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Anhedonia is a hallmark symptom of depression that often lacks adequate

interventions. The translational gap remains in clinical treatments based on

neural substrates of anhedonia. Our pilot study found that depressed individuals

depended less on goal-directed (GD) reward learning (RL), with reduced reward

prediction error (RPE) BOLD signal. Previous studies have found that anhedonia

is related to abnormal activities and/or functional connectivities of the central

executive network (CEN) and salience network (SN), both of which belong to the

goal-directed system. In addition, it was found that real-time functional magnetic

resonance imaging (rt-fMRI) neurofeedback (NF) could improve the balance

between CEN and SN in healthy individuals. Therefore, we speculate that rt-fMRI

NF of the CEN and SN associated with the GD system may improve depressive

and/or anhedonic symptoms. Therefore, this study (1) will examine individuals with

anhedonic depression using GD-RL behavioral task, combined with functional

magnetic resonance imaging and computational modeling to explore the role

of CEN/SN deficits in anhedonic depression; and (2) will utilize network-based

rt-fMRI NF to investigate whether it is feasible to regulate the di�erential signals

of brain CEN/SN of GD system through rt-fMRI NF to alleviate depressive

and/or anhedonic symptoms. This study highlights the need to elucidate the

intervention e�ects of rt-fMRI NF and the underlying computational network

neural mechanisms.
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Introduction

Anhedonia is a transdiagnostic psychiatric symptom typical of psychiatric disorders,
such as depression, posttraumatic stress disorder (PTSD), and schizophrenia according to
the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), and is
associated with an elevated risk of suicide and chronicity of the disease (1). The biological
endophenotypes of anhedonia include reduced anticipation of upcoming rewards, reduced
experienced pleasure during the reward presentation, and impaired reward learning (2).
Specifically, reward learning (RL) is the ability to adapt to the contingencies between action
and the reward feedback, with two systems working together: The habitual system supports
routine responses to deal with regular situations, while the goal-directed (GD) system is
sensitive to environmental change to flexibly adapt to unfamiliar situations. The deficits
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in goal-directed systems play an important role across the lifespan
and in various mental disorders, such as subclinical depression,
trauma-related disorders, addiction, and obsessive-compulsive
disorder (OCD) (3–6). Specifically, goal-directed reward learning
(GD-RL) could discriminate between depressed patients and
healthy controls using a machine learning algorithm (Naive
Bayes) and could predict the concurrent depressive symptoms
and depression traits 1 year later (7). To sum up, deficits in the
goal-directed system may contribute to depression during both
the symptomatic and clinical phases. However, a translational gap
still remains in the clinical imaging study of the goal-directed
system (8).

Neurally, the goal-directed system may involve functional
interactions between the central execution network (CEN) and the
salience network (SN). The CEN, including themedial frontal gyrus
(MFG), superior frontal gyrus (SFG), and the anterior cingulate
cortex (ACC), especially the perigenual ACC (pgACC), is essential
for external, goal-directed cognitive processes (9, 10). The SN,
including the anterior insula (aINS), the dorsal anterior cingulate
cortex (dACC), the amygdala (AMY), the substantia nigra/ventral
tegmental area (SN/VTA), ventral striatum (VS), and thalamus, is
responsible for detecting salient stimuli in the environment and
allocating cognitive resources to facilitate goal-directed behavior
(10, 11). SN may function as a gate to detect the salience of stimuli
and co-activate task-relevant networks such as CEN to facilitate
goal-directed behavior (12), through the shift between default
mode network (DMN) and CEN (13). Previous studies showed
global circuit–phenotype associations across clinical anxiety and
depression, with distinct CEN (e.g., ACC and dlPFC) and SN (e.g.,
aINS and AMY) circuits (14). Therefore, abnormalities in the goal-
directed system, and in particular the CEN/SN decoupling, may
represent distinctive neural phenotypes of depression.

On the one hand, the dysfunctional networks of CEN and
SN persist during depressive episodes. We previously found
that depressed patients showed impaired goal-directed behavior,
accompanied impairments in CEN, such as over-activation in the
left lateral PFC (LPFC), as well as SN, such as under-activation
in VTA, dorsal striatum (DS), and orbital frontal cortex (OFC)
(7) (Figure 1), the last of which plays a critical role in controlling
the transition between goal-directed and habitual behavior (15).
The neural abnormalities in VTA during habitual learning do not
normalize during remission (16). Further evidence suggested that
enhanced resting-state functional connectivity (RSFC) between
subregions of ACC (including pgACC and sgACC) and caudate
could predict future anhedonia symptoms in adolescent depression
(17, 18). Specifically, neural activation to uncertain rewards in ACC
during reward learning tasks could predict anhedonia symptoms
1 year later when baseline anhedonia is controlled for (19).
Collectively, these studies suggest that neural impairments in the
CEN and SN within the goal-directed system are not only present
during the acute phase of depression but also predict the course of
the disease.

On the other hand, the stress-resilience model of depression
provides a framework for understanding distinct subnetworks
(CEN and SN) underlying anhedonic symptoms of depression.
Emerging findings from functional abnormalities of higher
functional connectivity between CEN (dlPFC and pgACC) and SN

(striatum and VTA) during reward-related tasks were shown in
depressed patients, as well as hypo-activation in CEN (pgACC and
mOFC) and SN (VS/DS) (20). Anhedonia was associated with SN
overactivity in the resting state, lack of SN activation in response
to positive stimuli in task-related states, and SN overactivity in
response to negative stimuli (21). Stress mediates the relationship
between goal-directed reward learning and anhedonia (7). Stress
may contribute to impaired goal-directed processes by enhancing
the connectivities between CEN and SN circuits (e.g., dlPFC and
amygdala/VS) (22). The resilience to stress involves the interactions
among heightened CEN (PFC) and lessened SN (mesostriatal
reward circuits) neural activities (23). Taken together, goal-directed
behavior depends on the adaptive redistribution of neural resources
between the CEN (↓) and SN (↓), and stress may lead to an
imbalance between the CEN (↓) and SN (↓), as well as aberrant
connectivity during reward processing, which may contribute to
anhedonia symptoms.

Neurofeedback based on real-time functional magnetic
resonance imaging (rt-fMRI) uses measured changes in brain
activation to help participants regulate activity in selected regions
or networks. During rt-fMRI neurofeedback, participants are
provided with visually presented brain network activation
information in real time (24). The rt-fMRI neurofeedback
targeting the brain areas within SN involved in emotion processing
(e.g., amygdala, insula, and striatum) decreased the anhedonic
or depressive scores (25, 26). However, the effects of rt-fMRI
neurofeedback (NF) based on CEN-SN on anhedonia to the
best of our knowledge have not been investigated previously.
Network-based NF can be used to recalibrate the balance between
brain networks (27). It has been recommended that researchers
use NF methods that consider neural response across regions
(i.e., functional connectivity) (28). Recent studies have found
that participants can flexibly regulate the balance between the
CEN and SN through rt-fMRI neurofeedback which could
promote resilience to stress (29). Therefore, the use of rt-fMRI
neurofeedback to improve goal-directed reward learning is a
potential intervention that involves the interaction between CEN
and SN. Additionally, reward learning studies have typically
adopted computational modeling during behavioral tasks to
estimate expected value and reward prediction errors (RPEs) (20).
Therefore, the current study was designed to adopt reward learning
tasks (30) and computational modeling in anhedonic individuals
to examine goal-directed brain network dynamics. Network-based
rt-fMRI neurofeedback will be utilized to improve the balance
of CEN/SN within the goal-directed brain network (Figure 1).
The within-group changes of depressive symptoms after rt-fMRI
NF training of goal-directed brain network will be examined to
assess the effects of rt-fMRI NF intervention to improve depressive
and/or anhedonic symptoms for depressed patients. The goal-
directed RL, as well as CEN/SN changes (CEN-SN functional
connectivity) at 3- and 6-month follow-ups, will also be examined
to evaluate the long-term rt-fMRI neurofeedback training effects.
This study may provide evidence to elucidate the effect of
rt-fMRI NF based on the goal-directed system in alleviating
depressive/anhedonic symptoms. The rt-fMRI NF training may
have clinical implications with improved safety and minor side
effects (31).
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FIGURE 1

Hypothesized role of goal-directed function impairments in anhedonia symptoms of depression.

Methods and analysis

Aim

• To determine whether rt-fMRI neurofeedback of the
goal-directed system could improve the depressive and/or
anhedonic symptoms of depressed patients after training and
at follow-ups;

• To examine the short-term and long-term effects of rt-rMRI
neurofeedback on the goal-directed RL behavioral and/or
connectivity imaging mediators.

Participants

The study was approved by the ethical review committee
at the Army Medical University (AMU, PRC) and conformed
to the Declaration of Helsinki. The study has been submitted
to the Chinese Clinical Trials Registry (ChiCTR, https://www.
chictr.org.cn/). The trial identifier will be made available upon
approval of the registration. After signing the informed consent
form, the clinical data and general information of all participants
will be collected, including age, gender, duration of illness, years
of education, and medication history. The clinical diagnosis and
symptom assessment will be completed by psychiatrists according
to DSM-5 combined with a Mini-international Neuropsychiatric
Interview (MINI). We will use the Hamilton Depression Scale-17
(HAMD-17) and theMontgomery–ÅsbergDepression Rating Scale
(MADRS) to assess anhedonia symptoms. Participant selection and
recruitment processes were not conducted prior to the submission
of the study.

(1) High anhedonic depression group. Inclusion criteria: ①

diagnosed with major depression, with at least one core symptom
(loss of pleasure or interest in all or nearly all activities) (MADRS
item 8 ≥ 4) or non-reactive mood (items 1 or 2 ≥5, ② at
least three following symptoms during the most severe phase
of this depressive episode, including (a) significant psychomotor
disturbance (HAMD items 8 or 9 ll1); (b) appetite/weight loss

(HAMD items 12 or 16 = 2); (c) late insomnia (waking at least
2h earlier than usual) (HAMD item 6 ≥ 1); and (d) guilt (HAMD
≥ 1) (32); ③right-handedness. Exclusion criteria: ① comorbid
with other mental disorders or drug or alcohol dependence;
② has received any previous antidepressant or antipsychotic
medication (including benzodiazepines and other sedatives and
hypnotics); ③ with severe physical diseases such as heart, liver,
or kidney impairment, endocrine disorders, or infectious diseases;
④ substance dependence or abuse; ⑤ vision impairments; ⑥

pregnant or breastfeeding women; ⑦ MRI contraindications; and
⑧ currently receiving any emotional ability training.

(2) Healthy control group. Inclusion criteria: ① without a
history of mental illness and family history of mental illness;
② age 18–55; ③ HAMD-17 < 7; and ④ right-handedness.
Exclusion criteria: ① diagnosed with depression or other axis
I diseases; ② has received any previous antidepressant or
antipsychotic treatment (including benzodiazepines and other
sedative and hypnotic drugs); ③ with severe physical diseases
such as heart, liver, renal impairment, endocrine diseases,
and infectious diseases; ④ substance dependence or abuse; ⑤

vision impairment; ⑥ women pregnant or breastfeeding; ⑦

MRI contraindications; and ⑧ currently receiving any emotional
ability training.

Procedure

This study is a double-blind randomized yoke-controlled rt-
fMRINF experiment, with follow-up assessments at 3 and 6months
after rt-fMRI NF (Figure 2). Participants will be randomly assigned
to the experimental group (NF/YC) and given random numbers by
a third party, who encodes the intervention with matching random
numbers. The experimenter who will rate the outcome and/or
analyze the data will be blind to group assignment. The CRED-NF
checklist indicating which analyses will be performed and listed as
supplementary material (available on the Open Science Framework
preregistration, https://osf.io/ec396; CRED-NF checklist, https://
osf.io/8wcqt).
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FIGURE 2

Consolidated Standards of Reporting Trials (CONSORT) flow diagram summarizing the study design.

Pre- and post-test
Before and after the neurofeedback intervention, the primary

and secondary outcome measures of the depressive and anhedonic
symptoms will be assessed in all subjects. The behavioral tasks will
be repeated post-training to evaluate the NF training effect on goal-
directed behavior. The follow-up assessments include the primary
outcome of depression and secondary outcome of anhedonia, the
goal-directed RL (model-based weighting parameter ω), and the
CEN-SN functional connectivity (Pearson’s correlation) based on
prediction errors (PEs) (Figure 2).

Primary and secondary outcome measures

Primary outcome measures: HAMD-17 (33). The severity
of depressive symptoms will be assessed using the total score
of HAMD-17. The higher the score, the more severe the
depressive symptoms.

Secondary outcome measures: Snaith–Hamilton Pleasure
Scale (SHAPS) (34). The scale includes four aspects of
interest/entertainment, social interaction, sensory experience,
and food/drink, and has a total score of 14 to 56. It has good
validity and reliability to evaluate the hedonic experience of adult
outpatients with MDD (35).

The changes in depression and anhedonia symptoms will be
assessed using HAMD-17 and SHAPS before and after the NF
intervention, respectively. Follow-up assessments of depression
(HAMD) and anhedonia (SHAPS) symptoms will be conducted at
3 and 6 months after the intervention.

Behavioral task

The reward learning task (two-stageMarkov decision task) (30)
will be adopted. All participants will practice an 8-min Markov
decision task outside of the scanner room before formal NF
training, for which instructions will be provided to the participants.
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FIGURE 3

Schematic diagram of the Markov reward decision task adapted from Daw et al. (30).

FIGURE 4

Flowchart of the Markov reward decision task, adapted from Daw et al. (30).

After practice, the participants will rest for 5min before completing
the formal NF training. The practice and formal tasks will be
presented using MATLAB 2019a (https://www.mathworks.com)
and Psychtoolbox 3.0 (http://psychtoolbox.org).

The task will be divided into two stages. In stage 1, participants
choose one of two stimuli (red) (stage 1, left panel), which leads to
the second stimulus (green) in 70% of the cases and to the third
stimulus (blue) (stage 2) in 30% of the cases. The other stimulus
(stage 1, right panel) leads to the second stimulus (green) in 30%
of the cases and to the third stimulus (blue) in 70% of the cases.
The six stimuli at the two stages will be selected from the alphabets
that are unfamiliar to the participants to encourage progressive

learning. The possibility that the stimulus of stage 1 changes to
the second stage through the key press of participants is called the
transition probability (common transition 70% vs. rare transition
30%). The selection of experimental stimuli in stage 2 may result
in either a reward or no reward. To motivate participants to
continue learning, the reward will follow a slowly drifting Gaussian
random walk with probability changes ranging from 0.25 to 0.75
(Figure 3).

Participants will be encouraged to make options to receive as
many rewards as possible and will be informed prior to practice
and formal experiments that all rewards will be paid off at the end
of the experiment. The task flow is as follows (Figure 4).
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Real-time fMRI neurofeedback of individual
goal-directed system in anhedonic depression

The anhedonic depressed participants (n = 40) will be
randomized into the neurofeedback (NF) group (n = 20) and the
yoke control (YC) group (n= 20). We used blocked randomization
to form the allocation list (1:1 ratio) for the two comparison groups
(NF and YC), by using a computer random number generator
to select random permuted blocks (size = 10). The NF group
will receive rt-fMRI neurofeedback intervention, with∼60min per
session, once per week for a total of four sessions. Participants in
the YC group who are paired with one specific participant from the
NF group will receive feedback signals from that participant during
the same run. Thus, for the YC group, the sham rt-fMRI signals will
not be corresponding to the participant’s brain activity. The healthy
control (HC) group (n= 20) will receive no intervention.

Sample size

The sample size is determined based on a heuristic justification
(36) according to median recruits (n = 18) of fMRI neurofeedback
(37). Moreover, given that this is a feasibility study with constraints
on limited resources, a power calculation is not necessary according
to the reporting and experimental design consensus in the NF
field (38).

Real-time magnetic resonance imaging

MR images will be collected using 3.0T Siemens (Trio,
Erlangen, Germany) with a 32-channel head coil. T1-weighted
structural images will be collected from the whole brain with the
magnetization-prepared rapid gradient echo (MPRAGE) sequence
for anatomical localization of functional images. FOV = 256 ×

256mm, 176 sagittal slices, layer thickness = 1.0mm, resolution =

1.0 mm2, TR/TE = 1900/2.52ms, and flip angle = 9◦. Echo-planar
imaging (EPI) T2∗-weighted functional images will be collected
across the whole brain using a gradient echo planar imaging (EPI)
sequence, FOV= 192× 192mm,matrix size= 64× 64, and spatial
resolution = 3 × 3 × 3 mm3, flip angle = 90◦, and TR/TE =

2000/30ms. To reduce the head motion, a strip of medical tape will
be attached horizontally over the forehead of the participant and be
spread to both sides of the head coil so that the participant could
feel the head motion subjectively to prevent it from exceeding the
range of head motion (39).

Real-time functional imaging will be achieved by using
a customized function during MR image reconstruction, with
TurboExport (Brain Innovation, Maastricht, The Netherlands) to
convert input pixel data for each volume into images. Each image
generated will be preprocessed in real time using the Turbo-
BrainVoyager (Brain Innovation, Maastricht, The Netherlands).
Preprocessing includes motion correction (by realigning each
image to the first image of the session) and spatial smoothing
(Gaussian kernel of half-height and 5mm in full width). The
computer presenting the task will communicate with Turbo-
BrainVoyager via Transmission Control Protocol (TCP) to acquire
preprocessed real-time data to be coregistered to the localizer
anatomical image (first session) and generate feedback displays to
the participants.

Network-based rt-fMRI NF intervention

The network-based rt-fMRI NF intervention of each session
will be divided into 6 runs (5 NF runs and 1 transfer run), at
10 min/run. Subjects will be asked to raise or lower the height
of a progress bar on the screen through cognitive effort. The
height of the bar will depend on the signal intensity of regions
of interest (ROIs) in the CEN and SN measured on each trial.
Participants will be asked to regulate their brain signals through
internal thought without specific instructions, with the feedback
signaling the balance between the average signal intensities of the
CEN and SN. They will know neither the source nor the calculation
of the feedback signal. Before each session, participants will be
explicitly instructed to try to avoid movement, including facial
expressions, limb movements, and irregular breathing patterns.

During the scan, anatomical images will be recorded first
(∼5min) and preprocessed immediately after image reconstruction
based on a separate computer using BrainVoyager. After that, the
results will be transmitted to Turbo-BrainVoyager to obtain real-
time functional data aligned to the target ROIs of neurofeedback.
Each run will start with a rest phase, during which the baseline
and change in the feedback signal will be calculated. The feedback
will be based on the differential signal between the mean values
of all the voxels in the individualized ROIs in the CEN and SN.
The baseline for this difference signal will be defined as the median
difference between the initial resting signal of the SN and the CEN
ROIs, and the lower and upper limits will be set to be two standard
deviations from this baseline. The upper and lower limits will be
updated to the average of the five lowest/highest median differences
of this run before each block (29). The regulatory success targets
the larger differential signal between CEN and SN. The transfer
run will test the generalization of NF training without feedback
signals during which the participants will be required to regulate
their brain signals in the same way as the NF training run (40).

After each run, the participants will appraise their control
over the progressive bar height (0–10 points) and their cognitive
difficulties (0–10 points) with handles. Between runs, the
participants will be allowed to rest for 5min without significant
head movement. After the NF intervention outside the scanner,
the participants will write down the strategies they used to regulate
their brain signals (e.g., through internal thought) and evaluate the
effectiveness of strategies (0–10 points). To evaluate the demand
characteristics, they will also indicate which group (NF or YC) they
believe they belong to.

Statistical analysis

Behavioral data
Statistical analysis

IBM SPSS Statistics 22 (https://www.ibm.com/spss) will be
used. The 2 (groups: high anhedonia group and healthy control
group)×2 (transition conditions: common transition and rare
transition)×2 (reward feedback: reward and non-reward) factor
mixed design will be conducted. The general linear mixed
model (GLMM) will be used to investigate the main effects
and interactions of the group, transition condition, and reward
feedback on choice behavior. The interactions of transition
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conditions and reward feedback will represent the effect of the goal-
directed system on the choice behavior (goal-directed RL), and
the main effect of reward feedback will represent the effect of the
habitual system on the choice behavior (habitual RL). The three-
way interaction of the group, transition condition, and reward
feedback will be examined to test for group differences in goal-
directed RL. The two-way interaction of group and reward feedback
will be examined to test for group differences in habitual RL.

Computational modeling

MATLAB 2019a (https://www.mathworks.com/) and the
Reinforcement Learning algorithm will be used to model
the behavioral data and estimate the learning rate α, inverse
temperature parameter β, repetition parameter p, and model-based
learning weight ω of individual subjects.

① value estimates. The state-action values for the first and
second stages of each trial are determined by the weighted sum of
the model-based action value QMB and the model-free action value
QMF. The weighted sum is expressed as follows.

Qnet

(

SA, aj
)

= ωQMB

(

SA, aj
)

+ (1− ω)QMF

(

SA, aj
)

(1)

It is assumed that individual behavioral choice in the first stage is
the weighted sum of goal-directed and habitual learning, with the
weight of ω (0∼1). If ω is close to 0, the choice mainly depends on
habitual learning; if ω is close to 1, the choice mainly depends on
goal-directed learning.

(a) Model-based state-action value:

QMB

(

SA, aj
)

= P
(

SB|SA, aj
)

max
a∈{aA ,aB}

QMF(SB, a)

+P
(

SC|SA, aj
)

max
a∈{aA ,aB}

QMF(SC , a) (2)

(b) Model-free state-action value:

QMF

(

Si,t , ai,t
)

= QMF

(

Si,t , ai,t
)

+ αiδi,t (3)

For the first and second stages, learning rates α1 and α2,

respectively, represent the extent to which the reward results are
used for learning.

(c) Prediction error:

δi,t = ri,t + QMF

(

Si+1,t , ai+1,t
)

− QMF

(

Si,t , ai,t
)

(4)

The action probabilities of the first and second stages of each trial
are regarded as a softmax function of the inverse temperature
parameter β , the repetition parameter rep, and the indicator
function p as follows.

P
(

ai,t = a|si,t
)

=
exp(β

[

Qnet

(

si,t , a
)

+ p · rep(a)
]

)
∑

a
′ exp(βi

[

Qnet

(

si,t , a
′
)

+ p · rep
(

a
′
)]

)
(5)

The inverse temperature parameters β1 and β2 represent
the randomness of the first- and second-stage choices. The
repetition parameter p and the indicator function represent the
reproducibility of the choice, that is, the tendency to choose the
same choice as in the previous trial, regardless of the actual value
of the choice. Additionally, p > 0 represents choices the same as
the previous trial, and p < 0 represents choices different from the
previous trial.

The parameters of each subject will be estimated using the R
software and its Stan toolkit with the Markov Chain Monte Carlo
(MCMC) estimation which has been previously described (4). The
model evidence of the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) will be calculated separately
to estimate the model fit of reinforcement learning to the behavior.

Imaging data
Preprocessing analysis

DPABI V7.0 software (http://rfmri.org/DPABIV7) will be used
for data pre-processing, in which the DICOM data will be
converted into NIFTI format. In order to remove the effects of
subject maladaptation during the scan as well as the effects of
inhomogeneous magnetic fields on the results, data from the first
10 time points will be removed. Then, time correction, headmotion
correction, image standardization, image smoothing, detrending,
and filtering (0.01∼0.08Hz) will be conducted, as well as the
removal of head motion parameters.

Task-state PE signal analysis

BOLD signal analysis of ROIs during the task will be performed
using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
The PE and relative partial differential calculations in the action
selection phase and the reward outcome phase will be included
as regressors in the general linear model, with ω (see Equation
1) as a covariate (30). The standard hemodynamic function
will be constructed for ROIs using MarsBaR (https://sourceforge.
net/projects/marsbar/) with FDR correction for control of false
discovery rate in voxelwise tests (41). The ROIs will be made
with WFU_PickAtlas software (https://www.nitrc.org/projects/
wfu_pickatlas) according to the activation map during MDT
for PEs.

The ROIs within CEN/SN will be mapped to CEN and
SN which are functionally defined according to 14 intrinsic
connectivity networks (ICNs) that are comprised of 90 distinct
ROIs (42, 43). The DMN, SN, and CEN will be constructed from
network templates with the Group ICA of fMRI Toolbox (GIFT,
http://mialab.mrn.org/software/gift/) for use in the constrained
ICA. The differential functional image (CEN - SN strength) during
the first session will be used to create individualized network
masks as neurofeedback target regions during the subsequent
sessions. The nuisance regressors including six motion parameters
and temporal derivatives as well as their quadratic terms and 25
physiological noise components will be taken into consideration.
The first two runs of the first session will be discarded without
additional analysis. The time courses (extracted using Turbo-
BrainVoyager online) of ROIs will be high-pass filtered (0.01
Hz/100 s) and normalized (z-transformed).

Self-regulation performance

For each subject in the patient group in each session,
self-regulation performance will be assessed with the CEN-SN
activation difference (computed through online time courses of
ROIs extracted using Turbo-BrainVoyager) during the training.
Self-regulation performance will be defined as the mean % signal
change of ROIs (CEN and SN) over all the NF runs. The self-
regulation performance will then be submitted to an ANOVA with
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the factors group (NF vs. YC) and session (four sessions) for the
group and/or time effects of rt-fMRI NF training.

Additionally, to investigate the pre- and post-training
difference in CEN-SN functional connectivity for each patient
group, we will apply the paired t-tests or Wilcoxon signed-rank
tests (depending on parametric or non-parametric distributions)
between the pre- and post-training tests, while undergoing MDT
behavioral task during neuroimaging.

Intervention e�ect analysis
Primary and secondary outcomes

We will examine the difference in depressive symptoms
between the NF and YC groups at the post-test after the training.
Bayesian ANCOVA with the group as a fixed factor and the
baseline HAMD scores as covariates will be used, using the default
JASP (https://jasp-stats.org/) multivariate Cauchy priors (44), and
the statistical approach has been described previously (25). The
advantage of ANCOVA over repeated-measures (RM) models has
been mentioned elsewhere (45). The additional covariates include
age, gender, and duration of illness. The dependent variable will
be post-test HAMD scores. Similar analyses will be performed
on the anhedonic symptoms (SHAPS), with the same covariates
and dependent variable. Additionally, similar analyses will also
be performed on the primary and secondary outcomes at 3- and
6-month follow-ups.

GD-RL behavioral and connectivity imaging indicators

The behavioral (model-based weighting parameter ω) and
connectivity imaging indicators (CEN-SN activation difference)
will be used as potential mediating factors to determine whether
behavioral and imaging indicators could explain the changes in
depressive and/or anhedonic symptoms. Within-group explorative
analysis will be conducted using a stepwise regression using a
bootstrapping test when multiple mediators are concerned (46)
with PROCESS macro (http://www.afhayes.com/) of SPSS 22.

Discussion

The deficits in RL represent a sub-phenotype of anhedonia,
with partially separable neural substrates (47). The decision-
theoretic view of depression favors the compromise of the GD
system, rather than the habitual system in depression (48),
the former of which is present in both behavioral and neural
manifestations during RL for clinical and subclinical depression
(5, 7, 49). Acute stress affects the allocation of neural resources
within large-scale brain networks, especially the balance between
the CEN/SN in the GD system due to cognitive demands (50).
Additionally, the acute stress (during the last month) is supposed to
trigger shifts in goal-directed vs. habitual behavior pattern, which
is concomitant with specific network configurations, especially
frontostriatal circuits (CEN: LPFCal SN: VTA/putamen/caudate↓,
lateral/medial OFC↓) (7). Stronger PEs may contribute to highly
variable momentary mood fluctuations due to stronger reward
feedback dynamics, whereas the influence of PEs on RL is
compromised in depressed individuals (51). In summary, these
studies highlight a promising target for RL-based NF interventions
for anhedonic depression to produce flexible mood changes.

Moreover, the focus on the GD-RL and imaging substrates in the
current protocol may provide more insights with regard to the
factors driving NF outcomes (38).

The novelty of the current study is that we focus on neither
single ROI nor functional connectivity limited to a few ROIs,
but rather the balance between two functionally intertwined brain
networks (CEN/SN), and this approach has been utilized in self-
regulation and sustained attention (27, 29). However, the impact
of network-based NF on reward learning is still unknown. Thus,
we propose to simultaneously decrease CEN and increase SN
activity (CEN: LPFC↓; SN: VTA/putamen/caudate↑, lateral/medial
OFC↑), which could potentially improvemood and its fluctuations.
Individualized NF training based on a goal-directed subnetwork
is potentially advantageous for improving treatment response to
anhedonia symptoms for depressed patients.

Additionally, the current study takes into account the potential
confounding factors of motivation and demand characteristics.
The mechanism underlying NF may come from NF-specific or
non-specific contextual factors as well as general non-specific
effects such as practice, placebo, and natural change (cognitive
development or decline)(38). Therefore, a double-blind yoke-
controlled design is adopted in this study to control for individual
differences in motivation and effort. As a limitation, insufficient
power may result from the limited sample size. To control for
inter-subject variance, yoke-controlled NF will be provided for the
participants to modulate the fMRI signals, in which sham feedback
has been shown to regulate neural activity in cognitive control
compared to passively viewing conditions (52).

The caveat of this study is the use of CEN and SN based
on intermittent, rather than continuous imaging feedback signals,
due to the signal calculation speed of network parameters and the
high cognitive load of momentary feedback (53). Accumulating
evidence indicates that intermittent feedback is more efficient
than continuous feedback to reinforce the participants’ internal
thoughts (54, 55). However, other studies showed that continuous
feedback improved regulation ability (56). Additionally, monetary
reward elicits a greater extent of self-regulation than non-
reward feedback (57). Therefore, further study would be able to
determine the influence of intermittent vs. continuous feedback
and trial-by-trial virtual monetary reward on GD-RL, though
the monetary reward in this study is not contingent on
participants’ decision as in the Markov decision (MD) task.
Feedback design for NF training should be carefully considered in
future research.

Finally, accumulating evidence converges on the feasibility
and effectiveness of frontostriatal connectivity as NF targets (58).
Within SN, the lateral and medial part of OFC as well as ACC
densely project to the dorsal (e.g., caudate) and ventral striatum,
which are involved in goal-directed control of instrumental actions
(59). Moreover, the clinical efficacy of NF targeting both emotion
areas and higher visual areas may indicate the non-specific training
effects of NF, e.g., the brain control and reinforcement components
(25). Therefore, confounds from the non-specific training effects
should be taken into consideration during the explanation of
the results. Additionally, further empirical studies and systematic
reviews may shed light on the most efficient NF targets and
provide more evidence on NF targeting specific ROIs of CEN/SN
and connectivity-based and network-based NF within the GD-
RL systems.
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