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Mobip: a lightweight model for
driving perception using
MobileNet

Minghui Ye and Jinhua Zhang*

School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China

The visual perception model is critical to autonomous driving systems. It provides

the information necessary for self-driving cars to make decisions in tra�c scenes.

We propose a lightweight multi-task network (Mobip) to simultaneously perform

tra�c object detection, drivable area segmentation, and lane line detection. The

network consists of a shared encoder for feature extraction and two decoders

for handling detection and segmentation tasks collectively. By using MobileNetV2

as the backbone and an extremely e�cient multi-task architecture to implement

the perception model, our network has great advantages in inference speed. The

performance of the multi-task network is verified on a challenging public Berkeley

Deep Drive(BDD100K) dataset. The model achieves an inference speed of 58

FPS on NVIDIA Tesla V100 while still maintaining competitive performance on all

three tasks compared to other multi-task networks. Besides, the e�ectiveness and

e�ciency of the multi-task architecture are verified via ablative studies.

KEYWORDS

self-driving, multi-task learning, semantic segmentation, tra�c object detection,

lightweight network

1 Introduction

Cameras have been widely used to construct the perception system of self-driving cars

in recent years, bringing the demand for intelligent visual perception algorithms to process

the captured images. Visual perception systems on autonomous driving cars can process

images of the surrounding environment and subsequently provide vehicles with information

about the traffic scenes, which builds the basics for trajectory planning and decision-making.

Specifically, the images captured by cameras can be used to detect the position and size

of traffic objects such as cars, pedestrians, and obstacles. In addition, semantic analysis

of drivable areas and lane lines is necessary for autonomous vehicles to plan reasonable

trajectories that comply with traffic rules. Overall, the objective of the perception system is to

perform accurate and real-time scene analysis to ensure the safety of autonomous vehicles.

Manyworks have been done on handling the visual tasks of driving perception. Detection

methods such as YOLO (Redmon and Farhadi, 2018; Bochkovskiy et al., 2020) and Faster R-

CNN (Ren et al., 2015) can be used for detecting traffic objects in driving scenes. Semantic

segmentation algorithms including PSPNet (Zhao et al., 2017) and UNet (Ronneberger

et al., 2015) can handle the tasks of recognizing drivable area and lane line in the captured

images. These works exhibit excellent performance on corresponding single tasks. However,

instead of treating each visual task separately, driving perception systems should be built

to handle all visual tasks simultaneously, which can decrease the computation overhead

and provide timely feedback on environmental changes. Several multi-task models have

been proposed. YOLOP (Wu et al., 2022), HybridNets (Vu et al., 2022), and YOLOPV2

(Han et al., 2022) can perform three visual perception tasks simultaneously using a shared
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encoder for feature extraction and multiple decoder heads for

specific tasks. However, with a primary goal of achieving

autonomous driving on complex scenes such as cities or highways,

these works design strong perception models at the expense of

substantially intensive computation. As a result, they rely on

dedicated GPU devices to achieve real-time inference (Miraliev

et al., 2023). In contrast, the demand for affordable autonomous

driving solutions in simpler environments has been ignored. For

instance, in uncomplicated settings such as ports (Qin et al.,

2020; Rose et al., 2022), lightweight models with smaller datasets

may deliver satisfactory results while minimizing computational

requirements and enhancing inference speed. By alleviating the

computational demand imposed on deployment hardware, the

research on lightweight perception network can potentially pave

the way for wider deployment of self-driving. Hence, this work

introduces a lightweight multi-task model, thereby contributing to

the broader realization of autonomous driving.

We propose a novel multi-task network that can efficiently

handle the tasks of traffic object detection, drivable area

segmentation, and lane line segmentation simultaneously. The

network contains an encoder for feature extraction and two

decoders (i.e., detect head and segment head) for object detection

and segmentation tasks separately. By adopting MobilenetV2

(Sandler et al., 2018) as the backbone network, the multi-task

network has great advantages in the amount of computation and

inference speed. For the design of decoders, our implementation

of the detect head is based on the YOLOv4 (Bochkovskiy et al.,

2020) whose accuracy and speed have been demonstrated on many

detection tasks. The segment head is a multi-class segmentation

branch that can solve two segmentation tasks altogether. We design

a novel loss combination composed of generalized dice loss (Sudre

et al., 2017) and focal loss for the multi-class segmentation head.

Our network is trained end-to-end on the BDD100K dataset (Yu

et al., 2020). It achieves an inference speed of 58 FPS on the

Nvidia Tesla V100. The network has also attained competitive

performance on all three tasks compared with other multi-task

networks. Besides, we carry out ablation experiments to verify the

effectiveness of the design of the segment head and the scheme of

how the segmentation head obtains features from the encoder.

In summary, the main contributions of this work are: (1)

We propose a novel lightweight multi-task network that can

simultaneously handle three visual tasks for autonomous driving

perception with significantly low computation and high inference

speed. (2) Compatible loss functions and data augmentation

methods are designed for the proposed network. (3)We validate the

performance of the driving perception model and the effectiveness

of the multi-task architecture with ablation studies on the

BDD100K dataset.

2 Related work

The object detection algorithms (Ren and Wang, 2022) can be

divided into two categories, namely one-stage methods and two-

stage methods. The two-stage object detection models (Girshick

et al., 2014; Ren et al., 2015) comprise a region proposal

mechanism, in which features in the proposed regions are used

to predict the location and the category of objects. The two-

stage methods can produce excellent performance, but they are

usually slower than the one-stage methods such as YOLO (Redmon

et al., 2016). Difference from the two-stage methods that have

a network for region proposal, one-stage methods divide the

picture into multiple regions with grids for object detection.

They subsequently generate multiple proposals in each region and

predict the corresponding category of the objects in each proposal.

More recently, Yolov4 (Bochkovskiy et al., 2020) and Yolov7 (Jiang

et al., 2022; Wang et al., 2023) improved the YOLO architecture by

utilizing the advanced model designing tricks, activation functions,

and loss functions.

The recognition of drivable area and lane line can be regarded

as segment tasks (Zou et al., 2019; Mo et al., 2022; Zhou et al., 2022).

Many models based on convolutional neural networks (CNN) have

achieved good results in semantic segmentation tasks (Wang et al.,

2021). FCN (Long et al., 2015) introduced a full convolutional

network to perform semantic segmentation for the first time.

It discarded the fully connected layer at the end of VGG and

replaced it with a CNN module that can perform dense category

prediction, but it is still limited to low-resolution segmentation. U-

Net (Ronneberger et al., 2015) uses a U-shaped encoder-decoder

structure. The encoder involves convolution and downsampling,

and the decoder is composed of upsampling and convolution

blocks. PSPNet (Zhao et al., 2017) proposes to extract features in

multiple scales through the pyramid pooling module, and then use

the merged features for semantic segmentation. Enet (Paszke et al.,

2016) improves the inference speed by reducing the size of the

feature map.

Multi-task learning is to train models that can performmultiple

vision tasks simultaneously. The MultiNet (Teichmann et al., 2018)

uses an encoder to extract features that can be used for three

decoders to perform scene classification, object detection and

driving area segmentation altogether. YOLOP (Wu et al., 2022) uses

a similar encoder-decoder architecture. Themodel is composed of a

detection branch based on YOLOv5s for traffic object detection and

two simple segment heads for two segmentation tasks. Following

YOLOP, Miraliev et al. (2023) compares the inference speed,

memory efficiency and energy consumption of themodels using the

same architecture but composed of three different backbone [i.e.,

RegNetY (Radosavovic et al., 2020), RexNet (Han et al., 2021), and

MobileNetV3 (Howard et al., 2019)]. HybridNets (Vu et al., 2022)

chooses EfficientNet (Tan and Le, 2019) as the backbone and uses

Bifpn as the neck, which improves the performance on vision tasks

but results in reduced inference speed. This model utilizes a multi-

class segment head to perform drivable area segmentation and lane

line detection altogether.

3 Methodology

We present a lightweight network for multi-task learning of

traffic object detection, drivable area segmentation and lane line

detection. As shown in Figure 1, our driving perception network,

termed Mobip, comprises a shared encoder and two decoders. The

feature extracted by the encoder from input images is shared by

two decoders, thereby conserving computational resources. Two
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FIGURE 1

The architecture of Mobip. Mobip contains one shared encoder for feature extraction and two decoders for object detection and

semantic segmentation.

decoders are designed for handling three visual tasks altogether,

specifically a detect head for traffic object detection, and a segment

head for drivable area segmentation and lane line detection.

3.1 Encoder

The shared encoder comprises two components, i.e., a

backbone network and a neck network. The backbone network

serves a critical role in the driving perception network as

a feature extractor. Contemporary network architectures often

leverage networks that exhibit high accuracy on the ImageNet

dataset for feature extraction purposes. MobileNetV2 is a

lightweight backbone network that has achieved excellent results

in both object detection and semantic segmentation tasks

(Sandler et al., 2018). By using the inverse residual module

as the basic building block, MobileNetV2 achieves low-latency

inference in edge devices with fewer parameters and reduced

computational complexity. As we aim to design a lightweight

driving perception network for real-time inference in edge

devices, we choose MobileNetV2 as the backbone network of

our model. Moreover, apart from the backbone network, the rest

modules of the driving perception network are also implemented

with inverted residual as the building block to enhance our

model’s efficiency.

The features extracted by the backbone are subsequently

aggregated by the Neck network. The neck network consists

of two modules, including Spatial Pyramid Pooling (SPP)

(He et al., 2015) for fusing features of different scales and

Feature Pyramid Network (FPN) (Lin et al., 2017a) for

fusing features at different semantic layers. Within the FPN

module, high-level features are concatenated with low-

level features after bilinear interpolation. The neck network

allows the features entering the decoders to contain rich

semantics information required for the learning of downstream

visual tasks.

3.2 Decoders

The tasks of driving perception are divided into either a

detection task or a segmentation task and subsequently performed

by the corresponding task head. Similar to YOLOv4 (Bochkovskiy

et al., 2020), our approach employs an anchor-based multi-

scale detection scheme. Multiple feature layers in the FPN are

passed to the detect head for further feature aggregation. The

Path Aggregation Network (PAN) (Liu et al., 2018) is utilized

to perform bottom-up feature fusion, enabling better localization

feature extraction. The aggregated multi-scale feature from PAN is

then used for traffic object detection. Within the multi-scale feature

map, every grid is assigned three anchors with varying aspect ratios.

The detect head generates predictions for the offset of position,

scaled height and width, as well as the corresponding probabilities

and confidences for the class prediction.

For the drivable area segmentation and lane line detection,

we adopt a multi-class segmentation head to perform two

tasks simultaneously. Compared with previous methods that

handle these tasks with two separate segmentation heads, our

one-branch method can reduce computational redundancy and

achieve faster inference speed. The segment head is connected

to the bottom layer of FPN and up-samples the feature maps

for three times with the bilinear interpolation method. This

process restores the feature map to the original image size,

subsequently producing probability estimates for three distinct

segment categories, namely, background, drivable area, and lane

line. The semantic segmentation process identifies the category

with the highest probability for each pixel, designating it as the

definitive class assignment, and thus generating the segmentation

outcome of the two tasks.

3.3 Loss function

In our multi-task learning approach, the loss contains two

parts for detect head and segment head respectively. The detection
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loss Ldet is a weighted sum of classification loss, object loss and

bounding box loss, as shown in Equation (1).

Ldet = Lclass + α1Lobj + α2Lbox, (1)

where Lclass is classification loss, Lobj is the loss of the confidence

of one prediction. Lclass and Lobj are calculated with focal loss (Lin

et al., 2017b), which can force the model to learn hard examples.

Lbox is CIoU loss (Zheng et al., 2020) which measures the distance

of overlap rate, aspect ratio, and scale similarity between predicted

results and ground truth.

For the segmentation tasks, since the data for three categories

(i.e., background, drivable area and lane line) are imbalance, we

design a hybrid loss including focal loss and generalized dice loss

(Crum et al., 2006; Sudre et al., 2017) for the training of segment

head, as shown in Equation (2). We use generalized dice loss

because of its class re-balancing properties.

Lseg = LDice + β1LFocal, (2)

LDice = 1− 2

∑L
l=1 wl

∑N
n=1 glnpln

∑L
l=1 wl

∑N
n=1 gln + pln

, (3)

LFocal = −
1

N

L
∑

l=1

N
∑

n=1

gln
(

1− pln
)γ

log
(

pln
)

, (4)

where l is the label of segmentation, gln and pln is the ground truth

for pixel n being in class l, and pln is the predicted probability of

pixel n belonging to class l. wl is the weight assigned to the lth label.

When wl =
1

∑N
n=1 gln

, which is the inverse volume of a class, the loss

of each class in the segmentation result is weighted equally in the

LDice irrespective of the volume of each class.

Finally, the weighted sum of detection loss and segment loss is

used for model training, as shown in Equation (5).

Lall = γ1Ldet + γ2Lseg , (5)

The values of α1,α2,β1, γ1, andγ2 are tuned for the balance of

all losses.

4 Experiments

4.1 Dataset and experimental setting

We use the BDD100K (Yu et al., 2020) dataset to evaluate

the performance of the proposed network and compare it with

other algorithms. This dataset is publicly available. It includes

annotations for object detection, panoptic segmentation, and lane

markings, etc., which can support research on a range of driving

perception tasks, thus establishing it as a widely recognized

benchmark for evaluating perception algorithms for autonomous

driving. The dataset contains 100K images in driver perspective

view, 70K for training, 10K for validation, and 20K for testing.

As the images of the dataset are collected in different scenes,

light conditions, and weather conditions, the model trained in the

dataset is robust against various disturbances in the environment.

The Adam optimizer is utilized for model training, with the

initial learning rate, β1 and β2 set to 1 × 10−2, 0.937 and

0.999, respectively. Cosine annealing and warm-up are applied

to adjust the learning rate (Loshchilov and Hutter, 2016) in the

training process. In addition to basic data augmentation techniques

including mirror, translation, shearing, rotation and photometric

distortion, Mosaic and Mixup (Zhang et al., 2017) are also used to

improve the performance of both detection and segmentation. We

resize the images from 1, 280 × 720 × 3 to 640 × 384 × 3, for the

reason of attaining a good trade-off between inference speed and

performance (Hou et al., 2019). The model is implemented with

PyTorch (Paszke et al., 2019), and experiments are carried out on

the NVIDIA Tesla V100. The source code is released at https://

github.com/yeminghui/Mobip.

4.2 Results

In this section, we compare Mobip to other representative

models on three perception tasks. We first compare Mobip with

other multi-tasking methods in terms of parameters, number of

computations and inference speed to demonstrate the advantage of

lightweight designs. We then evaluate the performance of Mobip

on three driving perception tasks, comparing it with both other

multi-task methods and networks that focus on a single task.

4.2.1 Model parameter and inference speed
Table 1 presents the comparison of Mobip and two multi-task

models (i.e., YOLOP and HybridNets) in terms of parameters,

computations and inference speed. By adopting MobileNet as

the backbone network and the inverted residual as the building

block for the network, Mobip has considerable advantages in the

amount of calculation (4.8 G), achieving the fastest inference speed

(58 FPS) with the input image size of 640 × 384 × 3 in the

TESLA V100 GPU. Notably, the performance comparison between

Mobip and HybridNets in each driving perception task is not

provided in the following, as the primary focus of HybridNets lies

in enhancing perception performance, rather than the lightweight

network design and inference speed improvement.

4.2.2 Tra�c object detection result
The quantitative comparison in the traffic object detection task

is shown in Table 2. We compared Mobip with three multi-task

models, includingMultiNet, DLT-Net, and YOLOP, and two single-

task object detection models, namely Faster R-CNN and YOLOv5s.

Mobip achieves the second-best detection result (89.3) on the

TABLE 1 Computational cost for various multi-task models and the

inference speed tested on Nvidia Tesla V100.

Network Params MACs Speed (fps)

YOLOP 7.9 M 9.3 G 40

HybridNets 12.8 M 7.8 G 27

Mobip (ours) 7.5 M 4.8 G 58
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Recall, higher than YOLOP (89.2) and YOLOv5s (86.8). However,

due to the limitations of the MobileNet backbone model, Mobip

(75.4) is slightly lower than YOLOP (76.5) and YOLOv5s (77.2) on

mAP50. The advantage of Mobip mainly lies in the inference speed.

The reason why YOLOv5s achieves higher speed is that it does not

perform drivable area segmentation and lane line detection tasks.

We visualize the traffic object detection results of Mobip, as shown

in Figure 2. Mobip demonstrates excellent performance in both

day and night conditions. Surprisingly, it exhibits the capability to

detect vehicles that pose challenges for human recognition in low-

light environments. Additionally, the model can accurately handle

scenes with dense and small objects.

4.2.3 Drivable area segmentation result
As shown in Table 3, we compare our model with a single-task

segmentation model, PSPNet (Zhao et al., 2017), and three multi-

task models including MultiNet, DLT-Net, and YOLOP. Mobip

achieved the result of 90.4% on mIoU, outperforming PSPNet

in both inference speed and performance. Mobip is working

TABLE 2 Results on tra�c object detection.

Network Recall (%) mAP50 (%) Speed (fps)

Faster R-CNN 81.2 64.9 8.8

YOLOv5s 86.8 77.2 82

MultiNet 81.3 60.2 8.6

DLT-Net 89.4 68.4 9.3

YOLOP 89.2 76.5 40

Mobip (ours) 89.3 75.6 58

better than all other multi-task networks, apart from YOLOP, the

network contains two segment decoders for performing drivable

area segmentation and lane line segmentation separately. The

performance of Mobip on this task may be limited by the

multi-class segmentation branch, which will be verified in the

ablation studies. The visualization result of the drivable area

segmentation is shown in Figure 3. Mobip performs excellently in

this task, demonstrating strong capability in semantic reasoning.

The examples show that it can judge whether it is a drivable area

based on the cars and lane lines in the surroundings.

4.2.4 Lane detection result
We used IoU and accuracy to evaluate the effectiveness of

Mobip in the lane line segmentation task. The result is shown in

Table 4. Mobip shows the advantages in performance and speed

over other models. In the visualization example as shown in

Figure 4, it can be seen that the predicted lane line area is wider

than the real lane line, which is consistent with the (30.9%) IoU.

Notably, the segment accuracy of Mobip is significantly higher than

other networks.

TABLE 3 Results on drivable area segmentation.

Network mIoU (%) Speed (fps)

PSPNet 89.6 11.1

MultiNet 71.6 8.6

DLT-Net 71.3 9.3

YOLOP 91.5 40

Mobip (ours) 90.4 58

FIGURE 2

Visualization of tra�c object detection results of Mobip. (A) Results in day conditions and (B) Results in night conditions.
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FIGURE 3

Visualization of drivable area segmentation results of Mobip. (A) Day-time result. (B) Night-time result.

TABLE 4 Results on lane line segmentation.

Network Accuracy (%) IoU (%) Speed (fps)

ENet 34.12 14.64 100

SCNN 35.79 15.84 19.8

ENet-SAD 36.56 16.02 50.6

YOLOP 70.5 26.20 40

Mobip (ours) 86.2 30.9 58

4.3 Ablation study

We design three ablation studies to verify the effectiveness of

the proposed multi-task architecture. The evaluation metrics used

on the three tasks are the same as in the last section.

We explore the impact of the design of segment decoders

(i.e., one or two segment heads to perform drivable area

segmentation and lane line segmentation) on model performance.

In previous studies, YOLOP and YOLOPv2 choose the three-

decoder architecture which is composed of one detect head and

two segment head. They suppose that drivable area segmentation

and lane line detection do not share similar features and thus

sharing the segment decoder can harm the performance of

both tasks. By contrast, similar to the proposed method in

this paper, works such as Hybridnet design a multi-category

segment head for the recognition of drivable areas and lane

lines. These two architectures have not been fairly compared

in previous studies because different backbone networks, neck

networks and data augmentation methods are used in their

works. Therefore, in order to design lightweight and yet effective

multi-task networks, we carry out ablation experiments to

evaluate the effect of these two architectures. In our experiments,

experimental conditions, including data preprocessing methods,

data augmentation, parameters of the optimizer, etc., are the

same. In the architecture with three decoders, we follow the

loss function designed in YOLOP, which is to use cross-entropy

loss in the drivable area segmentation task and the weighted

sum of cross-entropy and IOU loss in lane line segmentation.

In the architecture with two decoders, we adopt the network

design proposed in this paper. Table 5 shows the comparison

of the performance of these two schemes on all tasks. The

architecture with two decoders performs better on traffic object

detection compared with the network with three decoders. In

the segmentation task, according to the evaluation metrics, the

two-decoder architecture exhibits superior performance on the

lane line segmentation task, but not as good as the three-decoder

architecture on the drivable area segmentation task. To understand

the reasons why two-decoder architecture shows poor value in

mIoU for the drivable area segmentation task, we visualize the

segmentation result and the annotations of an example image

chosen from the validation set, as shown in Figure 5. By plotting

the error map of the drivable area segmentation, we find that

the error of the three-decoder scheme is mainly located in the

lane line areas. For the two-decoder architecture, the reason

for the incorrect segmentation of the drivable area is that the

network is conservative on lane line segmentation, such that

areas larger than the lane lines are classified as this category.

Since there is one class per pixel in this method, the lane line

takes up part of the drivable area indicated on the annotation,

resulting in lower mIoU value in the drivable area segmentation

task. Therefore, we suppose that the performance of these two

architectures is similar on drivable area segmentation, even though

it is not reflected on mIoU. Moreover, the advantage of inference
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FIGURE 4

Visualization of lane line segmentation results of Mobip. (A) Day-time result. (B) Night-time result.

TABLE 5 Performance comparison of two multi-task frameworks, specifically a three-decoder architecture with one detect head and two segment

heads for recognizing drivable area and lane line separately, and a two-decoder network with one detect head and one multi-class segment head to

perform two segmentation tasks collectively.

Multi-task framework Recall (%) AP mIoU Accuracy IoU Speed (fps)

Three decoders 88.9 74.4 92.6 75.4 30.7 54

Two decoders 89.3 75.6 90.4 86.2 30.9 58

FIGURE 5

Visualization of the segmentation result of an example image. The data annotations and the segmentation result are presented, in which green areas

represent the drivable area and red areas indicate the lane line. Segmentation errors on the drivable area and lane line segmentation tasks are plotted

in green areas on the last two columns.

TABLE 6 Performance comparison of two schemes for extracting features from FPN to the segment head.

Feature sharing scheme Recall (%) AP mIoU Accuracy IoU Speed (fps)

Merged feature 89.3 75.6 90.1 88.9 30.6 47

Bottom layer 89.3 75.6 90.4 86.2 30.9 58

One is mixing features from three semantic layers of FPN. The other one is only using the bottom feature layer of FPN for segmentation.
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TABLE 7 Performance of single-task training and multi-task training.

Training
method

Recall
(%)

AP mIoU Accuracy IoU

Detect (only) 89.7 76.1 – – –

Segment (only) – – 90.3 87.0 31.2

Multi-task

training

89.3 75.6 90.4 86.2 30.9

speed demonstrates the computational efficiency of the proposed

multi-task network.

We have also studied the schemes for connecting the segment

head to the encoder. While it is clear that semantic layers at all

scales in FPN are important for detection, it is still unknown

which feature layer should be used to complete the segmentation

tasks. We compared two types of features extracted from FPN for

segmentation, specifically features of the bottom layer (i.e., the layer

with largest scale) of FPN and the merged feature from layers at all

scales in FPN. For the methods of mixing feathers at different scales

of FPN, our implementation is to add all feature layers together

after resizing them to the dimension of the bottom layer of FPN.

The result is listed in Table 6. It can be seen that the ways in

which the segmentation head obtains features from FPN exert no

effect on the performance of the detection task, but training the

segment head with the merged feature results in slightly improved

accuracy in the lane line segmentation task. This implies that

features at lower layers are important for the lane line segmentation

task. However, the operation of merging feathers greatly harms

the inference speed. To achieve higher inference speed, we choose

to connect the segment head with the bottom layer of FPN in

the proposed method. Besides, to verify the effectiveness of the

proposed multi-task framework, we tested the performance of

the model under single-task and multi-task training, as shown in

Table 7. Compared with single-task training, the performance of

multi-task training is slightly reduced in traffic object detection and

lane line segmentation. However, with the design of the shared

encoder, the multi-task architecture can complete multiple tasks

simultaneously with reduced computation, which is an important

feature that autonomous driving perception systems value.

5 Conclusion

In this paper, we put forward a novel multi-task network

that can simultaneously perform three driving perception tasks

including traffic object detection, drivable area segmentation and

lane detection. Compared with other multi-task models, our model

shows advantages in the inference speed while still delivering

similar or superior performance on all three driving perception

tasks when trained on the BDD100K dataset. Moreover, the effect

of several multi-task architecture designs has been validated.

Specifically, recognizing drivable area and lane line with a multi-

class segment head is superior to handling these two tasks with

two segment heads separately. The feature extraction scheme of

connecting the segment head to the bottom layer of FPN has also

been verified to be efficient. Overall, the proposed network, Mobip,

is extremely lightweight yet effective on all three visual tasks.

However, although using MobileNet as the backbone

brings advantages in inference speed, it comes with the

price of performance limitations. Moreover, the design of

using a single segmentation head to perform multi-class

segmentation may not be able to generalize to all cases,

especially when one segment class is a subset of another

one. The proposed multi-task network is also limited to

performing three tasks at the same time. In the future, we

will introduce other kinds of tasks to the model, such as traffic

light recognition.
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