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Brown film formation, a unique developmental stage in the life cycle of Lentinula

edodes, is essential for the subsequent development of fruiting bodies in

L. edodes cultivation. The pH of mushroom growth substrates are usually adjusted

with hydrated lime, yet the effects of hydrated lime on cultivating L. edodes and

the molecular mechanisms associated with the effects have not been studied

systemically. We cultivated L. edodes on substrates supplemented with 0% (CK),

1% (T1), 3% (T2), and 5% (T3) hydrated lime (Ca (OH)2), and applied transcriptomics

and qRT-PCR to study gene expression on the brown film formation stage.

Hydrated lime increased polysaccharide contents in L. edodes, especially in T2,

where the 5.3% polysaccharide content was approximately 1.5 times higher than

in the CK. The addition of hydrated lime in the substrate promoted laccase,

lignin peroxidase and manganese peroxidase activities, implying that hydrated

lime improved the ability of L. edodes to decompose lignin and provide nutrition

for its growth and development. Among the annotated 9,913 genes, compared to

the control, 47 genes were up-regulated and 52 genes down-regulated in T1; 73

genes were up-regulated and 44 were down-regulated in T2; and 125 genes were

up-regulated and 65 genes were down-regulated in T3. Differentially expressed

genes (DEGs) were enriched in the amino acid metabolism, lipid metabolism and

carbohydrate metabolism related pathways. The carbohydrate-active enzyme

genes up-regulated in the hydrated lime treatments were mostly glycosyl

hydrolase genes. The results will facilitate future optimization of L. edodes

cultivation techniques and possibly shortening the production cycle.
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1 Introduction

Lentinula edodes, an edible mushroom, is among the most widely consumed mushrooms
(Zhang et al., 2011). The production cycle of Lentinula edodes is long, including mycelium
growth period, brown film formation period, primordium formation period and fruiting
body development period. After maturity, mushroom mycelium forms brown film through
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pigment accumulation. The brown film stage occupies an
important position and is an important link of nutrient
accumulation and related gene expression, directly affecting the
quantity and quality of fruiting bodies (Yan et al., 2020).

The cultivation of edible fungi is affected by environmental
factors, and the pH of cultivation substrate is one of the most
important factors (Yadav and Chandra, 2014). Sawdust is the main
component of cultivation substrates. Wood degrading brown-rot
fungi produce large amount of organic acids (Arantes et al., 2009;
Hastrup et al., 2012), which may acidify improperly stored sawdust.
Since acidified sawdust should not be cultivated directly, hydrated
lime that can neutralize organic acids is often added to the substrate
to regulate pH (Li et al., 2022). Proper amounts of hydrated lime
in the growth substrate can also inhibit the growth of molds.
Two percent hydrated lime in the growth substrate promoted
the growth of Pleurotus ostreatus mycelia and increased its yield
(Khan et al., 2013).

The formation of brown film and fruiting bodies of L. edodes
requires the accumulation of nutrients. Carbohydrate-active
enzymes (CAZymes) that degrade plant cell walls provide
carbohydrates for L. edodes (Zhang et al., 2016). Glycoside
hydrolases (GHs) hydrolyze glycosidic bonds in carbohydrates,
both those between sugar moieties and between sugar and other
moieties (Sathya and Khan, 2015), providing nutrition for the
brown film formation of L. edodes. β-1,3-glucanase in the GH5
family participated in the development of fruiting bodies of
L. edodes (Yan et al., 2021). Laccases in the auxiliary activity (AAs)
category degrade lignin in the substrate and play an important
role in the differentiation of the primordium into the fruiting body
(Chen et al., 2003; Xie et al., 2018). Cellulase and hemicellulose, also
classified as AAs, degrade cellulose and hemicellulose in substrates
(Bano et al., 1993). Glycosyl transferases (GTs) catalyze glycosidic
bond formation and participate in polysaccharide synthesis in
mushrooms (Liang et al., 2022).

In recent years, the focus of omics analyses of L. edodes
has mostly been on the development from mycelium to fruiting
bodies (Sakamoto et al., 2017; Wang et al., 2018). To our
knowledge, transcriptomics has not been applied to study how
hydrated lime promotes the growth and development of L. edodes.
To provide data for optimizing the cultivation techniques of
L. edodes, we studied the molecular mechanisms behind the
effects of hydrated lime on the growth and development of
L. edodes. We applied RNA-seq technique to compare the
transcriptomes of L. edodes cultivated on substrates with 0%
to 5% hydrated lime. Analyzing the differences in transcription
and expression of CAZymes genes in L. edodes under different
hydrated lime concentrations and determining the optimal
hydrated lime dosage will help optimizing L. edodes cultivation
techniques.

2 Materials and methods

2.1 Lentinula edodes cultivation

Lentinula edodes ACCC50302 was obtained from the
Agricultural Culture Collection of China. The synthetic substrate,
consisting of 80% Quercus acutissima sawdust, 19% wheat bran

and 1% sucrose, was used as such in the control treatment (CK)
or supplemented with 1% (T1), 3% (T2), or 5% (T3) hydrated
lime (Ca (OH)2) that was suspended into water 1:1.5 (w:vol).
Mushroom culture packages with 800 g of the substrate (60%
water content) were sterilized, cooled to room temperature, and
inoculated with L. edodes. Packages were kept at 20–25◦C with
50–60% relative humidity in the dark. After mycelium had fully
colonized the medium, the packages were kept at 20–28◦C with
relative humidity below 70%. When the brown film was fully
formed, the packages were transferred to a mushroom shed
for fruiting body formation. The treatments consisted of three
replicates with 20 packages per replicate. Part of the mycelia
was collected at the brown film formation stage. The collected
mycelia were mixed, frozen immediately in liquid nitrogen and
stored at -80◦C for extraction of RNA and enzyme activity
assay. The fruiting body samples were collected at maturity,
dried at 55◦C, crushed and passed through a 80 mesh filter.
Polysaccharides in fruiting bodies were extracted using hot water
extraction and quantified using the phenol-sulfuric acid method
(Wang et al., 2014).

2.2 Enzyme assay

Extracellular enzymes were extracted from 10 g wet weight
growth substrate by suspending in 200 mL of 50 mM sodium
acetate buffer (pH 4.8) and centrifuging at 180 rpm for 1 h at 4◦C.
The activities of lignocellulose degrading enzymes laccase, cellulase,
hemicellulase, manganese peroxidase (MnP), and lignin peroxidase
(LiP) in the supernatant were determined as previously described
(Arora et al., 2002; Yeo et al., 2007; Prior and Day, 2008).

2.3 RNA Extraction, cDNA library
construction and sequencing

Total RNA was isolated using the Trizol Reagent (Thermo
Fisher Scientific, Franklin, MA, United States), after which
the concentration and quality of the RNA were determined
using a NanoDrop spectrophotometer (Thermo Fisher Scientific).
The integrity of the RNA in the extracts was confirmed by
electrophoresis in 1% agarose gel.

Sequencing libraries were generated from three micrograms
of RNA using a TruSeq RNA Sample Preparation Kit (Illumina,
San Diego, CA, United States) (Perina et al., 2017). The mRNA
was purified from total RNA using poly-T-oligo-attached magnetic
beads (Ozsolak and Milos, 2011). cDNA was synthesized using
fragmented mRNA as template. cDNA fragments of about
200 bp were selected with an AMPure XP system (Beckman
Coulter, Beverly, CA, USA). The fragments were selectively
enriched with PCR, the PCR products were purified using
AMPure XP system and quantified using an Agilent high
sensitivity DNA assay on a Bioanalyzer 2100 system (Agilent,
Waldbronn, Germany). The libraries were sequenced on a
Hiseq platform (Illumina) at Shanghai Personal Biotechnology
Co., Ltd (Shanghai, China). The raw sequence data were
submitted to NCBI Sequence Read Archive with accession number
PRJNA979791.
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2.4 Expression analysis

Sequences were trimmed with Cutadapt v1.18 to remove
3-end adapter, and filtered to remove reads with average
quality below Q20. The filtered reads were aligned to the
L. edodes reference genome (Lentinula_edodes.Lened_assembly
01.dna.toplevel.fa) using HISAT2 (Kim et al., 2015). Reads per gene
were counted using HTSeq v.0.9.1 (Anders et al., 2015). Expression
levels were normalized by calculating fragments per kilobase of
exon per million fragments mapped (FPKM). In the reference
transcriptome, the genes with FPKM > 1 were considered to be
expressed. Differential gene expression analysis was done using R
package DEseq2 v1.8.3; genes with | log2FoldChange| > 1 and
P < 0.05 were regarded as differentially expressed genes (DEGs)
(Wang et al., 2010; Varet et al., 2016).

2.5 Enrichment analysis of DEGs

In the gene ontology (GO) enrichment analysis, the DEGs were
mapped to GO categories using topGO and the GO database (Alexa
et al., 2006). In the pathway analysis, the DEGs were mapped into
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
using R package clusterprofiler v4.6.0 (Yu et al., 2012).

2.6 CAZymes analysis

The genes related to carbohydrate-active enzymes (CAZymes)
that were differently expressed in the transcriptome of L. edodes
were analyzed using the CAZymes Analysis Toolkit (CAT)
and the carbohydrate enzyme database1 (Cantarel et al., 2009;
Park et al., 2010).

2.7 Quantitative real-time PCR

Six differentially expressed CAZymes genes were chosen
for validating the expression based on their biological roles in
GO and KEGG analysis and the differences in gene expression
between samples. The real-time PCR (qRT-PCR) was performed
on a CFX96 Real-Time System (BIO-RAD) according to the
manufacturer’s instructions with glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) gene as the internal control gene and
three biological replicates with three technical replicates. cDNA
samples from the same batch of sequencing were used as templates.
The primers used are in Supplementary Table 1.

2.8 Statistical analysis

Differences between treatments were tested using one-way
ANOVA and Tukey’s test in IBM SPSS Statistics for Windows
V27.0 (IBM Corp., Armonk, NY, USA). GraphPad Prism V9.4.1
for Windows (GraphPad Software, San Diego, California, USA) was
used for fitting and plotting.

1 http://www.cazy.org

3 Results

3.1 Phenotypic traits

With the increase in the content of hydrated lime, the time
taken for mycelium to change from white to brown gradually
decreased, suggesting that the addition of hydrated lime to the
medium accelerated the formation of the brown film. The areas of
brown film were bigger in the hydrated lime containing treatments
T1, T2 and T3 than in the control (CK) (Figure 1). In addition, the
polysaccharide contents of the fruiting bodies were higher in the
hydrated lime containing treatments than in the control (P < 0.05);
the contents were 3.5, 4.4, 5.3, and 4.5% in CK, T1, T2, and T3,
respectively (Table 1).

The activities of laccase and manganese peroxidase (MnP)
were higher and that of cellulase was lower in all the hydrated
lime treatments than in the control (P < 0.05); laccase and MnP
activities were above 130 and 9 U ml−1, respectively, and cellulase
activity below 156 ml−1 in the hydrated lime treatments (Table 1).
The activity of lignin peroxidase (LiP) was higher and that of
hemicellulase was lower in T2 and T3 than in the control (P < 0.05);
LiP and hemicellulase activities were above 70 ml−1 and below
44 ml−1, respectively, in T2 and T3 (Table 1).

3.2 Sequencing and gene annotation

After filtering, we obtained from 43 million to 45 million
reads per treatment (Table 2 and Supplementary Tables 2, 3).
Approximately 85% of the reads were mapped, most of them
uniquely, onto the L. edodes genome (Supplementary Table 4).
Approximately 83% of the genome-mapped reads were mapped to

FIGURE 1

Lentinula edodes grown in panel (A) the control treatment and
treatments supplemented with panel (B) 1%, (C) 3% and (D) 5%
hydrated lime.
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TABLE 1 The crude polysaccharide contents of Lentinula edodes fruiting bodies and enzyme activities in L. edodes brown film.

CK T1 T2 T3

Crude polysaccharides (%) 3.48 ± 0.22d 4.42 ± 0.51c 5.27 ± 0.32a 4.45 ± 1.11b

Enzyme activity (U ml−1) Lignin peroxidase 65.24 ± 4.36b 69.41 ± 0.59ab 74.86 ± 0.22a 71.07 ± 0.33a

Manganese peroxidase 8.29 ± 0.03d 10.47 ± 0.19b 9.21 ± 0.24c 14.13 ± 0.18a

Hemicellulase 47.29 ± 0.44a 46.15 ± 0.48a 43.60 ± 0.57b 39.95 ± 0.72c

Cellulase 160.64 ± 0.73a 155.39 ± 0.32b 156.20 ± 1.36b 151.14 ± 1.11c

Laccase 121.40 ± 0.99d 131.50 ± 0.75c 151.60 ± 0.91a 140.53 ± 1.39b

Values are mean ± standard deviation (n = 3). Different superscript letters on a row indicate statistically significant differences at P < 0.05. CK, control treatment; T1, 1% hydrated lime; T2,
3% hydrated lime; T3, 5% hydrated lime.

TABLE 2 Numbers of bases and reads in the transcriptomes of the brown
film of L. edodes.

CK T1 T2 T3

Bases 7414279700 7205274200 7219885300 7055507500

Clean reads 45290330 44044069 44212468 43103647

Mapped reads 39854460 37601591 38848312 37711518

Mapped ratio 88.00% 85.37% 87.87% 87.49%

CK, control treatment; T1, 1% hydrated lime; T2, 3% hydrated lime; T3, 5% hydrated lime.

FIGURE 2

FPKM density distribution.

gene regions, out of which more than 96% were mapped onto exons
(Supplementary Table 5). In total, 9,913 genes were recovered.

Based on the fragments per kilobase per million mapped reads
(FPKM), the gene expression levels in both the CK, T1, T2, and
T3 treatments were similar (Figure 2), implying that the data was
amenable to differential expression analysis.

In the L. edodes transcriptome, mRNA of 583 genes encoding
CAZymes were identified (Supplementary Table 9). Out of the
CAZymes genes, 282 were classified into glycoside hydrolases
(GHs), 118 into glycosyltransferases (GTs), 99 into auxiliary

FIGURE 3

Differentially expressed genes (DEGs) in the brown film of
L. edodes. CK, control treatment; T1, 1% hydrated lime; T2, 3%
hydrated lime; T3, 5% hydrated lime.

activities (AAs), 38 into carbohydrate esterases (CEs), 36 into
carbohydrate-binding modules (CBMs), and 10 into polysaccharide
lyases (PLs) (Supplementary Table 6).

3.3 Differentially expressed genes (DEGs)

Compared to the control, 47 genes were up-regulated and 52
genes down-regulated in T1; 73 genes were up-regulated and 44
were down-regulated in T2; and 125 genes were up-regulated and
65 genes were down-regulated in T3 (Figure 3 and Supplementary
Table 7). Compared to T3, 99 genes were up-regulated and 94
down-regulated in T1, and five genes were up-regulated and three
genes were down-regulated in T2 (Figure 3 and Supplementary
Table 7).

In the L. edodes transcriptome, many genes involved in brown
film formation were differentially expressed. Compared with the
control, one up- and four down-regulated, three down-regulated,
and one down-regulated cytochrome P450 genes, and three up-
regulated, two up- and one down-regulated, and three up- and one
down-regulated glycoside hydrolase genes were identified in T1,
T2, and T3, respectively; hydrophobin 2 gene was down-regulated
in T1, T2, and T3 (Table 3). Compared with the control, four
CAZymes genes were up-regulated and one down-regulated in
T1, three were up-regulated and three down-regulated in T2, and
four were up-regulated and four down-regulated in T3 (Figure 4).
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TABLE 3 Differentially expressed genes associated with brown film formation in L. edodes.

Gene ID Gene annotation log2FoldChange P-value

T1vsCK LENED_001276 Cytochrome P450 monooxygenase −1.98 0.00*

LENED_000777 Cytochrome P450 monooxygenase −1.31 0.00*

LENED_008571 Cytochrome P450 monooxygenase −1.55 0.04

LENED_006243 Cytochrome P450 −1.97 0.03

LENED_012754 Cytochrome P450 monooxygenase 1.16 0.04

LENED_003059 Glycoside hydrolase family 152 protein 1.06 0.00*

LENED_009936 Glycoside hydrolase family 18 protein 1.07 0.00*

LENED_002015 Glycoside hydrolase family 16 protein 1.15 0.03

LENED_002150 Hydrophobin 2 −1.52 0.00*

T2vsCK LENED_006924 Cytochrome P450 monooxygenase −1.33 0.00*

LENED_001276 Cytochrome P450 monooxygenase −2.03 0.00*

LENED_002328 Cytochrome P450 −1.02 0.04

LENED_001677 Glycoside hydrolase family 17 protein 1.85 0.00*

LENED_007456 Glycoside hydrolase family 15 protein 1.18 0.01

LENED_012114 Glycoside hydrolase family 18 protein −1.19 0.01

LENED_002150 Hydrophobin 2 −2.24 0.00*

T3vsCK LENED_001276 Cytochrome P450 monooxygenase −1.53 0.01

LENED_001677 Glycoside hydrolase family 17 protein 2.65 0.00*

LENED_007456 Glycoside hydrolase family 15 protein 1.12 0.00*

LENED_006657 Glycoside hydrolase family 16 protein 1.39 0.04

LENED_001185 Glycoside hydrolase family 71 protein −1.51 0.01

LENED_002150 Hydrophobin 2 −3.16 0.00*

*P-value lower than 0.01. CK, control treatment; T1, 1% hydrated lime; T2, 3% hydrated lime; T3, 5% hydrated lime.

Eight of the up-regulated genes were GHs and three were GTs,
and six of the down-regulated genes were AAs and two were GHs.
Compared with T1, three CAZymes genes were up-regulated in T3,
and two and four were down-regulated in T2 and T3, respectively
(Figure 4).

3.4 Enrichment analysis of DEGs

In the GO enrichment analysis, DEGs were enriched in
the oxidoreductase activity category in all the hydrated lime
treatments compared to the control. In this pathway, genes
LENED_001276, coding for Cytochrome P450 monooxygenase,
and LENED_008371, coding for dehydrogenase xptC, were co-
down-regulated in all the hydrated lime treatments (Figure 5
and Supplementary Table 8). In the KEGG pathway enrichment
analysis, compared with the control, the DEGs in T1 were
enriched in glyoxylate and dicarboxylate metabolism and methane
metabolism pathways; in T2, DEGs were enriched in MAPK
signaling pathway - yeast and ascorbate and aldarate metabolism
pathways; and in T3, DEGs were enriched in arachidonic acid
metabolism and purine metabolism pathways (P < 0.05) (Table 4
and Supplementary Table 9). Compared with T1, the DEGs in both
T2 and T3 were enriched in histidine metabolism pathway. The
DEGs between T2 and T3 were enriched in ribosome (P < 0.05)

(Table 4 and Supplementary Table 9). Therefore, based on the
KEGG pathway enrichment analysis, adding hydrated lime in the
growth substrate had influenced the amino acid, carbohydrate and
lipid metabolism related pathways (P < 0.05).

3.5 qRT-PCR Validation of DEGs

The qRT-PCR gene expression levels of six CAZymes genes,
chosen based on their biological roles in GO and KEGG analysis
and the differences in gene expression between samples were in line
with the differential expression detected in the RNA-Seq analysis
(Figure 6).

4 Discussion

Many mushrooms favor near to neutral or lightly basic pH
for their growth. In addition, pH is an important factor for the
quality of the fruiting bodies of L. edodes. The pH of the mushroom
cultivation substrates is usually adjusted with hydrated lime that
contributes to the growth of mycelia and yield of fruiting bodies
(Khan et al., 2013). We applied transcriptomics to elucidate the
molecular mechanisms behind the effects of hydrated lime on the
growth and development of L. edodes.
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FIGURE 4

(A) Up-regulated and (B) down-regulated genes per CAZymes
category in L. edodes. CK, control treatment; T1, 1% hydrated lime;
T2, 3% hydrated lime; T3, 5% hydrated lime. AAs, auxiliary activities;
CEs, carbohydrate esterases; GHs, glycosyl hydrolases; GTs,
glycosyl transferases.

The formation of brown film, a unique development stage in
the cultivation of L. edodes, affects its yield, quality and production
cycle. The rate of brown film formation was faster in the hydrated
lime containing treatments than in the control, and the areas of
brown film were larger with higher hydrated lime contents. The
results suggested that adding hydrated lime to the culture medium
may promote the formation of brown film of L. edodes, which
may shorten the production cycle. The expression of glycoside
hydrolase, cytochrome P450 (Du et al., 2019), and hydrophobin
(Yoo et al., 2019) related genes are closely related to brown film
formation. In the growth of L. edodes, glycoside hydrolases play
important roles in hydrolyzing lignocellulose in culture medium
and providing sufficient nutrition (Yuan et al., 2019; Huang
et al., 2020). Cytochrome P450 contributes to vital processes
such as carbon source assimilation and biosynthesis of structural
components of living organisms (Werck-Reichhart and Feyereisen,
2000). The surface hydrophobicity of different structures is affected
by hydrophobins, playing an important role in producing large and
complex developmental structures in basidiomycetes (De Groot
et al., 1999). In previous studies, glycoside hydrolase, cytochrome
P450, and hydrophobin genes were differentially expressed during
the brown film formation stage of L. edodes (Tang et al., 2013;
Song et al., 2018). In line with that, our results indicated that the
addition of hydrated lime in the growth substrate may affect the

brown film formation of L. edodes by affecting the expression of
glycoside hydrolase, cytochrome P450 and hydrophobic protein.
Since glycoside hydrolase, cytochrome P450, and hydrophobin
were affected by pH (Lee et al., 2014; Tucker et al., 2015; Li et al.,
2018), their differential expression may have resulted from the
effect of hydrated lime on pH.

The polysaccharide contents in L. edodes were higher in the
hydrated lime treatments than in the control, indicating that an
appropriate amount of hydrated lime in the growth substrate
could promote polysaccharide synthesis in L. edodes. The synthesis
of polysaccharides in L. edodes is closely related to pentose and
glucuronate interconversions and starch and sucrose metabolism
pathways (Li et al., 2021). In our study, two genes, NADP-
dependent alcohol dehydrogenase and glycoside hydrolase 15
(GH15), were up-regulated in these pathways. The degradation
of lignocellulose by white-rot fungi generates toxic compounds
that can be detoxified by yeast and Pleurotus ostreatus, a white-rot
fungus, alcohol dehydrogenases (Liu, 2011; Feldman et al., 2015).
The up-regulation of NADP-dependent alcohol dehydrogenase
may have resulted as a response to the increased lignocellulose
degradation and the accompanying generation of toxic compounds
in the hydrated lime treatment. GH15 encodes a glucoamylase that
catalyzes the release of β-D-glucose from the no-reducing ends of
starch (Sauer et al., 2000). Possibly, the upregulation of GH15 in the
hydrated lime treatments was connected to enhanced degradation
of starch in the wheat bran part of the substrate, providing glucose
for polysaccharide synthesis.

The assembly and degradation of glycans and glycoconjugates
is catalyzed by carbohydrate-active enzymes (CAZymes) that
play a significant biological role in carbohydrate metabolism
(Cantarel et al., 2009; Garron and Henrissat, 2019). In this study,
the differentially expressed CAZymes genes included genes in
the glycosyl hydrolase (GH), glycosyl transferase (GT), auxiliary
activity (AA) and carbohydrate esterase (CE) CAZymes families.
The CAZymes genes up-regulated in the hydrated lime treatments
were mostly GHs that have been hypothesized to mediate hyphal
growth (Vincent et al., 2012), suggesting that GHs are important
in mediating the growth of L. edodes as well. GHs degrade
carbohydrates and glycosidic bonds between carbohydrates and
non-carbohydrates (Ma et al., 2020). Therefore, GHs play an
important role in the degradation of lignocellulose. The up-
regulated GT genes were in the GT1 family that glycosylate natural
products, e.g., flavonoids, glycolipids and macrolides (Zhang et al.,
2020; Mendoza and Jaña, 2021), and in GT2, encoding a chitin
synthase. Chitin, a structural polysaccharide in fungal cell wall,
can improve the nutritional value of mushrooms (Vetter, 2007).
Thus, hydrated lime may have induced the synthesis of GHs
and enzymes in the GT1 and GT2 families, resulting in more
substrate for and higher activity in glycosylation, thereby possibly
strengthening mycelial cell walls. In addition, L. edodes can
effectively degrade lignin and cellulose in the growth substrate by
secreting large amounts of laccase, lignin peroxidase (LiP) and
manganese peroxidase (MnP) (Chen et al., 2016; Zhang et al.,
2022), all of which belong to oxidoreductases. The increased
activity of these enzymes in the hydrated lime treatments plausibly
improved the ability to degrade lignocellulose in the cultivation
substrate. However, the CAZymes genes down-regulated in the
hydrated lime treatments were mostly in the AA family, encoding
enzymes that assist the CE and GH enzymes to access the plant
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FIGURE 5

Gene ontology (GO) enrichment of the differentially expressed genes in L. edodes in the lime treatments, as compared to the control treatment.
(A) T1, 1% hydrated lime; (B) T2, 3% hydrated lime; (C) T3, 5% hydrated lime.

cell wall carbohydrates. The AA1_3 gene, down-regulated in T2
and T3, encodes a laccase-like multicopper oxidase (LMCO) that
is considered a key component in the enzyme mixture related
to cellulose degradation (Levasseur et al., 2013; Gaber et al.,
2020). In line with the down-regulation of AA1_3, cellulase
and hemicellulase activities were lower in the hydrated lime
treatments than in the control, suggesting that at the brown film
formation stage the two enzymes were limited. Thus, despite the

putatively greater lignocellulolytic activity, the ability of L. edodes
to degrade cellulose was lower in the hydrated lime treatments
than in the control. The AA3 gene that was down-regulated in
all hydrated lime treatments belongs to the AA3_2 aryl/alcohol
oxidase subfamily. Similarly, AA3_2 genes were down-regulated
in Laetiporus sulphureus grown on a substrate where the main
carbon source was lignin (de Figueiredo et al., 2021). The
results suggest a caveat in lignocellulose degradation. As noted
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FIGURE 6

Validation of RNA–seq data by qRT–PCR. Blue color bars represent the relative expression levels determined by qRT–PCR. Orange lines indicate the
log2 fold change based on the read count values of the RNA–seq analysis. Error bars indicate standard errors of the means (n = 3).

TABLE 4 The KEGG pathways with highest number of differentially
expressed genes in L. edodes.

Pathway Number
of DEGs

P-value

T1vsCK Glyoxylate and dicarboxylate metabolism 2 0.00*

Methane metabolism 1 0.03

T2vsCK MAPK signaling pathway - yeast 2 0.02

Ascorbate and aldarate metabolism 1 0.03

T3vsCK Arachidonic acid metabolism 1 0.04

Purine metabolism 2 0.04

T2vsT1 Histidine metabolism 2 0.00*

Taurine and hypotaurine metabolism 2 0.02

T3vsT1 Histidine metabolism 2 0.00*

Arachidonic acid metabolism 1 0.01

T3vsT2 Ribosome 1 0.05

*P-value lower than 0.01. CK, control treatment; T1, 1% hydrated lime; T2, 3% hydrated
lime; T3, 5% hydrated lime.

earlier, the toxic components resulting from the degradation of
the lignin part interfere with the degradation of cellulose and
hemicellulose(Liu, 2011; Feldman et al., 2015); thus, enhanced
lignin degradation may have resulted in lower cellulose and
hemicellulose degradation rate.

In the GO enrichment analysis, the DEGs were enriched
in oxidoreductase activity in all the hydrated lime treatments;
oxidoreductases are essential for lignocellulose degradation in
basidiomycetes (Mattila et al., 2022) such as L. edodes. Together
with the increased activity of laccase and peroxidases, it showed
that an appropriate amount of hydrated lime in the growth
substrate promotes the ability of L. edodes mycelium to utilize
lignin. The down-regulated gene LENED_008371 codes for
dehydrogenase xptC, an enzyme in the fungal prenyl xanthone

synthesis pathway (Sützl et al., 2019). The specific function of
this gene in the metabolism of L. edodes needs to be further
clarified. In the KEGG enrichment analysis, compared with
the control, the DEGs in T1 were enriched in glyoxylate and
dicarboxylate metabolism and methane metabolism pathways,
which may be related to the formation of the primordium and
spores of edible fungi (Lu et al., 2020; Cai et al., 2022); in
T2, DEGs were enriched in MAPK signaling pathway - yeast
and ascorbate and aldarate metabolism pathways, which were
associated with cell wall integrity maintenance and fruiting body
development (Yang et al., 2021); and in T3, DEGs were enriched
in arachidonic acid metabolism pathway, possibly providing a
source for lipid-derived radicals for lignin degradation (Kapich
et al., 1999), and purine metabolism pathway that is associated
with the umami taste (Xia et al., 2023), suggesting that hydrated
lime treatment may affect the taste of L. edodes. The results
of enrichment analysis suggested that hydrated lime in the
culture substrate may be beneficial for the lignocellulolytic
capacity of L. edodes and promote the development of fruiting
bodies.

In summary, the results suggested that adding a proper amount
of hydrated lime in the growth medium promoted the formation
of brown film. The crude polysaccharide contents of the fruiting
bodies were higher in the hydrated lime treatments. Hydrated
lime also promoted the lignocellulolytic capacity of L. edodes by
enhancing activities of enzymes, thus providing more nutrients
for L. edodes growth and development. Most of the DEGs were
in carbohydrate metabolism related pathways. Among the 583
CAZymes genes, most of the up-regulated genes in the hydrated
lime treatments were in the GH family, indicating that these genes
were associated with the improved growth and development of
L. edodes. The exact roles of these genes in L. edodes growth and
development need further clarification.
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