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Introduction: Sequencing and phylogenetic classification have become a

common task in human and animal diagnostic laboratories. It is routine to

sequence pathogens to identify genetic variations of diagnostic significance

and to use these data in realtime genomic contact tracing and surveillance.

Under this paradigm, unprecedented volumes of data are generated that require

rapid analysis to provide meaningful inference.

Methods: We present a machine learning logistic regression pipeline that can

assign classifications to genetic sequence data. The pipeline implements an

intuitive and customizable approach to developing a trained prediction model

that runs in linear time complexity, generating accurate output rapidly, even with

incomplete data. Our approach was benchmarked against porcine respiratory

and reproductive syndrome virus (PRRSv) and swine H1 influenza A virus (IAV)

datasets. Trained classifiers were tested against sequences and simulated

datasets that artificially degraded sequence quality at 0, 10, 20, 30, and 40%.

Results: When applied to a poor-quality sequence data, the classifier achieved

between >85% to 95% accuracy for the PRRSv and the swine H1 IAV HA dataset

and this increased to near perfect accuracy when using the full dataset. The

model also identifies amino acid positions used to determine genetic clade

identity through a feature selection ranking within the model. These positions

can be mapped onto a maximum-likelihood phylogenetic tree, allowing for the

inference of clade defining mutations.

Discussion: Our approach is implemented as a python package with code

available at https://github.com/flu-crew/classLog.
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1 Introduction

Classification of pathogens has become a routine task in modern

veterinary diagnostics (1). Classification of the infectious agent is a

critical diagnostic step that allows for an informed decision on

vaccination regimens and biosecurity measures that may be

considered to clear a pathogen outbreak (2–4). Currently genetic

classification is performed using phylogenetic methods such as

maximum-likelihood and neighbor joining (2, 5, 6). These methods

are effective at classifying sequences and inferring relationships

between taxa, but the time and skill required to execute and

interpret analyses may impact their application in routine high-

throughput activities. While diagnosticians are interested in the

transmission and history of disease, the most pressing need is to

provide a classification of data. Consequently, methods that do not

conduct computationally intensive phylogenetic inference for

inferring ancestry and genomic epidemiology are required.

Phylogenetic placement (PP) methods are one solution to the

problem of accurately assigning lineage designations to taxa. PP

places a given taxa onto a reference tree without recomputing the

topology and lineage designations are subsequently inferred based

on the proximity to annotated taxa in the tree. PP methods are

advantageous in that they can interpolate lineage within a broad

context (between species) and narrow context (specific clades

within a subtype). Multiple phylogenetic placement software are

available such as the pplacer suite (7), RAPPAS (8), EPA-ng (9), and

Nextclade (10). While PP methods are invaluable for research, there

is still room for other methodologies to provide fast and accurate

lineage assignments without the requirement for a robust reference

tree topology.

Machine learning has been recognized as a viable method for

classifying sequences (4, 11). Differing from PP methods, machine

learning approaches do not need a reference tree for classification.

Genetic divergence over time leads to distinguishable genetic

patterns within monophyletic clades that are linearly separable

across aligned amino acid positions. This linear separability lends

itself well to supervised machine learning methods such as logistic

regression and random forest classification. Logistic regression

based on aligned sequences is used as the primary means of

automated classification for influenza A viruses (IAV) in swine

that are processed within the FLUture database (12). Similarly,

porcine reproductive and respiratory syndrome virus (PRRSV)

amino acid sequence data have been classified to genetic lineage

using random forest, k-nearest neighbor, support vector machines,

and multilayer perceptron methods (4). Decision tree machine

learning approaches have been introduced to classify avian IAV

sequences and SARS-CoV-2 sequences successfully at multiple

taxonomical levels (13, 14). PangoLEARN, a random forest

model, currently supplements the pangolin classification system

for SARS-CoV-2 (11). However, despite machine learning

appearing to be an effective approach for classification, few of

these algorithms are user-friendly with intuitive generalized

software that has been publicly released.

This manuscript introduces a general-purpose software

application, classLog, that can train sequence classifiers based on

user-labelled training data for use in classification of unknown
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sequences. The method used by the program leverages logistic

regression, a parametric method of classification that runs in

linear time complexity. Application of classLog provides a routine

and robust way to integrate classification into pipelines where speed

is necessary and there is no interest in inferring historical context of

the sequences. Through decoupling the classification step from the

inference of the history of the virus, this manuscript presents a

method of classification that is rapid, accurate, and suitable for

high-throughput pipelines.
2 Methods

2.1 Curation of swine H1 IAV and PRRSv
North America datasets

We compiled two datasets to test the utility of our classification

pipeline: porcine reproductive and respiratory syndrome virus

(PRRSV) and influenza A virus (IAV) in swine. We restricted the

swine IAV to H1 subtype hemagglutinin (HA) genes from the

United States collected between 2015 to 2021: these data were

curated and annotated by genetic clade by the Influenza Research

Database (2, 15). These lineages were delineated based on a rule

system applied to a maximum-likelihood phylogeny. Briefly,

lineages were designated as statistically supported phylogenetic

clusters when they contained more than 10 taxa, had statistical

support > 70%, and the average pairwise distance between and

within clades was >7% and< 7% respectively. Sequences sampled

between 2015-2019 were used as a training set (n=3510), while 2020

and later sequences were extracted as a test set (n=163) (Figure 1B).

For PRRSV sequences, we extracted the curated ORF5 gene

sequence data provided by (3), and extracted and assigned the

genetic clade for each sequence from the GenBank accession’s

feature information. The genetic lineage delineations for PRRSV

were also based on a maximum-likelihood phylogeny, with

monophyletic lineages identified as those with strong statistical

support and were designated using ClusterPicker (16). The dataset

was further refined by removing all “Type 1” European sequences,

sequences that were not the full coding region, i.e., not equal to 603

or 606 nucleotides in length, and the remaining sequences were

translated. The final dataset of 3047 annotated sequences were

randomly split into training and test sets, using 80% (n=2,483) and

20% (n=609) of the sequences respectively (Figure 1A).

The datasets were split differently to simulate two distinct uses

of the classifier. IAV data was split temporally to simulate

classifying new data, while PRRSV sequences were split randomly

to simulate filling in classifications from a mixed set.
2.2 Simulated Sequencing Errors and
Removing Informative Features

Gene sequences retrieved from Sanger sequencing, next

generation, and third generation sequencing methods are not

always complete, and there may be ambiguities and gaps in the

data (17–19). These errors impact the estimation of the multiple
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sequence alignment that may subsequently decrease the accuracy of

classification (20, 21). To mimic decreasing quality of sequences, a

python script was created to randomly generate a number of indices

for replacement with an ambiguous ‘X’. Subsequently, the X’s were

removed from the sequence to generate incomplete, unaligned

sequences. Test set sequences were degraded at 0%, 10%, 20%,

30%, and 40% prior to classification. While more robust simulations

of sequence degradation exist (22), the replication and implication

of these methods is beyond the scope of this manuscript.
2.3 Constructing classLog: the general
sequence classifier

Sequence classification was implemented as a one-versus-rest

logistic regression classifier, with a general outline provided

(Supplemental Figure 1). Input for classification requires an

aligned nucleotide or amino acid FASTA file, with definition lines

specifying the classification classes using character delimiters, e.g.,

A/swine/Iowa/A02636475/2022|1B.2.2.1, where ‘|’ delimits the

phylogenetic clade from the strain name. The binary features of

this model are the presence or absence of an amino acid at a specific

position within the alignment. An optional feature selection

process, which selects the most relevant sequence positions for

classification, was implemented using a tree classifier that ranks

binary features by GINI importance so that the user may restrict the

prediction model to the most important features (23). To facilitate

the reusability of the classification scheme, the first sequence,

feature labels, trained model, and class names are exported using

a standard python pickle file format. The first sequence in the pickle

file is used for pairwise alignment of unknown sequences to ensure

there is consistency between query sequence alignment positions

and the model feature positions. During prediction, a matrix of the

presence or absence of nucleotides or amino acids at specific

alignment positions is created, which is then fed to the model for
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prediction. For user submitted query sequences, the predicted

classification is assigned and reported using classification names

derived from the user-annotated classification fasta file used

in training.

A prediction threshold option was included within the classifier

to provide support for predicted classes on unknown data.

Classifications with a score less than the threshold are rejected,

and classified into an ‘unknown’ category (default value of 85%).

The threshold criteria can have a direct effect on the performance

of classification.

For validation, the general classifier was trained using 100%,

20%, 10%, 5%, 1%, and 0.5% of the available features within the H1

IAV and the PRRSv training datasets. For the H1 IAV sequence

dataset, this resulted in 2439, 487, 243, 121, 24, and 12 features

respectively. For the PRRSV dataset, this resulted in 686, 137, 68, 34,

6, and 3 features. Each classifier was used classify the 0%, 10%, 20%,

30%, and 40% test set sequences that had been generated to reflect

sequencing errors and misalignment.
2.4 Simplifying feature identification in
query sequences using a Needleman-
Wunsch pairwise alignment algorithm

An intrinsic challenge to the implementation of the machine

learning classification process was correctly assigning the positions to

new genetic sequences. To overcome this challenge without keeping

the original alignment, a heuristic was applied such that the first

sequence from the training set was saved and stored, and subsequent

classification attempts would be pairwise aligned to recover the

positions. To increase the speed and keep calculations within a

tractable time for computation, a Needleman-Wunsch dynamic

programming alignment algorithm (24) with affine gap penalties

and a BLOSUM90 substitution matrix (25) was implemented in C++

and exported as a python library using python bindings.
A B

FIGURE 1

Number of samples in training and test sets for Porcine Respiratory and Reproductive Syndrome virus (PRRSv) and Swine H1 Influenza A virus (IAV).
(A) In the PRRSv dataset, number of samples were divided in a training set (80%) and a test set (20%). (B) Samples in the IAV dataset per year.
Samples collected in 2015-2019 were used as the training set, samples collected in 2020 were taken as the test set.
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2.5 Measuring the performance of the
classifier on swine H1 IAV and PRRSv North
America dataset classification

The performance of the classifiers was measured under the

metrics of accuracy, macro precision, macro recall, and macro F1

(26–28). From a confusion matrix M where true classification is

assigned along the y-axis and the predicted class is assigned along

the x-axis, the precision and recall equations can be generalized as

follows:

Precisioni =
Mii

oiMji

� � (1)

Recalli =
Mii

ojMij

� � (2)

F1i = 2
Precisioni � Recalli
(Precisioni + Recalli)

  (3)

Precisionmacro =
1
noiPrecisioni (4)

Recallmacro =
1
noiRecalli (5)

F1macro =
1
noiF1i (6)

These metrics were taken for each classifier applied to the 0%,

10%, 20%, 30%, and 40% test set sequences with the results plotted

using ggplot2 (29) in R v3.959 (30).

Runtime performance was benchmarked using the Linux `usr/

bin/time` program provided from Ubuntu v20.04LTS running

within the Windows Subsystem Linux v2 (Supplemental Table 1).

A second non-comparable benchmark approach that used existing

phylogenetic placement approaches was run using pplacer and

RAPPAS with the same test sets described above (Supplemental

Table 2). The reference trees provided to the phylogenetic

placement programs were paraphyletically pruned to 200 taxa

using smot v1.0.0 (31) to more realistically simulate a

phylogenetic placement scenario. Accuracy from either PP

method was not tested as sufficient validation has been given in

the originating and subsequent publication (7, 8).
2.6 Visualization of swine H1 IAV and
PRRSv North America dataset using
ordination and phylogenetic analysis

Sequences from both datasets were aligned using MAFFT

v7.487 (32). The pairwise number of differences between each

sequence were extracted from the alignment using Geneious

Prime 2022 (33). These distances were ordinated into two-

dimensional space using metric multidimensional scaling. Each
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ordination was colored first by the designated genetic clade, and

then by a genetic motif consisting of the amino acids of the top two

ranking amino acid positions. Amino acid position rank was

calculated as the sum of GINI importance given by the extra tree

classifier for each amino acid position, i.e., the two most important

amino acids in determining the classification of the query sequence.

To identify the biological basis of the H1 swine IAV and PRRSv

classifications, maximum likelihood trees were inferred for each

dataset. Sequences were aligned using MAFFT v7.487 (32), and

trees were inferred using IQ-TREE v1.6.12 (34). The PRRSv dataset

was analyzed using a BLOSUM62 amino acid substitution model,

while the IAV dataset was analyzed using the FLU amino acid

substitution model (35). Statistical support was determined using

the rapid bootstrap algorithm with 1,000 bootstraps, and the

support was displayed on the branch of the resultant trees. Each

tree was colored along the backbone by the phylogenetic clade,

while the tips were annotated and colored by the top two ranking

amino acid positions determined using GINI importance.
3 Results

3.1 classLog performance on H1 swine IAV
and PRRSv observed and simulated data

A classLog classifier was trained on PRRSv ORF5 sequences

collected and classified to lineage (3), dividing the dataset into 80%

training and 20% testing. The classifier performed perfectly correct

when trained with 10% of features (n=68) of the total features with

no sequence degradation (Figure 2A). At 10% sequence degradation

(20aa), 10% of the features were able to achieve an accuracy of 97%.

At 20% sequence degradation (40aa), 10% of the features were

sufficient to achieve 88% accuracy, though increasing the number of

features did not improve accuracy. Accuracy rapidly decreased at

30% sequence degradation (60aa), with 10% of the features

achieving 69% correct classifications. At 40% sequence

degradation (80aa) the greatest accuracy achieved was 42%.

A classLog classifier was trained on H1 swine sequences present

in IRD collected between 2015 to 2019 and was tested on 136 test

sequences from 2020. The classifier performed perfectly correct

when trained with as few as 12 features (0.5%) when there was no

sequence degradation (Figure 2B). At 10% sequence degradation

(56 aa), 5% of the features (121 features) were needed to achieve

perfect accuracy. At 20% sequence degradation (112 aa), 10% of the

features (243 features) were sufficient to achieve perfect accuracy. At

30% sequence degradation (170aa), 10% of the features were

sufficient to achieve 93% correct classifications, although 20% of

features (487 features) only achieved 82% correct classification. At

40% sequence degradation (227aa), there was a steep decline in the

accuracy, falling below 60% across the board.

For both datasets, precision was consistently higher than recall

(Figure 2). This is a consequence of rejecting classifications below the

85% scoring threshold and classifying them as ‘unknown,’ i.e., the

number of false positives decreased while increasing false negatives.
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3.2 Using classLog to identify genetic
features of biological relevance

The pairwise differences between the test set sequences were

used to ordinate points in two-dimensional space (Figure 3). The

ordination of both the PRRSv ORF5 and swine H1 IAV datasets

were colored by their original designated clades, and by the motif

formed by the amino acids present at the top two features ranked by

GINI importance (Supplemental Figures 2, 3). This manuscript uses

the top two features as the number of amino acid combinations

above two exceeds the number of distinct colors available on the

pallet; but lower ranked features are important to discriminate

between phylogenetic clades. Qualitatively, the ordination

demonstrated separation between distant genetic lineages such as

the H1 1A classical swine lineage versus the H1 1B human seasonal

lineage (Figure 2C; 2). However, sequences within some closely

related genetic clades within the same lineage appeared to have

overlap when assessed in a two-dimensional ordination. Within the

PRRSv data (Figure 2B), the top two ranked amino acid positions

(170, 172) corresponded well with the classified genetic clades

suggesting that these positions may be clade defining mutations.

For example, L1A has primarily the EE motif, L1B has EN, and L1C

has DG. These divisions were not exclusive as L5, L8, L9 also have

the EE motif that was exclusively within the L1A, and more features

may need to be accounted for to discriminate between these clades.

The top two positions of the swine H1 IAV dataset were 159 and

158 (H1 numbering, 17AA signal peptide removed) (Figure 2D),

with a relatively high number of amino acid polymorphisms

between those two positions. While some clades were well

matched to one or two motifs, some clades such as the 1A alpha

were highly varied in the motifs they carried, suggesting that other

features position with a lower rank may better segregate this clade

from the other clades. These data can be generated by extracting the

features and their rankings using the classLog algorithm.
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3.3 Congruency between phylogenetic
classification, classLog predictions, and
model features

Maximum-likelihood trees were inferred for the PRRSv ORF5

and swine H1 IAV HA test datasets. The backbones of the

phylogenetic trees were colored by the assigned genetic lineage,

while the tips were labeled and colored by the motif formed by the

two amino acid positions that had the highest cumulative GINI

importance. For the PRRSv ORF5 dataset (Figure 4A: positions 170

and 172), the majority of L1B motifs were represented by an EN and

L1C by DG. L1A, L5, L8, and L9 were also represented by EE at 170

and 172, suggesting that despite good concordance between the

inferred phylogeny and the classLog predicted clade, this was being

driven by features outside of these two positions.

For the swine H1 HA dataset (Figure 4B), the two most

important features identified by classLog were positions 159 and

158. The majority of the 1B delta1a clade was primarily represented

by GK, the 1B delta2 by SN, and 1A pandemic09 by KA. Three

distinct motifs were identified within the 1A gamma clade, KT, NT,

and ST, with RT interspersed. The 158T at was distinct enough to

serve as a general rule to separate diversity within the 1A gamma

clade. The remaining major H1 clade, 1A alpha, was associated with

a significant amount of motif diversity, exhibiting GK, GR, KA, SA,

SK and RR. The high amount of motif diversity is suggestive that

another set of features may be used by the classifier for identifying

this clade.
4 Discussion

Applications of machine learning present computationally

efficient ways of classifying genetic sequences without relying on

traditional phylogenetic methods. The direct utility of machine
A B

FIGURE 2

Measures of logistic regression classifier performance in the metrics of accuracy, precision, recall, and F1 scoring. (A) Porcine Respiratory and
Reproductive Syndrome virus and (B) Swine H1 Influenza A virus datasets. Each metric was measured over simulated sequence degradation of 0%,
10%, 20%, 30% and 40%, as well as with classifiers using 0.5%, 1%, 5%, 10%, 20%, and 100% of the available features for classification.
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learning methods is in high-throughput diagnostic processes, where

the primary objective is to assign classification and there is not an

immediate interest in inferring the evolutionary history of the

sequence in question. By decoupling the classification process

from phylogenetic method, complexity and computational time

are reduced. Machine learning methods have the additional benefit

of being highly portable and reproducible with minimal effort once
Frontiers in Virology 06
an initial prediction model is trained. Our command line interface,

classLog, represents a user-friendly and validated tool that can

ingest annotated genetic sequences, train a classification model, and

generate predictions and associated confidence scores without

extensive computational and machine learning training.

Logistic regression was chosen to ensure scalability with linear

time complexity, fast computational runtime, and for simple model
A B

DC

FIGURE 3

Metric multidimensional scaling in two dimensions of the number of pairwise differences between sequences of Porcine Respiratory and
Reproductive Syndrome virus (PRRSv) ORF5 protein (A, B) and Swine H1 Influenza A virus datasets (IAV) (C, D). Plots were colored by genetic clade
(A, C), and by the motif formed by the top two important positions inferred by decision tree (B, D). For PRRSv the top ranking features were positions
170 and 172. For IAV, the top ranking features were positions 159 and 158.
A B

FIGURE 4

Phylogenetic maximum likelihood trees. (A) Porcine Respiratory and Reproductive Syndrome virus (PRRSv) ORF 5 protein and (B) Swine H1 Influenza
A virus (IAV) test sequences, inferred by IQ-TREE v1.6.12 with 1,000 fast bootstraps. Tree backbones are colored by the prior assigned genetic
lineage, where tip labels are colored by the motif formed by the top two ranking positions inferred by decision tree, positions 170 and 172 for PRRSv,
and positions 159 and 158 for IAV. Bootstrap support is annotated on the branches.
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interpretability. These factors allow classLog to function as a

lightweight component in classification pipelines. Moreover,

many genetic lineage classification schemes frequently depend on

phylogenetic relationships to delineate lineages, which is effectively

a form of clustering by similarity. Consequently, linear separability

emerges when significant genetic divergence exists between

designated lineages. Although other machine learning methods

such as neural networks can learn complex relationships and

patterns, within the narrow context of lineage classification,

logistic regression is generally sufficient. Taxonomic classification

of virus sequence data is typically performed via either phylogenetic

methods or through similarity-based approaches such as BLAST.

Phylogenetic methods can be computationally complex: simple

techniques such as neighbor joining have a cubic time

complexity, but more statistically robust techniques have a higher

range of complexity and runtime. BLAST overcomes these

complexity issues, but there is a necessity for a curated database

of sequences, and large databases can be difficult to update and

share. In general, machine learning models can overcome both

limitations as they offer both reasonable time complexity and space

complexity for classification; and if an adequate dataset is used to

generalize a model during training, the subsequent model may be

reused without maintaining or training input reference datasets. In

recognition of these strengths, machine learning approaches are

being used (11, 14), but a generalized application has not yet

been created.

classLog can be applied for rapid classification of genomic data

either on site or in field settings. The advent of rapid and portable

sequencing such as minION Nanopore technologies has resulted in

the generation of thousands of sequences with a critical need to

identify what they are, and whether the sample represents an

“unknown.” The classLog program can be easily adopted as part

of a light-weight pipeline that can be used to do classification on the

fly in the field (36). The execution of classLog does not require

significant computational resources, and our testing was conducted

on regular Windows and MacOS laptops. Consequently, it can

easily be integrated within mobile diagnostic stations that are

functional within remote locations that may have minimal access

to extensive computational resources or trained personnel (37, 38).

A consequence of field genomic epidemiology and the

integration of Nanopore technology has been an increase in

sequence error rate relative to traditional Sanger sequencing (39,

40). Our testing with classLog on simulated datasets, where we

introduced sequence errors, suggested that the inaccuracies do not

dramatically reduce the accuracy of classification using this

machine learning method. It was noted that the classification

failure within the H1 sequence dataset occurred proportionally to

the number of samples present in the training dataset. As the

sequence errors increased, misclassifications began to occur first in

the sequences that had the least clade representation in the training

set. It is likely that if there are more samples present in the training

data to represent a specific clade, then the prediction model was

better able to generalize the clade. This indicates one potential
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drawback of classLog, and that user-curated training datasets must

remain large enough for optimal classifier performance. classLog

performs within the narrow context of classification, assigning

clades within a species, although it can quickly segregate

unrelated sequences by specifying them as “unknown”. An

alternate approach to generating large, curated datasets when

attempting to classify multiple species could be the application of

phylogenetic placement algorithms or using advanced machine

learning models beyond logistic regression. Logistic regression is a

parametric model that performs well on linearly separable

classifications. In cases where the data are not linearly separable

and that have limited training data, non-parametric models like

random forest or neural networks may perform significantly better,

potentially provide easy to understand biological context to feature

rankings (41, 42), but require more computational time and effort.

Benchmarks of classLog runtime demonstrate that the

combined training and classification time is fast, with each test

case presenting a combined time under a minute (Supplementary

Table 1). While the conditions of the test are not directly

comparable to the testing of pplacer and RAPPAS, it can be

noted that the total runtime of classLog is less than both PP

methods when finding a solution to the same classification

problem. It is notable that once the RAPPAS database is built, the

placement of taxa onto a tree is very rapid, although the memory

usage is higher. However, it is important to note that the use-cases

of classLog compared to PP methods differs: classLog is designed

specifically to assign lineages within a narrow scope of genetic

diversity within a single species. Comparatively, both pplacer and

RAPPAS can function with multiple species and additionally infer

topology. The difference in the use-cases for the tools makes

comparison only valid for the subset of problems where the

tools overlap.

classLog is a method of creating light weight classifiers that can

assign taxonomic classifications rapidly with minimal user curation

and training. The implementation of this classification

methodology can benefit diagnostic labs by saving computational

run time associated with current phylogenetic classification

approaches and can be easily customized to work for different

pathogens. An additional benefit is the identification of critical

genetic features associated with clade classifications: these features

are likely clade defining mutations and can be used to form

hypotheses to investigate the gene to phenotype link (43–45) and

other functional studies. A benefit of machine learning approaches

is that the results are also more directly interpretable as they are

given as an assignment, rather than needing to be inferred from a

tree. The culmination of these benefits offers a more streamlined

approach to taxonomic assignment in a diagnostic setting.
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