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Cellular plasticity facilitates
phenotypic change in a
dominant coral’s
Symbiodiniaceae assemblage

Colin J. Anthony*, Colin Lock, Brett M. Taylor
and Bastian Bentlage

Marine Laboratory, University of Guam, Mangilao, GU, United States
Coral-associated dinoflagellates (Symbiodiniaceae) are photosynthetic

endosymbionts that influence coral acclimation, as indicated by photo-

endosymbiotic phenotypic variance across different environmental conditions.

Symbiont shuffling (shifts in endosymbiont community composition), changes in

endosymbiont cell density, and cellular plasticity have all been proposed as

acclimation mechanisms. However, few studies have been able to partition

which of the three strategies were responsible for observed phenotypic

variance. Using a combination of metabarcoding and flow cytometry, we

simultaneously characterized Acropora pulchra-associated Symbiodiniaceae

assemblages at the community, population, and individual level under natural

environmental conditions to deduce whether seasonal phenotypic change and

site-related phenotypic variation of Symbiodiniaceae assemblages is a product of

symbiont shuffling or cellular plasticity. Symbiodiniaceae assemblages displayed

season-specific phenotypic variance, while Symbiodiniaceae community

composition was geographically structured and cell density showed limited

data structure. Based on these patterns, we reveal that cellular plasticity of

Symbiodiniaceae was the source of a phenotypic variation, thus indicating that

cellular plasticity is a mechanism for acclimation to mild environmental change.
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1 Introduction

Symbiodiniaceae are dinoflagellates known for their endosymbiotic relationship with

many marine invertebrates including Cnidaria, Mollusca, Porifera, Platyhelminthes,

Foraminifera, and Ciliata (LaJeunesse et al., 2018). The ecological success of reef-

building corals has been attributed to this endosymbiotic relationship with

Symbiodiniaceae (Gault et al., 2021). Corals are highly dependent on Symbiodiniaceae

for nutrient acquisition and effective calcification (Falkowski et al., 1984; Muscatine et al.,

1984; Ezzat et al., 2017; Matthews et al., 2017), but environmental stress can cause a
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breakdown of this photo-endosymbiotic relationship, leading to the

expulsion of Symbiodiniaceae from the host (coral bleaching) and

often death (Brown, 1997). Climate change has increased the

frequency and severity of coral bleaching globally (Hughes et al.,

2017) and the survival of corals has been linked to differences in the

ecological tolerances of Symbiodiniaceae (Thornhill et al., 2014;

Parkinson et al., 2015; Howe-Kerr et al., 2020).

Acropora pulchra (Brook, 1891) is a fast-growing staghorn

coral, providing substantial reef structure and habitat for a diverse

assemblage of fish and invertebrates. In Guam, A. pulchra is the

most abundant staghorn coral, dominating shallow reef flats.

However, A. pulchra is highly susceptible to elevated sea surface

temperatures, exposure to extreme low tides, and disease

(Raymundo et al., 2017). In Guam, two consecutive years of

anomalously high sea surface temperatures combined with

extreme tides caused a decline of ~33% of A. pulchra’s

distribution (Raymundo et al., 2017; Raymundo et al., 2019).

Stress events and extreme environments naturally select for

resilient genotypes (Fine et al., 2013; Roche et al., 2018; Leiva

et al., 2023), yet A. pulchra populations around Guam are highly

clonal (Rios, 2020). In highly clonal populations, coral genotype has

been found to be a minor determinant of selection, suggesting that

Symbiodiniaceae are key determinants of coral survival in such

populations (Swain et al., 2020). As such, we expect Guam’s

remaining A. pulchra populations to be dominated by resilient

Symbiodiniaceae assemblages. The characterization of Guam’s

dominant reef flat staghorn corals, which have survived several

recent coral bleaching and stress events may provide succinct and

novel insight on the response of Symbiodiniaceae to environmental

change and their role in coral survival.

In the short term (within a generation), Symbiodiniaceae

communities seem largely controlled by the host, while in the

long term (across generations), environmental change may shift

symbiont community composition (Baker et al., 2018; Camp et al.,

2019; Howe-Kerr et al., 2020). If environments change, successful

acclimation of corals may be caused by shifts in endosymbiont

community composition, known as symbiont shuffl ing

(Buddemeier and Fautin, 1993; Baker, 2003; Jones et al., 2008).

For example, Durusdinium is more common than other

Symbiodiniaceae genera in stressful environments (Fabricius

et al., 2004; LaJeunesse et al., 2010) or after acute stress events

(Baker et al., 2004; Berkelmans and van Oppen, 2006). However,

endosymbiotic Symbiodiniaceae community composition can also

be remarkably stable (Rouzé et al., 2019), indicating a high level of

host-symbiont specificity, thus requiring a high acclimation

potential through phenotypic plasticity to survive environmental

change (Goulet, 2006). Species of Symbiodiniaceae have been

experimentally shown to have varying rates of plasticity in

response to environmental change (Mansour et al., 2018), which

could lead to a change in Symbiodiniaceae assemblage composition

or abundance. Therefore, the acclimation strategy of a coral-

associated Symbiodiniaceae assemblage may be facilitated by

either symbiont shuffling, cell density regulation, or cellular

plasticity and is dependent on its constituent members and its

environment (Jones and Yellowlees, 1997; Baker, 2003; Baker et al.,

2004; Goulet, 2006).
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Phenotypic variance within and across Symbiodiniaceae

assemblages may be caused by the presence of diverse symbiont

clades that display different phenotypes. However, in low

complexity Symbiodiniaceae assemblages, dominated by a single

symbiont clade, variations in observed phenotypes may be

interpreted as the result of cellular plasticity (Anthony et al.,

2023). Symbiodiniaceae individuals have several mechanisms for

acclimation through cellular plasticity. Generally, Symbiodiniaceae

acclimation revolves around modifying the efficiency and

productivity of their photosystem, as it is the most direct way to

regulate ATP and NADPH formation, and in turn, the quantity of

harmful and beneficial metabolic byproducts (Oakley et al., 2014).

Photosystem acclimation is typically tied to the modification of

photosystem photochemistry (Warner et al., 1996; Ulstrup et al.,

2008; Nitschke et al., 2018). The physical reorganization and

regulation of photopigments or adjustments to cell morphology

can also mitigate stress and promote successful acclimation to

different conditions and may be a better representation of long

term (months versus days) system regulation (Johnsen et al., 1994;

Sawall et al., 2014; Xiang et al., 2015; Oliveira et al., 2022).

Photoacclimation in situ is well studied during seasonal change

(Warner et al., 2002; Ulstrup et al., 2008; Sawall et al., 2014) and

along light attenuation gradients including depth (Iglesias-Prieto

et al., 2004; Frade et al., 2008; Lesser et al., 2010; Cooper et al., 2011)

and turbidity (Hennige et al., 2008; Suggett et al., 2012). This

research typically attributes observed photoacclimation patterns

to (1) changes in community composition, (2) endosymbiotic cell

densities, and (3) cellular plasticity. However, research often relies

on pulse-amplitude-modulated (PAM) fluorometry (Warner et al.,

1996), multi-spectral fluorometry (Hoadley et al., 2023), or high

performance liquid chromatography (HPLC) (Mantoura and

Llewellyn, 1983) to characterize the state of endosymbiont

photosystems. These methods can be standardized to ‘phenotype’

coral holobionts (Voolstra et al., 2020), but cannot provide insight

into phenotypic variance of individual symbiont cells. Alternatively,

flow cytometry is an underutilized methodology that can rapidly

quantify symbiont cells (Krediet et al., 2015) and generate

phenotypic profiles on a per cell basis, thus providing the

resolution required to identify the source of phenotypic variation

(Apprill et al., 2007; Anthony et al., 2023).

Symbiont shuffling, cell density regulation, and cellular

plasticity have al l been proposed as mechanisms for

Symbiodiniaceae to adjust to environmental change (Jones and

Yellowlees, 1997; Baker, 2003; Baker et al., 2004; Goulet, 2006).

Despite the plethora of knowledge on Symbiodiniaceae response to

their environment, most research has not closed the gap in resolving

the relationship between phenotypic variance, shifts of

Symbiodiniaceae community composition, and cellular plasticity

of the existing community. Here we help narrow this knowledge gap

by simultaneously characterizing the A. pulchra-associated

Symbiodiniaceae assemblage at the community (biodiversity),

population (cell density), and individual level (phenotype) under

natural environmental conditions. By comparing ITS2 type profiles

to flow cytometric phenotypic profiles, we were able to test whether

Symbiodiniaceae phenotypic variation was caused by cellular

plasticity or symbiont genotype.
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2 Materials and methods

2.1 Coral colonies

To identify the dynamics of Symbiodiniaceae assemblages

under natural seasonal fluctuation on an island-wide scale, four

plots of A. pulchra from five reef flats (20 plots total) were GPS-

tagged around the island of Guam: Urunao (N 13.63672° E

144.84527°), West Agaña (N 13.47993° E 144.74278°), Luminao

(N 13.46584° E 144.64496°), Cocos Lagoon (N 13.24596° E

144.68475°) and Togcha (N 13.36865° E 144.774967°)

(Figures 1A–F). From this point forward sites will be referred to

as North (Urunao), Northwest (West Agaña), West (Luminao),

South (Cocos Lagoon), and East (Togcha). Colonies within each

plot were photographed using an Olympus Tough TG-6.
2.2 Environment

To characterize island-wide seasonal environmental changes,

average sea surface temperature (SST) and precipitation data were

obtained for Guam in 2021 from the NOAA Coral Reef Watch (Liu

et al., 2018; www.coralreefwatch.noaa.gov, accessed 10 February 2022)

and the Global Historical Climatology Network (Menne et al., 2012;

www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND :

GQW00041415/detail; accessed 10 February 2022), respectively.

Bleaching risk was assessed using NOAA’s 5km regional virtual field

station for Guam (Liu et al., 2018; https://coralreefwatch.noaa.gov/

product/vs/gauges/guam.php, accessed 10 February 2022). Historical

wave height, period, and cardinal direction was provided by the Pacific

Islands Ocean Observing System (PacIOOS; www.pacioos.org,

accessed 10 February 2022) for 2012-2022 from wave buoys at

Ritidian Point (N Guam) and Ipan (SE Guam).
2.3 Tissue sampling

From each site (Figures 1A–F), three tissue samples per plot were

collected by cutting two-centimeter-long pieces from at least three

centimeters below the axial growth tip. This was repeated for all 20

GPS-tagged plots at two time points within 2021: (1) 30 April – 18 May

and (2) 28 July – 15 August. Each sampling effort yielded 12 tissue

samples per site and 60 tissue samples per time point. If more than one

colony existed near the GPS-tagged plot (North and East), photographs

were referenced on-site to ensure that the same colonies were repeatedly

sampled within each plot. All samples were immediately flash-frozen in

liquid nitrogen on site, then stored at -80°C until processing. These

samples were subsequently used to quantify Symbiodiniaceae

community composition, cell density, and phenotypic variation,

deriving all variables from the same source fragment.
2.4 Symbiodiniaceae cell density

Coral tissue (120 samples) was airbrushed from the skeleton

with filtered seawater (FSW) and homogenized using a vortexer
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followed by syringe needle-shearing, and then processed using the

protocol described in Anthony et al. (2023).

Absolute cell counts were obtained by multiplying flow

cytometry-generated cell concentrations with each sample’s

dilution factor and tissue homogenate volume to determine total

cell count for each coral tissue fragment. Cell density per cm2

(Equation 1) was obtained by the normalization of flow cytometry-

derived cell counts to the source fragment’s skeletal surface area. To

determine skeletal surface area, a three-dimensional model was

created for each coral fragment built from point clouds with 0.010

mm point spacing generated by a jewelry scanner (D3D-s,

Vyshneve, Ukraine). Prior to scanning, coral fragments were

coated with SKD-S2 Aerosol (Magnaflux, Glenview, IL) to reduce

skeletal light refraction. Point clouds of each fragment were

imported into MeshLab v2020.04 (Cignoni et al., n.d.) to generate

a surface mesh by Poisson surface reconstruction. Portions of the

fragment that were not covered in tissue prior to airbrushing were

removed from the reconstructed surface prior to surface area

estimation.

CellDensity =
(CellCount)(Dilution)(TotalHomogenateVolume)

SampleSurfaceArea
2.5 Symbiodiniaceae phenotyping

As described by Anthony et al. (2023), three flow cytometric

signatures (red fluorescence, forward scatter, and side scatter) were

used to generate a phenotypic profile for Symbiodiniaceae cells

from each of the 120 tissue samples. Red fluorescence represents

relative photopigment abundance (Lesser, 1996; Lee et al., 2012;

Cooper et al., 2014). Side scatter is a representation of cell shape or

roughness, and forward scatter is a representation of cell size or cell

volume (Mullaney et al., 1969; Steen, 1980; Shapiro, 2003; Tzur

et al., 2011). The full protocol with details on sample preparation,

data curation, and analysis is publicly available on protocols.io

(dx.doi.org/10.17504/protocols.io.dm6gpjr2jgzp/v3).
2.6 Symbiodiniaceae high-throughput
ITS2 metabarcoding

Genomic DNA was extracted from tissue aliquoted prior to

airbrushing (see ‘Symbiodiniaceae cell density’ above) using a Qiagen

DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany) on a Qiacube

connect liquid handling system. The ITS2 region was amplified via PCR

with SYM_VAR_5.8S2 and SYM_VAR_REV primers (Hume et al.,

2018) using 3 mL of DNA (10 ng/ml), 3 ml of 10 mMprimer, 2.4 ml of 2.5
mM dNTP, 18.6 ml water, 3 ml buffer (10x), and 0.15 ml Taq (TaKaRa

Taq DNA Polymerase 1U, Takara Bio USA, Ann Arbor, MI). The PCR

profile included 26 cycles of 95°C for 40 s, 59°C for 120 s, 72°C for 60 s,

and a final extension at 72°C for 420 s. ITS2 amplicons weremultiplexed

and sequenced on a NovaSeq 6000 (Illumina, San Diego, CA, USA) to

generate 250 bp paired-end reads. Of the 120 samples extracted, 92

samples were successfully sequenced. After NovaSeq sequencing

(Illumina, San Diego CA), metabarcoding data was preprocessed with
frontiersin.org
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the SymPortal pipeline (Hume et al., 2019). Raw reads are available

through NCBI’s GenBank (BioProject PRJNA1043707), while

preprocessed ITS2 data can be obtained from www.symportal.org

(accession: 20220419_GuamWild_bentlage). Relative ITS2 sequence

abundances and type profiles were normalized and visualized as per

Eckert et al. (2020). Curated datasets have been deposited within this

manuscript’s associated GitHub repository (https://github.com/

AnthonyCuog/SpatiotemporalPhenotypicProfiling).
2.7 Statistical analysis

Flow cytometric data (cell density, red fluorescence, forward

scatter, and side scatter) violated the assumption of parametric tests

of a normal data distribution, as determined by Shapiro-Wilk tests

(p < 0.001); therefore all statistical tests were non-parametric and

did not assume normality.

To identify possible correlations between cell density, red

fluorescence, side scatter, and forward scatter, non-parametric

Spearman correlations were calculated for two groupings of
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paired dependent variables: (1) cell density, red fluorescence, side

scatter, and forward scatter averaged to the fragment-level replicate

and (2) red fluorescence, side scatter, and forward scatter without

any value summarization (single symbiont cells), given that flow

cytometry automatically produces paired data for each cell detected

(Anthony et al., 2023). Calculations were completed using rstatix

v0.7.1 (Kassambara, 2022).

Repeated measures, univariate analyses of variance (RM-ANOVA)

were performed to quantify the factorial contribution of time, site, and

plot to the data structure of cell density, red fluorescence, forward

scatter, and side scatter using the MANOVA.RM package v0.5.3

(Friedrich et al., 2022). A repeated measures, multivariate analysis of

variance (RM-MANOVA) was also completed for grouping of red

fluorescence, forward scatter, and side scatter to determine their

contribution to the variation of cell phenotypes. For these tests, plot

was treated as a fixed effect for the repeated sampling of colonies within

each plot and was only analyzed as a nested factor within each site to

control the variation of site-specific plot location (Figure 1). Main and

interaction effects were resampled with 1000 non-parametric bootstrap

replicates and corrected p-values were calculated for type statistics. This
FIGURE 1

(A) Sampling sites in Guam (scale: 20 km) with each square indicating the location of a reef flat sampled for this study: (B) Urunao (North), (C) West
Agaña (Northwest), (D) Luminao (West), (E) Cocos Lagoon (South), and (F) Togcha (East). (B–F) Within each site, four plots (1-4) of A. pulchra were
georeferenced for repeated sampling. Images provided by Google Earth Pro v7.3.4.8248 (scale: 100 m). (G) Spectral polar plots of aggregated
historical wave data from Ritidian (red lines) and Ipan (blue lines) wave buoys. Monthly mean wave direction (black lines) indicated prevailing swells
from the East, the windward side of Guam. (Provided by PacIOOS; www.pacioos.org). (H) Average sea surface temperature (SST) (spectral line) and
precipitation (grey bars) for 2021 showed distinct seasonal patterns. (Provided by NOAA Coral Reef Watch; www.coralreefwatch.noaa.gov) The first
set of samples was collected in the first two weeks of May (1) during the transitional warming period, while the second set of samples was collected
in the first two weeks of August (2) during the hot, rainy season.
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test neither assumes multivariate normality nor covariance matrix

specificity, making it robust to repeated measure designs with factorial

nesting not requiring any data transformation to adhere to model

assumptions (Friedrich et al., 2019). Prior to any statistical tests, 1000

observations for each group were randomly sampled for each cytometry

replicate (often from a sample size of > 100,000 per cell measurements)

to reduce the computational requirements of statistical tests and

decrease the likelihood of effect size and strength overinterpretation.

In addition to the repeated measures tests, data from the 40

sampling events (five sites, two timepoints, and 20 colonies) were

evaluated with non-parametric pairwise Dunn’s tests, as integrated in

the FSA package v0.9.3 (Ogle et al., 2022). Statistical outputs were then

converted to statistical groups using _rcompanion v2.4.21 (Mangiafico,

2023). Each sample distribution was assigned to a statistical group (a-s)

based on the results of pairwise Dunn’s tests, which better visualized

data structure and similarity, thus improving the interpretation of

previously calculated repeated measures tests. A distribution would be

in the same group as another distribution if they were not statistically

different (e.g., p > 0.001), while distributions would appear in different

groups if they were statistically different (e.g., p< 0.001). Cell density

data distributions were grouped with a standard threshold of p = 0.05,

while phenotypic measurements were grouped with a threshold of p =

0.001 to avoid the overinterpretation of effect sizes made stronger by a

high sample size (n = 1000) (c.f. Anthony et al., 2023).

Symbiodiniaceae community structure was compared across sites

(North, Northwest, West, South, East) and seasons (May, August).

Multivariate homogeneity of dispersion (PERMDISP), pairwise

permutation tests (PERM), and a permutational multivariate

analysis of variance (PERMANOVA) were conducted on

normalized ITS2 type profiles as needed using Vegan v2.5-7

(Oksanen et al., 2019) and pairwise Adonis v0.4 (Martinez Arbizu,

2017) packages. PERMDISP and permutation tests used Bray-Curtis

dissimilarity. Permutation tests were run with 9999 replicates.

To test whether underlying phenotypic variation was caused by

cellular plasticity or ITS2 type-specific phenotypes, the North Site’s

ITS2 type profiles, identified by metabarcoding, were mapped to their

fragment’s associated phenotypic profile generated by flow cytometry.

Phenotypic measurements for the North (the only site with

heterogeneous Symbiodiniaceae biodiversity) were compared using a

combination of Kruskal-Wallis and Dunn’s tests; with the same process

described in the previous paragraph. Not all repeatedly sampled

colonies were successfully barcoded, hence the use of non-repeated

measures tests, rather than the RM-MANOVAs used for phenotypic

data. All data curation and statistical analyses were completed with R

v4.1.2 in Rstudio v1.3.1073. Figures were generated and modified with

a combination of ggplot2 v3.3.5 (Wickham, 2016) and InkScape v1.1

(https://inkscape.org).

3 Results

3.1 Environment

Guam’s windward (East) and leeward (West) sides are

characterized by a large disparity in average wave energy. Wave

energy on Guam was highest from December to March with waves,

on average, coming from the East year-round (Figure 1G). In 2021,
Frontiers in Ecology and Evolution 05
Guam did not enter a formal coral bleaching warning (Liu et al., 2018;

Skirving et al., 2020) nor was bleaching observed or reported locally.

Water temperatures increased steadily from March to June, remaining

stable during the following four months, although temperature change

was relatively mild. Precipitation followed a similar trend (Figure 1H).

May represented a seasonal transition with warming waters and

decreasing wave energy; August was characterized by high water

temperatures and low wave energy (Figures 1G, H).

3.2 Symbiodiniaceae cell density

Symbiodiniaceae cell density was relatively consistent and

averaged 1.345 x 106 cells/cm2 (SD: 5.455 x 106). Cell density only

varied with time (RM-ANOVA: t = 20.81, p = 0.042). Notably, this

was primarily driven by increased densities in South colonies during

August (Figure 2A). All other factors demonstrated relatively low

predictability for data structure (RM-ANOVA: Site: t = 0.917, p =

0.44; Time : Site: t = 2.99, p = 0.159; Site : Plot: t = 0.758, 0.516; Time

: Site:Plot: t = 0.711; 0.528) (Table S1). Dunn’s tests did not reveal

any obvious factorial structuring (Figure S1A). Cell density was not

correlated to any phenotypic metric (Spearmans: RED: r = 0.096, p

= 0.299; FSC: r = 0.021, p = 0.822; SSC: r = 0.03, p = 0.742).

3.3 Symbiodiniaceae phenotypic variation

Symbiodiniaceae phenotypic metrics were heavily influenced by

time (RM-MANOVA: t = 2165.490, p< 0.001), site (RM-

MANOVA: t = 4859.680, p< 0.001), and site within time (RM-

MANOVA: t = 18.661, p< 0.001) (Table S2). Time was especially

influential for cell phenotype across four sites (North, Northwest,

West, and South) with low phenotypic variance in May and a wide

phenotypic variance in August (Figures 2B–E), while the East site

displayed a wide phenotypic variance at both sampling time points

(Figure 2F). All phenotypic variables were correlated to each other

(Spearman: RED-FSC: r = 0.38, p< 0.001; RED-SSC: r = 0.37,

p< 0.001; FSC-SSC: r = 0.54, p< 0.001).

Red fluorescence (photopigment abundance) was most

influenced by site (RM-ANOVA: t = 291.668, p< 0.001); although

it was also influenced by time (RM-ANOVA: t = 1056.040; p =

0.002) (Table S2). Generally, red fluorescence declined from May to

August, aside from a few plot-specific scenarios, while sites showed

a more complex, case-specific partitioning of statistical groups

(Figure S1B). Side scatter (cell roughness) displayed similar trends

of case-specific partitioning but was especially influenced by site

within time (RM-ANOVA: t = 86.503, p< 0.001) and did not show

any obvious large-scale pattern (Figure S1C). Forward scatter (cell

size), by contrast, showed strong structuring with Site within Time

(RM-ANOVA: t = 322.342, p< 0.001), and displayed comparatively

little within site data variation (Table S2; Figure S1).
3.4 Symbiodiniaceae assemblage
community composition

Symbiodiniaceae communities of A. pulchra were largely

dominated by Cladocopium C40 (Figure 3A). ITS2 type
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biodiversity and beta-diversity dispersion was determined by site

(PERMANOVA: F = 88.793, p = 0.001; PERMDISP: F = 11.725, p<

0.001) and not by time (PERMANOVA: F = 0.437, p = 0.761;

PERMDISP: F = 0.014, p = 0.906) (Figure 3; Table S3). ITS2 type

profiles showed Symbiodiniaceae community overlap along Guam’s

western coast, while southern and eastern ITS2 type profiles were

distinct (Figure 3).

Pairwise permutation tests revealed North as an outlier, the only

site with a Durusdinium ITS2 type profile. A pairwise permutation

test of the North site across time points indicated that communities

were not statistically differentiated between sampling time points

(PERM: F = 0.543, p = 0.494); however, plot-specific data suggested

a Cladocopium to Durusdinium partitioning from nearshore to

farshore colonies, with Durusdinium being more common

nearshore (Figure 4).
3.5 Genotype-phenotype association

As discussed in previous sections, only the North site showed co-

dominance of Cladocopium and Durusdinium ITS2 type profiles

(Figure 3). Therefore, each colony with a successfully identified ITS2

type profile was compared to evaluate whether ITS2-type profiles were

associated with phenotypic variance (Figure 4). Independent from plot,

type profiles did not differ in cell density (Kruskal-Wallis: X2 = 5.760,

df = 2, p = 0.056) (Figure 4A). Plot-specific measurements illustrated a

general increase in cell density from nearshore to farshore corals
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(Figure 4B), although accompanied by high variance. Although

neighboring colonies with different ITS2 types (Durusdinium vs.

Cladocopium) displayed different phenotypic profiles (e.g. colonies in

Plots 2 and 3) (Figures 4C–E), neighboring colonies of the same ITS2

types (Cladocopium vs. Cladocopium or Durusdinium vs.

Durusdinium) also demonstrated phenotypic differences (e.g.

colonies in Plots 1, 3, and 4) (Figures 4C–E), indicating an

alternative influence on phenotypic variance.
4 Discussion

We set out to identify whether seasonal phenotypic change and

site-related phenotypic variation of Symbiodiniaceae assemblages is a

product of symbiont shuffling or cellular plasticity. Therefore, we

used flow cytometric phenotypic profiling to characterize the

phenotypes of thousands of cells within each Acropora pulchra

colony alongside ITS2 metabarcoding to identify Symbiodiniaceae

clade and community composition. Combining phenotypic profiling

with ITS2 metabarcoding provided the resolution to partition cellular

plasticity and symbiont shuffling. Although environmental change

between timepoints was relatively mild, flow cytometry revealed clear

spatiotemporally structured phenotypic variation (Figures 2B–F). In

conjunction with the geographic structuring of ITS2 biodiversity

(Figure 3) and stable cell densities (Figure 2A), our data suggests that

cellular plasticity of Symbiodiniaceae was responsible for changes in

phenotypic variation.
B C

D E F

A

FIGURE 2

Cell density and phenotypic variance plots colored for repeated temporal sampling (May & August). (A) Cell density illustrated no pattern, as
visualized by Tufte’s box plots summarized to the plot level within each site and colored across temporal sampling points. (B–F) Phenotypic variance
illustrates a temporal pattern, as visualized by three-dimensional dot plots for North (B), Northwest (C), West (D), South (E), and East (F)
Symbiodiniaceae assemblages.
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4.1 Symbiodiniaceae community patterns

In Acropora, Symbiodiniaceae are acquired from the

environment (Baird et al., 2009), and Acropora species are often

thought to harbor more flexible and diverse symbiont assemblages

than other coral genera (Rouzé et al., 2017; Qin et al., 2019).

However, we found that A. pulchra-associated Symbiodiniaceae

ITS2 types were geographically structured and temporally stable

(Figure 3). Although the high fidelity A. pulchra-associated

Symbiodiniaceae may be surprising, this result is consistent with

previous studies from Guam. For example, Rios (2020) found

Guam’s A. pulchra-associated Symbiodiniaceae assemblages

dominated by Cladocopium, with only A. pulchra from Saipan

and northern Guam containing Durusdinium-dominated colonies.

Additionally, the long-term monitoring of Symbiodiniaceae

communities found high stability and colony-level specificity of

A. pulchra-associated Symbiodiniaceae in French Polynesia (Rouzé

et al., 2019).

The dominance of thermotolerant Symbiodiniaceae,

Cladocopium C40 and Durusdinium D1, in A. pulchra on Guam’s

reef flats indicate the selection of resilient corals following mass

coral bleaching and mortality. Both Cladocopium C40 and

Durusdinium D1 represent important lineages associated with

reduced coral bleaching rates and increased coral survival

following stress (Jones et al., 2008; Mieog et al., 2009; Rouzé

et al., 2017; Qin et al., 2019). Guam experienced four major coral

bleaching events over the last decade leading to an estimated 60%

reduction of coral cover between 2013 and 2017 (Raymundo et al.,

2019). At many sites around Guam, A. pulchra populations

experienced 50-100% mortality, yet, among acroporids, A. pulchra

remains the dominant reef-building coral on Guam’s reef flats

(Raymundo et al., 2017; Raymundo et al., 2019). The nearshore to

farshore partitioning of Durusdinium D1 to Cladocopium C40
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dominated A. pulchra colonies may be the result of microhabitat

adaptation to long term chronic stressors or environmental

conditions (e.g. differences in water flow observed across Guam’s

reef flats; Fifer et al., 2021), a hypothesis that ought to be tested with

additional targeted sampling.

Under extreme environmental stress, successful acclimation

may be caused by symbiont shuffling, the turnover of symbiont

community composition (Buddemeier and Fautin, 1993; Baker,

2003; Jones et al., 2008; Zhu et al., 2022). Durusdinium D1 may

have been selected for its higher tolerance to warmer nearshore

waters (Stat et al., 2008; Keshavmurthy et al., 2014; Silverstein et al.,

2017). Additionally, selection for Symbiodiniaceae genotypes may

have led to microhabitat adaptation that cannot be detected using

ITS2 metabarcoding. For example, signatures of selection were

identified from transcriptomes of Symbiodiniaceae living in acidic

waters of CO2 seeps (Leiva et al., 2023). The combination of A.

pulchra host clonality (Rios, 2020), geographical structuring of

Symbiodiniaceae in Guam and the surrounding region (Davies

et al., 2020; Rios, 2020; Current Study), and the temporal stability

of Symbiodiniaceae community composition (Rouzé et al., 2019;

Current Study) point to the importance of phenotypic plasticity as

an acclimation mechanism for A. pulchra and its Symbiodiniaceae

assemblage. A. pulchra’s fidelity for putatively thermotolerant

Cladocopium C40 and Durusdinium D1 may have allowed A.

pulchra to persist through repeated severe coral bleaching, but the

full acclimation potential of this coral remains to be explored.
4.2 Phenotypic variation and plasticity

Species of Symbiodiniaceae have been experimentally shown to

display varying degrees of plasticity to respond to environmental

change (Mansour et al., 2018); therefore, we expected that phenotypic
B

A

FIGURE 3

ITS2 type diversity (A) and ITS2 type profiles (B) from spatiotemporal sampling across five sites (North, Northwest, West, South, and East) and two
timepoints (May and August).
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variation of a coral-associated Symbiodiniaceae assemblage would

differ between different Symbiodiniaceae assemblages. Between time

points, flow cytometry revealed that most Acropora pulchra colonies

had a low phenotypic variance of Symbiodiniaceae in May and high

phenotypic variance in August (Figure 2). In conjunction, with

temporally stable ITS2 community compositions, we have strong

evidence for temporal cellular plasticity. However, phenotypic

variance was also influenced by site (Table S3).

The overall taxonomic homogeneity of community

compositions made determining the influence of Symbiodiniaceae

identities on spatial phenotypic differences difficult. Only the North

site provided any insight on the influence of Symbiodiniaceae

community composition given the codominance of two ITS2 type

profiles: (1) Durisdinium D1-dominated and (2) Cladocopium C40-

dominated (Figure 3). After mapping ITS2-type profiles of each
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colony to their respective phenotypic profiles, colonies from

nearshore (Durusdinium D1-dominated) to farshore

(Cladocopium C40-dominated) displayed some mild differences in

phenotypic characteristics, such as the higher abundance of

photopigments (high red fluorescence) in nearshore colonies

(Figure 4C). However, the phenotypic variance between

neighboring Durusdinium and Cladocopium-dominated colonies

(e.g. colonies in Plots 2 and 3) was no different than neighboring

colonies of the same ITS2 types (e.g. colonies in Plots 1, 3, and 4)

(Figure 4). Although flow cytometry-derived phenotypic metrics

display high variation, high sampling size (>1000 cells) makes

comparative results robust (Anthony et al., 2023). Therefore, the

data indicate that phenotypic variation between colonies is most

likely caused by the cellular plasticity of Symbiodiniaceae, and not

by differences in community composition.
B C

D E

A

FIGURE 4

Cell density (A, B) and phenotypic measurements (C–E) were mapped to samples from the North site with known ITS2 type profiles. Sampled plots
spanned across the reef flat from nearshore to farshore (1-4) (Figure 1B). Box plots (C–E) correspond to different colonies sampled within their
respective plots (Figure 1). Letters above each boxplot (C–E) indicate statistical groupings (p<0.001).
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5 Conclusion

Symbiodiniaceae communities of Guam’s A. pulchra populations

did not display changes in cell densities or community composition

shuffling (Figures 2A, 3). Instead, A. pulchra’s Symbiodiniaceae

communities were geographically structured by sampling location

(Figure 3), similar to the geographic structuring of acroporid

Symbiodiniaceae communities reported previously. Flow cytometric

phenotypic profiling revealed that time and site-specific phenotypic

differences were likely caused by plasticity of Symbiodiniaceae cells

(Figures 2, 4). The implementation and expansion of flow cytometric

phenotypic profiling within the framework presented here, for

example by characterizing Symbiodiniaceae phenotypic variation

with higher temporal resolution and samples from extreme events,

has the potential to provide important insights into the mechanisms,

dynamics, and limits of Symbiodiniaceae acclimation in situ.
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et al. (2022). Light induces peridinin and docosahexaenoic acid accumulation in the
dinoflagellate Durusdinium glynnii. Appl. Microbiol. Biotechnol. 106, 6263–6276. doi:
10.1007/s00253-022-12131-6

Parkinson, J. E., Coffroth, M. A., and LaJeunesse, T. C. (2015). New species of Clade B
Symbiodinium (Dinophyceae) from the greater Caribbean belong to different functional
guilds: S. aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and
S. pseudominutum sp. nov. J. Phycol. 51, 850–858. doi: 10.1111/jpy.12340

Qin, Z., Yu, K., Chen, B., Wang, Y., Liang, J., Luo, W., et al. (2019). Diversity of
Symbiodiniaceae in 15 coral species from the Southern South China Sea: Potential
relationship with coral thermal adaptability. Front. Microbiol. 10, 2343. doi: 10.3389/
fmicb.2019.02343

Raymundo, L. J., Burdick, D., Hoot, W. C., Miller, R. M., Brown, V., Reynolds, T.,
et al. (2019). Successive bleaching events cause mass coral mortality in Guam,
Micronesia. Coral Reefs 38, 677–700. doi: 10.1007/s00338-019-01836-2

Raymundo, L. J., Burdick, D., Lapacek, V. A., Miller, R., and Brown, V. (2017).
Anomalous temperatures and extreme tides: Guam staghorn Acropora succumb to a
double threat. Mar. Ecol. Prog. Ser. 564, 47–55. doi: 10.3354/meps12005

Rios, D. (2020). The population genetic structure of Acropora pulchra in Guam.
Master's Thesis (Mangilao, Guam: University of Guam).

Roche, R. C., Williams, G. J., and Turner, J. R. (2018). Towards developing
mechanistic understanding of coral reef resilience to thermal stress across multiple
scales. Curr. Clim. Change Rep. 4, 51–64. doi: 10.1007/s40641-018-0087-0
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