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A standard approach to quantifying
resources is to determine which operations
on the resources are freely available, and to
deduce the partial order over resources that
is induced by the relation of convertibility
under the free operations. If the resource
of interest is the nonclassicality of the
correlations embodied in a quantum state,
i.e., entanglement, then the common
assumption is that the appropriate choice
of free operations is Local Operations and
Classical Communication (LOCC). We
here advocate for the study of a different
choice of free operations, namely, Local
Operations and Shared Randomness (LOSR),
and demonstrate its utility in understanding
the interplay between the entanglement of
states and the nonlocality of the correlations
in Bell experiments. Specifically, we show
that the LOSR paradigm (i) provides a
resolution of the anomalies of nonlocality,
wherein partially entangled states exhibit
more nonlocality than maximally entangled
states, (ii) entails new notions of genuine
multipartite entanglement and nonlocality
that are free of the pathological features of the
conventional notions, and (iii) makes possible
a resource-theoretic account of the self-testing
of entangled states which generalizes and
simplifies prior results. Along the way, we
derive some fundamental results concerning
the necessary and sufficient conditions for
convertibility between pure entangled states
under LOSR and highlight some of their

consequences, such as the impossibility of
catalysis for bipartite pure states. The
resource-theoretic perspective also clarifies
why it is neither surprising nor problematic
that there are mixed entangled states which
do not violate any Bell inequality. Our results
motivate the study of LOSR-entanglement as
a new branch of entanglement theory.
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1 Introduction
The term “entangled” was first used only for pure
states of a composite system, and meant simply
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that the state was not a tensor product of states
of the components [1]. Thus, for pure states,
entanglement is synonymous with correlation.
When the quantum information community turned
its attention to mixed states, the term “entangled”
obtained a broader meaning, aimed at capturing
the nonclassicality of correlations. Specifically, a
quantum state was taken to exhibit nonclassical
correlations if it could not be expressed as a
mixture of product states [2], in which case
it was called nonseparable. Shortly thereafter, it
was realized that entangled states (both pure
and mixed) could be used to implement useful
information-processing tasks, and they began to
be studied as a resource. Because the tasks being
considered at the time mainly concerned the
resourcefulness of entangled states in circumstances
wherein the separated parties had access to
classical communication channels (for instance,
their use in simulating quantum channels via
the teleportation protocol [3], and in enhancing
communication via the dense coding protocol [4]), it
was natural to define the interconvertibility preorder
of entangled states relative to Local Operations
and Classical Communication (LOCC) [5]. This
choice was consistent with the previous definition of
the boundary between entangled and unentangled
states, since the states one can prepare freely by
LOCC are precisely the separable states.

However, LOCC is not the only choice of free
operations that could have been used to formalize
the notion of entanglement as a resource. Consider
the set of Local Operations and Shared Randomness
(LOSR), wherein the parties have access to a
common source of classical randomness, but no
classical channels among them. If one chooses LOSR
as the set of free operations, one also reproduces
the standard definition of entangled states as
nonseparable states, since the free states relative
to LOSR are also the separable ones. The ordering
induced over entangled states by LOSR, however, is
different from the one induced by LOCC, even in the
case of pure states, as we will show. Consequently,
quantification of entanglement relative to LOSR
leads to quite different results than one obtains by
quantifying it relative to LOCC.

To distinguish these two notions of entanglement,
we will henceforth use the terms LOCC-
entanglement and LOSR-entanglement.

In this article, we advocate for the development

of the theory of LOSR-entanglement. We motivate
its study by demonstrating how much light it sheds
on the interplay of entanglement and nonlocality.
Specifically, we argue that for one of the most
natural ways of conceptualizing a Bell scenario, it
is LOSR-entanglement that is the relevant resource
of entanglement, rather than LOCC-entanglement.
We describe many ways in which conceptual
puzzles regarding the interplay of entanglement and
nonlocality are resolved in this approach. The notion
of LOSR-entanglement was originally proposed by
Buscemi [6], also in the context of Bell scenarios,
but no further work has been done to date on
characterizing it. We hope that the arguments
provided herein for its importance will motivate
researchers to turn their attention to it.

The term ‘box’ will here be used as jargon for
a multipartite process with only classical inputs
and classical outputs which can be realized by
a common source (either classical or quantum)
which is shared among the parties and subjected
to local measurements. In other words, a box has
the structure of a Bell experiment.1 Formally, a
box is represented by the conditional probability
distribution over its classical outputs given its
classical inputs. Boxes can be divided into those
whose correlational properties are classical and
those for which they exhibit nonclassicality, where
the division is based on whether the corresponding
conditional probability distribution satisfies all the
Bell inequalities or not. These two classes are
conventionally termed “local” and “nonlocal”. 2

1Such processes are termed ‘common-cause boxes’ in
Ref. [7]. Note that we are here only interested in boxes that
are quantumly realizable, rather than the strictly larger set
of boxes that are realizable in the framework of Generalized
Probabilistic Theories [8, 9]. Note also that the term ‘box’
is sometimes used in a manner that does not presume that
the internal causal structure is that of local measurements
on a common source. This is done, for instance, by authors
who would prefer to make no assumptions about a box’s inner
workings and to rely instead on assumptions about the spatio-
temporal relations among its inputs and outputs. We discuss
this alternative approach in Sec. 7.

2Although we are following a standard convention in
referring to such nonclassicality of boxes as “nonlocality”, we
note that this is merely for the sake of making our article easier
to read. The conventional terminology is actually a potential
source of confusion insofar as it suggests a commitment to
a view that many (including the present authors) do not
endorse, namely, that the correct explanation of Bell inequality
violations involves superluminal causes. See Sec. 2.3.1 of
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Many authors have argued that entanglement and
nonlocality are simply different kinds of resources.
Indeed, this is a standard response to some of the
puzzling features of their interplay. In this article,
however, we take a different point of view. We
argue that entanglement and nonlocality quantify
the same notion of resourcefulness for the processes
to which they apply, namely, the nonclassicality
of the correlational properties of those processes.
Entanglement refers to the nonclassicality of the
correlational properties of quantum states, while
nonlocality refers to the nonclassicality of the
correlational properties of boxes.

Furthermore, we argue that whether given
correlational properties (of a state or of a box) should
be deemed nonclassical depends on the network
connecting the parties.

Prior results that appeared puzzling are seen, in
retrospect, to be a result of mixing together notions
of nonclassicality related to different networks. We
demonstrate that the choice of network structure
that fits best with pre-existing ideas regarding the
interplay of the nonclassicality of correlations of
states (entanglement) and the nonclassicality of
correlations of boxes (nonlocality) is the network
where the parties merely share a common source. In
such a network, the relevant notion of entanglement
is LOSR-entanglement.

We now summarize the rest of the article.
In Section 2, we explain why a resource

theory that encompasses both entangled states
and nonlocal boxes—as different types of resources
of nonclassicality of correlations—must be based
on a type-independent constraint defining the
free operations, which is then particularized to
conversion relations among specific types, such as
conversions from states and boxes. (Note that one
has no choice but to work within such a mixed-type
resource theory, because conversions from entangled
states to nonlocal boxes are precisely the focus of
any study of the interplay of entanglement and

Ref. [7] for more discussion of this issue. Note, furthermore,
that the adjective ‘nonlocal’ has sometimes been used to
delineate those quantum states that can be used to violate a
Bell inequality in the Bell scenario. As we argue in Appendix 8,
however, being nonlocal in this sense should not be considered a
necessary condition for the correlation properties of a quantum
state to be judged nonclassical. In any case, in this article, we
will use the term “nonlocal” solely as a descriptor of boxes,
where we will take it to signify nonclassicality of the correlations
that the box describes.

nonlocality in Bell scenarios.) We explain why these
free operations must include all of LOSR if the
objective is to quantify the nonclassicality of the
correlations.

The three following sections of the article
explain how a reconsideration of Bell scenarios in
terms of LOSR-entanglement (rather than LOCC-
entanglement) resolves some problems and clarifies
many issues from the Bell literature.

In Section 3, we consider various conceptual
puzzles surrounding anomalies of nonlocality [10–
25], that is, situations wherein features of nonlocal
boxes are found to be realizable by a partially
entangled state but not by a maximally entangled
state. The lesson that has until now been drawn from
these anomalies is that, in spite of prior intuitions to
the contrary, there are measures of the nonlocal yield
of a state (i.e., the nonlocality of boxes that can be
obtained from the state) that are not monotonically
related to the state’s entanglement. We show,
however, that there is a more productive conclusion
to be drawn, namely, that the counterintuitive
features of the anomalies are best understood to
be a consequence of implicitly evaluating state to
box conversions relative to LOSR but state to
state conversions (and thus entanglement) relative
to LOCC. The interplay of entanglement and
nonlocality becomes intuitive if one instead takes the
appropriate notion of entanglement to be the one
based on LOSR. One’s prior intuitions are in fact
vindicated when one proceeds in this fashion. For
instance, we show that every measure of the nonlocal
yield of a given state is a valid measure of the state’s
LOSR-entanglement.

In Section 4, we show that by focussing on LOSR-
entanglement rather than LOCC-entanglement, one
can resolve an analogous (but not previously
articulated) anomaly concerning the interconversion
between genuine 3-way entangled states and genuine
3-way nonlocal boxes. The resolution highlights
the fact that the notion of genuine multipartite
entanglement changes when entanglement is judged
relative to LOSR rather than LOCC. Furthermore,
our notion of genuine multipartite entanglement
does not have a pathological property that the
traditional notion exhibits, namely, the failure of the
closure under tensor products of the states which are
not genuinely multipartite entangled [26–28].

In Section 5, we demonstrate that well-
known results concerning self-testing of entangled
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states [29–32] can be better understood in terms
of the interplay of the nonlocality of boxes and the
LOSR-entanglement of states. While our resource-
theoretic approach to self-testing coincides with
the usual approach for pure states and convexly
extremal boxes, we show that it provides a corrective
to the standard definition for the case of mixed
states and convexly nonextremal boxes. In doing
so, we show that both of these appear in nontrivial
instances of self-testing, despite previous claims to
the contrary. We also show that the clarity of our
principled approach to self-testing makes it easy to
resolve ambiguous cases (e.g., chiral states), and to
extend self-testing to novel scenarios and even novel
types of resources and novel resource theories.

In Section 6, we derive some general results about
the preorder of pure entangled states under LOSR.
These results will justify some of the critical steps in
our arguments, so we will be referencing forward to
them throughout the text.

Section 7 explains why the nonclassicality of
correlations, and thus entanglement, is only defined
relative to a network structure among the parties.
We also note that one can study the interplay of
entanglement and nonlocality in a network structure
incorporating classical communication between the
parties by restricting attention to boxes that have
space-like separated wings. We contrast the nature
of this interplay with the one observed for the
network with common sources, and we highlight
what needs to be done to properly formalize such an
approach.

In Section 8, we discuss the consequences of
our approach for what is often taken to be a
surprising aspect of the interplay of entanglement
and nonlocality, namely, the fact that there are
mixed entangled states that cannot violate any Bell
inequality.

Finally, in Section 9, we provide a discussion of
the results and future work.

2 Nonclassicality of correlations for states
and boxes

Understanding the interplay between the
entanglement of states and the nonlocality of boxes
means understanding whether particular types and
measures of entanglement of states are required to
realize particular types and measures of nonlocality

of boxes. In order to do so, one must articulate
precisely what operations are assumed to be freely
available in converting states to boxes. But in
addition to this, one must specify what operations
are freely available in achieving conversions among
boxes, because the convertibility relations among
boxes determine measures of nonlocality (via order-
preserving functions, i.e., monotones), and one
must also specify what operations can be used
to achieve conversions among states, because the
convertibility relations among states determine
measures of entanglement. Consequently, there are
three choices of free operations of interest—those
governing box-to-box conversions, those governing
state-to-box conversions, and those governing state-
to-state conversions.

The free operations governing each of these type-
specific varieties of conversion cannot be stipulated
arbitrarily. They must be understood as being
induced by some type-independent constraint that
is then particularized to these cases. It has been
argued elsewhere [33, 34] that a given choice of
the set of free operations in a resource theory
is physically interesting (as opposed to being of
mere mathematical interest) only if it is motivated
by some restriction on physical or experimental
capabilities.3 Insofar as a preparation of a resource
of a given type is also a kind of conversion relation,
namely, from the trivial type (no systems) to the
type of the resource, the boundary between free
and nonfree for every different type of resource
also cannot be stipulated arbitrarily but is induced
by the type-independent constraint that is then
particularized.

Historically, the question of whether a given
entangled state can generate a given nonlocal box
has been interpreted as the question of whether
there exists some set of quantum measurements
on each wing that can be implemented on the
entangled state to yield the conditional probability
distribution of outcomes given settings which is
associated to the nonlocal box. (For instance, this
is the case in discussions of self-testing of states by
boxes, aswenote in Sec. 5.) In otherwords,whether a
given state-to-box conversion relation holds or not is

3In the framework for resource theories set up in Ref. [33],
the nature of the physical restriction is presumed to have some
structural properties, such as the free operations being closed
under parallel and serial composition.
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traditionally evaluated relative to Local Operations
(LO). The reason, presumably, is that state-to-box
conversions have heretofore been conceptualized as
analogues of a Bell experiment, wherein the choice
of local measurement at one wing has traditionally
been presumed to be independent of the choice at
any other wing, even though this independence is
not needed to derive the Bell inequalities.4

When one conceptualizes state-to-box
conversions in a resource-theoretic way, however, it
becomes apparent that this LO-based approach is
untenable, as we now demonstrate.

First recall that, as we noted in the introduction,
the entanglement of states and the nonlocality
of boxes quantify the nonclassicality of the
correlational properties of states and boxes. For
both states and boxes, the distinction between free
and nonfree is the distinction between classical and
nonclassical correlations. In the case of quantum
states, this corresponds to the distinction between
separable and nonseparable, while in the case of
boxes, it corresponds to the distinction between
satisfying all Bell inequalities and violating some
Bell inequality. Next, note that the set of separable
states and the set of Bell-inequality-satisfying boxes
cannot be generated by local operations alone; they
require shared randomness.

Because a preparation of a box is a special
case of a state-to-box conversion where the
input type is trivial, if one were to assume LO
as the set of free operations for state-to-box
conversions, one would be stipulating that the
distinction between free and nonfree boxes is the
distinction between uncorrelated and correlated
(i.e., product and nonproduct forms), rather than
the distinction between Bell-inequality-satisfying
and Bell-inequality-violating. Consequently, an
LO-based approach cannot capture the classical-
nonclassical distinction.

Furthermore, if the free operations are to be
independent of type, then if one were to take LO
as the set of free operations governing state-to-box
conversions, one would also have to take LO to
also govern state-to-state conversions, so that the
distinction between free and nonfree states would
also correspond to the distinction between product

4The assumption that the setting variables are independent
of the hidden variables, on the other hand, is needed to derive
the Bell inequalities.

and nonproduct forms, rather than the distinction
between separable and nonseparable, and thus
would again not capture the classical-nonclassical
distinction. One must therefore reject the historical
LO-based approach to the study of state-to-box
conversions.

We now articulate our preferred approach to
a resource-theoretic study of the interplay of
entanglement and nonlocality. We assume that the
parties are connected by a network wherein they
all have access to a common source, but where
there are no channels between them, so that the
distinction between free and nonfree operations is
the distinction between what can be achieved by a
common classical source (shared randomness) and
what can be achieved by a common quantum source
(nonseparable states). This is a type-independent
restriction. It follows that the set of free operations
governing all varieties of conversion relations,
including state-to-state, state-to-box, and box-to-
box, is LOSR. Further discussion of this proposal is
provided in Sec. 7.

An alternative approach is one wherein the
network includes channels among the parties,
implying that LOCC is the set of free operations
for all varieties of resource conversion. At first
glance, it might seem that the latter approach
cannot possibly capture the nonlocality of boxes,
as classical communication can be used to simulate
any Bell inequality violation without requiring
nonclassicality. As we note in Sec. 7, however, such
a conceptualization can be made consistent by
restricting attention to a subclass of boxes, and it
may be the pertinent one for certain applications.
Nonetheless, we shall show in Sec. 7 that it is rather
more difficult to formalize than the one we pursue
here and that the interplay of entanglement and
nonlocality that it implies involves a more significant
departure from standard intuitions than the one
based on LOSR. This also motivates our focus on
LOSR in this article.

As we argued above, one cannot leave out shared
randomness when assessing resource conversions if
the resource of interest is the nonclassicality of
states and boxes. In spite of this, there are special
cases of state-to-box conversions wherein the shared
randomness does not offer any additional power over
LO. This occurs if the box is convexly extremal in

Accepted in Quantum 2023-11-27, click title to verify. Published under CC-BY 4.0. 5



the set of quantumly realizable boxes.5 Similarly,
for box-to-box conversions where the output box is
convexly extremal, LO and LOSR also deliver the
same verdicts about convertibility relations. In fact,
there is a slightly larger set of output boxes for which
LO and LOSR deliver the same verdicts for state-to-
box and box-to-box conversions, namely, those that
are LO-equivalent to a convexly extremal box. The
result can be summarized as follows:

Lemma 1. Consider the following statements about
interconversion between an n-partite state ρ and an
n-partite box B

(i) ρ 7→B by LOSR,
(ii) ρ 7→B by LO,

and between a pair of n-partite boxes, B0 and B,
(i)′ B0 7→B by LOSR,

(ii)′ B0 7→B by LO.
The following implications hold among these
conditions:

(a) If B is a convexly extremal box or a convexly
nonextremal box that is LO-equivalent to a
convexly extremal box, then (i) and (ii) are
equivalent and (i)′ and (ii)′ are equivalent.

(b) If B is an arbitrary convexly nonextremal box
then although it is still the case that (ii) =⇒ (i)
and (ii)′ =⇒ (i)′, it can happen that (i) ≠⇒
(ii) and it can happen that (i)′ ≠⇒ (ii)′.

Here, convex extremality is judged relative to the set
of quantumly realizable boxes

Proof. For all boxes B, (ii) =⇒ (i) and (ii)′ =⇒ (i)′

because LO is a strict subset of LOSR. It therefore
suffices to consider only the reverse implications.
Claim (a). That (i) =⇒ (ii) (respectively, (i)′

=⇒ (ii)′) for a convexly extremal B is seen as
follows: if a mixture of different LO operations
takes ρ (respectively B0) to B, then by the convex-
extremality of B, every LO operation in the mixture
must take ρ (respectively B0) to B. Now consider
the case where B is convexly nonextremal but LO-
equivalent to a convexly extremal box, which we

5Here, a box is said to be quantumly realizable if it can be
obtained from some quantum state by some LOSR operation.
Note, however, that one could equally well define a box to be
quantum realizable if it can be obtained from a quantum state
by an LO operation, since the shared randomness can always
be provided by the quantum state.

denote by Bext. Note that Bext is also LOSR-
equivalent to B, since LOSR subsumes LO. By
assumption, ρ 7→B by LOSR (respectivelyB0 7→B by
LOSR). It then follows from the LOSR-equivalence
of B and Bext that ρ 7→Bext by LOSR (respectively
B0 7→ Bext by LOSR). Next, from the fact that
(i) =⇒ (ii) for convexly extremal boxes, it follows
that ρ 7→ Bext by LO (respectively B0 7→ Bext by
LO). Finally, given the LO-equivalence of B and
Bext, we obtain ρ 7→B by LO (respectively B0 7→B
by LO). Claim (b). To see that there are convexly
nonextremal boxes B for which (i)′ ≠⇒ (ii)′, it
suffices to consider the case where B0 is a product
box while B=B0⊗Bextra where Bextra is any local
box that is not a product box, so that it can be
prepared for free using LOSR operations, but not
using LO operations. (Here ‘⊗’ denotes parallel
composition of resources [33].) To see that there are
convexly nonextremal boxes B for which (i) ≠⇒ (ii),
we can take B=B′⊗Bextra where B′ is any convexly
extremal box that self-tests ρ.

Because of this lemma, some pre-existing results
concerning state-to-box conversions under LO
coincide with results about state-to-box conversions
under LOSR. In such cases, the LO-based
assessments of which state-to-box conversions are
possible coincide with the LOSR-based assessments
and one can simply incorporate all previous results
based on LO into a resource theory based on
LOSR. We will see that considerations of state-to-
box conversions in discussions of the anomaly of
nonlocality, studied in Sec. 3, are of this sort. Other
pre-existing results, however, doneed to be corrected
if one is to understand them as results in a resource
theory based on LOSR. The precise conditions for
the self-testing of states by boxes, considered in
Sec. 5, are of this sort.

3 Resolving the anomaly of nonlocality
As summarized in the introduction and in Ref. [10],
the anomaly of nonlocality refers to the fact that
there are situations wherein features of nonlocal
boxes are found to be realizable by a partially
entangled state but not by a maximally entangled
state. The recognition of these anomalies [10–25]
was important insofar as it made clear that it is
not straightforward to understand the nonlocality
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of boxes and the entanglement of states as two
manifestations of a single type of resource. The
aim of our article is to show that one can
nonetheless do so by recasting the central questions
into a formal resource-theoretic framework. In
particular, we show that if one quantifies the
entanglement properties of quantum states via
LOSR operations, rather than LOCC operations,
then the entanglement of states and the nonlocality
of boxes are indeed seen to be two manifestations of
a single type of resource, namely, nonclassicality of
correlational properties.

We begin by reframing the anomaly of nonlocality
within a rigorous resource-theoretic framework. We
use the framework developed in Ref. [33].6 By
viewing entanglement through this lens, we show
that each instance of the anomaly of nonlocality
can be recast as a set of claims that are not
merely counterintuitive but contradictory, thereby
signaling a flaw in the conceptual scheme of
unformalized resource-theoretic assumptions within
which they arose.7

To begin, we note that it is possible to find a
nonlocal box B which can be realized from some
partially entangled pure state of a given Schmidt
rank,

|ψpartial⟩ 7→B, (1)

but which cannot be realized from any maximally
entangled pure state of the same Schmidt rank,8

|ψmax⟩ ̸7→B. (2)

6Recall that a set of free operations defines an ordering
relation (formally, a preorder) on resources, where one resource
is at least as resourceful as a second if it can be freely converted
to the second. Two resources are equivalently resourceful (or
in the same equivalence class) if each can be freely converted
into the other, and two resources are incomparable if neither
is freely convertible to the other.

7Note that earlier work on the anomaly of nonlocality
did not conceive of it as a paradox that was in need of
resolution. The fact that the anomaly becomes a paradox when
recast in a resource-theoretic framework helps us to identify
how to achieve a unified treatment of nonlocality of boxes
and entanglement of states as resources of nonclassicality of
correlational properties.

8Formally, |ψmax⟩ is any state for which the squared
Schmidt coefficients describe a uniform distribution for the
given Schmidt rank, while |ψpartial⟩ is any state for which they
describe a nonuniform distribution.

The following list provides a number of concrete
examples of this phenomenon. For each example, we
specify the box B appearing therein by reference to
a convex function that witnesses its nonlocality. For
each of the following boxes, one can find a |ψmax⟩
and a |ψpartial⟩ of the same Schmidt rank such that
Eqs. (1) and (2) hold:

• a box that achieves the maximum probability of
running Hardy’s version of Bell’s theorem [35].

• a box that maximally violates a tilted Bell
inequality [13, 36, 37], thereby offering more
noise resistance for that inequality [36].

• a box that has extractable secret key rate higher
than ≈0.144 [38, 39].

• a box that has Kullback-Leibler divergence (i.e.,
relative entropy distance) from the set of local
boxes larger than ≈0.058 [40].

Meanwhile, standard entanglement theory tells
us that any partially entangled pure state can be
realized starting from a maximally entangled state
of the same Schmidt rank [41]:

|ψmax⟩ 7→|ψpartial⟩. (3)

It is now evident what is puzzling about these
three claims (Eqs. (1), (2) and (3)): if the conversion
relations in Eqs. (3) and (1) hold in a resource theory,
then given that resource conversion relations are
necessarily transitive in any such theory9—i.e., if
R1 7→ R2 and R2 7→ R3 then R1 7→ R3—it follows
that we should have |ψmax⟩ 7→B, which contradicts
Eq. (2).

We now identify the flaw in the unformalized
resource-theoretic assumptions that led to this
contradiction. It is the implicit idea that the three
conversion relations all hold relative to a single
notion of resourcefulness, that is, that they all hold
relative to the same set of free operations and thus
can be considered as relations holding in one and
the same resource theory. In the description of the
anomaly, the claim about state-to-state conversion,
Eq. (3), is implicitly evaluated relative to LOCC,
while the claims about state-to-box conversions,

9Transitivity of resource conversions is necessary in the
framework of Ref. [33] because the free operations are required
to be closed under sequential composition.
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Eqs. (1) and (2), are implicitly evaluated relative to
LO.

In Section 2, we argued that the most
straightforward way of understanding the
interplay of entanglement and nonlocality resource-
theoretically is to imagine a network with a common
source among the parties but no channels, in
which case both state-to-state and state-to-box
conversions should be evaluated relative to LOSR
rather than LO or LOCC. As we now show, this
resolves the contradiction. The standard claims
about the state-to-box conversions are not modified
when one replaces LO by LOSR. Eq. (1) holds
with respect to LOSR because LO ⊂ LOSR, and
Eq. (2) holds with respect to LOSR by Lemma 1
and the fact that, for each of the examples given, the
box in question is convexly-extremal in the set of
quantumly realizable boxes. (This follows from the
fact that the functions which the boxes maximize
in each example are convex-linear.) On the other
hand, the standard claim about the state-to-state
conversion is modified when one replaces LOCC by
LOSR. If one judges conversion between entangled
states relative to LOSR, rather than LOCC, then it
is the negation of Eq. (3) that holds, namely,

|ψmax⟩ ̸7→|ψpartial⟩. (4)

This is because |ψmax⟩ and |ψpartial⟩ are
incomparable in the resource theory of LOSR-
entanglement—neither can be converted into the
other under LOSR, as shown below (see Corollary 9).
But Eq. (4), unlike Eq. (3), is consistent with Eqs. (2)
and (1), and therefore there is no contradiction (and
hence no anomaly).

The terms “partially entangled” and “maximally
entangled” are apt descriptions of |ψpartial⟩ and
|ψmax⟩ when one is considering their LOCC-
entanglement properties. This is because |ψpartial⟩
is strictly below |ψmax⟩ in the LOCC order (since,
in addition to Eq. (3), we have |ψpartial⟩ ̸7→
|ψmax⟩) and consequently there exists some
LOCC-entanglement monotone, MLOCC, for which
MLOCC(ψpartial) < MLOCC(ψmax) and no LOCC-
entanglement monotones relative to which this
strict inequality is reversed. When considering
their LOSR-entanglement properties, however, the
terminology is no longer appropriate. In accordance
with Eq. (4), there necessarily exists an LOSR-
entanglement monotone, MLOSR, relative to which
MLOSR(ψpartial) > MLOSR(ψmax). From this

perspective, it is natural, rather than anomalous,
that there exist tasks—such as realizing the sorts
of nonlocal boxes that appear in the list presented
earlier—for which the type of LOSR-entanglement
required to realize the task is present in |ψpartial⟩ but
not in |ψmax⟩. Indeed, one can define a nontrivial
LOSR-entanglement monotone (i.e., one that is
not also an LOCC-entanglement monotone) from
each example of an anomaly of nonlocality. Given
a function over boxes that witnesses the type of
nonlocality described in the example, the LOSR
monotone over states is simply the maximum value
of that function among boxes that are LOSR-
realizable starting from the given state. We provide
the details in Appendix A.

The best known of the anomalies of nonlocality
is the one concerning Hardy’s version of Bell’s
theorem, so it is useful to reiterate our conclusion
for it specifically. The fact that the Hardy-type
correlations cannot be achieved by a maximally
entangled state but can be achieved by a
partially entangled state surprises almost everyone
who encounters the topic. Presumably this is
because—based on their familiarity with LOCC-
entanglement—they expect that whatever resource
of nonclassicality is present in a partially entangled
state, it ought to be less than the resource of
nonclassicality that is present in a maximally
entangled state. The resolution of the puzzle is that
the notion of nonclassicality that is relevant for
Bell scenarios is LOSR-entanglement, not LOCC-
entanglement, and that there are measures of LOSR-
entanglement relative to which what we call a
partially entangled state is more nonclassical than
what we call a maximally entangled state.

The LOSR-incomparability of |ψmax⟩ and
|ψpartial⟩ also harmonizes with the recently
demonstrated [7] LOSR-incomparability of a
Tsirelson box (which provides the maximal possible
quantum violation of the Clauser-Horne-Shimony-
Holt inequality [42]), denoted by BTsir, and a Hardy
box (which achieves the maximum probability of
running Hardy’s version of Bell’s theorem), denoted
byBHardy. Indeed, both instances of incomparability
can be inferred directly from: (i) the transitivity
of resource conversions within an LOSR resource
theory incorporating both states and boxes, and
(ii) known facts about the possible and impossible
state-to-box conversions under LOSR, namely, that
|ψmax⟩ 7→ BTsir while |ψmax⟩ ̸7→ BHardy, and that
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|ψpartial⟩ 7→ BHardy while |ψpartial⟩ ̸7→ BTsir.10 For
instance, to see that these state-to-box conversion
relations imply that |ψmax⟩ ̸7→|ψpartial⟩, it suffices to
note that if it were the case that |ψmax⟩ 7→ |ψpartial⟩,
then we could follow this conversion with |ψpartial⟩ 7→
BHardy in order to have a means of converting
|ψmax⟩ to BHardy, thereby yielding a contradiction.
Similarly, to see that these relations imply that
BTsir ̸7→BHardy, one merely notes that if it were the
case that BTsir 7→ BHardy, then by implementing
|ψmax⟩ 7→ BTsir followed by BTsir 7→ BHardy, one
would have a means of converting |ψmax⟩ to BHardy,
thereby yielding a contradiction. Similar arguments
can be given to establish that |ψpartial⟩ ̸7→|ψmax⟩ and
BHardy ̸7→BTsir.11

4 Genuine multipartite entanglement
There is also some tension between results
concerning genuine multipartite entanglement and
those concerning genuine multipartite nonlocality
when the definitions of these concepts are motivated
by the LOCC paradigm for entanglement. We
again begin by reframing this tension as an
outright inconsistency by formulating a genuinely
multipartite anomaly of nonlocality. We consider the
case of three parties for concreteness, although our
analysis can be easily generalized to cases with more
parties.

Denote the entangled state 1√
2(|00⟩+|11⟩) by

|ϕ+⟩. In the preorder of tripartite entangled
states relative to LOCC-convertibility, the state
|ψ2Bell⟩≡|ϕ+⟩A1B⊗|ϕ+⟩A2C is above the state
|ψGHZ⟩≡ 1√

2(|000⟩ABC+|111⟩ABC) because the
former can be deterministically converted to the
latter by LOCC,

|ψ2Bell⟩ 7→|ψGHZ⟩. (5)

(It suffices for one party to prepare three systems in
their lab in the state |ψGHZ⟩, and then to use |ψ2Bell⟩
to teleport one part to each of the other two parties,
which requires classical communication.) And yet,

10These facts about state-to-box conversions are well-known
when the operations are LO, and can be inferred to hold also
for LOSR by appealing to Lemma 1 and the convex extremality
of BTsir and BHardy.

11As an aside, this argument provides an alternative proof
of the LOSR-incomparability of BTsir and BHardy to the one
presented in Ref. [7].

there are tripartite boxes, such as the Mermin
box [43, 44], that can be realized from |ψGHZ⟩ by
local measurements,

|ψGHZ⟩ 7→BMermin, (6)

but that cannot be so realized from |ψ2Bell⟩,

|ψ2Bell⟩ ̸7→BMermin, (7)

as follows from a result in Ref. [45].12 As
before, Eqs. (5), (6), and (7) seem to imply
a contradiction given the transitivity of resource
conversion relations.

The resolution of the puzzle proceeds as in the
case of the bipartite anomalies. The reason for
the seeming contradiction is that the conversion
relations of Eqs. (6) and (7) are implicitly evaluated
relative to LO, while that of Eq. (5) is evaluated
relative to LOCC. If, however, one evaluates all
conversion relations relative toLOSR, then although
Eqs. (6) and (7) do not change, by virtue of
Lemma 1 and the fact that the Mermin box is
convexly extremal, Eq. (5) does. Specifically, relative
to LOSR, |ψ2Bell⟩ and |ψGHZ⟩ are found to be
incomparable, so that the negation of Eq. (5) holds,
that is,

|ψ2Bell⟩ ̸7→|ψGHZ⟩, (8)

and the contradiction is blocked. The proof of
incomparability follows from a condition for LOSR-
convertibility we derive further on (see Corollary 8),
as is made explicit in Appendix B.

This anomaly and its resolution shed light on how
one ought to define notions of genuine multipartite
entanglement and nonlocality, and specifically what
it means for these to be genuine 3-way.

We begin by presenting a slightly different
perspective on the anomaly. Consider the
conventional definition of genuine 3-way
entanglement [46, 47]. Recalling that a tripartite
state is termed biseparable if there is a partitioning
of the parties into two groups such that the state is
separable relative to this bipartition, the standard
definition can be simply stated as follows:

12The relevant result from Ref. [45] is that the Mermin
box cannot be achieved by LOSR processing from any
state, ρtriangle, that is a tensor product of states having
entanglement between pairs of parties only (i.e., generated
from entangled sources consistent with the so-called “triangle
scenario” network), ρtriangle ̸7→ BMermin. Eq. (7) follows
because |ψ2Bell⟩ is an instance of such a state.
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Definition 1 (standard). A tripartite state is
genuine 3-way entangled if and only if it is not a
mixture of biseparable states.

Now note that |ψ2Bell⟩ counts as genuine 3-way
entangled by this definition. This is somewhat
counterintuitive a priori, given that |ψ2Bell⟩ is
composed of states that contain only bipartite
entanglement. One can glean some insight into what
led to the adoption of the conventional definition, in
spite of its counterintutive features, from the fact
that |ψ2Bell⟩ is above |ψGHZ⟩ in the LOCC order
(Eq. (5)). Because it is generally agreed that any
reasonable definition of genuine 3-way entanglement
should be such that |ψGHZ⟩ counts as genuine 3-way
entangled, it follows that because |ψ2Bell⟩ is above
|ψGHZ⟩ in the order, it too must qualify as having
such entanglement.

With the conventional notion of genuine 3-way
entanglement in mind, we are now in a position to
present the alternative perspective on the genuinely
tripartite anomaly of nonlocality. First, note that it
is generally agreed that any definition of genuine 3-
way nonlocality should be such that BMermin counts
as genuine 3-way nonlocal. But because |ψ2Bell⟩
is above |ψGHZ⟩ in the LOCC order, one would
expect that whatever resource of genuine 3-way
entanglement is required to generate the genuine 3-
way nonlocality inherent in BMermin, |ψ2Bell⟩ would
have it if |ψGHZ⟩ does. And yet this intuitive
conclusion is in conflict with Eq. (7).

The problem is that the conventional notion of
genuine 3-way entanglement is motivated by LOCC.
We therefore propose an alternative definition of
genuine 3-way entanglement, motivated by LOSR.
We also show that there is a corresponding
alternative definition for genuine 3-way nonlocality
which mirrors our alternative definition of genuine 3-
way entanglement.The genuinely tripartite anomaly
is shown to admit of a natural resolution relative
to these two notions (genuine 3-way entanglement
and genuine 3-way nonlocality), demonstrating that
these have a more natural interplay than exists
between the conventional pair of notions.

In the LOSR paradigm, the distinction between
a classical and a quantum resource shared among
some parties is the distinction between sharing
classical randomness and sharing entanglement.
Consequently, the natural manner of defining a
resource of 3-way nonclassicality is to consider

resourcefulness relative to a set of operations
wherein all 2-way nonclassicality is considered
free—that is, where 2-way common sources are
allowed to be quantum—while the 3-way common
source is required to be classical. Thus, we define
genuine 3-way nonclassicality for quantum states
and for nonlocal boxes (as well as for other
types of multipartite processes, such as quantum
measurements, quantum channels, and multi-time
processes) as those that are nonfree relative to
LOSR supplemented by 2-way shared entanglement
(LOSR2WSE).13

Definition 2 (resource-theoretic). A nonlocal box
is genuine 3-way nonlocal and an entangled state is
genuine 3-way entangled if and only if they cannot be
obtained by LOSR2WSE, that is, local operations
together with a source of correlations consisting of
shared entanglement between each pair of parties
and shared randomness among all three.

These notions are illustrated in Figs. 1 and 2.
Ref. [45] discusses boxes that are genuine 3-way
nonlocal in this sense, and Ref. [26] discusses states
that are genuine 3-way entangled in this sense. The
causal structure of the free resources associated to
LOSR2WSE has been termed the “quantum triangle
scenario with shared randomness” [45, 48].

=

Figure 1: A tripartite entangled state is genuine 3-way
entangled if it cannot be decomposed as shown; that is, if
it cannot be realized using LOSR supplemented by 2-way
shared entanglement (LOSR2WSE). Throughout, double
wires represent quantum systems and single wires represent
classical systems.

It is clear that |ψ2Bell⟩ can be realized via
LOSR2WSE, while it can be shown that |ψGHZ⟩
cannot (see Ref. [26]), and so of the two, only |ψGHZ⟩
is genuine 3-way entangled according to Definition 2.
In this approach, therefore, the intuitions we noted

13One can define genuinely k-way nonclassicality among
n parties (where k≤n) in an analogous manner: via LOSR
supplemented by (k−1)-way shared entanglement [26].
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Figure 2: A tripartite box is genuine 3-way nonlocal if
it cannot be decomposed as shown; that is, if it cannot
be realized using LOSR supplemented by 2-way shared
entanglement (LOSR2WSE).

earlier regarding genuine 3-way entanglement are
vindicated: if a state can be obtained from one where
all of the entanglement is of the bipartite variety,
then it is not genuine 3-way entangled.

It is also the case that BMermin cannot be realized
by LOSR2WSE, as follows from results in Ref. [45],
so thatBMermin is genuine 3-way nonlocal according
to Definition 2 (just as it was relative to the old
definition).

In the description of the tripartite anomaly, the
fact that |ψGHZ⟩ can be converted into BMermin
(Eq. (6)) while |ψ2Bell⟩ cannot (Eq. (7)) was
only surprising relative to the belief that |ψ2Bell⟩
must have more genuine 3-way nonclassicality than
|ψGHZ⟩ does, on the grounds that it is above |ψGHZ⟩
in the LOCC order.14 But this is overturned in the
approach just described, since |ψ2Bell⟩ explicitly has
less genuine 3-way nonclassicality than |ψGHZ⟩ does,
since |ψ2Bell⟩ has none while |ψGHZ⟩ has some. Given
that BMermin has genuine 3-way nonclassicality
according to our definition, it becomes intuitively
clear why |ψGHZ⟩ and not |ψ2Bell⟩ can be converted
into BMermin.

Furthermore, we note that whereas our definition
of genuine 3-way nonclassicality fits within the
mathematical framework for resource theories [33]—
as the property of being nonfree relative to
LOSR2WSE—the conventional definition does not.
The latter fact is most easily seen by recalling
an awkward feature of the conventional definition,
namely, that the set of states that are not genuinely

14This is in precise analogy to how the fact that |ψpartial⟩
can be converted to a box manifesting Hardy-type correlations
(Eq. (1)) while |ψmax⟩ cannot (Eq. (2)) is only surprising
relative to the belief that |ψmax⟩ has more nonclassicality than
|ψpartial⟩ does.

multipartite entangled is not closed under tensor
products. For example, consider the tripartite
states |ϕ+⟩A1B ⊗ |0⟩C and |ϕ+⟩A2C ⊗ |0⟩B. Both
are biseparable (relative to different partitions
of the tripartite system). Jointly having these
states, however, is equivalent to having |ψ2Bell⟩ =
|ϕ+⟩A1B ⊗ |ϕ+⟩A2C , which, as noted previously,
is not biseparable and therefore is genuine 3-way
entangled according to the conventional definition.

Although this feature of the conventional
definition has been acknowledged by some as
counterintuitive and somewhat perverse [26–28],
we wish to draw attention here to the fact that
it is inconsistent with the framework of resource
theories15, because the latter stipulates that the
set of free resources must be closed under parallel
composition (see Definition 2.1 of Ref. [33]). From
the resource-theoretic perspective, therefore, the
fact that the property of biseparability is not
preserved under parallel composition implies that
biseparability is simply not a viable candidate for
the property that defines the set of free resources in
a resource theory. Hence, nonbiseparability is not a
viable candidate for the property that defines the
resource of genuinely multipartite nonclassicality.

Although we have here been primarily concerned
with making the case that it is the notion of genuine
3-way entanglement based on LOSR2WSE, rather
than the one based on LOCC, that does best justice
to our intuitions about multipartite Bell scenarios,
we have also seen that the conventional notion fails
to satisfy certain desiderata that one would want
any resource to satisfy. This raises the question
of whether it even makes sense, within the LOCC
paradigm, to speak of a resource of entanglement
that is genuine 3-way. The following considerations
suggest that it does not.

We begin by highlighting why such a notion
does make sense within the LOSR paradigm of
entanglement. There, the resource of entanglement
constitutes quantumness of common sources.
Consequently, the fact that there is a distinction
between quantum common sources between each
pair of parties and a quantum common source
between all three parties implies that there is a
distinction between 2-way and 3-way notions of

15Just as the conversion relations in each of the anomalies
were inconsistent with the transitivity of resource conversion
relations.
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entanglement. In particular, if all 2-way quantum
common sources are taken to be freely available,
there is still something that the parties can lack,
namely, 3-way quantum common sources.

In the LOCC paradigm, by contrast, the resource
of entanglement is equivalent to a resource of
quantum communication and there is simply
nothing corresponding to the notion of quantum
communication between all the parties beyond the
notion of quantum communication between any pair
of parties. In other words, if all 2-way quantum
communication channels are taken to be freely
available, there is no communication resource that
the triple of parties lack. Such considerations suggest
that it may not be sensible to try and define a
notion of genuine 3-way entanglement in the LOCC
paradigm.

5 Self-testing of entangled states
In this section, we show that LOSR-entanglement is
the notion that best captures many existing ideas
regarding self-testing, i.e., the certification of the
presence of particular entangled states by observing
a nonlocal box [29–32]. 16 More precisely, we show
that many results on self-testing can be rederived
in a methodologically sound manner within the
resource theory based on LOSR, and that simple
generalizations of these results (including some
correctives) follow directly.

Colloquially, a state is said to be self-tested
by a box if this state is “the only one” from
which the box can be obtained by implementing
local measurements. However, there is never just
a single state that can yield a given box, and so
the standard definition allows for some freedom in
the specification of the state. The freedom that is
implied by the original definition [29, 30, 52, 55] is
this:

Definition 3 (standard). The pure state |ψ⟩ is self-
tested by a box B if B can be obtained from |ψ⟩ by

16Note that it is common to refer to a box as self-testing both
a state and measurements, rather than a state alone [31, 49, 50].
We will discuss this distinction further in Appendix C. Note
also that we are here considering only the notion of perfect
self-testing, rather than the notion of robust self-testing [31,
32, 51, 52], which we do not discuss in this article. Similarly,
we do not consider self-testing based on observing a maximal
violation of a Bell inequality, rather than based on observing
a particular box [50, 53, 54].

local measurements and if for any state σ from which
B can be obtained by local measurements, there is
a local isometry that takes σ to |ψ⟩⟨ψ|⊗ω for some
state ω. A state |ψ⟩ is said to be self-testable when
there exists a box B such that |ψ⟩ is self-tested by B.

In Appendix C, we discuss a subtlety regarding
the claim that this is the ‘standard’ definition
of self-testing of states. Specifically, we note that
various authors [31, 56] did not explicitly require the
condition that B can be obtained from |ψ⟩ by local
measurements, and we explain why we deem it likely
that these authors were assuming it implicitly.

As we did with the anomalies of nonlocality, we
will begin by taking a resource-theoretic perspective
on self-testing, where the resource theory is based on
LOSR. We take the natural definition of self-testing
to be this:

Definition 4 (resource-theoretic, LOSR-based).
Given a pair consisting of a density operator ρ and a
boxB, we say that ρ is self-tested byB if it holds that

ρ 7→B

and that for all density operators σ,
if σ 7→B then σ 7→ρ,

where all conversions are evaluated relative to LOSR.
A state ρ is said to be self-testable if there exists some
box B that self-tests ρ.

In Appendix D, we give an equivalent version
of this definition in terms of the notion of the
upward closure of a resource, that is, the set of all
resources that are above the given resource in the
preorder. Specifically, ρ is self-tested by B if the
upward closure of B among states contains only
those states which are also in the upward closure
of ρ. Our definition of self-testing also generalizes
immediately to other sorts of objects and even to
other resource theories, as we discuss in Appendix D.

Note that all notions of conversion appearing in
standard discussions of self-testing (e.g., the notion
of ‘can be obtained from’ in Definition 3) are
understood, within a resource-theoretic approach,
as conversion relative to the free operations in
the resource theory. If self-testing is to be viewed
as the task of certifying the nonclassicality of
correlations in a quantum state by the observation
of the nonclassicality of correlations in a box, then
it follows from the arguments in Section 2 that
the appropriate set of free operations is given by
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LOSR (rather than, e.g., local isometries or local
operations).

The resource-theoretic perspective on self-testing
makes it clear that while there is no way to be certain
which equivalence class of states was the one that
generated the box (because there is an unbounded
number of distinct such classes in the upward closure
of any box), nonetheless, one can be certain about
the identity of the least of these classes (i.e., the
classes in this upward closure that are lowest in the
partial order). As such, while much of the language
used in the self-testing literature suggests that when
a state is self-tested, it is being uniquely certified
up to equivalence, in fact it is only being uniquely
certified up to upward closure.17

Wenowdiscuss the relation between our definition
of self-testing (Definition 4) and the standard one
(Definition 3).

To do so, it is useful to begin by describing
how the standard definition is usually generalized
to the case where the state to be self-tested is
mixed, because only then can one understand why
it is generally asserted that mixed states cannot
be self-tested. This is done simply by replacing |ψ⟩
in Definition 3 with a mixed state ρ. In order to
highlight the differences with Definition 4, we also
recast themixed-state generalization of the standard
definition into a more resource-theoretic form:

Definition 5 (standard, generalized to mixed
states). Of the form of Definition 3, but where |ψ⟩
is replaced by a mixed state ρ. Equivalently, of
the form of Definition 4, but where the conversions
ρ 7→B and σ 7→B are evaluated relative to LO, while
the conversion σ 7→ ρ is evaluated relative to local
isometries with the constraint that the final state
factorizes with respect to the division between the
system on which ρ is defined and the auxiliary system
(i.e., there exists a state ω such that σ 7→ρ⊗ω by a
local isometry).

To see that the claimed resource-theoretic
recasting is accurate, note that the means by which
B is stipulated to be obtainable from σ or ρ
in Definition 3 (after substituting ρ for |ψ⟩) is
through ‘local measurements’. But given that a local

17Note, however, that if one is willing to introduce a
restriction on the set of states under consideration, then one
can achieve certification of the state up to equivalence. We
discuss this type of certification in Appendix E.

measurement is just an instance of a local operation,
namely, the type of local operation that takes a state
a box, it follows that the state-to-box conversion
relations ρ 7→ B and σ 7→ B are being evaluated
relative to LO.

By contrast, after substituting a mixed state ρ for
|ψ⟩ in Definition 3, the conversion σ 7→ ρ cannot be
understood as being evaluated relative to LO. To see
this, we appeal to the following lemma, which will
also serve to clarify where the standard definition
and its usual mixed-state generalization coincide
with an LO-based definition and where they differ
from it.

Lemma 2. Consider the following statements about
interconversion between n-partite states σ and ρ:

(i) σ 7→ρ by LO,
or equivalently,
∃W : ρ = Traux(W ) and σ ⇆ W by local
isometries.

(ii) ∃ω :σ⇆ρ⊗ω by local isometries.
(Here, ⇆ denotes convertibility in both directions, ω
is a state on an auxiliary system, W is a joint state
on the auxiliary system and the system associated to
ρ, and Traux denotes a partial trace over the auxiliary
system.). The following implications hold among
these conditions:

(a) If ρ is pure, then (i) and (ii) are equivalent.

(b) If ρ is mixed, then although it is still the case
that (ii) =⇒ (i), it can happen that (i) ≠⇒ (ii).

Note that the second form of condition (i) follows
from considering the Stinespring dilations of the
local operations.

Proof. (ii) =⇒ (i) for all states because if there
exists an ω satisfying condition (ii), then there exists
a W satisfying condition (i), namely, W =ρ⊗ω. It
therefore suffices to consider the implication (i) =⇒
(ii). Claim (a). (i) =⇒ (ii) in the case where ρ is pure
because in this case, the only joint statesW having ρ
as their reduction are of the form W =ρ⊗ω for some
ω (i.e., the purification of a pure state necessarily
factorizes). Claim (b). To see that it can happen that
(i) ≠⇒ (ii) when ρ is mixed, it suffices to note that
there are joint states W having ρ as their reduction
that are not of the form W =ρ⊗ω for some ω. That
is, if ρ is mixed, then it can arise as the reduction of a
stateW exhibiting correlations between the auxiliary
system and the system on which ρ is defined.

Accepted in Quantum 2023-11-27, click title to verify. Published under CC-BY 4.0. 13



Note that if the proposal for the mixed-
state generalization of the standard definition
(Definition 5) had been that σ must map by a local
isometry to a state W where ρ= Traux(W ) without
requiring that W be of the factorizing form ρ⊗ω,
then the conversion σ 7→ρwould simply be evaluated
relative to LO (simply recall the two forms of
condition (i) in Lemma 2). This alternative proposal
for the mixed-state generalization of the standard
definition, when recast resource-theoretically, is
simply this:

Definition 6 (resource-theoretic, LO-based). Of
the form of Definition 4, but where all conversions
are evaluated relative to LO.

In our view, this alternative approach to adapting
the standard definition to mixed states is the more
natural of the two, because what is important in self-
testing is that one is able to recover the state ρ from
σ, while the question of whether or not the state W
(from which ρ is obtained by partial trace) stipulates
that there is correlation between the system of
interest and the auxiliary system seems irrelevant.

It turns out that there are questions for which it
is significant whether a proponent of the standard
definition adopts Definition 5 or Definition 6 as its
mixed-state generalization. Specifically, whereas it
is commonly claimed that it is impossible to self-test
mixed states [31, 56, 57], this claim is justified only
relative to Definition 5, but not Definition 6.

To see this, it suffices to consider the proof that is
standardly given for this claim (see, e.g., Ref. [31]).
It is first noted that for any box B that can be
obtained from a mixed state ρ, there is a pure state
|ψ⟩ of the same dimension as ρ that can also be
used to obtain B (as shown in Ref. [58]). Therefore,
among the σ from which B can be obtained by
local measurements, there are some which are pure.
But for any pure σ, it is impossible to satisfy the
condition that there exists an ω such that σ 7→ρ⊗ω
by a local isometry unless ρ is also pure. If ρ is not
pure, then it follows that this condition cannot be
satisfied; hence, mixed states cannot be self-tested.
18

This proof does not go through if one allows
the final state W to exhibit correlation between

18It is, in fact, the structure of this argument which reveals
that it is Definition 5 rather than Definition 6 that is presumed
to be the mixed-state generalization of the standard definition
of self-testing in works such as Ref. [31].

the auxiliary system and the system on which ρ is
defined because although the purity of σ implies that
W needs to be pure, a pure W is compatible with
the reduced state ρ being mixed (W simply needs to
be entangled).

Indeed, if one adopts the alternative mixed-state
generalization of the standard definition wherein
the conversion σ 7→ ρ is evaluated relative to LO
(Definition 6), then one finds that mixed states can
be self-tested. It suffices only to note that there are
mixed states in the LO-equivalence class of a given
pure state. Appendix F provides an example. Note
that the possibility of self-testing mixed states holds
also under the LOSR-based definition of self-testing
(Definition 4) given that LOSR subsumes LO, so
that the LOSR-equivalence classes include the LO-
equivalence classes.

It is similarly clear that convexly nonextremal
boxes can serve to self-test states because there
are convexly nonextremal boxes in the equivalence
class of a given convexly extremal box (whether
equivalence is judged relative to LO or LOSR).
Appendix F provides an example. 19

We have shown how one can extend the scope
of self-testing to mixed states and to convexly
nonextremal boxes. What accounts for the fact that
such extensions were not previously recognized? The
answer, we believe, is that without the resource-
theoretic perspective on self-testing, the deficiencies
in the standard definition were difficult to see. In our
view, therefore, the extension of scope of self-testing
is an application of adopting the resource-theoretic
perspective on self-testing.

Nonetheless, even if one grants that self-testing
should be defined resource-theoretically, it is
easy to see that the closest resource-theoretic
counterpart to the standard definition isDefinition 6,
corresponding to taking LO as the set of free

19This observation does not seem to conflict with any prior
claims regarding the self-testing of states. Although it has
previously been claimed that convexly nonextremal boxes do
not provide an opportunity for self-testing [59, Appendix C]
in the context of joint self-testing of state-measurement pairs
(see Definition 7 of Appendix C in this manuscript), this claim
does not conflict with the fact that convexly nonextremal
boxes do provide an opportunity for self-testing of states alone.
Note that we have not attempted to see what a resource-
theoretic perspective implies for how to define self-testing
of state-measurement pairs, although we suspect that if one
were to do so, one would find that the standard definition
(Definition 7 of Appendix C) is also in need of revision.
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operations, not LOSR. We therefore turn our
attention now to articulating the precise differences
that exist between these two choices, and to
explaining why it is the LOSR-based definition that
should be endorsed.

As we noted in Section 2, the tendency to not
consider supplementing LO with shared randomness
is widespread in the literature on Bell’s theorem,
and is likely a historical artifact of the conventional
way of conceptualizing a Bell experiment. But as
we argued in Section 2, given that everyone agrees
that entanglement and nonlocality are supposed
to capture the nonclassicality of the correlational
properties of states and boxes respectively, one has
no choice but to include classical correlations—
that is, shared randomness—in the set of free
operations. We conclude, therefore, that if there
are any discrepancies in the verdicts regarding self-
testing when considered relative to LO and when
considered relative to LOSR, it is the verdicts based
on LOSR that should be considered the correct ones.
In the following, we will show how such discrepancies
can indeed arise.

The following lemma, which is the analogue of
Lemma 1 for state-to-state conversions, is useful
here:

Lemma 3. Consider the following statements about
interconversion between n-partite states σ and ρ

(i) σ 7→ρ by LOSR,
(ii) σ 7→ρ by LO.

The following implications hold among these
conditions:

(a) If ρ is pure or ρ is a mixed state that is LO-
equivalent to a pure state, then (i) and (ii) are
equivalent.

(b) If ρ is an arbitrary mixed state, then although
(ii) =⇒ (i), it can happen that (i) ≠⇒ (ii).

Proof. (ii) =⇒ (i) for all ρ because every LO
operation is an instance of an LOSR operation. It
suffices, therefore, to consider the implication (i) =⇒
(ii). Claim (a). The proof that (i) =⇒ (ii) in the
case where ρ is pure is a generalization of its proof
when one furthermore assumes that σ is pure, which
is presented as Lemma 6 of Section 6 and proven
there. As the generalization from pure σ to mixed σ
is straightforward, we leave it to the reader to verify.
Next, suppose that ρ is a mixed state that is LO-
equivalent to a pure state, denoted |ψ⟩⟨ψ|. Note that

|ψ⟩⟨ψ| is then also LOSR-equivalent to ρ, since LOSR
subsumes LO. By assumption, σ 7→ρ by LOSR, so it
follows from the LOSR-equivalence of ρ and |ψ⟩⟨ψ|
that σ 7→|ψ⟩⟨ψ| by LOSR. Next, from the fact that
(i) =⇒ (ii) for pure states, it follows that σ 7→|ψ⟩⟨ψ|
by LO. Finally, given the LO-equivalence of ρ and
|ψ⟩⟨ψ|, we obtain σ 7→ ρ by LO. Claim (b). To see
that there are mixed states ρ for which (i) ≠⇒ (ii),
it suffices to consider the case where σ is a product
state, while ρ=σ⊗ζ where ζ is any separable state
that is not a product state (so that it can be prepared
for free using LOSR operations, but not using LO
operations).

This lemma implies the existence of cases in which
there is a discrepancy between verdicts about self-
testing using the LO-based and the LOSR-based
approaches, and stipulates the conditions under
which there is no such discrepancy. The result is as
follows:

Proposition 4. Consider the question of whether a
box B self-tests a state ρ or not.

(a) If ρ is a pure state or a mixed state that is LO-
equivalent to a pure state and B is a convexly
extremal box or a convexly nonextremal box that
is LO-equivalent to a convexly extremal box, then
the answer implied by the LOSR-based definition
of self-testing (Definition 4) coincides with
the answer implied by the LO-based definition
(Definition 6).

(b) However, there are examples of state-box pairs
wherein the state ρ is mixed or the box B is
convexly nonextremal such that the answers
implied by the LOSR-based and LO-based
definitions diverge.

Proof. Claim (a). This follows from the relevant
definitions of self-testing together with claim (a) of
Lemma 1 and claim (a) of Lemma 3. Claim (b).
To find an example of a mixed state ρ that is self-
tested by a box B relative to LOSR but not relative
to LO, it suffices to note that given a pure state
|ψ⟩ that is self-tested by B, one can construct a
mixed state ρ that is LOSR-equivalent to |ψ⟩ but
not LO-equivalent to it. An example is provided
in Appendix F. Similarly, to find an example of
a box B that self-tests a state ρ relative to LOSR
but not relative to LO, it suffices to note that given
a convexly extremal box Bext that self-tests ρ, one
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can construct a convexly nonextremal box B that is
LOSR-equivalent to Bext but not LO-equivalent to
it. An example is provided in Appendix F.

Note that because the resource-theoretic
definition of self-testing can be framed entirely in
terms of equivalence classes of states and boxes
rather than in terms of the states and boxes
themselves (see Definition 11 in Appendix D), the
fact that every pure state has mixed states in its
LOSR-equivalence class and that every convexly
extremal box has convexly nonextremal boxes in
its LOSR-equivalence class implies that the convex
extremality of resources is not necessary for them
to appear in nontrivial self-testing relations. The
notion of extremality that is most relevant for self-
testing is instead one that concerns the position of
a resource in the preorder over resources.

Thus, our resource-theoretic approach to self-
testing not only shows that mixed states and
convexly nonextremal boxes can be self-tested, it
makes clear that the scope of these includes not only
the states and boxes that are LO-equivalent to their
pure counterparts, but also those that are LOSR-
equivalent to these.

Note that for the case of pure states and
convexly extremal boxes, claim (a) of Lemma 2
implies that the LO-based definition of self-testing
(Definition 6) is equivalent to the standard definition
(Definition 3). Combined with Proposition 4, this
implies that the LOSR-based definition of self-
testing (Definition 4) is also equivalent to the
standard definition in this case. Even in this
case, however, the resource-theoretic approach
yields some novel insights relative to the standard
approach.

Specifically, while the standard definition might
at first glance seem ad hoc, particularly with its
appeal to a local isometric freedom, the resource-
theoretic approach can provide a justification of its
form. It is seen to follow from two plausible claims
underlying the resource-theoretic definition: (i) that
the essence of self-testing a resource R by a resource
R′ is certifying that R is the unique least resource
(up to equivalence) in the upward closure of R′ (as
specified formally in Definition 11 of Appendix D),
and (ii) that for the particular case of self-testing
entanglement by nonlocality, the free operations
relative to which convertibility relations should be
judged are LOSR operations.

The utility of having a resource-theoretic
justification of the definition of self-testing of
states is highlighted by the fact that it provides
clear answers to challenges regarding self-testing in
multipartite Bell scenarios. Consider the example
of chiral states. Chiral pure states—states which
are inequivalent under local unitary transformations
to their complex conjugate—are often proposed as
examples of states that cannot be self-tested, since
a chiral state and its complex conjugate give rise
to the same set of boxes.20 A similar failure of
self-testability arises for measurements rather than
states [63]. However, some authors have proposed
that the definition of self-testing be modified to
include complex conjugation in addition to the
local isometric freedom, so that such states and
measurements could also be said to be self-tested.
In the context of self-testing of measurements,
Ref. [63] suggests such an extension, and Ref. [31]
describes this move as “in line with the general
spirit of self-testing in which one aims to certify the
measurements up to all the intrinsic limitations of
the device-independent scenario.”

Our systematic resource-theoretic approach to
self-testing, together with our arguments for LOSR
as the appropriate set of free operations, eliminate
any ambiguity regarding the status of chiral states:
they cannot be self-tested. Specifically, for all B,
if |ψ⟩ is chiral and |ψ⟩ 7→ B, then the complex
conjugate |ψ∗⟩ also maps to B, that is, |ψ∗⟩ 7→ B,
and yet |ψ∗⟩ ̸7→ |ψ⟩. Here, all conversion relations
are relative to LOSR. Hence, by Definition 4, |ψ⟩
cannot be self-tested. The set of free operations
in the definition of self-testing cannot sensibly be
modified ad hoc to change this fact.

Nonetheless, our work makes clear that there is a
sensible way of extending the notion of self-testing
to handle examples like that of chiral states, a way
which is also in line with the aim of certifying
processes ‘up to all the intrinsic limitations’ of the
scenario. In particular, one can define a relaxed
notion of self-testing wherein one certifies (up to
upward closure) a set of equivalence classes of
states, rather than a unique equivalence class. Here,
conversions are still evaluated relative to LOSR, so

20A similar situation arises for states which are not LOSR-
equivalent to their partial transposes; see the results of Ref. [60].
Note also that chiral pure states exist even for three-qubit
systems [61, 62].
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self-testing statements according to such a relaxed
notion can still be understood as certifying the
nonclassicality of a state based purely on the
observed box. The price one pays for using this
relaxed notion is simply that the precision with
which one certifies the entangled state is diminished.
This relaxation is described in more detail in the
discussion surrounding Eq. (32) in Appendix D.

6 The resource theory of LOSR-
entanglement

Havingmotivated the need for understandingLOSR-
entanglement, we now prove some basic results
about the preorder of bipartite and multipartite
entangled states under LOSR.

We begin by formally defining the sets of Local
Operations (LO), Local Operations and Shared
Randomness (LOSR), and Local Operations and
Classical Communication (LOCC). First, recall
that the most general quantum operation taking
an n-partite system described by the Hilbert space⊗n

i=1 H(i) to one described by the Hilbert space⊗n
i=1 K(i) is a completely-positive trace-preserving

linear map between the corresponding operator
spaces, that is, E : L

( ⊗n
i=1 H(i)) → L

( ⊗n
i=1 K(i))

where L(H) denotes the set of linear operations on
H. A local operation is one that factorizes across
the n-partition, E = E(1) ⊗ ··· ⊗ E(n) where E(i) :
L(H(i)) → L(K(i)), and LO is the set of all such
operations. The operations in LOSR are all and only
those that can be expressed as a convex mixture
of local operations, E =

∑
α wαE(1)

α ⊗ ··· ⊗ E(n)
α ,

where {wα}α denotes a probability distribution.
To model classical communication between
the parties, recall that a local nondestructive
quantum measurement with an outcome labelled
j can be represented as a set of completely
positive [64, 65] trace-nonincreasing maps, {Ej}j ,
whose sum,

∑
j Ej , is a completely positive trace-

preserving map. An operation describing a single
round of communication from Alice to Bob is
described as follows: Alice implements a local
quantum measurement represented by {E(A)

j }j ,
communicates the outcome j to Bob, and then
Bob implements a local quantum measurement, the
choice of which may depend on j, {E(B)

k|j }k, such that

the overall operation is
∑
j,k

(
I⊗E(B)

k|j

)
◦

(
E(A)
j ⊗I

)
.

An LOCC operation on an n-partite system can be
defined as any operation which is a composition of
such operations (but where the communication is
between any pair of parties).

Because LOCC allows for shared randomness to
be generated by one party and then shared with the
other parties by classical communication, it strictly
includes LOSR,

LOSR⊂LOCC. (9)

It follows, therefore, that if a conversion from a state
ρ to a state σ (mixed or pure) is not possible by
LOCC, then it is also not possible by LOSR either:

ρ ̸7→σbyLOCC =⇒ ρ ̸7→σbyLOSR. (10)

Consequently, (i) any witness of LOCC-
nonconvertibility is a witness of LOSR-
nonconvertibility as well, (ii) any monotone relative
to LOCC [66–69] is also a monotone relative to
LOSR, and (iii) the LOCC-equivalence classes
contain the LOSR-equivalence classes.

However, there are instances of LOSR-
nonconvertibility that are not instances of LOCC-
nonconvertibility, or equivalently, cases where
LOCC allows a conversion that is not allowed
under LOSR. Consequently, (i) there are witnesses
of LOSR-nonconvertibility that are not witnesses
of LOCC-nonconvertibility, (ii) there are LOSR
monotones that are not LOCC monotones, so
that a complete set of LOCC-entanglement
monotones does not constitute a complete set of
LOSR-entanglement monotones, and (iiii) it is
a priori possible that some or all of the LOSR-
equivalence classes of states are strict subsets of
the corresponding LOCC-equivalence class of states.
Despite the a priori possibility of a distinction
between LOSR-equivalence classes and LOCC-
equivalence classes, for the case of pure states at
least, one can show that this possibility is not
realized. Here, we make reference to the set of Local
Unitaries (LU), which are simply local operations
that are unitary.

Lemma 5. Consider the equivalence relation
associated to reversible interconvertibility.21 The

21One resource is said to be reversibly interconvertible with
another if conversions in both directions are possible under
the free operations. Note that the free operation achieving the
conversion in one direction need not be the inverse of the free
operation achieving the conversion in the opposite direction.
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Figure 3: A depiction of condition (iii) of Lemma 6 for n=3
parties. Note that for each Ui, the factorization of its input
space into a pair of subsystems need not be the same as the
factorization of its output space.

following statements about equivalence of the n-
partite pure states |ψ⟩ and |ϕ⟩ (denoted |ψ⟩⇆ |ϕ⟩)
are equivalent:

(i) |ψ⟩⇆ |ϕ⟩ relative to LOSR.
(ii) |ψ⟩⇆ |ϕ⟩ relative to LO.

(iii) |ψ⟩⇆ |ϕ⟩ relative to LU.
(iv) |ψ⟩⇆ |ϕ⟩ relative to LOCC.

Proof. We note that the different sets of operations
form a chain of strict inclusions:

LU⊂LO⊂LOSR⊂LOCC. (11)

Next, we appeal to the known result that two pure
states |ψ⟩ and |ϕ⟩ are LOCC-equivalent if and only if
they are LU-equivalent [70]. Since the set-theoretic
inclusion relations are such that LO and LOSR are
both between LU and LOCC in Eq. (11), the result
follows.

It follows from Lemma 5 and the discussion above
that all of the differences between the LOCC and
LOSR preorders on pure states correspond to pairs
of equivalence classes which are strictly ordered
under LOCC but are incomparable under LOSR.

The LOCC preorder over pure states has been
completely characterized in the bipartite case [41],
and in the following we obtain the analogous result
for the LOSR preorder. We also express some results
concerning the n-partite case for n>2.

Lemma 6. The following statements about
interconversion between n-partite pure states |ψ⟩ and
|ϕ⟩ are equivalent

(i) |ψ⟩ 7→|ϕ⟩ by LOSR.
(ii) |ψ⟩ 7→|ϕ⟩ by LO.

(iii) ∃|η1⟩...|ηn⟩,|ζ⟩ : |ψ⟩|η1⟩...|ηn⟩ ⇆ |ϕ⟩|ζ⟩ by LU,
as illustrated in Fig. 3.

Proof. (ii) =⇒ (i) holds trivially, because every
LO operation is an LOSR operation. (i) =⇒ (ii)
follows, because every LOSR operation is a mixture
of LO operations, and given that the state |ϕ⟩ is pure,
it follows that the states resulting from each local
operation of this mixture must be proportional to
|ϕ⟩. Consequently, any one of the LO operations in
the mixture can convert |ψ⟩ to |ϕ⟩ on its own.

(iii) =⇒ (ii) trivially, because preparing local
auxiliary systems, applying local unitaries, and
taking partial traces are free LO operations. (ii)
=⇒ (iii) follows from the Stinespring dilation
theorem [71, 72]: any LO operation is an n-partite
tensor product of local trace-preserving completely
positive operations, and each of these can be
implemented by introducing an auxiliary system
prepared in a pure state |ηi⟩, coupling this auxiliary
system to the system of interest by a unitary Ui,
then tracing out some subsystem of this composite.
Given that the final reduced state on the output n-
partite system must be the pure state |ϕ⟩, it follows
that a subsystem of the output composite can only
be traced out if it is unentangled with the n-partite
system. Consequently, the final joint state of the
output n-partite system and the systems that are
traced out must be of the form |ϕ⟩ ⊗ |ζ⟩ for some
(possibly entangled) “junk” state |ζ⟩.

Evidently, Lemmas 5 and 6 provide avenues for
understanding the LOSR-entanglement preorder on
pure states by utilizing known results about LU-
equivalence [62, 73–76].

For instance, in the bipartite case, it is well known
that local unitary equivalence between pure states
has a particularly simple form: if λψ denotes the
vector of squared Schmidt coefficients of a state
|ψ⟩, and v↓ denotes the permutation of a vector v’s
components such that they are ordered from largest
to smallest, then |ψ⟩ and |ϕ⟩ are LU-equivalent if
and only if

λ↓
ψ=λ↓

ϕ, (12)

that is, if and only if their vectors of squared Schmidt
coefficients are equal up to permutation. Lemma 5
then implies that this is also the condition for LOSR-
equivalence between pure states.

This characterization of the LU-equivalence of
bipartite pure states also implies that condition
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(iii) in Lemma 6 has a particularly simple form22,
resulting in the following corollary concerning
LOSR-convertibility:

Corollary 7. A bipartite pure state |ψ⟩ can be
converted to a bipartite pure state |ϕ⟩ by LOSR if
and only if

∃|ζ⟩ :λ↓
ψ=(λϕ⊗λζ)↓. (13)

It follows that the pair of states |ψmax⟩ and
|ψpartial⟩ from the main text, which have the same
Schmidt rank but different vectors of Schmidt
coefficients, are such that neither converts to
the other under LOSR, i.e., they are LOSR-
incomparable. This justifies Eq. (4).

In the case of n-partite systems for n > 2,
a necessary condition for LU-equivalence between
pure states is the equality of squared Schmidt
coefficients for each bipartition β of the n-partite
system, but (unlike the bipartite case) this is not a
sufficient condition [62, 73]. Nevertheless, combining
this condition with Lemma 6 yields the following
corollary concerning LOSR-convertibility.

Corollary 8. An n-partite pure state |ψ⟩ can be
converted to an n-partite pure state |ϕ⟩ by LOSR only
if

∃|ζ⟩,∀β : (λ(β)
ψ )↓ =(λ(β)

ϕ ⊗λ(β)
ζ )↓, (14)

where for a pure state |ω⟩, λ(β)
ω denotes the vector

of its squared Schmidt coefficients with respect to
bipartition β of the n-partite system.

Despite the insufficiency of Corollary 8
for determining LOSR-convertibility (which
we demonstrate with an explicit example in
Appendix G), it provides a necessary condition
for LOSR-convertibility which is not a necessary
condition for LOCC-convertibility. As an example,
by appealing to Corollary 8, we show in Appendix B
that |ψ2Bell⟩ and |ψGHZ⟩ (which are strictly ordered
relative to LOCC) are incomparable relative to
LOSR, thereby justifying Eq. (8).

The condition stipulated by Corollary 8, that
there exists a pure state |ζ⟩ satisfying Eq. (14),
is a non-trivial requirement. Indeed, the problem
of deciding whether there exists an n-partite pure

22The equivalence of condition (ii) and this form of condition
(iii) for the bipartite case is stated as Exercise 12.22 of Ref. [64].

state |ζ⟩ admitting a given set of vectors of squared
Schmidt coefficients λ

(β)
ζ for a given family of

bipartitions β is known as the spectral quantum
marginals problem [77, 78]. Appendix H describes
a simple method for computing the set of vectors
λ

(β)
ζ that satisfy Eq. (14), given λ

(β)
ψ and λ

(β)
ϕ ,

which provides the input to the spectral quantum
marginals problem.

Wealso note a second corollary of Lemma6.Recall
that the Schmidt rank of a state |ψ⟩ with respect to
a bipartition β, henceforth denoted SR(β)

ψ , is defined
as the number of non-zero entries of the vector of
squared Schmidt coefficients λ(β)

ψ .

Corollary 9. If two pure states |ψ⟩ and |ϕ⟩ have the
same Schmidt ranks for all bipartitions, i.e.,

∀β :SR(β)
ψ =SR(β)

ϕ , (15)

then they are either LOSR-equivalent (equivalently,
LU-equivalent) or else LOSR-incomparable.

Proof. Suppose that |ψ⟩ 7→|ϕ⟩ under LOSR, so that
condition (iii) from Lemma 6 is satisfied. Under
the assumption that Eq. (15) holds, it follows that
the state |ζ⟩ in this condition must be such that
∀β :SR(β)

ζ =1. But this implies that |ζ⟩ is a product
state, |ζ⟩ = |ζ1⟩···|ζn⟩, in which case condition (iii)
from Lemma 6 reduces to ∃|η1⟩ ... |ηn⟩, |ζ1⟩ ... |ζn⟩ :
|ψ⟩|η1⟩ ... |ηn⟩ ⇆ |ϕ⟩|ζ1⟩ ... |ζn⟩ by LU, which is a
condition that is symmetric in |ψ⟩ and |ϕ⟩. The
same logic holds if one supposes that |ϕ⟩ 7→ |ψ⟩
under LOSR. Consequently, either both conversion
relations hold or neither does. In other words, either
|ψ⟩ and |ϕ⟩ are LOSR-equivalent or they are LOSR-
incomparable. Finally, LOSR-equivalence is the
same as LU-equivalence by Lemma 5.23

23By the structure of this proof, it is clear that one can
replace the assumption of sameness of Schmidt ranks for all
bipartitions with any other condition that is symmetric in |ψ⟩
and |ϕ⟩ and which establishes that |ζ⟩ must be a product state.
For instance, if two pure states |ψ⟩ and |ϕ⟩ have the same
marginal entropies for each subsystem (i.e., are “marginally
isentropic”) then one can also conclude that |ζ⟩ is a product
state and consequently that |ψ⟩ and |ϕ⟩ are either LOSR-
equivalent or LOSR-incomparable. This result is similar to
Theorem 1 of Ref. [70], which concerns LOCC rather than
LOSR, and which establishes that if |ψ⟩ and |ϕ⟩ are marginally
isentropic, then they are either LU-equivalent or LOCC-
incomparable. Because LOCC-incomparability implies LOSR-
incomparability, and LU-equivalence is the same as LOSR-
equivalence (by Lemma 5), the analogue of Corollary 9 for
marginally isentropic states can be obtained as a corollary of
Theorem 1 of Ref. [70].
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Applying Corollary 9 to the case of bipartite
states, it follows that any pair of pure bipartite states
having equal Schmidt rank but different squared
Schmidt coefficients are incomparable under LOSR.
Thus, for example, it follows that all two-qubit
entangled pure states are LOSR-incomparable.24

Another result about LOSR-entanglement for
pure bipartite states that follows from Lemma 6
concerns entanglement catalysis. Specifically,
whereas there is nontrivial catalysis for pairs of
bipartite pure states in the theory of LOCC-
entanglement [79], this is not the case in the theory
of LOSR-entanglement. If |ψ⟩ cannot be converted
to |ϕ⟩ under LOSR, i.e., |ψ⟩ ̸7→ |ϕ⟩, then |ψ⟩ also
cannot be catalytically converted to |ϕ⟩ under LOSR,
i.e., there is no pure state |χ⟩ such that |ψ⟩⊗|χ⟩ 7→
|ϕ⟩ ⊗ |χ⟩. The proof is provided in Appendix I.
Consequently, whether one uses LOCC or LOSR as
the free operations also makes a difference for the
catalytic order over entangled states.

It is also worth noting that one can easily
construct LOSR-entanglement monotones that
are not also LOCC-entanglement monotones. We
already noted that for every instance of the
anomaly of nonlocality, one can define an LOSR-
entanglement monotone in terms of the yield
of nonlocal box appearing in that anomaly (see
Appendix A for details). Though conceptually
natural, these monotones are likely to have limited
practical utility unless one can provide a general
solution to the optimization that is part of their
definition. If the set of states on which monotonicity
is required to hold is taken to be the set of
pure states rather than the full set of states, i.e.,
if one is content to have a pure-state monotone
rather than a true monotone, then it is not
difficult to construct examples of pure-state LOSR-
entanglement monotones that are not also pure-
state LOCC-entanglement monotones and for which
a closed-form expression can be given. For instance,
the quantity known as entanglement spread [80] is
such a monotone, as is every function in the 2-
parameter family of the form ∆αβ(ψ) = Sα(ψ) −
Sβ(ψ), where 0 ≤ α < β ≤ ∞, and where Sα is
the order-α Renyi entropy (entanglement spread is
the α = ∞, β = 0 member of this family). This

24This provides a second way of seeing that the pair
of bipartite pure states |ψmax⟩ and |ψpartial⟩ are LOSR-
incomparable.

follows from a result in Ref. [81]; see Theorem 1
and Remarks 1 and 2 therein.25 Other pure-state
LOSR-entanglement monotones for pure states can
easily be constructed using our characterization of
the LOSR order in Lemma 6 and Corollary 8.

7 The ordering of entangled states
depends on the network structure

As stipulated in the introduction, we take the
entanglement properties of multipartite quantum
states to be their nonclassical correlational
properties. The question of what counts as
nonclassicality and how to order states by their
degree of nonclassicality, in turn, can only be
answered relative to a choice of network structure
between the parties, that is, a specification of the
particular communication channels and common
sources that link them.26 (SeeRef. [7] for a discussion
of this point.)

Consider first how this claim is true if one focuses
on boxes, rather than states. Imagine a box for
which the conditional probability distribution of its
outputs given its inputs violates a Bell inequality.
Should the correlational properties of such a box
be considered nonclassical? If the box is realized
in a network wherein the parties only have access
to a common source (Fig. 4a), then it should,
because in this context, such violations certify the
nonclassicality of the source [82]. If, however, the
box is realized in a network wherein the parties have
communication channels (Fig. 4b)27, then it should
not, because any Bell inequality violation is easily
simulated using classical communication between
the wings.

The same sorts of considerations apply
to quantum states: whether the correlational
properties of a particular state should be considered
nonclassical and how to quantify that nonclassicality

25We thank Patrick Hayden for bringing this fact to our
attention.

26Note that the specification of whether the channels and
sources are classical or quantum is not considered to be part
of the specification of the network structure. In our usage, the
network structure refers merely to the pattern of connectivity,
and does not distinguish classical and quantum.

27And no restriction is stipulated on the spatio-temporal
relations between the inputs and outputs of the box—see
discussion below.
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Figure 4: Common source and two-way channel networks
involving two and three parties.

are questions whose answers depend on the network.
This is less obvious than in the case of boxes because,
for states, the difference between the two networks
in Fig. 4 is not manifest in the classical-nonclassical
boundary. The difference does show up, however, in
the ordering over the states. In particular, for the
networks in Fig. 4a, the ordering of multipartite
states is determined by LOSR-conversion relations,
while for the networks in Fig. 4b, it is determined by
LOCC-conversion relations. The results of Section 6
show that these orderings are indeed different, so
that one has different notions of entanglement
in the two networks, which we have termed
LOSR-entanglement and LOCC-entanglement
respectively.

Although the location of the classical-nonclassical
boundary for states does not differ for the pair
of network structures in Fig. 4, in other pairs
of networks it can. We provide an example in
Appendix J.

To summarize, then: understanding the
nonclassicality of the correlational properties of a
given type of process involves understanding the
gap between the correlational properties that are
classically realizable and those that are quantumly
realizable. But given that what is realizable (either
classically or quantumly) differs between network
structures, the nature of such gaps—and thus
the nature of the nonclassicality of correlational
properties—is relative to a network structure.
Ultimately, the network-relativity of assessments
of nonclassicality is due to the fact that whether
correlations are realizable or not is dependent on the

causal relations that exist among the parties [82, 83],
and the network structure stipulates these causal
relations.

Much of this article has concerned the interplay
of entanglement and nonlocality in networks of the
form of Fig. 4a, with common sources among the
parties. We now turn to the question of how this
interplay appears in networks of the form of Fig. 4b,
with channels among the parties.

As we noted in Sec. 2, it is not obvious a priori that
it even makes sense to study nonlocality in such a
network given that any Bell inequality violation can
be simulated by classical communication. However,
there is an approach that allows such a possibility.
In this approach, one changes the resources under
consideration from the boxes defined in Sec. 1 to
generic multipartite processes with classical inputs
and outputs, supplemented by a specification of the
spatio-temporal relations between all of the inputs
and outputs. To distinguish these from the boxes
defined in Sec. 1, we refer to these as spatio-
temporally-indexed boxes. One furthermore restricts
attention to the subset of spatio-temporally-indexed
boxes for which the settings and outcomes of a
given party are space-like separated from those of
the other parties. We term these “space-like boxes”.
For this special subset of processes, the internal
causal structure can only be that of a common
cause, just like the notion of box defined in Sec. 1.
Furthermore, focussing on the subset of spatio-
temporally-indexed boxes corresponding to space-
like boxes allows Bell inequality violations to be
indicative of nonclassicality even in the presence of a
communication channel. The reason is that although
the parties have access to classical communication
channels, these channels simply do not help with
achieving conversions between one space-like box
and another because any processing at one wing
must be implemented at space-like separation from
a processing at the other wings in order for the
overall processing’s output to also be a space-like
box. It follows that to assess conversions among
space-like boxes, it is sufficient to consider just
LOSR operations. In other words, although the free
operations in a resource theory of spatio-temporally-
indexed boxes may be taken to be LOCC, for space-
like boxes, a conversion is achievable by LOCC if and
only if it is achievable by LOSR.

Meanwhile, for achieving state-to-box and state-
to-state conversions, the classical communication
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channel is useful, so these conversions must be
evaluated relative to LOCC in this alternative
resource theory.Consider the state-to-box case, for
example. If the entangled quantum state can be
prepared prior to the time at which the setting
variables of the space-like box are fixed, then there
is no reason to assume that local operations on one
part of the entangled state need to be space-like
separated from those on another part. Consequently,
measurements can be performed on the different
parts of the entangled state and the results can
be communicated among the parties and used to
control subsequent local operations.28

This approach provides an alternative means of
resolving the inconsistencies described in Secs. 3 and
4. For instance, in the inconsistency associated with
the anomaly of nonlocality, the claim that |ψmax⟩ ̸7→
B (see Eq. (2)), which is true for LO, is not true
for LOCC, because under LOCC, |ψmax⟩ can be
converted to |ψpartial⟩ which can be converted to
B. So this approach, which reduces mathematically
to LOSR for box-to-box conversions but LOCC for
state-to-state and state-to-box conversions, implies
replacing Eq. (2) with its negation, while preserving
Eqs. (3) and (1), and therefore provides a way out
of the inconsistency.

The restriction to space-like boxes may at first
appear quite natural. After all, in the context of Bell
experiments, one seeks to ensure that the outcome
and setting on one wing cannot have a causal
influence on the outcome at any other wing (i.e., that
the locality loophole is sealed). Sealing loopholes
in a Bell experiment is done for the purpose of
ruling out theories—typically described as “locally
realist”—which make alternative predictions to
quantum theory. If one is not in the business of
trying to rule out such alternatives, but rather in
the business of leveraging quantum resources for
information-processing tasks (while presuming the
correctness of quantum theory), then one need not
restrict attention to boxes whose wings are space-
like separated. One might also consider boxes for
which one is confident, based on the setup of the

28Some authors have suggested a set of free operations that
is distinct from LOCC and termed Wirings with Prior-to-
Input Classical Communication (WPICC) [84]. The latter
allows only classical communication prior to receiving the
values of the input variables. It is not clear, however, what
sort of physical or experimental restriction might enforce such
a prohibition on the use of a classical channel.

experiment, that there is no causal influence between
the wings. The wings being space-like separated is a
sufficient but not a necessary condition for satisfying
this no-causal-influence condition.

Nonetheless, it may be the case that the
information-processing task in question is of a
cryptographic nature, and that the users of the
protocol are explicitly worried about an adversary
that is attempting to make it appear that the no-
causal-influence condition is satisfied when it is not,
in order to fool them into thinking that they are
achieving a cryptographically secure protocol. In
such circumstances, it may be appropriate to require
space-like separation as a guarantee of the no-causal-
influence condition being satisfied.

Such circumstances, therefore, motivate the
study of the interplay of LOCC-entanglement
and nonlocality, that is, the interplay of the
nonclassicality of states and space-like boxes in
the network with channels among the parties
(Fig. 4b). Note, however, that there are significant
complications in undertaking such a study within
a formal resource-theoretic framework. One such
complication is that the formal representation of
a resource includes a specification of the spatio-
temporal relations between all of its inputs and
outputs, unlike the notion of box introduced in Sec. 1
and studied in this article. Being able to forego the
complication of requiring such a specification is one
of the advantages of our approach.

After a draft of this article appeared (and
partly in response to it), Ref. [85] has argued
for the alternative approach wherein one considers
free operations including 2-way communications
(Fig. 4b) and has begun the project of developing a
formal resource theory of this type.29

29Whereas we have here argued that the appropriate notion
of nonclassicality for states and boxes is relative to the network
connecting the parties, with LOCC and LOSR emerging as the
appropriate free operations in different circumstances, Ref. [85]
argues against the LOSR paradigm. It claims that “LOCC is
needed to fully reveal the nonlocal features of quantum states.”
In the next section, however, we explain why whether a state
is judged to be entangled or not should not be defined in terms
of whether it can generate a nonlocal box. Furthermore, even
if one were to adopt such a definition, it is not the case that
the only way to witness the entanglement of a state is by
activating it in a protocol that makes use of LOCC operations.
Indeed, in the next section, we summarize the many ways that
have been discovered to witness entanglement by converting
states to processes with classical inputs and outputs using
LOSR. Therefore, although we do not dispute that LOCC
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It is also worth noting that the results obtained
in such a setting will clearly be at odds
with conventional notions about the interplay of
entanglement and nonlocality. For example, in
the LOCC paradigm, Hardy-type proofs of Bell’s
theorem can be achieved not only with partially
entangled states, but with maximally entangled
states as well (the negation of Eq. (2) discussed
above), contrary to the conventional claim. It is also
the case that within this approach, it is impossible
to uniquely certify all partially entangled states of
a given Schmidt rank by self-testing, again contrary
to the usual result. Finally, the fact that there is
no additional “3-way communication resource” that
goes beyond having 2-way communication channels
between every pair of parties implies that, in the
LOCC paradigm, there is no obvious candidate
for a notion of genuine 3-way entanglement and
consequently no natural counterpart to a notion of
genuine 3-way nonlocality, as we noted in Sec. 4.

In any case, what is clear is that the interplay
between entanglement and nonlocality can be
markedly different in different network structures
and therefore it is critical to articulate which
network structure one is assuming when making
any claims about the nature of entanglement,
nonlocality, or their interplay. This realization is one
of the key contributions of our work.

8 On entangled states that do not violate
any Bell inequality

The fact that there are mixed entangled states that
do not violate any Bell inequality [2, 86] is often
taken as a surprising feature of the interplay between
the entanglement of states and the nonlocality of
boxes. We here argue that, in the resource-theoretic
approach advocated in this article, this fact is not
surprising. Indeed, it is an instance of a phenomenon
that is generic among resource theories. The
conclusion which has sometimes been drawn from
this phenomenon—that certain entangled states
cannot be certified device-independently—is now
known to be false and canbe seen, in retrospect, to be

operations can sometimes be appropriate for the study of
the interplay of entanglement and nonlocality (namely, if
the network structure includes communication channels), the
arguments in Ref. [85] against the appropriateness of LOSR
operations are unconvincing.

an artifact of considering a limited type of network
structure in entanglement certification protocols.

In the framework of resource theories as
partitioned process theories, outlined in Ref. [33],
the distinction between free and nonfree processes
(of any type) is part of the definition of the resource
theory. It cannot be stipulated arbitrarily, because
the free processes are required to be closed under
arbitrary composition operations, such that they
form a subtheory of the enveloping process theory.
The question of what sorts of resources of a given
type, T ′, one can obtain from a given resource R of
typeT is an interesting one (studied in Refs. [87, 88]),
but it does not serve to define whether R is to be
considered free or not. It is worth particularizing this
claim to the case of interest here. We are concerned
with processes of state type and of box type wherein
being free corresponds to being realizable using only
classical sources. In this context, whether or not
a given state can be converted to a nonlocal box
is certainly an interesting question, but it is not
a necessary condition for the state to be deemed
nonclassical.

Nonetheless, imagine a sceptic who tries to
maintain that the classical-nonclassical boundary
for quantum states should in fact be taken to be
the boundary between states that yield only local
boxes and those that can yield nonlocal boxes, and
that nonclassicality of states should be quantified
in terms of features of this yield rather than the
ordering of the states. Such a position might be
motivated by the idea that the only nonclassical
feature of an entangled quantum state is its ability
to violate a Bell inequality. Nonetheless, we now
explain why we believe this to be an ill-conceived
approach.

Consider the possibility of trying to define a
free-nonfree distinction for processes of type T in
terms of whether or not they can yield a nonfree
process of type T ′. Note, first of all, that to get off
the ground with this sort of definition, one must
already have in hand a free-nonfree distinction for
processes of type T ′. But then, whatever physical
considerations led to the free-nonfree distinction in
the typeT ′ sphere, one can (and should) avail oneself
of the same considerations to obtain a free-nonfree
distinction in the type T sphere. To specialize to the
case of interest here: it is uncontroversial that the
classical-nonclassical distinction for boxes should be
defined in terms of realizability by classical shared
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randomness, which corresponds to whether all of
the Bell inequalities are satisfied or not. But then,
the classical-nonclassical distinction for states can
(and should) also be defined directly in terms of
realizability by classical shared randomness (i.e.,
LOSR), which corresponds to whether it is separable
or not.

Note that the imperative to define the free
subtheory based on a physical restriction, outlined
in Sec. 2, supports this approach insofar as it
yields a type-independent notion of freeness. In the
case of interest here, the physical restriction is the
classicality of all of the sources and channels in the
network, and it defines a free-nonfree distinction
for states, boxes, and every other type [87, 88] of
multipartite process in that network.

Another problem with the sceptic’s proposal is
that there are many different types of processes to
which a type-T process can be converted: type T ′,
type T ′′, ... . How does one decide which of these
ought to be used to define nonfreeness of type-T
processes?

Indeed, this ambiguity arises in any attempt to
define the nonclassicality of states in terms of the
nonclassicality of processes obtained from these.
Consider the device-independent certification of
entanglement, i.e., certification by conversion into a
process with only classical inputs and outputs. If we
convert the state to a box, then certain nonseparable
states yield only free boxes, so that if we defined the
classical-nonclassical boundary for states in terms
of such conversions, this boundary would lie strictly
within the space of nonseparable states, with Werner
states [2] being examples of nonseparable states that
are nonetheless deemed to be classical. However, as
soon as one considers converting states into other
sorts of processes, it becomes possible to certify
entangled states that could not be certified by boxes.
Examples of such processes include: those depicted
in Fig. 5a, obtained by implementing in each lab
a multi-meter (i.e., a measurement whose identity
is determined by a classical input) after a filtering
operation on the quantum state (a nondestructive
measurement whose identity is fixed) [89, 90]; those
depicted in Fig. 5b, obtained by implementing in
each lab a sequence of nondestructive multi-meters
on the quantum state [91]; those depicted in Fig. 5c,
which implement local operations with a particular
nontrivial causal structure within the laboratory of
each party [92].

Alternatively, one can also certify the
nonclassicality of arbitrary entangled states within
the simple causal structure of the Bell scenario,
if one is willing to relax one’s notion of device-
independence. This is the case, for example, if one
considers local processings with classical outputs
and secondary quantum inputs, the so-called semi-
quantum scenario, pioneered by Buscemi [6] and
depicted in Fig. 5d.

ρ

(a)

...
...

ρ

(b)

ρ

(c)

ρ

(d)

Figure 5: (a) A box with prior filtering of the state. (b) A box
implementing a sequence of nondestructive measurements
on the state. (c) A process with only classical inputs and
classical outputs, but constrained to have a particular causal
structure in each party’s lab. Such a process can witness
all entangled states device-independently. (d) A process
(sometimes termed a semi-quantum channel) which is like a
box, but with quantum rather than classical inputs. Such a
process can certify any entangled state within the standard
Bell causal structure, but only device-dependently.

So, whether one can certify (much less quantify)
an entangled state or not by converting it into a
process of a different type depends explicitly on the
type.

Note that our argument against the sceptic’s
position does not depend on the results of Ref. [92],
that there do in fact exist processes with classical
inputs and outputs that can certify all entangled
states. Even if there had not existed any such
processes, this would not add credibility to the
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idea that the classical-nonclassical boundary is
anything but the separable-nonseparable boundary.
If a process of one type is nonfree, there is no
guarantee that in a conversion to another type of
process, the resulting process is also nonfree.30 In
other words, in type-changing resource conversions,
nonfreeness of the initial resource is not a sufficient
condition for nonfreeness of the final resource.

This insufficiency is obvious if the type of the
final resource is too impoverished. Consider, for
instance, the type-changing conversion that maps
a multi-partite entangled state to a multipartite
process with only classical outputs (i.e., no inputs),
represented by a multi-partite joint probability
distribution. Because every multi-partite joint
probability distribution can be realized with a
classical source shared among all of the parties, it
follows that in the LOSR-ordering of resources, each
such distribution is a free resource, even though
every entangled state is nonfree.31

Once one recognizes that there is no reason to
expect nonfreeness to be preserved in type-changing
conversions, one sees that there is no reason to expect
that all entangled states should be able to generate
a nonlocal box. Without any justification for such
an expectation, there is no reason to consider the
phenomenon to be surprising. Indeed, with all of the
recent progress in this area [91, 92], it has become
clear that the interesting question is rather: what
distinguishes the process types that can witness any
entangled state from the process types that cannot?

9 Discussion

We have shown that by recasting the interplay of
entanglement and nonlocality within a resource-
theoretic framework, several puzzling features are
seen to be an artifact of not assuming a consistent

30The question of what kinds of type-changing
transformations are in fact nonclassicality-preserving is
studied in Ref. [87, 88].

31Note that this is not a trivial example, since processes
that have only classical outputs can witness entanglement in
some networks. For instance, if one considers the triangle
network of Fig. 9a in Appendix J, there exist tripartite joint
distributions, such as the one described in Eq. (49), that are
only realizable quantumly, not classically, and hence the type-
changing resource conversion that takes states to distributions
can witness some entangled states device-independently within
this network.

choice of the free operations for all types of
processes. In the resource theory where the network
is presumed to be one where the parties share a
common source and where the free sources are the
classical ones, the set of free operations is LOSR
for all types of conversion relations and the relevant
notion of entanglement is LOSR-entanglement.
This notion of entanglement is shown to have a
particularly natural interplay with the notion of
nonlocality.

In particular, we have shown that this perspective
provides a particularly satisfactory resolution of
the long-standing anomalies of nonlocality. In
addition to its foundational dividends on this front,
the resource theory based on LOSR operations
is also likely to be significant for certain more
practical problems. For instance, the fact that
partially entangled states provide an advantage over
maximally entangled states for the tasks of certified
randomness generation [15] and for the rate of secret
key extraction [38, 39] suggests that one should seek
to identify the LOSR-entanglement monotones that
quantify the degree of success one can achieve in such
tasks.

Our suggestion to use LOSR supplemented
by 2-way shared entanglement (LOSR2WSE) to
define genuine 3-way entanglement and genuine 3-
way nonlocality has not only conceptual merit—
providing a satisfactory resolution to a tripartite
anomaly of nonlocality for instance—but also the
potential for practical applications. For example, it
opens the door to defining quantitative measures of
these types of entanglement and nonlocality. This
is in contrast to the LOCC-motivated notions of
genuine 3-way entanglement and nonlocality, which
we showed violate basic principles of a resource
theory. Our approach is also easily adapted to
the study of types of nonclassicality in network
structures beyond that of a common source shared
among all parties [93–95].

Self-testing of entangled states is another topic
that has practical significance, insofar as it provides
a means of certifying quantum devices. It is crucial,
therefore, that we properly understand what,
precisely, is certified in a self-testing experiment.
Our resource-theoretic reframing of self-testing
brings additional clarity to this question, by
establishing the freedom up to which a state may be
identified by self-testing. pure bipartite entangled
states of a fixed Schmidt rank). In addition, our
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new approach shows that certain mixed states can
be self-tested. This sets the stage for investigations
of the possibility of self-testing for more general
classes of mixed states, a topic that is important
for experimental implementations of self-testing,
where the ideal of purity can never be fully
achieved. Our approach also shows that certain
convexly nonextremal boxes can self-test a particular
entangled state, thereby expanding the scope of
possibilities for achieving such a certification.

Finally, our resource-theoretic framing of self-
testing also implies that the notion can be extended
beyond quantum states and boxes, to arbitrary
pairs of resource types, and to arbitrary resource
theories. Suppose that resources of both types are
described in a single resource theory, so that one
can specify the partial order over all resources in
terms of interconvertibility under the free operations.
Leveraging our abstract characterization of self-
testing (given explicitly in Appendix D), self-testing
of a type-T resource, R, by a type-T ′ resource,
R′, simply means that the upward closure among
resources of type T of R′ is equal to that of R.
Equivalently, it means that the upward closure
of the equivalence class of R′ among equivalence
classes of resources of type T has a unique least
element, namely, the equivalence class of R. Such a
notion of self-testing could be applied, for example,
to the resource types considered in the type-
independent LOSR resource theory laid out in
Refs. [87, 88], which are relevant for semi-device-
independent certification protocols. It could also be
applied to completely different resource theories in
other contexts.

We showed in Section 8 how our resource-
theoretic approach naturally accommodates Werner
states and hidden nonlocality, in such a way
that they are no longer fundamentally puzzling.
It will be interesting to reconsider related results
through this lens, such as conversions from multiple
entangled states [96–98] to nonlocal boxes (including
entanglement distillation) and Peres’ conjecture [99,
100]. The considerations in Ref. [87] on encodings of
nonclassicality are likely to be of value here.

It also remains to be seen towhat extent theLOSR
paradigm can provide new insights into the question
of what resources are needed for information-
processing tasks that are built on Bell inequality
violations—such as nonlocal games [101–103], key
distribution [38, 39, 104–107] and randomness

generation [108–111].

In terms of developing the resource theory of
LOSR-entanglement, we have demonstrated the
significance of LU-equivalence for the problem
of characterizing the necessary and sufficient
conditions for convertibility of pure entangled states
under LOSR. Leveraging this result, we have solved
the problem completely in the bipartite case, and
proven a useful necessary condition for LOSR-
convertibility in the multi-partite case.

Our reanalysis of the interplay of entanglement
and nonlocality provides, we believe, a strong
motivation for developing the resource theory
of LOSR-entanglement to the same level of
sophistication as has been achieved for LOCC-
entanglement. Another motivation for doing so is
that the resource theory of LOSR-entanglement has
applications beyond the study of states and boxes
in Bell scenarios. Ref. [87] showed that LOSR is
the appropriate set of free operations for evaluating
the inconvertibility of many other types of resources
besides boxes, including steering assemblages [1,
112–115] and teleportages [116–118], and that doing
so unifies and extends a variety of seminal results
regarding interconversions between these distinct
forms of nonclassicality. Consequently, for the study
of the interplay of entanglement to these other
types of nonclassical resources, it is also LOSR-
entanglement that is the appropriate notion.

We note, finally, that entanglement theory has
also recently found applications beyond quantum
information processing, such as in many-body
physics and in the study of holography. Given that
the notion of classical communication does not
seem to be pertinent in any of these applications,
there is reason to suspect that LOCC-entanglement
might be ill-suited to these applications. Our results,
therefore, call out for a reassessment of how to
formalize the notion of entanglement in these
fields of study, and a consideration of whether the
paradigm of LOSR-entanglement might be more
suitable.32

32For instance, Refs. [80, 119] support the notion that LOSR-
entanglement is pertinent to many-body physics, given that it
argues for the pertinence of the notion of entanglement spread,
which is a pure-state monotone for LOSR-entanglement but
not for LOCC-entanglement, as noted in Sec. 6.
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Appendices
Appendix A Extracting a monotone from
each instance of the anomaly

As mentioned in the main text, one can define
LOSR monotones which capture features of the
LOSR preorder that are not captured by LOCC
monotones simply by repurposing each of the
known examples of “anomalies of nonlocality”. We
now define a few such monotones explicitly. Each
example of the anomaly involves a particular
nonlocality-witnessing function, that is, a real-
valued function over boxes for which there is a
threshold value that attests to the box being
nonlocal. The natural monotone over quantum
states corresponding to that function is obtained by
a yield-construction [120], in which one computes
the maximum value of that function over all boxes
that can be generated using LOSR operations from

the given state. The resulting function over states
is an LOSR-entanglement monotone, due to the
explicit maximization over LOSR operations in the
definition.

In the first anomaly we listed below Eq. (2), the
function which was used to witness the nonlocality
of a given box was the maximum probability with
which that box could run Hardy’s version of Bell’s
theorem. Denoting this function fprobHardy, one can
define an LOSR monotone for states as follows:

MprobHardy(ρ) := max
τ∈LOSR

{fprobHardy(τ(ρ))}, (16)

where τ is any LOSR operation taking states to
boxes. As an aside, it is worth noting that the
monotone MNPR from Ref. [7], which is defined
for boxes, is maximized by a particular Hardy box
(defined in Table 4 of Ref. [7]). Hence, another
relevant LOSR monotone for states can be defined
as follows:

MNPR(ρ) := max
τ∈LOSR

{MNPR(τ(ρ))}, (17)

where τ is any LOSR operation taking states to
boxes.

In the second anomaly we listed below Eq. (2), the
function which was used to witness nonlocality was
a tilted Bell inequality (viewed as a function from
boxes to the reals). Denoting the function defined
by the tilted Bell inequality with tilt α [52, 53]
as fα−tilted, an LOSR monotone for states can be
defined as follows:

Mα−tilted(ρ) := max
τ∈LOSR

{fα−tilted(τ(ρ))}, (18)

where τ is any LOSR operation taking states to
boxes.

By now, the pattern is clear. One can define
an analogous yield-based monotone for each of the
anomalies.

We leave the task of using these monotones to
glean insights into the LOSR preorder over quantum
states for future work. A deficiency of the above
monotones (as presented) is that it may be difficult
to perform the optimization in their definitions
(especially since the convex set which is optimized
over does not have a finite set of extreme points).
Those monotones which are defined in terms of an
abstract function (such as fKR) will also be at least
as difficult to compute as the functions themselves.
In most cases, finding a closed form expression for a
given monotone is paramount for it to be practically
useful.
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Appendix B Proving LOSR
incomparability between two Bell-pairs
and the GHZ state
The purpose of this section is to prove Eq. (8), i.e. the
LOSR incomparability of the tripartite pure states

|ψ2Bell⟩≡|ϕ+⟩A1B⊗|ϕ+⟩A2C , and (19)
|ψGHZ⟩≡ 1√

2(|000⟩ABC+|111⟩ABC), (20)

as was required for resolving the anomaly regarding
genuinely 3-way entanglement.

To prove incomparability, we must show that
neither state can be converted into the other. The
impossibility of each of these two conversions is
proved by showing that the necessary condition
given in Eq. (14) is not satisfied. For tripartite
systems, there are exactly three bipartitions
among the three parties, henceforth denoted
{A|BC, B|AC, C|AB}. The associated squared
Schmidt coefficients for |ψ2Bell⟩ and |ψGHZ⟩ are as
follows:

λ
(A|BC)
2Bell =(1

4 ,
1
4 ,

1
4 ,

1
4), λ

(A|BC)
GHZ =(1

2 ,
1
2),

λ
(B|AC)
2Bell =(1

2 ,
1
2), λ

(B|AC)
GHZ =(1

2 ,
1
2),

λ
(C|AB)
2Bell =(1

2 ,
1
2), λ

(C|AB)
GHZ =(1

2 ,
1
2).

(21)

First, when considering the A|BC partition, it
becomes clear that |ψGHZ⟩ ̸7→ |ψ2Bell⟩ under LOSR
as there is no vector λ(A|BC)

ζ such that (λ(A|BC)
GHZ )↓ =

(λ(A|BC)
2Bell ⊗ λ

(A|BC)
ζ )↓, and thus Eq. (14) cannot be

satisfied. (One can also see this through the failure
of the condition in Corollary 10 in Appendix H,
since the ratio of the Schmidt rank of |ψGHZ⟩ to
that of |ψ2Bell⟩ is not an integer.) Second, Eq. (14)
implies that |ψ2Bell⟩ 7→|ψGHZ⟩ only if there exists an
auxiliary state |ζ⟩ such that

λ
(A|BC)
ζ =(1

2 ,
1
2), (22)

λ
(B|AC)
ζ =(1), (23)

λ
(C|AB)
ζ =(1). (24)

However, these squared Schmidt coefficients are
not consistent with any tripartite state |ζ⟩. This
can be seen by the fact that Eq. (23) implies
that |ζ⟩ factorizes across the B|AC partition, and
Eq. (24) implies that |ζ⟩ factorizes across the C|AB
partition, and together these two facts imply that

|ζ⟩ must factorize across the A|BC partition. But
this contradicts Eq. (22), since the latter can only
hold if |ζ⟩ is entangled across the A|BC partition.
Therefore, |ψ2Bell⟩ ̸7→|ψGHZ⟩ under LOSR.

Appendix C A subtlety regarding the
standard definition of self-testing of states
In this appendix, we discuss a subtlety regarding our
claim that Definition 3 is the standard definition of
self-testing of states. Careful inspection will reveal
that Definition 3 is, in fact, not equivalent to the
definition one finds in the primary review article
on the topic [31]. The criterion for a state |ψ⟩ to
be self-tested by a box B stipulated therein (their
Definition 1) is similar to Definition 3, but without
the condition that “B can be obtained from |ψ⟩
by local measurements.” Nonetheless, we argue that
this omission was surely inadvertent. Definition 3 is
the notion of self-testing of states that follows from
the original notion of self-testing, where the sort of
object for which the notion of self-testability applied
was a triple, consisting of a state on AB, a set of
local projective measurements on A, and a set of
local projective measurements on B. The original
definition, introduced by Mayers and Yao [29, 30]
and still used today [52, 55, 57, 121] is essentially as
follows:

Definition 7 (original). Consider a triple consisting
of a pure state |ψ⟩AB, a set of projective
measurements {MA

s }s (where MA
s is represented

by a projector-valued measure {MA
x|s}x), and a set

of projective measurements {MB
t }t (where MB

t is
represented by a projector-valued measure {MB

y|t}y).
The triple (|ψ⟩AB,{MA

s }s,{MB
t }t) is self-tested by

a box B if for any triple (|ϕ⟩A′B′ ,{NA′
s }s,{NB′

t }t)
(consisting of a pure state and two sets of projector-
valued measures) from which the probability
distribution PXY |ST associated toB can be obtained
as PXY |ST (xy|st) = TrAB

(
|ϕ⟩⟨ψ|A′B′(NA′

x|s⊗N
B′

y|t)
)
,

there is a local isometry that takesNA′

x|s⊗N
B′

y|t |ϕ⟩A′B′

to
(
MA
x|s⊗M

B
y|t|ψ⟩AB

)
⊗|ξ⟩ for some |ξ⟩.

Subsequently, this definition was dissected into
a definition of self-testability of states and a
definition of self-testability of measurements [31, 49,
50, 56]. However, in the process, something was
inadvertently left on the operating table.
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Consider what Definition 7 implies for the
conditions under which a box B self-tests a given
state |ψ⟩, as opposed to self-testing a state together
with a pair of measurements.

First, note that Definition 7 implies that
the probability distribution PXY |ST associated
to the box B can be obtained from the triple
(|ψ⟩AB, {MA

s }s, {MB
t }t) via PXY |ST (xy|st) =

TrAB
(
|ψ⟩⟨ψ|AB(MA

x|s⊗M
B
y|t)

)
. This follows from

the fact that by assumption PXY |ST (xy|st) =
TrAB

(
|ϕ⟩⟨ϕ|A′B′(NA′

x|s⊗N
B′

y|t)
)

and by replacing

NA′

x|s ⊗NB′

y|t |ϕ⟩A′B′ and its adjoint by their images
under the isometry, namely,

(
MA
x|s ⊗MB

y|t|ψ⟩AB
)

⊗
|ξ⟩ and its adjoint. Consequently, it follows from the
definition that the box B must be obtainable from
|ψ⟩ by local projective measurements.

Second, note that the isometry that takes NA′

x|s⊗
NB′

y|t |ϕ⟩A′B′ to
(
MA
x|s ⊗ MB

y|t|ψ⟩AB
)

⊗ |ξ⟩ in
Definition 7 also takes |ϕ⟩A′B′ to |ψ⟩AB ⊗ |ξ⟩. This
follows from summing over x and y and recalling
that by virtue of the measurements being projective,
we have

∑
xN

A′

x|s = IA
′ ,

∑
yN

B′

y|s = IB
′ ,

∑
xM

A
x|s =

IA, and
∑
y M

B
y|s = IB. Consequently, for any

state |ϕ⟩ that can generate B by local projective
measurements, there is a local isometry that takes
|ϕ⟩ to |ψ⟩⊗|ξ⟩ for some |ξ⟩.

Definition 7 therefore implies that a state is self-
tested by a box if and only if the following two
conditions are both satisfied:

Box-generating condition: The state |ψ⟩
must be able to generate the boxB by local
projective measurements.

Extraction condition: The state can be
extracted from any state that could have
generated the box by implementing a local
isometry and tracing over an auxiliary
system which is in a pure state.

These two conditions are incorporated into
what we have termed the “standard definition”
(Definition 3)—we have merely relaxed the
condition that the measurements be projective and
that the auxiliary system be in a pure state. But
the definition one finds in Ref.[31] has left out the
box-generating condition.

It consequently asserts that |ψ⟩ can be self-tested
byboxB even if |ψ⟩ itself could not have generatedB.

In particular, therefore, it asserts that every nonlocal
box B self-tests every product pure state, simply
because a product pure state can be extracted from
any pure state by implementing a local isometry
and tracing over an auxiliary system which is in a
pure state. This conclusion is one that the authors
presumably did not intend to endorse. Indeed, it is
commonplace to refer to self-testing as a certification
of what state was used to generate the box. This
example also highlights the inconsistency of the
definition one finds in Ref. [31] with the original
definition (Definition 7). According to the latter, if
|ψ⟩ is a product state, then it cannot be self-tested
by a nonlocal box because the local measurements
are explicitly required to be on the state |ψ⟩ rather
than on the state |ξ⟩ of the auxiliary system, and a
product state cannot yield a nonlocal box.

It is these considerations that suggest to us that
the omission of the box-generating condition was
merely an oversight, and that the standard view
of self-testing takes it as an implicit additional
condition. Our Definition 3 reflects this by explicitly
including the condition.

Appendix D General resource-theoretic
definitions of self-testing
The definition of self-testing that is appropriate for
a generic resource theory and two types of resources
is as follows:

Definition 8 (general resource-theoretic). Consider
a resource theory with the free operations F , a set
of resources that are the testees, E , and a set of
resources that are the testers, T (typically the testee
and tester resources are presumed to be of different
types). Given a pair consisting of a testee resource
E∈E and a tester resource T ∈T , we say that E is
self-tested by T if it holds that

E 7→T

and that for all testee resources E′ ∈E ,
if E′ 7→T then E′ 7→E,

where all conversions are evaluated relative to the
free operations F . A testee resource E∈E is said to
be self-testable if there exists some T ∈T that self-
tests E.

For the resource theory of interest in this article,
and for self-testing of states by boxes (Definition 4),
the set of testee resources is the set of all states, while
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the set of tester resources is the set of all boxes, and
the set of free operations is LOSR.

We now elaborate on a more abstract resource-
theoretic characterization of self-testing which is
equivalent to Definition 8.

The free operations of the resource theory, F ,
define a preorder over all of the testee and tester
resources of interest, that is, E ∪T . Specifically, for
E∈E and T ∈T , we have a preorder relation E>T
if there exists an operation in F convertingE into T .

The upward closure of a resourceR in the preorder
of resources defined by a resource theory with free
operations F , denoted here by UCF(R), is the set
of all resources that can be converted to R using
operations in F . Formally,

UCF (R) :={R′ :R′ 7→R},

where R′ 7→R here denotes convertibility relative to
F . Note that it is defined for any R, including any
testee resource E∈E and any tester resource T ∈T .

Using the notion of upward closure, one can
provide an equivalent formulation of Definition 8.

Definition 9 (general resource-theoretic). Consider
a set of testee resources E and a set of tester resources
T within a resource theory with free operations F .
A particular testee resource E ∈ E is self-tested by
a particular tester resource T ∈ T if it holds that
the upward closure of T within E contains all and
only those testees which are contained in the upward
closure of E within E ,

UCF (T )∩E =UCF (E)∩E . (25)

It is also instructive to consider a reformulation
of the definition of self-testing which focuses on
the partial order of equivalence classes of resources
rather than the preorder of resources themselves. Let
R̃ denote the F-equivalence class of the resource R.
For a pair of distinct equivalence classes, R̃ and R̃′,
let R̃ > R̃′ denote that R̃ is above R̃′ in the partial
order, meaning that ∀R∈R̃,∀R′ ∈R̃′ :R 7→R′.

Clearly, the upward closure of a resource R is
the same as that of any resource within the F-
equivalence class of R, that is, UCF(R) is the same
for any R∈R̃.

The upward closure in the partial order of an
equivalence class of resources, R̃, denoted here by
ŨCF(R̃), is the set of all equivalence classes of

resources that are above or equal to R̃ in the partial
order induced by the free operations F . Formally,

ŨC(R̃) :={R̃′ :R̃′ ≥R̃}.

Using this notion, we can provide another
definition of self-testing.

Definition 10 (general resource-theoretic,
equivalence classes). Consider a set of equivalence
classes of testee resources Ẽ and a set of equivalence
classes of tester resources T̃ within a resource
theory with free operations F . A particular testee
equivalence class Ẽ∈Ẽ is self-tested by a particular
tester equivalence class T̃ ∈T̃

if it holds that the upward closure of T̃ within
Ẽ contains all and only those testees which are
contained in the upward closure within Ẽ of Ẽ ,

ŨCF (T̃ )∩Ẽ =ŨCF (Ẽ)∩Ẽ . (26)

This condition is equivalent to Ẽ being the minimum
element of the upward closure within Ẽ of T̃
(considered as a subset of a partial order),

Ẽ=min
[
ŨCF (T̃ )∩Ẽ

]
, (27)

where min(S) denotes the minimum element of the
subset S of a partially ordered set, i.e., an element
of S that is smaller than every other element of S.

If one particularizes this definition to the case
of states and boxes, one obtains the following
definition, which is equivalent to Definition 4.

Definition 11. Consider the resource theory
wherein the free operations are LOSR. We say that
a particular equivalence class of states ρ̃ is self-tested
by a particular equivalence class of boxes B̃ if ρ̃ is the
minimum element of the upward closure of B̃ within
the set of all equivalence classes of states, S̃tates,
that is, if

ρ̃=min
[
ŨC(B̃)∩S̃tates

]
. (28)

The resource-theoretic perspective also motivates
a natural relaxation of the notion of self-
testing, corresponding to dropping the condition
of uniqueness. To express the relaxation of
Definition 10, for instance, in which a set of
equivalence classes of testee resources, {Ẽx}x ⊂ Ẽ
(which could be finite or continuous) is self-tested by
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an equivalence class of tester resources, T̃ , it suffices
to replace Eq. (26) with

ŨCF (T̃ )∩Ẽ =ŨCF ({Ẽx}x)∩Ẽ , (29)

which is equivalent to

{Ẽx}x=MinElements
[
ŨCF (T̃ )∩Ẽ

]
, (30)

where MinElements(S) denotes the minimal
elements of a subset S of a partially ordered set, i.e.,
those elements of S that are not greater than any
other element of S. (If a subset S has a minimum
element and MinElements(S) is a singleton set,
then MinElements(S) coincides with min(S).33 )

To recast this relaxed notion of self-testing in
terms of a set of resources {Ey}y ⊂ E rather than
a set of equivalences classes thereof, i.e., to express
this relaxation in the form of Definition 9, it suffices
to modify Eq. (25) to:

UCF (T )∩E =UCF ({Ey}y)∩E . (31)

Note that if the set of equivalence classes of testee
resources {Ẽx}x⊂Ẽ is self-tested by the boxB, then
the only sets of testee resources, {Ey}y ⊂ E , that
are self-tested by B are sets containing at least one
representative from each equivalence class in {Ẽx}x.

The notion of unique self-testing differs from this
relaxed notion of self-testing by the fact that it
demands that the set of equivalence classes of testee
resources, {Ẽx}x, is a singleton set, or equivalently,
that the set of testee resources, {Ey}y, is contained
within a single equivalence class.

To be sure, in cases of nonuniqueness, there will
be more uncertainty about the identity of the testee
resource than if unique certification were possible.
But for certain applications, it might be sufficient if
this uncertainty is quantified and bounded.

We now consider the specialization of this relaxed
notion of self-testing to the case of self-testing
entangled states by nonlocal boxes. The condition
for a set of equivalence classes of states {ρ̃x}x to be

33To see that MinElements(S) being a singleton set does
not by itself imply that it coincides with min(S), it suffices
to consider preorders that can be of infinite height and
therefore that can include subsets with no minimum. For
instance, if S is an infinite chain together with another element
r that is incomparable to the points in the chain, then
MinElements(S) = {r}, but min(S) is the empty set. We
thank an anonymous referee for this example.

self-tested by an equivalence class of boxes, B̃, is as
in Definition 11, but where Eq. (28) is replaced by:

{ρ̃x}x=MinElements
[
ŨC(B̃)∩S̃tates

]
. (32)

In the main text, we noted that a chiral state
is an example of a state that cannot be self-tested
according to the nonrelaxed definition. From the
perspective of the relaxed definition, however, the
set consisting of the equivalence class of a chiral state
and the equivalence class of its image under complex
conjugation is one that can be self-tested. Note that
allowing that a box can certify a set of equivalence
classes of states rather than a single such equivalence
class (up to upward closure of course) is quite
different from proposing that the free operations
be modified to include complex conjugation. As we
argued in the main text, such a relaxation is the best
way to interpret proposals for modifying the notion
of self-testing in order to include chiral states.

Appendix E Self-testing as unique
certification up to equivalence

We noted in Section 5 that the resource-
theoretic perspective on self-testing clarifies that it
corresponds to certification up to upward closure,
rather than up to equivalence.

Nonetheless, there is a circumstance in which one
can certify the state up to equivalence, namely, if one
has restricted attention to a subset of states wherein
no two states are strictly ordered. Under such a
promise about the state, one can conclude from the
satisfaction of the condition of self-testability of ρ by
box B that any other state σ in the subset that can
generate the box B is indeed LOSR-equivalent to ρ,
rather than merely above ρ in the LOSR order.

Determining when certification up to equivalence
is possible motivates the task of finding subsets of
states that contain no strictly ordered elements, so
that every pair of states in the set is either equivalent
or incomparable. That is precisely the sort of
problem that is solved by determining the preorder
of entangled states. In particular, our Corollary 9
establishes that for any set of multipartite pure
states having a fixed Schmidt rank along every
bipartition, every pair of states in the set is either
LOSR-equivalent or LOSR-incomparable. As such,
for the set of all bipartite pure states with a given
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Schmidt rank, every pair of states is either LOSR-
equivalent or LOSR-incomparable. If one then
leverages the result of Ref. [56], namely, that every
pure bipartite state is self-testable, it follows that if
the state is known to be in the set of pure bipartite
states of a given Schmidt rank, then it is possible to
certify the state up to equivalence.

We note that the existence of a continuum of
states that can be uniquely certified in the sense
just described is only possible because of two
features of the LOSR preorder: it contains anti-
chains (sets of pairwise incomparable elements) of
infinite cardinality both among states, as follows
from Corollary 9 and the continuum of possibilities
for vectors of squared Schmidt coefficients of a
given Schmidt rank, and among boxes, as proven in
Ref. [7].

For what other sets of pure states might one be
able to prove the possibility of unique certification of
states within that set up to LOSR-equivalence? Our
characterization of the LOSR preorder of pure states
also sheds light on this question. As we demonstrate
in Corollary 10 of Appendix H, a sufficient condition
for the incomparability of two LOSR-inequivalent
bipartite pure states is that the ratio of their Schmidt
ranks is not an integer. We can then leverage the
result of Ref. [56] to conclude the following: if we let
Sx be the set of all pure bipartite states of Schmidt
rank x, then for any set of integers X for which
every ratio is noninteger (i.e., ∀x,x′ ∈X it holds that
x/x′ ̸∈Z+), the set of states ∪x∈XSx is one relative
to which unique certification of every state up to
LOSR equivalence) is achievable, while for any set
of integers X̃ for which there exists a pair with an
integer ratio (i.e., ∃x,x′ ∈ X̃ such that x/x′ ∈ Z+),
such unique certification is impossible. Presumably,
this example is of academic interest only.

Appendix F On LOSR equivalence
classes and LO equivalence classes of
states and boxes

We begin by exhibiting a collection of mixed
states on a bipartite system A′B′ that are LOSR-
equivalent to a pure state |ψ⟩⟨ψ| on the bipartite
system AB.34 Specifically, consider the states of the

34Note that we denote the quantum system in Bob’s
possession byB, a notation that we have also used for a generic

following form, which we term flag-convexifications
of ψ:

ρA′B′ :=
∑
ij

p(ij)U (i)
A ⊗U (j)

B |ψ⟩⟨ψ|ABU
(i)†
A ⊗U (j)†

B

⊗|i⟩⟨i|ZA⊗|j⟩⟨j|ZB ,
(33)

whereZA andZB are local flag degrees of freedom for
Alice and for Bob respectively,A′ =(A,ZA) andB′ =
(B,ZB), p(ij) is a joint probability distribution, U (i)

A

and U
(j)
B are arbitrary unitaries, and {|i⟩ZA}i and

{|j⟩ZB}j are arbitrary orthonormal bases forZA and
ZB. As long as p(ij) is not a point distribution, ρA′B′

is mixed. Such a state is depicted schematically in
Fig. 6.Note that this set of states is not an exhaustive
characterization of those that are LOSR-equivalent
to |ψ⟩.35

To give the intuition for why a flag-convexification
of |ψ⟩, that is, a mixed state ρ of the form of Eq. (33),
is LOSR-equivalent to |ψ⟩, we provide a schematic
in Fig. 6 of the reversible LOSR operation that is
needed to take |ψ⟩ to ρ; the one that recovers |ψ⟩
from ρ is easily inferred from the figure.

A′ B′

ρ
=

ZA ZBA B

A B

reversible reversible

ψ

Figure 6: A schematic depiction of a mixed state ρ of the
form of Eq. (33), which is LOSR-equivalent to the pure state
|ψ⟩. We have here used the conventional notation for a
controlled operation.

The detailed proof is as follows. To convert |ψ⟩AB
to ρAB, the parties use their shared randomness
to prepare their flag systems in the separable
state

∑
ij p(ij) |i⟩ ⟨i|ZA ⊗ |j⟩ ⟨j|ZB , Alice applies a

controlled unitary
∑
iU

(i)
A ⊗ |i⟩⟨i|ZA with her local

flag systemZA as the control andA as the target, and
Bob acts similarly. To convert ρAB to |ψ⟩AB, Alice
applies the controlled unitary

∑
i U

(i)†
A ⊗ |i⟩ ⟨i|ZA ,

box; which usage is intended in a given instance should be
clear from the context.

35The latter set can be obtained by considering all the ways of
supplementing |ψ⟩ with shared randomness and then applying
local isometries.
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Bob acts similarly, and then each traces out their
local flag system.

Flag-convexification also provides a means of
exhibiting a collection of mixed states that are LO-
equivalent (as well as LOSR-equivalent) to a given
pure state. It suffices to take the distribution p(ij)
in Eq. (33) to be factorizing, i.e., p(ij)=p(i)p(j). In
this case, one only requires local randomness, rather
than shared randomness to prepare p(ij), so that the
operation in Eq. (33) is implementable by LO.

It is also evident that mixed states of the form
of Eq. (33) wherein p(ij) does not factorize are
examples of states that are equivalent to |ψ⟩ in the
LOSR order, but strictly above |ψ⟩ in the LO order.
The existence of such states was noted in the main
text. This was claim (b) of Lemma (3). The example
used to prove the claim was ρ = |ψ⟩⟨ψ| ⊗ω, where
ω is any separable but nonfactorizing mixed state.
Flag-convexification merely provides a collection of
further examples that establish this claim. Note
that the example we used to prove claim (b) of
Lemma 3 in the text is a trivial instance of Eq. (33)
with nonfactorizing p(ij), namely, one wherein the
reversible operations are identity maps.

We now turn from states to boxes. The arguments
proceed analogously to the case of states.

We begin by exhibiting a collection of convexly
nonextremal boxes that are LOSR-equivalent to
a convexly extremal box Bext, termed flag-
convexifications of Bext. Denoting the conditional
probability distribution associated to the convexly
extremal box by Bext

XY |ST (where X and Y are
the outputs for Alice and Bob and S and T
are their inputs), one can construct from Bext a
box B associated to the conditional probability
distribution BX′Y ′|ST , as follows:

BX′Y ′|ST =
∑
ij

p(ij)
[
F (i)
X ⊗F (j)

Y

]
(Bext

XY |ST )⊗δZA,iδZB ,j

(34)

where X ′ = (X,ZA) and Y ′ = (Y,ZB), where F (i)
X is

a reversible function acting on X and similarly for
F (j)
Y , and where δx,y represents the Kronecker-delta

function. Such a box is depicted schematically in
Fig. 7. As long as p(ij) is not a point distribution,B
is convexly nonextremal.36

36Note that this is not the most general form of a convexly
nonextremal box that is LOSR-equivalent to Bext. In

The intuition for why any B that is a flag-
convexification of Bext is LOSR-equivalent to Bext,
is provided in Fig. 6 which exhibits the reversible
LOSR operation that is needed to takeBext toB and
makes clear what LOSR operation would recover
Bext from B.

B

X ′ Y ′

S T

=

ZX ZYX Y

X Y

reversible reversible

S T

Bext

Figure 7: A schematic depiction of a convexly nonextremal
box B of the form of Eq. (34), which is LOSR-equivalent to
the convexly extremal box Bext.

The detailed proof is as follows. To convert Bext
to B, the parties use their shared randomness to
prepare their classical flag variables ZA and ZB in
the distribution

∑
ijp(ij)δZA,i⊗δZB ,j , Alice applies

the function F (i)
X to X by controlling on the value

of ZA, and Bob applies the function F (i)
Y to Y by

controlling on the value of ZB. To convert B to
Bext, Alice simply also applies the same controlled
operation, as does Bob, and then each traces out
their local flag variable.

As with states, flag-convexification of boxes
provides a means of exhibiting a collection of mixed
states that are LO-equivalent, rather than LOSR-
equivalent, to a given convexly extremal box, namely,
those wherein p(ij) in Eq. (34) factorizes. Also
similarly to the case of states, boxes of the form
of Eq. (34) wherein p(ij) does not factorize are
equivalent to Bext in the LOSR order but above
Bext in the LO order. This is claim (b) of Lemma 1.
The example used to prove this claim in the text
was a trivial instance of a flag-convexified box
with nonfactorizing p(ij), namely, one wherein the
reversible operations are identity maps.

A graphical depiction of the difference between
the partial order of states and boxes under LOSR
and the partial order under LO is provided in Fig. 8.

particular, by copying the inputs of Bext, i.e., S and T , and
feeding these forward, the reversible function applied to X
can be controlled on S in addition to ZA and the reversible
function applied to Y can be controlled on T in addition toZB .
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|ψ〉 ρ1 ρ2

Bext B1 B2

σ σ′ σ′′

(a)

|ψ〉 ρ1

Bext B1

σ σ′ σ′′

ρ2

B2

(b)

Figure 8: Partial orders of equivalence classes of states
and boxes relative to LOSR (a) and relative to LO (b)
revealing the discrepancies between LOSR-based and LO-
based notions of self-testing. Here, the ρ’s and the B’s
represent particular elements of a given equivalence class,
where a class is depicted by a loop. ρ1 and ρ2 are of the form
of Eq. (33) and B1 and B2 are of the form of Eq. (34), but
only ρ2 and B2 involve a distribution p(ij) that does not
factorize. ρ2 is self-tested by Bext relative to LOSR but not
relative to LO, and B2 self-tests |ψ⟩ relative to LOSR but
not relative to LO.

Appendix G On the insufficiency of the
condition in Corollary 8 for LOSR-
convertibility

One consequence of Eq. (10) is that each pair
of LOCC-incomparable states is also LOSR-
incomparable. We can leverage this observation,
together with known results on LOCC-
incomparability, to show that Eq. (14) in Corollary 8
fails to be a sufficient condition for all n>2.

Specifically, it is known that there exists chiral
states for each n>2 which are LOCC-incomparable
to their complex conjugate (in a particular basis) [70,
73]. Eq. (10) implies that these chiral states are
also LOSR-incomparable to their complex conjugate.
These instances of LOSR-incomparability are not
witnessedby a failure ofEq. (14) because the squared
Schmidt coefficients of any state are unchanged after
complex conjugation. Consequently, satisfaction of
Eq. (14) is not a sufficient condition for LOSR-
convertibility.

For a concrete example with n= 3, consider the
tripartite state |ψ⟩ = |+++⟩ABC + i−1

2
√

2 |111⟩ABC
and its complex conjugate (relative to the
computational basis), |ψ∗⟩. Evidently, the squared
Schmidt coefficients of |ψ⟩ and |ψ∗⟩ coincide for all

bipartitions:

∀β :λ(β)
ψ =λ

(β)
ψ∗ =

(
1
2 +

√
5
32 ,

1
2 −

√
5
32

)
. (35)

It follows that the necessary condition for |ψ⟩ 7→|ψ∗⟩
expressed in Eq. (14) is seen to be satisfied because
one can take ∀β :λ(β)

ζ =(1), which corresponds to |ζ⟩
being a product state, i.e., |ζ⟩= |ζ1⟩A|ζ2⟩B|ζ3⟩C .

Appendix H A method for computing
λ

(β)
ζ

This appendix delineates a method for computing
λ

(β)
ζ in Eq. (14) (if it exists) for a fixed bipartition
β when |ψ⟩ and |ϕ⟩ are known. This method is
useful because, as previously mentioned, Eq. (14)
constitutes a necessary constraint for LOSR (or
LO) convertibility between n-partite pure states.
Moreover, in the case of bipartite systems, Eq. (14)
reduces to the necessary and sufficient condition
given by Eq. (13), for which the following procedure
also applies.

Importantly, Eq. (14) already constrains the
Schmidt ranks of |ζ⟩ relative to all bipartitions,

∀β :SR(β)
ψ =SR(β)

ϕ SR(β)
ζ .

Corollary 10. A pure state |ψ⟩ can be converted to
pure state |ϕ⟩ by LOSR (or by LO) only if for each
bipartition β, the ratio of Schmidt ranks between |ψ⟩
and |ϕ⟩ are positive integers, i.e.,

∀β :k(β) :=
SR(β)

ψ

SR(β)
ϕ

∈Z+. (36)

Therefore, one should first compute λ(β)
ψ and λ(β)

ϕ

and thereby infer k(β) :=SR(β)
ψ /SR(β)

ϕ ; if k(β) fails to
be an integer for any bipartition β, then there is no
solution to Eq. (14) for any λ(β)

ζ . Otherwise, k(β) will
be an integer equal to the Schmidt rank with respect
to the bipartition β of |ζ⟩ (provided such a |ζ⟩ exists).

Without loss of generality, assume that the entries
of λ(β)

ψ (and similarly λ(β)
ϕ and λ(β)

ζ ) are sorted in a

non-increasing order, e.g. λ(β)
ψ,1 ≥λ

(β)
ψ,2 ≥···≥0.

Now for each 1 ≤ j ≤ SR(β)
ζ , let Λ(β)

j denote the
multiset (where multiplicities are included)

Λ(β)
j =(λ(β)

ϕ,i λ
(β)
ζ,j )

SR(β)
ϕ

i∈1 , (37)
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and let Λ(β) denote the multiset

Λ(β) =(λ(β)
ψ,i)

SR(β)
ψ

i∈1 . (38)

Notice that Eq. (14) is equivalent to the claim that

the set of multisets (Λ(β)
j )

SR(β)
ζ

j=1 must form a multiset
partition of Λ(β), i.e.

Λ(β) =
SR(β)

ζ∐
j=1

Λ(β)
j , (39)

where the coproduct operation is the sum of
multisets (generalizing the disjoint union of ordinary
sets).

Without knowing the value of λ(β)
ζ,j , the value of

Λ(β)
j is unknown. Fortunately, if a solution for λ(β)

ζ

in Eq. (14) exists, it must be that λ(β)
ζ,1 (the largest

entry of λ(β)
ζ ) is equal to

λ
(β)
ζ,1 =

λ
(β)
ψ,1

λ
(β)
ϕ,1

. (40)

Therefore, Λ(β)
1 can be immediately determined. If

Λ(β)
1 is not contained in Λ(β), then no solution for
λ

(β)
ζ in Eq. (14) exists and the procedure can be

terminated. To compute the remaining entries of
λ

(β)
ζ , note that Eq. (39) implies a generalization to

Eq. (40)

λ
(β)
ζ,j = 1

λ
(β)
ϕ,1

max{λ′|λ′ ∈Λ(β)\(
∐
i<j

Λ(β)
i )}. (41)

If for any j,
∐
i<jΛ

(β)
i is not contained in Λ(β), then

again no solution for λ(β)
ζ exists. Otherwise, the

computed values for λ(β)
ζ,j as j ranges from 1 through

SR(β)
ζ will constitute the unique solution for λ(β)

ζ in
Eq. (39).

Appendix I Bipartite entanglement
catalysis under LOSR
Recall that for bipartite pure states, the condition
for |ψ⟩ 7→|ϕ⟩ under LOSR can be expressed in terms
of vectors of squared Schmidt coefficients as

∃|ζ⟩ :λ↓
ψ=(λϕ⊗λζ)↓. (42)

(See Eq. (13), and recall that v↓ denotes the vector
with the same components as v, but organized in non-
increasing order, v↓

1 ≥ v↓
2 ≥ ··· ≥ v↓

n.) Consequently,
the condition for |ψ⟩⊗|χ⟩ 7→|ϕ⟩⊗|χ⟩ under LOSR is

∃|ζ⟩ : (λψ⊗λχ)↓ =(λϕ⊗λχ⊗λζ)↓. (43)

We here demonstrate that if a particular state |ζ⟩
satisfies the equality of Eq. (43) for some catalyst
|χ⟩, then the same state |ζ⟩ also satisfies the equality
of Eq. (42), in the absence of any catalyst.

For the purposes of making the proof more
transparent, we introduce a simplified notation for
the vectors appearing therein: α≡ λϕ⊗λζ , β ≡ λψ
and χ≡λχ. In this notation, what we seek to prove
is that

(χ⊗α)↓ =(χ⊗β)↓ (44)

implies
α↓ =β↓. (45)

Note first of all that if one can find a catalyst
state |χ⟩ that is characterized by a vector of squared
Schmidt coefficients, χ, that has some components
that are zero, then one can also achieve catalysis
by a state with no such components, simply by
defining the state on a Hilbert space of smaller
dimension. Consequently, one can assume without
loss of generality that χi ̸=0 for all i.

The proof is by induction.
Clearly, (χ ⊗ α)↓

1 = χ↓
1α

↓
1 and (χ ⊗ β)↓

1 = χ↓
1β

↓
1 .

Using (χ⊗α)↓
1 = (χ⊗β)↓

1, i.e., the first component
of the vector equality expressed by Eq. (44), and
recalling that χ↓

1 ̸=0, we infer that α↓
1 =β↓

1 .
Let α(n) denote the vector obtained by dropping

the first n components of α↓, so that α(n) ≡
(α↓

n+1,α
↓
n+2,...). Define β(n) similarly.

Note that α↓
1 = β↓

1 implies χ↓
iα

↓
1 = χ↓

iβ
↓
1 for all i.

If we drop from the vector χ⊗ α the components
χ↓

1α
↓
1, χ

↓
2α

↓
1, ... , χ

↓
nα

↓
1, and put the remaining

components of χ ⊗ α in non-increasing order,
we obtain the vector (χ ⊗ α(1))↓. The analogous
procedure on the vector χ ⊗ β yields the vector
(χ⊗β(1))↓. Now note that the components we have
dropped from χ⊗α are equal to the corresponding
components that we have dropped from χ⊗β, and
so Eq. (44) implies that the remaining components
of these vectors, when placed in nonincreasing order,
are equal to one another, i.e.,

(χ⊗α(1))↓ =(χ⊗β(1))↓. (46)
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Clearly, the argument provided above to justify
the inference from Eq. (44) to α↓

1 =β↓
1 also justifies

an inference from Eq. (46) to α↓
2 =β↓

2 .
Similarly, the argument provided above to justify

the inference from α↓
1 =β↓

1 and Eq. (44) to Eq. (46)
also justifies an inference from α↓

2 =β↓
2 and Eq. (44)

to
(χ⊗α(2))↓ =(χ⊗β(2))↓. (47)

By repeating this sequence of arguments
inductively, one can infer that α↓

i = β↓
i for all i,

which concludes the proof.

Appendix J Example of a pair of
network structures for which the classical-
nonclassical boundary for states differs
from the separable-nonseparable boundary

Consider the two networks among three parties
depicted in Fig. 9. The first, termed the triangle
network, has three sources, each of which is shared
between a different pair of parties (these sources
are therefore termed “2-way sources”). The second,
which we term the trine network, has a single source
shared between all three parties (which is termed a
“3-way source”).

A

B C

(a) The triangle network.

A

B C

(b) The trine network.

Figure 9: The triangle network and the trine network.

Consider the tripartite states that can be
realized in the trine network. Among such
states, the boundary between those having
classical correlational properties and those having
nonclassical correlational properties is determined
by whether the 3-way source can be classical or
whether it needs to be quantum. More precisely, it
is the boundary between tripartite states that can
be achieved using local operations together with
a classical 3-way source, i.e., shared randomness
between the three parties, termed LOSR and
depicted in Fig. 10a, and those that can only be
achieved using local operations together with a
quantum 3-way source, i.e., shared entanglement

=

(a) Form of a tripartite state that is realizable in a classical
version of the trine network; that is, by LOSR operations.

=

(b) Form of a tripartite state that is realizable in a quantum
version of the trine network; that is, by LOSE operations.

Figure 10: A distinction among tripartite states that can be
realized in the trine network.

=

(a) Form of a tripartite state that is realizable in a classical
version of the triangle network, that is by LO2WSR.

=

(b) Form of a tripartite state that is realizable in a quantum
version of the triangle network, that is by LO2WSE.

Figure 11: A distinction among tripartite states that can be
realized in the triangle network.

between the three parties, termed LOSE [122, 123]
and depicted in Fig. 10b. As is well known, LOSE
allows for the realization of any tripartite state,
and the boundary between those states that are
realizable by LOSR and those that require LOSE
is simply the boundary between the separable and
the nonseparable states.

Contrast this with the tripartite states that
can be realized in the triangle network. Among
such states, the boundary between those having
classical correlational properties and those having
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nonclassical correlational properties is determined
by whether the triple of 2-way sources can be
classical or whether one or more of them needs
to be quantum. More precisely, it is the boundary
between tripartite states that can be achieved
using Local Operations together with sources of 2-
Way Shared Randomness (LO2WSR), depicted in
Fig. 11a, and those which can only be achieved
with Local Operations together with sources of 2-
Way Shared Entanglement (LO2WSE), depicted
in Fig. 11b.37 The set of tripartite states that
are realizable in a triangle network does not
include all tripartite states. Indeed, there are both
nonseparable and separable states that cannot be
realized in such a network [26]. Furthermore, the
boundary between states realizable in this network
classically versus those realizable nonclassically does
not coincide with the boundary between separable
and nonseparable states.

To see that the latter claim is true, it is sufficient
to consider a simple example, corresponding to
the tripartite probability distribution proposed by
Fritz [94], but conceptualized as a separable state
on a tripartite system, ABC, where each subsystem
is associated with a 4-dimensional Hilbert space.
Defining binary variables A0,A1, B0,B1 and C0,C1,
this tripartite separable state can be expressed as:

ρFritz
ABC =

∑
a0,a1,b0,b1,c0,c1

PFritz
A0A1B0B1C0C1(a0a1b0b1c0c1)

×|a0a1⟩A⟨a0a1|⊗|b0b1⟩B⟨b0b1|⊗|c0c1⟩C⟨c0c1|,
(48)

where PFritz
A0A1B0B1C0C1

is the tripartite distribution
proposed by aseFritz [94]:

PFritz
A0A1B0B1C0C1 =PB1C1PA1C0PA0B0|A1B1 , (49)

with

PB1C1 =(1
2δC1,0+ 1

2δC1,1)δB1,C1

PA1C0 =(1
2δC0,0+ 1

2δC0,1)δA1,C0

and where PA0B0|A1B1 describes a conditional
probability distribution that provides the maximum
quantum violation of the CHSH inequalities, termed
a Tsirelson box.

37Note that both LO2WSR and LO2WSE are distinct from
Local Operations together with Shared Randomness and 2-
Way sources of Shared Entanglement (LOSR2WSE) discussed
in Sec. 5.

By virtue of being separable, this state is
realizable classically in the trine network. It suffices
to use the 3-way source of shared randomness.38

However, in the triangle network, it is only realizable
quantumly and not classically, That is, given only
access to 2-way sources, this state can not be realized
if the sources are classical, i.e., if each provides
only shared randomness, but it can be realized
if they are quantum, i.e., if they provide shared
entanglement.39 The latter claim follows from the
results of Ref. [94]. (It suffices to note that if
this separable state could be classically realized in
the triangle network, then by local measurements
in the bases in which it is diagonal, one could
generate the tripartite probability distribution that
is proven in Ref. [94] to be not classically realizable
in the triangle network.) Consequently, for the
triangle network, there are separable states, such
as the one in Eq. (48), that exhibit nonclassical
correlational properties insofar as they cannot be
realized if the sources in the network are restricted
to be of the classical variety. This proves that the
boundary between classical and nonclassical states
in the triangle network is not the boundary between
separable and nonseparable states.40

It is worth noting that the way in which the
nonclassicality of the correlational properties of
states are quantified will also differ between the trine
and triangle network structures. The free operations
in the trine network are LOSR, while the free
operations in the triangle network are LO2WSR.
Since LO2WSR is strictly contained within LOSR,
there can be pairs of states that are strictly ordered
in the trine network while they are incomparable in
the triangle network.41

38Of source, it is also realizable quantumly in the trine
network since a 3-way source of shared entanglement is strictly
more powerful than a 3-way source of shared randomness.

39We are here restricting attention to the distinction between
all sources being classical and its converse. The state in
question can in fact be realized if the 2-way source between A
and B is quantum, while the other pair of 2-way sources are
classical.

40The result can also be proven using the machinery of
Ref. [26].

41Although we here advocate for referring to tripartite states
that are achievable by LOSE but not by LOSR (i.e., achievable
by a circuit of the form of Fig. 10b, but not by a circuit of the
form of Fig. 10a) as LOSR-entangled, and the states that are
achievable by LOSE but not by LOSR2WSE (i.e., achievable
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Similar considerations hold for the classical-
nonclassical distinction for correlational properties
of boxes. In a tripartite network with a common
source (i.e., a tripartite Bell scenario), the boundary
between boxes having classical correlational
properties and those having nonclassical
correlational properties is the boundary between
those that satisfy all the Bell inequalities and those
that violate some Bell inequality. In the triangle
network, however, the distinction is picked out by a
different set of inequality constraints. A prescription
for finding all of these can be given in terms of the
inflation technique for causal inference [95, 124].
To determine the order over boxes, one again uses
LOSR in the trine network, but LO2WSR in the
triangle network.42

by a circuit of the form of Fig. 10b, but not by a circuit of the
form of Fig. 1) as genuine 3-way entangled, we do not advocate
for referring to states that are achievable by LO2WSE but
not by LO2WSR (i.e., achievable by a circuit of the form
of Fig. 11b, but not by a circuit of the form of Fig. 11a) as
“entangled”. Although it may at first glance seem natural to
define a state to be entangled in a given network if and only if
it is nonfree relative to having the communication channels
and sources in that network being classical, such a terminology
would conflict with the standard convention of referring to all
separable states as unentangled. As the latter convention is
entrenched, it is not advisable to try and overturn it. Rather, it
makes more sense to refer to states that are nonfree relative to
LO2WSR simply as quantumly correlated relative to LO2WSR.
The sorts of networks for which all of the nonclassical states
will be nonseparable are those for which it is possible, using
classical sources, to realize any joint probability distribution
over the parties’ outputs.

42In a Bell scenario, i.e., a network with a common
source shared by all the parties, boxes that can only be
realized by quantum sources are conventionally termed
“nonlocal”. In Footnote 2, we noted that this terminology
is not particularly good for describing the nonclassicality of
correlational properties of boxes. It is even less suited to
describing the nonclassicality of correlational properties of
boxes in alternatives to the Bell scenario, such as the triangle
network.
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