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Fibromyalgia is associated with
hypersensitivity but not with
abnormal pain modulation:
evidence from QST trials and
spinal fMRI
Roland Staud1*, Melyssa M. Godfrey1 and Patrick W. Stroman2

1Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States,
2Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada

Widespread pain and hyperalgesia are characteristics of chronic musculoskeletal
pain conditions, including fibromyalgia syndrome (FM). Despite mixed evidence,
there is increasing consensus that these characteristics depend on abnormal
pain augmentation and dysfunctional pain inhibition. Our recent investigations
of pain modulation with individually adjusted nociceptive stimuli have confirmed
the mechanical and thermal hyperalgesia of FM patients but failed to detect
abnormalities of pain summation or descending pain inhibition. Furthermore,
our functional magnetic resonance imaging evaluations of spinal and brainstem
pain processing during application of sensitivity-adjusted heat stimuli
demonstrated similar temporal patterns of spinal cord activation in FM and HC
participants. However, detailed modeling of brainstem activation showed that
BOLD activity during “pain summation” was increased in FM subjects, suggesting
differences in brain stem modulation of nociceptive stimuli compared to HC.
Whereas these differences in brain stem activation are likely related to the
hypersensitivity of FM patients, the overall central pain modulation of FM
showed no significant abnormalities. These findings suggest that FM patients are
hyperalgesic but modulate nociceptive input as effectively as HC.
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Introduction

Pain was defined by the International Association for the Study of Pain (IASP) as an

unpleasant sensory and emotional experience associated with, or resembling that

associated with, actual or potential tissue damage (1). Nociceptive pain depends on

activation of nociceptors in peripheral tissues to direct individuals’ attention on

impending injury and to elicit adaptive behaviors. Pain can be divided into acute pain,

which is usually due to a recent or pending injury, and chronic pain which lasts for more

than 3 months (2). Pain was labelled as chronic primary pain by the International

Classification of Diseases (ICD-11) (3) when pain persists for more than 3 months and is

associated with significant emotional distress and/or functional disability, and the pain is

not better accounted for by another condition. Examples of chronic primary pain include

chronic primary headache, complex regional pain syndrome (CRPS), chronic orofacial

pain, chronic primary visceral pain, chronic widespread pain, and fibromyalgia (FM).

These chronic pain conditions also fulfill the nociplastic pain classification criteria

proposed by the IASP (4).
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Nociplastic pain

The peripheral and central nervous system constantly adapts to

intrinsic and extrinsic challenges. This neuronal plasticity can

result in increased or reduced responsiveness of neurons to

peripheral nociceptive input. Strong or prolonged nociceptive

input can lead to peripheral and/or central sensitization which is

characterized by increased responding of nociceptive neurons in

the peripheral and central nervous system (CNS), respectively (4).

In 2021, the International Association for the Study of

Pain created the new term “nociplastic pain” for chronic

musculoskeletal pain that appears to be out of proportion to

detectable tissue injuries. Patients with nociplastic pain often

report insomnia, excessive fatigue, and cognitive abnormalities, as

well as hypersensitivity to sound, light, taste, and odor (5). Some

of the most prevalent nociplastic pain conditions include tension-

type headache, chronic pelvic pain, chronic low back pain and

FM. Although the exact mechanisms of nociplastic pain is unclear

many investigators consider central pain processing abnormalities

including abnormal pain modulation, as relevant (6). Furthermore,

numerous findings of brain abnormalities have been associated

with nociplastic pain, including changes in the grey matter volume

and altered functional connectivity of brain regions involved

in pain and sensory processing (7). Increasing evidence also

suggests that neuroinflammation, characterized by glial activation,

production of neurotransmitters, and proinflammatory cytokines,

may also play an important role for nociplastic pain (8–10).

Although the term “nociplastic” pain was meant to describe

complex chronic pain conditions like FM, irritable bowel

syndrome, temporomandibular disorder, and chronic back pain

(11), it is controversial. Neuroplasticity is not a novel concept as

both peripheral and central sensitization depend on neuroplasticity

associated with multiple translational and transcriptional changes

of neurons in the peripheral and central nervous system (CNS) (4).

Whereas the evidence for peripheral and central sensitization is

well established in inflammatory or neuropathic pain conditions

the mechanisms of nociplastic pain are not as well understood. We

have recently shown that the pain of FM patients (or nociplastic

pain) is due to hypersensitivity of central nervous system pathways

and not to augmented pain processing in the dorsal horn of the

spinal cord or brain as previously thought (12, 13).
Pain modulation during acute or chronic
musculoskeletal pain

Peripheral sensitization
Although not considered a major contributor to chronic pain,

peripheral sensitization can frequently be detected in patients with

chronic musculoskeletal pain syndromes (14, 15) After repeated or

intense noxious stimuli, sensitization of peripheral afferents can

occur, resulting in decreased activation thresholds and amplified

responses to subsequent inputs (16–18). Without continuing

nociceptive input, increased pain sensitivity usually normalizes

over time, making this phenomenon sometimes long lasting but
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reversible. Besides increased excitability of primary sensory

neurons, increased expression of ion channels on nerve endings

and axons can occur, including potassium channels (19), voltage-

gated sodium (Nav) channels (20), voltage-gated calcium (Cav)

channels (21), acid-sensing ion channels (ASICs) (22). and

transient receptor potential (TRP) channels (23, 24).

Central sensitization
Central sensitization occurs mostly at the dorsal horn neuron

level and is usually associated with acute tissue injury. It is a

complex neurophysiological process that has been thought to be

responsible for the increased pain sensitivity of many patients with

chronic pain syndromes, including FM. It involves changes in the

function and connectivity of dorsal horn neurons of the spinal

cord, which play a critical role in processing and transmitting

painful signals to the brain (25). Central sensitization involves an

increase in the excitability of nociceptive neurons and this

heightened excitability can be attributed to various mechanisms,

including changes in the ion channels, particularly after activation

of N-Methyl-D-Aspartate (NMDA) receptors. Central sensitization

can also lead to the expansion of the receptive fields of dorsal horn

neurons. Normally, these neurons respond to a specific area of the

body, but in central sensitization, their responses can spread to

adjacent or even distant regions. This can result in pain spreading

beyond the initial injury site.

The lack of consistent evidence for a major role of peripheral

sensitization in chronic musculoskeletal pain syndromes has

focused increased attention on central pain amplification. Central

sensitization has provided a mechanistic explanation for some of the

temporal, spatial, and sensitivity changes in acute and chronic pain

syndromes like FM and has focused attention on the important

contribution of the central nervous system to the increased pain

sensitivity of chronic pain patients. Whereas peripheral sensitization

is characterized by reduced pain thresholds and hypersensitivity of

local nociceptors (26–28), central sensitization causes pain

hypersensitivity in areas outside of tissue injury and requires little

peripheral input to maintain high pain sensitivity even after tissue

healing has occurred. Although central sensitization clearly plays an

important role for pain reported after tissue injury, its particular role

in many patients with “nociplastic” pain syndromes, like FM is

unclear.

Animal experiments have identified two major forms of pain

sensitivity augmentation: central sensitization (CS) which occurs

primarily in the spinal cord and long-term potentiation (LTP)

which affects preferentially brain regions. CS is frequently present

after tissue injury and LTP is a critical process for memory

formation but also for chronic pain. CS comprises augmented

responses of dorsal horn neurons after electrical nerve stimulation

associated with long-lasting aftersensations (14). Its neural

correlate in human subjects is “windup” which is associated with

altered functional connectivity of regions involved in pain and

sensory processing (7, 29). Spinal modulation of nociceptive input

occurs in the dorsal horn of the spinal cord where incoming

signals are transmitted to interneurons in Rexed laminae before

they are projected to the brain. Central sensitivity changes can

involve excitatory neurotransmitter release comprising glutamate
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and aspartate, or inhibitory neurotransmitters including GABA and

glycine (30).
Long-term potentiation

The central nervous system is a complex network and its

functioning depends on the excitability of individual neurons but

the strength of their synaptic connections can vary (31). Such

neuronal plasticity is crucial for effective nervous system

functioning including memory formation (32) and chronic pain

(33). Some forms of neuronal plasticity are due to long-term

potentiation (LTP) which plays not only an important role in

memory consolidation (34), but also for pain (35). Usually LTP

of spinal neurons occurs during high frequency electrical

stimulation (33, 36), but can also be induced by tissue

inflammation (37), and peripheral nerve injury (38).
Descending pain modulation

The dorsal horn of the spinal cord comprises 2nd order

neurons which project to the brainstem and brain. Descending

modulation from the midbrain periaqueductal gray and the

rostral ventromedial medulla (RVM) affects the activity of these

neurons as either pain inhibitory or facilitatory (39) through

release of multiple neurotransmitters including serotonin,

noradrenaline, and dopamine (40). Abnormalities of descending

pain modulation, including pain facilitation and pain inhibition

can be evaluated by quantitative sensory tests like temporal

summation of pain (TSP) (41, 42) and conditioned pain

modulation (CPM), respectively (43).

It is well known that cognitions and feelings can influence pain

perception (44). Previous research has demonstrated that

distractions can reduce pain intensity, whereas attention to a

nociceptive stimulus will increase the pain perceived (45).

Furthermore, interventions that elicit positive affect may result in

reduced pain perception, whereas the presence of negative affect

may increase pain intensity (46). Previous findings seemed to

indicate that descending pain modulation is dysfunctional in

chronic pain conditions such as FM, temporomandibular disorder,

irritable bowel syndrome and chronic headaches (47). Therefore,

dysfunctional pain modulation seemed to contribute to the

development and maintenance of chronic pain syndromes (48).

Descending pain control from the brain stem affects the entire

body (49) and can dramatically increase the pain sensitivity of

individuals with chronic pain (50, 51). However, not all studies of

chronic pain patients reported abnormal descending pain

modulation. Normal pain modulation was reported in some

studies of patients with chronic low back pain (52, 53).
Neuro-inflammation

Glial cells are critical for structure and function of the brain

(54). Proinflammatory cytokine signaling between glial cells
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provides protection from infection and plays an important role

in tissue repair and recovery (55). Glia can be activated by many

cytokines, chemokines, proteases, and growth factors, that not

only play an important role for chronic pain (56) but are also

important for memory (57) and pain modulation (58). For

example, cytokine inhibition has been found to improve

osteoarthritis pain (59), low back pain (60), and rheumatoid

arthritis pain (61). Therefore, excessive glial activation

(neuroinflammation) may play an important role in chronic pain

states and decreasing neuroinflammation may be a promising

treatment target for patients with such conditions (62). Previous

positron emission tomography (PET) studies of chronic pain

patients reported widespread cortical enhancements consistent

with neuroinflammation. For example, when the [11C]PBR28

PET ligand which binds to the translocator protein (TSPO) on

activated microglia or astrocytes (63), was used in FM patients

neuroinflammation could be observed in M1, S1, precuneus,

superior parietal lobe, insula, and thalamus (64, 65). In another

study of FM patients, increased TSPO binding could be

demonstrated in the medial and lateral areas of the frontal and

parietal lobe (66) and fatigue ratings of FM patients correlated

with [11C]PBR28 binding in the anterior and posterior middle

cingulate cortices.
Nociplastic pain in FM and other chronic
musculoskeletal pain syndromes

Pain is a multifactorial experience associated with memory as

well as psycho-social factors (67, 68). While acute pain will focus

the individual on the noxious stimuli thus preventing further

tissue damage (69), chronic pain is considered “maladaptive” and

almost always associated with neuronal plasticity. In chronic

musculoskeletal pain conditions, like FM or low back pain,

painful sensations are considered nociplastic and strongly

associated with hyperalgesia/allodynia (11).

Other views of chronic (nociplastic) pain are centered on stress

evoked, sympathetically maintained, neuropathic pain which

depends on dorsal root ganglia abnormalities as critical for its

pathogenesis (70). This hypothesis is based on evidence that

nociplastic pain has some neuropathic features, including

paresthesias and allodynia. In some studies, nearly half of FM

patients demonstrated evidence of peripheral nerve damage

including small nerve fiber pathology (71). However, this

hypothesis fails to explain the chronic pain mechanisms in the

majority of FM patients.
Pain facilitation and inhibition are not
abnormal in FM patients

FM is a complex syndrome that is comprised of widespread

pain, fatigue, insomnia and cognitive difficulties. Its pathogenesis

as a central nervous system (CNS) disorder is widely accepted

and patients with this syndrome demonstrate hypersensitivity to

painful and non-painful stimuli. The symptoms of FM are
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FIGURE 1

Testing of pain facilitation of HC and FM participants. All subjects
received sensitivity-adjusted Ramp&Hold (RH) stimuli at the hand. Pain
ratings of the second phase of RH (dotted lines) depend on each
individual’s pain summation ability. Although pain ratings of FM
participant and HC increase significantly during RH (p < 0.001), their
rate of temporal summation in phase 2 was not significantly different
from each other (p > 0.05). (RH, ramp & hold; s, seconds; HC, healthy
controls; FM, fibromyalgia) [Reproduced with permission (12)].
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unspecific and can be found in many other chronic pain disorders

including migraine, temporo-mandibular disorder (TMD) and

chronic low back pain (72). Enhanced pain facilitation, together

with other factors like negative affect, may also help explain the

known discordance between the severity of tissue abnormalities

and clinical pain associated with FM, OA, and low back pain

(73, 74). Deficient descending pain inhibition (Conditioned Pain

Modulation: CPM) has been reported in FM (75) but also in

other chronic pain conditions, like IBS (76), migraine (47), and

low back pain (77). However, high variability of the CPM

efficacy of chronic pain patients was noted in previous studies

which may be related to the experimental conditions used,

including the application of non-standardized conditioning (78)

and test (79) stimuli.

Although dysfunctional pain modulation has been proposed as

a relevant pathogenetic mechanism of FM, this view has recently

become controversial. Therefore, we examined pain modulation

of FM patients in several studies, using only experimental stimuli

that were adjusted to each participant’s pain sensitivity thus

eliminating ceiling and floor effects associated with non-

standardized stimuli (12, 13, 80).

One of these studies (participants n = 51) (12) examined the

pain inhibitory and facilitatory capacity of FM patients

(Figures 1, 2), using such standardized pain stimuli (12). This

study demonstrated effective pain inhibition in 87% of FM

patients similar to HC. Only 13% of participants failed to show

pain reductions or demonstrated pain facilitation. During testing

of pain facilitation, FM patients showed normal TSP similar to

HC (p > 0.05). These results differ from the findings of some

other FM studies of pain modulation (75, 81). One reason for

the difference of our results in regards to several previous FM

studies (52, 82) may be that we applied only test stimuli that

were carefully adjusted to each participant’s pain sensitivity, thus

avoiding ceiling and floor effects. These results provided strong

evidence that FM patients can effectively modulate experimental

pain similar to HC.
FIGURE 2

Testing of pain inhibition of FM participants and HC using heat
Ramp&Hold (RH) applications to one hand (test stimuli) during
immersion of the other hand in a cold water bath (conditioning
stimulus). Time course of Ramp&Hold (RH) ratings of FM and HC
during baseline (solid lines) and CPM (dotted lines). During baseline
(solid lines), the RH ratings of both groups increased significantly (p <
0.001) but this increase was not different for HC and FM participants
(p > 0.05). During CPM (dotted lines), the RH ratings increased
significantly less than during baseline testing in HC and FM subjects
(p < 0.03), but there was no significant difference of CPM efficiency
between groups noted (p > 0.05). (FM, fibromyalgia; HC, healthy
control; CPM, conditioned pain modulation; RH, ramp & hold; BL,
baseline; s, second) [Reproduced with permission (12)].
Pain hypersensitivity is a key feature of FM

Over the last decade, our understanding of chronic pain has

significantly advanced thanks to behavioral and brain imaging

studies (83). Some trials suggested that FM is associated with

abnormal resting-state functional connectivity (84) and decreased

gray matter of pain processing brain regions (85). Our

understanding of pain advanced significantly with the discovery

of several brainstem regions that can control pain-related activity

in the spinal cord (SC) (50, 83). Several brain and brain stem

regions can modulate the activity of dorsal horn neurons through

descending modulation, resulting in either pain inhibition or

facilitation (86). These areas comprise the periaqueductal gray

matter (PAG) and the rostral ventromedial medulla (RVM),

which connect with dorsal horn neurons of the SC (87). Because

our understanding of pain modulatory processes, particularly in

the brainstem and spinal cord, was mostly derived from animal

studies (88, 89), we examined the pain modulation of chronic
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pain patients using functional magnetic resonance imaging of the

spinal cord. Our studies (participants n = 59) showed that FM

patients not only failed to activate some regions of the

descending pain modulatory system but also demonstrated lower

connectivity to other pain modulatory areas including the

amygdala, hippocampus, and brainstem (80, 90). However, when

we tested spinal cord activity of FM patients during the

application of standardized experimental pain stimuli, the spinal

cord BOLD responses of FM patients were similar to those of

HC, indicating that pain related spinal cord activity of FM

patients was similar to HC (83, 91). Statistical modeling of pain

related CNS activation demonstrated different connectivity of FM
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patients to/from the PAG compared to HC and was associated with

participants’ pain ratings. Thus, despite demonstrating similar

efficacy of pain facilitation and inhibition compared to HC, FM

participants showed some differences of descending pain

regulation via the PAG-RVM-spinal cord pathway. At least some

of these differences may be associated with the hyperalgesia of

FM participants.
Caveats

Experimental pain studies play a crucial role in advancing our

understanding of pain modulation and its relevance to chronic

pain. While these studies provide valuable insights, researchers

must continue to bridge the gap between experimental findings

and the complex pain experiences of chronic pain patients to

develop more effective and tailored pain management strategies.

Interdisciplinary approaches that combine neurobiology,

psychology, and clinical practice are key to this endeavor.
Conclusions

The presumption that abnormal pain facilitation and inhibition

are major contributors to FM pathogenesis remains controversial.

No significant differences in pain facilitation or inhibition could

be detected between FM patients and HC in one of our recent

investigations when quantitative sensory testing was performed

using standardized nociceptive stimuli (12). Given that the

detection of effective pain modulation by CPM seems to be

dependent on stimulus modality, heat vs. pressure (79), our

investigation using predominantly heat stimuli may have

facilitated our ability to detect normal pain modulation of FM

patients. Our conclusions are also supported by several brainstem

and spinal cord imaging investigations of FM patients and HC

which demonstrated similar spinal cord activity in both groups

during pain facilitation with standardized heat pain stimuli

(13, 80). This lack of spinal cord functional abnormalities in FM

seems to emphasize brain and brainstem functional alterations as

more important for the pain and hyperalgesia of these patients

and not abnormal pain modulation. There is increasing evidence
Frontiers in Pain Research 05
for such functional brain abnormalities in FM (92–95) but the

specificity of these findings is still unclear. Overall, the results of

our studies seem to suggest that not only pain facilitation but

also pain inhibition are normal in FM patients. Our findings also

indicate that one of the hallmarks of FM and possibly of other

chronic musculoskeletal pain syndrome is hyperalgesia and not

abnormal pain modulation. Future studies need to focus on CNS

mechanisms that are responsible for FM patients’ hypersensitivity

to sensory stimuli which is not limited to nociceptive input but

extends to most other sensory domains including sound, light,

and sense of smell.
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