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The recovery of fragile quantum states from
decoherence is the basis of building a quantum
memory, with applications ranging from quan-
tum communications to quantum computing.
Many recovery techniques, such as quantum
error correction, rely on the apriori knowledge
of the environment noise parameters to achieve
their best performance. However, such param-
eters are likely to drift in time in the context
of implementing long-time quantum memories.
This necessitates using a “spectator” system,
which estimates the noise parameter in real-
time, then feedforwards the outcome to the re-
covery protocol as a classical side-information.
The memory qubits and the spectator system
hence comprise the building blocks for a real-
time (i.e. drift-adapting) quantum memory.
In this article, I consider spectator-based (in-
complete knowledge) recovery protocols as a
real-time parameter estimation problem (gen-
erally with nuisance parameters present), fol-
lowed by the application of the “best-guess”
recovery map to the memory qubits, as in-
formed by the estimation outcome. I present
information-theoretic and metrological bounds
on the performance of this protocol, quan-
tified by the diamond distance between the
“best-guess” recovery and optimal recovery
outcomes, thereby identifying the cost of adap-
tation in real-time quantum memories. Fi-
nally, I provide fundamental bounds for multi-
cycle recovery in the form of recurrence in-
equalities. The latter suggests that incomplete
knowledge of the noise could be an advantage,
as errors from various cycles can cohere. These
results are illustrated for the approximate [4,1]
code of the amplitude-damping channel and re-
lations to various fields are discussed.
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1 Introduction

Quantum memories comprise an important com-
ponent of current and future quantum technologies.
Their use ranges from quantum communications and
networks [1–3] to sensing [4], and even computation.
This wide range of relevance stems from the fact that
a quantum memory preserves a quantum system’s (of-
ten fragile) state from decoherence, which encodes the
desired quantum information.

Depending on the physical implementation of the
quantum memory, current coherence times range from
milliseconds to minutes [5]. However, various quan-
tum technologies may require even longer coherence
times [6]. Two of the most common techniques im-
plemented in a quantum memory are quantum er-
ror correction (QEC) [7–9] and dynamical decoupling
[10, 11]. These techniques generally benefit from the
apriori knowledge of the noise surrounding the sys-
tem of interest. For example, channel-adaptation
techniques in QEC [12] have been shown to outper-
form general QEC codes, as they are given additional
knowledge of the environment noise [13, 14]. Such
techniques rely on some physical model of the (noisy)
implementation medium of the quantum memory.
The noise model is partially built upon physical as-
sumptions (e.g. in the choice of the Hamiltonians)
and partially upon phenomenology. Hence, the for-
mer gives a physically motivated family of quantum
dynamics {Nθ}θ∈Θ for the quantum state of the mem-
ory qubits [15], and the latter determines the value of
the noise parameter θ such that the dynamics Nθ fits
the observed data the best.

Although very powerful, a shortcoming of this ap-
proach is that the environment noise parameter is gen-
erally time-varying. This has been studied most ex-
tensively for superconducting qubits [16–20]. Hence,
real-time techniques to track the change (drift) of
the noise are necessary, assuming we want to operate
quantum memories for times larger than the charac-
teristic times of the drift.

Indeed, efforts have been made towards designing
“spectator” systems that aid in detecting and track-
ing such changes [21–30]. Being subject to the same
physical environment, the goal of the spectator system
is to perform real-time quantum sensing of the noise
parameter. The estimate is then used as a classical
side-information in various recovery protocols. The
physical requirements of spectator systems are two-
fold: (1) proximity to the memory qubits, such that
the spatial dependence of the noise parameter can be
neglected, and (2) exhibiting faster dynamics than the
memory qubits. The latter is necessary if the feedback
information is to be useful for recovery. We show-
case the functionality of the spectator system within
a quantum memory using Figs. 1 and 2. Note that,
since the memory and spectator systems are generally
different physical systems with different couplings to
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the same environment, their dynamics will generally
be described by different quantum channels with the
same noise parameter, i.e. Nθ and Mθ, respectively.
More precisely, a spectator-based recovery protocol
is comprised of the following characteristic stages, as
shown in Fig. 3:

1. Individual state preparation of the quantum
memory and the spectator system.

2. Free evolution of the joint memory-spectator sys-
tem under the action of the shared environment,
with generally unknown noise parameters.

3. Quantum parameter estimation of the environ-
ment noise parameters, using the spectator sys-
tem as a real-time quantum sensor (i.e. a probe).

4. Post-processing of the measurement outcomes to
extract the value of the locally unbiased estima-
tor, and use it to construct the best-guess recov-
ery map.

5. Recovery of the original state of the quantum
memory by applying the best-guess recovery
map.

6. Recycling of spectator state, which prepares it for
the next recovery cycle.

There exist systems that satisfy the physical prop-
erties of a spectator system. For example, nitrogen-
vacancy (NV) centers in diamond, which were used
to prove the first loophole-free Bell inequality viola-
tion [31], provide both a spectator qutrit and a mem-
ory qubit. Namely, the nuclear spin degree of free-
dom of its 14N or 15N atom comprises the memory
qubit, whereas a nearly-closed three-level Λ system
[32, 33], optically selected out of the electronic degrees
of freedom of the NV center, comprises the specta-
tor system [27, 34, 35]. The two-time separation be-
tween the pure dephasing times of the memory qubit
(Tmemo
φ ∼ 100µs) and the spectator qutrit (T spec

φ ∼
100ns [36]) is necessary to simultaneously yields (i) a
metrologically useful spectator state Mθ(ψ) for pa-
rameter estimation, and (ii) a relatively small noise
parameter value of the memory dynamics Nθ (and
hence a generally higher recovery fidelity), for rele-
vant times t of the spectator dynamics. The latter is
seen from the implicit dependence of the noise param-
eter θ on time [37]: θ = 1 − exp (−t/Tmemo

φ ) = 1 −
[exp(−t/T spec

φ )]T
spec
φ /Tmemo

φ << 1 − exp (−t/T spec
φ ) ≡

θeff , where Mθ ≡ Nθeff .
Although spectator systems are a promising build-

ing block for real-time (i.e. drift-adapting) quan-
tum memories, we expect fundamental limitations
to manifest nonetheless. This is based on the fol-
lowing physical intuition: In real-time, the specta-
tor system’s goal is to perform a quantum estima-
tion of the environment noise parameter θ. How-
ever, due to the quantum Cramér-Rao bound (QCRB)

ρ Nθ Rθ Rθ ◦ Nθ(ρ) = ρ

Figure 1: Recovery with perfect knowledge (time flows from
left to right). The quantum memory is prepared in the
quantum state ρ. The recovery channel Rθ is implemented
using perfect knowledge of the noise parameter θ ∈ Θ of
the environment noise Nθ.

θ̂(x)
ψ Mθ

ρ Nθ Rθ̂ Rθ̂ ◦ Nθ(ρ) ≈ ρ

Figure 2: Recovery with limited knowledge (time flows from
left to right). The quantum memory (second register) and
spectator (first register) systems are prepared in the
quantum states ρ and ψ, respectively. The recovery channel
Rθ̂ is implemented based on the spectator’s best estimate θ̂
of the noise parameter θ ∈ Θ of the environment noise Nθ.
The estimate is informed by the measurement outcome x of
the spectator observable X, following the spectator
dynamics Mθ.

[38, 39], any locally unbiased estimate θ̂ of the noise
parameter θ will have a non-zero variance. Namely,
Var(θ̂) ≥ 1/IQF(Mθ(ψ)), where IQF(Mθ(ψ)) is the
quantum Fisher information (QFI) of the family of
parametric states {Mθ(ψ)}θ∈Θ describing the spec-
tator dynamics (see Fig. 2). For a given setup, this
fundamental uncertainty in the estimate θ̂ will prop-
agate within the overall protocol and manifest itself
as a fundamental limitation of the specific recovery
technique.

In this article, I formalize the above intuition
by proving information-theoretic and metrological
bounds on the performance of spectator-based recov-
ery protocols for adaptive quantum memories, con-
sidering QEC as an example. The main results of the
article are summarized below

1. Derivation of a lower bound for the diamond
distance between any two quantum channels
(Lemma 2). This generalizes a lower bound for
the diamond distance between a quantum chan-
nel and the identity channel in [40], a qudit depo-
larizing channel and the identity channel in [41],
as well as the analytic formula in [42] for the di-
amond distance between two-qubit depolarizing
channels. A similar lower bound is shown for
generalized distinguishability measures, such as
entropy or fidelity-based distinguishability mea-
sures (e.g. quantum relative entropy or Bures
distance, respectively) is found in Theorem 4 of
Appendix A.

2. A general formulation of the spectator-based re-
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M S

(a) State Preparation: A desired state of the quantum
memory M , and some metrologically useful state of the
spectator system S, are prepared.

𝜃

𝑓 𝜃M S

(b) Free Evolution: Due to the interaction with their joint
environment, the states of the memory and the spectator
evolve. The evolution of M is parameterized by θ, and the
evolution of S by some function f(θ) of θ.

𝜃

𝑓 𝜃

መ𝑓 𝜃

M S

(c) Quantum Parameter Estimation: The spectator system is
used as a real-time quantum sensor (probe) to find the best
estimate θ̂ of the noise parameter θ.

𝜃

ℛ𝜃
𝜃

M S

(d) Post-Processing : Where the best estimate θ̂ is used to
obtain a “best-guess” recovery map Rθ̂, which is optimal,
given the incomplete knowledge of the true value of the noise
parameter θ. This map is generally different from the truly
optimal recovery map Rθ, corresponding to the
parameterized dynamics of the quantum memory.

𝜃

ℛ𝜃

M S

(e) Best-Guess Recovery : Where the “best-guess” recovery
map Rθ̂ is applied to the quantum memory, to recover
(perfectly or approximately) the quantum information
encoded on its initial state.

M S

(f) Spectator System Recycling : The final step is to recycle
the state of the spectator system to prepare it for the next
recovery cycle.

Figure 3: Cartoon description of spectator-based recovery protocols (temporal order corresponds to the alphabetical order of
the subfigures). The letters “M” and “S” stand for quantum memory and spectator system, respectively. The black dots
represent the environment spins that contribute to the noise. This protocol combines two important disciplines of quantum
information theory: quantum parameter estimation and recovery of quantum information.
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covery protocol as two consecutive, but comple-
mentary, tasks in a real-time quantum memory
(Section 4.2): (i) a multi-parameter quantum es-
timation in the presence of nuisance parameters,
and (ii) recovery of quantum information using
the “best-guess” recovery map, as informed by
the estimation outcome.

3. Derivation of Information-theoretic costs of
adaptation in spectator-based recovery protocols.
This is shown both for finite (Theorem 1) and
small (Theorem 2) estimation errors of the noise
parameters. The latter yields a metrological
lower bound, in terms of the quantum Fisher in-
formation of the spectator dynamics. The adap-
tation cost is illustrated for the [4,1] code of
the amplitude-damping channel (Figs. 6 and 7),
by comparing the performance of the spectator-
based recovery protocol with the corresponding
optimal recovery protocol [12, 14] when no adap-
tation is required.

4. Reformulation of an upper bound for the entan-
glement fidelity of concatenated quantum chan-
nels (building upon a theorem of [43]) in the form
of recurrence inequalities for multi-cycle recovery
protocols (Lemma 4). These bounds are growing
in relevance, as multiple QEC rounds have been
demonstrated in practice [44]. It is shown that
spectator-based recovery protocols, under con-
ditions of varying noise, could outperform opti-
mal recovery protocols with constant noise (The-
orem 3). This is exclusively a multi-cycle phe-
nomenon, where errors from different cycle num-
bers can cohere [43], including errors from in-
complete knowledge of the noise parameter. Fi-
nally, this is illustrated for the [4,1] code of the
amplitude-damping channel (Fig. 9). Similar er-
ror coherence effects have been seen recently in
the context of quantum state transfer in quan-
tum networks, between gate and readout errors
[45].

2 Preliminaries
2.1 Quantum States and Channels

Let H denote a Hilbert space, and L(H) be the set
of bounded linear operators acting on H. Denote by
L+(H) the subset of positive semi-definite operators
of L(H). We define the Hilbert-Schmidt inner prod-
uct between two linear operators A, B ∈ L(H) to be
⟨A,B⟩ := Tr[A†B]. The state of a physical system is
described by a density matrix ρ ∈ D(H), where D(H)
is the subset of positive semi-definite linear operators
L+(H) that have a unit trace. We denote the dimen-
sions of a Hilbert space H by d := dimH.

A linear map from L(HA) to L(HB) is denoted
by QA→B : L(HA) → L(HB). We say that a lin-

ear map is positive if QA→B(LA) ∈ L+(HB) for
all LA ∈ L+(HA), and trace preserving (TP) if
Tr[QA→B(LA)] = Tr[LA] for all LA ∈ L(HA). A pos-
itive linear map QA→B is called completely positive
(CP) if for every Hilbert space HR, the map idR ⊗
QA→B is positive, where idR is the identity map act-
ing on L(HR). For any QA→B and SB→C linear maps,
their composition is defined to be (S ◦Q)A→C(LA) :=
S(Q(LA)), for all LA ∈ L(HA). We define the ad-
joint map

(
QA→B

)† of a linear map QA→B with
respect to the Hilbert-Schmidt inner product as
⟨QA→B(NA),MB⟩ = ⟨NA, (QA→B)†(MB)⟩ for all
NA ∈ L(HA) and MB ∈ L(HB). More explicitly,
if {Qi}Ki=1 are the Kraus operators of the CP map
QA→B (see Eq. (2)), then the Kraus operators of the
adjoint map

(
QA→B

)† are given by {Q†
i}Ki=1.

The Choi Matrix of any linear map QA→B is defined
to be

ΓQ
RB := idR ⊗ QA→B(|Γ⟩⟨Γ|RA) , (1)

where |Γ⟩RA :=
∑d−1
i=0 |i⟩R|i⟩A is the unnormalized

maximally entangled state, with d ≡ dimHA =
dimHR. The corresponding Choi state is defined as
ΦQ
RB := ΓQ

RB/d. The linear map QA→B is TP if
and only if its Choi matrix satisfies TrB [ΓQ

RB ] = IR,
and CP if and only if its Choi matrix is positive, i.e.
ΓQ
RB ≥ 0.
In what follows, we suppress the system subscript

and/or superscript if it does not lead to ambiguities.
Every CP map QA→B admits a Kraus decomposition

Q(·) =
K∑
i=1

Qi(·)Q†
i , (2)

in terms of Kraus operators {Qi}Ki=1. If QA→B is also
TP, then

∑K
i=1 Q

†
iQi = IA holds.

2.2 Diamond Distance Between Quantum
Channels

The trace norm of any linear operator L ∈ L(H) is
given as ∥L∥1 := Tr (|L|), where we have denoted by
|L| :=

√
L†L. Therefore, we define the trace distance

between any two quantum states ρ, σ ∈ D(H) to be
1
2 ∥ρ − σ∥1. More generally, we define the diamond
distance 1

2 ∥QA−SA∥⋄ between two quantum channels
QA and SA as follows

sup
ρRA

1
2

∥∥∥(idR ⊗ QA
)

(ρRA) −
(

idR ⊗ SA
)

(ρRA)
∥∥∥

1
.

(3)

2.3 Quantum Fidelities
Given any two quantum states ρ, σ ∈ D(H) with

dimH ≡ d, we define the fidelity function as follows

F (ρ, σ) :=
(

Tr
[√√

ρσ
√
ρ

])2
= ∥√

ρ
√
σ∥2

2 . (4)
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If one of the two state, say σ ≡ |ψ⟩⟨ψ|, is pure, then
we have F (ρ, ψ) = ⟨ψ|ρ|ψ⟩. Based on this definition,
various fidelities that are relevant in QEC and other
areas of quantum information have been defined. One
such quantity is called entanglement fidelity Fe of a
channel QA ≡ QA→A with respect to a state ρ ∈
D(HA) [7, 8], which is given by

Fe(Q, ρ) := F (idR ⊗ QA(ψρRA), ψρRA) (5)
= ⟨ψρ|idR ⊗ QA(ψρRA)|ψρ⟩RA , (6)

where ψρRA ∈ HR ⊗ HA is a purification of the den-
sity matrix ρ ∈ D(HA), i.e. TrRψρRA = ρA. It can
be shown that the entanglement fidelity is indepen-
dent of the particular choice of the purification, fol-
lowing from the fact that the former can be expressed
in terms of the Kraus operators of QA as [7, 8]

Fe(Q, ρ) =
K∑
i=1

Tr[ρQi]Tr[ρQ†
i ] =

K∑
i=1

|Tr[ρQi]|2 . (7)

The entanglement fidelity of a quantum channel QA

is defined to be the entanglement fidelity of QA with
respect to the maximally mixed state ρA = IA/d [46]
(which is purified by the maximally entangled state
|Φ⟩RA). This can also be written in terms of the Choi
state of QA, as follows

Fe(Q) ≡ Fe

(
Q, I

d

)
(8)

= ⟨Φ|idR ⊗ QA(ΦRA)|Φ⟩RA (9)
= ⟨Φ|ΦQ

RA|Φ⟩RA (10)
= F (ΦQ,Φ) . (11)

Another important fidelity measure of the form
F (ρ, ψ) = ⟨ψ|ρ|ψ⟩ is the average channel (gate) fi-
delity Favg(Q), defined for any |ψ⟩ ∈ HA and CPTP
map QA as

Favg(Q) :=
∫
dψ⟨ψ|Q(ψ)|ψ⟩ , (12)

where the discrete version has appeared in [7, 8]. In
[47], the authors have shown that the average and
entanglement fidelities are related by

Favg(Q) = dFe(Q) + 1
d+ 1 . (13)

Finally, in what follows, we also use the simplifying
notation

δQ := arccos
√
Fe(Q) , (14)

which can be interpreted in the χ-matrix representa-
tion of quantum channels (see Appendix I) as the “er-
ror angle” by which the Kraus operators of the noisy
channel Q deviate from the desired “no error” normal-
ized basis element B0 = I/

√
d (where ⟨B0, B0⟩ = 1)

of the vector space L(H). It turns out that the error
angle notation is very convenient when expressing the
average fidelity of composite channels in terms of the
individual average channel fidelities [43].

3 Lower-Bounding Diamond Distance
Using Entanglement Fidelity

We now consider the diamond distance between
any two quantum channels and show that it is lower
bounded by the difference between their entanglement
fidelities. This is generalized in Theorem 4 of Ap-
pendix A, where we show that the lower bound for any
generalized distinguishability measure between the
two channels is still fully determined by their entan-
glement fidelities. Besides the diamond distance con-
sidered here, fidelity and entropy-based distinguisha-
bility measures, such as Bures distance and quantum
relative entropy, are also used to quantify the perfor-
mance of recovery protocols, e.g. in Refs. [48, 49] and
Refs. [50, 51], respectively. Therefore, the results of
this section (as well as the following sections) could
be generalized for other distinguishability measures,
in the light of Appendix A.

The diamond distance is especially relevant for two
reasons: (1) it has a clear operational meaning in
terms of the maximum probability of distinguishing
between two channels in a quantum channel discrim-
ination task [52], and (2) it satisfies the triangle in-
equality and hence also the chaining property, which
is useful for bounding errors in fault-tolerant quantum
computing (see Appendix B).

We start by proving the following:

Lemma 1. For any two depolarizing channels Q̃A→A

and S̃A→A, the diamond distance between them is
equal to the difference between their entanglement fi-
delities, namely

1
2∥Q̃ − S̃∥⋄ = |Fe(Q̃) − Fe(S̃)| . (15)

Proof. Assume that Q̃ and S̃ are depolarizing chan-
nels with depolarizing parameters pQ and pS , respec-
tively. Namely,

Q̃A = (1 − pQ)idA + pQ IA
dA

TrA , (16)

S̃A = (1 − pS)idA + pS IA
dA

TrA , (17)

and hence

idR ⊗ Q̃A = (1 − pQ)idRA + pQTrA ⊗ IA
dA

, (18)

idR ⊗ S̃A = (1 − pS)idRA + pSTrA ⊗ IA
dA

, (19)

yields for the diamond distance

1
2∥Q̃ − S̃∥⋄ = κ

∣∣pS − pQ∣∣ (20)

= dκ

d− 1 |Favg(Q̃) − Favg(S̃)| (21)

= d2κ

d2 − 1 |Fe(Q̃) − Fe(S̃)| , (22)
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where

κ(d) ≡ 1
2 sup
ψRA

∥∥∥∥ψRA − ρR ⊗ IA
dA

∥∥∥∥
1
, (23)

and we have used Eq. (13). We can rewrite κ using
the diamond distance between the identity and the
replacement channel, as follows

κ(d) = 1
2

∥∥∥∥idA − IA
d

TrA
∥∥∥∥

⋄
. (24)

Next, we use the semi-definite program for the nor-
malized diamond norm [53]

1
2

∥∥∥∥idA − IA
d

TrA
∥∥∥∥

⋄
(25)

= sup
σRA,ρR

TrRA
[
σRA

(
ΓidRA − Γ

IA
d TrA
RA

)]
(26)

= sup
σRA,ρR

TrRA
[
σRA

(
ΓRA − IRA

d

)]
, (27)

where the supremum is taken over all positive matri-
ces 0 ≤ σRA ≤ ρR ⊗ IA, and ρR ∈ D(HR). Consider
the eigenvalues of the d2 × d2 matrix ΓRA − IRA/d.
First, if we denote some fixed eigenvalue of ΓRA by
γ, then the corresponding eigenvalue of ΓRA − IRA/d
is γ − 1/d. Next, let us show that d2 − 1 of the d2

eigenvalues of ΓRA are zero. This follows by consider-
ing the kernel space of ΓRA (the zero eigenvalue sub-
space), denoted by ker(ΓRA) ⊂ HR ⊗ HA. Namely,
for all |ψ⟩RA ∈ ker(ΓRA) we have, by definition,
ΓRA|ψ⟩RA = 0. This is true for all states |ψ⟩RA for
which ⟨Γ|ψ⟩RA = 0, i.e. |ψ⟩RA ∈ (span{|Γ⟩})⊥, which
is the (d2 − 1)-dimensional orthogonal complement of
the one-dimensional subspace span{|Γ⟩} ⊂ HR ⊗ HA.
Finally, we note that the only non-zero eigenvalue γ0
of ΓRA is determined by the trace TrRA [ΓRA] = d,
and hence γ0 = d. Therefore, the eigenvalues of
ΓRA − IRA/d are given by the list

eigenval
(

Γ − I

d

)
=
{
d2 − 1
d

,−1
d
,−1

d
, · · · ,−1

d

}
.

(28)
As we can see, only one of the eigenvalues of ΓRA −
IRA/d is positive. Therefore, we write the spectral
decomposition of the matrix ΓRA − IRA/d as follows

ΓRA − IRA
d

= d2 − 1
d

|γ0⟩⟨γ0| − 1
d

d2−1∑
i=1

|γi⟩⟨γi| , (29)

where {|γi⟩}d
2−1
i=0 is its orthonormal eigenbasis.

It follows that, to maximize the argument of
Eq. (27), we need to consider the support of the pos-
itive semi-definite operator σRA to be in the (one-
dimensional) support of ΓRA (which is orthogonal to
ker(ΓRA)), i.e. we need to search for σRA in the form
σRA = z|γ0⟩⟨γ0| for some z ≥ 0. Substituting into the
constraint σRA ≤ ρR ⊗ IA gives

ρR ⊗ IA − z|γ0⟩⟨γ0| ≥ 0 (30)

⇒⟨Γ|ρR ⊗ IA|Γ⟩RA − z|⟨Γ|γ0⟩|2 ≥ 0 (31)
⇒Tr[ρ] − z⟨γ0|Γ|γ0⟩RA ≥ 0 (32)

⇒1 − zd ≥ 0 ⇒ z ≤ 1
d
. (33)

Consequently, if there exists ρR ∈ D(HR) such that
σRA is fully in the support of ΓRA, i.e. σRA =
z|γ0⟩⟨γ0|RA (where Γ|γ0⟩ = d|γ0⟩), then it must be
the case that the normalization z ≤ 1/d. The result-
ing maximization in Eq. (27) will thus yield for κ(d)

sup
σRA,ρR

TrRA
[
σRA

(
ΓRA − IRA

d

)]
= d2 − 1

d
zmax

(34)

= d2 − 1
d2 , (35)

or equivalently,

1
2∥Q̃ − S̃∥⋄ = d2κ(d)

d2 − 1 |Fe(Q̃) − Fe(S̃)| (36)

= |Fe(Q̃) − Fe(S̃)| . (37)

In the above analysis, we presumed the existence of
a density matrix ρR for which σRA = z|γ0⟩⟨γ0|RA ≤
ρR ⊗ IA. It is easy to see that the pick ρR = IR/d
satisfies the inequality z|γ0⟩⟨γ0|RA ≤ ρR ⊗ IA, as well
as allowing the normalization z to reach its maximum
value zmax = 1/d.

Note that, if we extend the support σRA =
z|γ0⟩⟨γ0| +

∑d2−1
i=1 zi|γi⟩⟨γi|, then the above argument

(starting from Eq. (30)) still yields z ≤ 1/d, while
simultaneously leading to a sub-optimal outcome in
Eq. (34) due to the contribution of the negative eigen-
values of ΓRA−IRA/d. Taking σRA to be off-diagonal
in the {|γi⟩}d

2−1
i=0 does not change this argument.

It is important to note that this lemma has been
known previously for special cases, e.g. in [41, 42]
between qubit depolarizing maps (d = 2) and between
a qudit depolarizing map and the identity map (pS =
0), respectively. However, Pirandola et al. in [41] used
a different technique to compute essentially the same
quantity κ(d) appearing in our derivation of Lemma 1,
which crucially does not depend on the depolarizing
parameters pQ and pS .

We now prove a lower bound for the diamond dis-
tance between any two quantum channels with the
same input and output spaces. We frame this as fol-
lows

Lemma 2. For any two CPTP maps QA→A and
SA→A, the diamond distance between them is lower
bounded by the difference in their entanglement fideli-
ties, namely

1
2∥Q − S∥⋄ ≥ |Fe(Q) − Fe(S)| . (38)
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Proof. It is known that any quantum supermap (a lin-
ear map from one quantum channel to another) that
is a convex combination of Pauli unitary supermaps
(also known as “twirling”) renders any input channel
Q into a depolarizing channel Q̃ [54], with the same
entanglement fidelity. The Lemma is then a direct
consequence of applying the data-processing inequal-
ity to the diamond distance ∥Q − S∥⋄ with respect to
the Pauli twirling supermap [55], which yields

1
2∥Q − S∥⋄ ≥ 1

2∥Q̃ − S̃∥⋄ , (39)

where Q̃ and S̃ are the resulting depolarizing chan-
nels [47] (also see Lemma 6 in Appendix A). Then, we
note that the right-hand side is found from Lemma 1.
Finally, the proof is completed by the fact that any
random unitary supermap preserves the entanglement
fidelity [47], hence Fe(Q̃) = Fe(Q) and Fe(S̃) =
Fe(S).

Remark 1. If one of the quantum channels is the
identity, then a much simpler derivation could be
found in the supplementary material of [40] using the
Fuchs-van de Graaf inequality for quantum channels,
which yields a two-sided bound on the diamond dis-
tance.

4 Fundamental Bounds on Recovery
with Incomplete Knowledge

Here, we are interested in applying the lower bound
derived in Lemma 2 of the previous section to the
spectator-based recovery setting, succinctly described
in Fig. 2. We will assume that we are given a para-
metric family of quantum channels {Nθ}θ∈Θ that is
motivated from certain physical assumptions about
the memory-environment interaction, where Θ is the
allowed range of values for the noise parameter θ.

4.1 The Regime of Validity
Let us now identify four different noise instability

regimes and then expand upon the relevant regime for
this article. The four cases are described as follows:

1. When neither the noise family {Nθ}θ∈Θ nor the
true noise parameter θ change in time. This case
is best described by the “perfect” knowledge sce-
nario in Fig. 1, and is the most common in liter-
ature.

2. When the noise family {Nθ}θ∈Θ remains valid,
but the true noise parameter θ varies stroboscop-
ically. Namely, the characteristic timescale τθ for
the variations of the true value of θ is larger com-
pared to the duration of a single recovery cycle
∆tR. Therefore, variations in the noise parame-
ter are on the timescale of multiple recovery cy-
cles (see e.g. [16] for superconducting qubits). In

this regime, performing the real-time quantum
estimation of the new value of θ for every recov-
ery cycle becomes useful, hence the need for a
spectator system. This regime is best described
by the “incomplete” knowledge scenario in Fig. 2.

3. When the noise family {Nθ}θ∈Θ remains valid,
but the noise parameter θ varies non-negligibly
during a single recovery cycle (i.e. τθ ∼ ∆tR).
In this case, the usefulness of the classical side-
information in the spectator-based recovery in
Fig. 2 is no longer clear. Instead, this noise
regime might benefit from continuously applied
recovery, e.g. [56]. Alternatively, a robustness
approach (as opposed to adaptation) might also
be suitable (see below).

4. When the noise family {Nθ}θ∈Θ is changing
within a single recovery cycle. This noise regime
will mainly benefit from the design of robust re-
covery protocols, e.g. in [57–60], rather than the
spectator-based recovery presented in Fig. 2.

In the rest of the article, we focus on the stroboscopic
noise regime, and consider the advantages and limi-
tations of using the spectator-based recovery protocol
in Fig. 2.

To measure the success of the recovery protocol,
we recall that the goal is to achieve a complete (or, at
least, an approximate) recovery R ◦ Nθ(ρ) = ρ of the
noisy channel Nθ for a subset of states ρ ∈ D(C) ⊂
D(H) in the codespace C. The “optimality” of the re-
covery map R for a given noisy channel Nθ could be
quantified in various ways. Motivated by Lemma 2
for the diamond distance (and more generally Theo-
rem 4 for all distinguishability measures), we choose
the entanglement fidelity to be the quantifier of the
optimal recovery, i.e.

Rθ := argmaxFe(R ◦ Nθ) ; R ∈ CPTP(H) . (40)

Indeed, entanglement fidelity has been used as a figure
of merit for QEC in e.g. [12, 14, 46, 57, 58, 61]. We
note that the concatenated form R ◦ Nθ of the mem-
ory dynamics presupposes that the recovery map R is
applied much faster than the noisy dynamics. In what
follows, we shall compare two different scenarios:

• Optimal recovery scenario (Fig. 1), which corre-
sponds to the optimal choice of the recovery map
Rθ (as defined in Eq. (40)) for the noisy chan-
nel Nθ, where the value of θ ∈ Θ is completely
known.

• Best-guess recovery scenario (Fig. 2), which cor-
responds to the optimal recovery choice Rθ̂ (as
defined in Eq. (40)) for the estimated noisy chan-
nel Nθ̂, where θ̂ is the best estimate of θ. The
latter is defined to be the minimum variance un-
biased estimator (MVUE).
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θ̂S(x)
ψS

Zθ

ρM Rθ̂M

Figure 4: The spectator (S) and memory (M) systems are
subject to a single environment, characterized by the
parametric family of quantum channels {Zθ}θ∈Θ. The
mother channel ZMS

θ generates the two local channels
N MS→M

θM ≡ TrS ◦Zθ and MMS→S
θS ≡ TrM ◦Zθ describing

the reduced dynamics of the memory and spectator
systems, respectively.

Remark 2. Not all QEC codes require a recovery
channel Rθ that depends on the noise parameter θ.
Such channels are known to be Pauli channels, where
the recovery operation is fully determined by a subset
of Pauli operators from the general Pauli group, as is
known in the stabilizer formalism of QEC [37, 62].
Therefore, in what follows, we consider non-Pauli
channels, of which, the generalized amplitude damping
channel is a prime example [37].

4.2 A General Framework For Spectator-Based
Recovery Protocols

In this section, we formulate the spectator-based
recovery protocol (Fig. 2) as the combination of two
consecutive processes: (i) parameter estimation of the
memory noise, using the spectator system, and (ii)
application of the corresponding “best-guess” recov-
ery map (informed by the estimated value of the noise
parameter(s), rather than the true value) to the quan-
tum memory. It is important to emphasize that the
parameter estimation stage of spectator-based recov-
ery is more resource efficient than a direct process
tomography of the noise. This is due to the prior
knowledge of the parametric family of noisy quantum
channels, either from physical consideration, or even
initial process tomography. This efficiency is espe-
cially important for operating a real-time quantum
memory, which requires such resources to be replen-
ished after each recovery cycle.

To set up a general framework for spectator-based
recovery protocols, we start by considering the ori-
gins of the reduced memory (M) and spectator (S)
dynamics in the general multi-parameter regime. In
what follows, MS denotes the mother system for both
the quantum memory M and the spectator system S,
and its Hilbert space has the tensor product structure
HMS = HM ⊗ HS . Since both systems are subject to
the same local environment, we assume that there is
a mother channel ZMS

θ (with a noise parameter vec-
tor θ ∈ Θp, where Θp is a p-dimensional parameter
space) that acts on the memory and spectator sys-

tems collectively, as shown in Fig. 4. Without loss
of generality, we assume that the components of the
multiparameter vector (θ1, · · · , θp) ∈ Θp are treated
as independent parameters, namely that none of the
components could be expressed as a function of the
rest, e.g. θi = f(θ1, · · · , θi−1, θi+1, · · · , θp). Other-
wise, for every such constraint, the number of inde-
pendent parameters is reduced by one. The mother
channel yields the reduced dynamics

NMS→M
θM ≡ TrS ◦ZMS

θ , (41)
MMS→S

θS ≡ TrM ◦ZMS
θ , (42)

where the partial tracing with respect to S in the
first equation defines the partition of the global set
of noise parameters θ into a subset of relevant pa-
rameters θM ∈ ΘpM for the reduced dynamics of M
(where in general pM ≤ p) and a complementary set
of parameters θM⊥ ∈ Θp−pM that is irrelevant for the
reduced dynamics (namely Θp = ΘpM × Θp−pM ). A
similar partition of θ = {θS ,θS⊥} to relevant and
irrelevant parameters for the spectator dynamics oc-
curs when applying the partial trace with respect to
M to the mother channel (please see Appendix D for
details on when this is possible). With these two nat-
ural partitions {θM ,θM⊥} and {θS ,θS⊥} of the pa-
rameter vectors θ, we can also decompose the latter
via a joint partition, as follows

θ = (θS∩θM )∪(θS∩θM⊥)∪(θS⊥∩θM )∪(θS⊥∩θM⊥) .
(43)

From this joint partition, it is clear that the spectator
system S can only help estimate the subset of memory
noise parameters θSI ≡ θS∩θM ⊆ θM (where the sub-
script “I” stands for “interest” parameters, as opposed
to the “nuisance” parameters θSN ≡ θS ∩ θM⊥ ̸⊆ θM

of the spectator dynamics [63], which are irrelevant
for the memory dynamics). Therefore, we see that
it is necessary to have ΘpM ⊆ ΘpS for the quan-
tum estimation task via the spectator system to be
useful for identifying the relevant noise parameters
θM which affect the quantum memory. If this is not
the case, then one would require multiple spectators
S1, S2, · · · , Sl (from potentially different physical sys-
tems) such that the parameter space ΘpM is contained
by the combined parameter subspaces ∪li=1ΘpSi . For
simplicity, we assume in the rest of the article that
pSI = pM .

In general, the reduced states of S and M follow-
ing the application of Eqs. (41) and (42) will depend
on the global input state MS. This observation still
holds even if the input state of MS is of product form
ρMS = ρM ⊗ ψS . Therefore, to arrive at local noise
channels NM

θM and MS
θS (as shown in Fig. 2) that are

independent of the input states of S and M , respec-
tively, the mother channel itself has to be separable.
Namely

ZMS
θ = NM

θM ⊗ MS
θS , (44)
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similar to the independent noise approximation that
is commonly used in QEC literature. The input state
ρMS = ρM ⊗ ψS is selected such that ρM is the state
of the quantum memory that we would like to pro-
tect from the noise, whereas ψS is the probe state of
the spectator system which we are technically free to
choose to achieve the optimal precision in parameter
estimation.

In Appendix E, we review relevant aspects of multi-
parameter quantum estimation theory. It is known
that when there are no nuisance parameters present
(pSI = pS , pSN = 0), the quantum estimation limit of
the parameters θSI ≡ θM is given by the partial sym-
metric logarithmic derivative (SLD) quantum Fisher
information matrix (QFIM), which has dimensions of
pS × pS . However, when pSN = pS − pSI > 0 nuisance
parameters are present, then the quantum estimation
limit will be given by the pSI × pSI partial SLD QFIM,
which comprises a tighter lower bound on the esti-
mation variance Var(θ̂SI ) than the pSI × pSI standard
SLD QFIM of the parameters θSI . It is known that
these two quantities are equal only if the nuisance
parameters are informationally orthogonal to the pa-
rameters of interest [64], namely when the SLD QFIM
of θS block diagonalizes, with blocks of dimensions
pSI and pSN = pS − pSI , respectively. Furthermore, it
has been shown in [63] that, in the single parameter
regime pM = 1 (pSI = 1, pSN = pS − 1), the lower
bound in the variance of any locally unbiased esti-
mator θ̂SI is achievable via an optimal measurement
constructed from the eigenprojectors of the SLD op-
erators of {MθS (ψ)}θS . A similar optimal measure-
ment construction achieving the QCRB is not known
for pM > 1 in the presence of nuisance parameters.
However, when the nuisance parameters are absent,
the above optimal measurement saturates the QCRB
for any pM ≥ 1 if and only if the SLD operators of
different parameters commute [65]. In the rest of the
article, we consider the single parameter case pM = 1.

Finally, we would like to point out that the main
theorems of this manuscript are generalizable to the
multiparameter setting pM > 1, however, a full con-
sideration of all its nuances are left for future work.
This includes the incompatibility of different param-
eters [66–68], which is an exclusive problem to the
multiparameter regime. Further, it is known that the
QCRB is a less tight version of the Holevo Cramér-
Rao bound (HCRB) in multi-parameter quantum es-
timation theory. The latter is known to be efficiently
computable [4, 69], but it is generally saturated for
collective measurements over different probes. In-
stead, if one is interested in local measurements
(which is more practical for parameter estimation),
then the Nagaoka-Hayashi (NH) bound [70] is the rel-
evant bound, which is also efficiently computable [71].
A recent work [72] shows how these Cramér-Rao type
bounds are unified under the umbrella of conic linear
programming.

4.3 Spectator Dynamics With No Nuisance
Parameters

In the introduction, as well as Figs. 2 and 6, we have
emphasized the fact that the spectator system need
not be the same physical system as the computational
or memory system. Consequently, the dynamics of the
spectator system Mθ is generally different from the
dynamics Nθ =

⊗n
i=1 N (1)

θ of the n memory qubits,
though it still depends on the same environment noise
parameter θ.

4.3.1 Independent Noise Approximation

If the spectator system is made out of s subsystems
(e.g. qubits), then the independent noise model reads

Mθ =
m⊗
i=1

M(1)
θ , (45)

where M(1)
θ is a quantum channel acting on the i-th

subsystem. Note that we assumed negligible spatial
variability of the noise parameter θ. The noise separa-
bility assumption need not mean that the qubit noises
are uncorrelated, as classical correlation between the
experienced noise parameters by different qubits is
still possible in principle. The above separability as-
sumption only means that the noise correlations are
classical and hence non-entangling.

4.3.2 Spectator Qubits As Memory Qubits With Con-
trollable Environment Coupling

To perform recovery with incomplete knowledge, we
need to hypothesize a relation between the spectator
and memory qubit dynamics, i.e. M(1)

θ and N (1)
θ .

Since both types of qubits are subject to the same
noisy environment with potentially different coupling
strengths, we hypothesise

M(1)
θ = N (1)

f(θ) , (46)

where f(θ) ∈ [0, 1] is a monotone increasing function
of its argument. To justify this choice, consider the
case where θ has the following form

θ = 1 − e−t/T1 , (47)

where T1 is the spin relaxation time [15, 18]. This is
the case e.g. for the qubit amplitude-damping chan-
nel, which we consider both in Section 4 and Section 6.
Then, by expressing t/T1 in terms of θ, we arrive at

fγ(θ) = 1 − (1 − θ)γ , (48)

where γ = Tmemo
1 /T spec

1 . The requirement that the
spectator qubits should exhibit faster dynamics than
the memory qubits translates to γ > 1. Eq. (46)
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could also be viewed from the point of view of re-
cent progress in quantum control, e.g. via Hamilto-
nian amplification in bosonic systems [73] or decoher-
ence control in NV centers [74], which yields control-
lable qubit coupling strengths. If such qubits are used
to build a quantum memory, then a portion of these
qubits could be reserved as spectators, and the envi-
ronment coupling could be adjusted to maximize the
sensitivity of the spectator qubits (see below).

4.3.3 Quantifying The Physical Choice of Spectator
Systems

Given that a particular physical medium (e.g. a
spin lattice with multiple spin species A, B, C, · · · )
is populated with memory qubits (say, spin species
A), a natural question is whether the spectator qubits
should be chosen from the same or different spin
species. This question is especially relevant for QEC
in hybrid spin registers e.g. in diamond [75, 76]. To
answer this question, we recall that in quantum esti-
mation theory, the sensitivity of the spectator qubit
dynamics ψ → M(1)

θ (ψ) to the noise parameter θ is
characterized by the QFI of the output state M(1)

θ (ψ).
The sensing advantage of using a spectator qubit of a
different species than the memory qubits is then deter-
mined by the ratio SM= IQF(M(1)

θ (ψ))/IQF(N (1)
θ (ψ))

(which we call the spectator multiplier) following the
QCRB (please see Appendix E for a self-contained
review of QFI and QCRB)

Var(θ̂) ≥ 1
IQF(Mθ(ψ⊗m)) (49)

= 1
mIQF(M(1)

θ (ψ))
(50)

≡ 1
n′IQF(N (1)

θ (ψ))
, (51)

where n′ ≡ SM × m indicates the equivalent number
of physical memory qubit species used for sensing. In
the case where our hypothesis in Eq. (46) holds, we
can use the property of the QFI for the change of
parameters [65]

IQF(N (1)
θ ) = IQF(N (1)

f(θ))
(
df

dθ

)2
, (52)

which yields SM= 1/(df/dθ)2. Therefore, the optimal
spectator, in this case, is the one that experiences
an effective parameter θeff ≡ f(θ) with f ′(θ) = 0 at
the actual value of the parameter (hence effectively
yielding an asymptotic estimation regime n′ → ∞ for
a finite m). Realistically, since we do not have prior
knowledge of the noise parameter θ, the ideal f(θ)
will be mostly constant, i.e. f ′(θ) = 0 (at least in
the relevant variability range of θ), with f(0) = 0 and
f(1) = 1.

Finally, we note that the ratio SM quantifies the
relative “speed” of the dynamics between the spec-
tator and the memory qubits, following the relation
between QFI and the Bures distance between two
consecutive “instances” of a channel [77]. This is im-
portant for the spectator-based recovery protocol, as
the timely feedforward control of the memory qubits
based on the classical side information from the spec-
tator is crucial.

4.4 Information-Theoretic Bounds
Here we consider the metrological bounds associ-

ated with the spectator-based recovery protocol, fol-
lowing Lemma 2 of the previous section.

4.4.1 Fundamental Limitations For All Recovery Pro-
tocols

Assume that we are given a noise channel NA→B .
By picking QA ≡ RB→A ◦ NA→B and SA ≡ idA,
Lemma 2 can be reframed in the context of noise re-
covery to read

1
2 ∥R ◦ N − id∥⋄ ≥ 1 − Fe(R ◦ N ) . (53)

We note that this is the lower bound of a two-sided
bound on the diamond distance between a quantum
channel and the identity channel, recently derived in
[40]. This lower bound holds for both recovery with
perfect and incomplete knowledge scenarios in Figs. 1
and 2, respectively. Next, we consider the incomplete
knowledge scenario and analyze the contribution of
the spectator system to the lower bound.

4.4.2 Metrological Cost of Spectator-Based Recovery
Protocols

Consider the scenario described in Fig. 2, which
is what we expect for real-time quantum memories.
The best estimate θ̂ of the unknown θ ∈ Θ is found
by the spectator system for each time-interval over
which the value of the stroboscopic (slowly varying)
variable θ is approximately constant. This charac-
teristic timescale of the stroboscopic noise parameter
θ should be larger than the combined characteristic
times of the noisy Nθ and the best-guess recovery Rθ̂

dynamics. Consequently, the relevant total dynamics
of the encoded system is given by Rθ̂ ◦ Nθ. Com-
pared to the ideal case where the noise parameter is
known perfectly, the metrological cost associated with
the adaptation of spectator-based quantum memories
is given by Lemma 2 as

1
2
∥∥Rθ ◦ Nθ − Rθ̂ ◦ Nθ

∥∥
⋄ ≥ Fe(Rθ◦Nθ)−Fe(Rθ̂◦Nθ) ,

(54)
where we have substituted for the quantum channels
QA ≡ RB→A

θ ◦ NA→B
θ and SA ≡ RB→A

θ̂
◦ NA→B

θ .
Note that an upper bound to the diamond distance is
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given by 1
2
∥∥Rθ − Rθ̂

∥∥
⋄, which follows from its defini-

tion.
We start by providing a lower bound to the right-

hand side in Eq. (54) for arbitrary finite estimation
errors θ̂ − θ, as follows

Theorem 1. Consider a parameterized noise chan-
nel NA→B

θ , and two arbitrary recovery maps RB→A

and R̃B→A. Then, the difference between the corre-
sponding entanglement fidelities of recovery is lower
bounded by the Choi states of the individual quantum
channels Nθ, R, and R̃, as follows

|Fe (R ◦ Nθ) − Fe(R̃ ◦ Nθ)|

≥
∥∥∥ΦR

AB − ΦR̃
AB

∥∥∥
α

×
∥∥∥ΦNθ

AB

∥∥∥
β
, (55)

where α ∈ [0, 1) and 1/α+ 1/β = 1 defines the β < 0
Hölder dual to α, and ∥X∥α(β) :=

(
Tr[|Xα(β)|]

)1/α(β).

Proof. Please see Appendix F.3.

Applying this theorem particularly to the optimal
Rθ and best-guess Rθ̂ recovery maps, defined via the
optimization in Eq. (40), yields a lower bound to the
right-hand side in Eq. (54) for arbitrary estimation
errors θ̂ − θ.

In this article, we will mainly be interested in the
small estimation error θ̂− θ case. Again, this is moti-
vated by physical considerations. For example, tem-
poral variations of T1 and T2 times in superconducting
qubits have been studied extensively, e.g. in [16, 17].
It was observed that such non-negligible temporal
variations occur on timescales much longer (∼ 1 sec-
ond) than the timescale of a single QEC cycle. There-
fore, it is sensible to consider the case where the noise
parameter does not vary considerably within a single
QEC cycle, and hence we expect θ̂−θ to also be small
for each QEC cycle, and its effect only accumulates
on the timescales of multiple QEC cycles, as observed
e.g. in [44]. Hence, in the rest of the manuscript, we
provide lower bounds for the spectator-based recovery
protocol in this limit, unless stated otherwise.

We now present the main result of the article, which
describes a metrological lower bound to the perfor-
mance of the spectator-based recovery protocol in
Fig. 2, compared to the perfect knowledge case in
Fig. 1. For simplicity, this result applies when no
nuisance parameters are present. A discussion of how
the nuisance parameters will impact the lower bound
is given later is Section 5.4.

Theorem 2. Consider a parameterized noise chan-
nel NA→B

θ , and the corresponding optimal RB→A
θ and

best-guess RB→A
θ̂

recovery maps. For small deviations
θ̂ − θ of the locally unbiased estimate θ̂ from the true
value θ, the difference between the corresponding en-
tanglement fidelities of recovery is lower bounded by

E
[
Fe(Rθ ◦ Nθ) − Fe(Rθ̂ ◦ Nθ)

]
p(x|θ)

≥ g(θ)
IQF(Mθ(ψ)) − E

[
R(θ̂ − θ)

]
p(x|θ)

, (56)

where g(θ) denotes

g(θ) = − dB
2dA

TrAB
[(

ΦNθ

AB

)T
∂2
θΦRθ

BA

]
. (57)

Further, IQF(Mθ(ψ)) denotes the QFI of the spectator
dynamics Mθ(ψ) (initialized in state ψ) and E(·)p(x|θ)
denotes the expectation with respect to the specta-
tor’s measurement statistics pX(x|θ), corresponding
to the measurement outcomes x ∈ X of the specta-
tor observable X =

∑
x∈X xΠx. Finally, R(θ̂ − θ) ≡

1
3!∂

3
νFe(Rθ+ν0 ◦Nθ)(θ̂−θ)3 is the Lagrange remainder

of the Taylor series expansion of Fe(Rθ+ν ◦ Nθ) with
respect to ν, where ν0 ∈ [0, θ̂ − θ] is a constant.

Proof. The first part of the proof follows directly from
Taylor expanding the entanglement fidelity Fe(Rθ+ν ◦
Nθ) with respect to the difference ν ≡ θ̂ − θ to the
second order, and using the Lagrange form for the
remainder, as follows

Fe(Rθ ◦ Nθ) − Fe(Rθ̂ ◦ Nθ) (58)
= Fe(Rθ ◦ Nθ) − Fe(Rθ+ν ◦ Nθ) (59)

= 1
1!

(
− d

dν
Fe(Rθ+ν ◦ Nθ)

)∣∣∣∣
ν=0

ν

+ 1
2!

(
− d2

dν2Fe(Rθ+ν ◦ Nθ)
)∣∣∣∣

ν=0
ν2

− 1
3!
d3

dν3Fe(Rθ+ν0 ◦ Nθ)ν3 , (60)

where ν0 ∈ [0, ν] is a constant. Taking the expectation
E[·]p(x|θ) of both sides with respect to the spectator’s
measurement statistics pX(x|θ) of the observable X,
and recalling that θ̂ is a locally unbiased estimate of
θ (and hence the QCRB applies), we see that

E[ν]p(x|θ) = 0 and E[ν2]p(x|θ) ≥ 1
IQF(Mθ(ψ)) .

(61)
This yields Eq. (56) of our theorem. To prove Eq. (57)
of this theorem, we first show in Lemma 8 of Ap-
pendix F that the entanglement fidelity of the com-
posite dynamics Rθ+ν ◦ Nθ of the memory qubit is
given by the individual Choi states of the noise and
recovery maps, as follows

Fe(Rθ+ν ◦ Nθ) = dB
dA

TrAB
[(

ΦNθ

AB

)T
ΦRθ+ν
BA

]
. (62)

Then, Eq. (57) of our theorem is a direct consequence
of differentiating this entanglement fidelity formula
twice with respect to ν (assuming the Choi state of
the optimal recovery map Rθ is twice differentiable)
for a fixed θ, which yields

∂νΦRθ+ν |ν=0 = ∂θ+νΦRθ+ν |θ+ν=θ (63)
= ∂θ′ΦRθ′ |θ′=θ ≡ ∂θΦRθ . (64)
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Figure 5: Plot of the fidelity gain Eq. (65) due to using a
spectator-based recovery protocol for the [4,1] amplitude
damping code (see Section 5). The variation θn−1 → θn is
modeled to be a truncated Gaussian distribution with a
maximum at θn−1, and 0.1 standard deviation. The region
of outperformance under these conditions is
Θspec = [0.125, 1] ⊂ [0, 1].

We note that the saturation of this lower bound
is based on the saturation of the QCRB, and is dis-
cussed in Appendix E. Moreover, although Theorem 2
is true for any input state ψ of the spectator system,
we would like to use the optimal probe state for the
corresponding dynamics Mθ. Furthermore, a suffi-
cient condition for the remainder term in Eq. (56) to
be negligible is presented in Appendix G. Further, we
note that this theorem could also be interpreted from
the information geometric perspective, e.g. in [65, 78].

Remark 3. Due to the tensor product property of the
QFI, IQF(σ⊗m

θ ) = mIQF(σθ), the QCRB yields zero
variance only in the asymptotic limit. However, in
realistic spectator-based recovery protocols (described
by Fig. 2), the asymptotic limit (i.e. implementing
m → ∞ spectator qubits) will necessarily mean that
spatial variations of the noise parameter θ affecting
the spectator qubits cannot be neglected. Therefore,
we limit ourselves to the non-zero QCRB variance (fi-
nite sample case) and instead attempt to saturate this
bound via optimal measurements and initial spectator
state (see Appendix E.2).

Finally, note that the expected dependence of the
spectator’s contribution separates into the product of
two functions: the first, g(θ), depends on the full dy-
namics of the memory system, and the second, Var(θ̂),
depends on the full dynamics of the spectator system.
It turns out that the function g(θ) could be computed
analytically for simple single-qubit channels, such as
for the amplitude-damping channel [79].

4.4.3 Comparison With The Non-Adaptive Case

As discussed previously in Section 4.1, the relative
advantage of implementing a spectator-based recovery
protocol depends on the characteristics of the noise.
For example, if the noise is completely static, then im-
plementing a spectator-based recovery will always be

worse than simply characterizing the noise before the
experiment (e.g. via process tomography), as there
is no advantage to real-time quantum sensing of the
noise, where only sparse data is available. Here, we
provide a sufficient condition for a spectator-based
adaptive protocol to outperform other (non-adaptive)
recovery protocols for arbitrary finite estimation error
θ̂ − θ.

Consider some parameter variation θn−1 → θn from
the (n − 1)-th to the n-th QEC cycle. This cor-
responds to the change in the noise Nθn−1 → Nθn .
In a spectator-based recovery protocol, this change is
tracked via the spectator system, and the best-guess
recovery is updated accordingly Rθ̂n−1

→ Rθ̂n
. The

performance of this protocol will hence be quantified
by the entanglement fidelity Fe(Rθ̂n

◦ Nθn). On the
other hand, a non-adaptive protocol will include ap-
plying a recovery map Rθn−1 that is (in the ideal case)
optimal for the previous noise channel, i.e. Nθn−1 .
The performance of an ideal non-adaptive protocol
will hence be quantified by the entanglement fidelity
Fe(Rθn−1 ◦Nθn). Therefore, to find a sufficient condi-
tion for adaptation to yield an advantage, we need to
find a non-negative lower bound to the entanglement
fidelity difference

Fe(Rθ̂n
◦ Nθn) − Fe(Rθn−1 ◦ Nθn) . (65)

We accomplish this by using Theorem 1 and Eq. 54,
as follows

Fe(Rθ̂n
◦ Nθn) − Fe(Rθn−1 ◦ Nθn)

=
[
Fe(Rθn ◦ Nθn) − Fe(Rθn−1 ◦ Nθn)

]
−
[
Fe(Rθn ◦ Nθn) − Fe(Rθ̂n

◦ Nθn)
]

(66)

≥
∥∥∥ΦRθn−1 − ΦRθn

∥∥∥
α

×
∥∥ΦNθn

∥∥
β

− 1
2

∥∥∥Rθn ◦ Nθn − Rθ̂n
◦ Nθn

∥∥∥
⋄

(67)

≥
∥∥∥ΦRθn−1 − ΦRθn

∥∥∥
α

×
∥∥ΦNθn

∥∥
β

− 1
2

∥∥∥Rθn − Rθ̂n

∥∥∥
⋄
. (68)

Therefore, a sufficient (and initial state independent)
condition for the spectator-based recovery protocol
to be advantageous for an arbitrary estimation error
θ̂ − θ, compared to an ideal non-adaptive protocol, is
given by

1
2

∥∥∥Rθn − Rθ̂n

∥∥∥
⋄

≤ c×
∥∥∥ΦRθn−1 − ΦRθn

∥∥∥
α
, (69)

where c ≡
∥∥ΦNθn

∥∥
β
. It is easy to see that if there is

no change, i.e. θn = θn−1, then this condition is not
satisfied. On the other hand, for a general (Marko-
vian) stochastic jump model, with a θn−1 → θn tran-
sition probability of p(θn|θn−1), there is a range of
values Θspec ⊆ Θ of the noise parameter θn−1 ∈ Θ
such that the spectator based recovery exhibits an
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Figure 6: Spectator-based [4, 1] code of the
amplitude-damping channel (time flows from left to right).
A single logical qubit (second register) is encoded into four
physical qubits using the encoding channel E : H2 → H⊗4

2
in Eqs. (71) and (72), where H2 denotes the two
dimensional Hilbert space of a single qubit system. The
spectator system (first register) performs an unbiased
estimate θ̂(x) of the noise parameter θ using the POVM
{Πx}. The estimated value θ̂ is fed into the recovery
operation described in detail in [12] that is adapted for the
amplitude-damping channel.

advantage. Furthermore, this advantage will accumu-
late over multiple QEC cycles. As an example, in
Fig. 5, we plot the fidelity gain in Eq. (65) for the
[4,1] amplitude damping code (see the following sec-
tion), showcasing the region of outperformance of the
spectator-based recovery protocol over standard QEC
[12] for a stroboscopically varying noise θn−1 → θn.
For more details, please see Appendix H.

5 Application to The [4, 1] Code of
The Amplitude-Damping Channel

In what follows, we derive the entanglement fi-
delity Fe(Rθ̂ ◦Nθ) for the [4, 1] code of the amplitude-
damping (AD) channel analytically, following the ap-
proach developed in [80], and extending the derivation
in [79] to the incomplete knowledge recovery scenario.
It is worth noting that analytical approaches to the
AD channel have also been taken previously e.g. in
[81, 82].

Since the AD channel is covariant with respect to
the group {I, Z}, the Eastin-Knill theorem [83] guar-
antees that no perfect QEC codes exist. However,
approximate codes for the AD channel have been de-
veloped in [13] and later on, channel-adapted codes
have been developed [12], where the recovery depends
on the value of the noise parameter. The developed

techniques have also been extended beyond the [4, 1]
code and towards more general [2k+1, k] codes [12, 13]
(where k logical qubits are encoded into n = 2k + 1
physical/memory qubits).

5.1 The Amplitude-Damping Channel
The single-qubit AD channel is defined as N (1)

θ (·) =
N0(·)N†

0 +N1(·)N†
1 , where

N0 =
(

1 0
0

√
1 − θ

)
, N1 =

(
0

√
θ

0 0

)
. (70)

The Kraus operators N0, N1 are often called the “no-
damping” and “damping” errors, respectively. Here,
the noise parameter θ(t) = 1−exp (−t/T1) depends on
time t and the relaxation time T1 [18, 37]. We follow
the usual notation in quantum information, where the
dependence of the noisy channel (and hence also the
noise parameter) on time is suppressed.

5.2 The Approximate [4,1] Code
Assuming an independent noise model, we recall

the encoding E : D(H) → D(C) of the [4,1] code [13]
from a 1-qubit physical state to a 4-qubit logical state,
where C = span{|0L⟩, |1L⟩} ⊂ H⊗4, as follows

|0⟩ → |0L⟩ := 1√
2

(|0000⟩ + |1111⟩) (71)

|1⟩ → |1L⟩ := 1√
2

(|1100⟩ + |0011⟩) , (72)

and hence E(·) := C(·)C†, where C = |0L⟩⟨0|+ |1L⟩⟨1|.
The encoded Pauli operators σenc = E(σ) for σ ∈
{I,X, Y, Z} read

Ienc = |0L⟩⟨0L| + |1L⟩⟨1L| (73)
Xenc = |0L⟩⟨1L| + |1L⟩⟨0L| (74)
Yenc = −i|0L⟩⟨1L| + i|1L⟩⟨0L| (75)
Zenc = |0L⟩⟨0L| − |1L⟩⟨1L| . (76)

By definition, the encoded Pauli operators only act
on states in the codespace C. However, in the sta-
bilizer formalism, the logical Pauli operators IL, XL,
YL, and ZL are defined on the full 4-qubit Hilbert
space. For example, the generators of the stabilizer
set for the [4, 1] code is given by S = {Sj}3

j=1 =
{XXXX,ZZII, IIZZ}, along with the logical Pauli
operators XL = XXII, YL = Y XZI, and ZL =
ZIZI. The link between the encoded and logical
Pauli operators is found by restricting the action of
the latter to the codespace. Namely, σenc = E(σ) =
ΠσL, where Π =

∑3
j=1 Sj/|S| is the projection onto

the codespace C corresponding to the set of stabilizers
[80].

We define the noisy channel Nθ to be the physical
noise experienced by the four physical qubits in the
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[4,1] code post-encoding, as follows

Nθ =
(

N (1)
θ ⊗ N (1)

θ ⊗ N (1)
θ ⊗ N (1)

θ

)
◦ E . (77)

Furthermore, we define the decoding recovery channel
Rθ̂ to be given by

Rθ̂ = E† ◦ R(4)
θ̂

, (78)

where R(4)
θ̂

is taken from Table 1 of [12], which is
the channel-adapted recovery of the AD channel (see
Fig. 7(b) for the performance of this recovery).

5.3 Entanglement Fidelity

In Appendix H, we analytically calculate the nu-
merator g(θ) in Theorem 2 for the [4,1] AD code to
be

g(θ) = (1 − θ)3
√

2(1 + (1 − θ)4)3/2
. (79)

It has been shown that the RLD QFI for the AD
channel diverges (see the example discussed in [84] for
generalized AD channels), however, the SLD QFI is
finite and known to be equal to IQF(N (1)

θ ) = 1/(θ(1 −
θ)) = IQF(N (1)

θ (ψ)) for ψ = |1⟩⟨1| [85]. Consequently,
a spectator qubit that satisfies the condition Eq. (46)
has an SLD QFI of

IQF(M(1)
θ (ψ)) = 1

fγ(θ)(1 − fγ(θ)) , (80)

where fγ(θ) is given by Eq. (48) for the AD code
(or more generally, by Eq. (46)). If the specta-
tor system is made out of m qubits, then the QFI
scales linearly with m due to the QFI property
IQF(M(1)

θ (ψ)⊗m) = mIQF(M(1)
θ (ψ)), assuming an in-

dependent noise model (see Eq. (45)). Note that we
can only realistically improve the QCRB to a certain
degree by increasing m, without dropping the negligi-
ble spatial variability assumption of the noise param-
eter θ [25].

Combining Eqs. (79) and (80) for the [4,1] AD code
with Theorem 2 yields (for small θ̂ − θ)

E[∆Fe] ≥ g(θ)
mfγ(θ)(1 − fγ(θ)) . (81)

Therefore, the contribution of the spectator system
to the entanglement fidelity of the [4, 1] code of the
amplitude-damping channel is determined by two pa-
rameters: the number of spectator qubits used (m)
and their physical nature (γ = Tmemo

1 /T spec
1 ). When

the QCRB is saturated, the resulting entanglement
fidelity is illustrated in Fig. 7 for various values of the
spectator parameter γ.

5.4 The Effect of Nuisance Parameters
In this section, we discuss the effects of nuisance

parameters on the lower bound in Theorem 2 for the
AD code (i.e. Eq. (81)). We consider three different
physical choices of a spectator qubit, which yield one
of the following:

1. The presence of an additional constant magnetic
field B

Uϕ(·) = U−iϕZ(·)U iϕZ , (82)

with noise parameter ϕ = γspecBt, where γspec
here is the gyromagnetic ratio of the spectator
qubit.

2. The presence of an additional pure dephasing
noise

P(·) = P1(·)P †
1 + P2(·)P †

2 , (83)

where the Kraus operators P1 and P2 are given
by

P1 =
(

1 0
0

√
1 − λ

)
; P2 =

(
0 0
0

√
λ

)
, (84)

with noise parameter λ = 1−exp (−t/Tφ), which
yields the depahsing time T2 with an off-diagonal
decay rate of 1/T2 = 1/2T1 + 1/Tφ [86].

3. The presence of an additional depolarizing noise

Dq(·) = (1 − q)(·) + q
I

2 , (85)

with noise parameter q ∈ [0, 1].

When no noise parameters are present, the quantum
state of the spectator system

ψ =
(
ψ00 ψ01
ψ10 ψ11

)
, (86)

is transformed to M(1)
θ (ψ) = N (1)

f(θ)(ψ), where

N (1)
f(θ)(ψ) =

(
ψ00 + f(θ)ψ11 ψ01

√
1 − f(θ)

ψ10
√

1 − f(θ) (1 − f(θ))ψ11

)
.

(87)
However, when a nuisance parameter is present, the
output state of the spectator used for quantum esti-
mation limit of θ will be modified. In the above three
cases, the spectator states are given by, respectively,

M(1)
θ,ϕ(ψ) =

(
ψ00 + f(θ)ψ11 ψ01e

−iϕ
√

1 − f(θ)
ψ10e

iϕ
√

1 − f(θ) (1 − f(θ))ψ11

)
,

(88)

M(1)
θ,λ(ψ) =

=
(

ψ00 + f(θ)ψ11 ψ01(1 − λ)
√

1 − f(θ)
ψ10(1 − λ)

√
1 − f(θ) (1 − f(θ))ψ11

)
,

(89)
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Figure 7: The spectator system is taken to be a single qubit (m = 1) with varying values of the physical parameter γ in
Eq. (48). Both subfigures consider the channel-adapted approximate [4, 1] code of the amplitude damping channel [12]. (a)
Entanglement fidelity difference between the cases of perfect and incomplete knowledge recovery protocols. (b) Comparison
between the entanglement fidelities for perfect [12, 79] and incomplete knowledge recovery protocols. In both figures, we
assume the best-case scenario where the spectator system saturates the QCRB during parameter estimation.

and

M(1)
θ,q(ψ) = qM(1)

θ (ψ) + (1 − q)I2 . (90)

The quantum estimation limit of the parameter of in-
terest θ, in the presence of one of the nuisance pa-
rameters ζ = {ϕ, λ, q} above, is given by the partial
QFIM Iθ|ζ via Var(θ̂) ≥ 1/Iθ|ζ , where

Iθ|ζ = Iθ,θ − Iθ,ζ (Iζ,ζ)−1 Iζ,θ ≤ Iθ,θ , (91)

and the right hand side are the block matrices of the
QFIM (see Appendix E for more details)

IQF

(
M(1)

θ,ζ(ψ)
)

=
(

Iθ,θ Iθ,ζ
Iζ,θ Iζ,ζ

)
. (92)

It is important to emphasize that the matrix element
Iθ,θ refers to the quantum estimation limit of θ, when
the noise parameter ζ is known. Therefore, we ex-
pect to have limζ→0 Iθ,θ = IQF(M(1)

θ (ψ)), which is eas-
ily verified numerically for the above three examples.
However, a nuisance parameter ζ, similar to the pa-
rameter of interest θ, is, by nature, unknown. Hence,
the quantum estimation limit would be reduced by
Iθ,θ − Iθ|ζ due to the presence of the unknown noise
parameter ζ, compared to when it is known.

We now present the impact of the nuisance parame-
ter for the spectator qubit initial state ψ = |1⟩⟨1| that
maximizes the QFI IQF(M(1)

θ (ψ)) for the AD channel
M(1)

θ [85]. Simple computation shows that

1. For ζ = ϕ, we have

Iθ|ϕ = Iθ,θ = 1
f(θ)(1 − f(θ)) = IQF(M(1)

θ (ψ)) .

(93)

2. For ζ = λ, it still holds that

Iθ|λ = Iθ,θ = 1
f(θ)(1 − f(θ)) = IQF(M(1)

θ (ψ)) .

(94)
This is a direct consequence of the fact that the
optimal spectator input state ψ = |1⟩⟨1| has no
off-diagonal elements subject to dephasing.

3. For ζ = q, we have

Iθ,θ = (1 − q)2

(1 − q)2(f(θ)(1 − f(θ)) − 1
4 ) + 1

4
, (95)

which also yields limq→0 Iθ,θ = IQF(M(1)
θ (ψ)) =

1/(f(θ)(1 − f(θ))). However, the partial QFI is
computed to be Iθ|q = 0.

6 Recovery Bounds in The Multi-Cycle
Scenario
6.1 The Multi-Cycle Case

In the article, we have considered a single-cycle re-
covery, i.e. when the noisy channel Nθ is applied only
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(a)

(b)

Figure 8: Time flows from left to right. (a) Multi-cycle recovery protocol with perfect knowledge. (b) Multi-cycle recovery
protocol with incomplete knowledge. The input state of the quantum memory in both subfigures is given by ρ, whereas the
input state of the spectator system in subfigure (b) is ψ. In the latter case, the state of the spectator is recycled back to ψ
after every recovery cycle, via a discarding and preparation channel. The final output states Iθnθn−1···θ1

θnθn−1···θ1
(ρ) and

I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ) of the quantum memory follow the multi-cycle notation in Eq. (98).

once. However, extensions to the multi-cycle regime
are also important for real-time applications. A thor-
ough study of the multi-cycle case is beyond the scope
of the current article. However, here we present some
useful bounds to stimulate future discussions.

To start, consider a stroboscopically varying noise
parameter θ

θ1 → θ2 → · · · → θn , (96)

where n enumerates the recovery cycle in the multi-
cycle protocol, executed in the time interval [(n −
1)∆tR, n∆tR], where ∆tR << τθ is the duration of
a single recovery cycle, and τθ is the characteristic
time of the noise parameter θ (i.e. the expected time
in which the value of θ will change appreciably, see
Section 4.1). The corresponding set of real-time spec-
tator estimates of θ for these n cycles is given by

θ̂1 → θ̂2 → · · · → θ̂n . (97)

We introduce the following shorthand notation for
multi-cycle recovery protocols

I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

:= Rθ̂n
◦Nθn◦Rθ̂n−1

◦Nθn−1 · · ·◦Rθ̂1
◦Nθ1 ,

(98)
which is an n-cycle concatenation between the noisy
channel (with changing noise parameter values in each
timestep) and the corresponding best-guess recovery.

6.2 Recurrence Inequalities for Composite Av-
erage Channel Fidelity

So far, we have found a lower bound on the desired
distinguishability measure in terms of the composite
channel entanglement fidelity for the single-cycle case.
To extend to the multi-cycle scenario, one option is
to consider the entanglement fidelity of I θ̂nθ̂n−1···θ̂1

θnθn−1···θ1
.

However, a more insightful approach is to express this
entanglement fidelity in terms of individual cycle fi-
delities. Specifically, this is accomplished by the use
of the entanglement fidelities of I θ̂n−1···θ̂1

θn−1···θ1
and I θ̂nθn .

Bounding composite channel fidelities using individ-
ual channel fidelities has been studied previously in
e.g. [43]. The following lemma is largely taken from
[43], using the χ-matrix representation of quantum
dynamics (see Appendix I for a self-contained review).

Lemma 3. ([43]) Given the χ-matrix elements χQ
00,

χS
00 of the channels Q, S, respectively, the composite

channel S ◦Q χ-matrix element χS◦Q
00 is bounded from

above (and hence the corresponding error angle δS◦Q

is bounded from below), as follows

χS◦Q
00
d

≤ cos2

arccos
√
χS

00
d

− arccos

√
χQ

00
d

 ,

(99)
or more simply

δS◦Q ≥ |δS − δQ| . (100)
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The inequality is saturated iff vij = 1, ϕQ
i = ϕQ

i′ ,
and ϕS

j = ϕS
j′ for all i, i′ = 1, · · · ,K(Q) and j, j′ =

1, · · · ,K(S). The quantities vij, ϕQ
i , and ϕS

j are de-
fined in Appendix J in terms of the Kraus operators
of Q, S and the d2 matrix basis elements of L(H).

For completeness, the proof of this lemma is found
in Appendix J.

Let us denote by Q ≡ I θ̂n−1···θ̂1
θn−1···θ1

and S ≡ I θ̂nθn , such

that S ◦Q = I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

. We further use the notation

χ1→n
00 , χ1→(n−1)

00 , χn00, δ1→n, δ1→(n−1), and δn to re-
place χS◦Q

00 , χQ
00, χ

S
00, δS◦Q, δQ, and δS , respectively.

We also use the definition in Eq. (14) to write sim-
ilar notations for the entanglement fidelities F 1→n

e ,
F

1→(n−1)
e , and Fne , in terms of δ1→n, δ1→(n−1), and
δn. Therefore, we can reframe Lemma 3 by the au-
thors of [43] as the following set of recurrence inequal-
ities in the context of spectator-based recovery:

Lemma 4. Given the entanglement fidelities F ie of
the single-cycle recovery protocols at each time step
∆tR = ti+1 − ti, the n-cycle entanglement fidelity
F 1→n
e of the multi-cycle recovery protocol is bounded

from above by the (n − 1)-cycle entanglement fidelity
F

1→(n−1)
e , as

F 1→n
e ≤ cos2

(
arccos

√
F

1→(n−1)
e − arccos

√
Fne

)
,

(101)
or equivalently,

δ1→n ≥ |δ1→(n−1) − δn| . (102)

The necessary and sufficient conditions for the satura-
tion of this inequality are identical to that of Lemma 3.

Remark 4. As noted in [43], the entanglement fi-
delity of a composite channel exhibits “constructive”
and “destructive interference” with respect to the in-
dividual channel entanglement fidelities. In our case,
we view the n-cycle recovery as a composite channel,
where the individual channels are the (n−1)-cycle re-
covery and the n-th timestep recovery. Therefore, the
same phenomenon of constructive and destructive in-
terference applies here. This is purely a multi-cycle
recovery phenomenon that is not present in single-
cycle recovery case, which has been the main focus
of modern literature in QEC.

6.3 Contribution of The Spectator System
To identify the contribution of the lack of complete

knowledge of θ to the recurrence inequalities, let us
consider the error angle

δ̂ ≡ δRθ̂◦Nθ := arccos
√
Fe(Rθ̂ ◦ Nθ) . (103)

Theorem 3. Given the multi-cycle entanglement fi-
delity F

1→(n−1)
e from the previous n − 1 cycles, the

contribution of the spectator system to the upper
bound of the total n-cycle entanglement fidelity F 1→n

e

is given by

h(θn, F 1→(n−1)
e ) Var(θ̂n) , (104)

where

h :=
g(θn) sin

(
2δ1→(n−1) − 2 arccos

√
Fne
)

2
√
Fne (1 − Fne )

, (105)

with

g(θn) := −1
2

(
d2

dν2Fe(Rθn+ν ◦ Nθn)
)∣∣∣∣

ν=0
. (106)

The proof of this theorem is found in Appendix K.

6.4 Application to [4,1] Code of The
Amplitude-Damping Channel

The contribution of the spectator system in multi-
cycle bounds can also be computed explicitly for the
[4,1] code of the AD channel. For a fixed value of
the entanglement fidelity F

1→(n−1)
e (or equivalently,

δ1→(n−1)) at the (n − 1)-th step, we can plot the to-
tal upper bound in the case of both complete and
incomplete knowledge. The simplest case where the
spectator system’s parameters are γ = 1 and m = 1
is shown in Fig. 9.

Note that, although we expect the incomplete
knowledge about the noise parameter to deteriorate
the allowed values of the entanglement fidelity (as we
have shown for single-cycle QEC of the AD channel in
Fig. 7(b)), in the multi-cycle scenario, this can play to
our advantage due to the coherence between the accu-
mulated error during the prior (n− 1) cycles and the
error due to the limited knowledge about the noise
parameter at the n-th cycle (see Remark 4). This
observation further supports the potential superiority
of spectator-based recovery techniques in maintaining
real-time quantum memories.

7 Comparison With Previous Litera-
ture
7.1 Relation to Quantum Information-
Theoretic Protocols

In this article, we focused on the diamond distance
due to its operational meaning in terms of a quantum
channel discrimination task. In this context, Lemma 2
could be interpreted as a fundamental bound on the
success probability of such a task. A similar bound
has already been derived by Pirandola et al. in [41]
using port-based teleportation [87]. In fact, the bound
in [41] is valid for general adaptive protocols.

Furthermore, as current techniques of quantum
control have matured, the applicability of Lemma 4
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Figure 9: Subplots show the dependence of the
accumulated n-cycle entanglement fidelity F 1→n

e on the
value of the noise parameter θn at the n-th cycle for the
[4,1] code of the amplitude-damping channel. The
spectator system is taken to have the simplest characteristic
parameters (γ = 1,m = 1). The colored regions indicate
allowed values for the entanglement fidelity. The blue color
refers to the case of perfect knowledge of θn and the
orange color to the lack of that knowledge. From top to
bottom, the value of the accumulated (n− 1)-cycle
entanglement fidelity F 1→(n−1)

e is picked to be (a) 0.99,
(b) 0.97, and (c) 0.95, respectively.

is not only confined to multiple recovery rounds, as
demonstrated experimentally in e.g. [44]. It can also
be applied in various quantum information-theoretic
tasks where multiple calls to the noisy channel and
adaptive feedback are allowed, such as quantum chan-
nel discrimination with adaptive feedback [41, 88, 89].

7.2 Relation to Robustness of Channel-
adapted QEC

Our approach to recovery with incomplete knowl-
edge is closely related to the robustness of channel-
adapted QEC codes studied previously in literature
[57–60]. To elaborate, since QEC codes are designed
to correct the most likely errors, an important ques-
tion to ask is: how resilient (robust) is the designed
QEC code with respect to some arbitrary mixing with
the next-most likely errors? The authors of [58] have
framed the robustness problem such that it applies
both for Pauli and non-Pauli channels, as follows:
One first finds the optimum recovery R of a channel
N (the most likely noise) by maximizing the entan-
glement fidelity of R ◦ N , and then one mixes the
original channel N with some other channel N ′ (the
next-most likely noise) by taking their convex combi-
nation, i.e. Nµ := (1 − µ)N + µN ′ for some mixing
parameter µ ∈ [0, 1]. Then, the robustness of the
recovery R with respect to µ is found by consider-
ing the entanglement fidelity of R ◦ Nµ and observing
if it has major variations as a function of the mix-
ing parameter µ. This setup shares some similarities
with our approach, however, it has a different quan-
tity of interest, namely the sensitivity of entanglement
fidelity with respect to changes in the mixing param-
eter, quantified as the first derivative with respect to
µ of

Fe(Rµ ◦ Nµ) − Fe(R ◦ Nµ) , (107)

where Rµ is the optimum recovery of the mixing Nµ

(Also see Appendix F.2 for bounds on a similar quan-
tity). This is to be contrasted with the quantity of
interest in this article (using the parameter notation
µ)

Fe(R ◦ N ) − Fe(Rµ ◦ N ) . (108)

Here, µ plays the role of the uncertainty ν ≡ θ̂ − θ
in the noise parameter θ, and therefore it has a dif-
ferent interpretation. Namely, there is no next-most
likely noise in this description! Instead, µ is the ran-
dom variable describing the uncertainty in the envi-
ronment noise parameter and has a finite variance, by
the QCRB.

The possibility of including the channel uncertainty
as a probability distribution p(µ) in the optimization
problem of entanglement fidelity has been discussed
by Fletcher in [90]. The question then, as mentioned
in [58], is: how to pick a physical probability distri-
bution p(µ)? In our picture (spectator-based QEC),
this question has a relatively simple answer, as one
should always pick the probability distribution that
maximizes the Shannon entropy with a fixed expec-
tation and variance (larger or equal to the inverse of
the quantum Fisher information). Such a probability
distribution is called “ the truncated normal distribu-
tion”.
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Figure 10: Comparison of the maximum performance of
spectator-based recovery (subject to varying noise
parameter θ) with various recovery optimization approaches
to the [4, 1] code of the amplitude-damping channel (with
fixed noise parameter θ). We consider the “worst case”
spectator parameters (γ = 1,m = 1). Shown are the
performances of the well-known approximate QEC code in
Leung et al. [13], its channel-adapted version by Fletcher et
al. [12], its SDP optimized version by Fletcher et al. [14],
its stabilizer-based version [12, 81], and the incomplete
knowledge extension of the channel-adapted QEC in [12].
Here, the difference between the “channel-adapted” and
“incomplete knowledge” entanglement fidelities showcases
the fundamental metrological cost of operating a real-time
quantum memory. All other (γ ≥ 1,m ≥ 1) spectator-based
recoveries lie above the “incomplete knowledge” graph.

7.3 Relation to [4,1] AD Code Literature
As amplitude-damping (qubit decoherence) is one

of the most common noises in quantum systems, de-
veloping QEC codes for this particular noise has been
a major focus of QEC literature since its inception
in 1995. The simplest of such QEC codes is the ap-
proximate [4, 1] code [13]. Since then, QEC methods
for the AD noise have been developing in sophistica-
tion by using various new techniques, such as channel
adaptation [12], stabilizer formalism [81], and semi-
definite programming [14]. These techniques have
been steadily improving upon the entanglement fi-
delity of the original [4, 1] code in [13]. However, If
we want to implement these techniques for real-time
quantum memories (where the decoherence parameter
is slowly varying in time), how much of the improve-
ments upon [13] obtained in the last two decades are
we likely to retain? The answer to this question, we
compare the performance of the [4, 1] code in the in-
complete knowledge scenario with previous literature.
As spectator systems are characterized by their phys-
ical nature γ ≥ 1 and the number of independent
subsystems m ∈ N+ (see Eq. (45)), the answer will
vary from one physical implementation to another.
However, we consider the above question in the case
(γ = 1,m = 1). The results of this comparison are
summarized in Fig. 10 and the table below

Previous literature Fe to O(θ3) order
Leung et al. [13] 1 − 2.75θ2

Stabilizer-Based [81, 90] 1 − 2θ2

Channel-Adapted [12, 79] 1 − 1.5θ2

SDP [14] 1 − 1.25θ2

Incomplete Knowledge 1 − 0.25θ − 1.25θ2

Table 1: Comparison between the entanglement fidelities of
the [4,1] code for small noise parameter value θ, for
different recovery protocols (here SDP stands for
“semi-definite programming”). Note that in the incomplete
knowledge scenario, the leading error term in the
entanglement fidelity of recovery is linear in θ, as opposed
to quadratic, which is the optimal result when the noise
parameter θ is known apriori.

We observe that, due to incomplete knowledge of
the noise parameter, the [4, 1] code of the AD chan-
nel performs suboptimally to [13] for noise parame-
ter values below a certain threshold θ ≤ 0.17. How-
ever, beyond that point, the improvements intro-
duced by channel-adapted recoveries and semi-definite
programming techniques are preserved, as they still
outperform [13], even in the presence of incomplete
knowledge about θ. Furthermore, the range of the
values of θ ∈ [0, 1] for which this outperformance is
preserved gets larger the larger we pick γ and/or m
(see Fig. 7(a)).

Let us consider one final observation. We noted
in Fig. 7 that different values of the spectator pa-
rameter γ yield different regions of θ where channel-
adapted and semi-definite programming techniques in
QEC maintain their improvements upon the approxi-
mate [4, 1] code [13], provided that a spectator system
is implemented in the incomplete-knowledge recovery
protocol. One might observe that, since the value
of γ in Eq. (48) generally depends on the couplings
of the spectator and memory systems with the envi-
ronment, the only way to change γ is to change the
physical implementation of at least one of these sys-
tems. However, recent quantum control techniques,
such as Hamiltonian amplification [91], allow for the
tuning of the coupling strengths between an environ-
ment and any continuous variable quantum system,
with a quadratic coupling Hamiltonian. Therefore,
provided that the implementation of either the spec-
tator or memory system has continuous degrees of
freedom [92], the Hamiltonian amplification technique
yields a practical advantage for spectator-based recov-
ery architectures, as the resulting entanglement fideli-
ties can be manipulated in experiments for any desired
region of the noise parameter θ, as seen in Fig. 7(a).

7.4 Relation to Time-Dependent QEC
In [93], the author suggests that knowledge of the

error rates for Pauli channels is not the most useful
side information in QEC. Indeed, as mentioned pre-
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viously (see Remark 2), the assumption that the op-
timal recovery channel (defined by Eq. (40)) depends
on the environment noise parameter does not hold for
Pauli channels. Nevertheless, it is important to note
that optimization-based techniques of QEC for Pauli
channels do generally benefit from the knowledge of
the noise parameter. This is especially relevant when
error identification from syndrome measurements is
not unique (e.g. in surface codes [94]). Hence, one
can only construct (suboptimal) decoders, rather than
the optimal recovery map in Eq. (40). This generally
yields decoders that depend on the noise parameters,
even for Pauli channels. For example, various types of
decoders exist for both repetition codes [95, 96] and
surface codes [97], where under the presence of a drift-
ing noise parameter, one can design an adaptive de-
coder that can track this drift while not interrupting
the QEC protocol. Therefore, the results of this ar-
ticle could be expanded to include adaptive decoders
for repetition and surface codes, rather than the op-
timal recovery map defined in Eq. (40). Finally, it
is worth mentioning that other approaches to adap-
tation in QEC literature have been pursued, e.g. in
Refs. [98, 99].

8 Conclusion and Open Questions
In this article, I consider the problem of build-

ing a real-time (drift-adapting) quantum memory and
present it as a spectator-based recovery protocol. To
counter noise drift, the spectator system performs a
real-time parameter estimation (generally in the pres-
ence of nuisance parameters) and feeds forward this
classical side information to the “best-guess” recov-
ery map. To quantify the single-cycle information-
theoretic cost of adaptation in real-time quantum
memories, I compute a lower bound for the diamond
distance between the optimal (inaccessible) and best-
guess (accessible) recovery protocols. This approach
is generalized in Appendix A for other relevant dis-
tinguishability measures between arbitrary two quan-
tum channels. For slowly drifting noise parameters,
I show that a metrological bound exists, determined
by the quantum Fisher information of the spectator
dynamics. This bound is demonstrated for the [4, 1]
code of the amplitude-damping channel, and the ef-
fects of various physical choices of spectator qubits
and nuisance parameters are discussed. Finally, for
multi-cycle recovery, I recall a theorem in [43] and
use it to derive an upper bound to the fidelity of
multi-cycle recovery in terms of recurrence inequali-
ties. The contribution of the lack of knowledge of the
noise parameters (i.e. noise-drift adaptation) is also
derived. This is also showcased for the [4, 1] code of
the amplitude-damping channel, and regions of out-
performance in the spectator-based recovery protocols
are highlighted. The advantages of spectator-based
recovery compared to non-adaptive recovery proto-

cols, even in the perfect knowledge scenario, is due to
the coherence of errors from different cycle numbers
as well as the imperfect knowledge (noise estimation)
error. This phenomenon is exclusive to multi-cycle
QEC.

The results mentioned above are relevant for vari-
ous research communities, such as quantum error cor-
rection, quantum communication, quantum informa-
tion, quantum control, and quantum computing. To
elaborate, the existence of lower bounds on any chan-
nel recovery (Eqs. (53) and (54), or more generally
in Theorem 4 in Appendix A) could be valuable in
testing the performance of various optimization-based
techniques in QEC to determine if optimal perfor-
mance is reached. As discussed in Section 7, these
bounds may also have a broader interest in various
domains of quantum information as they hold for any
generalized distinguishability measure and between
any two quantum channels (see Appendix A). Multi-
cycle bounds (Lemma 4) might also be useful in adap-
tive quantum information-theoretic protocols, where
many calls to the noisy channel are made. The analy-
sis made for the [4, 1] code of the amplitude-damping
channel sheds light on what to expect when imple-
menting such QEC codes in real-time quantum mem-
ories [23, 24], while also providing an excited avenue
in terms of outperformance in the incomplete knowl-
edge scenario for multi-cycle recovery, which is quickly
starting to become a reality [44]. Finally, implement-
ing novel quantum control techniques, such as Hamil-
tonian amplification for continuous quantum systems
[91], might prove useful in controlling the coupling
strength of the spectator system. Therefore, one can
experimentally optimize over the selection of all pos-
sible spectator system parameters without physically
changing the spectator system.

Many questions are left open:

• Extension of the information-theoretic and
metrological lower bounds to Pauli channels with
suboptimal decoders. This is relevant for cur-
rent surface codes, as the optimal recovery map
Eq. (40) is inaccessible, due to the probabilis-
tic nature of error identification from syndrome
measurements for high error rates [94].

• Incorporation of important theoretical tech-
niques of the maximum overlap problem in quan-
tum information theory, e.g. the two-sided
bounds by Tyson [100, 101] using directional it-
erates. This approach has led to various impor-
tant results previously [49, 102]. An interesting
proposal (potentially also in quantum metrology)
would be to apply the directional iterate tech-
nique to the semi-inner product used to define
the QFIM, given in Eq. (196) of Appendix E.

• A deeper analysis of the multi-cycle regime is
required. This includes, but is not limited to,
the study of optimal conditions for achieving the
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coherent error cancellation, as well as incorpo-
rating techniques from asymptotic quantum in-
formation theory to gain further insight into the
multi-cycle case.

• Continuous (dynamical) recovery using Petz re-
covery maps [56] could also be considered, as
well as other adaptive approaches implementing
Petz recovery maps [103, 104]. This can poten-
tially extend the temporal range of applicability
of spectator-based recovery protocols to faster
varying noise. Another interesting dynamical
model of real-time quantum memory could be
constructed from the open system theory of two
subsystems (memory and spectator) with slow
and fast dynamics, relative to the environment
noise. This has been studied previously in the
context of adiabatic elimination in bipartite open
quantum systems [105].

• Considerations of spatial variability of the noise
parameter are also needed for scalability of
the spectator-based recovery protocols [25, 106].
Generalization beyond the independent noise
model in Eq. (45) is also of relevance.

• Finally, one would be remiss by not considering
the large literature on approximate recoverability
of quantum states, see e.g. [50, 51, 107–109] and
references within. It is interesting to see whether
incomplete knowledge recovery protocols would
benefit from a similar approach.
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A Lower-Bounding Generalized Distin-
guishability Measures Using Entangle-
ment Fidelity

A.1 Generalized Distinguishability and Dis-
tance Measures

To quantify the success of a recovery protocol (such
as QEC), we need to introduce the concepts of gen-
eralized distinguishability and distance measures be-
tween two states as well as between two channels [110–
115].

We say that D : D(H) × L+(H) → R1 is a gener-
alized distinguishability measure between two states
if it satisfies the data-processing inequality (DPI), i.e.
for arbitrary Q CPTP map and all ρ, σ ∈ D(H), we
have 1

D(Q(ρ),Q(σ)) ≤ D(ρ, σ) . (109)

An important consequence of DPI is the property of
isometric invariance. Namely, for any isometry V , the
following holds [115]

D(V(ρ),V(σ)) = D(ρ, σ) , (110)

where V(·) = V †(·)V .
Independently, we say that D : D(H)×D(H) → R1

+
is a generalized distance measure between two states
if it satisfies the following three properties for all
ρ, σ, τ ∈ D(H):

1. Positivity and faithfulness:

D(ρ, σ) ≥ 0 , (111)

where the equality holds iff ρ = σ.

2. Symmetry: D(ρ, σ) = D(σ, ρ).

3. Triangle inequality:

D(ρ, σ) ≤ D(ρ, τ) + D(τ, σ) . (112)

1Some previous papers have used the notation D(ρ∥σ),
rather than D(ρ, σ), to indicate the generalized distinguishabil-
ity measure between ρ and σ. Here, we use the latter notation
to emphasize the role that D plays also as a distance measure in
deriving standard upper bounds in the context of QEC. Please
Appendix C for more details.
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A common requirement for fault-tolerant QEC and
quantum computing is the so-called “chaining prop-
erty” [110, 112]. However, this property of general-
ized distinguishability/distance measures is derivative
from more elementary properties, such as DPI and the
triangle inequality (see Appendix B for a short discus-
sion).

Finally, we say that the map D : D(H) × L+(H) →
R1 satisfies the joint convexity property if for any
two ensembles {pX(x), ρx}x∈X and {pX(x), σx}x∈X ,
where pX is a probability distribution function of the
random variable X over the set X , we have

D
(∑
x∈X

pX(x)ρx,
∑
x∈X

pX(x)σx
)

≤
∑
x∈X

pX(x)D(ρx, σx) .

(113)
For fidelity-based distinguishability measures, such

as the Bures and Sine distances, this directly follows
from the double concavity of the fidelity function (see
e.g. [115]).

Alternatively, it is well-known that the joint con-
vexity property can be derived from the DPI (with
respect to the partial trace channel) if we further
assume that D satisfies the direct sum property for
classical-quantum states [115], i.e.

D
(∑
x∈X

pX(x)|x⟩⟨x| ⊗ ρx,
∑
x∈X

pX(x)|x⟩⟨x| ⊗ σx

)
=
∑
x∈X

pX(x)D(ρx, σx) . (114)

For a summary of various distinguishability and/or
distance measures, as well as which properties they
satisfy, please see Table 2. All the above properties
are satisfied by [112, 115]

1. Trace Distance: DTr(ρ, σ) = 1
2 ∥ρ− σ∥1.

2. Bures Distance: DB(ρ, σ) =
√

2 − 2
√
F (ρ, σ).

3. Sine Distance: DS(ρ, σ) =
√

1 − F (ρ, σ),
where F (ρ, σ) = ∥√

ρ
√
σ∥2

1 is the fidelity function.
Using the generalized distinguishability (distance)

measures between two states, we define the gener-
alized distinguishability (distance) measures between
two channels QA→B and SA→B , as follows

D(Q,S) := sup
ρ

D(idR ⊗ QA→B(ρ), idR ⊗ SA→B(ρ)) ,

(115)
where ρ ∈ D(HA ⊗ HR), for arbitrary Hilbert space
dimensions of the reference system R. By using joint
convexity and the Schmidt decomposition of pure
states, it can be shown that the maximization need
only be taken over pure states ψRA, with the reference
system R having the same Hilbert space dimensions
as A [115], i.e.

D(Q,S) := sup
ψ

D(idR ⊗ QA→B(ψ), idR ⊗ SA→B(ψ)) .

(116)

Finally, it is important to note that the joint con-
vexity property of generalized distinguishability mea-
sures for states implies the same property for chan-
nels. This is seen by considering the two chan-
nels QA→B =

∑
x∈X pX(x)QA→B

x and SA→B =∑
x∈X pX(x)SA→B

x , and then applying the joint con-
vexity property for states, as follows

D(Q,S) = sup
ρ

D(idR ⊗ QA→B(ρ), idR ⊗ SA→B(ρ))

(117)

= D
(

idR ⊗ QA→B(ρ⋆), idR ⊗ SA→B(ρ⋆)
)

(118)

≤
∑
x∈X

pX(x)D
(

idR ⊗ QA→B
x (ρ⋆), idR ⊗ SA→B

x (ρ⋆)
)

(119)

≤
∑
x∈X

pX(x) sup
ρ

D
(

idR ⊗ QA→B
x (ρ), idR ⊗ SA→B

x (ρ)
)

(120)

≡
∑
x∈X

pX(x)D(Qx,Sx) . (121)

Consequently, we have the joint convexity property

D
(∑
x∈X

pX(x)Qx,
∑
x∈X

pX(x)Sx

)
≤
∑
x∈X

pX(x)D(Qx,Sx) . (122)

A.2 Unitary t-designs
We call a function P : U(d) → C acting on any

unitary U in U(d) to be polynomial of degree t if its
dependence on the 2d2 real entries of U is a polyno-
mial of degree at most t in each of its entries. Given a
finite set of unitaries {U(x)}x∈X in U(d), we say that
they form a unitary t-design [54, 117] if the uniform
Haar average over U(d) of any polynomial P of de-
gree t is computed using the uniform average over the
finite set {U(x)}x∈X only, as follows∫

U(d)
dUP (U) = 1

|X |
∑
x∈X

P (U(x)) . (123)

It has been shown that for unitary 1 and 2 designs, the
above averaging condition can be rewritten in a dif-
ferent form. We say that {U(x)}x∈X forms a unitary
1-design in U(d) if

1
|X |

∑
x∈X

U(x)ρU†(x) = π , (124)

for all ρ ∈ D(H), where π = I/d is the maximally
mixed state. An example of unitary 1-designs is given
by the Pauli group. Further, we say {U(x)}x∈X forms
a unitary 2-design in U(d) if we have the following
conditions for twirling of states or channels [54, 118]∫

U(d)
dU(U ⊗ U)ρ(U ⊗ U)†
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List of different measures
Name Data Processing Distance Measure joint convexity
Quantum Relative Entropy Yes No Yes
Generalized α-Relative Entropies
(Petz-Renyi, Sandwiched, etc.)

Yes No Yes

Trace Distance Yes Yes Yes
Bures Distance Yes Yes Yes
Sine Distance Yes Yes Yes
Amortized Divergence [116] Yes No Yes

Table 2: Summary of properties of various measures used in quantum information theory.

= 1
|X |

∑
x∈X

(U(x) ⊗ U(x))ρ(U(x) ⊗ U(x))† ,

(125)

for all ρ ∈ D(H ⊗ H), or equivalently∫
U(d)

dUU†Q(UρU†)U

= 1
|X |

∑
x∈X

U†(x)Q(U(x)ρU†(x))U(x) ,

(126)

for all ρ ∈ D(H) and quantum channels Q. An exam-
ple of unitary 2-designs is given by the Clifford group
[118, 119].

Remark 5. Note that, if {U(x)}x∈X is a unitary t-
design, then it also holds that {U(x)}x∈X is a unitary
(t− 1)-design. For example, the Clifford group forms
a unitary 3-design, and hence also a unitary 2-design.

A.3 Channel Twirlings
Generally, channel twirlings can be defined with

respect to both discrete and continuous sets of uni-
taries. In its most simple form, for a set of uni-
taries {UA(x), VB(x)}x∈X and a probability distri-
bution function pX defined over a finite set X , the
twirling of a quantum channel QA→B (which we de-
note by a tilde symbol Q̃A→B) is defined as

Q̃A→B :=
∑
x∈X

pX(x)VB†
x ◦ QA→B ◦ UAx , (127)

where we have used the notation for the unitary
channels UAx (·) := U†

A(x)(·)UA(x) and VBx (·) :=
V †
B(x)(·)VB(x), for all x ∈ X . Although most of

the results presented in this article are valid for any
finite set X , the case where it forms a group and
{UA(x), VB(x)}x∈X two unitary representations of it
are of great interest [114] (see Remark 7).

Twirlings with continuous sets of unitaries have also
been studied extensively in the literature. If we have
some probability distribution (measure) µ(U) over the
set of d×d unitary matrices U(d), then the continuous
twirling of the channel QA is defined to be

Q̃ :=
∫
U(d)

dµ(U)U† ◦ Q ◦ U . (128)

Twirling of quantum channels plays an important
role in QEC and fault-tolerant quantum computing
[54, 119–124]. Examples include: (1) similarities
between QEC codes for channels and their twirled
versions [121], (2) the simulability of twirled quan-
tum channels on a quantum computer, due to the
Gottesman-Knill theorem [125], (3) the fact that
channels and their twirled versions share the same
average and entanglement fidelities [47], (4) various
twirlings (Pauli, Clifford, and uniform Haar) render-
ing channels depolarizing [47, 54, 119, 126], (5) and fi-
nally, their close connection to unitary t-designs. Due
to its importance, I recall some relevant properties of
unitary t-designs in Appendix A.2 (also see [118, 122]
for a brief review).

A.4 Lower-Bounding Generalized Distin-
guishability Measures Using Entanglement
Fidelity

We start this section by showing a simple property
that all generalized distinguishability measures satisfy
with respect to channel twirling if the joint convexity
property (or equivalently, if the direct sum property)
is further assumed.

Lemma 5. Assume that we are given two CPTP
maps QA→B and SA→B, a set of unitaries
{UA(x), VB(x)}x∈X , and a probability distribution
function pX defined over the finite set X . If the gener-
alized distinguishability measure D satisfies the joint
convexity property, then D(Q,S) is lower bounded
by the generalized distinguishability measure between
the corresponding twirled channels Q̃A→B and S̃A→B

with respect to the given weighted set of unitaries
above, as follows

D(Q,S) ≥ D(Q̃, S̃) , (129)

where the lower bound is saturated iff the joint con-
vexity of the generalized distinguishability measure be-
tween the two quantum channels is saturated with re-
spect to the above set of weighted unitaries.
Proof. Consider the isometric invariance property of
D(Q,S), namely for any U := U(·)U†, where U ∈
U(d), we have

D(Q,S) = D(U ◦ Q,U ◦ S) (130)
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= D(Q ◦ U ,S ◦ U) , (131)

where the first equality follows from Eq. (110) and
the second equality follows from the definition in
Eq. (115). This implies that for all UA ∈ U(dA) and
for all VB ∈ U(dB)

D(Q,S) = D(V† ◦ Q ◦ U ,V† ◦ S ◦ U) . (132)

Consequently, by considering the generalized distin-
guishability measure D(Q̃, S̃) between the twirled
channels, we arrive at

D
(∑
x∈X

pX(x)Vx† ◦ Q ◦ Ux,
∑
x∈X

pX(x)Vx† ◦ S ◦ Ux
)

(133)

≤
∑
x∈X

pX(x)D
(
Vx† ◦ Q ◦ Ux,Vx† ◦ S ◦ Ux

)
(134)

=
∑
x∈X

pX(x)D (Q,S) = D (Q,S) , (135)

where the inequality follows from Eq. (122). ■

Remark 6. This lemma can be viewed as a special
case of a more general result for quantum supermaps.
To elaborate, we recall that a supermap (a linear map
from one quantum channel to another) can always be
expressed as a pre and post-processing maps concate-
nated with the input quantum channel, and assisted by
a memory [127]. Then, Lemma 5 follows from apply-
ing the data-processing inequality for generalized dis-
tinguishability measures between two quantum chan-
nels [55] with respect to channel twirling, which is a
valid quantum supermap.

Remark 7. In [114], the authors have shown that for
any two covariant channels FA→B and GA→B with
respect to {UA(x), VB(x)}x∈X (namely that Vx ◦ F =
F ◦ Ux for all x ∈ X , and similarly for G), the gener-
alized distinguishability measure

D(F ,G) = sup
ϕ

D ((id ⊗ F)(ϕRA), (id ⊗ G)(ϕRA)) ,

(136)
can be found by maximizing only over symmetric
states ϕRA, defined as

1
|X |

∑
x∈X

U†
A(x)ϕRAUA(x) = ϕRA . (137)

However, since the twirlings F ≡ Q̃ and G ≡ S̃ in
Lemma 5 are trivially covariant with respect to the
unitary representations {UA(x), VB(x)}x∈X of the fi-
nite group X , this implies that the lower bound in
Eq. (129) need only be computed for such symmet-
ric states. Furthermore, if {UA(x)}x∈X is a unitary
1-design (i.e. it is an irreducible representation of
the group X of degree-dA), then, using the property
Eq. (124) of unitary 1-designs, the maximization is

found by computing the generalized distinguishability
measure exactly for the maximally entangled state

D(Q̃, S̃) = D((idR ⊗ Q̃A)(ΦRA), (idR ⊗ S̃A)(ΦRA)) .
(138)

So far, we have shown that the generalized distin-
guishability measure between QA→B and SA→B is
lower bounded by the corresponding distinguishabil-
ity measure for arbitrary discrete twirlings of these
channels. We now show that a similar lower bound
can be derived for the uniform Haar twirling. But
first, we recall the following important result

Lemma 6. ([47]) Given a CPTP map QA→A and
for all ρ ∈ D(HA), the continuous twirling Q̃ =∫

U(d) dUU† ◦ Q ◦ U over the uniform Haar measure
on the set of d× d unitary matrices U(d) is given by
the depolarizing channel

Q̃(ρ) = (1 − pQ)ρ+ pQ I

d
, (139)

where the depolarizing parameter pQ is given by the
average fidelity of Q, as follows

pQ = d

d− 1 (1 − Favg(Q)) . (140)

The proof of Eq. (139) is shown in [47, 126] for some
parameter value pQ. Eq. (140) is a direct consequence
of the fact that the uniform Haar twirled channel Q̃ =∫

U(d) dUU† ◦Q◦U has the same average fidelity as the
original channel Q [47], along with the fact that the
average fidelity of the depolarizing channel is given by

Favg(Q̃) = 1 −
(
d− 1
d

)
p , (141)

where we have used the normalization
∫
dψ = 1 and

the notation p for the depolarizing parameter.
Using the above Lemmas 5 and 6, we now establish

a similar lower bound to that in Lemma 5 for the
uniform Haar twirl.

Theorem 4. Assume that we are given two CPTP
maps QA→A and SA→A. If the generalized distin-
guishability measure D satisfies the joint convexity
property, then D(Q,S) is lower bounded by some
function lD of the channel entanglement fidelities
Fe(Q) and Fe(S), as follows

D(Q,S) ≥ lD(Fe(Q), Fe(S)) , (142)

where the specific form of the function lD depends on
the choice of the generalized distinguishability mea-
sure and is determined by the uniform Haar twirls, as
follows

lD(Fe(Q), Fe(S)) ≡ D(Q̃, S̃) , (143)
where Q̃ =

∫
U(d) dUU† ◦ Q ◦ U and S̃ =

∫
U(d) dUU† ◦

S ◦ U yield two depolarizing channels. The inequality
is saturated if the joint convexity property is saturated
for a set of unitary 2-designs and a uniform probabil-
ity distribution over this set.
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Proof. This is a direct consequence of applying
Lemma 5 to any unitary 2-design {UA(x)}x∈X , e.g.
the unitary representation of the Clifford group (see
Appendix A.2), along with a uniform distribution on
X , and then using the property of unitary 2-designs
in Eq. (126), which finally yields

D(Q,S) ≥ D(Q̃, S̃) , (144)

where Q̃ =
∫

U(d) dUU†◦Q◦U and S̃ =
∫

U(d) dUU†◦S◦
U . The proof is completed by applying Lemma 6 and
plugging in the depolarizing channels into the lower
bound in Eq. (144). ■

It directly follows from this proof that the image
of the function lD coincides with the image of the
corresponding generalized distinguishability measure
D.

Remark 8. The lower bound proof does not require
faithfulness, symmetry, nor the triangle inequality,
which would also make D a generalized distance mea-
sure. However, the triangle inequality becomes nec-
essary when deriving an upper bound for the general-
ized distinguishability measure for concatenated noisy
channels (or gates), as it is relevant to fault-tolerant
quantum computing (see Appendix C for more de-
tails).

B Comment on The Chaining Prop-
erty

In quantum computing literature, one encounters
the chaining property for distance measures [110],
which is useful for computing upper bounds on er-
ror propagation in fault-tolerant quantum computing.
This property is framed as follows: Assume we want
to apply two maps Q and S in series, however, we only
have access to their noisy versions, which we denote
by Q′ and S ′, respectively. If the generalized distance
measure D also satisfies the DPI (i.e. D is also a dis-
tinguishability measure), then the chaining property
reads

D(S ◦ Q(ρ),S ′ ◦ Q′(ρ)) ≤ D(Q(ρ),Q′(ρ))
+D(S(ρ),S ′(ρ)) , (145)

for all ρ ∈ D(H). This is interpreted by saying that
the error due to a consecutive application of two faulty
channels is no larger than the sum of the errors of
applying each of the faulty channels separately. The
proof follows by first applying the triangle inequality
to the left-hand side of the above inequality, followed
up by the date-processing inequality. Therefore, the
desirable chaining property is derivative from other,
more fundamental, properties of D.

C Upper-Bounding Generalized Dis-
tance Measures for State Recovery

Here we present upper bounds on generalized dis-
tance and distinguishability measures, showing how
they get modified when limited knowledge about the
noise parameter θ ∈ Θ is available, both for the single-
cycle and multi-cycle cases. Similar to the chaining
property, the derivation of upper bounds on general-
ized distance and distinguishability measures is im-
portant for the analysis of error propagation in noisy
quantum processes.

C.1 Single-Cycle Case
Consider the distance measure D and assume that

for all ρ ∈ D(C) ⊆ D(H), approximate recovery from
the noise Nθ is possible in the presence of perfect in-
formation about θ, i.e. there exists Rθ such that

D(Iθθ (ρ), ρ) ≤ ϵθ where Iβα ≡ Rβ ◦ Nα . (146)

Now consider the distance measure D(I θ̂θ (ρ), ρ),
where θ̂ is the best unbiased estimate of θ ∈ Θ. Our
goal is to bound this quantity from above by two
terms: the first depends on how well we can bound
the same distance measure when given perfect knowl-
edge about θ (see Eq. (146)), and the second should
measure our lack of knowledge of the noise parameter
θ. This intuition is validated by applying the triangle
inequality, as follows

D(I θ̂θ (ρ), ρ) ≤ D(I θ̂θ (ρ), I θ̂
θ̂
(ρ)) + D(I θ̂

θ̂
(ρ), ρ) (147)

≤ D(Nθ(ρ),Nθ̂(ρ)) + D(I θ̂
θ̂
(ρ), ρ) (148)

≤ D(Nθ,Nθ̂) + D(I θ̂
θ̂
(ρ), ρ) (149)

≤ D(Nθ,Nθ̂) + ϵθ̂ ≡ ϵθ,θ̂ , (150)

where the second inequality follows from the DPI of
D, the third follows from the definition of the gener-
alized distance for channels, and the fourth from the
assumption of Eq. (146). It is worth noting that one
can derive a similar upper bound using the recover-
ies, rather than the noisy channels. The advantage
of this approach is that we do not need to assume
that D satisfies the DPI, i.e. it suffices for D to be
a distance measure. To see how we simply apply the
triangle inequality

D(I θ̂θ (ρ), ρ) ≤ D(I θ̂θ (ρ), Iθθ (ρ)) + D(Iθθ (ρ), ρ) (151)
≤ D(Rθ,Rθ̂) + ϵθ ≡ ϵ′

θ,θ̂
, (152)

where we have used the definition of a distance mea-
sure between channels for the second inequality, as
well as Eq. (146). We will shortly show that DPI
becomes necessary when considering the multi-cycle
case.
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C.2 Multi-Cycle Case
Let us now extend the upper bound previously de-

rived in the single-cycle case to adaptive multi-cycle
recovery. Using the shorthand notation

Dβnβn−1···β1
αnαn−1···α1(ρ) ≡ D(Iβnβn−1···β1

αnαn−1···α1(ρ), ρ) , (153)

where

Iβnβn−1···β1
αnαn−1···α1 ≡ Rβn◦Eαn◦Rβn−1 ◦Eαn−1 · · ·◦Rβ1 ◦Eα1 ,

(154)
and applying the triangle inequality, we get

Dθ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ) ≤ D(I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ), I θ̂nθ̂n−1···θ̂1

θ̂nθ̂n−1···θ̂1
(ρ))

+ Dθ̂nθ̂n−1···θ̂1

θ̂nθ̂n−1···θ̂1
(ρ) . (155)

The second term could be bounded from above by
the individual errors {ϵθ̂i}

n
i=1, using only the triangle

inequality, as follows

Dθ̂nθ̂n−1···θ̂1

θ̂nθ̂n−1···θ̂1
(ρ) ≤ D(I θ̂nθ̂n−1···θ̂1

θ̂nθ̂n−1···θ̂1
(ρ), I θ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ))

+ Dθ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ) . (156)

We assume that

I θ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ) ∈ D(C) , (157)

so that the n-th step approximate recovery with per-
fect knowledge of θ would be possible, in principle.
This leads to

D(I θ̂nθ̂n−1···θ̂1

θ̂nθ̂n−1···θ̂1
(ρ), I θ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ)) (158)

= D(I θ̂n
θ̂n

(I θ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ)), I θ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ)) ≤ ϵθ̂n . (159)

Substituting this result back into Eq. (156), we get

Dθ̂nθ̂n−1···θ̂1

θ̂nθ̂n−1···θ̂1
(ρ) ≤ Dθ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ) + ϵθ̂n , (160)

and repeating the above two steps yields

Dθ̂nθ̂n−1···θ̂1

θ̂nθ̂n−1···θ̂1
≤

n∑
i=1

ϵθ̂i . (161)

The first term in Eq. (155) is a new error term due
to the real-time (drift-adapting) nature of our setup.
This term can be bounded from above using the chain-
ing property and the DPI, as follows

D(I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ), I θ̂nθ̂n−1···θ̂1

θ̂nθ̂n−1···θ̂1
(ρ))

= D(I θ̂nθn ◦ I θ̂n−1···θ̂1
θn−1···θ1

(ρ), I θ̂n
θ̂n

◦ I θ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ)) (162)

≤ D(I θ̂nθn (ρ), I θ̂n
θ̂n

(ρ)) + D(I θ̂n−1···θ̂1
θn−1···θ1

(ρ), I θ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ))
(163)

≤ D(Nθn(ρ),Nθ̂n
(ρ)) + D(I θ̂n−1···θ̂1

θn−1···θ1
(ρ), I θ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ))

(164)

≤ D(Nθn ,Nθ̂n
) + D(I θ̂n−1···θ̂1

θn−1···θ1
(ρ), I θ̂n−1···θ̂1

θ̂n−1···θ̂1
(ρ)) .

(165)

Repeating the above steps n − 1 times, we arrive at
the upper bound

D(I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ), I θ̂nθ̂n−1···θ̂1

θ̂nθ̂n−1···θ̂1
(ρ)) ≤

n∑
i=1

D(Nθi ,Nθ̂i
) .

(166)
Combining Eqs. (161) and (166) with Eq. (155), we
get

D
θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

≤
n∑
i=1

[D(Nθi ,Nθ̂i
) + ϵθ̂i ] ≡

n∑
i=1

ϵθi,θ̂i ,

(167)
which generalizes Eq. (150) for real-time approximate
recovery. This result says that, if AQEC is possible
in principle (see Eq. (157)) when perfect knowledge
of θ is available, then AQEC is also possible when
knowledge about θ is limited. As we have shown,
this holds for both the single-cycle and multi-cycle
regimes.

Alternatively, we can derive an upper bound that
is a function of the recoveries, rather than the noisy
channels. This is accomplished as follows

Dθ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ) ≤ D(I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ), Iθnθn−1···θ1
θnθn−1···θ1

(ρ))

+ Dθnθn−1···θ1
θnθn−1···θ1

(ρ) , (168)

where the second term is similarly bounded from
above by

∑n
i=1 ϵθi , based only on the triangle inequal-

ity (see Eq. (161)). We now upper bound the first
term in the above inequality as

D(I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ), Iθnθn−1···θ1
θnθn−1···θ1

(ρ))

≤ D(I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ), I θ̂nθn−1···θ1
θnθn−1···θ1

(ρ))

+ D(I θ̂nθn−1···θ1
θnθn−1···θ1

(ρ), Iθnθn−1···θ1
θnθn−1···θ1

(ρ)) (169)

≤ D(I θ̂n−1···θ̂1
θn−1···θ1

(ρ), Iθn−1···θ1
θn−1···θ1

(ρ)) + D(Rθ̂n
,Rθn) ,

(170)

where we have used the triangle inequality for the first
inequality and the DPI and the definition of general-
ized distance measure between channels for the second
inequality. By repeating these two steps n− 1 times,
we arrive at

D(I θ̂nθ̂n−1···θ̂1
θnθn−1···θ1

(ρ), Iθnθn−1···θ1
θnθn−1···θ1

(ρ)) ≤
n∑
i=1

D(Rθ̂i
,Rθi) .

(171)

Consequently, Eq. (168) yields

Dθ̂nθ̂n−1···θ̂1
θnθn−1···θ1

≤
n∑
i=1

[D(Rθi ,Rθ̂i
) + ϵθi ] ≡

n∑
i=1

ϵθi,θ̂i .

(172)

Accepted in Quantum 2023-11-12, click title to verify. Published under CC-BY 4.0. 32



D Necessary and Sufficient Condition
for Independence of the Reduced Chan-
nel From a Mother Channel Parameter

In this appendix, we are interested in proving the
following:

Lemma 7. Consider the mother channel ZMS
θ of

a bipartite system MS, where θ ∈ Θp is a p-
dimensional parameter space. The reduced dynamics
of subsystem S, defined by partial tracing over the sub-
system M via MS

θ ≡ TrM ◦ZMS
θ , is independent of

the α-th component of the p-dimensional vector θ if
and only if the Choi matrix ΓZθ of the mother channel
satisfies

TrM ′′S′′

[(
∂

∂θα
ΓZθ

MS,M ′′S′′

)
(2P sym

S′′S′ − IS′′S′)
]

= 0 ,

(173)
where P sym

S′′S′ is the projector onto the symmetric sub-
space

span(|µ⟩S′′ |ν⟩S′ + |ν⟩S′′ |µ⟩S′) ⊂ HS′′
⊗ HS′

, (174)

and {|µ⟩} is a basis set of the Hilbert space HS.

Proof. We consider the dynamics of the combined
memory-spectator (MS) system, and express it in
terms of the Choi matrix of the mother channel ZMS

θ ,
as follows [115]

ZMS→M ′S′

θ (ρMS)

= TrMS

[
(TMS(ρMS) ⊗ IM ′S′)ΓZθ

MS,M ′S′

]
, (175)

then the reduced dynamics of the spectator system
yields

TrM ′ ◦ZMS→M ′S′

θ (ρMS)

= TrMS

[
(TMS(ρMS) ⊗ IS′)ΓTrM ◦Zθ

MS,S′

]
. (176)

Therefore, for the reduced dynamics to be indepen-
dent of the noise parameter θα for some α = 1, · · · , p
and any joint input state ρMS , we must have

∂

∂θα
ΓTrM ◦Zθ

MS,S′ = 0 , (177)

for all θ ∈ Θp. We now derive a necessary and suffi-
cient condition for this equality to hold, in terms of
the Choi matrix ΓZθ

MS,M ′S′ of the mother channel. We
start by recalling the formula for the Choi matrix of
the composite channel in terms of the Choi matrices
of the individual channels [115]

ΓTrM ◦Zθ

MS,S′

= TrM ′′S′′

[
TM ′′S′′

(
ΓZθ

MS,M ′′S′′

)
ΓTrM
M ′′S′′,S′

]
(178)

= TrM ′′S′′

[
ΓZθ

MS,M ′′S′′T†
M ′′S′′

(
ΓTrM
M ′′S′′,S′

)]
(179)

= TrM ′′S′′

[
ΓZθ

MS,M ′′S′′TM ′′S′′

(
ΓTrM
M ′′S′′,S′

)]
. (180)

We now compute the basis dependent matrix
TM ′′S′′

(
ΓTrM
M ′′S′′,S′

)
in the separable memory-

spectator basis |i⟩MS ≡ |i(a, µ)⟩MS = |a⟩M |µ⟩S of
the Hilbert space HM ⊗ HS , as follows

ΓTrM
M ′′S′′,S′ =

∑
ij

|i⟩⟨j|M ′′S′′ ⊗ TrM ′ (|i⟩⟨j|M ′S′) (181)

= IM ′′ ⊗ ΓS′′S′ , (182)

where |Γ⟩S′′S′ =
∑
µ |µ⟩S′′ |µ⟩S′ is the maximally en-

tangled state in the special spectator basis {|µ⟩}. In
the same {|a⟩⊗|µ⟩} basis, the partial transpose yields

TM ′′S′′

(
ΓTrM
M ′′S′′,S′

)
= TM ′′S′′ (IM ′′ ⊗ ΓS′′S′) (183)

= IM ′′ ⊗ ((TS′′ ⊗ idS
′
)(ΓS′′S′))

(184)

= IM ′′ ⊗ ((IS
′′

⊗ TS′)(ΓS′′S′))
(185)

= IM ′′ ⊗ ΓT
S′′S′ , (186)

where ΓT
S′′S′ is the Choi matrix of the partial trans-

pose channel. It has been shown in citejohn-
ston2011quantum that the Choi matrix ΓT

S′′S′ is re-
lated to the projector P sym

S′′S′ = (IS′′S′ +ΓT
S′′S′)/2 onto

the symmetric subspace

span(|µ⟩S′′ |ν⟩S′ + |ν⟩S′′ |µ⟩S′) ⊂ HS′′
⊗ HS′

, (187)

where dS(dS+1)/2 is the dimensions of the symmetric
subspace in the d2

S dimensional Hilbert space HS ⊗
HS . This finally yields

TM ′′S′′

(
ΓTrM
M ′′S′′,S′

)
= IM ′′ ⊗ ΓT

S′′S′ (188)

= IM ′′ ⊗ (2P sym
S′′S′ − IS′′S′) .

(189)

Substituting back into Eq. (180) leads to

ΓTrM ◦Zθ

MS,S′

= TrM ′′S′′

[
ΓZθ

MS,M ′′S′′(2P sym
S′′S′ − IS′′S′)

]
. (190)

Therefore, Eq. (177) holds if and only if

TrM ′′S′′

[(
∂

∂θα
ΓZθ

MS,M ′′S′′

)
(2P sym

S′′S′ − IS′′S′)
]

= 0 .

(191)
■

The last equation in the proof can be equivalently
written as (using the identity P sym

S′′S′ + (P sym
S′′S′)⊥ =

IS′′S′)

TrM ′′S′′

[(
∂

∂θα
ΓZθ

MS,M ′′S′′

)
P sym
S′′S′

]
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= TrM ′′S′′

[(
∂

∂θα
ΓZθ

MS,M ′′S′′

)
(P sym
S′′S′)⊥

]
(192)

= 1
2
∂

∂θα
TrM ′′S′′

[
ΓZθ

MS,M ′′S′′

]
(193)

= 1
2
∂

∂θα
IMS = 0 . (194)

Remark 9. Note that the condition Eq. 191 is weaker
than

∂

∂θα
ΓZθ

MS,M ′′S′′ = 0 , (195)

for all θ ∈ Θp, which holds when the mother channel
ZMS

θ itself does not depend on the noise parameter
θα, and hence trivially also the reduced channel MS

θ ≡
TrM ◦ZMS

θ .

E Quantum Fisher Information Matrix
We review the relevant definitions and results re-

garding quantum Fisher Information Matrix (QFIM)
and the partial QFIM, following [63, 65].

E.1 Useful Definitions
For a family of parameterized quantum states

{ρθ}θ∈Θ with a p-dimensional parameter space Θp ⊆
Rp, we define the symmetric inner product between
two linear operators A and B, with respect to the
parameterized family of states, as

⟨A,B⟩ρθ := Tr
[
ρθ

(
1
2{A†, B}

)]
, (196)

where {a, b} := ab + ba is the anti-commutator. The
symmetric logarithmic derivative (SLD) is a Hermi-
tian operator Lθ;i that is defined by the solution to
the Lyapunov type equation [128]

∂

∂θα
ρθ =: 1

2{Lθ;α, ρθ} , (197)

The SLD QFIM corresponding to the parameterized
family of states is defined as the p× p matrix

[IQF(θ; {ρθ})]αβ ≡ Iθαβ := ⟨Lθ;α, Lθ;β⟩ρθ . (198)

Next, assume that a quantum measurement of an
observable X is performed on ρθ, described by a
POVM Π ≡ {Πx}x∈X . This yields the statistics
pX(x|θ) = Tr[ρθΠx] for the measurement outcomes
x ∈ X . We define an estimate θ̂ : X → Θp as a map-
ping from the set of measurement outcomes to the
parameter space. We say that the pair (Π, θ̂) is an
estimator, and call it unbiased if

E
[
θ̂(X)

]
p(x|θ)

:=
∑
x∈X

θ̂(x) Tr[ρθΠx] = θ . (199)

In general, such an estimator does not exist for all
θ ∈ Θp. Instead, it is customary to use a weaker

condition on our estimator, namely that it is locally
unbiased. This is defined as follows: at a fixed θ, we
require that the following two conditions are satisfied

E
[
θ̂(X)

]
p(x|θ)

=
∑
x∈X

θ̂(x) Tr[ρθΠx] = θ , (200)

and

∂

∂θβ
E
[
θ̂α(X)

]
p(x|θ)

=
∑
x∈X

θ̂α(x) Tr
[
∂

∂θβ
ρθΠx

]
= δαβ .

(201)
Finally, we define the mean-square error (MSE) ma-
trix corresponding to an estimator (Π, θ̂) as follows

Var
[
θ̂(X)

]
:= E

[(
θ̂(X) − θ

)T (
θ̂(X) − θ

)]
p(x|θ)

,

(202)
with the (α, β) entry of this matrix given by

E
[(
θ̂α(X) − θα

)(
θ̂β(X) − θβ

)]
p(x|θ)

. (203)

E.2 Saturation of QCRB
The quantum Cramér-Rao bound (QCRB) pro-

vides a lower bound to the variance matrix defined
in Eq. (202) using the QFIM in Eq. (198) [63, 129]

Var
[
θ̂
]

≥
(

Iθ
)−1

. (204)

The QCRB holds for any locally unbiased estimator,
and is a direct consequence to applying the Schwartz
inequality for the inner product defined in Eq. (196).
Here, we are interested in the saturation condition for
this inequality. A necessary and sufficient condition
for the saturation of the multi-parameter QCRB is
given by (see e.g. [65, 130])

Tr[ρθ[Lθ;α, Lθ;β ]] = 0 for all α, β = 1, · · · , p .
(205)

To design the optimal measurements for the satura-
tion of the multi-parameter QCRB, we conduct the
following: (i) find an SLD {Lθ;α} that mutually com-
mute, (ii) using the matrices Iθ and {Lθ;α}, construct
the (commuting) linear combinations

L̃θ;α :=
p∑

β=1

(
Iθ
)−1

αβ
Lθ;β , (206)

for all α = 1, · · · , p, and (iii) write the spectral de-
composition of the mutually commuting operators

L̃θ;α =
∑
i

lαiPi , (207)

for α = 1, · · · , p, where {Pi} are the projectors onto
the simultaneous eigenspaces of {L̃θ;α} (or equiva-
lently for {Lθ;α}). Then, the QCRB is saturated if
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we pick the locally unbiased estimator (Π, θ̂) to be
[63]

Πx ≡ Pi=x , (208)
θ̂α(x) ≡ θα + lαx . (209)

In the case of a single parameter family, this yields
the locally unbiased estimator

θ̂(x) = θ +
(

Iθ
)−1 d

dθ
log p(x|θ) , (210)

where p(x|θ) = Tr[ρθΠx], which explicitly depend
on θ. Although the optimal measurements described
above saturate the QCRB, they require prior knowl-
edge of the noise parameters, which defeats the point
of implementing spectator systems. In the single-
parameter case, this can be remedied.

E.2.1 Parameter-Independent Estimator

Nagaoka has shown that, in the single parameter
case, a θ-independent locally unbiased estimator ex-
ists that saturates the QCRB [130]. This is possible
only for an exponential family {ρθ}θ∈Θ of parameter-
ized states [131]:

ρθ = e
1
2

∫ θ
0
ψ(θ′)dθ′(O−θψ)

ρ0e
1
2

∫ θ
0
ψ(θ′)dθ′(O−θψ)

,
(211)

for some ρ0, where we have assumed for convenience
that θ = 0 ∈ Θ, ψ(θ) is some function of θ,

θψ =
∫ θ

0 θ
′ψ(θ′)dθ′∫ θ

0 ψ(θ′)dθ′
, (212)

and O is an unbiased observable of θ, i.e. Tr[ρθO] =
θ. As such, the SLD of this parametric family is
given by Lθ = ψ(θ)(O − θ), which guarantees that
the Schwartz inequality for the two vectors Lθ and
O − θ is saturated, and hence the saturation of the
QCRB [129, 130]. The optimal measurement POVM
(as described above) is given by the (parameter-
independent) eigenvectors of O. Therefore, we see
that achieving exponential family of states, as defined
in Eq. (211), for the output states ψ → Mθ(ψ) of the
spectator system is generally helpful for our appli-
cation. Finally, note that for non-full rank parame-
terized density matrices, the optimal measurements
described above are not unique.

E.2.2 Maximum Likelihood Estimator

The maximum likelihood estimator θ̂MLE corre-
sponding to the choice of POVM Π ≡ {Πx}x∈X is
defined as

θ̂MLE(x) := arg max
θ

p(x|θ) , (213)

where p(x|θ) = Tr[ρθΠx] for all x ∈ X . Although the
above definition seems natural, the MLE is known to

be a biased estimator for a general parametric family
{ρθ}θ∈Θ. However, the MLE becomes unbiased, and
further, saturates the classical CRB in the asymp-
totic limit [132]. We recall that a necessary condition
for the saturation of the QCRB is that the classi-
cal and quantum Fisher informations must coincide
[65]. Hence, the MLE is also relevant for the asymp-
totic saturation of the QCRB. In the context of our
article, the asymptotic limit necessarily implies that
the spatial dependence of the noise parameter can-
not be neglected, as we are performing quantum pa-
rameter estimation on a large number of spectator
qubits that must be spatially distributed within the
quantum memory device. Therefore, to retain the
spatial homogeneity assumption of the noise parame-
ters used in the main text, we refrain from consider-
ing the asymptotic saturation of the QCRB. Hence,
the MLE choice is inappropriate within the context
of our manuscript, as it is a biased estimator in the
non-asymptotic regime.

E.3 Partial QFIM
Now we consider the bipartition of the parameter

space Θp as θ = (θI,θN), with the number of param-
eters in each partition is given by pI and pN = p− pI,
respectively. Here, the subscripts “I” and “N” stand for
“interest” and “nuisance”, respectively. We can then
write the p× p SLD QFIM in a block form

Iθ =
(

IθI,I IθI,N
IθN,I IθN,N

)
, (214)

where the upper block diagonal matrix IθI,I is pI × pI

and the lower block diagonal matrix IθN,N is of size
pN × pN. We also write the inverse of the SLD QFIM
in a similar block form(

Iθ
)−1

=
(

Iθ;I,I Iθ;I,N

Iθ;N,I Iθ;N,N

)
. (215)

Using these block forms, the partial SLD QFIM is
defined as

IθI|N :=
(

Iθ;I,I
)−1

= IθI,I − IθI,N
(

IθN,N
)−1

IθN,I . (216)

Let us further define the pI × pI MSE matrix for the
parameters of interest θI as

Var
[
θ̂I(X)

]
:= E

[(
θ̂α(X) − θα

)(
θ̂β(X) − θβ

)]
p(x|θ)

,

(217)
for α, β = 1, · · · , pI . The pair (Π, θ̂I) is said to be
a locally unbiased estimator for θI at θ when it sat-
isfies the following two conditions [63] (analogous to
Eq. (200) and (201))

E
[
θ̂I(X)

]
p(x|θ)

=
∑
x∈X

θ̂I(x) Tr[ρθΠx] = θI , (218)
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and

∂

∂θβ
E
[
θ̂α(X)

]
p(x|θ)

=
∑
x∈X

θ̂α(x) Tr
[
∂

∂θβ
ρθΠx

]
= δαβ ,

(219)
where α = 1, · · · , pI and β = 1, · · · , p. For locally
unbiased estimators, the following QCRB holds in the
presence of nuisance parameters

Var
[
θ̂I(X)

]
≥
[
IθI|N
]−1

, (220)

which is a modification of the standard QCRB when
nuisance parameters are present.

F Choi Matrix Methods for Entangle-
ment Fidelity of Composite Parameter-
ized Channels

In what follows, we present a useful lemma for
the entanglement fidelity of composite parameterized
channels and then dedicate the rest of this appendix
to demonstrating its wide range of applicability in the
context of the main text.

Lemma 8. The entanglement fidelity of the compos-
ite channel RB→A ◦ NA→B is given by the individual
Choi states ΦN

AB and ΦR
BA, as follows

Fe(R ◦ N ) = dB
dA

Tr
[
ΦN (ΦR)T ] , (221)

where T indicates matrix transposition.

Proof. By definition, the entanglement fidelity of the
composite channel can be written in terms of its Choi
matrix, as follows

Fe

(
RB→A′

◦ NA→B
)

= TrAA′
[
ΦAA′ΦR◦N

AA′

]
= 1
d2
A

TrAA′
[
ΓAA′ΓR◦N

AA′

]
.

(222)

where HA and HA′ are isomorphic Hilbert spaces.
One can easily verify that the Choi matrix of the com-
posite channel can be written in terms of the Choi
matrices of the individual channels, as follows [115]

ΓRB→C◦NA→B

AC = TrB
[
TB
(
ΓN
AB

)
ΓR
BC

]
, (223)

where TB is the partial transpose defined with respect
to the same basis as the maximally entangled state
|Γ⟩. By substituting this form into the entanglement
fidelity formula, we arrive at

Fe = 1
d2
A

TrAA′
[
ΓAA′ TrB

[
TB
(
ΓN
AB

)
ΓR
BA′

]]
(224)

= 1
d2
A

TrA′B

[(
TrA

[
ΓAA′TB

(
ΓN
AB

)])
ΓR
BA′

]
.

(225)

Next, we make standard simplifications for any ΛAB :

TrA [ΓAA′ΛAB ] (226)

=
∑
i

⟨i|AΓAA′ΛAB |i⟩A (227)

=
∑
ij

|i⟩A′⟨j|A′⟨j|AΛAB |i⟩A (228)

=
∑
ij

|i⟩A′⟨j|A′⟨i|ATA (ΛAB) |j⟩A (229)

=
∑
i

|i⟩A′⟨i|ATA (ΛAB)
∑
j

|j⟩A⟨j|A′ (230)

= TA′ (ΛA′B) . (231)

This yields for ΛAB ≡ TB
(
ΓN
AB

)
the following

TrA
[
ΓAA′TB

(
ΓN
AB

)]
= TA′

(
TB
(
ΓN
A′B

))
(232)

=
(
ΓN
A′B

)T
. (233)

Substituting back into the entanglement fidelity for-
mula completes the proof. ■

Therefore, according to this lemma, the entangle-
ment fidelity of the memory dynamics is generally
written as follows for any recovery map

Fe (R ◦ Nθ) = 1
d2
A

TrAB
[(

ΓNθ

AB

)T
ΓR
BA

]
(234)

= 1
d2
A

TrAB
[
ΓNθ

AB

(
ΓR
BA

)T ]
. (235)

In particular, this implies that we can search for a re-
covery map Rϕ that is parameterized by some number
of parameters ϕ and maximize over them (for a fixed
θ) to arrive at an optimal choice ϕ(θ), see e.g. [90] in
terms of the natural representation of quantum chan-
nels (which is related, but not the same as, the Choi
representation adopted in this article).

F.1 Zeroth Derivative: Hölder Type Upper
Bounds

A useful upper bound on the entanglement fidelity
in Eq. (40) of the quantum memory dynamics can be
given in terms of the Choi state of the recovery map,
by applying the Hölder inequality [115], as follows

Fe (R ◦ Nθ) = dB
dA

∣∣∣TrAB
[
ΦNθ

AB

(
ΦR
BA

)T ]∣∣∣ (236)

≤ dB
dA

TrAB
∣∣∣ΦNθ

AB

(
ΦR
BA

)T ∣∣∣ (237)

≤ dB
dA

∥∥∥ΦNθ

AB

∥∥∥
α

×
∥∥∥(ΦR

BA

)T∥∥∥
β

(238)

= dB
dA

∥∥∥ΦNθ

AB

∥∥∥
α

×
∥∥ΦR

BA

∥∥
β
, (239)

for α ∈ [1,∞) and its Hölder dual β defined via 1/α+
1/β = 1. Here, ∥X∥α := (Tr[|Xα|])1/α defines the
Schatten norms for α ∈ [1,∞).
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F.2 First Derivative: Bound on Robustness of
a Recovery Map

Consider, for a given recovery map R, the partial
derivatives of the entanglement of fidelity in Eq. (234)
with respect to the components of the noise param-
eter vector θ. Using the inner product definition in
Eq. (196) and the definition of SLD operator for the
Choi state of Nθ, as given in Eq. (197), we have for
the partial derivatives

∂

∂θα
Fe (R ◦ Nθ)

= 1
d2
A

TrAB
[
∂

∂θα
ΓNθ

AB

(
ΓR
BA

)T] (240)

= dB
dA

TrAB
[

1
2{ΦNθ

AB , L
θ;α
AB}

(
ΦR
BA

)T] (241)

= dB
dA

TrAB
[
ΦNθ

AB

1
2{
(
ΦR
BA

)T
, Lθ;α

AB}
]

(242)

≡ dB
dA

〈(
ΦR
BA

)T
, Lθ;α

AB

〉
ΦNθ
AB

, (243)

where dB = 2n and dA = 2k for a generic [n, k] QEC
code, therefore dB/dA = 2n−k. Using the fact that
the robustness of R (which is the derivative of the
entanglement fidelity with respect to the parameters
pertaining to Nθ) is written in terms of the inner
product in Eq. (196), we can use the Cauchy-Schwartz
inequality to arrive at an upper bound, as follows∣∣∣∣〈(ΦR

BA

)T
, Lθ;α

AB

〉
ΦNθ
AB

∣∣∣∣2 ≤
〈(

ΦR
BA

)T
,
(
ΦR
BA

)T〉
ΦNθ
AB

×

×
〈
Lθ;α
AB , L

θ;α
AB

〉
ΦNθ
AB

(244)

=
〈(

ΦR
BA

)T
,
(
ΦR
BA

)T〉
ΦNθ
AB

×

×
[
IQF(θ; {ΦNθ})

]
αα

,

(245)

which yields the upper bound∣∣∣∣ ∂∂θαFe (R ◦ Nθ)
∣∣∣∣ ≤ dB

dA

√〈(
ΦR
BA

)T
,
(
ΦR
BA

)T〉
ΦNθ
AB

×

×
√

[IQF(θ; {ΦNθ})]αα . (246)

F.3 Proof of Theorem 1: Bounds on
Spectator-Based Recovery For Finite Estimation
Errors

Schatten norms ∥X∥α := (Tr[|Xα|])1/α, where α ∈
[1,∞), are often used to bound trace quantities, via
the well-known Hölder inequality [115]

∥XZ∥1 ≤ ∥X∥α × ∥Z∥β , (247)

where 1/α + 1/β = 1 (a pair (α, β) satisfying this
equality is called an Hölder pair). It is easy to show
that the following statement also applies [115]

| Tr[XZ]| ≤ ∥X∥α × ∥Z∥β . (248)

For α ∈ [0, 1), the Schatten norm ∥ · ∥α is no longer a
norm (e.g. it does not satisfy the triangle inequality).
However, if Z > 0 (along with 0 ≤ α < 1), then the
above inequality is reversed [133] (the Hölder dual β
becomes negative)

| Tr[XZ]| ≥ ∥X∥α × ∥Z∥β . (249)

We can use this inequality to find a lower bound on
the difference between the entanglement fidelities of
any two recovery maps RB→A, R̃B→A for the param-
eterized noise channel NA→B

θ , as follows

|Fe (R ◦ Nθ) − Fe(R̃ ◦ Nθ)|

=
∣∣∣TrAA′

[
ΦAA′

(
idA ⊗

(
RB→A′

− R̃B→A′
))(

ΦNθ

AB

)]∣∣∣
(250)

=
∣∣∣TrAB

[(
ΦR†

AB − ΦR̃†

AB

)(
ΦNθ

AB

)]∣∣∣ (251)

≥
∥∥∥ΦR†

AB − ΦR̃†

AB

∥∥∥
α

×
∥∥∥ΦNθ

AB

∥∥∥
β
. (252)

Next, we use a theorem relating the Choi matrix of a
quantum channel QA to its adjoint [134]

ΓQ†

AA′ = ΓT
AA′

(
ΓQ
AA′

)T ΓT
AA′ , (253)

where T is the partial transpose channel, and its Choi
matrix yields a SWAP unitary [134]. Even though
∥ · ∥α is not a norm for α ∈ [0, 1), its definition is still
invariant with respect to a unitary transformation and
transposition [115]. This yields∥∥∥ΦR†

AB − ΦR̃†

AB

∥∥∥
α

=
∥∥∥ΦR

AB − ΦR̃
AB

∥∥∥
α
. (254)

Substituting back into Eq. (252) yields the inequality
in Theorem 1.

G Sufficient Condition For a Negligible
Remainder Term in Theorem 2

To quantify the “smallness” of θ̂−θ, for the remain-
der term in Eq. (56) of Theorem 2 to be negligible
(given the noise channel Nθ), we first use Eq. (62) to
arrive at a useful bound, as follows:∣∣∣∣ 1

3!∂
3
νFe(Rθ+ν0 ◦ Nθ)(θ̂ − θ)3

∣∣∣∣
= dB

3!dA

∣∣∣∣TrAB
[(

ΦNθ

AB

)T
∂3
θΦRθ

BA

]∣∣∣∣ |θ̂ − θ|3 (255)

≤ dB
3!dA

TrAB
[∣∣∣∣(ΦNθ

AB

)T
∂3
θΦRθ

BA

∣∣∣∣] |θ̂ − θ|3 (256)

≤ dB
3!dA

∥∥∥∥(ΦNθ

AB

)T∥∥∥∥
1

∥∥∥∂3
θΦRθ

BA

∥∥∥
∞

|θ̂ − θ|3 (257)

= dB
3!dA

∥∥∥ΦNθ

AB

∥∥∥
1

∥∥∥∂3
θΦRθ

BA

∥∥∥
∞

|θ̂ − θ|3 (258)

= dB
3!dA

∥∥∥∂3
θΦRθ

BA

∥∥∥
∞

|θ̂ − θ|3 , (259)
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where we have used the Hölder inequality [115], the
invariance of the trace norm ∥·∥1 under transposition,
and the unit trace of the Choi state ΦNθ

AB , in the third,
fourth, and fifth lines, respectively. Then, the above
bound implies that the remainder term in Eq. 56 of
Theorem 2 is negligible if the following sufficient con-
dition holds
dB

3!dA

∥∥∥∂3
θΦRθ

BA

∥∥∥
∞

E
[
|θ̂ − θ|3

]
p(x|θ)

<<
g(θ)

IQF(Mθ)
.

(260)
We can rewrite this condition as

E
[
|θ̂ − θ|3

]
p(x|θ)

IQF(Mθ(ψ)) << 6dAg(θ)
dB

∥∥∥∂3
θΦRθ

BA

∥∥∥
∞

≡ g′(θ) , (261)

where the right-hand-side g′(θ) is fully determined by
the parameterized noise channel NA→B

θ (since RB→A
θ

is found from Eq. (40), given NA→B
θ ), similar to g(θ)

in Theorem 2. The bound in Eq. (261) could be un-
derstood by saying that, although |θ̂ − θ| cannot be
arbitrarily small (due to Eq. (61)), it should not be
too large so that the small error expansion that is
important for the proof of Theorem 2 will hold.

H Entanglement Fidelity For The [4,1]
Code

The entanglement fidelity for single-qubit (k = 1)
[n, k] codes is given by [79]

Fe(Rθ ◦ Nθ) = 1
4Tr[G] , (262)

where the matrix elements Gσσ′ = Tr
[
Dθ̂,σNθ[σ′

L]
]
,

with Dθ̂,σ ≡ 2
∑
iR

(4)
θ̂,σ
σLR

(4)†
θ̂,σ

, describes the effec-
tive dynamics of the Bloch coefficients for the en-
coded single qubit [80], i.e. if ρi = 1

2
∑
σ uσσ and

ρf = 1
2
∑
σ vσσ, then v⃗ = Gu⃗.

In [79], the authors derived an analytical formula
for the entanglement fidelity Fe(Rθ ◦ Nθ) as

Fe = 1
4

[
1 +

√
2Re[α]τ + 8τ2 + (

√
2Re[β] − 8)τ3 + τ4

]
,

(263)

where τ = 1 − θ and α, β (with |α|2 + |β|2 = 1) are
the complex parameters that the recovery channel de-
pends on. The optimum recovery channel Rθ(α, β) =
R(α(θ), β(θ)) in [12] is the one that maximizes the en-
tanglement fidelity with respect to α, β for the given
value of the noise parameter θ.

To find the dependence of α and β on the noise pa-
rameter θ for the optimum recovery, we first rewrite
Eq. (263) using α = |α|eiψ and β = |β|eiϕ =√

1 − |α|2eiϕ, which yields

Fe(|α|, ψ, ϕ; θ) = 1
4 +

√
2

4 |α|τ cosψ + 2τ2

+ (
√

2(1 − |α|2) cosϕ− 8)τ
3

4 + τ4

4 .

(264)

Then we take the partial derivatives of this function
with respect to the independent parameters |α| ∈
[0, 1] and ψ, ϕ ∈ [0, 2π), to arrive at

|αopt(θ)| = 1√
1 + τ4

and (ψopt, ϕopt) = {(0, 0), (π, π)} .

(265)
By simple substitution, we can check that (ψ, ϕ) =
(0, 0) is the pair that maximizes the entanglement fi-
delity function.

Now let us find an analytical formula for the incom-
plete knowledge scenario Fe(Rθ̂ ◦ Nθ). Note that in
Eq. (263), the dependence of the recovery Rθ̂(α, β) =
R(α(θ̂), β(θ̂)) on the estimated noise parameter θ̂ en-
ters only through α and β [12]. Therefore, we can

use the optimum values |αopt(θ̂)| = 1/
√

1 + τ(θ̂) and
ψopt = ϕopt = 0 and plug it back into Eq. (263), which
yields

Fe(|αopt(θ̂)|; θ) = 1
4 +

√
2

4 |αopt(θ̂)|τ(θ) + 2τ2(θ)

+
(√

2(1 − |αopt(θ̂)|2) − 8
)
τ3(θ)

4 + τ4(θ)
4 .

(266)

This yields for arbitrary finite differences θ − θ̂ and
any estimate θ̂ the following exact formula

Fe(|αopt(θ)|; θ) − Fe(|αopt(θ̂)|; θ)

= τ(θ)
2
√

2

 1√
1 + τ4(θ)

− 1√
1 + τ4(θ̂)


+ τ3(θ)

2
√

2

 τ2(θ)√
1 + τ4(θ)

− τ2(θ̂)√
1 + τ4(θ̂)

 . (267)

When adaptation is implemented, the following
derivative is relevant

d2Fe(|αopt(θ + ν)|; θ)
dν2

∣∣∣∣
ν=0

= − τ3(θ)√
2(1 + τ4(θ))3/2

.

(268)
On the other hand, if no adaptation is implemented,
the relevant derivative becomes

d2Fe(|αopt(η + ν)|; θ)
dν2

∣∣∣∣
ν=0

= −
τ3(η)q

(
τ(η), τ(θ)

τ(η)

)
√

2(1 + τ4(η))3/2
,

(269)

where

q(x, y) ≡
( 5

2y
3 − 3

2y
)
x4 +

( 3
2y − 1

2
)

x4 + 1 , (270)

which satisfies q(x, 1) = 1 in the adaptive regime η =
θ. Therefore, further algebraic simplifications yield

Fe(|αopt(θ)|; θ) − Fe(|αopt(θ̂)|; θ)
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= τ3(θ)√
2(1 + τ4(θ))3/2

(θ − θ̂)2 −R(θ̂ − θ) , (271)

where R(θ̂ − θ) ≡ 1
3!∂

3
νFe(|αopt(θ + ν0)|; θ)(θ̂ − θ)3

is the Lagrange form of the Taylor series expansion
remainder of Fe(|αopt(θ + ν)|; θ) with respect to ν,
where ν0 ∈ [0, θ̂− θ] is a constant. Finally, taking the
expectation of both sides with respect to the specta-
tor system’s probability distribution function pX(x|θ)
(where x is the measurement outcome of the spectator
observable X =

∑
x∈X xΠx) yields

E
[
Fe(|αopt(θ)|; θ) − Fe(|αopt(θ̂)|; θ)

]
= g(θ) Var(θ̂) − E

[
R(θ̂ − θ)

]
, (272)

where

g(θ) = (1 − θ)3
√

2(1 + (1 − θ)4)3/2
, (273)

and we have used the fact that θ̂ is an unbiased esti-
mate of θ.

I χ-Matrix Representation of Quan-
tum Channels

Besides the well-known Kraus and Stienspring rep-
resentations of a CPTP map, a lesser-known repre-
sentation, called the χ-matrix representation [135], is
also useful in practice. This is most commonly used
in quantum state tomography [37] and is extended
to quantum process tomography [136] where state to-
mography of the Choi state of a quantum channel
is conducted. This is to be contrasted with other
approaches in measuring noise, such as randomized
benchmarking [137] and QEC itself [138]. Interest-
ingly, the χ-matrix representation can be well moti-
vated in the context of QEC by noting that we can
rewrite the “error operators” {Qi} of any noisy map
Q(·) =

∑
iQi(·)Q

†
i in terms of a pre-selected “error

basis” {Bk}d
2−1
k=0 in L(H), where d ≡ dimH. It is par-

ticularly useful to pick one of the basis elements, e.g.
B0, as the “desirable” error (such as being propor-
tional to the unit matrix). Consequently, the coeffi-
cient associated with this error component indicates
how likely it is that the given Kraus operators of the
noisy map will change the state of our quantum sys-
tem in a “desirable way”. An additional benefit of the
χ-matrix representation is that the effects of channel
twirling are especially clear [122], as “diagonalization”
with respect to the generalized Pauli group. There-
fore, the rest of the appendix is devoted to recalling
the χ-matrix representation in a self-contained way.

Recall that every CP map QA→B admits a Kraus
decomposition

Q(·) =
K∑
i=1

Qi(·)Q†
i . (274)

in terms of Kraus operators {Qi}Ki=1 satisfying∑K
i=1 Q

†
iQi ≤ IA, where the equality holds for TP

maps. Let us consider a CP map QA→A ≡ Q, where
by denoting d ≡ dim(HA), we can decompose each
of the Kraus operators {Qi}Ki=1 as a linear combina-
tion of some orthonormal operator basis {Bk}d

2−1
k=0 in

L(HA), as follows

Qi =
d2−1∑
k=0

⟨Bk, Qi⟩Bk , (275)

where ⟨Bk, Bl⟩ = δkl, and ⟨·⟩ being the Hilbert-
Schmidt inner product in L(HA). One could take
Bk ≡ B(m,n) = |m⟩⟨n| for m,n = {1, · · · , d}, which is
known as the standard basis in L(HA). Substituting
Eq. (275) in the Kraus representation of Q, we get

Q(·) =
d2−1∑
k=0

d2−1∑
l=0

χQ
klBk(·)B†

l , (276)

where

χQ
kl :=

K∑
i=1

⟨Bk, Qi⟩⟨Qi, Bl⟩ , (277)

is called the χ matrix of the CP map Q. It is easy
to see that the χ matrix is a positive semi-definite
matrix. This matrix has d4 complex entries, corre-
sponding to the matrix entries of the superoperator
Q in the Liouville representation (see, e.g. [43, 139]),
namely

Q̂ :=
d2−1∑
k=0

d2−1∑
l=0

χQ
kl|Bk⟩⟩⟨⟨Bl| , (278)

where |Bk⟩⟩ is the d2 × 1 vector corresponding to the
d× d matrix Bk. The number of independent entries
of the χ matrix is reduced from d4 to d4 −d2 complex
numbers if the CP map Q is also TP, since for each of
the d2 standard basis elements |n⟩⟨m| in L(HA), the
map Q must also preserve the trace, which leads to
d2 constraints.

In the context of QEC, it is convenient to choose
our operator basis in L(HA) such that B0 indicates a
“desired effect” on a quantum state. Here B0 ≡ I/

√
d

is desirable for QEC, but for other applications, B0
could be chosen differently. Next, we write Eq. (275)
for a fixed i = 1, · · · ,K, as

Qi = ⟨B0, Qi⟩B0 +
d2−1∑
k=1

⟨Bk, Qi⟩Bk . (279)

Then, by multiplying both sides on the left by Q†
i and

taking the trace, we arrive at

⟨Qi, Qi⟩ = |⟨B0, Qi⟩|2 +
d2−1∑
k=1

|⟨Bk, Qi⟩|2 , (280)
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or equivalently,

|⟨B0, Qi⟩|2

⟨Qi, Qi⟩
+
d2−1∑
k=1

|⟨Bk, Qi⟩|2

⟨Qi, Qi⟩
= 1 . (281)

By denoting q2
i := ⟨Qi, Qi⟩, | cos(ϕi)| := |⟨B0, Qi⟩|/qi,

and vi,k| sin(ϕi)| := |⟨Bk, Qi⟩|/qi with some real
weights {vi,k}d

2−1
k=1 satisfying

∑d2−1
k=1 v2

i,k = 1, we can
rewrite the previous equation in a simple form

cos2(ϕi) + sin2(ϕi) = 1 for for all i = 1, · · · ,K ,
(282)

where the angle ϕi indicates how “close” the error Qi
is the the “desirable error” B0. Note that, if Q is also
TP, then

∑K
i=1 q

2
i =

∑K
i=1⟨Qi, Qi⟩ = Tr[I] = d.

Due to the unitary freedom of choosing the Kraus
operators of any fixed quantum channel from its Stein-
spring dilation [37], the χ matrix is not uniquely de-
termined. Therefore, using the phase freedom Qi →
Qie

iωi (which is a special case of the unitary freedom
mentioned above), we can always choose the phases
ωi for i = 1, · · · ,K such that all the inner prod-
ucts ⟨B0, Qi⟩ with the basis element B0 are all non-
negative. This means that we can pick ϕi ∈ [0, π/2].
Finally, the additional phase in ⟨Bk, Qi⟩ can always
be placed in the vector vk, which leads to the final
decomposition

Qi = qi

cos(ϕi)B0 + sin(ϕi)
d2−1∑
k=1

vi,kBk

 , (283)

where {vi,k}d
2−1
k=1 are now complex numbers with∑d2−1

k=1 |vi,k|2 = 1. From here, we can easily compute
the matrix element χQ

00, after taking B0 = I/
√
d, as

χQ
00 =

K∑
i=1

q2
i cos2(ϕi) = 1

d

K∑
i=1

|Tr[Qi]|2 , (284)

which is consistent with χQ
00/d = Fe(Q, I/d) [7, 8].

Using Eq. (283) to compute Q†
iQi, taking the trace,

and using the orthonormality of the operator basis
{Bk}d

2−1
k=1 , we arrive at

K∑
i=1

⟨Qi, Qi⟩ =
K∑
i=1

q2
i ≤ d , (285)

where the inequality follows from
∑
iQ

†
iQi ≤ I. Com-

bined with Eq. (284), this implies that 0 ≤ χQ
00 ≤ d,

or equivalently 0 ≤ Fe(Q) ≤ 1.

J Proof of Lemma 3
Here we derive an upper bound on the matrix el-

ement χS◦Q
00 of the composite channel S ◦ Q, given

the corresponding χ matrix elements χQ
00 and χS

00 of

the individual channels Q and S, respectively. The
technique used for the following derivation is based
on [43].

Given the Kraus operators {Qi}K(Q)
i=1 , {Sj}K(S)

j=1 of
the individual channels Q and S, the Kraus operators
of the composite channel S ◦Q are given by {SjQi}i,j
for i = 1, · · · ,K(Q) and j = 1, · · · ,K(S). Therefore,
by using Eq. (283) for the individual Kraus operators
and using the notation ⟨Qi, Qi⟩ = qi and ⟨Si, Si⟩ =
si, we find for the Kraus operators of the composite
channel

SjQi = sjqi cos(ϕS
j ) cos(ϕQ

i )B2
0

+ sjqi sin(ϕS
j ) cos(ϕQ

i )
d2−1∑
k=1

vS
j,kBkB0

+ sjqi cos(ϕS
j ) sin(ϕQ

i )
d2−1∑
k=1

vQ
i,kB0Bk

+ sjqi sin(ϕS
j ) sin(ϕQ

i )
d2−1∑
k,k′=1

vS
j,kv

Q
i,k′BkBk′ .

(286)

By substituting into Eq. (284) and choosing the
operator basis elements to be Hermitian (hence
Tr[BkBk′ ] = ⟨Bk, Bk′⟩ = δkk′ , for k, k′ =
0, 1, · · · , n2 − 1), we arrive at

χS◦Q
00 = 1

d

∑
i,j

s2
jq

2
i | cos(ϕS

j ) cos(ϕQ
i )

+ (vS
j • vQ

i ) sin(ϕS
j ) sin(ϕQ

i )|2 , (287)

where we have denoted by vS
j • vQ

i ≡
∑d2−1
k=1 vS

j,kv
Q
i,k,

with {vQ
i,k}d

2−1
k=0 and {vS

j,k}d
2−1
k=0 ∈ Cd2−1. By denot-

ing cij ≡ cos(ϕS
j ) cos(ϕQ

i ), sij ≡ sin(ϕS
j ) sin(ϕQ

i ), and
vij ≡ vS

j • vQ
i , we can use the (forward and reversed)

triangle inequality, as follows

||cij |−|vijsij || ≤ |cij+vijsij | ≤ |cij |+ |vijsij | . (288)

By recalling that cij , sij ≥ 0, since ϕQ
i , ϕS

j ∈ [0, π/2],
the second inequality yields |cij + vijsij | ≤ |cij | +
|vijsij | = cij + |vij |sij . If we assume that |vij | ≤ 1,
then the inequality becomes |cij + vijsij | ≤ cij + sij .
By squaring both sides, we get

|cij + vijsij |2 ≤ c2
ij + s2

ij + 2cijsij , (289)

where this inequality is saturated iff vij = 1 for all i =
1, · · · ,K(Q) and j = 1, · · · ,K(S). Substituting back
into Eq. (287) and using the definitions of χQ

00 and
χS

00 from Eq. (284), as well as the fact that
∑
i q

2
i =∑

j s
2
j = d for CPTP maps Q and S, we arrive at

χS◦Q
00 = 1

d

∑
i,j

s2
jq

2
i |cij + vijsij |2 (290)
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≤ 1
d

∑
i,j

s2
jq

2
i (c2

ij + s2
ij + 2cijsij) (291)

= 1
d

[
χS

00χ
Q
00 + (d− χS

00)(d− χQ
00)
]

+ 2
d

∑
i,j

s2
jq

2
i cijsij (292)

= 1
d

[
χS

00χ
Q
00 + (d− χS

00)(d− χQ
00)
]

+ 2
d

∑
j

s2
j cos(ϕS

j ) sin(ϕS
j )

×

×

(∑
i

q2
i cos(ϕQ

i ) sin(ϕQ
i )
)
. (293)

Next, we use the Cauchy-Schwartz inequality∑
i

q2
i cos(ϕQ

i ) sin(ϕQ
i ) (294)

=
∑
i

(
qi cos(ϕQ

i )
) (
qi sin(ϕQ

i )
)

(295)

≤
√∑

i

q2
i cos2(ϕQ

i )
√∑

i

q2
i sin2(ϕQ

i ) (296)

=
√
χQ

00(d− χQ
00) , (297)

where the Cauchy-Schwartz inequality is sat-
urated when the vectors {qi cos(ϕQ

i )}K(Q)
i=1 and

{qi sin(ϕQ
i )}K(Q)

i=1 are linearly dependent, therefore
tan(ϕQ

1 ) = · · · = tan(ϕQ
K(Q)). Since ϕQ

i ∈ [0, π/2]
for all i = 1, · · · ,K(Q) and the function tan(x) is
one-to-one in that region, it follows that the above in-
equality is saturated iff ϕQ

1 = · · · = ϕQ
K(Q). The exact

same argument for the channel S yields∑
j

s2
j cos(ϕS

j ) sin(ϕS
j ) ≤

√
χS

00(d− χS
00) , (298)

where the inequality is saturated iff ϕS
1 = · · · = ϕS

K(S).
Substituting Eqs. (297) and (298) into Eq. (293), we
arrive at

dχS◦Q
00 ≤ χS

00χ
Q
00 + (d− χS

00)(d− χQ
00)

+ 2
√
χS

00χ
Q
00(d− χS

00)(d− χQ
00) , (299)

or equivalently,√
dχS◦Q

00 ≤
√
χS

00

√
χQ

00+
√
d− χS

00

√
d− χQ

00 . (300)

Dividing both sides by d and redefining χQ
00/d ≡

cos2(δQ) for δQ ∈ [0, π/2], as suggested in Eq. (14),
we arrive at

cos(δS◦Q) ≤ cos(δS) cos(δQ) + sin(δS) sin(δQ) .
(301)

Using a triangle identity to simplify the right hand
side, we get cos(δS◦Q) ≤ cos(δS − δQ), i.e.

δS◦Q ≥ |δS − δQ| , (302)

which allows δS◦Q ∈ [0, π/2] given δS , δQ ∈ [0, π/2].
In other words, given χQ

00 and χS
00, the compos-

ite channel χ-matrix element χS◦Q
00 is bounded from

above by

χS◦Q
00
d

≤ cos2

arccos
√
χS

00
d

− arccos

√
χQ

00
d

 .

(303)

K Proof of Theorem 3
We denote by Fe ≡ Fe(Rθ ◦ Nθ), F̂e ≡ F̂e(Rθ̂ ◦

Nθ), and ∆Fe ≡ Fe − F̂e, and then do the simple
manipulation

arccos
√
Fe(Rθ̂ ◦ Nθ) = arccos

√
Fe − ∆Fe (304)

= arccos
{√

Fe

√
1 − ∆Fe

Fe

}
(305)

= arccos
{√

Fe

[
1 − ∆Fe

2Fe

]
+
√
FeR1

(
∆Fe
Fe

)}
,

(306)

where
R1(x) ≡ 1

3(1 − x0)−3/2x2 , (307)

is the Lagrange remainder term of the Taylor expan-
sion of

√
1 − x, and x0 ∈ [0, x] is a constant. This

yields

cos δ̂ =
√
Fe − ∆Fe

2
√
Fe

+
√
FeR1

(
∆Fe
Fe

)
. (308)

By denoting δ ≡ arccos
√
Fe, we find the Taylor series

expansion of δ̂ with respect to x ≡ cos δ − cos δ̂, as
follows

δ̂ = arccos (cos δ − x) = δ + x

sin δ +R2(x) , (309)

where

R2(x) = − cos δ − x0

2(1 − (cos δ − x0)2)3/2x
2 , (310)

is the Lagrange form of the remainder term, and x0 ∈
[0, x] is a constant. Substituting for x using Eq. (308)
yields

δ̂ − δ = x

sin δ +R2(x) (311)

=
∆Fe

2
√
Fe

−
√
FeR1

(
∆Fe
Fe

)
sin δ +R2(x) (312)

= ∆Fe
2
√
Fe(1 − Fe)

+ r

(
∆Fe
Fe

)
, (313)

where

r(x) =
√

Fe
1 − Fe

R1(x) +R2

(√
Fe
2 x−

√
FeR1(x)

)
,

(314)
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is the accumulative remainder term.
Next, we rewrite Theorem 4 as a recurrence inequal-

ity, where the contribution of the spectator system in
each time step is clearly separated.

F 1→n
e ≤ cos2

(
arccos

√
F

1→(n−1)
e − arccos

√
F̂ne

)
(315)

≡ cos2
(
δ1→(n−1) − δ̂n

)
(316)

= cos2
(
δ1→(n−1) − δn − (δ̂n − δn)

)
. (317)

By denoting a = δ1→(n−1) − δn and b = δ̂n − δn,
and using the trigonometric identities cos2(a − b) =
1
2 + 1

2 cos 2(a− b) and cos (a− b) = cos (a) cos (b) +
sin (a) sin (b), we arrive at

cos2(a− b) (318)

= 1
2 + 1

2 (cos 2a cos 2b+ sin 2a sin 2b) (319)

= cos2(a) − 1
2 cos 2a(1 − cos 2b) + 1

2 sin 2a sin 2b
(320)

= cos2(a) + b sin(2a) − 1
2(cos 2a)R3(2b)

+ 1
2(sin 2a)R4(2b) (321)

≡ cos2(a) + b sin(2a) + r′(b) , (322)

where we have used the Taylor expansions of the sine
and cosine functions to the first order of b, and de-
noted by R3(x) and R4(x) with their remainders in
the Lagrange form, respectively.

Consequently, we have for Theorem 4 the separa-
tion

Fe
1→n ≤ cos2

(
δ1→(n−1) − δn

)
+ (δ̂n − δn) sin

(
2(δ1→(n−1) − δn)

)
+ r′(δ̂n − δn) ,

(323)

where the first term is the interference between the
previous n − 1 cycles and the n-th cycle error angles
with perfect knowledge at the n-th step. On the other
hand, the second term shows the contribution of the
lack of knowledge into the recurrence inequality at the
n-th timestep, for a fixed error angle δ1→(n−1), as

∆Fne
2
√
Fne (1 − Fne )

sin
(

2δ1→(n−1) − 2 arccos
√
Fne

)
.

(324)
Note that the sign of this contribution depends on
the difference between the error angles of the previous
n−1 cycles and the n-th cycle. Taking the expectation
with respect to the probability distribution pX(xn|θn)
and using Theorem 2, we arrive at the following:
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