
TYPE Brief Research Report
PUBLISHED 04 December 2023| DOI 10.3389/fspor.2023.1277070
EDITED BY

Nora L. Nock,

Case Western Reserve University, United States

REVIEWED BY

Dale R. Wagner,

Utah State University, United States

Alan J. McCubbin,

Monash University, Australia

*CORRESPONDENCE

Samuel N. Cheuvront

samuel.n.cheuvront@gmail.com

RECEIVED 13 August 2023

ACCEPTED 17 November 2023

PUBLISHED 04 December 2023

CITATION

Cheuvront SN, Sollanek KJ and Kenefick RW

(2023) Forecasting individual exercise sweat

losses from forecast air temperature and energy

expenditure.

Front. Sports Act. Living 5:1277070.

doi: 10.3389/fspor.2023.1277070

COPYRIGHT

© 2023 Cheuvront, Sollanek and Kenefick. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Sports and Active Living
Forecasting individual exercise
sweat losses from forecast air
temperature and energy
expenditure
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Introduction: Recent success in predicting individual sweat losses from air
temperature and energy expenditure measurements suggests a potential for
forecasting individual sweat losses for future combinations of environment and
exercise. The purpose of this study is to determine the plausibility of accurately
forecasting exercise sweat losses from meteorological air temperature forecasts and
individual running energy expenditure forecasts. The potential impact on plasma
sodium is also estimated when setting drinking rates equal to forecast sweat losses.
Materials and methods: Individual exercise sweat losses (equated to water needs) and
energy expended while running were measured in 33 participants along with air
temperature and compared with forecasts of the same. Forecast inputs were used
in a web app to forecast exercise sweat losses for comparison with observed
values. The bias between forecast and observed exercise sweat losses was used to
calculate the potential drinking impact on plasma sodium.
Results: The concordance correlation coefficient between forecast and observed
values was 0.95, 0.96, and 0.91 for air temperature, energy expenditure, and
exercise sweat losses, respectively, indicating excellent agreement and no significant
differences observed via t-test. Perfect matching of water intake to sweat losses
would lower plasma sodium concentrations from 140 to 138 mmol/L; calculations
using the 95% limits of agreement for bias showed that drinking according to
forecast exercise sweat losses would alter plasma sodium concentrations from 140
to between 136 and 141 mmol/L.
Conclusions: The outcomes support the strong potential for accurately forecasting
exercise sweat losses from commonly available meteorological air temperature
forecasts and energy expenditure from forecast running distance.
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Introduction

Differences in diet and activity among individuals creates uncertainty around setting a

single water requirement for health and performance. Therefore, research aimed at solving

the problem of individual variation in water needs is recommended (1, 2). Activity can

significantly increase daily water needs in direct proportion to the exercise sweat losses (SL)

that afford body heat balance through evaporative cooling (3). Fluid replacement strategies

can also interact with variability in sweat salt losses and exercise duration to create

concerns over plasma sodium maintenance (4, 5). An accurate prediction of individual

exercise sweat losses may, therefore, assist in defining individual water needs more precisely

and assuage risks around under- and over-drinking. Although sweat prediction models can
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http://crossmark.crossref.org/dialog/?doi=10.3389/fspor.2023.1277070&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fspor.2023.1277070
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspor.2023.1277070/full
https://www.frontiersin.org/articles/10.3389/fspor.2023.1277070/full
https://www.frontiersin.org/articles/10.3389/fspor.2023.1277070/full
https://www.frontiersin.org/articles/10.3389/fspor.2023.1277070/full
https://www.frontiersin.org/journals/sports-and-active-living
https://doi.org/10.3389/fspor.2023.1277070
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Cheuvront et al. 10.3389/fspor.2023.1277070
be satisfactory for the purposes of group water planning in

occupational (6), military (7), and sports medicine settings (8, 9),

only one patented (10) algorithm has ever demonstrated sweat

prediction accuracy at the individual level (11).

Sollanek et al. (11) demonstrated that knowledge of air

temperature and individual energy expended when running could

be used to predict post hoc sweat losses with accuracy on par

with scale weighing. To plan for individual water needs a priori,

such as how much water to carry on a hike through the Grand

Canyon or how many water stops to make for an upcoming

marathon, both air temperature and energy expenditure must be

forecasted. A knowledge of air temperature seems plausible given

that this information is forecasted to within ±1°C accuracy up to

72 h in advance (12–14). Furthermore, the energy cost of

planned movement can be reasonably estimated for many

activities (15, 16). It has been speculated (9, 11) that the same

algorithmic approach taken previously could be used to

theoretically forecast sweat losses and water needs at the

individual level, assuming accurate forecast inputs.

The purpose of this brief research report was to determine the

plausibility of accurately forecasting exercise sweat losses from

meteorological air temperature forecasts and estimates of energy

expenditure for track running. A secondary purpose was to

assess the risk of drinking in accordance with forecasts on

plasma sodium concentrations. Our hypothesis was that air

temperature and energy expenditure forecasts would be

sufficiently accurate to permit accurate individual exercise sweat

loss forecasts that support the maintenance of plasma sodium

when drinking in accordance with forecast losses.
Materials and methods

This brief research report involves a secondary analysis and

modeling of data collected and published by Sollanek et al. (11).

Briefly, participants gave written informed consent that followed

the guidelines of the Sonoma State University Institutional

Review Board, and experiments were performed in accordance

with the ethical standards of the Helsinki Declaration. Targeted

down selection of the data set to runners completing ∼1 h of

exercise was done so that SL (L) and sweat rate (SR, L/h) were

the same. The purpose of this matching was to account for the

time it takes for the sweat rate to reach a steady state, thus

ensuring that the sweat rate measured in the first hour could be

reasonably applied to the second hour of exercise for modeling

purposes (see Forecast data, below). The 33 recreational runners,

2 of whom participated twice for a total of 35 individual

observations, included 14 men and 19 women between the ages

of 17 and 52. The participants ran a mean (SD) of 59.4 (0.6) min

outdoors on a standard 400 m track and covered 10.2 (1.4) km.

Measured data: Testing took place in Northern California (38°N,

123°W) between the months of February and September to obtain

sweat data for both cool and warm air temperatures. The

environmental conditions were continuously collected and

averaged hourly using a portable wet bulb globe temperature

monitor (Kestrel 4400; Nielsen-Kellerman, Boothwyn, PA, USA)
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positioned on a rotating tripod vane placed precisely at 1.2 vertical

meters from the track surface (13). Energy expenditure when

running was measured using open-circuit-expired gas collection

(TrueOne 2400; Parvo Medics, Sandy, UT, USA) on a motor-

driven treadmill. The software within the Parvo Medics system

was used for automated energy conversions using the volume of

oxygen per unit of time and the non-protein energy equivalent of

oxygen at a given respiratory quotient. After a 5-min warm-up

consisting of a slow walk or jog, 10 min of running was completed

at ∼80% of each runner’s personal best 10 km race pace so that

60 min of track running at the same speed could be completed

comfortably. Respiratory data were collected at 30 s intervals, and

Minutes 7 through 10 were used to calculate steady-state energy

expenditure. A 1% grade was used to better reflect the energy cost

of over-ground running (17). As a check, a small subset of

runners (n = 8) undertook an identical treadmill test, but at 0%

grade. The higher energy cost of a 1% grade was consistent with

the added cost of overcoming air resistance (18) (data not

provided). Outdoor running on a flat track at treadmill pace was

therefore considered convergent with energy expenditure measures

indoors (17). Participant sweat losses were calculated from the

seminude baseline body mass and the post-run body mass,

corrected for non-sweat mass losses using lab-measured energy

expenditure and allowing for recovery (11, 19, 20).

Forecast data: Air temperature forecasts could not be obtained

after the fact for historical test days and times, and therefore, to

simulate air temperature forecast errors, the 35 Kestrel-measured

air temperatures in this study were assigned random forecast

errors according to Cheuvront et al. (13). Briefly, the individual

bias between 35 pairs of 72-h forecast air temperatures and

Kestrel-measured air temperatures was calculated. Bias was linear

across a wide range of air temperatures (13); therefore, individual

differences between forecast and measured air temperatures were

randomly assigned to the 35 Kestrel observations in Sollanek

et al. (11) to represent potential forecast errors. Energy

expenditure forecasts were made by estimating the energy cost of

running (1 kcal/kg/km) from the product of body mass (kg) and

planned running distance (km) (21). Measured and forecast

energy expenditures were expressed as a rate, and the duration of

exercise in Sollanek et al. (11) was doubled to model potential

sweat and drinking accumulation errors over time. Observed

sweat losses were compared with linear, steady-state predictions

using the patented H2Q algorithm (10) used by Sollanek et al.

(11), which is a steady-state evaporative heat balance model. Any

errors produced by the delayed on and off kinetics of sweating

are presumed small or to be canceled out in the practical

weighing methods required to perform a validation (19). Kinetics

modeling is used in combination with carefully measured sweat

losses to illustrate this point (please see Appendix). Exercise

sweat losses were forecast by inserting forecast air temperature

and energy expenditure into a web-based algorithm (10) (https://

webapp.sportssciencesynergy.com). All web-based calculations

were independently performed by two investigators (SC and KS)

to cross-check and ensure that no errors occurred in data entry

or extraction. The web-based application was created using black

box engineering (Sequoia Applied Technologies, Inc., Sunnyvale,
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CA, USA) to obscure the proprietary algorithm equation

coefficients (10) while retaining input–output functionality.

Exercise sweat losses were equated with required drink volumes

1:1 for the purposes of this study. All observed and forecast

sweat losses were expressed as a rate and extrapolated to 120 min

of exercise as described above for energy expenditure to model

potential drinking needs accumulation errors over time.

To understand the magnitude of under- or over-forecasting of

exercise sweat losses as a proxy for water needs, and as a

complement to statistical outcomes, potential plasma sodium

concentration or dilution effects of under- or overdrinking based

on forecasts were examined (22). Briefly, the 66.7 (11.7) kg mean

body mass of the study participants was multiplied by 0.60 to

estimate total body water (TBW), or ∼40 L. The bias and 95%

limits of agreement (LoA) in forecast sweat losses were added or

subtracted from TBW to solve for plasma sodium ([Na]p2)

concentration or dilution in accordance with Eq. (22):

Na½ �p2 ¼ Na½ �p1þ 23:8ð Þ � TBWiþ 1:03D Naþ Kð Þ
TBWi+ bias

� �
� 23:8;

where [Na+]p1 = 140 mmol/L; TBWi = 40 L; Δ(Na+ + K+) are the

estimated unreplaced losses of sweat electrolytes assuming common

values of 40 mmol/L (Na+) and 4 mmol/L (K+), respectively,

multiplied by total sweat loss (L), and ±bias is the forecast sweat

loss (expressed as a drinking volume) deficit or surfeit. This

approach yielded a single average participant for modeling.

Descriptive data are described using the mean and standard

deviation (SD). Comparison data are presented using the mean

and 95% LoA, calculated as the product of 1.96 and the SD of

the bias, which, itself, is calculated as forecast value minus

observed value, so that over- and underforecast values are

positive and negative, respectively. All data conformed to

parametric analyses. Quantitative agreement between observed

and forecast values was assessed using the concordance

correlation coefficient (CCC), which measures the degree of

departure between observed and forecast values relative to perfect

concordance, or line of identity, rather than the best-fit line of
FIGURE 1

(A–C) Regression plot of forecast (y) vs. measured (x): (A) air temperature, (B) e
represent perfect concordance (line of identity). CCC is the concordance cor
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prediction (i.e., ordinary regression) (23), since the former is

more practical and easily interpretable. Between 10 and 20 data

pairs are recommended for use with the CCC (23); therefore, a

plot of 35 data pairs was considered adequate for a meaningful

interpretation of results, whereby a CCC > 0.80 is considered

excellent agreement (24). Quantitative differences between

measured and forecast 120 min accumulated sweat losses were

compared by using the t-test. The 35 paired observations were

determined satisfactory with a moderate-to-large effect size of

≥0.70, assuming conventional alpha (0.05) and beta (0.20)

values. Individual error was assessed using the percentage

concordance, calculated as [concordant pairs/(concordant pairs +

discordant pairs)] × 100, where concordance occurs when the

accumulated error is less than 500 ml (i.e., 250 ml/h) (11).

Statistical analyses were performed and graphical displays were

created using GraphPad Prism version 9.5 (GraphPad Software,

La Jolla, CA, USA, www.graphpad.com).
Results

The observed air temperature was 19°C (6.0). The 72-h forecast

errors applied according to Cheuvront et al. (13) produced a −1.0°C
bias (−4, 2), which is typical of forecasts (12, 14). Absolute forecast

values were 18°C (6.0). Figure 1 illustrates excellent agreement

(CCC = 0.95), with no significant differences between observed and

forecast air temperatures (Figure 1A inset). The forecast energy

expenditure for running, estimated as 1 kcal/kg/km (21), was

remarkably close to the mean measured cost of running, 0.99

(0.07) kcal/kg/km, but individually, over- or underforecast the

observed value by 11%–23%, respectively. However, the agreement

between observed and forecast energy expenditure remained

excellent (CCC = 0.96), with only a small bias (<1%) of 9 kcal

(−165, 184) (p > 0.05; Figure 1B inset) over 120 min of running.

Forecast sweat losses using the H2Q algorithm (10) applied

post hoc by Sollanek et al. (11) are subject to any compounding

errors related to air temperature and energy expenditure

forecasts, but the agreement was still high (CCC = 0.91)
nergy expenditure, and (C) exercise sweat losses The dashed diagonal lines
relation coefficient. The histogram insets indicate t-test results.
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(Figure 1C) (p > 0.05). Measured sweat losses were 1.69 (0.76) L

and forecast losses were 1.55 (0.71) L. The bias was −0.143 L
(−0.700, 0.414) L during 120 min of running. The percentage

concordance was 88.5% (31/35 with <500 ml error). Using the

equation of Kurtz and Nyguen (22), a perfect matching between

sweat loss and pure water intake was calculated to reduce plasma

sodium concentrations from 140 to 138 mmol/L due to the loss

of sweat solute coupled with 100% water replacement. The small

negative forecast bias (−0.143 L) resulted in a plasma sodium

estimate of 139 mmol/L. Applying the LoA for bias to the

equation, it was found that the most extreme plasma sodium

concentrations ranged from 136 to 141 mmol/L, which is still

within typically reported reference ranges for plasma sodium. To

determine whether modeling of the average participant might

underestimate the matched drinking impact on the smallest of

endurance runners, we also modeled a 50 kg person with 50%

TBW. Applying the same average sweat loss volume (1.69 L or

0.845 L/h) and 95% LoA within the Kurtz and Nyguen (22)

equation as described above, the plasma sodium level ranged

similarly from 134 to 142 mmol/L.
Discussion

The purpose of this brief report was to determine the potential

for accurately forecasting exercise sweat losses from meteorological

air temperature forecasts and estimates of energy expenditure for

planned running distance. A secondary purpose was to assess the

potential forecast drinking impact on plasma sodium

concentrations. The results indicate an excellent agreement

between the observed exercise sweat losses and the forecasted

losses when running outdoors, in a range of cool and warm

environments for 120 min. Furthermore, drinking in accordance

with forecast sweat losses did not increase the risk of over- or

underdrinking. The outcomes support a strong potential for

forecasting exercise sweat losses from commonly available

meteorological and physiological data.

The ability to accurately forecast air temperature and energy

expenditure (Figures 1A,B) is key to accurately forecasting sweat

losses and water needs. Indeed, the influence of air temperature

and energy expenditure on sweat losses and water needs is

fundamental (1, 25). The explanations for this fact lie bundled

within physiology and biophysics (26) and can be modeled for

practical use in accurately estimating exercise sweat losses at the

individual level post hoc (11) and now a priori (Figure 1C).

Although the air temperature forecasting errors were applied

retrospectively in this study, rather than prospectively, as would

be done in practice, the average ± 1°C accuracy of forecast air

temperatures (Figure 1A) is consistent with those of modern

meteorology (12–14) and the common performance use of

weather app technologies by consumers for the purposes of

planning future activities outdoors.

The average energy expenditure error was <1%, which is well

below the ∼10% commonly reported for many types of wearable

technologies (27) and when compared with an indirect

calorimetry gold standard such as the one used by Sollanek et al.
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(11). The excellent observed agreement (Figure 1B) may be

explained in part by the simplicity of the exercise performed (i.e.,

running on a flat surface at a constant pace). However, the

energy cost of movement for many activities can be accurately

estimated by performing careful measurements of the body mass

and distance covered (15) or characterized using MET values for

similar purposes (16). This approach has also been used

successfully for sports other than running, but only for groups

(9). More challenging weather conditions, such as combinations

of higher heat, humidity, and solar heat load, will intuitively lead

to greater forecast challenges. The effects of non-steady-state

running, and more extreme topography (e.g., trail running), as

well as different sports, must also be considered in the future (9),

but the potential for forecasting exercise sweat losses as described

herein remains very convincing.

The importance of the bias measured between forecast and

observed exercise sweat losses was assessed by calculating the

dilution (overdrinking) or concentration (underdrinking)

potential of the bias on plasma sodium concentrations, which is

one important health or performance risk related to drinking

strategy efficacy (2, 5). Even when considering the 95% LoA for

the forecast sweat loss bias, plasma sodium concentrations were

estimated to fluctuate by −4 to 1 mmol/L, where perfect

forecasting would have produced a drop by −2 mmol/L.

Although a smaller person was modeled to experience a

−6 mmol/L drop in plasma sodium, it is important to remember

that these estimates assume no solute intake and no urination

over 120 min, and ordinary plasma sodium concentrations to

start. In this example, they also assume that runners will drink

precisely what was forecast, which may not be feasible or strictly

advisable during exercise (2, 3) but, nevertheless, does inform the

runner of how much water must ultimately be replaced to

achieve fluid balance. The equation used (22) is well established

and has been validated by an empirical measurement performed

during exercise in the heat (28). Therefore, the practical efficacy

of the results is sound.

A previous application of the algorithm (11) was to use air

temperature and energy expenditure inputs on offer from most

wearable sports devices to assist athletes with personalizing

hydration recommendations post hoc. Exercise sweat losses are an

important feedback parameter for daily training and competing

as they afford insights into drinking needs and daily fluid

balance. A priori forecast information like that presented herein

may provide another benefit of water planning around training

and race-day strategies around drinking. For example, the error

associated with sweat loss forecasts over 2-h of running were

<500 ml in 31/35 subjects (a mean bias of −143 ml). Smith et al.

(29) have shown that on different days in the same environment,

the level of bias in individual 2-h sweat losses can exceed 500 ml;

in different environments, still temperate by most standards,

sweat loss bias over the same duration can reach a level of

1,000 ml, the latter observation a well known phenomenon (25).

Therefore, sweat loss forecasts may be as accurate as scale

weighing, findings similar to observations made for post hoc

predictions (11). Of even greater value is the accuracy of

forecasts over a wide range of possible air temperatures and
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exercise intensities. The algorithm could obviate the need for

careful, but impractical or impossible, body mass measurements

across myriad conditions and potentially eliminate guesswork

around training and race-day drink volume planning. For

exercise of more extreme duration (>2 h), personalized

knowledge of sweat electrolyte composition may also be of great

value (4, 5).

This brief research report determined the potential for

accurately forecasting individual exercise sweat losses from

meteorological air temperature forecasts and estimates of energy

expenditure for planned running. The results indicate an

excellent agreement between observed and forecast values when

running outdoors in a range of cool and warm environments for

120 min. Further, these forecasts do not increase over- or under-

drinking risk, producing instead normal fluctuations in plasma

sodium when drinking in accordance with forecast sweat losses.

The outcomes, therefore, support the strong potential for

forecasting individual exercise sweat losses from commonly

available meteorological and physiological data forecasts when

using the H2Q algorithm (10, 11).
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FIGURE A1

Sweating rate (L/h) on- and off-kinetics modeled after Gagnon and
Kenny (32) EHL data.
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Appendix

Sweating kinetics follow a similar pattern to other

thermoregulatory responses to exercise (e.g., 30) and can be

carefully quantified using a Potter Balance (31), direct

calorimeter (32), or similar technologies. Open source software

(https://plotdigitizer.com) was used to extract data from

Figure 6D in Gagnon and Kenny (32), who used a direct

calorimeter to measure evaporative heat loss (EHL) across

time. The graph was then reverse-engineered from the

numbers and fitted to a one-phase exponential association

model (on kinetics) and a one-phase exponential decay model

(off kinetics) to calculate precise accumulated sweat volumes

across time. EHL (W) was converted to a volume sweat rate

(L/h) by division using the heat of sweat evaporation (33).

Evaporative efficiency of 100% was assumed (32).

Figure A1 shows sweating rate on and off kinetics

compared with estimated steady-state (square wave) sweating

rates required for heat balance (a + b). The steady-state

estimate (∼920 ml/h) overestimates the 60-min accumulation

value (∼763 ml; b) because of the onset lag, but allowing

15 min before making a postexercise mass change

measurement (19) brings the accumulation value much

closer (∼910 ml; b + c) to the heat balance steady-state

estimate. Even 10 min of recovery results in 884 ml, a
Frontiers in Sports and Active Living 07
difference of only 36 ml for an hour of exercise at a sweat

rate reasonably associated with running and other sports

(∼1.0 L/h) (3, 34).
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