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Although MALDI-TOF mass spectrometry (MS) is widely known as a rapid and 
cost-effective reference method for identifying microorganisms, its commercial 
databases face limitations in accurately distinguishing specific subspecies of 
Bifidobacterium. This study aimed to explore the potential of MALDI-TOF MS 
protein profiles, coupled with prediction methods, to differentiate between 
Bifidobacterium longum subsp. infantis (B. infantis) and Bifidobacterium longum 
subsp. longum (B. longum). The investigation involved the analysis of mass spectra 
of 59 B. longum strains and 41 B. infantis strains, leading to the identification 
of five distinct biomarker peaks, specifically at m/z 2,929, 4,408, 5,381, 5,394, 
and 8,817, using Recurrent Feature Elimination (RFE). To facilate classification 
between B. longum and B. infantis based on the mass spectra, machine learning 
models were developed, employing algorithms such as logistic regression (LR), 
random forest (RF), and support vector machine (SVM). The evaluation of the mass 
spectrometry data showed that the RF model exhibited the highest performace, 
boasting an impressive AUC of 0.984. This model outperformed other algorithms 
in terms of accuracy and sensitivity. Furthermore, when employing a voting 
mechanism on multi-mass spectrometry data for strain identificaton, the RF 
model achieved the highest accuracy of 96.67%. The outcomes of this research 
hold the significant potential for commercial applications, enabling the rapid 
and precise discrimination of B. longum and B. infantis using MALDI-TOF MS in 
conjunction with machine learning. Additionally, the approach proposed in this 
study carries substantial implications across various industries, such as probiotics 
and pharmaceuticals, where the precise differentiation of specific subspecies is 
essential for product development and quality control.
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1 Introduction

Bifidobacterium longum subsp. infantis (B. infantis) and Bifidobacterium longum subsp. 
longum (B. longum), the most abundant Bifidobacterium species in the intestinal flora of infants, 
are essential for their immune development. Human breast milk contains a large amount of 
human milk oligosaccharides (HMOs), which cannot be digested by infant due to a lack of 
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necessary glucosidases. However, the positive effects of HMOs on 
newborns’ health are attributed to the “beneficial” microorganisms 
that specialize in metabolizing HMOs. In contrast to B. longum, 
B. infantis typically harbors all the genes required for utilizing HMOs 
(Duar et al., 2020) and can digest various types of HMOs, including 
3′-SL, 6′-SL, 2′-FL, 3′-FL, LNnT, and LacNAc (Zhang et al., 2022). The 
absence of Bifidobacterium and HMO utilization genes in the gut 
microbiota is associated with inflammation and immune imbalances 
in early life (Henrick et al., 2021). B. infantis is commonly found in 
breastfed infants in countries with a low prevalence of immune-
mediated diseases, such as Bangladesh (Vatanen et  al., 2022) and 
Malawi, but is rare in Europe and North America (Casaburi et al., 
2021). However, supplementation with B. infantis EVC001, by 
remodelling the gut microbiome of breastfed infants, reduced 
intestinal inflammation (Henrick et al., 2019), decreased intestinal 
Th2 and Th17 cytokines and up-regulated IFNβ, favouring immune 
development in early life (Henrick et al., 2021). Therefore, accurate 
identification of B. longum and B. infantis is essential for efficient 
screening, functional studies and application development of 
B. infantis.

The current methods used to identify Bifidobacteria include PCR, 
SNP, cgMLST, and MALDI-TOF MS. MALDI-TOF MS is particularly 
advantageous due to its high throughput, fast speed, and low cost, 
making it widely used for identifying clinical pathogenic 
microorganisms and general microorganisms (Gato et  al., 2021; 
Heilbronner and Foster, 2021; Wang H. Y. et al., 2022). However, the 
successful identification of bacteria using MALDI-TOF MS heavily 
relies on databases that contain spectra of known organisms and most 
of the biomarker peaks are in the range m/z 2,000–10,000 (Carvalho 
et al., 2022; Topić Popović et al., 2023). Most commercial databases 
only identify bacteria at the species level and lack the ability to 
accurately differentiate closely related subspecies, such as B. longum 
and B. infantis. Although six biomarker peaks have been reported to 
differentiate between B. longum and B. infantis, these peaks have not 
been commercially applied due to their high mass peaks (>15,000 m/z) 
(Sato et  al., 2011), low reproducibility, and lack of availability in 
commercial databases. Recently, machine learning techniques have 
been used to accurately identify strains that cannot be distinguished 
using commercial databases by analyzing protein mass spectra 
obtained through MALDI-TOF MS (Weis et  al., 2022; Kim 
et al., 2023).

Machine learning (ML) technology encompasses various 
algorithms such as random forest (RF), support vector machines 
(SVM), logistic regression (LR) and decision trees (DT) (Weis et al., 
2020). ML enables rapid and precise identification of species-specific 
biomarkers from MALDI-TOF MS spectra, which has been widely 
implemented to analyze microbial signatures and construct 
classification models. Recently, the combination of MALDI-TOF MS 
and ML has gained popularity in classifying clinically pathogenic and 
drug-resistant bacteria, including Escherichia coli (van Oosten and 
Klein, 2020), Staphylococcus aureus (Rodríguez-Temporal et al., 2022), 
Klebsiella pneumoniae (Yu et al., 2023), Brucella melitensis (Dematheis 
et  al., 2022), and Campylobacter spp. (Feucherolles et  al., 2021). 
However, there is a lack of identification schemes for Bifidobacterium 
subspecies within a specific taxon in these studies. Hence, there is an 
urgent need to develop a combined machine learning and 
MALDI-TOF MS method for rapid and accurate identification of 
Bifidobacterium subspecies.

In the present study, we first screened for robust variations in 
subspecies-specific features between B. longum and B. infantis based 
on MALDI-TOF MS analysis and a combination of machine learning 
methods such as LR, SVM, and RF (Figure 1). The objective of this 
research was to develop a fast classification tool using Machine-
learning-combined MALDI-TOF MS to accurately distinguish 
between B. longum and B. infantis.

2 Results

2.1 Molecular identification by PCR and 
phylogenetic analysis

Specific primers-based PCR could differentiate between B. longum 
and B infantis. Thus, this method was employed to confirm the 
taxonomic classification of all the strains in study. The specificity and 
sensitivity of the PCR assay using specific primers for distinguishing 
the two subspecies were confirmed by successfully differentiation of 
11 representative strains. Out of the 89 isolates analyzed, 54 were 
identified as B. longum and 35 were identified as B. infantis. For 
additional confirmation, SNP information obtained from 100 genome 
sequences were utilized to construct a phylogenetic tree. The tree 
effectively separated the sequences into two distinct branches. The 
phylogenetic tree revealed that 59 B. longum strains, comprising 
five typical strains and 54 isolates, clustered together with a blue 
background, while 41 B. infantis strains formed a distinct group 
with a red background (Figure 2). These findings underscore the 
efficacy of using phylogenetic tree features for precise 
classification and identification of B. longum and B. infantis, which 
align with the outcomes obtained from specific PCR genotyping 
(Supplementary Table S1).

2.2 Identification of mass spectra for 
strains

Mass spectrometry results indicated the presence of numerous 
identical mass spectral peaks for both B. longum and B. infantis, 
making accurate differentiation challenging when relying solely on 
commercial databases (Figure 3A; Supplementary Table S1). However, 
further analysis unveiled six species-specific peaks that exhibited a 
high degree of conservation and could serve as potential biomarkers 
for identification. As shown in Figures 3B–D, peaks at m/z 4448.52 
(94.9%, 56/59), 5394.35 (100.0%), and 8789.47 (100.0%) were 
exclusively found in the spectrogram of B. longum. Conversely, peaks 
at m/z 4408.42 (95.1%, 39/41), 5381.06, and 8817.28 (100.0%) were 
observed solely in the spectrogram of B. infantis. These findings reveal 
the potential of MALDI-TOF MS to differentiate between B. longum 
and B. infantis based on specific peaks with the protein 
fingerprint profile.

2.3 Discovery and identification of protein 
biomarkers by MALDI-TOF MS

To investigate the applicability of MALDI-TOF MS for 
discriminating B. longum and B. infantis, we performed redundant 
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removal, smoothing, and alignment of 400 spectra from 100 strains 
using OpenMS software. We identified some potential characteristic 
peaks and constructed a mass spectrometry data matrix for further 
analysis. To further investigate the distinguishing features, we performed 
a more specific heatmap clustering analysis of the mass spectrometry 
data matrix (Figure 4A). Then we performed the principal component 
analysis (PCA) of the mass spectrum data matrix obtained from the 
above method. The PCA plot clearly showed the distinct clustering 
patterns of the two subspecies (Figure 4B), indicating their potential for 
differentiation. Finally, 18 potential discriminatory peaks were 
identified, with 11 peaks specific to the B. infantis, including the 
3,088 m/z, 3,573 m/z, 4,408 m/z, 5,338 m/z, 5,381 m/z, 6,820 m/z, 
6,910 m/z, 8,131 m/z, 8,817 m/z, 9,963 m/z, 10,360 m/z. B. longum with 
seven specific peaks, respectively, are located at the 2,929 m/z, 3,152 m/z, 
4,448 m/z, 4,479 m/z, 5,394 m/z, 7,051 m/z, 8,789 m/z. These 
discriminatory peaks are expected to serve as potential features for 
constructing the classifiers. Furthermore, to assess the importance of 
features, we analyzed between 18 feature peaks and drew bar graphs 
(Figure  4C) and found higher SHAP values for feature peaks at 
4408 m/z, 5,381 m/z, 5,394 m/z and 8,817 m/z. This suggests that these 
peaks seem particularly well suited for building classifiers.

To gain insights into the identities of these characteristic peaks, 
we conducted a comparison between the experimental m/z values and 
genomic data. This analysis suggested that the ion peaks at m/z 5,381 
and 5,394 corresponded to the 50S ribosomal protein L34. 
Additionally, peaks at m/z 8,817 and 7,051 were associated with 50S 
ribosomal proteins L27 and L30, respectively. The peak at 4408 m/z 
indicated the presence of the 30S ribosomal protein S5. Moreover, 
we  identified matches with proteins from the DUF (domain of 
unknown function) family, including m/z 4,479, 8,789, and 9,963. 
Proteins belonging to the DUF family are characterized by a conserved 
EYA motif and a length ranging from 66 to 95 amino acids. However, 
their functional roles remain elusive due to the lack of annotation.

The 18 feature peaks obtained above were conducted recursive 
feature elimination using a logistic regression algorithm with cross-
validation to determine the optimal feature set. Figure 5A illustrated 
that the highest cross-validation score of 0.945 was achieved when 
using five features. These five optimal features include m/z 2,929, 
4,408, 5,381, 5,394, and 8,817. Among them, m/z 2,929 and 5,394 were 
characteristic peaks of B. longum, while the remaining peaks were 
specific to B. infantis. The significance of the five selected features was 
presented using a boxplot (Figure 5B), and the results indicated that 

FIGURE 1

Experimental flow chart of Bifidobacterium longum subspecies discrimination based on MALDI-TOF MS and machine learning in this study.
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the p-values of the five features, as determined by Fisher’s exact test, 
were all less than 0.001. In addition, individual ROC curves were 
plotted for the five selected features (Figure 5C). The AUC values 
ranged from 0.777 for m/z 2,929 to 0.917 for m/z 5,381. It indicates 
that the features obtained after recursive elimination can contribute to 
achieving the best classification performance.

2.4 Construction of the machine learning 
models

We developed three commonly used machine learning models: 
LR, SVM, and RF, for microbial discrimination. The dataset utilized 
for model construction consisted of 100 strains, with their subspecies 

verified through PCR and phylogenetic analysis. This dataset was 
randomly divided into a training set for building the models and a test 
set for evaluation their performance. Based on the results obtained 
from the test set, we calculated performance metrics such as sensitivity, 
specificity, accuracy, Youden coefficient, and AUC value (see Table 1).

The classification performance parameters of the three models are 
shown in Table 2. Among them, RF achieved the highest accuracy, 
AUC, and Youden coefficient, all equal to 1.0, indicating its superior 
ability to discriminate between the two subspecies. The sensitivity of 
all three models was 1.0, which means that they could correctly 
identify all the positive cases. The RF model demonstrated the highest 
specificity with a value of 1.0, whereas the LR and SVM models 
exhibited a specificity of 0.931. The RF model also has the highest 
AUC value of 1.0, demonstrating excellent classification performance. 

FIGURE 2

Identification of 41 B. infantis strains and 59 B. longum strains based on the phylogenetic analysis. The red and blue background represent B. infantis or 
B. longum strains, respectively.
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The SVM model’s AUC was slightly better than that of the LR model, 
with values of 0.995, and 0.993, respectively. The Youden coefficient, 
reflecting the overall efficiency of the RF model, was 1.0, while for the 
SVM and LR models, it was 0.931.

2.5 Assessment of practical application of 
the machine learning model

An external dataset comprising 240 spectra obtained from 60 
Bifidobacterium longum strains was collected. These isolates were 

obtained under identical experimental conditions. To validate the 
model’s effectiveness, the three trained models were utilized to predict 
the subspecies of these 60 strains.

Among the three models, both LR and SVM model exhibited a 
specificity of 0.983, while it was 0.967 for the RF model. However, the 
LR model demonstrated a higher sensitivity (0.942) compared to the 
SVM model (0.883) and the RF model (0.900). Regarding accuracy, the 
RF model outperformed the SVM model and the LR model, achieving 
an accuracy rate of 0.954. To provide a more intuitive comparison of 
the models performance, we plotted the ROC curve (Figure 6A) and 
calculate the AUC values. All three models exhibited very similar AUC 

FIGURE 3

MALDI-TOF MS and species-specific peaks of B. longum (Orange) and B. infantis (Purple). The y-axis represents the intensity of the peaks, while the 
x-axis represents the m/z values; (A) depicts stowage diagram of B. longum and B. infantis; (B−D) display enlarged views of subspecies-specific peaks 
as depicted in A.
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values, accurately measured at 0.984. The RF model had the highest 
Youden index (0.908), surpassing the SVM model (0.867) and the LR 
model (0.883). Figure 6B illustrated the distribution of prediction 
scores indicating the likelihood of being B. infantis strains for the two 
subspecies, as determined by the three models.

Based on the four data points results, we established the prediction 
conditions for the strain subspecies model. A confusion matrix for 

external strain identification was calculated based on the voting results 
(Figure 6C). Specific PCR test results and phylogenetic analysis results 
(Figure 6D) showed consistency. The results from specific PCR tests 
and phylogenetic analysis (Figure  6D) were consistent with these 
findings (Supplementary Table S1). Among them, in the LR model, 
the identification of B. longum was in line with PCR and phylogenetic 
results. However, for the B. infantis, specifically YGMCC0271, 

FIGURE 4

Unsupervised analysis and feature importance evaluation. (A) After mass spectral alignment, heat maps were plotted and clustered based on the 
absence/presence of common characteristic peaks in the top 50% of effective p values within subspecies. (B) PCA of Bifidobacterium longum subsp. 
Each dot on the PCA plot represents the average spectrum of each strain, blue for B. longum, and red for B. infantis. (C) Assessment of feature 
importance in a RF model for distinguishing between B. longum and B. infantis.
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YGMCC0192, and YGMCC0550, there was inconsistency, with an 
accuracy of 95%. In the SVM model, the identification of 
YGMCC0618, YGMCC0063, and YGMCC0038 did not align with 
PCR and phylogenetic results, resulting in an accuracy rate of 95%. 
Lastly, in the RF model, the identification of YGMCC0063 and 
YGMCC0120 differed from PCR and SNP results, achieving an 
accuracy rate of 96.67%. Based on the external strain identification 
results, the RF model emerged as the optimal choice.

3 Discussion

Genome-based taxonomy is a more standard method of 
classifying microorganisms than traditional methods (Parks et al., 

2018). However, it is time-consuming, expensive, and labor-
intensive, and fails to meet the demand for rapid and high-
throughput identification of microorganisms. In recent years, 
MALDI-TOF MS has gained increasing importance in clinical 
microbial taxonomy as a fast, high-throughput, and robust method 
for microbial identification. It relies on the detection of microbial 
housekeeping and ribosomal proteins (Kim et al., 2022a; Haider 
et  al., 2023). Nonetheless, while MALDI-TOF MS can identify 
bacteria at the species level, it struggles to accurately distinguish 
closely related species or subspecies. Machine learning algorithms 
have the capability to identify specific information in mass 
spectrometry data and analyze relationships among different 
features, enabling more precise analysis (Weis et  al., 2020). By 
combining machine learning with MALDI-TOF MS, it becomes 

FIGURE 5

Recursive feature elimination. Line plot of 18 characteristic peaks and cross-validation fractions after REFCV (A), and boxplot of mass-to-charge ratio 
and relative intensity of 5 optimal characteristic peaks between the two subspecies of Bifidobacterium longum (**** represents the p value of the 
difference  <  0.0001). (B). ROC curve and AUC value of the five optimal characteristic peaks (C).

https://doi.org/10.3389/fmicb.2023.1297451
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2023.1297451

Frontiers in Microbiology 08 frontiersin.org

possible to accurately identify closely related microorganisms at 
the subspecies level (De Bruyne et al., 2011; Rodríguez-Temporal 
et al., 2023). Recent studies have demonstrated the application of 
machine learning techniques in overcoming the limitations of mass 
spectrometry, such as detecting antibiotic-resistant microorganisms 
(Yoon and Jeong, 2021), analyzing antimicrobial resistance 
(Feucherolles et  al., 2021), and distinguishing closely related 
species. By utilizing features obtained from MALDI-TOF MS, 
SVM algorithms have successfully differentiated clinically resistant 
strains of carbapenem, methicillin, and β-lactam antibiotics, as 
well as predicted resistance phenotypes with high accuracy (Ho 
et al., 2017; Wang J. et al., 2022). Furthermore, the combination of 
MALDI-TOF MS and machine learning is commonly used to 
distinguish closely related foodborne microorganisms. For 
example, an SVM-RBF model achieved a prediction accuracy of 
approximately 100% in accurately identifying W. cibaria and 
W. confusa (Kim et al., 2023).

In our research, we have found that distinguishing closely related 
species using MALDI-TOF MS can be  challenging due to the 
similarities in their protein fingerprints. MALDI-TOF MS generates 
a report of the ten closest matches for an unknown species based on 
mass spectra and the consistency of reference strains in the database. 
However, when different species within the same genus or different 

subspecies within the same species have high scores among the top ten 
matches, accurately identifying the microorganism becomes difficult. 
Previous studies have attempted to distinguish between 
Bifidobacterium longum subspecies (Kim et  al., 2022b) and 
Bifidobacterium animalis subspecies (Jahan et  al., 2021) using 
MALDI-TOF MS. However, these studies had limitations in terms of 
sample size, unsystematic markers, and lack of validation data, and 
have not been commercially applied. In this study, our focus was 
specifically on identifying B. longum and B. infantis using 
MALDI-TOF MS. We discovered that commercial databases were 
unable to accurately differentiate between these two subspecies, which 
aligns with previous findings (Yahiaoui et al., 2020; Jahan et al., 2021; 
Kim et al., 2022b).

The aim of this study was to evaluate the ability of MALDI-TOF 
MS combined with machine-learning methods to rapidly and 
accurately discriminate between the closely related B. longum and 
B. infantis. We employed advanced machine learning algorithms and 
a larger sample size to enhance statistical significance. We ensured 
systematic biomarker collection and data analysis to improve the 
reliability and repeatability of our findings. We examined 400 mass 
spectra from 100 Bifidobacterium longum strains and used a logistic 
regression model with recursive feature elimination to identify the five 
most significant mass peaks. Among these peaks, the masses at 2929 

TABLE 1 Frequencies and assignments of species-specific peaks for B. longum and B. infantis.

Experimental m/z Presence of peak (%) Theoretical m/z Possible presence of protein

B. longum B. infantis

2,929 77.97 (46/59) 7.32 (3/41) 2,932 Hypothetical protein

3,088 23.72 (14/59) 82.93 (34/41) 3,088 NAD(P)-binding domain-containing protein

3,152 69.49 (41/59) 12.20 (5/41) 3,150 Integrase partial

3,573 30.50 (18/59) 95.12 (39/41) 3,573 Restriction endonuclease

4,408 0.00 (0/59) 95.12 (39/41) 4,406 30S ribosomal protein S5 partial

4,448 55.93 (33/59) 29.27 (12/41) 4,447 50S ribosomal protein L9 partial

4,479 74.58 (44/59) 19.51 (8/41) 4,480 DUF600 family protein partial

5,338 6.78 (4/59) 80.49 (33/41) 5,338 Permease

5,381 10.17 (6/59) 100.0 (41/41) 5,377 50S ribosomal

5,394 81.36 (48/59) 0.00 (0/41) 5,391 Protein L34

6,820 28.81 (17/59) 78.05 (32/41) 6,822 Transporter drug/metabolite exporter family

6,910 38.98 (23/59) 97.56 (40/41) 6,910 Transposase

7,051 67.80 (40/59) 14.63 (6/41) 7,051 50S ribosomal protein L30

8,131 0.00 (0/59) 63.41 (26/41) 8,135 IS3 family transposase partial

8,817 13.56 (8/59) 87.80 (36/41) 8,816 50S ribosomal protein L27

8,789 79.66 (47/59) 2.44 (1/41) 8,789 DUF905 domain-containing protein

9,963 28.81 (17/59) 92.68 (38/41) 9,963 DUF4244 domain-containing protein

10,360 30.50 (18/59) 92.68 (38/41) 10,364 50S ribosomal protein L13 partial

TABLE 2 Model result metrics for three machine learning models in validation dataset.

Machine learning models Specificity Sensibility Youden AUC Accuracy

LR 0.931 1.000 0.931 0.993 0.958

SVM 0.931 1.000 0.931 0.995 0.958

RF 1.000 1.000 1.000 1.000 1.000
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and 5,394 m/z were specific to B. longum, while the masses at 4408, 
5381, and 8,817 m/z were specific to B. infantis. These mass peaks can 
potentially serve as biomarkers for distinguishing between these two 
species. Using these biomarkers, we  developed machine learning 
models employing LR, RF, and SVM algorithms. All three models 
exhibited excellent performance in identifying the spectrogram, with 
the RF model demonstrating high accuracy in discriminating between 
B. longum and B. infantis. Furthermore, after evaluating mass 
spectrum identification results through voting, the RF model achieved 
the highest accuracy in practical strain identification applications (see 
Table 3).

4 Materials and methods

4.1 Bacterial strains

Twelve reference strains and eighty-nine strains of Bifidobacterium 
longum subspecies, isolated at Beijing Yujing Pharmaceutical Co., Ltd., 
were selected to explore potential biomarkers (Table  4). The 
bifidobacterial strains were incubated for 48 h at 37°C under anaerobic 
conditions. E. coli ATCC 25922 incubated for 24 h at 37°C in Luria-
Bertani (Solarbio, Beijing, China) agar was applied to external 
calibration of MALDI-TOF MS.

FIGURE 6

Model evaluation in test dataset. (A) ROC curves and AUC of three machine learning models in the test dataset. (B) Boxplot of the verification score of 
the three machine learning models on the spectral data of the external test set. (C) Confusion matrix of external strain identification results for three 
models. (D) Cluster analysis of isolated B. infantis or B. longum strains used for external validation set based on phylogenetic analysis. The red and blue 
background represnt B. infantis or B. longum strains, respectively.
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4.2 MALDI-TOF MS analysis

Proteins from B. longum and B. infantis were extracted using the 
ethanol-formic acid-extraction method (Cuénod et  al., 2023). 
Concisely, fresh bacterial culture was suspended in 300 μL of ddH2O 
to which 900 μL of ethanol was added. The bacterial suspension was 
centrifuged at high speed (10,000× g) for 2 min, the supernatant was 
removed to completely discard the residual ethanol and recentrifuged. 
The resulting pellet was resuspended in 20 μL of 70% formic acid to 
which an equal volume of acetonitrile was added. After centrifugation 
at 10,000× g for 2 min, 1 μL of each supernatant was transferred to the 
96-position MALDI-TOF target plate, allowed to air dry, and then 
overlaid with 1 μL of the matrix solution (10 mg/mL of α-cyano-4-
hydroxy-cinnamic acid (HCCA) in 50% (v/v) acetonitrile with 2.5% 
(v/v) trifluoroacetic acid).

The mass spectra were acquired using an EXS2000 
MALDI-TOF MS (Zybio Inc., Chongqing, China) equipped with 
a 200 Hz smart-beam solid-state laser and operated in positive 
linear mode (Xiong et al., 2023). Mass spectra were automatically 
recorded within a mass range of 2–20 kDa with a total of 200 laser 
shots. E. coli ATCC 25922 was used for mass calibration and 
instrument parameter optimization, with an average deviation of 
molecular weight less than 300 ppm after correction. MS data were 
analyzed using MDT Master (version 1.1). log scores ≥2.0 were 
accepted for the identification at the species level, and log scores 
<2.0 and ≥ 1.7 were used for identification at the genus level or the 

presumptive species level. Log scores below 1.7 were considered 
unreliable. For establishing stable machine learning models, four 
high-quality mass spectra (log scores ≥2.3, stable benchmarks, 
abundant protein peaks, and uniform distribution) were selected 
in each strain.

4.3 Species identification based on PCR 
and genomics sequences

For the identification of the isolates, genomic DNA was extracted 
using Easy Pure Bacteria Genomic DNA Kit (Trans, Beijing, China) 
in accordance with the manufacturer’s instructions. Then, 1 μL of 
supernatant was used for the following PCR reaction, the reaction 
mixture contained 10 μL of SapphireAmp® Fast PCR Master Mix 
(TaKaRa, Beijing, China), 0.5 μL of each primer (10 μM), 1 μL of DNA 
template, and 8 μL of ddH2O. Specific primers were listed in Table 5. 

TABLE 4 Strain information used in this study.

Bacterial strains Origins

Reference strains

  Bifidobacterium longum subsp. longum (B. longum)

ATCC 15707
1ATCC

ATCC BAA999

CGMCC 10452
2CGMCC

CGMCC 2265

Bi05 3IFF

  Bifidobacterium longum subsp. infantis (B. infantis)

ATCC 15697 ATCC

CGMCC 1.15639
CGMCC

CGMCC 18410

Bi26 IFF

EVC001 4Evolve

M-63 5MORINAGA

  Escherichia coli ATCC 25922 ATCC

Isolates (7N)

  Bifidobacterium longum subspecies (149) 6YGMCC

1ATCC, American type culture collection;2CGMCC, China General Microbiological Culture Collection Center;3IFF, International Flavors & Fragrances Inc.;4Evolve, Infinant 
Health™;5MORINAGA, Morinaga Milk Industry Co., Ltd.;6YGMCC, Beijing Yujing Pharmaceutical Co., Ltd.;7N, Number of isolates.

TABLE 5 Specific primer information used in this study.

Target Primer Sequence (5′–3′) Size (bp)

B. longum
B.lon_831_F TTCCAGTTGATCGCATGGTC

831
B.lon_831_R GGGAAGCCGTATCTCTACGA

B. infantis
B.inf_832_F TTCCAGTTGATCGCATGGTC

832
B.inf_832_R GGAAACCCCATCTCTGGGAT

TABLE 3 Model result parameters for three machine learning models on an test dataset.

Machine learning models Specificity Sensibility Youden AUC Accuracy

LR 0.983 0.900 0.883 0.984 0.942

SVM 0.983 0.883 0.867 0.984 0.933

RF 0.967 0.942 0.908 0.984 0.954
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PCR reactions were conducted as follows: one cycle of initial 
denaturation at 98°C for 3 min, followed by 35 cycles of 98°C for 10 s, 
55°C for 10 s, and 72°C for 5 s, and a final extension at 72°C for 2 min. 
The PCR products were observed by an Agarose gel imaging system 
(Tanon, Shanghai, China).

Total 149 unknown Bifidobacterium longum strains were 
cultured anaerobically at 37°C for 24 h, then the cultured liquid 
(50 mL) was centrifuged at 12,000 × g and 4°C for 10 min to collect 
the cell biomass. Genomic DNA of 149 unknown Bifidobacterium 
longum strains were extracted using a Wizard® Genomic DNA 
Purification Kit (Promega, United States). Purified genomic DNA 
was quantified using a TBS-380 fluorometer (Turner BioSystems 
Inc., Sunnyvale, CA, United  States). High-quality DNA 
(OD260/280 = 1.8–2.0, ≥10 μg) was used for further research. 
Genomic DNA was sequenced using Illumina sequencing 
(Illumina, Inc.). The data generated from Illumina platforms were 
used for bioinformatics analysis.

The phylogenetic analysis included the comparison of genomic 
sequences from 5 standard strains of B. infantis, 6 standard strains of 
B. longum, and an additional 149 unknown B. longum strains from our 
laboratory. These sequences were compared with the genomic 
sequence of ASM19655v1, which served as the reference genome. The 
analysis was performed using the Parsnp software, focusing on the 
core genome (Treangen et al., 2014; Wang et al., 2023). The iTOL 
(Interactive Tree of Life) tool was utilized to visualize and explore the 
phylogenetic tree (Letunic and Bork, 2019; Pereira et  al., 2023), 
facilitating the identification and classification of B. longum subspecies 
based on their phylogenetic positions.

4.4 Genomic data mining and identification 
of biomarker proteins

To investigate the significance of using unique peaks from mass 
spectrum data as biomarkers, we conducted genomic data mining 
using publicly available databases. The genome sequences of 
B. longum and B. infantis were obtained from the National Center 
for Biotechnology Information (NCBI) database. To annotate the 
selected protein biomarkers, the web-based ProtParam tool1 was 
utilized to calculate their theoretical molecular weights based on 
the translated amino acid sequences. Subsequently, a custom script 
was employed to filter and align the selected proteins, identifying 
the most relevant proteins enriched in the vicinity of the 
characteristic peaks.

4.5 Model construction and verification

4.5.1 Data preprocess
The MS data obtained using openMS (v2.8) software exhibited 

high quality, allowing for alignment of peaks obtained from different 
batches. The processed peak map data matrix was subjected to PCA 
to access the potential of the features. In addition, a heatmap was 
drawn for cluster analysis using the R language (v4.2.2). After 

1 https://web.expasy.org/protparam/

obtaining the cluster branches of the potential feature peaks, the 
importance parameters of the features and evaluate the importance of 
the features.

The dataset consisting of 400 spectra from 59 B. longum and 41 
B. infantis was randomly divided into 70% training and 30% test 
datasets. The data of subspecies type was binarized, with 0 
representing the long subspecies and 1 representing the infant 
subspecies. All peaks (features) were scaled using Min-Max scalar 
to ensure variables at different scales contributed equally to the 
model fitting process.

4.5.2 Classifier model construction
Firstly, feature selection was carried by a meta-converter approach 

based on a logistic regression classifier with scikit-learn (v1.3.0). 
Recursive feature elimination with 5x cross-validation (RFECV) was 
applied to discard irrelevant features and improve the model’s 
generalization ability.

Secondly, SHAP (SHapley Additive exPlanations) was used to 
interpret predictions. SHAP is a unified framework that assigns 
importance values to each feature for a specific prediction and 
identifies which feature is most important, facilitating the 
understanding of a machine learning model’s decision-making process 
(Lundberg and Lee, 2017).

Thirdly, three machine learning algorithms including random 
forest (RF), logistic regression (LR), and support vector machine 
(SVM) were used to construct the distinguishing models using the 
scikit-learn package. The performances of the models were 
evaluated by generating the confusion matrix on the test dataset. 
The ROC curve was plotted using the Matplotlib package, and the 
area under the subject operating characteristic curve (AUROC) 
was calculated as a measure of classifier performance. The Youden 
index was utilized to determine the optimal cutoff threshold and 
calculate the sensitivity, specificity, and accuracy metrics for 
the model.

To assess the practical applicability of the model in strain 
identification, we performed an external validation using a new 
dataset. Each strain in this dataset was accompanied by four mass 
spectra collected under identical experimental conditions. 
Subsequently, we  compared the identification outcomes 
with those obtained through specific PCR detection and 
phylogenetic analysis.

5 Conclusion

In our research, we successfully demonstrated the effectiveness of 
combining MALDI-TOF-MS with machine learning to accurately 
discriminate between B. longum and B. infantis. We  identified 
everything from protein fingerprints to potential biomarkers, and 
developed three spectral map identification models using the ML 
algorithm, and finally evaluated the various performance metrics and 
voted to find the optimal algorithm. The algorithm is highly reliable 
and accurate in distinguishing the two subspecies. This approach has 
the potential to be applied in various industries, such as the food or 
pharmaceutical industry, for rapid and cost-effective identification of 
B. longum and B. infantis. Furthermore, the identification strategy 
presented in this study can also be  extended to other closely 
related species.

https://doi.org/10.3389/fmicb.2023.1297451
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://web.expasy.org/protparam/


Liu et al. 10.3389/fmicb.2023.1297451

Frontiers in Microbiology 12 frontiersin.org

Data availability statement

The names of the repository/repositories and accession number(s) 
can be found below: NCBI; PRJNA1020989.

Author contributions

KL: Investigation, Methodology, Validation, Writing – original 
draft. YW: Investigation, Methodology, Validation, Writing – 
original draft. MZ: Data curation, Investigation, Methodology, 
Validation, Writing – original draft. GX: Software, Validation, 
Writing – original draft. AW: Data curation, Writing – review & 
editing. WW: Supervision, Validation, Writing – review & editing. 
LX: Data curation, Methodology, Supervision, Writing – review & 
editing. JC: Project administration, Supervision, Writing – review 
& editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Conflict of interest

KL, GX, AW, and LX were employed by Hotgen Biotechnology Inc. 
MZ and JC were employed by Beijing YuGen Pharmaceutical Co., Ltd.

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1297451/
full#supplementary-material

References
Carvalho, M., Sands, K., Thomson, K., Portal, E., Mathias, J., Milton, R., et al. (2022). 

Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with 
or without sepsis from low- and middle-income countries. Nat. Microbiol. 7, 1337–1347. 
doi: 10.1038/s41564-022-01184-y

Casaburi, G., Duar, R. M., Brown, H., Mitchell, R. D., Kazi, S., Chew, S., et al. (2021). 
Metagenomic insights of the infant microbiome community structure and function 
across multiple sites in the United  States. Sci. Rep. 11:1472. doi: 10.1038/
s41598-020-80583-9

Cuénod, A., Aerni, M., Bagutti, C., Bayraktar, B., Boz, E. S., Carneiro, C. B., et al. 
(2023). Quality of MALDI-TOF mass spectra in routine diagnostics: results from an 
international external quality assessment including 36 laboratories from 12 countries 
using 47 challenging bacterial strains. Clin. Microbiol. Infect. 29, 190–199. doi: 10.1016/j.
cmi.2022.05.017

De Bruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P., De Baets, B., and 
Vandamme, P. (2011). Bacterial species identification from MALDI-TOF mass spectra 
through data analysis and machine learning. Syst. Appl. Microbiol. 34, 20–29. doi: 
10.1016/j.syapm.2010.11.003

Dematheis, F., Walter, M. C., Lang, D., Antwerpen, M., Scholz, H. C., Pfalzgraf, M.-T., 
et al. (2022). Machine learning algorithms for classification of MALDI-TOF MS spectra 
from phylogenetically closely related species Brucella melitensis, Brucella abortus and 
Brucella suis. Microorganisms 10:8. doi: 10.3390/microorganisms10081658

Duar, R. M., Henrick, B. M., Casaburi, G., and Frese, S. A. (2020). Integrating the 
ecosystem services framework to define Dysbiosis of the breastfed infant Gut: the role 
of B. infantis and Human Milk Oligosaccharides. Front. Nutr. 7:33. doi: 10.3389/
fnut.2020.00033

Feucherolles, M., Nennig, M., Becker, S. L., Martiny, D., Losch, S., Penny, C., et al. 
(2021). Combination of MALDI-TOF mass spectrometry and machine learning for 
rapid antimicrobial resistance screening: the case of Campylobacter spp. Front. 
Microbiol. 12:804484. doi: 10.3389/fmicb.2021.804484

Gato, E., Constanso, I. P., Candela, A., Galán, F., Rodiño-Janeiro, B. K., Arroyo, M. J., 
et al. (2021). An improved matrix-assisted laser desorption ionization-time of flight 
mass spectrometry data analysis pipeline for the identification of Carbapenemase-
producing Klebsiella pneumoniae. J. Clin. Microbiol. 59:e0080021. doi: 10.1128/
JCM.00800-21

Haider, A., Ringer, M., Kotroczó, Z., Mohácsi-Farkas, C., and Kocsis, T. (2023). The 
current level of MALDI-TOF MS applications in the detection of microorganisms: a 
short review of benefits and limitations. Microbiol. Res. 14, 80–90. doi: 10.3390/
microbiolres14010008

Heilbronner, S., and Foster, T. J. (2021). Staphylococcus lugdunensis: a skin commensal 
with invasive pathogenic potential. Clin. Microbiol. Rev. 34:2. doi: 10.1128/CMR.00205-20

Henrick, B. M., Chew, S., Casaburi, G., Brown, H. K., Frese, S. A., Zhou, Y., et al. 
(2019). Infantis EVC001 modulates enteric inflammation in exclusively breastfed infants. 
Pediatr. Res. 86, 749–757. doi: 10.1038/s41390-019-0533-2

Henrick, B. M., Rodriguez, L., Lakshmikanth, T., Pou, C., Henckel, E., Arzoomand, A., 
et al. (2021). Bifidobacteria-mediated immune system imprinting early in life. Cells 184, 
3884–3898.e11. doi: 10.1016/j.cell.2021.05.030

Ho, P.-L., Yau, C.-Y., Ho, L.-Y., Chen, J. H. K., Lai, E. L. Y., Lo, S. W. U., et al. (2017). 
Rapid detection of cfiA metallo-β-lactamase-producing Bacteroides fragilis by the 
combination of MALDI-TOF MS and CarbaNP. J. Clin. Pathol. 70, 868–873. doi: 
10.1136/jclinpath-2017-204335

Jahan, N. A., Godden, S. M., Royster, E., Schoenfuss, T. C., Gebhart, C., Timmerman, J., 
et al. (2021). Evaluation of the matrix-assisted laser desorption ionization time of flight 
mass spectrometry (MALDI-TOF MS) system in the detection of mastitis pathogens 
from bovine milk samples. J. Microbiol. Methods 182:106168. doi: 10.1016/j.mimet. 
2021.106168

Kim, E., Yang, S.-M., Cho, E.-J., and Kim, H.-Y. (2022b). Evaluation of matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry for the discrimination of 
Lacticaseibacillus species. Food Microbiol. 107:104094. doi: 10.1016/j.fm.2022.104094

Kim, E., Yang, S.-M., Jung, D.-H., and Kim, H.-Y. (2023). Differentiation between 
Weissella cibaria and Weissella confusa using machine-learning-combined MALDI-TOF 
MS. Int. J. Mol. Sci. 24:11009. doi: 10.3390/ijms241311009

Kim, E., Yang, S.-M., Kim, H.-J., and Kim, H.-Y. (2022a). Differentiating between 
Enterococcusfaecium and Enterococcuslactis by matrix-assisted laser desorption 
ionization time-of-flight mass spectrometry. Foods 11:7. doi: 10.3390/foods11071046

Letunic, I., and Bork, P. (2019). Interactive tree of life (iTOL) v4: recent updates and 
new developments. Nucleic Acids Res. 47, W256–W259. doi: 10.1093/nar/gkz239

Lundberg, S., and Lee, S. I., A unified approach to interpreting model predictions. 31st 
Conference on Neural Information Processing Systems (2017), 1–10.

Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P.-
A., et al. (2018). A standardized bacterial taxonomy based on genome phylogeny 
substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004. doi: 10.1038/nbt.4229

Pereira, C. R., Neia, R. C., Silva, S. B., Williamson, C. H. D., Gillece, J. D., 
O'Callaghan, D., et al. (2023). Comparison of Brucella abortus population structure 
based on genotyping methods with different levels of resolution. J. Microbiol. Methods 
211:106772. doi: 10.1016/j.mimet.2023.106772

Rodríguez-Temporal, D., Díez, R., Díaz-Navarro, M., Escribano, P., Guinea, J., 
Muñoz, P., et al. (2022). Determination of the ability of matrix-assisted laser desorption 
ionization time-of-flight mass spectrometry to identify high-biofilm-producing strains. 
Front. Microbiol. 13:1104405. doi: 10.3389/fmicb.2022.1104405

https://doi.org/10.3389/fmicb.2023.1297451
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1297451/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1297451/full#supplementary-material
https://doi.org/10.1038/s41564-022-01184-y
https://doi.org/10.1038/s41598-020-80583-9
https://doi.org/10.1038/s41598-020-80583-9
https://doi.org/10.1016/j.cmi.2022.05.017
https://doi.org/10.1016/j.cmi.2022.05.017
https://doi.org/10.1016/j.syapm.2010.11.003
https://doi.org/10.3390/microorganisms10081658
https://doi.org/10.3389/fnut.2020.00033
https://doi.org/10.3389/fnut.2020.00033
https://doi.org/10.3389/fmicb.2021.804484
https://doi.org/10.1128/JCM.00800-21
https://doi.org/10.1128/JCM.00800-21
https://doi.org/10.3390/microbiolres14010008
https://doi.org/10.3390/microbiolres14010008
https://doi.org/10.1128/CMR.00205-20
https://doi.org/10.1038/s41390-019-0533-2
https://doi.org/10.1016/j.cell.2021.05.030
https://doi.org/10.1136/jclinpath-2017-204335
https://doi.org/10.1016/j.mimet.2021.106168
https://doi.org/10.1016/j.mimet.2021.106168
https://doi.org/10.1016/j.fm.2022.104094
https://doi.org/10.3390/ijms241311009
https://doi.org/10.3390/foods11071046
https://doi.org/10.1093/nar/gkz239
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1016/j.mimet.2023.106772
https://doi.org/10.3389/fmicb.2022.1104405


Liu et al. 10.3389/fmicb.2023.1297451

Frontiers in Microbiology 13 frontiersin.org

Rodríguez-Temporal, D., Herrera, L., Alcaide, F., Domingo, D., Héry-Arnaud, G., van 
Ingen, J., et al. (2023). Identification of Mycobacterium abscessus subspecies by MALDI-
TOF mass spectrometry and machine learning. J. Clin. Microbiol. 61:e0111022. doi: 
10.1128/jcm.01110-22

Sato, H., Teramoto, K., Ishii, Y., Watanabe, K., and Benno, Y. (2011). Ribosomal 
protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass 
spectrometry for phylogenety-based subspecies resolution of Bifidobacterium longum. 
Syst. Appl. Microbiol. 34, 76–80. doi: 10.1016/j.syapm.2010.07.003

Topić Popović, N., Kazazić, S., Bojanić, K., Strunjak-Perović, I., and Čož-Rakovac, R. 
(2023). Sample preparation and culture condition effects on MALDI-TOF MS 
identification of bacteria: a review. Mass. Spectrom. Rev. 42, 1589–1603. doi: 10.1002/
mas.21739

Treangen, T. J., Ondov, B. D., Koren, S., and Phillippy, A. M. (2014). The harvest suite 
for rapid core-genome alignment and visualization of thousands of intraspecific 
microbial genomes. Genome Biol. 15:524. doi: 10.1186/s13059-014-0524-x

van Oosten, L. N., and Klein, C. D. (2020). Machine learning in mass spectrometry: 
a MALDI-TOF MS approach to phenotypic antibacterial screening. J. Med. Chem. 63, 
8849–8856. doi: 10.1021/acs.jmedchem.0c00040

Vatanen, T., Ang, Q. Y., Siegwald, L., Sarker, S. A., Le Roy, C. I., Duboux, S., et al. 
(2022). A distinct clade of Bifidobacterium longum in the gut of Bangladeshi children 
thrives during weaning. Cells 185, 4280–4297.e12. doi: 10.1016/j.cell.2022.10.011

Wang, H. Y., Kuo, C. H., Chung, C. R., Lin, W. Y., Wang, Y. C., Lin, T. W., et al. (2022). 
Rapid and accurate discrimination of Mycobacterium abscessus subspecies based on 
matrix-assisted laser desorption ionization-time of flight Spectrum and machine 
learning algorithms. Biomedicine 11:45. doi: 10.3390/biomedicines11010045

Wang, J., Xia, C., Wu, Y., Tian, X., Zhang, K., and Wang, Z. (2022). Rapid detection of 
Carbapenem-resistant Klebsiella pneumoniae using machine learning and MALDI-TOF 
MS platform. Infect. Drug Resist. 15, 3703–3710. doi: 10.2147/IDR.S367209

Wang, Y. Y., Xie, L., Zhang, W. Z., Du, X. L., Li, W. G., Bia, L. L., et al. (2023). 
Application of a core genome sequence typing (cgMLST) pipeline for surveillance of 
Clostridioides difficile in China. Front. Cell. Infect. Microbiol. 13:1109153. doi: 10.3389/
fcimb.2023.1109153

Weis, C., Cuénod, A., Rieck, B., Dubuis, O., Graf, S., Lang, C., et al. (2022). Direct 
antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using 
machine learning. Nat. Med. 28, 164–174. doi: 10.1038/s41591-021-01619-9

Weis, C. V., Jutzeler, C. R., and Borgwardt, K. (2020). Machine learning for microbial 
identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a 
systematic review. Clin. Microbiol. Infect 26, 1310–1317. doi: 10.1016/j.cmi.2020.03.014

Xiong, L., Long, X., Ni, L., Wang, L., Zhang, Y., Cui, L., et al. (2023). Comparison of 
autof Ms1000 and EXS3000 MALDI-TOF MS platforms for routine identification of 
microorganisms. Infect. Drug Resist. 16, 913–921. doi: 10.2147/IDR.S352307

Yahiaoui, R. Y., Goessens, W. H., Stobberingh, E. E., and Verbon, A. (2020). 
Differentiation between Streptococcus pneumoniae and other viridans group streptococci 
by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Clin. 
Microbiol. Infect. 26, 1088.e1–1088.e5. doi: 10.1016/j.cmi.2019.11.024

Yoon, E.-J., and Jeong, S. H. (2021). MALDI-TOF mass spectrometry technology as a 
tool for the rapid diagnosis of antimicrobial resistance in Bacteria. Antibiotics (Basel) 
10:982. doi: 10.3390/antibiotics10080982

Yu, J., Lin, Y.-T., Chen, W.-C., Tseng, K.-H., Lin, H.-H., Tien, N., et al. (2023). Direct 
prediction of carbapenem-resistant, carbapenemase-producing, and colistin-resistant 
Klebsiella pneumoniae isolates from routine MALDI-TOF mass spectra using machine 
learning and outcome evaluation. Int. J. Antimicrob. Agents 61:106799. doi: 10.1016/j.
ijantimicag.2023.106799

Zhang, B., Li, L.-Q., Liu, F., and Wu, J.-Y. (2022). Human milk oligosaccharides and 
infant gut microbiota: molecular structures, utilization strategies and immune function. 
Carbohydr. Polym. 276:118738. doi: 10.1016/j.carbpol.2021.118738

https://doi.org/10.3389/fmicb.2023.1297451
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1128/jcm.01110-22
https://doi.org/10.1016/j.syapm.2010.07.003
https://doi.org/10.1002/mas.21739
https://doi.org/10.1002/mas.21739
https://doi.org/10.1186/s13059-014-0524-x
https://doi.org/10.1021/acs.jmedchem.0c00040
https://doi.org/10.1016/j.cell.2022.10.011
https://doi.org/10.3390/biomedicines11010045
https://doi.org/10.2147/IDR.S367209
https://doi.org/10.3389/fcimb.2023.1109153
https://doi.org/10.3389/fcimb.2023.1109153
https://doi.org/10.1038/s41591-021-01619-9
https://doi.org/10.1016/j.cmi.2020.03.014
https://doi.org/10.2147/IDR.S352307
https://doi.org/10.1016/j.cmi.2019.11.024
https://doi.org/10.3390/antibiotics10080982
https://doi.org/10.1016/j.ijantimicag.2023.106799
https://doi.org/10.1016/j.ijantimicag.2023.106799
https://doi.org/10.1016/j.carbpol.2021.118738

	Rapid discrimination of Bifidobacterium longum subspecies based on MALDI-TOF MS and machine learning
	1 Introduction
	2 Results
	2.1 Molecular identification by PCR and phylogenetic analysis
	2.2 Identification of mass spectra for strains
	2.3 Discovery and identification of protein biomarkers by MALDI-TOF MS
	2.4 Construction of the machine learning models
	2.5 Assessment of practical application of the machine learning model

	3 Discussion
	4 Materials and methods
	4.1 Bacterial strains
	4.2 MALDI-TOF MS analysis
	4.3 Species identification based on PCR and genomics sequences
	4.4 Genomic data mining and identification of biomarker proteins
	4.5 Model construction and verification
	4.5.1 Data preprocess
	4.5.2 Classifier model construction

	5 Conclusion
	Data availability statement
	Author contributions

	References

