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The molecular mechanisms underlying the acquisition of addiction/dependence
on morphine may result from the ability of the opioid to diminish the transport of
L-cysteine into neurons via inhibition of excitatory amino acid transporter 3
(EAA3). The objective of this study was to determine whether the co-
administration of the cell-penetrant L-thiol ester, L-cysteine ethyl ester
(L-CYSee), would reduce physical dependence on morphine in male Sprague
Dawley rats. Injection of the opioid-receptor antagonist, naloxone HCl (NLX;
1.5 mg/kg, IP), elicited pronounced withdrawal phenomena in rats which received
a subcutaneous depot of morphine (150 mg/kg) for 36 h and were receiving a
continuous infusion of saline (20 μL/h, IV) via osmotic minipumps for the same
36 h period. The withdrawal phenomena included wet-dog shakes, jumping,
rearing, fore-paw licking, 360° circling, writhing, apneas, cardiovascular
(pressor and tachycardia) responses, hypothermia, and body weight loss. NLX
elicited substantially reduced withdrawal syndrome in rats that received an
infusion of L-CYSee (20.8 μmol/kg/h, IV) for 36 h. NLX precipitated a marked
withdrawal syndrome in rats that had received subcutaneous depots of morphine
(150 mg/kg) for 48 h) and a co-infusion of vehicle. However, the NLX-precipitated
withdrawal signs were markedly reduced in morphine (150 mg/kg for 48 h)-
treated rats that began receiving an infusion of L-CYSee (20.8 μmol/kg/h, IV) at
36 h. In similar studies to those described previously, neither L-cysteine nor
L-serine ethyl ester (both at 20.8 μmol/kg/h, IV) mimicked the effects of
L-CYSee. This study demonstrates that 1) L-CYSee attenuates the development

OPEN ACCESS

EDITED BY

Francisco Lopez-Munoz,
Camilo José Cela University, Spain

REVIEWED BY

Christopher Freet,
The Pennsylvania State University,
United States
Marilia Gag Pereira,
Federal University of Alfenas, Brazil

*CORRESPONDENCE

Stephen J. Lewis,
sjl78@case.edu

†PRESENT ADDRESS

James N. Bates,
Chief Medical Officer, Atelerix Life
Sciences Inc., Charlottesville, VA,
United States
Santhosh M. Baby,
Translational Sciences Treatment
Discovery, Galvani Bioelectronics, Inc.,
Collegeville, PA, United States

RECEIVED 27 September 2023
ACCEPTED 31 October 2023
PUBLISHED 04 December 2023

CITATION

Bates JN, Getsy PM, Coffee GA, Baby SM,
MacFarlane PM, Hsieh Y-H, Knauss ZT,
Bubier JA, Mueller D and Lewis SJ (2023),
L-cysteine ethyl ester prevents and
reverses acquired physical dependence
on morphine in male Sprague
Dawley rats.
Front. Pharmacol. 14:1303207.
doi: 10.3389/fphar.2023.1303207

COPYRIGHT

© 2023 Bates, Getsy, Coffee, Baby,
MacFarlane, Hsieh, Knauss, Bubier,
Mueller and Lewis. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; CRF, corticotropin-
releasing factor; EAA3, excitatory amino acid transporter; IP, intraperitoneal; IV, intravenous; L-CYSee,
L-cysteine ethyl ester; L-NAC, N-acetyl-L-cysteine; Kv1.2 K+-channels, voltage-gated K+

1.2 channels;
L-SERee, L-serine ethyl ester; μ-OR, μ-opioid receptor; MAP, mean arterial blood pressure; NMDA,
N-methyl D-aspartate; NLX, naloxone hydrochloride; OIRD, opioid-induced respiratory depression;
OUD, opioid use disorder; SAM, S-adenosyl-methionine; SAH, S-adenosyl-homocysteine; SC,
subcutaneous; SUD, substance use disorder.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 04 December 2023
DOI 10.3389/fphar.2023.1303207

https://www.frontiersin.org/articles/10.3389/fphar.2023.1303207/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1303207/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1303207/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1303207/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1303207&domain=pdf&date_stamp=2023-12-04
mailto:sjl78@case.edu
mailto:sjl78@case.edu
https://doi.org/10.3389/fphar.2023.1303207
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1303207


of physical dependence on morphine in male rats and 2) prior administration of L-
CYSee reverses morphine dependence, most likely by intracellular actions within
the brain. The lack of the effect of L-serine ethyl ester (oxygen atom instead of
sulfur atom) strongly implicates thiol biochemistry in the efficacy of L-CYSee.
Accordingly, L-CYSee and analogs may be a novel class of therapeutics that
ameliorate the development of physical dependence on opioids in humans.

KEYWORDS

opioids, morphine, naloxone, physical dependence, withdrawal, L-cysteine, L-cysteine
ethyl ester, rats

Introduction

There are numerous problems faced by clinicians treating patients
with opioid use disorder (OUD) and other substance use disorders
(SUDs) (McCarberg, 2011; Heberlein et al., 2012; Garcia-Portilla et al.,
2014; Hah et al., 2017; Dydyk et al., 2022; 2023; Matson et al., 2022;
Horn et al., 2023). With regard to managing pain in the general
population, the key issues are how to provide μ-opioid receptor (μ-
OR) agonist (e.g., fentanyl)-induced analgesia without eliciting 1)
euphoria, 2) physical dependence and/or psychological addiction, 3)
hyperalgesia, and 4) any combination of the aforementioned conditions
(Benyamin et al., 2008; Volkow et al., 2018; Mercadante et al., 2019;
Manhapra, 2022; Preux et al., 2022; Balanaser et al., 2023). With respect
to treating moderate-to-severe OUD (DSM-5 terminology for opioid
addiction in 10%–20% of people who have liability for SUD), the key
issues are 1) how to manage the often severe opioid withdrawal (all
current strategies to manage opioid withdrawal are inadequate); 2) how
to manage patients who have gone through withdrawal and need
medication to block euphoria and/or physical dependence, with the
three medications available, naltrexone, buprenorphine, and
methadone, all having strengths, but major weaknesses; and 3) how
to avoid opioid euphoria and/or physical dependence in patients with
moderate-to-severe OUD who currently are sober, but require μ-OR
agonist analgesia (Humphreys et al., 2022; Jiménez-Fernández et al.,
2022; Torres-Lockhart et al., 2022; Alvarez-Perez et al., 2023; Biancuzzi
et al., 2023; Frankeberger et al., 2023).With respect to effectively treating
SUD involving opioids and other substances (e.g., alcohol,
cannabinoids, benzodiazepines, and psycho-stimulants), in 10%–20%
of the population prone to SUD, the important issue is how to provide
(yet to be developed) effective therapeutics that will attenuate/block
dopamine surge-mediated euphoria of each of these families of brain-
reward drugs as an adjunct to treating addictive diseases (Chartoff and
Connery, 2014; Stephan and Parsa, 2016; Horsfall and Sprague, 2017;
Bechara et al., 2019; Serafini and Zachariou, 2019). With respect to
making opioid analgesics safer, we lack drugs that effectively modulate
the actions of opioids to improve their analgesic profile. The
therapeutics should 1) not interfere with or promote opioid
analgesia, 2) prevent the acquisition of physical dependence and
psychological addiction to opioids, 3) block opioid-induced
respiratory depression (OIRD), or 4) stop the development of
hyperalgesia (Benyamin et al., 2008; Morgan and Christie, 2011;
Volkow et al., 2018; Mercadante et al., 2019; Manhapra, 2022; Preux
et al., 2022; Balanaser et al., 2023).

Trivedi et al. (2014) reported that morphine-induced
dependence/addiction may involve redox-based changes in global
DNA methylation and retrotransposon transcription via the

blockade of excitatory amino acid transporter type 3 (EAA3; also
known as EAAC1)-dependent uptake of the amino acid, L-cysteine,
into brain neurons. Some of the temporal steps described by Trivedi
et al. (2014) (see Figure 5 of Trivedi et al., 2014) and others (Lin et al.,
2001; Ikemoto et al., 2002; Mao et al., 2002; Xu et al., 2003; Xu et al.,
2006; Christie, 2008; Yang et al., 2008; Wang et al., 2009; Daijo et al.,
2011; Gutowicz et al., 2011; Liu et al., 2011; Maze and Nestler, 2011;
Lim et al., 2012; Sun et al., 2012; Browne et al., 2020) are as follows:
1) morphine blockade of L-cysteine uptake into neurons by G
protein-dependent inhibition of EAA3 activity, 2) resulting
decreases in intracellular levels of L-cysteine, L-glutathione, and
the methylation index, namely, S-adenosyl-methionine/S-adenosyl-
homocysteine (SAM/SAH ratio), 3) decreases in the methylation
status of global CpG (regions of DNA where a cytosine nucleotide is
followed by a guanine nucleotide in the linear sequence of bases
along its 5′ → 3′ direction) and in CpG methylation of long
interspersed nuclear element-1 (LINE-1) retrotransposon
regulatory regions, and 4) activation of transcription of
previously silenced LINE-1 genes. Thus, we hypothesized that co-
administration of cell-permeant versions of L-cysteine, such as
L-cysteine ethyl ester (L-CYSee) (Goto et al., 1983; Hisadome
et al., 1986a; Hisadome et al., 1986b; Hisadome et al., 1988;
Servin et al., 1988; Hisadome et al., 1990; Schöneich et al., 1992;
Hobbs et al., 1993; Fukui et al., 1994; Ding and Demple, 1998;
Galanakis et al., 2004; Mosier-Boss and Lieberman, 2005;
Perissinotti et al., 2005; Defonsi Lestard et al., 2013; Mendoza
et al., 2013; Arias et al., 2019), may prevent the acquisition of
physical dependence on morphine and reverse established
dependence on the opioid. Previously, we reported that L-CYSee
(Lewis et al., 2022), L-cysteine methyl ester (Getsy et al., 2022a), and
other thiolesters and related compounds (Baby et al., 2021; Baby
et al., 2021; Gaston et al., 2021; Jenkins et al., 2021; Getsy et al.,
2022b; Getsy et al., 2022c; Getsy et al., 2022d; Getsy et al., 2022e;
Getsy et al., 2022f) prevent and/or reverse the adverse effects of
morphine and fentanyl on ventilatory parameters, arterial blood–gas
chemistry (pH, pCO2, pO2, and sO2), and alveolar–arterial gradient
(index of alveolar gas exchange in the lungs) in freely-moving rats
without compromising opioid-induced analgesia or sedation. We
now provide evidence that administration of L-CYSee prevents the
acquisition of physical dependence, as measured by markedly fewer
withdrawal phenomena in response to administration of the opioid
receptor antagonist, naloxone HCl (NLX), in freely-moving male
rats, and reverses established dependence. The lack of effect of
L-cysteine and L-serine ethyl ester (L-SERee, oxygen atom instead of
a sulfur atom as in L-CYSee) in these paradigms suggests that the
efficacy of L-CYSee involves its cell penetrability in brain regions
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vital to the expression of morphine dependence, and points to the
vital role of thiol biochemistry in the biological efficacy of L-CYSee.

Materials and methods

Permissions, rats, and surgical procedures

All studies were carried out in strict accordance with the NIH
Guide for Care and Use of Laboratory Animals (NIH Publication
No. 80-23) revised in 1996 and in strict compliance with the
ARRIVE (Animal Research: Reporting of In Vivo Experiments)
guidelines (http://www.nc3rs.org.uk/). All protocols involving the
use of rats were approved by the Animal Care and Use Committees
of Galleon Pharmaceuticals (PC0022), Case Western Reserve
University (2015-0025), and the University of Virginia (3642-09-
07). Adult male Sprague Dawley rats of approximately 12 weeks of
age at the time of study were purchased from Harlan Industries
(Madison, WI, United States). The rats were given 5 days to recover
from transportation before being subjected to surgeries, as described
in this paragraph. (+)-Morphine sulfate was obtained from Baxter
Healthcare (Deerfield, IL, United States). L-cysteine hydrochloride
monohydrate (L-cysteine HCl) powder (C7880, PubChem
Substance ID:24892992), L-cysteine ethyl ester hydrochloride
(L-CYSee HCl) powder (C121908, PubChem Substance ID:
24892386), and L-serine ethyl ester hydrochloride (L-SERee HCl)
powder (223123; PubChem Substance ID:24853367) were divided
into 100 mg amounts under N2 gas and stored at 4°C. Solutions of
L-cysteine HCl, L-CYSee HCl, and L-SERee HCl were dissolved in
saline and brought to pH 7.2 with 0.1 MNaOH at room temperature
immediately before use. Naloxone hydrochloride dihydrate powder
(BP548; PubChem Substance ID: 24278050) was obtained from
Sigma-Aldrich (St. Louis, MO, USA) and was dissolved in saline at
pH 7.2 with 0.1 M NaOH at room temperature immediately before
use. On the day of the study, all arterial and venous catheters were
flushed with 0.3 mL of phosphate-buffered saline (0.1 M, pH 7.4)
3–4 h before commencement of the study. All studies were done in a
quiet room with a relative humidity of 50% ± 2% and room
temperature of 21.3°C ± 0.2°C. Every group described in this
study contained nine rats. Other than the described surgeries (see
the next section), no rat had a prior history of use in any
experimental protocol and was used in only one protocol in the
present study. The times at which the surgeries were performed will
be described herein. Surgery times from the initiation of anesthesia
to final closing of all wounds took approximately a) 20 min for the
placement of one venous catheter, b) 25 min for the placement of
two venous catheters, c) 30 min for the placement of two
intravenous and one arterial catheter, and d) 20 min for
intravenous catheterization in which the connected osmotic
minipump is placed subcutaneously. Two protocols were as
follows: 1) Examine the ability of L-CYSee and L-cysteine
(behavioral and cardiorespiratory studies), and L-SERee
(behavioral study only) to prevent the acquisition of physical
dependence on morphine upon 36 h exposure to the opioid and
test compounds. The question addressed whether treatment with
L-CYSee, for example, diminishes NLX-precipitated withdrawal
phenomena; and 2) examine whether the introduction of
L-CYSee or L-cysteine (behavioral and cardiorespiratory studies)

or L-SERee (behavioral study only) at 36 h of morphine treatment
reverses established physical dependence on morphine, as tested
after 48 h of morphine treatment. The question addressed for the
second protocol is whether co-treatment for 12 h with L-CYSee, for
example, reverses existing physical dependence on morphine, as
expressed by markedly diminished NLX-precipitated withdrawal
phenomena.

Protocols to determine the effects of
L-CYSee on physical dependency of
morphine and prevention of morphine
dependence—36-h studies

A. Behavioral studies: At 2 a.m. on the day of surgery, two groups of
rats received a jugular vein catheter (PE-10 connected to PE-50)
under 2%–3% isoflurane anesthesia (Henderson et al., 2014;
Gaston et al., 2021; Getsy et al., 2022f). The jugular vein catheter
was connected to a primed ALZET osmotic minipump (Model
2002; ALZA Corporation, CA, United States) positioned at the
back of the neck to allow continuous infusion of the vehicle
(20 μL/h, IV), L-cysteine (20.8 μmol/kg/h, IV), L-CYSee
(20.8 μmol/kg/h, IV), or L-SERee (20.8, μmol/kg/h, IV), as
described previously (Jarrott et al., 1987; Lewis et al., 1988a;
Jarrott et al., 1988; Lewis et al., 1989). Physical dependence was
induced by a slow-release subcutaneous depot of morphine
emulsion (150 mg/kg, SC) injected at the left side of the neck,
as described in detail by Fennessy and colleagues (Lee and
Fennessy, 1970; Laska and Fennessy, 1976; Laska and
Fennessy, 1977; Laska and Fennessy, 1978; Lewis et al.,
1988b). In brief, morphine base was precipitated from a
solution of (+)-morphine sulfate by titrating to pH 9 with
1 mol/L NaOH. After several distilled water washes, a pure
base was collected in a filter funnel and dried. Morphine
slow-release emulsion was prepared by suspending a weighed
amount of base in liquid paraffin and Arlacel A. This mixture
was then emulsified with an equal volume of normal saline, as
initially described by Collier et al. (1972). All wounds were
sutured closed, and the rats were returned to their warmed home
cages. After 35.5 h of morphine administration, the rats were
placed in individual opaque plastic boxes; after 30 min of
acclimatization, they received an intraperitoneal (IP) injection
of NLX (1.5 mg/kg), and behavioral phenomena were scored for
45 min by at least three scorers. The scored phenomena were as
follows: jumping behavior—all four paws of the ground—jumps;
wet-dog shakes—whole body shakes as if to shed water from fur;
rearing behavior—rearing on hind legs—rears; episodes of fore-
paw licking—FPL; circling behavior—complete 360° rotation;
writhes—full-body contortion; sneezes—episodes of
sneezing—abrupt expulsion of air that often disturbed the
fine bedding material.

B. Plethysmography ventilatory studies: Groups of rats were
prepared as described previously except that the rats received
a second catheter into the jugular vein, as described by Getsy
et al. (2022f), to give a bolus injection of NLX. After 35 h, rats
were placed in individual whole-body plethysmography
chambers (Young et al., 2013; Getsy et al., 2022a; Getsy et al.,
2022b; Getsy et al., 2022c; Getsy et al., 2022d; Getsy et al., 2022e;
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Getsy et al., 2022f), and the free end of the exteriorized venous
catheter was connected to a swivel assembly housed in the lid of
the plethysmography chamber (Young et al., 2013; Getsy et al.,
2022a; Getsy et al., 2022b; Getsy et al., 2022c; Getsy et al., 2022d;
Getsy et al., 2022e; Getsy et al., 2022f). After a 60-min
acclimatization period, the rats were given an intravenous
injection of NLX (1.5 mg/kg). Ventilatory parameters
including the frequency of breathing, tidal volume, minute
ventilation, and non-eupneic breathing indices were recorded
(to be reported elsewhere) with the number of apneas (>1.5 s
between breaths) reported here.

C. Cardiovascular studies: Groups of rats were prepared as
described previously except that the rats received a second
catheter into a jugular vein (Getsy et al., 2022f) to administer
NLX and a catheter into a femoral artery to continuously record
mean arterial blood pressure (MAP) and heart rate (Kanbar
et al., 2010; Davisson et al., 2014; Brognara et al., 2016; Gaston
et al., 2020). After 35 h, the rats were placed in individual opaque
plastic boxes, and the free end of the exteriorized jugular vein
catheter was connected to an injection line to deliver NLX. The
free end of the arterial line was connected to tubing attached to a
computer-coupled pressure transducer (Cabe Lab, Inc.) to
record pulsatile arterial blood pressure. After a 60-min
acclimatization period, the rats received a bolus injection of
NLX (1.5 mg/kg, IV), and MAP and heart rate were recorded
continuously for 45 min.

D. Body temperature and body weight studies: Groups of rats
without a second jugular catheter were prepared as described
in the previous paragraph. After 35 h, the rats were placed in
individual opaque plastic boxes, and a thermistor probe, used to
record body temperature, was connected to a telethermometer
(Yellow Springs Instruments) and inserted 5–6 cm into the
rectum and taped to the tail (Kregel et al., 1997). The body
weights of the rats and their body temperatures were recorded
every 15 min during the acclimatization period to establish
accurate baseline values. After the 60-min acclimatization
period, the rats received an intraperitoneal injection of NLX
(1.5 mg/kg), and body temperatures and body weights were
recorded every 15 min for 90 min.

Reversal of morphine dependence—48-h
studies

A. Behavioral studies: At 2 p.m. on the day of surgery, two groups of
rats received a slow-release subcutaneous depot of morphine
emulsion (150 mg/kg, SC) injected at the left side of the neck, as
described previously. After 36 h of morphine administration, the
rats were anesthetized (2% isoflurane) and received a jugular
vein catheter connected to a primed ALZET osmotic minipump
positioned at the back of the neck for continuous infusion of the
vehicle (20 μL/h, IV), L-cysteine (20.8, μmol/kg/h, IV), L-CYSee
(20.8 μmol/kg/h, IV), or L-SERee (20.8, μmol/kg/h, IV), as
mentioned previously. All wounds were then sutured closed,
and the rats were returned to their warmed home cages. After
11.5h, the rats were placed in individual opaque plastic boxes,
and after a 30-min period of acclimatization, the rats received an
intraperitoneal injection of NLX (1.5 mg/kg), and behavioral

phenomena (as detailed previously) were scored for 45 min by at
least three scorers.

B. Plethysmography ventilatory studies: Groups of rats were
prepared as described previously, except that the rats received
two catheters into the same jugular vein, as described by Getsy
et al. (2022f), to allow for the bolus injection of NLX via the
catheter not connected to the osmotic minipump. After 47 h, rats
were placed in individual whole body plethysmography
chambers. The free end of the exteriorized jugular vein
catheter was connected to a swivel on the lid of the
plethysmography chamber. After 60 min of acclimatization,
the rats received a bolus injection of NLX (1.5 mg/kg, IV).
Ventilatory parameters and non-eupneic breathing indices
were recorded, with the number of apneas (>1.5 s between
breaths) reported.

C. Cardiovascular studies: Groups of rats were prepared as
previously described, except that the rats received two
catheters into the same jugular vein to inject NLX via the
catheter not connected to the osmotic minipump, and a
catheter into a femoral artery to record MAP and heart rate.
After 47 h, the rats were placed in individual opaque plastic
boxes, and the free end of the exteriorized jugular vein catheter
was connected to an injection line to inject NLX. The free end of
the arterial line was connected to tubing attached to a computer-
coupled pressure transducer to record pulsatile arterial blood
pressure. After a 60-min acclimatization period, the rats received
an injection of NLX (1.5 mg/kg, IV), and MAP and heart rate
were recorded continuously for 45 min.

D. Body temperature and body weight studies: Groups of rats
without a second jugular catheter were prepared, as described
previously. After 47 h, the rats were placed in individual opaque
plastic boxes, and a thermistor probe, used to record body
temperature, was connected to a telethermometer (Yellow
Springs Instruments) and inserted 5–6 cm into the rectum and
taped to the tail. The body weights of the rats and body
temperatures were recorded every 15 min during
acclimatization to establish baseline values. After the 60-min
acclimatization period, the rats received an intraperitoneal
injection of NLX (1.5 mg/kg). Body temperature and weights
were recorded every 15 min for 90 min.

Data analyses

The directly recorded and arithmetically derived parameters
were statistically analyzed. All data are presented as mean ± SEM
and were evaluated using one-way ANOVA, followed by Bonferroni
corrections for multiple comparisons between means using the error
mean square terms from each ANOVA analysis (Wallenstein et al.,
1980; Ludbrook, 1998; McHugh, 2011), as detailed previously (Getsy
et al., 2023a; Getsy et al., 2023b). A p < 0.05 value denoted the initial
level of statistical significance that was modified according to the
number of comparisons betweenmeans, as described byWallenstein
et al. (1980). The modified t-statistic is t = (mean group 1—mean
group 2)/[s x (1/n1 + 1/n2)

1/2], where s2 = the mean square within
groups obtained from ANOVA (the square root of this value is used
in the modified t-statistic formula), and n1 and n2 are the number of
rats in each group under comparison. Based on Bonferroni’s
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inequality, a conservative critical value for modified t-statistics can
be obtained from the tables of t-distribution using a significance
level of P/m, where m is the number of comparisons to be made
between groups (Winer, 1971). The degrees of freedom are those of
the mean square for within group variation from the ANOVA table.

The critical Bonferroni value can be approximated from the tables of
the normal curve by t* = z + (z + z3)/4n, with n being the degrees of
freedom and z being the critical normal curve value for P/m
(Wallenstein et al., 1980; Ludbrook, 1998; McHugh, 2011).
Wallenstein et al. (1980) first demonstrated that the Bonferroni
procedure is preferable for general use because it provides critical
values that are lower than those of other procedures when the
number of comparisons can be limited and will be slightly larger
than those of other procedures if many comparisons are made.
Statistical analyses were performed with the aid of GraphPad Prism
software (GraphPad Software, Inc., La Jolla, CA). F- and P-statistics
associated with the ANOVA analyses of the data in Figures 1–5 are
given in the respective figure legends.

Results

L-CYSee infusion prevents physical
dependence on morphine—36-h studies

The behavioral withdrawal phenomena elicited by the injection
of NLX (1.5 mg/kg, IP) in rats that were receiving morphine
(150 mg/kg, SC), plus a continuous infusion of the vehicle
(saline, 20 μL/h, IV) or L-cysteine (20.8 μmol/kg/h, IV) or
L-CYSee (20.8 μmol/kg/h, IV) for 36 h are shown in Figure 1. As
can be seen, the injection of NLX to rats receiving the infusion of the
vehicle elicited substantial increases in jumping behavior (jumps),
wet-dog shakes (WDS), rearing behavior (rears), fore-paw licking
(FPL), circling behavior (circles), full-body writhing (writhes), and
sneezing (sneezes). These responses were similar in magnitude in
rats that were receiving an infusion of L-cysteine. In contrast, NLX-
precipitated phenomena (except for sneezing) were dramatically
diminished in rats that were receiving the continuous infusion of
L-CYSee. In addition, the NLX-precipitated withdrawal signs were
fully expressed in rats that were receiving an infusion of L-SERee

FIGURE 1
Withdrawal behaviors elicited by a bolus injection of NLX (1.5 mg/kg, IP) in rats treated for 36 h with a subcutaneous depot of morphine (150 mg/kg)
along with continuous infusion of the vehicle (saline, 20 μL/h, IV) or L-cysteine (20.8 μmol/kg/h, IV) or L-cysteine ethylester (L-CYSee, 20.8 μmol/kg/h,
IV). Withdrawal signs: jumps—all four paws off the floor; WDS-wet-dog shakes; rears—rearing on hind legs; FPL—episodes of fore-paw licking; circles-a
360° rotation; writhes-full-body contortion; sneezes-abrupt expulsion of air. The data are presented as mean ± SEM. There were nine rats in each
group. Between-group ANOVA statistics: jumps: F2,24 = 18.8, p = 0.00001; WDS: F2,24 = 29.9, p < 0.00001; rears: F2,24 = 16.2, p = 0.00004; FPL: F2,24 =
27.0, p < 0.00001; circles: F2,24 = 24.1, p < 0.00001; writhes: F2,24 = 15.4, p < 0.00005; sneezes: F2,24 = 0.09, p=0.92. *p < 0.05, significant responses from
Pre. †p < 0.05, L-CYSee versus vehicle or L-cysteine.

FIGURE 2
Incidence of apneas (>1.5 s between breaths) and increases in
mean arterial blood pressure (MAP, mmHg) and heart rate (HR, beats/
min) elicited by a bolus injection of NLX (1.5 mg/kg, IV) in rats treated
for 36 h with a subcutaneous depot of morphine (150 mg/kg)
along with the continuous infusion of vehicle (saline, 20 μL/h, IV),
L-cysteine (20.8 μmol/kg/h, IV), or L-cysteine ethyl ester (L-CYSee,
20.8 μmol/kg/h, IV). The data are presented as mean ± SEM. There
were nine rats in each group. Between-group ANOVA statistics: MAP:
F2,24 = 28.5, p < 0.00001; HR: F2,24 = 47.8, p < 0.00001; apneas: F2,24 =
37.2, p < 0.00001. *p < 0.05, significant responses from Pre. †p < 0.05,
L-CYSee versus vehicle or L-cysteine.
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(Table 1). Note that we did not pursue L-SERee studies to see
whether it affected the expression of apneic events, and elevations in
MAP and heart rate elicited by the injection of NLX.

The increases in apneic events and elevations in MAP and heart
rate, elicited by the injection of NLX (1.5 mg/kg) in rats that were
receiving morphine (150 mg/kg, SC) and continuous infusion of
vehicle or L-cysteine or L-CYSee are summarized in Figure 2. The
injection of NLX in rats that were receiving the vehicle elicited
substantial increases in the number of apneas and increases in MAP
(sustained hypertension) and in heart rate (HR, tachycardia). These
NLX-precipitated events were similar in magnitude in the rats that
were receiving the infusion of L-cysteine. In contrast, the NLX-
precipitated withdrawal phenomena were markedly reduced in rats
receiving continuous infusion of L-CYSee. Actual values for MAP
and heart rate before and after injection of NLX inmorphine-treated
rats receiving infusions of vehicle, L-cysteine, or L-CYSee are shown
in Supplementary Table S1. Resting MAP and heart rate values
before the injection of NLX were similar in the three groups of rats.

The changes in body temperatures and body weights elicited by
the injection of NLX (1.5 mg/kg) in rats that were receiving
morphine (150 mg/kg, SC) for 36 h, and continuous infusion of
vehicle or L-cysteine or L-CYSee are summarized in Figure 3. The
injection of NLX elicited marked decreases in body temperatures
and body weights that were similar in magnitude in rats receiving
infusion of vehicle or L-cysteine. The NLX-induced responses were
markedly smaller in the rats that were receiving an infusion of
L-CYSee. Actual body temperatures and body weights before and
after injection of NLX in rats receiving morphine for 36 hours with
co-infusions of vehicle, L-cysteine, or L-CYSee are shown in
Supplementary Table S2. Resting body temperature and body
weight values before the injection of NLX were similar in the
three groups of rats. After 36 h of morphine treatment, body
temperatures were elevated by just over 0.5°C in rats receiving
infusions of vehicle or L-cysteine. Body temperature was not
increased in rats receiving L-CYSee. The injection of NLX
elicited substantial decreases in body temperatures and body
weights in the vehicle- or L-cysteine-infusion groups, and much
smaller responses in the rats receiving the infusion of L-CYSee.

L-CYSee reversal of physical dependence on
morphine—48-h studies

The behavioral withdrawal phenomena elicited by the
injection of NLX (1.5 mg/kg, IP) in rats that were receiving
morphine (150 mg/kg, SC) for 48 h plus a continuous infusion of
the vehicle (saline, 20 μL/h, IV) or L-cysteine (20.8 μmol/kg/h,
IV) or L-CYSee (20.8 μmol/kg/h, IV) beginning after 36 h are
shown in Figure 4. The injection of NLX into rats receiving the
vehicle infusion elicited substantial increases in withdrawal
behaviors. These responses were similar in magnitude in rats
receiving infusion of L-cysteine, whereas withdrawal
phenomena (except for sneezing) were dramatically
diminished in rats receiving infusion of L-CYSee for 12 h.
NLX-precipitated withdrawal signs in rats receiving an
infusion of L-SERee were similar to those receiving infusion
of vehicle (Table 1).

The increases in apneic events and elevations in MAP and heart
rate, elicited by the injection of NLX (1.5 mg/kg, IP) in rats receiving
morphine (150 mg/kg, SC) for 48 h and continuous infusion of
vehicle or L-cysteine or L-CYSee beginning at 36 h are shown in
Figure 5. NLX elicited substantial increases in apneas and elevations
in MAP (hypertension) and in heart rate (HR, tachycardia) in rats
receiving infusion of vehicle, and similar responses in rats receiving
infusion of L-cysteine. In contrast, NLX-precipitated withdrawal
phenomena were markedly reduced in rats receiving L-CYSee
infusion. Actual values for MAP and heart rate before and after
the injection of NLX in morphine-treated rats receiving infusion of
vehicle, L-cysteine, or L-CYSee are shown in Supplementary Table
S3. Resting MAP and heart rate values before the injection of NLX
were similar in the three groups.

The changes in body temperatures and body weights elicited by the
injection of NLX (1.5 mg/kg) in rats receivingmorphine (150mg/kg, SC)
and infusion of vehicle or L-cysteine or L-CYSee that began 36 h after
morphine administration and lasted for 12 h are summarized in Figure 3.
The injection ofNLXelicited pronounceddecreases in body temperatures

FIGURE 3
Arithmetic changes in body temperatures (A) and body weights
(B) elicited by a bolus injection of NLX (1.5 mg/kg, IP) in rats treated for
36 h with a subcutaneous depot of morphine (150 mg/kg) or for 48 h
with a subcutaneous depot of morphine (150 mg/kg) with
continuous infusion of vehicle (saline, 20 μL/h, IV) or L-cysteine
(20.8 μmol/kg/h, IV) or L-CYSee (20.8 μmol/kg/h, IV) for 36 h or
beginning after 36 h for 12 h. The data are presented as mean ± SEM.
There were nine rats in each group. Between-group ANOVA statistics:
body temperature: 36 h: F2,24 = 51.4, p < 0.00001; 48 h: F2,24 = 50.1,
p < 0.00001; body weight 36 h: F2,24 = 22.8, <0.00001; 48 h: F2,24 =
18.6, p < 0.00001. *p < 0.05, significant responses from Pre. †p < 0.05,
L-CYSee versus vehicle or L-cysteine.
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and body weights that were similar in magnitude in rats receiving vehicle
or L-cysteine. These withdrawal responses were markedly smaller in rats
receiving L-CYSee. Full details of the body temperatures and body weight
before and after injection ofNLX in thesemorphine-treated rats thatwere

receiving infusions of vehicle, L-cysteine, or L-CYSee are shown in
Supplementary Table S4. Resting body temperature and body weight
values before the injection ofNLXwere similar in the three groups of rats.
After 48 h of morphine treatment, body temperatures were elevated by
just over 0.5°C in rats receiving infusions of vehicle or L-cysteine. The
body temperatures were not elevated in rats receiving the infusion of
L-CYSee. Body weights were similar in all three groups. The injection of
NLX elicited substantial decreases in body temperatures and body
weights in the vehicle- or L-cysteine-infusion groups, and much
smaller responses in the rats receiving infusion of L-CYSee.

Discussion

The first set of major observations of this study was that co-
infusion of the L-thiol ester, L-CYSee, markedly reduced the
expression of multiple withdrawal signs (behavioral,
cardiorespiratory, body weight loss, and hypothermia) elicited by
the injection of the opioid receptor antagonist, NLX, in male
Sprague Dawley rats treated for 36 h with slow-release morphine
emulsion. The behavioral withdrawal signs indicative of the rats
having become physically dependent on morphine, such as jumping,
wet-dog shakes, rearing, fore-paw licking, circling, writhing, and
sneezing (rapid expulsions of air), as well as decreases in body weight
and body temperature, were consistent with previous reports
published using this same slow-release morphine model (Lee and
Fennessy, 1970; Laska and Fennessy, 1976; Laska and Fennessy,
1977; Laska and Fennessy, 1978; Lewis et al., 1988b), and with a wide
variety of other administration protocols used to induce morphine
dependence (Hutchinson et al., 2007; Lopez-Gimenez and Milligan,
2010; Morgan and Christie, 2011; Nielsen and Kreek, 2012). The
increases in MAP and heart rate elicited by NLX are new findings in
our morphine-dependence model, but are in full agreement with
evidence that NLX-precipitated withdrawal is associated with
hypertension and tachycardia in experimental animals

FIGURE 4
Withdrawal behaviors elicited by a bolus injection of NLX (1.5 mg/kg, IP) in rats treated for 48 h with a subcutaneous depot of morphine (150 mg/kg)
along with continuous infusion of vehicle (saline, 20 μL/h, IV) or L-cysteine (20.8 μmol/kg/h, IV) or L-cysteine ethylester (L-CYSee, 20.8 μmol/kg/h, IV)
that began after 36 h of morphine administration. Withdrawal signs: jumps—all four paws off the floor; WDS-wet-dog shakes; rears—rearing on hind legs;
FPL—episodes of fore-paw licking; circles-a 360° rotation; writhes—full-body contortion; sneezes—abrupt expulsion of air. The data are presented
as mean ± SEM. There were nine rats in each group. Between-group ANOVA statistics: jumps: F2,24 = 48.8, p < 0.00001; WDS: F2,24 = 33.9, p < 0.00001;
rears: F2,24 = 38.7, <0.00001; FPL: F2,24 = 42.3, p < 0.00001; circles: F2,24 = 29.4, p < 0.00001; writhes: F2,24 = 34.0, p < 0.00005; sneezes: F2,24 = 0.11, p =
0.89. *p < 0.05, significant responses from Pre. †p < 0.05, L-CYSee versus vehicle or L-cysteine.

FIGURE 5
Incidence of apneas (>1.5 s between breaths) and increases in
mean arterial blood pressure (MAP, mmHg) and heart rate (HR, beats/
min) elicited by a bolus injection of NLX (1.5 mg/kg, IV) in rats treated
for 48 h with a subcutaneous depot of morphine (150 mg/kg)
along with the continuous infusion of vehicle (saline, 20 μL/h, IV),
L-cysteine (20.8 μmol/kg/h, IV), or L-cysteine ethyl ester (L-CYSee,
20.8 μmol/kg/h, IV) that began at 36 h of morphine administration for
12 h. The data are presented as mean ± SEM. There were nine rats in
each group. Between-group ANOVA statistics: MAP: F2,24 = 33.3, p <
0.00001; HR: F2,24 = 41.8, p < 0.00001; apneas: F2,24 = 69.9, p <
0.00001. *p < 0.05, significant responses from Pre. †p < 0.05, L-CYSee
versus vehicle or L-cysteine.
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(Buccafusco, 1983; Buccafusco, 1990; Buccafusco et al., 1984;
Marshall and Buccafusco, 1985; Dixon and Chang, 1988; Chang
and Dixon, 1990; Delle et al., 1990; Baraban et al., 1993) and humans
(Newlin et al., 1992; Purssell et al., 1995; Walsh et al., 2003; Levin
et al., 2019; Balshaw et al., 2021; Isoardi et al., 2022; Lee et al., 2022).
This is due to globalized activation of the sympathetic nervous
system. Finally, our finding that NLX elicited a substantial increase
in apneic events is new to our morphine-dependence model, but also
consistent with findings in rats (Baraban et al., 1993; Baldo, 2022)
and humans (Schwarzer et al., 2015; Zamani et al., 2020; Wilson
et al., 2023). The inability of L-cysteine to modify the NLX-
precipitated withdrawal phenomena certainly suggests that the
efficacy of L-CYSee involves the entry of this cell-penetrant
L-thiol ester (Goto et al., 1983; Hisadome et al., 1986a; Hisadome
et al., 1986b; Hisadome et al., 1988; Servin et al., 1988; Hisadome
et al., 1990; Schöneich et al., 1992; Hobbs et al., 1993; Fukui et al.,
1994; Ding and Demple, 1998; Galanakis et al., 2004; Mosier-Boss
and Lieberman, 2005; Perissinotti et al., 2005; Defonsi Lestard et al.,
2013; Mendoza et al., 2013; Arias et al., 2019; Lewis et al., 2022) into
neurons involved in the acquisition of physical dependence/
addiction on morphine (Laschka et al., 1976a; Laschka et al.,
1976b; Laschka and Herz, 1977; Koob, 1987; Saiepour et al.,
2001; Glass, 2010; Gardner, 2011; Glass, 2011). Moreover, the
inability of L-SERee to prevent the acquisition of physical
dependence on morphine indicates that the sulfur atom is vital
to the ability of L-CYSee to prevent the intracellular processes within
the brain by which morphine induces physical dependence
(Deslandes et al., 2002; Gardner, 2011; Koob and Volkow, 2016;
Volkow et al., 2019; Koob, 2020; Sakloth et al., 2020).

At present, we do not know how L-CYSee prevents the
development of physical dependence on morphine. The
mechanisms by which L-thiol esters exert their biological effects
are likely to be multi-factorial and possibly include 1) direct binding
of L-CYSee to plasma membrane/intracellular proteins, such as ion
channels, receptors, and enzymes that alter the activities of the
proteins by mechanisms not associated with the changes in the
redox status of the proteins; 2) formation of thiol adducts, such as
D-glucose-L-cysteine (Wróbel et al., 1997; Szwergold, 2006; Li et al.,

2015) and mixed disulfides (Wilcken and Gupta, 1979; Lash and
Jones, 1985; Turell, et al., 2013) in the blood; 3) modulation of redox
status (e.g., reduction in L-cystine to L-cysteine), and the activity of
plasma membrane proteins, such as Kv1.2 K+-channels (Baronas
et al., 2017), and after entry into cells, redox modulation of
functional intracellular proteins (Bogeski et al., 2011; Bogeski and
Niemeyer, 2014; O-Uchi et al., 2014; Gamper and Ooi, 2015; Gao
et al., 2017; Garcia et al., 2018); 4) formation of S-thiolated
proteins, such as S-cysteinylated, S-cysteinylglycinylated, and
S-glutathionylated proteins, in plasma membranes of cells
(Winkler et al., 2007; Rossi et al., 2009; Auclair et al., 2013;
Belcastro et al., 2017; Ghezzi and Chan, 2017; Bonifácio et al.,
2021); 5) conversion of L-CYSee to L-cysteine by membrane-
associated esterases (Butterworth et al., 1993; Nishida et al.,
1996), which then enters into multiple metabolic pathways
including those that generate hydrogen sulfide via the sequential
actions of L-cysteine aminotransferase and cystathionine γ-lyase in
peripheral and central tissues (Kimura, 2014; Kimura, 2017;
Bełtowski, 2019), including the carotid bodies (Prabhakar, 2012);
6) conversion of L-thiol esters to cysteine sulfenic, sulfinic, and
sulfonic via cysteine dioxygenase (Yamaguchi and Hosokawa, 1987;
Joseph and Maroney, 2007; Stipanuk et al., 2009; Stipanuk et al.,
2011); and 7) formation of S-nitroso-L-cysteine, an endogenous
S-nitrosothiol (Myers et al., 1990; Bates et al., 1991; Seckler et al.,
2020), with many substantial roles in intracellular signaling cascades
(Lipton et al., 1993; Foster et al., 2009; Seth and Stamler, 2011;
Stomberski et al., 2019; Gaston et al., 2020), including those
controlling the cardiorespiratory function (Davisson et al., 1996;
Davisson et al., 1997; Ohta et al., 1997; Lipton et al., 2001; Gaston
et al., 2006; Lewis et al., 2006; Gaston et al., 2020) and those involved
in the attenuation of opioid induced respiratory depression (OIRD)
(Getsy et al., 2022a; Getsy et al., 2022b). Any or all of these
mechanisms (and possibly those not mentioned) may interact
with signaling pathways involved in the acquisition of physical
dependence on opioids, such as morphine, and the expression of
the NLX-precipitated withdrawal syndrome, including those
involving N-methyl D-aspartate (NMDA) glutamatergic receptors
(Buccafusco et al., 1995; Herman et al., 1995; Rasmussen, 1995;

TABLE 1 Naloxone-precipitated withdrawal signs in morphine-treated rats receiving continuous infusion of vehicle or L-serine ethyl ester for 36 h (prevention) or
continuous infusion of vehicle or L-serine ethyl ester that began after 36 h of morphine administration and lasted for 12 h (reversal).

Prevention of dependence 36 h morphine Reversal of dependence 48 h morphine

Vehicle L-SERee Vehicle L-SERee

Number of rats 9 9 9 9

Body weights (g) 335 ± 2 334 ± 1 335 ± 1 334 ± 2

Jumps 11.8 ± 1.7 12.1 ± 1.4 17.4 ± 1.6 20.1 ± 2.1

Full-body wet-dog shakes 17.0 ± 2.0 21.7 ± 2.7 27.7 ± 2.9 34.3 ± 3.2

Rearing behaviors 16.8 ± 2.5 18.0 ± 1.8 22.3 ± 2.4 25.4 ± 1.7

Fore-paw licking 14.2 ± 2.1 16.4 ± 1.8 21.1 ± 1.9 26.2 ± 2.6

360° circling behavior 14.3 ± 1.9 17.4 ± 2.1 20.6 ± 2.7 23.1 ± 2.3

Full-body writhes 13.9 ± 2.2 18.3 ± 2.4 19.9 ± 2.1 23.4 ± 2.3

Sneezes 8.9 ± 1.4 10.4 ± 1.5 14.3 ± 1.5 18.3 ± 2.1

L-SERee, L-serine ethyl ester. The data are presented as mean ± SEM. There were no between-group differences in body weights or withdrawal signs (p > 0.05, for all comparisons).
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Noda and Nabeshima, 2004; Glass, 2011; Fluyau et al., 2020),
muscarinic receptors (Marshall and Buccafusco, 1987; Holland
et al., 1993), corticotropin-releasing factor (CRF) receptor (CRF1)
(García-Carmona et al., 2015), tachykinin receptors (Michaud and
Couture, 2003), voltage-gated Ca2+-channels (Tokuyama et al., 1995;
Dogrul et al., 2002; Esmaeili-Mahani et al., 2008; Alboghobeish et al.,
2019), adenylyl cyclase superactivation and opioid receptor
phosphorylation (Avido-Reiss et al., 1996; Avido-Reiss et al.,
1997; Wang et al., 1999; Eckhardt et al., 2000), oxidative stress
(Xu et al., 2006; Mori et al., 2007; Abdel-Zaher et al., 2013; Mansouri
et al., 2020;Ward et al., 2020; Houshmand et al., 2021), and the nitric
oxide-cGMP signaling cascade (Adams et al., 1993; Cappendijk
et al., 1993; Majeed et al., 1994; Vaupel et al., 1995a; Buccafusco
et al., 1995; Vaupel et al., 1995b; Herman et al., 1995; Leza et al.,
1995; 1996; London et al., 1995; Dambisya and Lee, 1996; Bhatt and
Kumar, 2015; Tsakova et al., 2015; Sackner et al., 2019; Gledhill and
Babey, 2021). Since L-CYSee blunted the expression of all NLX-
precipitated behavioral (except for sneezing), physical (body weight
loss and hypothermia), and cardiorespiratory (hypertension,
tachycardia, and incidence of apneas) phenomena, it is tempting
to assume that L-CYSee interrupts fundamental intracellular
processes that are essential for the development of physical
dependence on morphine.

The second set of novel findings was that the introduction of
L-CYSee infusion 36 h into the morphine administration period
appeared to reverse the established physical dependence on the
opioid, as assessed at 48 h (i.e., within 12 h of giving continuous
infusion of L-CYSee). Specifically, NLX-precipitated behavioral
phenomena (except for sneezing), hypertension, tachycardia,
apneas, hypothermia, and body weight loss were markedly fewer
in the rats that had received L-CYSee for 12 h. Again, the lack of
effect of L-cysteine and L-SERee suggests that the intracellular
delivery of L-CYSee and its sulfur atom (and associated thiol
chemistry) is essential to the ability of the L-thiol ester to reverse
the established physical dependence on morphine. Again, the
mechanism of action for how L-CYSee reverses physical
dependence on morphine is not known, but any of the
mechanisms discussed in the previous paragraph, including its
potent antioxidant properties, may be involved. The well-known
therapeutics and bioactive compounds that reverse established
physical dependence include: L-histidine and certain histamine
receptor sub-type agonists (Wong and Roberts, 1976), such as
melatonin (Raghavendra and Kulkarni SK, 1999; Raghavendra
and Kulkarni SK, 2000); the antioxidant, quercetin (Singh et al.,
2002; Naidu et al., 2003); the serotonin-reuptake inhibitor,
fluoxetine (Singh et al., 2003); the nitric oxide synthase inhibitor,
L-NG-nitroarginine methyl ester (Naidu et al., 2003; Sing et al.,
2003); inhibitors of Ca2+/calmodulin-dependent protein kinase II
(Wang et al., 2003; Tang et al., 2006); the β2-AR antagonist,
butoxamine (Liang et al., 2007); adrenomedullin receptor
antagonists (Wang et al., 2011); the antipsychotic (dopamine
D2 receptor antagonist), haloperidol (Yang et al., 2011); and
positive allosteric modulators of AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid) glutamatergic receptors (Hu
et al., 2018). The mechanism(s) of action for how L-CYSee
reverses established physical dependence on morphine is of great
clinical relevance, and opens the way for future studies on this and
other bioactive L,D-thiol esters and related compounds (Baby et al.,

2021; Baby et al., 2021; Gaston et al., 2021; Jenkins et al., 2021; Getsy
et al., 2022a; Getsy et al., 2022b; Getsy et al., 2022c; Getsy et al.,
2022d; Getsy et al., 2022e; Getsy et al., 2022f; Lewis et al., 2022) with
respect to their ability to reverse physical dependence on morphine
and other opioids, including heroin and fentanyl.

Many questions remain regarding the potential use of L-thiol
esters as therapeutics for key clinical problems associated with opioid
analgesia in humans, including: 1) if L-CYSee attenuates/blocks self-
administration of opioids in OUD patients, adding it to prescription
opioids may result in lower drug abuse or addiction potential; 2) if
L-CYSee attenuates or blocks development of physical dependence on
opioids, then adding it to prescription opioids will minimize and may
potentially eliminate physical dependence in individuals who receive
opioids for a long-term basis, such as everyday, all day, for weeks/
months; 3) if L-CYSee attenuates/blocks tachyphylaxis to opioid
analgesia or hyperalgesia caused by opioids, then the addition of
L-CYSee to prescription opioids will maintain their analgesic efficacy
over long periods of time, eliminating the development of tolerance,
need for escalating doses, and potential complications of hyperalgesia;
4) if L-CYSee has several of the advantageous effects observed in
rodents, then adding it to opioid analgesics would multiply the
beneficial aspects of the opioids; 5) if L-CYSee prevents the
development of physical dependence, and specifically, if it is
introduced to an individual with physical dependence and
attenuates/blocks opioid withdrawal, it could be used as an
outpatient/inpatient medication to manage opioid withdrawal in
those who are iatrogenically physically dependent (long-term
opioid prescriptions) or those who are addicted and physically
dependent; 6) if L-CYSee attenuates/blocks euphoria and/or the
development of physiological dependence to opioids, then it would
be a good medication for medication-assisted treatment (MAT) and a
potentially good drug for harm reduction interventions in people with
OUD who are not interested in the psychosocial aspects of counseling
and treatment; 7) as some patients with a history of OUD who are
currently sober need opioids for the treatment of acute or chronic pain
syndromes, this L-thiol ester, if it attenuates or blocks euphoria and
physical dependence, could be added to opioid analgesics when given
to people with a history of OUD, thereby eliminating the risk of opioid
analgesic-precipitating euphoria, drug cravings, and their markedly
increased risk of relapse; 8) if L-CYSee attenuates/blocks euphoria
from chemically mediated dopamine surges within the ventral
tegmentum, nucleus accumbens, or medial prefrontal cortex, where
brain rewarding euphoria-producing dopamine surge happens from
all drugs of abuse/addiction (Deslandes et al., 2002; Gardner, 2011;
Koob and Volkow, 2016; Volkow et al., 2019; Koob, 2020; Sakloth
et al., 2020), then it will be useful in the treatment of OUD and other
SUDs; and 9) if L-CYSee attenuates/blocks euphoria from chemically
mediated dopamine surges, it could be combined with or added to all
controlled prescription drugs, resulting in an abuse-resistant or non-
abusable form of prescribed opioids, benzodiazepines, and
psychostimulants. In relation to point (1), we recently showed that
co-administration of the D-isomer, D-cysteine ethyl ester, with
fentanyl prevents the development of fentanyl-induced conditioned
place preference in both male and female rats (Knauss et al., 2023).
Thus, L,D-thiol esters likely reduce the rewarding properties of
opioids and reduce their addictive potential.

A final caveat to translating these findings to humans lies in the
genetic variation of humans (e.g., 5–6million SNPs between any two
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individuals) in comparison to the total variation found in the
outbred Sprague Dawley rats tested here (Gileta et al., 2022).
This lack of genetic variation in preclinical models is one
explanation for the inability of many findings to translate across
species (Garner, 2014; Zuberi and Lutz, 2016). The
pharmacogenetics of opioids have been studied, and numerous
pharmacokinetic molecules, such as COMT, OPRM1, CYP2D6,
and ABCB1, have been identified that are useful in clinical
application (Owusu Obeng et al., 2017). In animal models, opioid
withdrawal specifically has been studied using the C57BL/6J x
DBA2 recombinant inbred lines, where a locus on chromosome
16 was identified as affecting the locomotor behavior of naloxone-
precipitated withdrawal (Philip et al., 2010). In another population,
129 × C57BL/6 cross-identified loci on chromosomes 1, 5, and
10 were involved in withdrawal jumping frequencies (Kest et al.,
2004). Testing the efficacy of drugs using a population of outbred
mice containing approximately 45 million segregating SNPs, such as
the diversity outbred mice (Saul et al., 2019), will increase the
likelihood that the drug will translate within species before
traversing across species.

Study limitations

A limitation of the present study is that we have not examined the
efficacy of lower doses of L-CYSee to prevent or reverse morphine-
induced physical dependence. Finding out the lower limit is key to
minimizing potential adverse biological effects that were not
monitored in the present study. In particular, we have not
determined whether the co-administration of L-CYSee alters the
analgesic actions of morphine, although we have reported that
L-CYSee (Lewis et al., 2022), L-cysteine methyl ester (Getsy et al.,
2022a), and other thiolesters and related compounds (Baby et al.,
2021; Baby et al., 2021; Gaston et al., 2021; Jenkins et al., 2021; Getsy
et al., 2022b; Getsy et al., 2022c; Getsy et al., 2022d; Getsy et al., 2022e;
Getsy et al., 2022f) prevent and/or reverse the actions ofmorphine and
fentanyl on ventilatory parameters, arterial blood–gas chemistry, and
alveolar-arterial gradient in freely-moving rats without compromising
opioid-induced analgesia or sedation. Synthetic opioids, especially
fentanyl, are playing a major and ever-increasing role in the current
opioid crisis (Arendt, 2021; Deo et al., (2021), and future studies must
determine whether L-CYSee can overcome and reverse physical
dependence on fentanyl. A concern about the study protocol
regarding the ability of L-CYSee to reverse established morphine
dependence, was the short time (12 h) between the surgery to initiate
the intravenous infusions (implantation of minipumps under
isoflurane anesthesia), and the administration of NLX to
precipitate withdrawal. Despite the robust nature of the NLX-
induced responses in rats that received intravenous infusions of
vehicle, L-cysteine, or L-SERee for 12 h, it is possible that the
lingering effects of anesthesia affected the expression of the
withdrawal phenomena. Another important limitation of our study
is the lack of data about the efficacy of L-CYSee in preventing/
reversing physical dependence in female rats. This is especially
important because 1) opioids exert qualitatively and quantitatively
different pharmacological (e.g., ventilation, analgesia) responses in
females compared to males (Dahan et al., 1998; Sarton et al., 1998;
Bodnar and Kest, 2010); 2) there are many sex-specific differences in

opioid receptor signaling (Bryant et al., 2006; Hosseini et al., 2011); 3)
pronounced sex differences in development of opioid hyperalgesia,
tolerance and withdrawal (Bodnar and Kest, 2010); and 4) several
major behavioral sex differences in the expression and treatment of
OUDs (Huhn et al., 2019; Davis et al., 2021; Knouse and Briand,
2021). The lack of understanding about the molecular mechanisms by
which L-CYSee affects the acquisition/reversal of morphine
dependence is a limitation that needs to be addressed. In addition
to potential direct interactions with yet to be defined functional
proteins, potential mechanisms of action of L-CYSee may involve
1) direct binding to putative L,D-cysteine-binding protein, such as
myristoylated alanine-rich C-kinase substrate (Semenza et al., 2021),
2) interruption of μ-OR-β-arrestin-coupled cell signaling processes to
spare the antinociceptive G-protein-dependent actions of morphine
(Schmid et al., 2017; Grim et al., 2020), and/or 3) potential conversion
of L-CYSee to S-nitroso-L-CYSee or S-nitroso-L-cysteine by
S-nitrosylation of the sulfur atom in L-thiol esters via processes
requiring nitric oxide synthase (Perissinotti et al., 2005; Hess and
Stamler, 2012; Stomberski et al., 2019; Seckler et al., 2020; Seckler et al.,
2022), which may act via an intracellular penetrating mechanism(s)
(Clancy et al., 2001). To test the possibility that L-CYSee elicits the
production of S-nitrosylated versions of the L-thiol ester, we are
determining whether intravenous injections of L-CYSee increase the
production of S-nitrosylated species in the blood, peripheral tissues,
and brain via the use of an ultra-sensitive capacitive sensor (Seckler
et al., 2017), and whether such injections of L-CYSee increase the
expression of NADPH diaphorase in the brain and peripheral
structures, on the basis that NADPH diaphorase is used to visualize
free S-nitrosothiols and S-nitrosylated proteins in aldehyde-treated
tissue (Seckler et al., 2020). S-nitrosothiols, such as S-nitroso-L-cysteine
and S-nitroso-L-glutathione, play important roles in ventilatory control
processes in the brainstem, circulating red blood cells, and peripheral
structures, such as the carotid bodies (Lipton et al., 2001; Gaston et al.,
2006; Palmer et al., 2013; Gaston et al., 2014; Palmer et al., 2015; Gaston
et al., 2020). The possibility that the conversion of L-CYSee to
S-nitroso-L-CYSee is responsible for the effects observed in this
study would add to our understanding of the pharmacology of
L–S-nitrosothiols (Davisson et al., 1996; Lewis et al., 1996; Travis
et al., 1996; Davisson et al., 1997; Travis et al., 1997; Lewis et al., 2005;
Gaston et al., 2006; Lewis et al., 2006; Gaston et al., 2020). Another
limitation that certainly needs addressing is our lack of information
about the blood and tissue distribution resulting from the infusion of
L-CYSee in the presence or absence of morphine, although L-CYSee
can be readily detected in plasma, and peripheral and central tissues
upon acute administration to naïve rats (Servin et al., 1998). We intend
to perform pharmacokinetics analyses of L-CYSee distribution in brain
regions involved in the acquisition of opioid dependence, such as the
medial prefrontal cortex (Deslandes et al., 2002; Gardner, 2011; Koob
and Volkow, 2016; Volkow et al., 2019; Koob, 2020; Sakloth et al.,
2020), using our liquid chromatography–mass spectrometry
methodology (Altawallbeh et al., 2019).

Conclusion

This study demonstrates that systemic infusion of the membrane-
permeable L-thiol ester, L-CYSee, prevents the development of
physical dependence on morphine in male Sprague Dawley rats by
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mechanisms dependent on thiol biochemistry. In addition, this study
demonstrates that L-CYSee reverses established dependence on
morphine in rats also by thiol-dependent processes. Delineating the
exact thiol-dependent signaling pathways will add greatly to our
understanding of the processes by which opioids induce
dependence, and how the bioactive L-thiol esters exert their effects.
Our study was spurred by the ground-breaking work of Trivedi, Deth,
and others, which added greatly to our understanding of the
mechanisms that opioids cause physical dependence and
psychological addiction (Trivedi et al., 2014; Trivedi and Deth, 2015;
Trivedi et al., 2015). Their evidence that morphine may cause
dependence/addiction by blocking the entry of L-cysteine into
neurons inhibiting the EAA3/EAAC1 transporters (Trivedi et al.,
2014) prompted our studies with the membrane-permeable, L-thiol
ester, L-CYSee. The findings that L-CYSee markedly reduced the
majority of NLX-precipitated withdrawal phenomena suggests that
decreased levels of L-cysteine entry into cells plays a key role in
establishing physical dependence on morphine. The lone withdrawal
phenomenon that was not ameliorated by L-CYSee was sneezing, a key
feature of the opioid withdrawal response in humans (Ostrea et al.,
1975; Specker et al., 1998; Gaalema et al., 2012; Lofwall et al., 2013) and
experimental animals (Hendrie, 1985; Liu et al., 2007; Singh et al., 2015).
We are currently trying to understand the current state of knowledge
about the neural mechanisms responsible for sneezing (Batsel and
Lines, 1975; Undem et al., 2000; Li et al., 2021; Ramirez et al., 2022) to
see if that can give insights into the signaling pathways that are/are not
involved in the actions of L-CYSee. The present findings add to our
knowledge about the efficacy of L,D-thiol esters, such as L-CYSee (Lewis
et al., 2022) L-GSHee (Jenkins et al., 2021), D-CYSee (Getsy et al., 2022c;
Getsy et al., 2022d), D-cystine di(m)ethyl ester (Gaston et al., 2021), and
the free radical-superoxide anion scavenger, Tempol (Baby et al., 2021a;
Baby et al., 2021b), on the pharmacological actions of opioids.
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