposed 

choices,𝑈𝐵(𝑛, 𝑡) and 𝐿𝐵(𝑛, 𝑡)  will read: 

𝑈𝐵(𝑛, 𝑡) =
2(𝑛+1)

3(𝑡)
3
2√(𝑛!)

  and 𝐿𝐵(𝑛, 𝑡) =   (−
1

2(𝑛!)
) ∫ 𝑒−

1

𝑡
𝑡

0

1

𝑡2
𝑑𝑡 =   (−

𝑒
−
1
𝑡

2(𝑛!)
)              (6.19) 

  

 

 

Figure 6.2. Significant Impact of time and 𝑛 on 𝑈𝐵(𝑛, 𝑡) 

It is clear from Figure 6.2, that because of the progressive increase of time, 

𝑈𝐵(𝑛, 𝑡), 𝑛 = 0,1,2 are decreasing functions in time. Moreover, for each recorded value 

of time, by increasing the value of 𝑛, 𝑈𝐵(𝑛, 𝑡), 𝑛 = 0,1,2 are increasing functions. More 

interestingly, this reveals that 𝑈𝐵(𝑛, 𝑡) acts as decreasing function in time and an 

increasing function with respect to 𝑛. Fundamentally, the increase of time  and 

𝑛impacts 𝑈𝐵(𝑛, 𝑡) to depict longer heavy tails. This translates to seeing the longest 
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heavy tails for 𝑈𝐵(2, 𝑡), and these tails become shorter for 𝑈𝐵(1, 𝑡) and the shortest 

would be for 𝑈𝐵(0, 𝑡).  

 

 

Figure 6.3. Significant Impact of time and 𝑛 on 𝐿𝐵(𝑛, 𝑡) 

Reading Figure 6.3, 𝐿𝐵(𝑛, 𝑡)is decreasing in time and increasing as 𝑛 increases. More 

potentially, the graph representation of 𝐿𝐵(𝑛, 𝑡) produces shorter heavy tails by the 

increase of time and 𝑛. This shows a complete converse scenario in comparison to 

the recorded heavy tails phenomena in 𝑈𝐵(𝑛, 𝑡). 

In mathematical terms, as time becomes sufficiently large( 𝑡 → ∞), it follows that 

𝑙𝑖𝑚𝑡→∞𝑈𝐵(𝑛, 𝑡) = 𝑙𝑖𝑚𝑡→∞
2(𝑛+1)

3(𝑡)
3
2√𝑛!

= 0 = 𝑙𝑖𝑚𝑡→∞  (−
𝑒
−
1
𝑡

2(𝑛!)
) = 𝑙𝑖𝑚𝑡→∞ (−

1

2(𝑛!)
)∫ 𝑒−

1

𝑡
𝑡

0

1

𝑡2
𝑑𝑡 

                               =  𝑙𝑖𝑚𝑡→∞𝐿𝐵(𝑛, 𝑡)                                                                         (6.20)              

Engaging the findings of Eqs. (6.9) and (6.20), it holds that as time reaches infinity, 

𝑛 = 0,1,2 
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 𝑙𝑖𝑚𝑡→∞ℒ𝑀/𝑀/∞ (𝑡) = 0                                       (6.21) 

Notably , it is shown that for 𝑀/𝑀/∞ transient queueing system(Kumar et al. 2014; 

Kulkarni 2016) as 𝑡 → ∞, the correspondent steady state probability density function, 

𝑝𝑛 is devised by 

𝑝𝑛 = 
𝜌𝑛

𝑛!
𝑒−𝜌, 𝑛 = 0,1,2, ….                                                           (c.f., (6.8)) 

Since 𝑝𝑛(c.f., (6.8)) does not depend on time, then we have by the definition of IL, (c.f., 

(2.34), (2.35)), that the  corresponding stability phase of 𝑀/𝑀/∞ queueing system has 

an underlying zero information length, that is: 

 𝑙𝑖𝑚𝑡→∞ℒ𝑀/𝑀/∞ (𝑡) = 0, 𝑛 = 0,1,2, 𝑀/𝑀/∞  is stable                        (6.22) 

Clearly, equations (6.21) and (6.22) are equivalent. This provides a strong validation 

of both obtained mathematical and numerical results. The strategy of the proof can  be 

extended to the remaining values of 𝑛 = 3,4,5, …..,which will show that 𝑈𝐵(𝑛, 𝑡) will 

start to decrease in both (𝑛, 𝑡), i.e, the behavioural trend will reverse in terms of the 

Increasability phase in 𝑛. More interestingly, it can be verified that  𝐿𝐵(𝑛, 𝑡) will never 

change its behavioural trend in (𝑛, 𝑡) by being temporarily decreasing and increasing 

with the respective increase of 𝑛.   

In a more detailed account, communicating (Guichard 2017), it could be analytically 

demonstrated that  𝑈𝐵(𝑛, 𝑡) and 𝐿𝐵(𝑛, 𝑡) (c.f., 6.19) are both (increasing 

in 𝑡)(decreasing in 𝑛) by showing that : 

I) 
  𝜕𝑈𝐵(𝑛,𝑡)

𝜕𝑡
< 0,

𝜕𝑈𝐵(𝑛,𝑡)

𝜕𝑛
  > 0                                                                                                           (6.23) 

II)  
𝜕𝐿𝐵(𝑛,𝑡)

𝜕𝑡
< 0,

𝜕𝐿𝐵(𝑛,𝑡)

𝜕𝑛
  > 0                                                                                                         (6.24) 
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We have  

 𝜕𝑈𝐵(𝑛,𝑡)

𝜕𝑡
=  

 𝜕

𝜕𝑡
(

2(𝑛+1)

3(𝑡)
3
2√(𝑛!)

) = −
(𝑛+1)

(𝑡)
5
2√𝑛!

 < 0 for all 𝑡 > 0                      (6.25) 

Additionally, engaging (Peng 2020), the Stirling formula to compute 𝑛! is written as 

𝑛! ∼ √(2𝜋𝑛) (
𝑛

𝑒
)
𝑛

,       𝑛 = 3,4, …                                                                           (6.26) 

 𝜕𝑈𝐵(𝑛,𝑡)

𝜕𝑛 
∼

2

3(𝑡)
3
2(2𝜋)

1
4

 
 𝜕

𝜕𝑛 
 (

(𝑛+1)

(
𝑛

𝑒
)

𝑛
2𝑛

1
2

) = 
2

3(𝑡)
3
2(2𝜋)

1
4

 
 𝜕

𝜕𝑛 
 ((𝑛

1

2 + 𝑛−
1

2) (
𝑛

𝑒
)
−
𝑛

2
) 

=
2

3(𝑡)
3
2(2𝜋)

1
4

  ((
1

2
𝑛−

1

2 −
1

2
𝑛−

3

2) (
𝑛

𝑒
)
−
𝑛

2
+ (𝑛

1

2 + 𝑛−
1

2) (−
1

2
(𝑙𝑛𝑛−1) − 

1

2
) ((

𝑛

𝑒
)
−
𝑛

2
)) 

=
(
𝑛

𝑒
)
−
𝑛
2

3(𝑡)
3
2(2𝜋)

1
4

  ((𝑛−
1

2(1 − 𝑙𝑛𝑛) − 𝑛−
3

2) − (𝑛
1

2)𝑙𝑛𝑛 ) < 0, 𝑛 = 3,4, …                                  (6.27) 

This proves (I). 

On the other hand, we have  

 𝜕𝐿𝐵(𝑛,𝑡)

𝜕𝑡
=  

 𝜕

𝜕𝑡
(−

𝑒
−
1
𝑡

2(𝑛!)
) = −(

𝑒
−
1
𝑡

2(𝑛!)𝑡2
)  < 0 for all 𝑡 > 0, 𝑛 = 3,4, …                      (6.28) 

Additionally,  

 𝜕𝐿𝐵(𝑛, 𝑡)

𝜕𝑛 
∼ (−

𝑒−
1
𝑡

2√(2𝜋)
) 
 𝜕

𝜕𝑛
(𝑛−

1
2 (
𝑛

𝑒
)
−𝑛

) 

                   = (−
𝑒
−
1
𝑡  (

𝑛

𝑒
)
−
𝑛
2

2√(2𝜋)
) (−

1

2
𝑛−

3

2 − 𝑛−
1

2𝑙𝑛𝑛) 
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                      = (
𝑒
−
1
𝑡𝑛

−
3
2 (

𝑛

𝑒
)
−
𝑛
2

4√(2𝜋)
) (1 + 2𝑛𝑙𝑛𝑛) > 0  for all 𝑡 > 0, 𝑛 = 3,4, …                        (6.29) 

Hence, (II) follows. 

Fundamentally, we have demonstrated with strong supporting mathematical evidence 

that the undertaken experiments agree with the analytic proofs.  

6.4 Chapter Summary 

This chapter contributes to the establishment of Information Length Theory of 

Transient Queueing Systems. The novel mathematical derivations are undertaken by 

finding the integral formula of the information length of the transient 𝑀/𝑀/∞ queuing 

system. Because of the complexity to derive the closed form result of the later integral 

formula, both the upper and the  lower bounds of that integral, namely 

𝑈𝐵(𝑛, 𝑡), 𝐿𝐵(𝑛, 𝑡))  were derived.  

More interestingly, it is observed that 𝑈𝐵(𝑛, 𝑡), 𝐿𝐵(𝑛, 𝑡)) are both (𝑛, 𝜌(𝑡))-dependent, 

𝑛 = 0,1, 2, … .., with 𝜌(𝑡) to define the time-dependent server utilization of the transient 

𝑀/𝑀/∞ queuing system. Moreover, these analytic findings were validated 

numerically. 
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7.Conclusions 

The properties of the family of Rényi's generalised entropies (RGEs) which are 

classified as being information theoretic, notably as probabilistic techniques for 

inductive inference, have primarily been documented in the continuous-time domain 

in the past state of available knowledge. An original extension of these properties into 

the discrete-time domain, a generalisation of an analytical result on the interpretation 

of maximum entropy (ME) formalism as a consistency requirement, and a 

determination of the Probability Vector Updates (PV-updates), based on a reworking 

of prior information-theoretic results on minimum cross entropy, are devised in this 

chapter.  

Reflecting on the key aims of this thesis, in chapter four, new addition to knowledge in 

the field of stable queues, specifically focusing on the information theoretic impact of 

a non-extensive parameter has been revealed. This impact has led to the development 

of two new state probabilities, the Rényian and Tsallisian closed form expressions, for 

the underlying stable 𝑀/𝐺/1 queueing system. The derived solutions have been proven 

to be exact and credible, satisfying three consistency axioms while defying one due to 

the non-extensivity impact. 

Chapter five  highlights a significant advancement in queueing theory by integrating it 

with various mathematical fields such as differential geometry, information theory, 

matrix theory, and information geometry (IG). This integration allows for the application 

of info-geometric techniques, which provide a powerful approach to studying queue 

stability and revolutionizing classical queueing theory through innovative IG methods. 

This interdisciplinary approach opens new possibilities for understanding and 

optimizing queueing systems. 
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Chapter six discusses the connection between Information Length Theory (ILT) and 

Transient Queueing Systems (TQSs). It explains how upper and lower bounds of the 

data information length can be derived for a transient 𝑀/𝑀/∞ queuing system, based 

on the time-dependent server utilization 𝜌(𝑡). The impact of time on the behavior of the 

derived bounds is illustrated through a numerical experiment, and potential real-life 

applications of the transient 𝑀/𝑀/∞ queuing system are mentioned. 

7.1. Limitations 

The fundamental drawback of this study endeavour in the latter situation is the time 

independence anticipated in stable queueing systems. Potentially, it is not possible to 

compute the corresponding information length(IL) for stable queueing systems based 

on time independence, perhaps this could lead to the re-definition of a novel form of 

information length formalism that is not based on time but is based on the underlying 

queueing parametrization.  

Generalized ℤ entropy function has been used to characterise non-extensive entropy 

maximisation axiomatically (Mageed and Zhang 2022(b)). The new ME solutions 

developed in this thesis are special cases of the heavy-tailed solutions derived using 

non-extensive entropies, subject to the same prior information constraints, because 

both Rényian and Tsallisian entropy functionals are special cases of non-extensive 

Generalized ℤ entropy (Mageed and Zhang 2022(b)). The research presented in this 

thesis thus provides examples that may be utilised to test and create new heavy-tailed 

ME queueing systems. 

7.2. Future directions 

Future goals for this research include the provision of info-geometric queueing theory 

(IGQT), information length theory of transient queueing systems, and unique 
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methodologies developed in this thesis as steppingstones toward the modern 

unification of information theory with queuing theory (ILTTQSs).  

The following are some challenging open problems that have arisen because of this 

research: 

1.It is to be recalled experimentally, for the undertaken extended properties for the 

Generalized Rényian entropy functional in the discrete time domain, 𝐻𝑞
𝐿 , it has been 

proven that  for  𝑞 (−1,∞)  lim
𝑞→𝑎

𝐻𝑞 
𝐿  =  𝐻𝑎 

𝐿  , namely, the limit theory.The challenging 

unsolved open problem till current is to prove or disprove that  

lim
𝑞→𝑎

𝐻𝑞 
𝐿  =  𝐻𝑎 

𝐿   for 𝑞 (−∞,1) 

2. More complicated open questions appear in the horizon such as the provision of 

these extended properties in discrete time domains for higher order generalized 

entropies  that generalize Rényian entropy functional such as Generalized ℤ entropy 

and others in the literature, as well as proving or disproving the limit theory for the 

Generalized ℤ entropy corresponding to any real value for the information-theoretic 

parameter 𝑞  (Mageed and Zhang 2022(b)). 

3.Is it feasible to obtain EME and NME formalisms (consequently, short-range, and 

long-range interactions, respectively) for a more complicated philosophical forms of 

entropic measures that generalize this current work (Mageed and Zhang 2022(b)).  

4.If adding higher level moments to the prescribed set of constraints , what form will 

the new derivations take and what type of GE will be generated. If this is the case, can 

we generate both service time PDF and CDF that make our solution exact? It is 

expected that these newly derived service time PDF and CDF will involve parameters 

that correspond to the added higher moments within the prescribed constraints. 
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5. Following the foundational achievements of this thesis, there are several next phase 

advancements of IG analysis of all the available categories of queueing systems in the 

literature. More interestingly, the provision of info-geometric analysis of the dynamics 

of transient queueing systems. 

6. Following the novel derivations of the information length approach for the 

transient 𝑀/𝑀/∞ queuing system, another development to the theory will be the 

unification of IL theory with several phenomena in physics, for example, the IL 

interpretation of photon statistics and generalized Brownian motion. Additionally, 

undertaking further advancements to IL for other  transient queueing systems.  
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Appendix A 

Detailed proofs of chapter three 

A.1. The proof of the uniqueness property (3.4.1)  

Herewith, there are only  three possibilities: 

First possibility: 𝑞 > 0 

We know that     (∑ 𝑥𝑖
𝑞+1𝐽=2𝑛

𝑖=1 )−1/𝑞 is maximal if and only if ∑ 𝑥𝑖
𝑞+1𝐽=2𝑛

𝑖=1  is minimal. 

Firstly, the convexity of  𝑥𝑞+1 is required to be demonstrated on the unit interval [0,1]. 

Hence,𝑑2𝑔/𝑑𝑥2 = 𝑞(𝑞 + 1)𝑥𝑞−1 and this implies 𝑑2𝑔/𝑑𝑥2 > 0 for all 𝑥 ∈(0,1]. 

Secondly, it is a must to prove the convexity of   ∑ 𝑥𝑖
𝑞+1𝐽=2𝑛

𝑖=1  is  on ℚ𝐿, i.e. that for all 0 ≤

𝜆 ≤ 1, any two elements  𝑎→, 𝑏→ in  ℚ𝐿, ∑ (𝜆𝑎𝑖 + (1 − 𝜆)𝑏𝑖)
𝑞+1

𝑖 ≤ 𝜆∑ 𝑎𝑖
𝑞+1 + (1 −𝑖

𝜆)∑ 𝑏𝑖
𝑞+1

𝑖  , this reads as  

∑ (𝜆𝑎𝑖 + (1 − 𝜆)𝑏𝑖)
𝑞+1

𝑖 − (𝜆∑ 𝑎𝑖
𝑞+1 + (1 − 𝜆)∑ 𝑏𝑖

𝑞+1
𝑖𝑖 ) ≤ 0   for all 𝑎→, 𝑏→ ∈ ℚ𝐿    (A.1) 

 (=0 if and only if ai = 𝑏𝑖 ).Engaging the convexity of 𝑥𝑞+1, one gets 

 𝜆𝑎𝑞+1 + (1 − 𝜆)𝑏𝑞+1 ≥ (𝜆𝑎 + (1 − 𝜆)𝑏)𝑞+1                                   (A.2) 

Equality holds in  (A.2) whenever 𝑎 = 𝑏. Hence, we get : 

∑ (𝜆𝑎𝑖 + (1 − 𝜆)𝑏𝑖)
𝑞+1

𝑖 ≤ (𝜆∑ 𝑎𝑖
𝑞+1 + (1 − 𝜆)∑ 𝑏𝑖

𝑞+1
𝑖𝑖 )                          (A.3) 

as required because of the continuity of ∑ 𝑥𝑖
𝑞+1

𝑖  is over ℚ𝐿 together with the 

compactness of    𝑉𝐿(𝐾) , it follows that 𝑎→𝜖 𝑉𝐿(𝐾) is a minmum point. Let  a distinct 

point 𝑏→𝜖 𝑉𝐿(𝐾) be  another assumed minimum, this implies ∑ 𝑎𝑖
𝑞+1

𝑖 = ∑ 𝑏𝑖
𝑞+1

𝑖 . 

Because of the strict convexity of   ∑ 𝑥𝑖
𝑞+1

𝑖 ,it could be obtained that ∑ (
𝑎𝑖+𝑏𝑖

2
)𝑞+1𝑖 <

1

2
∑ 𝑎𝑖

𝑞+1 +𝑖  
1

2
∑ 𝑏𝑖

𝑞+1
𝑖 =  ∑ 𝑎𝑖

𝑞+1
𝑖 (contradiction). Thus, there exists a unique  

maximal point of (∑ 𝑥𝑖
𝑞+1

𝑖 )−1/𝑞  whenever 𝑞 > 0. 
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Second possibility: Following the definition, 𝐻0
𝐿 = ME holds.  

Third possibility: 0 > 𝑞 > −1,the proof is like case 1. 

A.2. The proof of the null limit (3.4.2) 

It is needed to demonstrate that : (i) if given 휀 > 0 ∃𝛿 > 0 such that if  

|𝑞| < 𝛿, 𝑥→𝜖ℚ𝐿 , |𝑙𝑜𝑔(∑ 𝑥𝑖
𝑞+1

𝑖 )
−
1

𝑞 + ∑ 𝑥𝑖𝑙𝑜𝑔𝑥𝑖
𝐽
𝑖=1 | < 휀 which is the same as proving 

|(1/𝑞)𝑙𝑜𝑔∑ 𝑥𝑖
𝑞+1

𝑖 − ∑ 𝑥𝑖𝑙𝑜𝑔𝑥𝑖
𝐽
𝑖=1 | < 휀. (ii) 𝑎→(𝑞) = < 𝑎1

(𝑞)
, … , 𝑎𝐽

(𝑞)
> is the point in 

 VL(K) at which log(∑ xi
q+1

i )
-
1

q is maximum, then  𝑙𝑖𝑚𝑞→0 𝑎
→(𝑞) = 𝑎→(0). To show (i), 

we know that by using the Taylor expansion for 𝑙𝑜𝑔(∑ 𝑥𝑖
𝑞+1

𝑖 )
−
1

𝑞 around 𝑞 =

0, 𝑙𝑜𝑔 (∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1 ) − 𝑙𝑜𝑔 (∑ 𝑥𝑖)
𝐽
𝑖=1 = (𝑞 [

𝑑

𝑑𝑡
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=0
+

𝑞2

2
[
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
)  

where 0 < 𝜃𝑥→ < 𝑞. We know that  log ∑ 𝑥𝑖𝑖 = 0 , since  ∑ 𝑥𝑖𝑖 = 1 and consequently, 

one gets: 

𝑙𝑜𝑔(∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1 ) = (𝑞 [
𝑑

𝑑𝑡
(𝑙𝑜𝑔(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=0
+
𝑞2

2
[
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
)  

(𝑞 [
𝑑

𝑑𝑡
(𝑙𝑜𝑔(∑ 𝑥𝑖

𝑟+1𝐽
𝑖=1 ))]

𝑡=0
+
𝑞2

2
[
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
) =  (𝑞[(∑ 𝑥𝑖

𝑡+1
𝑖 𝑙𝑜𝑔 𝑥𝑖/

(∑ 𝑥𝑖
𝑡+1𝐽

𝑖=1 ))]
𝑡=0

+
𝑞2

2
[
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
) =(𝑞[(∑ 𝑥𝑖𝑖 𝑙𝑜𝑔 𝑥𝑖/(∑ 𝑥𝑖

𝐽
𝑖=1 ))]

𝑡=0
+

𝑞2

2
[
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
)  

which implies 

 
𝑙𝑜𝑔(∑ 𝑥𝑖

𝑞+1𝐽
𝑖=1 )

𝑞
− ∑ 𝑥𝑖𝑖 𝑙𝑜𝑔𝑥𝑖 = 

𝑞

2
[
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
                                         (A.4) 
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 We are to show that : [
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
 has an independent of 𝑥→ upper 

bound.  As already known,   

𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 )) = 

(∑ 𝑥𝑖
𝑡+1(𝑙𝑜𝑔𝑥𝑖)

2
𝑖 )−(∑ 𝑥𝑖

𝑡+1
𝑖 𝑙𝑜𝑔𝑥𝑖)

2

(∑ 𝑥𝑖
𝑡+1𝐽

𝑖=1
)
2  

This implies: 

 [
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
≤ [

(∑ 𝑥𝑖
𝜃𝑥→+1(𝑙𝑜𝑔𝑥𝑖)

2
𝑖 )

∑ 𝑥𝑖
𝜃𝑥→+1𝐽

𝑖=1

+ 
(∑ 𝑥𝑖

𝜃𝑥→+1𝑖 𝑙𝑜𝑔𝑥𝑖)
2

(∑ 𝑥𝑖
𝜃𝑥→+1𝐽

𝑖=1 )
2 ]                          (A.5) 

From elementary calculus we have 

    𝑙𝑖𝑚𝑥↘0𝑥𝑙𝑜𝑔𝑥 =  𝑙𝑖𝑚𝑥↘0𝑥(𝑙𝑜𝑔𝑥)
2                                     (A.6) 

This will imply that: 

𝑓(𝑥) = 𝑥𝑙𝑜𝑔𝑥, 𝑔(𝑥) = 𝑥(𝑙𝑜𝑔𝑥)2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  0 < 𝑥 ≤ 1, 𝑓(0) = 𝑔(0) = 0 

|∑ 𝑥𝑖
𝜃𝑥→+1(𝑙𝑜𝑔𝑥𝑖)

2

𝑖
| ≤ ∑|𝑥𝑖

𝜃𝑥→+1(𝑙𝑜𝑔𝑥𝑖)
2|

𝑖

= ∑|𝑥𝑖
𝜃𝑥→|𝑥𝑖(𝑙𝑜𝑔𝑥𝑖)

2|

𝑖

≤∑ 𝑥𝑖(𝑙𝑜𝑔𝑥𝑖)
2

𝑖
 

The continuity requirement holds for both 𝑓 and 𝑔. Additionally, we have 

 (We can drop 𝜃𝑥→ because |𝑥𝑖
𝜃𝑥→|  ≤ 1 since  0 ≤ 𝑥 ≤ 1, 0 ≤ 𝜃𝑥→ < 𝑟) 

                                        ≤ ∑ 𝑀2
2𝑛

𝑖=1 = 2𝑛𝑀2                                                                                       (A.7)              

Similarly, we have 

 (∑ 𝑥𝑖
𝜃𝑥→+1𝑙𝑜𝑔𝑥𝑖𝑖 )2 ≤ (∑ 𝑥𝑖𝑙𝑜𝑔𝑥𝑖𝑖 )2 ≤ (∑ 𝑀1

2𝑛

𝑖=1 )2 = 22𝑛𝑀1
2                           (A.8) 

By ∑ 𝑥𝑖 = 12𝑛

𝑖=1 , then  𝑥𝑖 ≥ 
1

2𝑛
for some 𝑥𝑖  . equating the remaining  𝑥𝑖

′ 𝑠 to zero,  yields  

∑ 𝑥𝑖
𝜃𝑥→+1 ≥ (

1

2𝑛
)
𝜃𝑥→+1

                                                                          (𝑖 A.9) 
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By (A.7) and (A.9), one gets:  

[
(∑ 𝑥𝑖

𝜃𝑥→+1(𝑙𝑜𝑔𝑥𝑖)
2

𝑖 )

∑ 𝑥𝑖
𝜃𝑥→+1

𝐽
𝑖=1

] ≤ 2𝑛𝑀2 (
1

2𝑛
)
𝜃𝑥→+1

= (2𝑛)𝜃𝑥→+2 𝑀2⁄            (A.10) 

Also, we have by (A.8) and (A.9) that: 

 |
(∑ 𝑥𝑖

𝜃𝑥→+1𝑖 𝑙𝑜𝑔𝑥𝑖)
2

(∑ 𝑥𝑖
𝜃𝑥→+1𝐽

𝑖=1 )
2  |≤ 22𝑛𝑀1

2 (
1

2𝑛
)
𝜃𝑥→+1

= (2𝑛)𝜃𝑥→+3 𝑀1
2⁄          (A.11) 

Thus, we have by (A.10) and (A.11) that:                                                               

[
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
≤  [(2𝑛)𝜃𝑥→+2 𝑀2 + (2

𝑛)𝜃𝑥→+3 𝑀1
2] 

                                                      < (2𝑛)𝜃𝑥→+3(𝑀2 +𝑀1
2)                                                             (A.12)                             

By  q ↘0, let 𝑟 ≤ 2. Then,  𝜃𝑥→  < 2 . Replacing 𝜃𝑥→ + 3 within (A.12), it follows that 

[
𝑑2

𝑑𝑡2
(log(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ))]

𝑡=𝜃𝑥→
< 25𝑛(𝑀2 +𝑀1

2 )  (A.13).  Choosing M  to be such that  

𝑀 = (𝑀2 +𝑀1
2) 

We have from (A.4) and (A.13) that  |
𝑙𝑜𝑔(∑ 𝑥𝑖

𝑞+1𝐽
𝑖=1 )

𝑞
− ∑ 𝑥𝑖𝑖 𝑙𝑜𝑔𝑥𝑖| < (

𝑞

2
)𝑀 < (𝛿/2)𝑀. 

Now choosing our 𝛿 to be such that 𝛿 ≤ 2휀/𝑀 implies the needed outcome. 

Following the same logic, we can derive the proof when 𝑞 < 0. As for (ii), Assuming 

the contrary, then there exists  a subsequence 𝑎→(𝑞𝑛)  when 𝑞𝑛  ↘ 0 for which  

𝑙𝑖𝑚𝑛→∞ 𝑎
→(𝑞𝑛) = 𝑏→ ≠  𝑎→(0). Hence, ∃ a number   𝜂 𝜖 (0,1) such that  ∑ 𝑏𝑖𝑖 𝑙𝑜𝑔𝑏𝑖 −

∑ 𝑎𝑖
(0)

𝑖 𝑙𝑜𝑔𝑎𝑖
(0)
> 𝜂 > 0 and by the compactness of 𝑉𝐿(𝐾),we have  𝑏→  ∈  𝑉𝐿(𝐾). If we 

choose 𝛿 > 0such that |𝑞| <  𝛿, we have: 

|
𝑙𝑜𝑔(∑ 𝑥𝑖

𝑞+1𝐽
𝑖=1 )

𝑞
−∑ 𝑥𝑖

𝑖
𝑙𝑜𝑔𝑥𝑖| <

𝜂

13
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for all 𝑥→  ∈  𝔻𝐿.  Now, since 𝑞𝑛  ↘ 0, pick 𝑞𝑛  such that  0 < |𝑞𝑛| < 𝛿,  

|∑𝑎𝑖
(𝑞𝑛)

𝑖

𝑙𝑜𝑔𝑎𝑖
(𝑞𝑛) −∑𝑏𝑖

𝑖

𝑙𝑜𝑔𝑏𝑖| <
𝜂

13
 

From this we obtain 

1

𝑞𝑛
log (∑ (𝑎𝑖

(0)
)1+𝑞𝑛𝑖 ) ≤ ∑ (𝑎𝑖

(0)
)𝑖 𝑙𝑜𝑔(𝑎𝑖

(0)
)+

𝜂

13
  

                                    < ∑ 𝑏𝑖𝑖 𝑙𝑜𝑔𝑏𝑖 −
12𝜂

13
 

                                         < (∑ (𝑎𝑖
(𝑞𝑛)) 𝑙𝑜𝑔(𝑎𝑖

(𝑞𝑛))𝑖 ) +
𝜂

13
−
12𝜂

13
  

                                        ≤  (
1

𝑟𝑛
log (∑ (𝑎𝑖

(0)
)1+𝑞𝑛𝑖 )) +

𝜂

13
−
12𝜂

13
  

                                       < (
1

𝑞𝑛
log (∑ (𝑎𝑖

(0)
)1+𝑞𝑛𝑖 )) 

Which results in the necessary contradiction. For 𝑞𝑛 ↗ 0, a largely equivalent proof 

holds true. 

A.3. The full proof of the limit theorem (3.4.3) 

(𝑖) The uniform convergence can be demonstrated  if we proved that  if given 휀 > 0 

∃ 𝛿 > 0 such that : 

    |𝑞 − 𝑎| < 𝛿, then |(∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1 ) − (∑ 𝑥𝑖
𝑎+1𝐽

𝑖=1 )| < 휀 for all 𝑥→ ∈ ℚ𝐿 .  

(𝑖𝑖)If 𝑏→(𝑞) = < 𝑏1
(𝑞)
, … , 𝑏𝐽

(𝑞)
>  is the point in 𝑉𝐿(𝐾)at which   ∑ 𝑥𝑖

𝑞+1𝐽
𝑖=1   is maximal 

(minimal), then:   

𝑙𝑖𝑚𝑞→𝑎 𝑏→(𝑞) = 𝑏→(𝑎). To show (i), we know that by using the Taylor expansion for 

∑ xi
q+1J

i=1    around q =a one gets 
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 (∑ xi
q+1J

i=1 )-(∑ xi
a+1J

i=1 )  

             = (𝑞 − 𝑎) [
𝑑

𝑑𝑡
(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ) ]

𝑡=𝑎
+ 

(𝑞−𝑎)2

2
[
𝑑2

𝑑𝑡2
(∑ 𝑥𝑖

𝑡+1𝐽
𝑖=1 ) ]

𝑡=𝜃𝑥→
         (A.13)                   

where  0 < 𝜃𝑥→ < 𝑞.  Thus we have   

 (∑ xi
q+1J

i=1 )-(∑ xi
a+1J

i=1 ) = (𝑞 − 𝑎)[(∑ 𝑥𝑖
𝑎+1𝐽

𝑖=1 𝑙𝑜𝑔𝑥𝑖) ]𝑡=𝑎 +

 
(𝑞−𝑎)2

2
[(∑ 𝑥𝑖

𝑡+1(𝑙𝑜𝑔𝑥𝑖)
2𝐽

𝑖=1 ) ]
𝑡=𝜃𝑥→

   (A.14) 

We are to show that (∑ 𝑥𝑖
𝑎+1𝐽

𝑖=1 𝑙𝑜𝑔𝑥𝑖)   and 

 [(∑ 𝑥𝑖
𝑡+1(𝑙𝑜𝑔𝑥𝑖)

2𝐽
𝑖=1 ) ]

𝑡=𝜃𝑥→
   have an  independent of   𝑥→ upper bound.  As known 

that that for any real number  𝛽 > 0 it holds that: 

 𝑙𝑖𝑚𝑥↘0𝑥
𝛽(𝑙𝑜𝑔𝑥)2                                                                     (A.15)  

This will imply that: 

𝑓(𝑥) =  𝑥𝑎+1(𝑙𝑜𝑔𝑥)2 and 𝑔(𝑥) =   𝑥𝑎+1𝑙𝑜𝑔𝑥  for  0 < 𝑥 ≤ 1, 𝑓(0) =  0 = 𝑔(0) =    

are continuous functions and hence are bounded on [0,1] by 𝑀3  and 𝑀4   respectively. 

Hence, we obtain: 

|(∑ 𝑥𝑖
𝜃𝑥→+1(𝑙𝑜𝑔𝑥𝑖)

2𝐽
𝑖=1 )| ≤ ∑ |𝑥𝑖

𝜃𝑥→+1(𝑙𝑜𝑔𝑥𝑖)
2|𝑖  = ∑ |𝑥𝑖

𝜃𝑥→−𝑎𝑥𝑖
𝑎+1(𝑙𝑜𝑔𝑥𝑖)

2|𝑖 =

 ∑ |𝑥𝑖
𝜃𝑥→−𝑎||𝑥𝑖

𝑎+1(𝑙𝑜𝑔𝑥𝑖)
2|𝑖  

     (We can drop   𝜃𝑥→ − 𝑎   here because |𝑥𝑖
𝜃𝑥→−𝑎| ≤ 1   since  0 ≤ x ≤ 1 ,  

0 < θx→ < q ) 

                                                 ≤ ∑ |𝑥𝑖
𝑎+1(𝑙𝑜𝑔𝑥𝑖)

2
𝑖 | = 2𝑛𝑀3                                         (A.16)                                                            

 Similarly, we have 



136 
 

  ∑ |𝑥𝑖
𝑎+1 𝑙𝑜𝑔𝑥𝑖𝑖 | ≤ 2𝑛𝑀4                                                                    (A.17)  

Therefore, we obtain: 

|(∑𝑥𝑖
𝑞+1

𝐽

𝑖=1

) − (∑𝑥𝑖
𝑎+1

𝐽

𝑖=1

)| ≤ [|𝑞 − 𝑎|2𝑛𝑀4 + (
|𝑞 − 𝑎|2

2
)2𝑛𝑀3]

< [2𝑛𝛿𝑀4 + (
𝛿2

2
)2𝑛𝑀3] 

                                                 < 2𝑛(𝛿𝑀4 + 𝛿𝑀3) =  2
𝑛𝛿(𝑀3 +𝑀4)                               (A.18)                                             

Now choosing our  𝛿 to be such that  𝛿 ≤ 휀/𝑀, the proof follows. Engaging the same 

argument, the proof holds in the case  q < a. To prove (ii), assuming the contrary.Then 

∃ a subsequence  𝑏→(𝑟𝑛)   when  𝑞𝑛 ↘ 𝑎  such that   𝑙𝑖𝑚𝑛→∞𝑏
→(𝑞𝑛) = 𝑐→ ≠ 𝑏→(𝑎), ∃ a 

positive number  𝜂𝜖 (0,1)    such that we have  

∑𝑐𝑖
𝑎+1

𝑖
−∑ (𝑏𝑖

(𝑎)
)𝑎+1

𝑖
> 𝜂 > 0 

and  by the compactness of 𝑉𝐿(𝐾),  𝑐→ϵ  𝑉𝐿(𝐾)(for −1 < 𝑎 < 0  it is enough to 

reverse the above inequality.  Choosing 𝛿 > 0   such that for  |q-a| < δ we have 

|(∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1 ) − (∑ 𝑥𝑖
𝑎+1𝐽

𝑖=1 )| <
𝜂

13
. Now since  qn ↘ a  , pick qn  such that |𝑞𝑛 − 𝑎| < 𝛿   

and from this we obtain:   

 ∑ (𝑏𝑖
(𝑞𝑛))

1+𝑞𝑛

𝑖 > ∑ (𝑏𝑖
(𝑞𝑛))

1+𝑟𝑛

𝑖 +
𝜂

13
+

𝜂

13
− (

12𝜂

13
) 

                          ≥ ∑ (𝑏𝑖
(𝑞𝑛))

𝑎+1

𝑖 +
𝜂

13
− (

12𝜂

13
) 

                        ≥ ∑ 𝑐𝑖
𝑎+1

𝑖 − (
12𝜂

13
) 

                             ≥ 
𝜂

13
 > ∑ 𝑐𝑖

𝑎+1
𝑖 − ∑ (𝑏𝑖

(𝑎))
𝑎+1

𝑖   (Contradiction) 

A similar proof works for qn ↗ a . 
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A.4. The full proof of the  property of principle of irrelevant information  

We know that 𝐻0
𝐿 = ME satisfies irrelevant information by part 2 of theorem (3.4.2). Let  

𝑞 > 0 and let 𝐾1   be the set of constraints 𝑥 + 𝑦 + 𝑧 = 1(𝑠𝑜 𝐵𝑒𝑙(¬p1⋀¬p2) =

0 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐𝑎𝑙𝑙𝑦)𝑁𝑦 + 𝑧 = 𝑓,where 𝑁 > 1 is large and  (1 + (
𝑁

𝑁−1
)

1

𝑞
)𝑓 =  1 

consequently,  

𝑑/𝑑𝑦[(1 − 𝑓 + (𝑁 − 1)𝑦)𝑞+1] + 𝑦𝑞+1 + (𝑓 − 𝑁𝑦)𝑞+1]𝑦=0 = 0 

From which it follows that   

𝐻𝑞
𝐿(𝐾1) (p1⋀¬p2)  = 0                                                        (A. 19) 

 Now, let 𝑥1 = 𝐵𝑒𝑙(p1⋀p2⋀p3), 𝑦1 = 𝐵𝑒𝑙(p1⋀¬p2 ⋀p3), 𝑧1 =

𝐵𝑒𝑙(¬p1⋀¬p2⋀p3), 𝑥2 = 𝐵𝑒𝑙(p1⋀p2⋀¬p3), 𝑦2 = 𝐵𝑒𝑙(p1⋀¬p2⋀¬p3), 𝑧2 =

𝐵𝑒𝑙(¬p1⋀¬p2⋀¬p3), and  let 𝐾2 be the set of constraints  𝐾1 + 𝐵𝑒𝑙(p3) = 𝑑, i.e.,that 

𝑥1 + 𝑥2 + 𝑦1 + 𝑦2 + 𝑧1 + 𝑧2 = 1,𝑁(𝑦1 + 𝑦2) + 𝑧1 + 𝑧2 = 𝑓, 𝑥1 + 𝑦1 + 𝑧1 = 𝑑,where1 >

𝑑 > 𝑓  satisfies, 

−𝑓𝑞 + (𝑑 − 𝑓)𝑞 − (1 − 𝑑)𝑞 = 0∗[* notice that there is such a d by the intermediate 

value theorem since,   replaced by 1, −𝑓𝑞 + (1 − 𝑓)𝑞 − (1 − 1)𝑞 > 0(𝑛𝑜𝑡𝑖𝑐𝑒 𝑓 < 1/2)] 

whilst with d replaced by 𝑓,−𝑓𝑞 + (𝑓 − 𝑓)𝑞 − (1 − 𝑓)𝑞 < 0. ] Now suppose 𝐻𝑞
𝐿 satisfied 

irrelevant information. Then, by language invariance, 𝐻𝑞
𝐿(𝐾2)(p1⋀¬p2) =

 𝐻𝑞
𝐿(𝐾1)(p1⋀¬p2) = 0  by (A.19). Therefore, by obstinacy Hq

L(K2) =  Hq
L(K3) , where 

K3 is the set of constraints   𝑦1 + 𝑦2 = 0  implying that 𝑥1 = 𝑑 − 𝑓 + 𝑧2 , 𝑧1 + 𝑧2 = 𝑓, 

𝑥1 + 𝑧1 = 𝑑 𝑔𝑖𝑣𝑖𝑛𝑔 𝑥2 = 1 − 𝑑 − 𝑧2.Now, 

 
𝑑

𝑑𝑧2
[(𝑓 − 𝑧2)

𝑞+1 + 𝑧2
𝑞+1 + (𝑑 − 𝑓 + 𝑧2)

𝑞+1 + (1 − 𝑑 − 𝑧2)
𝑞+1]𝑧2=0

= (𝑟 + 1)[−𝑓𝑞 + (𝑑 − 𝑓)𝑞 − (1 − 𝑑)𝑞] = 0  
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𝐻𝑞
𝐿(𝐾2)(p1⋀¬p2⋀¬p3) = 0. So, 𝐻𝑞

𝐿(𝐾2) =  𝐻𝑞
𝐿(𝐾3)  is the  determined solution to 𝐾3 

using 

           𝑥1 = 𝑑 − 𝑓, 𝑥2 = 1 − 𝑑, 𝑦1 = 𝑦2 = 0,   𝑧1 = 𝑓, 𝑧2 = 0                                      (A.20) 

However, 
𝑑

𝑑𝑡
[(𝑑 − 𝑓 + (𝑁 − 1)𝑡)𝑞+1 + (1 − 𝑡)𝑞+1 + 𝑡𝑞+1 + (𝑓 − 𝑁𝑡)𝑞+1]𝑡=0 

= (𝑞 + 1)[(𝑁 − 1)(𝑑 − 𝑓)𝑞 − 𝑁𝑓𝑞] = 0 < (𝑞 + 1)[(𝑁 − 1)(1 − 𝑓)𝑞 − 𝑁𝑓𝑞] = 0 

From which it follows that if 휀 > 0 is very small and  𝑥1
′ = 𝑑 − 𝑓 + (𝑁 − 1)휀, 𝑥2

′ = 1 −

𝑑, 𝑦1
′ = 휀, 𝑦2

′ = 0, 𝑧1
′ = 𝑓 − 𝑁휀, 𝑧2

′ = 0,then 

[(𝑥1
′)𝑞+1 + (𝑥2

′ )𝑞+1 + (𝑦1
′)𝑞+1 + (𝑦2

′)𝑞+1 + (𝑧1
′)𝑞+1 + (𝑧2

′ )𝑞+1] 

< (𝑑 − 𝑓)𝑞 + (1 − 𝑓)𝑞 + 0𝑞+1 + 0𝑞+1 + 𝑓𝑞 + 0𝑞+1 

 But this contradicts (A.20) since  𝑥1
′ , 𝑥2

′ , 𝑦1
′ , 𝑦2

′ , 𝑧1
′ , 𝑧2

′ = 0 is a solution  of 𝐾2. It follows 

that 𝐻𝑞
𝐿 cannot satisfy irrelevant information.  The following example shows that 𝐻−1/2

𝐿  

fails to satisfy irrelevant information:- Suppose that 𝐾1 is  𝑥 + 𝑦 + 𝑧 = 1, 3𝑦 + 𝑧 = 1, 

with 𝑥 = 𝐵𝑒𝑙(p1⋀p2), 𝑦 =  𝐵𝑒𝑙(p1⋀¬p2), 𝑧 =  𝐵𝑒𝑙(¬p1⋀¬p2). Then 𝐻−1/2
𝐿 (𝐾1) is the 

solution to these equations given by 𝑧 = 1 − 3𝑦, 𝑥 = 2𝑦, 𝑎𝑛𝑑  𝑦 =  
5+3√2

42
. Now let  𝐾2 

be 𝐾1 + 𝐵𝑒𝑙(p3)= 
5+3√2

42
 , so the equivalence between 𝑥1+𝑥2 + 𝑦1+𝑦2 + 𝑧1 + 𝑧2 = 1, 

3(𝑦1+𝑦2) + 𝑧1 + 𝑧2 = 𝑓, 𝑧1 = 
5+3√2

42
 and  𝐾2 holds ,where 𝑥1 = 𝐵𝑒𝑙(p1 ⋀p2⋀p3) etc. 

Taking 𝑦1, 𝑦2, 𝑧1 as the independent variables then 𝐻−1/2
𝐿 (𝐾1)  will be the solution of 

 
𝜕𝐷

𝜕𝑦1
=

𝜕𝐷

𝜕𝑦2
=

𝜕𝐷

𝜕𝑧1
= 0                                          (A.21)  

since 𝐻−1/2
𝐿  satisfies open-mindedness, where: 

𝐷 = √𝑥1 +√𝑥2 +√𝑦1 +√𝑦2 +√𝑧1 +√𝑧2 

Now assume that 𝐻−1/2
𝐿  did satisfy irrelevant information. Then 𝐻−1/2

𝐿 (𝐾2)(p1⋀¬p2) =

 𝑦1+𝑦2 = 
5+3√2

42
 .  
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So by obstinacy 𝐻−1/2
𝐿 (𝐾2) = 𝐻−1/2

𝐿 (𝐾3) where 𝐾3 = 𝐾2 + 𝐵𝑒𝑙(p1⋀¬p2)= 
5+3√2

42
, in other 

words 𝑦1 =
5+3√2

42
− 𝑦2 will hold for 𝐻−1/2

𝐿 (𝐾2) in    particular the equations in (A.21) 

viz:-  

−1

√(𝑎 − 𝑦1 − 𝑧1)
+

3

√(3𝑦1 + 2𝑦2 − 𝑎 + 𝑧1)
+

1

√𝑦1
−

3

√(1 − 3𝑦1 − 3𝑦2 − 𝑧1)
= 0, 

2

√(3𝑦1 + 2𝑦2 − 𝑎 + 𝑧1)
−

3

√(1 − 3(𝑦1 + 𝑦2) − 𝑧1)
+

1

√𝑦1
= 0, 

−1

√(𝑎−𝑦1−𝑧1)
+

3

√(3𝑦1+2𝑦2−𝑎+𝑧1)
+

1

√𝑧1
−

3

√(1−3𝑦1−3𝑦2−𝑧1)
= 0 , where = 

5+3√2

42
 , become with 

the substitution 

 𝑦1 = 𝑎 − 𝑦2,                     

−1

√(𝑦2−𝑧1)
+

3

√(2𝑎−𝑦2+𝑧1)
+

1

√(𝑎−𝑦2)
 = 0                                                 (A.22) 

2

√(2𝑎−𝑦2+𝑧1)
+

3

√(𝑦1)
−

3

√(1−3𝑎−𝑧1)
= 0                                               (A.23) 

         
2

√(𝑦2−𝑧1)
+

3

√(𝑧1)
−

2

√(1−3𝑎−𝑧1)
=  0                                              (A.24) 

Now (A.22) + (A.24) have the unique solution for   0 ≤ 𝑦2,  𝑧1 ≤ 1   of 𝑦2 =

0.16275594, 𝑧1 = 0.07534572(𝑡𝑜 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 5𝑑𝑝) 

However, substituting these values in the left-hand side of (A.23) gives value 0.01272 

instead of zero, giving the required contradiction! From these results we would 

conjecture that irrelevant information fails for 𝐻𝑞 whenever −1 < 𝑞 < 0.  

 

A.5. The full proof of relativisation principle 

Suppose that 𝐾1 , 𝐾2 𝜖 𝐶𝐿, 0 < 𝑐 < 1 and  

𝐾1 = {𝐵𝑒𝑙(∅) = 𝑐} + {∑ 𝑎𝑗𝑖
𝑟
𝑗=1 𝐵𝑒𝑙 (

𝜃𝑖

∅
) = 𝑏𝑖  | 𝑖 = 1,… ,𝑚},𝐾2 = 𝐾1 +

{∑ 𝑒𝑗𝑖
𝑞
𝑗=1 𝐵𝑒𝑙 (

𝜓𝑖

¬∅
) = 𝑓𝑖  | 𝑖 = 1,… , 𝑠}. 
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Also, suppose that 𝐾2
′ = 𝐾1

′ =  {𝐵𝑒𝑙(∅) = 1} + {∑ 𝑎𝑗𝑖
𝑟
𝑗=1 𝐵𝑒𝑙(𝜃𝑖⋀𝜙) = 𝑏𝑖  |𝑖 = 1, … ,𝑚}, 

𝐾1
′′ = {𝐵𝑒𝑙(¬∅) = 1},𝐾′2

′ =  {𝐵𝑒𝑙(¬∅) = 1} + {∑ 𝑎𝑗𝑖
𝑞
𝑗=1 𝐵𝑒𝑙(𝜓𝑖⋀𝜙) = 𝑓𝑖  |𝑖 = 1,… , 𝑠},and   

to simplify the notation suppose that 𝜙 = ⋁𝑖=1
ℎ 𝛼𝑖. If 𝐵𝑒𝑙

(2) satisfies 𝐾2, then 𝐵𝑒𝑙(2)(|∅) 

will satisfy 𝐾2
′ , 𝐵𝑒𝑙(2)(∅|∅) = 1, {∑ 𝑎𝑗𝑖

𝑟
𝑗=1 𝐵𝑒𝑙(2)(𝜃𝑖⋀𝜙) = 𝐵𝑒𝑙

(2)(𝜃𝑖|∅) = 𝑏𝑖  |𝑖 =

1, … ,𝑚}. Therefore,  𝐾2
′ is consistent since 𝐾2    is consistent by the assumption that 

𝐾2   CL. Similarly, 𝐾′2
′     is consistent. Let 𝜌→ = 𝐻𝑞

𝐿(𝐾2
′) = 𝜏→ = 𝐻𝑞

𝐿(𝐾′2
′ ) , 𝜈→ =

 𝐻𝑞
𝐿(𝐾2),So ∑ 𝜈𝑖

ℎ
𝑖=1 = 𝑐.    Now 𝐵𝑒𝑙(¬∅) = 1   ⇒  ∑ 𝜏𝑖

ℎ
𝑖=1 = 0 = ∑ 𝜌𝑖

𝐽
𝑖=ℎ+1 ⇒ ∑ 𝜏𝑗

ℎ
𝑗=1 =

1 = ∑ 𝜌𝑗
𝐽
𝑖=ℎ+1 . Also,  𝐵𝑒𝑙(¬∅) = 1    ⇒ ∑ 𝜏𝑗

ℎ
𝑗=1 = 1 = ∑ 𝜌𝑗

𝐽
𝑖=ℎ+1 . 𝐵𝑒𝑙(∅) = 𝑐   ⇒

 ∑ 𝐵𝑒𝑙(𝛼𝑖)
ℎ
𝑖=1 = 𝑐 from which it follows that  

∑ (𝑐𝜌𝑖
𝐽
𝑖=1 + (1 − 𝑐)𝜏𝑖) = 𝑐 ∑ 𝜌𝑖

𝐽
𝑖=1 + (1 − 𝑐) ∑ 𝜏𝑖

ℎ
𝑖=1 = 𝑐                              (A.25) 

Hence we have 𝑐𝜌→ + (1 − 𝑐)𝜏→𝜖𝑉𝐿(𝐾2). Similarly, we have  <
𝜈1

𝑐
, … ,

𝜈ℎ

𝑐
, 0,0,0 >

ϵ𝑉𝐿(𝐾2
′)  and < 0,0, . . ,0,

𝜈ℎ+1

1−𝑐
, … ,

𝜈𝑗

1−𝑐
> ϵ𝑉𝐿(𝐾2

′′). Now we shall study the following 

cases:  

Case I: ∞ > 𝑞 > 0 . The proof of case I is carried out by   the definition of 

𝐻𝑞
𝐿(𝐾),when  ∞ > q > 0  and putting 𝐸(𝑥→) =  ∑ 𝜈𝑖

𝑞+1𝐽
𝑖=1  =𝑐𝑞+1 𝐸(

𝜈1

𝑐
, … ,

𝜈ℎ

𝑐
, 0,0,0) + 

(1 − 𝑐)𝑞+1 𝐸(0,0, . . ,0,
𝜈ℎ+1

1−𝑐
, … ,

𝜈𝐽

1−𝑐
) ≥ 𝐸(𝑐𝜌→ + (1 − 𝑐)𝜏→) ≥  𝐸(𝜈→) which implies,  𝜈𝑖 =

𝑐𝜌𝑖  for   𝑖 = 1,… , ℎ. So, we have 𝐻𝑞
𝐿 (𝐾1)( 𝜃⋀𝜙) =  𝐻𝑞

𝐿 (𝐾2)( 𝜃⋀𝜙)  , for 𝜃𝜖 𝑆𝐿  and the 

result follows. The remaining cases for 𝑞 = 0 and −1 < 𝑞 < 0 are immediate. 

A.6 The full proof of independence property 

We shall consider the following: 𝐾 = {𝐵𝑒𝑙(𝑝1) = 1, 𝐵𝑒𝑙(𝑝2/𝑝1) = 𝑏 = 𝐵𝑒𝑙(𝑝3/𝑝1)} 
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Now, we'll demonstrate that for −1 < 𝑞, 𝑞 ≠ 0, 𝐻𝑞
𝐿 (𝐾)(𝑝2⋀𝑝3|𝑝1) ≠ 𝑏

2.Here we shall 

study the following cases: 

Case1: 𝑞 = 0                                                             Case 2:  −1 < 𝑞, 𝑞 ≠ 0 

Since 𝐻0
𝐿 = 𝑀𝐸,𝐻𝑞

𝐿(𝐾) satisfies independence for 𝑞 = 0 by theorem (3.3.2). As for the 

remaining cases, assume 𝑞 > 0 (the case for −1 < 𝑞 < 0 is similar) and let 𝑥1 =

𝐵𝑒𝑙(p1⋀p2⋀p3), 𝑥2 = 𝐵𝑒𝑙(p1⋀p2 ⋀¬p3), 𝑥3 = 𝐵𝑒𝑙(p1⋀¬p2⋀p3), 𝑥4 =

𝐵𝑒𝑙(p1⋀¬p2⋀¬p3), 𝑥5, 𝑥6, 𝑥7, 𝑥8 for the remaining atoms, we see that K yields the set 

of constraints 

 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1                                                  (A.26) 

 𝑥1 + 𝑥3 = 𝑏                                                  (A.27) 

Implying 

 x3 = b-x1                                      (A.28) 

And, we have 

  𝑥1 + 𝑥2 = 𝑏                                      (A.29)  

 which gives  

 x2 = b-x1                                   (A.30)  

Clearly, it follows that: 

 𝑥4 = 1 − 2𝑏 + 𝑥1                                                                    (A.31)  

But ∑ 𝑥𝑖
8
𝑖=1 = 1, together with (A.26) will give  𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 = 0, i.e., that: 

  𝑥5 = 𝑥6 = 𝑥7 = 𝑥8 = 0                                                          (A.32) 

Therefore, we have  

𝑉𝐿(𝐾) = {< 𝑥1, 𝑏 − 𝑥1, 1 − 2𝑏 + 𝑥1, 0,0,0,0 > |1 ≥ 𝑥1 ≥ 0,1 ≥ 1 − 2𝑏 + 𝑥1 ≥ 0,1 ≥ 𝑏 −

𝑥1 ≥ 0}                                                                                                                               (A.33) 

Assuming 𝑏 <
1

2
   and carrying on to find the range of  𝑥1 in 𝑉𝐿(𝐾) which satisfies the 

above three inequalities we have 1 ≥ 𝑏 − 𝑥1 ≥ 0 ⇒ 1 − 𝑏 ≥ −𝑥1 ≥ −𝑏 ⇒ 𝑏 − 1 ≤ 𝑥1 ≤
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𝑏.Since  𝑏 − 1 ≤ 0, the condition 𝑏 − 1 ≤ 𝑥1 is implied by 0 ≤ 𝑥1 and hence is 

redundant. So, we have  

𝑥1 ≤ 𝑏                                                                             (A.34) 

 Also, we have 1 ≥ 1 − 2𝑏 + 𝑥1 ≥ 0, which gives :  

2𝑏 ≥ 𝑥1 ≥ 2𝑏 − 1                                                          (A.35) 

 But 𝑏 <
1

2
 we have 2𝑏 − 1 ≤ 0  and hence the condition  2𝑏 − 1 ≤ 𝑥1  is implied by 0 ≤

𝑥1, so it is redundant.  Thus, we have:   

 𝑥1 ≤ 2𝑏                                                                          (A.36)   

which  is already implied by (A.34). Hence 𝑉𝐿(𝐾) will be 𝑉𝐿(𝐾) = {< 𝑥1, 𝑏 − 𝑥1, 𝑏 −

𝑥1, 1 − 2𝑏 + 𝑥1, 0,0,0,0 > |𝑥1𝜖[0, 𝑏]}.Now we are after 𝑥→ 𝜖𝑉𝐿(𝐾)  at  which 𝑓𝑞(𝑥1)= 

∑ 𝑥𝑖
𝑞+1𝐽

𝑖=1  is minimum, 𝑓𝑞(𝑥1) =  𝑥1
𝑞+1 + 2(𝑏 − 𝑥1)

𝑞+1 + (1 − 2𝑏 + 𝑥1)
𝑞+1 

𝑓𝑞
′(𝑥1) =  (𝑞 + 1)(𝑥1

𝑞 + 2(𝑏 − 𝑥1)
𝑞 + (1 − 2𝑏 + 𝑥1)

𝑞                                                         

If 𝑓𝑞
′(𝑥1) =  0, then 

 (𝑥1
𝑞 + 2(𝑏 − 𝑥1)

𝑞 + (1 − 2𝑏 + 𝑥1)
𝑞) = 0                          (A.37)  

We also have 

 𝑓𝑞
′′(𝑥1) =  𝑞(𝑞 + 1)(𝑥1

𝑞−1 + 2(𝑏 − 𝑥1)
𝑞−1 + (1 − 2𝑏 + 𝑥1)

𝑞−1            (A.38)  

𝑓𝑞
′′(𝑏2) =  𝑞(𝑞 + 1)(𝑏𝑞−1 + (1 − 𝑏)𝑞−1)2                             (A.39) 

Therefore, one gets 𝑓𝑞
′′(𝑏2) > 0 i.e., 𝑥1 = 𝑏2 will give a minimum value of 𝑓𝑞 <

𝑥1, 𝑥2, … , 𝑥𝐽 >. But 𝑥1 = 𝑏2 does not satisfy (A.38). To see this, assume that 𝑥1 = 𝑏2 

satisfies (A.38). This implies: 

(𝑏𝑞)2 − 2𝑏𝑞(1 − 𝑏)𝑞 + ((1 − 𝑏)𝑞)2 = 0 ⟺ 𝑏 =
1

2
 

This is a contradiction. So, since 0 <  𝑏2 < 𝑏 (recall the range of 𝑥1 here is[0, 𝑏] ), this 

cannot not be a minimum point of 𝑓𝑞(𝑥1
→).Therefore, we have 𝑁𝐿(𝐾)(𝑝2⋀𝑝3|𝑝1) ≠
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𝐻𝑞
𝐿(𝐾)(𝑝2|𝑝1).𝐻𝑞

𝐿(𝐾)(𝑝3|𝑝1) =  𝑏
2(Since 𝐻𝑞

𝐿(𝐾)(𝑝1) = 1). Hence, 𝐻𝑞
𝐿 does not satisfy 

independence at 𝑞 = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 
 

Appendix  B  

The credibility of Rényian NME formalisms  

Herewith, we are investigating the credibility of the derived Rényian closed form 

expression with respect to the four  axioms of consistency. 

B.1. Uniqueness 

In axiomatic terms, uniqueness read as "If the same problem is solved twice in exactly 

the same way, the same answer is expected in both situations, i.e., the solution should 

be unique," according to this axiom (Shore 1980). As for Rényi's entropy (c.f., (4.6)), 

let the converse statement holds by assuming that:  

   Hq
∗( fq,N) =  Hq

∗(hq,N)  for distinct fq,N,  hq,N, N > 0                    (B.1) 

 

Hence, ∑ fq,N
qN

n=1 =∑ hq,N
qN

n=1 , implying  ∑ (fq,N
qN

n=1 − hq,N
q
) = 0. Additionally, assume the 

contrary,  i.e., 𝑓𝑞,𝑁
𝑞
 ≠ ℎ𝑞,𝑁

𝑞
.This directly implies the existence of positive real number 

𝛾 > 1 satisfying  

 

fq,N
q
 =  γ hq,N

q
                                                                                      (B.2) 

Hence, 

     
1

1−q
(ln(∑ fq,N

qN
n=1 )) =   

1

1−q
(ln(γ)) + 

1

1−q
(ln(∑ hq,N

qN
n=1 ))                                              (B.3)                                                                                    

Hence,   fq,N
q
= hq,N

q
, implies  𝛾 = 1, a contradiction.  

Consequently, "the distinct  fq,N, hq,NϵΩ " can never share the same entropy functional. 

Hence , the axiom of uniqueness is satisfied by Rényi's NME formalism (see Shore 

1980). 
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B.2. Invariance 

Inٌۭaxiomaticٌۭterms,ٌۭinvarianceٌۭreadsٌۭasٌۭ“Theٌۭsameٌۭsolutionٌۭshouldٌۭbeٌۭobtainedٌۭifٌۭtheٌۭ

same inference problem is solved twice in twoٌۭ differentٌۭ coordinateٌۭ systems”ٌۭ (seeٌۭ

(Shore 1980)).Following (Shore 1980) approach, let Ξ be a coordinate transformation 

from state {Sn, n = 1,2, … , N} to state {Mn, n = 1,2, … , N}, where M be a transformed set 

of N possible discrete states, namely M = {Mn, n = 1,2, … , N} with  𝛤(pq,N(Mn) = 

Ξ−1(pq,N(Sn), where J is the JacobianJ =
∂(Mn)

∂(Sn)
. In addition, assume that  ΓΩ  denotes 

the  closed convex set of all probability distributions Γ defined on M satisfying  

Ξ(pq,N(Mn))>0 for all Mn ϵ M, n = 1, 2, ...,N and ∑ Ξ (pq,N(Mn)) = 1.  
N
n=1 Hence, the 

Rényian information measure of (4.6) is invariant under  transformations (Kayal 2017; 

Steinbrecher et al. 2016). 

 Hq
∗( pq,N) =  Hq

∗(Ξ(pq,N))                                                                                        (B.4) 

As a result of the correspondence between the minimality in Ω and ΞΩ, the axiom of 

invariance is fulfilled by EME closed form expression(Shore 1980). 

 

B.3.  System independence 

The axiomatic definition of  system independence (or, equivalently  the additivity) is 

interpretedٌٌۭۭasٌۭ“Itٌۭshouldٌۭnotٌۭmatterٌۭwhetherٌۭoneٌۭaccountsٌۭforٌۭindependentٌۭinformationٌۭ

about independent systems separately in terms of different probabilities or together in 

termsٌۭofٌۭtheٌۭjointٌۭprobability”ٌۭ(see (Shore 1980)).  Eventually,  the joint probability can 

be written as            

hq,N(xk , yn ) =  fq,N(xk ) gq,N(yn ) , N > 0                               (B.5) 

We can re-write Rényian functional(c.f., (4.6)) in the form: 

Hq
∗ [hq,N] =  

1

1−q
 ln (∑ ∑ hq,N

q
nk )                                                                                    (B.6) 
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Engaging (B.5) and (B.6), one gets 

 Hq
∗ [fq,N] + Hq

∗ [g(Yq,N)]  ≠  Hq
∗ [hq,N]                                                                            (B.7) 

According to the inequality (B.7), "the joint EME state probability distribution of two 

independent non-extensive systems Q and V contradicts the axiom of system 

independence due to the presence of long-range interactions" (Shore 1980). This 

characteristic of the ME formalism is therefore obviously best suited to quantitatively 

analyse heavy queue-tailed with asymptotic power law behaviour dynamic systems of 

non-extensive information theoretic order q (𝑞 ∈ (0.5,1)  depicting long-range 

interactions as an inductive inference method. 

It is worth noting that as  non-extensive information theoretic order q reaches 

1(Shannonian case) (B.7) changes to 

                                      H1
∗[h1,N] =  H1

∗[f1,N] + H1
∗(g(Y1,N)                                                           (B.8) 

As predicted, EME state probability distribution satisfies system independence, as 

shown by expression (B.8) (see Shore 1980). According to (Kouvatsos 2010), this is 

"a suitable property of EME formalism, as a method of inductive inference, for the 

study of short-range interactions extensive systems”. 

B.4.  Subset independence 

Subset independence can be interpreted (see Statistics 2007) by demonstrating  that 

treating the entire density of the system is the same as investigating any independent 

subset of states of the underlying system from distinct conditional density perspective.  

Let ξi be the probability that a state of the system Q is in the set {𝑆𝑖
∗, 𝑖 = 1,2, … , 𝐿}such 

that ∑ 𝜉𝑖 = 1.𝑖 Moreover, let probability fq,i(xij)ϵ Ωi, where Ωi, is the closed convex set 

of all probability distributions on Si
∗, i. e. , {fq,i(xij) = Pr{Xi = xij}}, where Xi is the state 

conditional random variable of the system 𝑆𝑖
∗, 𝑖 = 1,2, … , 𝐿. Furthermore, let x be an 

aggregate state of system Q and probability fq(𝑥)ϵ Ω, where X is the random variable 
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defining the aggregate state of the system and 𝑓𝑞(𝑥) = Pr {𝑋 = 𝑥}  where X is the 

closed convex set of all probability distributions on S. Obviously, ξi is read as 

∑ fq,i(xij) = Si
∗ ξi                                                                             (B.9) 

The total number of ⋃ 𝑆𝑖
∗𝐿

𝑖=1  states  is employed  to define the system Q’ٌۭentireٌۭnon-

extensive entropy measure, Hq
∗(fq). By employing the  entropy measure of  (4.6), we 

have 

Hq
∗(fq) =  

1

1−q
ln (∑ ∑ ξiSii fq,i

q
(xij)                                           (B.10) 

where 𝑓𝑞(𝑥) 𝜖 𝛺. We can rewrite equation (B.10) as 

Hq
∗(fq) =  

1

1−q
ln [∑ ξi∑ fq,i

q
(xij)Sii ] ), , 𝑖 = 1,2, … , 𝐿,                                   (B.11) 

Let 𝐻𝑖
∗(𝑓𝑞,𝑖) serves  the  conditional extensive entropy over the states 𝑆𝑖 

Hq,i
∗ (fq,i) =  

1

1−q
ln (∑ fq,i

q
(xij)Si

∗ )                              (B.12) 

Thus, we have 

∑ fq,i
q
(xij)Si

∗ = e(1−q)Hq
∗ (fq,i)                              (B.13) 

Hence, 

Hq
∗(fq) =  

1

1−q
ln (∑ ξie

(1−q)Hq
∗ (fq,i))i  )                 (B.14) 

The maximisation of Hq,i
∗ (fq,i), on an individual basis, under constraints that are set 

conditionally, is identical to maximisation of 𝐻𝑞
∗(𝑓𝑞), under accessible constraints . The 

assumption of subset independence is thus satisfied by the Rényi's ME formalism (see 

Shore 1980). 
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