
Frontiers in Microbiomes

OPEN ACCESS

EDITED BY

Suncica Bosak,
University of Zagreb, Croatia

REVIEWED BY

Aleksander Mahnic,
National Laboratory of Health, Environment
and Food, Slovenia
Olivier N. Zemb,
Institut National de la Recherche
Agronomique de Toulouse, France

*CORRESPONDENCE

Melanie C. Hay

mchay@rvc.ac.uk

Damer P. Blake

dblake@rvc.ac.uk

RECEIVED 25 September 2023

ACCEPTED 08 November 2023
PUBLISHED 04 December 2023

CITATION

Hay MC, Hinsu AT, Koringa PG, Pandit RJ,
Liu P-Y, Parekh MJ, Jakhesara SJ, Dai X,
Crotta M, Fosso B, Limon G, Guitian J,
Tomley FM, Xia D, Psifidi A, Joshi CG and
Blake DP (2023) Chicken caecal
enterotypes in indigenous Kadaknath and
commercial Cobb chicken lines are
associated with Campylobacter abundance
and influenced by farming practices.
Front. Microbiomes 2:1301609.
doi: 10.3389/frmbi.2023.1301609

COPYRIGHT

© 2023 Hay, Hinsu, Koringa, Pandit, Liu,
Parekh, Jakhesara, Dai, Crotta, Fosso, Limon,
Guitian, Tomley, Xia, Psifidi, Joshi and Blake.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 04 December 2023

DOI 10.3389/frmbi.2023.1301609
Chicken caecal enterotypes in
indigenous Kadaknath and
commercial Cobb chicken lines
are associated with
Campylobacter abundance and
influenced by farming practices
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Identifying farming practices that decrease susceptibility to infectious diseases and

optimise food conversion efficiency is valuable for chicken welfare and

productivity, the environment, and public health. Enterotypes can be used to

define microbial community phenotypes that have differential, potentially

significant impacts on gut health. In this study, we delineated enterotypes by

analysing the microbiomes of 300 indigenous Kadaknath and 300 commercial

Cobb400 broiler chickens raised across 60 farms in western India. Using a

compositional data approach, we identified three distinct enterotypes: PA1

(n=290), PA2 (n=142) and PA3 (n=67). PA1 and PA2 clustered more closely with

each other than with PA3, however, PA2 had significantly lower alpha diversity than

PA1. PA1 had a high Firmicutes: Bacteroides ratio, was dominated by

Faecalibacterium and had a higher abundance of Prevotellamassilia than other

enterotypes. PA2 was characterised by its low alpha diversity, a high abundance of

the common taxa Phascolarctobacterium A and Phocaeicola dorei and a

significantly higher Campylobacter abundance than PA1. PA3 had the highest

Bacteroidota abundance of the three enterotypes and was defined by high

prevalence of lower abundance taxa such as CAG-831 and Mucispirillum

schaedleri. Network analysis showed that all enterotypes have different

proportions of competing Firmicutes-dominant and Bacteroidota-dominant
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guilds. Random Forest Modelling using defined farm characteristics was predictive

for enterotype. Factors affecting enterotype include whether farms were open,

enclosed or caged, the location of farms, whether visitors were allowed inside, the

number of people in contact with the chickens, chicken line, the presence of dogs

and whether flock thinning took place. This study suggests that enterotypes are

influenced by farming practices, hence modification of practices could potentially

be used to reduce the burden of zoonotic pathogens such as Campylobacter.
KEYWORDS

Campylobacter, chicken, enterotypes, microbiome, Random Forest
1 Introduction

Human populations continue to grow, especially in South Asia

and Africa, with a consequent rise in demand for high-quality

protein to meet nutritional needs (Michele, 2021). In response,

intensification of chicken farming is increasing rapidly, but if this is

not managed well then higher density production can pose direct

threats to public health. Firstly, intensification increases the chances

that potentially zoonotic agents, including avian influenza viruses,

may jump from chickens to humans (Dhingra et al., 2018; Gilbert

et al., 2021). Secondly, it can raise the likelihood that chicken meat,

eggs or waste becomes contaminated by known human pathogens

including Campylobacter species, Salmonella enterica serovars and

enterotoxigenic strains of Escherichia coli (Berry and Wells, 2016).

Thirdly, it increases selection of antimicrobial resistance (AMR)

due to increased inappropriate prophylactic or therapeutic use of

antibiotics (Rushton et al., 2014; Van Boeckel et al., 2015;

Laxminarayan and Chaudhury, 2016; Mahalmani et al., 2019;

Murray et al., 2022).

In this study we focus on the genus Campylobacter, the most

common agents of food-borne illness globally (Kaakoush et al., 2015;

EFSA Panel on Biological Hazards (BIOHAZ) et al., 2020)

accounting for ~7% and ~10% of hospitalized adult and child

diarrhoeal patients respectively in Kolkata, India (Mukherjee et al.,

2013). Poultry are a frequently attributed source of Campylobacter;

therefore, measures that reduce its carriage in chickens have

beneficial impacts on public health; a 1000-fold decrease in caecal

bacterial load results in a 58% reduction of the median relative risk of

campylobacteriosis (EFSA Panel on Biological Hazards (BIOHAZ)

et al., 2020). Campylobacter in chickens usually appears in the 3rd–

4th week of life and is present in >90% offlocks by 7 weeks and up to

100% of flocks by 12 weeks (Evans and Sayers, 2000; Sakaridis et al.,

2018; Sibanda et al., 2018). Although the introduction of

Campylobacter into poultry houses is notoriously difficult to

control, the relative abundance of Campylobacter within a flock

can be reduced by farming practices and biosecurity measures such

as stringent staff hygiene, physical barriers, reduced thinning,

increased flock turnaround time and isolation from other

livestock, domestic animals and rodents (Evans and Sayers, 2000;

Ellis-Iversen et al., 2009; Sibanda et al., 2018; Alam et al., 2020; EFSA
02
Panel on Biological Hazards (BIOHAZ) et al., 2020; Soro et al., 2020;

Xu et al., 2021b). It has been hypothesised that such differences in

abundance are due, at least in part, to impacts that farming practices

have on the composition of the microbiome (Sakaridis et al., 2018;

McKenna et al., 2020; Patuzzi et al., 2021; Wyszyńska and

Godlewska, 2021).

The predominant sites for colonization of Campylobacter in

broiler chickens are the paired caeca, host to the most abundant and

diverse microbial communities of the chicken digestive tract with

up to 1010 colony forming units (CFU) per gram of digesta (Rychlik,

2020). The importance of the caecal microbiome in maintaining

chicken health and productivity is well recognised due to its role in

food utilisation, and resistance to disease and colonisation by

zoonotic pathogens (Clavijo and Flórez, 2018; Kers et al., 2018).

An ideal “healthy” eubiotic caecal microbiome would be low in both

human and chicken pathogens (lowering public health risk and

maximising chicken welfare) and highly efficient at aiding food

utilisation (improving food conversion and increasing meat

production per carbon impact). Dysbiosis is the term applied to

microbiomes when they become imbalanced and actively contribute

to disease or suboptimal health phenotypes. This can be due to

infection when high pathogen loads disrupt the normal balance, but

imbalances can also occur without obvious infection causing shifts

in the metabolism of the microbiome community and contributing

to inefficient food usage and nutrient absorption (Ducatelle et al.,

2018; Kogut, 2019; Aruwa et al., 2021). Identifying factors that

contribute to “healthy” or dysbiotic microbiomes, and the

underpinning mechanisms that are influenced by environmental

or host genetic factors, are topics of great interest.

Many eubacterial taxa are highly abundant and prevalent in

most chickens but found in different proportions to each other.

Enterotyping is a method to classify microbial community

phenotypes that have significant impacts on host health (Costea

et al., 2018). Enterotypes may represent a state of gut bacteria in

community equilibrium, with several factors including host

genotype and environmental influences working to maintain a

community within limits (Sommer et al., 2017). Distinct

enterotypes can differ in their resilience to perturbations (and

dysbiosis), affect susceptibility to disease or play a role in food

conversion efficiency (Malard et al., 2021).
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In this study, we investigated 300 indigenous Kadaknath and 300

commercial Cobb400 chickens from 60 farms in west India that

followed a range of different farming practices. Our aims were firstly

to distinguish distinct microbiome compositions (enterotypes) across

a large population. Secondly, we investigated whether the enterotypes

had differences in Campylobacter abundance. Finally, we looked at

various farming practices to determine whether there were any

factors that were associated with the occurrence of enterotypes.
2 Methods

2.1 Ethics approval and consent
to participate

This study was carried out using welfare standards consistent

with those established under the Animals (Scientific Procedures)

Act 1986, an Act of Parliament of the United Kingdom. All

protocols were approved by the Ethical Review Panel of Anand

Agricultural University (AAU) (* now Kamdhenu University) and

the Clinical Research Ethical Review Board (CRERB) of the Royal

Veterinary College under the reference URN 2014 1280.

Participating farmers were informed of the objectives of the study

and written consent was obtained for the same.
2.2 Chicken lines and study design

Chicken lines and experimental design have been described

previously (Hinsu et al., 2018). Briefly, Cobb400 broiler chickens are
Frontiers in Microbiomes 03
commercial meat-producing birds derived from Cobb500 and

Cobb100 hybrids and widely used in India due to their good

performance under tropical conditions (Dyck et al., 2004).

Kadaknath chickens are an indigenous Indian line prized for their

black meat and reputed to be resistant to some infectious diseases

(Rout et al., 1992; Ramasamy et al., 2010). Sixty farms were included

in the study, chosen to be convenient for field visits whilst covering

a wide geographic range (Figure 1). Ten chickens were sampled

from each farm to provide a total of 600 samples. Fifteen farms had

only Cobb400 chickens, 15 farms had only Kadaknath, and 30 farms

contained a mix of both chicken lines. From the mixed farms, five

Cobb400 and five Kadaknath chickens were sampled. A

standardised questionnaire was distributed to all farms, to collect

farm characteristics on the same day as sampling (Supplementary

Data 1).
2.3 Sample collection and DNA extraction

At each farm, ten chickens with no apparent signs of disease

were selected, caught and euthanized by cervical dislocation. Both

caecal pouches were opened immediately using sterile scissors and

the contents scraped into sterile cryovials containing Bacterial

Protect RNA reagent (QIAGEN, Germany) at an approximate 1:1

ratio (w/v). Samples were immediately stored in a portable freezer at

−20°C, transported to the laboratory and stored at −80°C. Total

DNA was extracted from the pooled caecal contents of each

individual chicken using QIAamp Fast DNA Stool Mini kit

(QIAGEN, Germany) following the manufacturer’s instructions

with some modifications as described previously (Pandit et al.,
FIGURE 1

Map showing locations of sampling sites in western India. Cobb400-only farms are in white, Kadaknath-only farms are in black and Cobb400 +
Kadaknath farms are in black and white. Top Right panel shows satellite imagery of Gujarat, and Bottom Right panel shows physical geography of
Gujarat (Gujarat. (2023, October 26)). Source: Wikipedia, https://en.wikipedia.org/wiki/Gujarat (CC BY-SA 4.0 DEED).
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2018). After extraction, DNA was treated with DNase free RNase

(Macherey-Nagel, Germany) and the DNA concentration and

quality assessed using a Qubit 2.0 fluorometer (Invitrogen,

Thermo Fisher Scientific, MA, USA) and gel electrophoresis,

respectively. Extracted DNA were stored at −20°C until

further processing.
2.4 16S rRNA gene amplification
and sequencing

The V3-V4 hypervariable region of eubacterial 16S rRNA gene

was amplified using KAPA HiFi HotStart ReadyMix (Kapa

Biosystems, UK) following the Illumina 16S rRNA amplicon

library preparation protocol (Illumina, USA). All 600 samples

were sequenced across nine Illumina MiSeq flow cells using an

Illumina MiSeq desktop sequencer using 2 x 300bp PE sequencing.

Samples were demultiplexed and adaptor sequences trimmed using

Illumina analysis software V2.5 using default parameters. The 16S

rRNA gene sequence data can be accessed on the Sequence Read

Archive (SRA) ERP017060.
2.5 Bioinformatics

2.5.1 Sequencing, quality control and taxonomic
assignment using DADA2

Primer and adapter sequences were removed using cutadapt v

1.7.1 (Martin, 2011). All further processing and statistical analyses

were performed in RStudio using R version 4.03. Reads were

assigned to amplicon sequence variants (ASVs) using DADA2 (v.

1.18.0) (RRID : SCR_023519) (Callahan et al., 2016). The data were

denoised individually by flow cell, then merged before chimera

removal. Taxonomic assignment was performed to genus level

using training fasta files derived from GTDB release 202

formatted for use with DADA2 (Alishum, 2021). The GTDB

database was selected for taxonomic classification because it is

based on whole genome phylogeny (Parks et al., 2018; Parks

et al., 2020; Parks et al., 2022) and can be linked to whole

genome relatives with functional information. Classification to

species level was performed only when ASVs had 100% identity

to the reference sequences.

2.5.2 Data processing
The 16S rRNA gene abundance data were filtered and analysed

using Phyloseq (V. 1.32.0) (RRID : SCR_013080) (McMurdie and

Holmes, 2013). Analyses were performed on unrarefied datasets

that had been filtered by relative abundance (RA, 0.1%, 0.01% or

0.001%) and prevalence (1%, 2%, 4%, 5% or 10%) and all

combinations thereof (n=18; Supplementary Data 2). This was

done to introduce slight variation into the data allowing us to

identify samples that clustered together consistently (enterotype)

and edge cases that fell between enterotypes. The first step of a

compositional data approach is the transformation of data from
Frontiers in Microbiomes 04
counts to centre log ratio (clr) (Aitchison, 1982; Gloor et al., 2016;

Gloor et al., 2017; Quinn et al., 2019). This transformation cannot

be performed if there are any zeroes in the dataset, therefore zeroes

were replaced with non-zero values using the cmultRepl() function

in the R package zCompositions (Palarea-Albaladejo and Martıń-

Fernández, 2015), which imputes zeros based on a Bayesian-

multiplicative replacement as recommended (Quinn et al., 2019).

The clr transformation itself was performed using the R package

robCompositions (Templ et al., 2011). Aitchison (AIT) distance

(Euclidean distance of clr-transformed data) for the compositional

approach was calculated using the package vegan (Oksanen

et al., 2020).

2.5.3 Clustering into enterotypes
Prior to clustering, ASVs counts were agglomerated to genus

level. The ideal number of clusters was assessed using the maximum

silhouette width, calculated using fviz_nbclust from the package

factoextra (Kassambara and Mundt, 2020). Thereafter, samples

were clustered using the partition around medoids (PAM)

clustering algorithm available from the cluster R package

(Maechler et al., 2022). Clustering was performed on the AIT

distance matrix using each of the filtered datasets. The cluster

membership of each sample within each of the filtered datasets

was extracted and the intersections of cluster memberships used to

assign enterotype. All steps were also performed using a traditional

approach with clustering of Jensen Shannon Divergence (JSD) and

Bray-Curtis (BC) distance and using different clustering methods

(hcut and kmeans) for comparison (Supplementary Data 3).

2.5.4 Visualising clusters using PhateR and
Principal Component Analysis

Enterotype clusters were visualised with PhateR (Moon et al.,

2019) using count data and the clr-transformed compositional

datasets. Principal Component Analysis (PCA) on the clr-

transformed data was done with FactoMineR (Lê et al., 2008;

Husson et al., 2020) and visualised using factoextra (Kassambara

and Mundt, 2020).

2.5.5 Enterotype characteristics
For measures of alpha diversity, samples were rarefied to the

smallest library size (11,111 reads), in all other cases, the dataset

with the least filtering (RA=0.00001, prevalence =1%) was used for

analysis which retained 99.8% of reads from the original dataset

(Supplementary Data 2). Differential abundance of genera between

enterotypes was measured using the R package ALDEx2 (RRID :

SCR_003364) (Fernandes et al., 2014) and LEfSe analysis was

conducted using an “all-against-one” approach (Segata et al.,

2011). Co-occurrence network analysis for each enterotype was

performed using the R package NetCoMi (Peschel et al., 2021).

Single networks for each enterotype were constructed using sparCC

(Friedman and Alm, 2012). Networks were also compared to each

other to identify whether there were differences in connections

between bacteria in the different enterotypes. The R code to

generate all analyses and Figures are provided on GitHub.
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2.5.6 Random Forest Modelling
Random Forest Models (RFM) were run to determine whether

farming characteristics can be used to determine enterotype

(Supplementary Data 4). RFMs were constructed using the

randomForest (V4.7-1.1) (Liaw and Wiener, 2002) and caret (V

6.0-92) (Kuhn, 2008) packages in R. There were two potential

confounding factors considered when designing the RFMs. Firstly,

the likelihood of sharing an enterotype is much higher for chickens

from the same farm than for chickens on different farms. Secondly,

the number of chickens with each enterotype differs, so training data

needed to be balanced to ensure the model could discern equally

between groups. To account for these potential confounders, the

training and testing datasets were partitioned 80:20 prior to any

processing, whilst ensuring that chickens from the same farm could

not appear in both splits to prevent “data leakage” inflating the

accuracy of the models (Kapoor and Narayanan, 2022). In addition,

while training the models we used groupKFold to split data in the

training and validation datasets such that samples from a single farm

could not appear in both. Furthermore, we used trainControl to

perform 10x repeated cross-validation repeated seven times when

training the models and used down sampling to balance the

enterotype classes. Finally, the entire process from data partition to

confusion matrix was repeated on five different test:train splits. This

was particularly useful to see whether models based on different data

splits still ranked important variables for each enterotype

consistently. Plots were generated using the package ggplot2 (V

3.3.6) (Wickham, 2016).
3 Results

3.1 The chicken caecal microbiome is
highly diverse

After quality control and processing through DADA2 there

were 4,658,348 reads assigned to 20,888 unique ASVs. Library size

ranged from 11,111 reads to 266,317 reads, with a mean of 77,646

reads. GTDB assigned ASVs to 34 Phyla, 55 Classes, 124 Orders,

256 Families and 633 Genera. Five samples were removed as outliers

based upon low Shannon Diversity (> 1.5* interquartile range

(IQR)) (Supplementary Data 5), leaving 595 samples containing

625 genera.

Across all samples, the most abundant phyla were the Firmicutes

(specifically Firmicutes_A, followed by Firmicutes and Firmicutes_C).

The Bacteroidota were the second most abundant, and

Campylobacterota were third most abundant, followed by the

Proteobacteria. Cyanobacteria, Verrucomicrobia, Synergistota and

Fusobacterota phyla were also frequently present at lower abundance.

At the Genus level, the most abundant genera were Phocaeicola,

Phascolarctobacterium, Faecalibacterium, Mediterraneibacter.
3.2 Characteristics of enterotypes

The ideal number of clusters suggested for PAM clustering of

compositional data (AIT distance) was k=2 clusters (Supplementary
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Data 6). Since enterotypes are “areas of high density” in a

multidimensional space, we sought to identify these “density

peaks” and eliminate intermediate samples by taking the

intersection of PAM clusters, i.e., samples that clustered together

across all 18 datasets. However, when the resultant datasets were

generated, it was apparent that three enterotypes could be

described. These were numbered according to how common they

were as PA1 (n=290), PA2 (n=142) and PA3 (n=67) for PAM-

clusters based on Aitchison distance. Hence, although we used k=2,

we ended up with three groupings and this was because different

filtering thresholds resulted in a split of the largest group

(Supplementary Data 7). PA3 was identified as separate from

(PA1+PA2) most of the time, so PA1 and PA2 can be viewed as

subsets of a larger group, whilst PA3 is a more robust separate

cluster (Figure 2A). Of interest, PAM clustering of AIT versus the

BC or JSD distance data differed significantly (Supplementary Data

8). Other versions of the data are available for different clustering

methods, different values of k and different distance measures, and

are named according to this same convention (e.g., PJ2, PJ8, PB2,

PB8, PJBA).

We merged the samples of each enterotype to compare the

mean community composition between enterotypes at phylum

(Figure 2B) and genus (Figure 2C) levels (Supplementary Data 9).

The most striking different between enterotypes was the ratio of

Firmicutes to Bacteroides (F:B). PA1 had the highest F:B ratio

(3.16), fol lowed by PA2 (2.50) and PA3 (0.93). The

Campylobacterota phylum was highest in PA2 (5.47%), and PA3

had many members of the Spirochaetota phylum (1.5%) which was

almost absent in the other enterotypes. The most abundant genera

were Faecalibacterium (7.92%), Phascolarctobacterium A (8.39%)

and Phocaeicola dorei (15.21%) for enterotypes PA1, PA2 and PA3,

respectively. PA3 had quite a large abundance of CAG-831 (3.36%),

a distinct species, but close relative of Alistipes, which was not

present in the other enterotypes.

There were statistically significant differences between PA1 and

PA2 and between PA2 and PA3 for all measures of alpha diversity

(Figures 2D–G). There was no significant difference detected

between PA1 and PA3 for species-richness (Figure 2D), Chao1

(Figure 2E) or Shannon index (Figure 2F), however there was a

significant difference for Inverse Simpson (Figure 2G). The PA2

enterotype had significantly lower alpha diversity than both other

enterotypes for all measures (Figures 2D–G).
3.3 Differentially abundant genera
between enterotypes

Methods to analyse microbiome differential abundance produce

differing results (Nearing et al., 2022), therefore we used two

different methods to detect differentially abundant genera.

ALDEx2 is a differential abundance test that considers the

compositional nature of data to look for significant differences in

abundance (Fernandes et al., 2014) and has shown consistency

across different datasets (Nearing et al., 2022). LEfSe analysis is

commonly used in microbiome analysis (Segata et al., 2011) and

identified many of the same genera highlighted by ALDEx2.
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Differentially abundant genera between enterotypes are shown

in Figure 3.

PA1 and PA2 were more like each other than either was to PA3,

which is evident from the higher overlap, lower BH correctedWelch

test p-values and lower effect sizes (Supplementary Data 10).

Nevertheless, 88 out of 371 genera had significant adjusted p-

values < 0.01. The four most significant discriminant genera
Frontiers in Microbiomes 06
between PA1 and PA2 were, Phascolarctobacterium A (PA1:RA =

2.33%, PA2:RA = 8.39%; p=3.97E-17), Phocaeicola dorei (PA1:RA =

4.57%, PA2:RA = 6.14%, p=1.84E-12) Prevotellamassilia (PA1: RA

0.53%, p=9.93E-11) and Campylobacter (PA1: 0.43%, PA2: 2.1%

p=4.67E-10).

Between PA1 and PA3, 164 out of 380 genera were significantly

differentially abundant (P < 0.01). There were six genera strikingly
B C

D E F G

A

FIGURE 2

Characteristics of the three enterotypes. (A) is a PCA Biplot showing clusters based on the PAM clustering of samples by Aitchison distance, as well
as the genera contributing to the spread of the samples. (B) shows the community composition (mean relative abundance) of the three enterotypes
at the phylum level. (C) shows the community composition (mean relative abundance) of the enterotypes at the genus level. (D–G) show alpha
diversity of enterotype groups. (D) Species-richness, (E) Chao1, (F) Shannon Index and (G) Inverse Simpson. Pairwise comparisons using Wilcoxon
rank sum test with BH (Benjamini-Hochberg) correction for multiple testing were used to detect significant differences between the group means.
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more abundant in PA3 than PA1 (Supplementary Data 10). These

were CAG 831 (p=1.38E-94), Mucispirillum schaedleri (p=8.75E-

64), Cloacibacillus porcorum (p=1.52E-51), Duodenibacillus

(p=3.89E-35), Mailhella (p=7.72E-34), and Phocaeicola dorei

(p=2.05E-32). Between PA2 and PA3, 106 of 375 genera were

significantly differentially abundant. The most discriminant

genera were Mucispirillum schaedleri (p=3.96E-52), CAG.831

(p=1.59E-46) , an uncharacter i sed genus from order

Enterobacterales (p=2.43E-26), RC9 (p=2.32E-25) and an

uncharacterised genus from family Sphaerochaetaceae (p=2.69E-

24). The most significant differences between PA1 vs PA3 and PA2

vs PA3 were due to genera that were significantly more abundant in
Frontiers in Microbiomes 07
PA3. The top discriminant genus that was significantly more

abundant in PA1 and PA2 than PA3 was the same

uncharacterised genus belonging to family Lachnospiraceae

(p=6.57E-31 and p=1.07E-21 respectively).

LEfSe analysis indicated that potential human pathogens viz

Campylobacter_D (including Campylobacter col i and

Campylobacter jejuni, the cause of human campylobacteriosis)

(Figure 3D, E), Escherichia (Figure 3D, F) (including

enterotoxigenic strains and also a reservoir of AMR genes) and

Helicobacter species (Figures 3D–G) were differentially abundant in

enterotype PA2. Although Campylobacter_D was highly prevalent

across all samples (445 samples) and enterotypes (PA1, n=215/290,
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FIGURE 3

(A–C) Aldex2 plot shows differentially abundant genera between enterotype groups. (A) PA1 vs PA2, (B) PA1 vs PA3, (C) PA2 vs PA3. In all plots, red
represents differentially abundant features (q < 0.1) using both Welchs’ and Wilcoxon tests, blue represents differentially abundant features (q < 0.1)
detected by either Welchs’ or Wilcoxon tests, grey represents abundant but non-differentially abundant genera and black represent rare non-
differentially abundant genera. (D) shows the top 15 discriminant genera in each Enterotype as identified by LEfSe analysis using “all against 1”
approach. (E, F) Comparison of relative abundance of potential pathogens in chicken enterotypes. The mean RA of (E) Campylobacter D,
(F) Escherichia, and (G) Helicobacter D pullurom are compared across enterotypes.
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PA2, n=102/142, PA3, n=55/67), the relative abundance was

significantly higher in PA2 and PA3 than in PA1 (Figure 3E),

whereas the genus Escherichia was slightly more abundant in PA2

than PA1 or PA3 (Figure 3F). Of interest, the dominant

Helicobacter species differed between enterotypes. Helicobacter

pullurom was more abundant in PA1 and PA2 than PA3

(Figure 3G), whereas a different Helicobacter_F clade was found

in PA3, and completely absent from PA1 and PA2. The functional

significance of the enterotype preference for these different

Helicobacter species is worth investigating further. Figure 4 shows

boxplots of the relative abundance of the genera detected as most

differentially abundant by ALDEeX2.
3.4 Understanding the enterotype
“community” via co-occurrence networks

To understand how external factors influence enterotype, it is

useful to examine bacterial interactions within the enterotypes.

Bacterial genera with strong positive correlations are likely in

symbiosis with each other or influenced by the same

environmental drivers and thus may be important determinants

for the phenotype. We refer to clusters of co-occurring and

positively correlated bacteria as “ecological guilds” in line with the

established definition of guilds in macro-ecological studies

(Simberloff and Dayan, 1991) and recent microbiome research

(Wu et al., 2021; Frioux et al., 2023).

A striking characteristic of the co-occurrence networks was the

appearance of two guilds within the chicken caecal microbiome.

Enterotypes PA1 and PA2 had a Firmicutes-dominant guild, and

PA3 had a Bacteroidota- and Proteobacteria-dominant guild (Table 1,

Figure 5, Supplementary Data 11). Hub nodes represent genera that

have a greater influence on structuring the network. In PA1 all hub

nodes are in a Firmicutes-dominant guild, whereas in PA3 they are all

in the Bacteroides and Proteobacteria‐dominant guild, with PA2

having hub nodes from the Firmicutes and Proteobacteria.

In PA1, Campylobacter is positively correlated with

Phascolartobacterium_A, however the relative abundance of both

genera is significantly lower in PA1 than in other enterotypes, and

Phascolartobacterium_A is negatively correlated with the highly

abundant Firmicutes-dominant guild. In PA2, Campylobacter is

positively associated with Coprobacter and Enterococcus. Enterococcus

is in turn positively correlated with E.coli, which is also a hub genus in

PA2 and significantly differentially abundant. In PA3, there were many

more significant associations between bacteria throughout the network,

andmanymore associations withCampylobacter specifically. Like PA2,

Campylobacter was positively associated with E.coli in PA3 and had a

direct positive association with Enterococcus.
3.5 Association of environmental factors
with enterotype

Using Network analysis, we consistently saw caecal

microbiomes from chickens from the same farm clustering
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together, particularly when analysing at ASV level. This suggests

that environmental factors contribute to determining enterotype

and by clustering chickens with similar enterotypes from several

farms, it was possible to explore whether these farms had

environmental factors in common that might contribute to

similarities in microbiome. We created five different RFMs, based

on different combinations of farms in the train and test splits (80:20)

(Supplementary Data 12). The RFMs were trained on between 409

and 419 samples and used 28 predictors to classify samples into

three enterotype classes (Supplementary Data 4). The performance

of all five models was tested against the test data (consisting of 80 to

90 samples), and a confusion matrix generated as well as overall

statistics and statistics by class (Table 2). The majority class PA1

made up 54–67% of the test data in the different models, which

means that accuracy needed to exceed 54–67% to be better than the

No Information Rate (NIR). All 5 models did better than the NIR.

For RFM-1 and RFM-5 improvement over the NIR was statistically

significant (RFM-1: p=0.0275, RFM-5: p=0.0001) and for the

remaining three models, the improvement approached

significance (RFM2: p=0.0998, RFM-3: p=0.0507, RFM-4:

p=0.0690). The sensitivity and specificity of each model differed

for each enterotype. PA3 (n=67) was the most discrete enterotype,

however it was also the least common, and occurred in only a few

(12) farms. Because of this rarity, and because we split by farm to

prevent data leakage, very few farms could be used to train and test

PA3 hence the models had either 100% (4/5 models) or 0% (1/5)

sensitivity. The sensitivity and specificity of PA1 and PA2 varied by

model, and the classifier was more likely to mistake these two

classes, which is perhaps unsurprising as these two enterotypes were

more like each other than PA3, and both were often represented on

the same farm.

The top 20 most important variables to classify the data

(discriminate between enterotypes) were plotted (Figure 6,

Supplementary Data 13). Across all five RFMs, the location of

farms (scaled N and E co-ordinates) appeared to be one of the most

important variables (Supplementary Data 14). Other variables

consistently in the top 10 across all five RFMs were whether

visitors were allowed inside and the number of people in contact

with the chickens. Four of the RFMs placed importance on the type

of chicken lines on farm and three ranked the presence of dogs and

whether thinning (i.e. partial flock clearance) took place as

important in the top 10. The type of enclosure: open, enclosed or

caged was especially important for discriminating PA3, with PA3

almost absent on open farms (Enterotype breakdown for each factor

in Supplementary Data 15). To discriminate between chickens from

the same farm we did not use any data contributing to beta diversity

(such as presence or proportion of specific bacteria) as this

information is part of what defines the enterotype. However, we

did include alpha diversity information, and this consistently came

up as an important variable.

The RF models were also run without alpha diversity

information, and although this reduced the accuracy and

statistical significance, the models still performed better than the

NIR, and RF5 was significantly better than the NIR (RF5: p=

0.03683) even without alpha diversity (Table 2B).
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4 Discussion

4.1 Microbiomes are complex systems with
multiple influences

The chicken caecal microbiome is associated with attributes

attractive to poultry producers and consumers, including resistance
Frontiers in Microbiomes 09
to pathogen colonisation and disease (McKenna et al., 2020; Patuzzi

et al., 2021; Wyszyńska and Godlewska, 2021), efficient food

conversion (Huang et al., 2021; Dittoe et al., 2022), high body weight

(Xu et al., 2016; Banerjee et al., 2018) and favourable nutrient content

(Li et al., 2020). Microbiome composition is shaped by the interaction

of multiple influences, from host genetic background to feed, farming

characteristics and biosecurity measures (Kers et al., 2018; McKenna
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FIGURE 4

Comparison of relative abundance of the most differentially abundant genera between the three enterotypes. (A) CAG831, (B) Enterocloster,
(C) Sphaerochaetaceae, (D) Family_Bacteroidaceae, (E) ASV526_RC9, (F) Lachnospiraceae, (G) ASV91_UMGS, (H) Ruminococcaceae, (I)
Mucispirillum, (J) Enterobacterales, (K) Dialister, (L) CAG462, (M) Phascolarctobacterium, (N) Prevotellamassilia, (O) RUG13077, (P) Oscillospirales,
(Q) Clostridia, (R) Dysosmobacter, (S) NSJ.50, (T) Monoglobus, (U) Eisenbergiella, (V) Phocaeicola, (W) Cloacibacillus, (X) Prevotella, (Y) Coprobacter.
frontiersin.org

https://doi.org/10.3389/frmbi.2023.1301609
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Hay et al. 10.3389/frmbi.2023.1301609
et al., 2020). Many studies have investigated the effects of individual

factors such as host genetics (breed/line) (Glendinning et al., 2020) and

chicken age (Segura-Wang et al., 2021), as well as interventions such as

diet (Glendinning et al., 2020), supplements (Li et al., 2020), antibiotics

(Costa et al., 2017; Kumar et al., 2018), probiotics (Śliżewska et al.,

2020), geography and climate (Pandit et al., 2018; Glendinning et al.,

2020; Glendinning et al., 2023), and farming practices (McKenna et al.,

2020; DiMarcantonio et al., 2022) on themicrobiome (Kers et al., 2018;

McKenna et al., 2020; Rashid et al., 2021). However, attempts to

investigate these variables individually in experimental comparisons are

unlikely to reflect field conditions, as findings based on specific

controlled treatments or groupings are difficult to generalise across

different systems. Similarly, trying to research the chicken caecal

microbiome based on all possible permutations of so many

interacting factors is statistically unfeasible.
4.2 Enterotypes to simplify and compare
microbiome complexity

Our data was complex, coming from 600 chickens belonging to

two distinct chicken breeds/lines from 60 farms across a range of

locations with different farm management practices. Rather than

comparing microbiomes based on variables such as breed/line or

diet, we have looked for emergent structure in the microbiomes and

defined enterotypes in the data so that the microbiome itself could

be our unit of comparison. Enterotypes were first described as

“densely populated areas in a multidimensional space of
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community composition” (Arumugam et al., 2011) and can be

viewed as preferred community configurations that tend towards

homeostasis, although many variables affect this equilibrium

including host health, environment, diet, treatments, and constant

exposure to new sources of bacteria (Sommer et al., 2017).

Enterotypes are therefore likely to be in constant flux, and

microbiomes occur on a spectrum tending towards certain

symbiotic optima, rather than as discrete community structures

(Jeffery et al., 2012; Costea et al., 2018). Indeed, we found this in our

data, which was filtered using several common abundance and

prevalence measures to create 18 slight variations of the dataset. By

clustering these variations, we identified three consistent clusters

(enterotypes) and excluded borderline samples that changed cluster

membership between clustering efforts.

Previous methods to detect enterotypes in humans (Arumugam

et al., 2011; Mobeen et al., 2018) and chickens (Kaakoush et al.,

2014; Yuan et al., 2020; Glendinning et al., 2023) used relative

abundance (RA) of count data to cluster samples. We chose to use

compositional data (CoDa) approaches to discern enterotypes

because it focuses on the ratio between taxa, rather than their

relative abundance and is therefore much better at detecting

preserved relationships between individual taxa, including low

abundance taxa (Gloor et al., 2017). Using PAM clustering of AIT

distance, we identified three enterotypes PA1, PA2 and PA3. The

identification of three groupings agrees with previous observations

in enterotype studies from several other species, including humans

(Arumugam et al., 2011; Wu et al., 2011), pigs (Xu et al., 2021a)

chimpanzees (Moeller et al., 2012) and chickens (Kaakoush et al.,
TABLE 1 Genera that form network hubs in each of the two guilds.

Guild 1 (Firmicutes-dominant) Guild 2 (Bacteroides + Proteobacteria-dominant)

PA1 ASV10_Lawsonibacter sp002160305 (RS_GCF_002160305_1)
ASV25_Family_Lachnospiraceae
ASV29_Enterocloster sp001517625 (RS_GCF_001517625_2)
ASV45_Anaerosacchariphilus sp002160825 (RS_GCF_002160825_1)
ASV50_Acutalibacter timonensis (RS_GCF_900048895_1)
ASV83_Family_Ruminococcaceae
ASV91_UMGS1004 sp900761685 (RS_GCF_900761685_1)
ASV150_Dysosmobacter sp001916835 (RS_GCF_014297285_1
ASV260_UMGS1781 sp900554635 (GB_GCA_900554635_1)
ASV378_Caprobacter sp004103755 (RS_GCF_004103755_1)

PA2 ASV14_Genus_Escherichia
ASV88_UMGS1872 sp014237695 (GB_GCA_014237695_1)
ASV95_Anaerotignum lactatifermentans (RS_GCF_900142265_1)
ASV113_Fournierella sp002161595(RS_GCF_002161595_1)
ASV133_Agathobaculum sp900291975(RS_GCF_900291975_1)
ASV201_Gemmiger variabilis(RS_GCF_000157955_1)
ASV205_CAG-492 sp900557045(GB_GCA_900557045_1)
ASV358_Lachnoclostridium_A edouardi(RS_GCF_900240245_1)
ASV800_Massilicoli timonensis(RS_GCF_900199515_1)

PA3 ASV1_Phascolarctobacterium_A sp900545025 (GB_GCA_900545025_1)
ASV12_Prevotella rara (RS_GCF_001275135_1
ASV23_Bacteroides uniformis (RS_GCF_000154205_1)
ASV40_Order_Christensenellales
ASV58_CAG-521 sp000437635 (GB_GCA_000437635_1)
ASV112_Family_Megasphaeraceae
ASV309_Order_Enterobacterales
ASV312_Olsenella_E sp002159625 (RS_GCF_002159625_1)
ASV740_Genus_Anaeroglobus
ASV2291_Class_Gammaproteobacteria
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2014; Yuan et al., 2020; Glendinning et al., 2023). However, the

enterotypes identified using a CoDa approach differed from those

using traditional approaches such as BC and JSD (Supplementary

Data 8) that have been used in previous enterotype papers.

A strength of using a compositional data approach and ALDEx2

to detect differential abundance in genera was that this approach

was able to highlight several low abundances, rare taxa that might

play a significant role in determining the microbial community

enterotype. The PA3 enterotype exhibited the least overlap with
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PA1 and PA2 (PCA biplot and ALDEx2 results). Consideration of

the differentially abundant taxa in the PA3 enterotype revealed most

belonged to rare taxa. The PA3 enterotype also had the strongest

bacterial networks, with strong evidence of symbiotic reliance, and

yet the genera making up these network clusters were exceedingly

rare, and very little functional information is known about them.

Although our measures of internal cluster validity were low,

(below the minimum 0.2 SI value recommended to suggest

structure and lying just above the limit of detection from random
FIGURE 5

Co-occurrence network based on SparCC correlations between genera in each enterotype. Node size represents the clr (abundance) of the genus,
node colour indicates phylum, edges represent correlations, and the width of the edge represents correlation strength. Nodes with a highlighted
border are hub nodes (Table 1). The community connectivity increases from PA1 to PA2 to PA3, with PA3 showing a particularly connected
community. The Campylobacter node is highlighted with a red border. Red edges represent negative correlations and green edges represent
positive correlations.
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TABLE 2 Table comparing the performance of five Random Forest Models based on different splits of the data.

RF1 RF2 RF3 RF4 RF5

Confusion Matrix

Reference Reference Reference Reference Reference

Prediction PA1 PA2 PA3 PA1 PA2 PA3 PA1 PA2 PA3 PA1 PA2 PA3 PA1 PA2 PA3

PA1 27 8 0 45 0 10 44 11 0 39 10 0 50 10 0

PA2 11 17 0 10 17 1 5 16 0 13 11 0 1 13 0

PA3 5 4 8 1 0 0 6 5 3 1 0 10 1 0 5

Statistics by Class

PA1 PA2 PA3 PA1 PA2 PA3 PA1 PA2 PA3 PA1 PA2 PA3 PA1 PA2 PA3

Sensitivity 0.628 0.586 1.000 0.804 1.000 0.000 0.800 0.500 1.000 0.736 0.524 1.000 0.962 0.565 1.000

Specificity 0.784 0.784 0.875 0.643 0.836 0.986 0.686 0.914 0.874 0.677 0.794 0.987 0.643 0.983 0.987

Pos Pred Value 0.771 0.607 0.471 0.818 0.607 0.000 0.800 0.762 0.214 0.796 0.458 0.909 0.833 0.929 0.833

Neg Pred Value 0.644 0.769 1.000 0.621 1.000 0.868 0.686 0.768 1.000 0.600 0.833 1.000 0.900 0.849 1.000

Prevalence 0.538 0.363 0.100 0.667 0.202 0.131 0.611 0.356 0.033 0.631 0.250 0.119 0.650 0.288 0.063

Detection Rate 0.338 0.213 0.100 0.536 0.202 0.000 0.489 0.178 0.033 0.464 0.131 0.119 0.625 0.163 0.063

Detection Prevalence 0.438 0.350 0.213 0.655 0.333 0.012 0.611 0.233 0.156 0.583 0.286 0.131 0.750 0.175 0.075

Balanced Accuracy 0.706 0.685 0.938 0.723 0.918 0.493 0.743 0.707 0.937 0.707 0.659 0.993 0.802 0.774 0.993

Overall Statistics

Accuracy 0.650 0.738 0.700 0.714 0.850

95% CI (0.5352, 0.7533) (0.6307, 0.828) (0.5943, 0.7921) (0.6053, 0.8076) (0.7526, 0.92)

No Information Rate 0.538 0.667 0.611 0.631 0.650

P-Value [Acc > NIR] 0.0275 0.0998 0.0507 0.0690 0.0001

Kappa 0.433 0.470 0.443 0.476 0.672

RF1 RF3 RF5

Confusion Matrix

Reference Reference Reference

Prediction PA1 PA2 PA3 PA1 PA2 PA3 PA1 PA2 PA3

PA1 21 8 0 40 8 0 46 14 0

PA2 21 21 0 9 19 0 5 9 0

PA3 1 0 8 6 5 3 1 0 5

Statistics by Class

PA1 PA2 PA3 PA1 PA2 PA3 PA1 PA2 PA3

Sensitivity 0.4884 0.7241 1 0.7273 0.5938 1 0.8846 0.3913 1

Specificity 0.7838 0.5882 0.9861 0.7714 0.8448 0.87356 0.5 0.9123 0.9867

Pos Pred Value 0.7241 0.5 0.8889 0.8333 0.6786 0.21429 0.7667 0.6429 0.8333

Neg Pred Value 0.5686 0.7895 1 0.6429 0.7903 1 0.7 0.7879 1

Prevalence 0.5375 0.3625 0.1 0.6111 0.3556 0.03333 0.65 0.2875 0.0625

Detection Rate 0.2625 0.2625 0.1 0.4444 0.2111 0.03333 0.575 0.1125 0.0625

Detection Prevalence 0.3625 0.525 0.1125 0.5333 0.3111 0.15556 0.75 0.175 0.075

Balanced Accuracy 0.6361 0.6562 0.9931 0.7494 0.7193 0.93678 0.6923 0.6518 0.9933

(Continued)
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noise), it was comparable to previous studies on gut enterotypes

that had similarly low cluster support with silhouette values less

than 0.2 (Moeller et al., 2012; Koren et al., 2013). This is not

unexpected in a complex phenotype that lies on a continuous scale

in multidimensional space.
4.3 Enterotypes can be further simplified
into interacting guilds

Bacteria that are highly connected with positive associations in

co-occurrence networks are thought to represent ecological guilds

because they thrive or decline together depending on resource

abundance (Wu et al., 2021; Wu et al., 2022). Our network

analysis revealed structure to bacterial co-occurrence relationships

that was evident across all three enterotypes. In all cases, networks

could be divided into guilds, where bacteria within each guild were

highly connected, with a negative correlation between guilds. One

of these guilds consisted mainly of Firmicutes, and was inversely

correlated to the second guild, consisting of Bacteroides,

Proteobacteria and others.

The growing awareness of microbial guilds in gut microbiomes

has led to the suggestion of replacing the concept of enterotypes

with enterosignatures. Each guild represents an enterosignature and

the microbiome can be described in terms of the proportion of

enterosignatures/guilds (Frioux et al., 2023). Interestingly,

enterotypes and enterosignatures were found to correlate strongly,

with the enterotype generally being classified as the most dominant

enterosignature or guild. This agrees with our observation that our

enterotypes were either Firmicutes-dominant (PA1) or Bacteroides-

dominant (PA3). A “seesaw” network between Firmicutes-

dominant and Bacteroides-dominant guilds has previously been

explicitly described in human gut microbiomes (Wu et al., 2022).
4.4 Characteristics of the three
caecal enterotypes

4.4.1 Enterotypes and Campylobacter abundance
A major application of studying enterotypes is to apply insights

on differential community compositions to stage positive public

health interventions. The most significant finding of this study was
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therefore the significant differential abundance of Campylobacter in

the different enterotypes. The abundance of both Campylobacter

and E.coli was significantly increased in PA2 compared to other

enterotypes (Figure 3) and E.coli and Campylobacter were found to

be positively correlated in a Network analysis (Figure 5). Although

Campylobacter was also abundant in PA3 based purely on

comparisons of RA (Figure 3E), ALDEx2 and LEfSe did not

identify this increase as significant. This may be because the

differences in Campylobacter abundance between PA1 and PA3

are still dwarfed compared in comparison to the differences in

abundance of other genera between PA1 and PA3. However, the

risk to public health from Campylobacter in PA3 may be similar

between PA1 and PA3 due to its abundance irrespective of the

different community dynamics that drive the abundance.

Campylobacter has been associated with increases in

Proteobacteria and Bacteroidota in several studies (Dicksved

et al., 2014; Pang et al., 2023). In a study of faecal microbiomes of

poultry abattoir workers, Campylobacter culture-positive

individuals had significantly higher Bacteroides and Escherichia

(Proteobacteria) species than those who remained culture negative.

This would agree with our observations of a direct positive

correlation with E.coli (a Proteobacteria) in PA2 and with the

high abundance of Campylobacter in PA3- the enterotype with

the lowest F:B ratio and dominated by a Bacteroidota and

Proteobacterial guild in network analysis. Furthermore, several

studies have shown significant positive associations between

Campylobacter and Phascolarctobacterium (Dicksved et al., 2014;

Pang et al., 2023). Indeed, we noted the same relationship between

Campylobacter and Phascolartobacterium in our PA1 network

analysis, however in this case, Phascolartobacterium had

significantly lower abundance and was negatively correlated with

the highly abundant Firmicutes-dominant guild. Although we did

not detect a direct correlation between Phascolartobacterium and

Campylobacter in our PA2 network analysis, Phascolatrtobacterium

was both the most abundant and the most differentially abundant

genus in PA2.

4.4.2 Differences in alpha diversity
PA1 and PA2 were more alike than either was to PA3, however

they had a significant difference in their alpha diversity

(Figures 2D–G). This is interesting because there is a relationship

between high species diversity and ecosystem stability known as the
TABLE 2 Continued

RF1 RF3 RF5

Overall Statistics

Accuracy 0.625 0.6889 0.75

95% CI (0.5096, 0.7308) (0.5826, 0.7823) (0.6406, 0.8401)

No Information Rate 0.5375 0.6111 0.65

P-Value [Acc > NIR] 0.0718 0.07853 0.03683

Kappa 0.3787 0.4427 0.4536
Random Forests (RF) 1–5 were first run with alpha diversity to distinguish between chickens on a single farm. RFs were there run on the same farm splits as RF1, RF3 and RF5 without alpha
diversity.
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insurance hypothesis (Sommer et al., 2017). This hypothesis

suggests that microbiome resilience occurs in highly diverse

communities because several species compete for the limited

resources, thus limiting the influx or overgrowth of other species

(Sommer et al., 2017). High alpha diversity microbiomes are

therefore more stable, whereas a community with low alpha

diversity is less resilient and more likely to tip into dysbiosis in

response to perturbation. The propensity for low alpha diversity to

reflect a vulnerability towards dysbiosis is suggested by its

association with several human diseases, including chronic

autoimmune conditions of the gut (Ott et al., 2004; Manichanh

et al., 2006; Willing et al., 2010), recurrent Clostridium difficile

infection (Chang et al., 2008) and even increased frailty in old age

(Jackson et al., 2016).

Because PA1 and PA2 were so similar, it is tempting to

speculate that PA2 may represent a subset of enterotype PA1 that

is tending to dysbiosis. It is difficult to know whether the low alpha

diversity enables the proliferation of Campylobacter, or if alpha

diversity drops in response to Campylobacter proliferation.

However, a relationship between low caecal alpha diversity, high

Campylobacter abundance and low welfare poultry farms has been

observed (Di Marcantonio et al., 2022), suggesting that low alpha

diversity and high Campylobacter may represent a stressed state.

Furthermore, because all birds in this study were apparently healthy

at sampling, any changes towards dysbiosis are expected to be

minor. Further investigations to compare the microbiomes of

healthy and truly dysbiotic birds will help to clarify the

significance of alpha diversity and caecal gut health.

4.4.3 F:B ratio differences across enterotypes
The major gradient in the gut microbiome of many species is

the ratio of Firmicutes to Bacteroides (F:B) and we noted a

difference in this ratio across PA1, PA2 and PA3, with PA1

having the highest F:B ratio and PA3 having the lowest

(Figure 2A). Diet may play a role in determining F:B ratio, as

members of these phyla have complementary but distinct metabolic

capacities (Flint et al., 2012; O. Sheridan et al., 2016; Ali et al., 2022;

Frioux et al., 2023). Bacteroidota have a high number of CAZymes

against animal and plant cell wall carbohydrates but are poor

metabolizers of alpha-glucans (Frioux et al., 2023). Alpha-glucans,

present in starch, represent a high proportion of the energy

composition in poultry feed (Svihus 2014). Many Firmicutes can

metabolize alpha-glucans and this may explain their abundance in

commercial farm broilers. A high F:B ratio has previously been

associated with improved food conversion efficiency and higher

body weight (Singh et al., 2013; Xu et al., 2016; Banerjee et al., 2018).

For example, the use of antibiotic growth promoters results in an

increase in F:B ratio and improved productivity (Banerjee et al.,

2018). The effect of F:B ratio on Campylobacter abundance is mixed.

A small study (n=2) identified a decreased F:B ratio in a chicken

caecum after Campylobacter challenge (Qu et al., 2008), while a

study of 100 chickens from 4 farms found no association with F:B

ratio (Sakaridis et al., 2018) and study of caeca from 10 chickens

showed a non-significant trend between high F:B ratio and low

Campylobacter abundance (Sofka et al., 2015). In this study, a high

F:B ratio (PA1) was correlated with low Campylobacter abundance.
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PA1 had a higher proportion of butyrate producers

(Ruminococcacea), and several genera, such as Faecalibacterium

that are associated with good gut health (Hornef and Pabst, 2016;

Lopez-Siles et al., 2017). Butyrate producers like Faecalibacterium

are associated with low inflammation for two reasons. Firstly, their

presence provides health benefits: when butyric acid is sensed by the

host, the host responds by strengthening the epithelial barrier,

reducing inflammation, and increasing the production of mucins

and antimicrobial peptide (Onrust et al., 2015; Hornef and Pabst,

2016). Their reduction in the gut may signal the presence of

inflammation, as the vegetative cells of buyrate-producing

Ruminococcacea and Lachnospiracea are extremely sensitive to

the presence of oxygen, and so their absence often indicates the

presence of reactive oxygen species (ROS) from macrophages and

granulocytes (Rychlik, 2020). In chickens, Faecalibacterium is

significantly less abundant in chickens infected with Eimeria

tenella, than in controls(Yu et al., 2023). In fact, there is

significantly lower Faecalibacterium abundance in frail patients

(Jackson et al., 2016) and patients with inflammatory bowel

disease (Sokol et al., 2009). Secondly, Faecalibacterium may play a

role in promoting temporal stability, or resilience of the gut (Olsson

et al., 2022).

PA3 had relatively high Campylobacter abundance but was

particularly interesting as it had a high abundance of several

genera that were absent or low abundance in other enterotypes.

For example, PA3 had the highest abundance of Mucispirillum

schaedleri. In mice, high abundance of M. schaedleri, a member of

the phylum Deferribacteres, associated with significantly reduced

gut inflammation compared with control animals following

infections with Salmonella Typhimurium, even when pathogen

loads in the gut were unchanged (Du Toit, 2019).
4.5 Farm factors affecting enterotype

An understanding of enterotypes is only truly useful when we

can harness our understanding to manipulate enterotypes to stage

public health interventions. To do this, we need to understand the

factors that determine enterotype composition. As previously

mentioned, the microbiome is influenced by multiple interacting

factors. Inter-farm variation is often higher than intra-farm

variation for several obvious reasons. For example, chickens on

the same farm are often genetically related, or of the same breed/

line, share similar geography and farming practices. The proximity

of chickens to each other within a farm increases the likelihood of

inoculation and sharing of bacterial species between members of the

same flock (Sakaridis et al., 2018). Thus, we found that chickens

from the same farm were more likely to share an enterotype than

chickens from different farms, even when both breeds/lines

were represented.

Random Forest Models (RFMs) have previously been developed

to predict the prevalence of pathogens such as Listeria spp (Golden

et al., 2019) and Campylobacter (Xu et al., 2021b) from farm

practice data. An RFM was not able to predict Campylobacter

prevalence from this data, because prevalence across all samples

was too high. In this study, 100% of farms had at least one chicken
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with Campylobacter, and the total number of birds with

Campylobacter detected in their caecal microbiome was 455/600.

However, it was possible to use a RFM model to detect enterotype

from farm practice metadata because there were only three

enterotypes and multiple permutations of variables.

Geography (scaled N and E co-ordinates) appeared as one of the

most important variables to discriminate between enterotypes

(Supplementary Data 15 shows the distribution of enterotypes

across farms). A pilot study on these chicken lines previously
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highlighted a strong effect of geography on the chicken

microbiome (Pandit et al., 2018) and a recent study of scavenging

indigenous chickens in Ethiopia also clustered the caecal

microbiome into three enterotypes- which were found to largely

be influenced by geographic factors like altitude, climate, and

topsoil (Glendinning et al., 2023).

However, apart from carefully choosing the location of your

farm, major interventions to prevent pathogen colonisation in

poultry can be made via farming management practices (Sibanda
frontiersin.or
FIGURE 6

Variable importance for each enterotype, across 5 iterations of the RF model constructed from farming practice, geographical region and alpha
diversity measurements. Variable importance indicates which variables contribute the most to the predictive power and accuracy of model.
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et al., 2018; Soro et al., 2020). Stringent biosecurity measures are

required to prevent the introduction of Campylobacter, since the

infection of a single chicken can rapidly result in the colonisation of

an entire flock within a week (Evans and Sayers, 2000).

Nevertheless, farms with high biosecurity measures still routinely

have flock colonisation (Sibanda et al., 2018). The most useful

distinction may be to understand the factors that result in

enterotype PA1, which had a significantly lower campylobacter

abundance than PA2 or PA3.

Because PA2 was associated with high Campylobacter

abundance and PA1 was associated with low Campylobacter

abundance, it may be possible to identify the environmental

factors and farming practices that contribute to that enterotype.

Modifiable factors that influence enterotype identity could be used

to reduce farm-level abundance of zoonotic pathogens such as

Campylobacter, decreasing the risk of subsequent human

exposure and disease. The main factors that differed between

enterotype PA1 and PA2 were the number of people in contact,

the presence of dogs, whether visitors were allowed inside and

routine vaccination (Figure 6).
4.6 Future work

Finally, there were limitations in this study. First, although 60

farms and 600 chickens represent a decent sized dataset, we would

have benefited from a greater range of samples from more farms.

Additional limitations related to identifying enterotypes include the

taxonomic resolution of the study, the number of species

representatives in current databases, sequencing depth, and

filtering thresholds. ASVs were agglomerated at genus level, and

occasionally at even higher levels where sequences could only be

assigned to higher ranks such as family, and even order. The

number of genera of interest in this study that either have no

cultured relatives or could not be classified to genus level highlights

the vast gaps in knowledge about bacteria inhabiting the

chicken digestive tract. Some Lachnospirae, Ruminococcaceae,

Oscillospiraceae and Gastranaerophilaceae could only be

identified at family level, and Christensenellales at order level.

This undoubtably affected detection of significant functional

differences between genera from these groups in the different

enterotypes. The rate at which this limitation is being addressed

is heartening, with three excellent metagenomics studies of the

chicken caecum recently adding thousands of novel genomes to the

GTDB database (Glendinning et al., 2020; Gilroy et al., 2021;

Segura-Wang et al., 2021). However, none of these recent

metagenomic surveys included chickens from India, or these

specific breeds/lines. While bacteria in these chickens are likely to

be similar, there may be differences linked to factors such as the

genetics of the indigenous Kadaknath chickens as well as local

farming practices including the use, dosages and classes of

antibiotics administered. A truly representative dataset of chicken

microbial genomes for taxonomic classification should include

sequences of caecal samples from multiple genetic background

derived from global locations, raised under a variety of conditions

(Glendinning et al., 2020).
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Campylobacteriosis is a serious cause of human gastrointestinal

disease, and poultry is a major source. Campylobacter is highly

prevalent in most chickens, but its abundance is affected by farming

practices, biosecurity measures and microbiome composition. We

found that the caecal microbiome of chickens can be split into three

enterotypes that occur on a gradient and differ in their proportion

of Firmicutes and Bacteroides. PA1 appears to represent a resilient

phenotype, with high F:B ratio, a low abundance of Campylobacter

and a high abundance of Faecalibacterium. Enterotype PA2 had the

lowest F:B ratio, lower alpha diversity, and the highest abundance of

Campylobacter. We speculate that PA2 represents a version of PA1

that is tending towards dysbiosis. PA3 was significantly different

from the other two enterotypes and had both high alpha diversity,

high Campylobacter load and several genera that were absent in the

other enterotypes. Random Forest Models were able to predict the

enterotype of individual birds based on farming characteristics and

alpha diversity. Together, this suggests that we may be able to

identify farming practices that affect enterotype and the microbial

community interactions within enterotypes that explain the

differences in Campylobacter abundance and mechanisms behind

resilient and susceptible enterotypes.
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Clavijo, V., and Flórez, M. J. V. (2018). The gastrointestinal microbiome and its
association with the control of pathogens in broiler chicken production: A review.
Poultry Sci. 97 (3), 1006–1215. doi: 10.3382/ps/pex359

Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J.S., Filho, JoãoA.B., and Oba, A.
(2017). Different antibiotic growth promoters induce specific changes in the cecal
microbiota membership of broiler chicken. PloS One 12 (2), e01716425. doi: 10.1371/
journal.pone.0171642

Costea, P. I., Hildebrand, F., Arumugam, M., Bäckhed, F., Blaser, M. J., Bushman, F.
D., et al. (2018). Enterotypes in the landscape of gut microbial community composition.
Nat. Microbiol. 3 (1), 8–16. doi: 10.1038/s41564-017-0072-8

Dhingra, M. S., Artois, J., Dellicour, S., Lemey, P., Dauphin, G., Von Dobschuetz, S.,
et al. (2018). Geographical and historical patterns in the emergences of novel highly
pathogenic avian influenza (HPAI) H5 and H7 viruses in poultry. Front. Veterinary Sci.
5. doi: 10.3389/fvets.2018.00084

Dicksved, J., Ellström, P., Engstrand, L., and Rautelin, H. (2014). Susceptibility to
campylobacter infection is associated with the species composition of the human fecal
microbiota. mBio 5 (5), e01212–012145. doi: 10.1128/mBio.01212-14

Di Marcantonio, L., Marotta, F., Vulpiani, M. P., Sonntag, Q., Iannetti, L., Janowicz,
A., et al. (2022). Investigating the cecal microbiota in broiler poultry farms and its
potential relationships with animal welfare. Res. Veterinary Sci. 144 (May), 115–125.
doi: 10.1016/j.rvsc.2022.01.020

Dittoe, D. K., Olson, E. G., and Ricke, S. C. (2022). Impact of the gastrointestinal
microbiome and fermentation metabolites on broiler performance. Poultry Sci. 101 (5),
1017865. doi: 10.1016/j.psj.2022.101786

Ducatelle, R., Goossens, E., De Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck,
F., et al. (2018). Biomarkers for monitoring intestinal health in poultry: present status
and future perspectives. Veterinary Res. 49 (1), 435. doi: 10.1186/s13567-018-0538-6

Du Toit, A. (2019). Risk and protection in the gut. Nat. Rev. Microbiol. 17 (7), 397–
397. doi: 10.1038/s41579-019-0208-3

Dyck, J. H., Landes, M., and Persaud, S. C. (2004). India’s poultry sector development
and prospects (Darby, Pennsylvania, USA: DIANE Publishing).

EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, K., Allende, A.,
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