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Editorial on the Research Topic

Recent developments in oxygen minimum zones biogeochemistry
Marine Oxygen Minimum Zones (OMZs) modulate biogeochemical cycles, and directly

impact climate dynamics by influencing air-sea fluxes of the potent greenhouse gases methane

and nitrous oxide (Levin, 2018). OMZs are formed in regions of weak oxygen (O2) supply from

physical ventilation and high integrated microbial O2 demand fueled by downward organic flux

from overlying surface waters. The ocean’s major OMZs are found in the Eastern Tropical

South and North Pacific Ocean and the Arabian Sea and Bay of Bengal in the Indian Ocean

(Karstensen et al., 2008; Stramma et al., 2008). OMZs are especially prevalent along eastern

boundary upwelling systems (EBUS) where high nutrient water is upwelled along the coast to

the surface, sustaining high primary productivity (e.g., off Chile, Peru, and South Africa). Other

low-O2 or hypoxic regions (also called dead zones, with hypoxia being less than 2 mg/L O2)

occur in the tropical Atlantic, the Gulf of Mexico, the Baltic Sea and isolated fjords and basins.

Recent observations suggest an ongoing expansion and intensification of OMZs. Global

warming is recognized as the main driver causing global ocean deoxygenation due to

decreased oxygen solubility and increased water-column stratification (Keeling et al., 2010;

Helm et al., 2011; Schmidtko et al., 2017). Global warming also causes changes in respiration,

ocean circulation and wind patterns, which affect the development of OMZs (Levin, 2018).

Declining O2 concentrations greatly impact marine ecosystems, with consequences for fisheries

and the global economy. There is thus a pressing need to better understand future OMZs

distribution and biogeochemistry.

This Research Topic presents 14 original research articles with the goal of reviewing

current knowledge on OMZ biogeochemistry, the impact of climate change and global

warming on OMZ expansion, and novel approaches informing future research directions.
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Several contributions to the Research Topic (6 out of 14

manuscripts) cover temporal variability in distribution and volume

of OMZs, in both the past and present. Soetaert et al. investigated the

mechanisms causing deep-water renewal events in Saanich inlet, a

seasonally anoxic basin in British Columbia, Canada, which serves as a

natural laboratory to understand OMZs. They found that these events

were characterized by a complex layering of water masses with different

densities and controlled by a combination of easily predictable (tidal

current speeds) and less predictable (the intensity of coastal

upwelling) factors.

Muñoz et al. showed a strong temporal variability of the upper

part of the OMZ along the Chilean continental margin over the last

2000 years using redox-sensitive metals and d15N from sediment

cores. The OMZ was more intense before 1400 AD, then

oxygenated waters mostly prevailed afterward, including for the

last 50 years, except between 1925 and 1970, corresponding with

low amplitude of the Pacific Decadal Oscillation and reduced El

Niño Southern Oscillation (ENSO). Additionally, Pizarro-Koch

et al. observed a strong temporal variability of the subtropical

OMZ off central Chile using a coupled physical-biogeochemical

regional model during a period dominated by two cold La Niña

events (2001 and 2007). Changes in oxygenation were attributed to

transport of waters by the oxygen poor Peru-Chile undercurrent,

quasi-zonal jets, and mesoscale eddies.

The mechanism explaining the geographic decoupling between the

highly productive western boundary and the OMZ in the northeastern

part of the Arabian Sea is still a topic up for debate (e.g., Kim et al.,

2001; Sarma, 2002; McCreary et al., 2013; Sarma et al., 2020). Zhang

et al. attributed this decoupling to the region’s ocean circulation and its

impact on particle flux. Their model showed enhanced ventilation from

the northward circulation of oxygen-rich intermediate waters in the

west as well as transport of particulate organic matter (POM) from the

productive western region toward the eastern part of the Arabian Sea

during summer. Future oxygen evolution in response to climate change

in the Arabian Sea is unclear, with contrasting Earth System Model

simulations, such as in Vallivattathillam et al., predicting shrinking of

the OMZ and other studies observing an expansion (e.g., Lachkar et al.,

2019; Lachkar et al., 2021). The findings by Vallivattathillam et al. show

the importance of correcting model biases using observational data,

especially in regions where local forcing dominates. Lachkar et al.

further reviews the current literature on the recent and future evolution

of the Arabian Sea OMZ. They discuss the reasons for observed

discrepancies in model projections, challenges to predict changes and

next research directions.

OMZs greatly impact biogeochemical cycling, with 6 out of 14

submitted manuscripts focused on this topic. Aldunate et al. found that

the secondary chlorophyll maximum (SCM) significantly contributed

to the particulate organic carbon (POC) pool in the Eastern Tropical

North and South Pacific. The SCM develops just below the oxycline in

the anoxic portion of OMZs, where nutrient concentrations are

generally elevated and light intensity only 1% of incident light. The

d13C of the POC was enriched by up to 3‰ in the SCM, mostly

reflecting net heterotrophy. More depleted d13C of POC in the absence

of a SCM was attributed to the dominance of chemoautotrophic

bacteria (e.g., anammox and sulfur-oxidizing bacteria). Further,
Frontiers in Marine Science 02
Henrıq́uez-Castillo et al. showed, using metagenomics, that

gammaproteobacteria of the genus Alteromonas are abundant in

suboxic waters, peaking at the SCM and significantly impacting

carbon cycling in OMZs.

Low-O2 concentrations in OMZs are the on-switch for hypoxic

and anaerobic processes such as nitrogen loss by denitrification and

anammox. Up to 30-50% of fixed nitrogen loss occur in OMZs,

which represent only 0.1% of total oceanic volume, and affects

global marine primary productivity on longer time scales (Codispoti

et al., 2001; Gruber and Galloway, 2008; DeVries et al., 2012;

Eugster et al., 2013). Chuang et al. used a biogeochemical model

in the Benguela Upwelling System and showed the significant role

of large sulfur bacteria for benthic nitrogen (and possibly

phosphorus) fluxes to the water-column. Denitrification rates

were over two times higher than DNRA (dissimilatory nitrate

reduction to ammonium) in the presence of these bacteria. Dale

et al. used benthic chamber measurements and a numerical model

to investigate sedimentary oxygen, carbon, and nutrient fluxes, with

a focus on nitrogen, in the Mauritanian upwelling OMZ. The

authors estimated a larger net benthic isotope effect of nitrogen

loss compared to other marine oxygenated environments, with

possible implications for our understanding of the global marine

nitrogen budget.

Conversely, OMZs also provides suitable conditions for N2-

fixing organisms, since the key enzyme involved in this process,

nifH, coding for the Mo-Fe nitrogenase, is inhibited at high oxygen

levels. There is however an increasingly recognized discrepancy

between low N2 fixation rates and high diazotrophic diversity in

OMZs (Jayakumar and Ward, 2020), including the Northern

Benguela Upwelling System (NBUS; Reeder et al.). Reeder and

Löscher further explore the causes of this discrepancy by looking at

alternative types of nitrogenase, which have been overlooked in

previous studies: the Fe-Fe nitrogenase Anf and the V-Fe

nitrogenase Vnf. Diazotrophs with the genetic potential for using

these alternative nitrogenases were detected in metagenomes and

transcriptomes of OMZs off Peru, the Bay of Bengal and Saanich

Inlet. The authors suggest that, while these alternative nitrogenase

genes are likely not active in present OMZs due to low trace metal

concentrations, their role for N2 fixation might change under future

climate scenarios.

Finally, greenhouse gas production, e.g., nitrous oxide and

methane, is enhanced under hypoxic and anoxic conditions,

accelerating global warming, putatively creating a positive

feedback loop for ocean deoxygenation. Bourbonnais et al.

present a N2O concentration, stable isotopic composition, and

isotopomer dataset of unprecedented high spatial and depth

resolution in the eastern Pacific Ocean. Different N2O sources

were identified under different oxygen regimes, with the largest

N2O accumulations mostly from denitrification at low oxygen

concentrations near the oxycline.

Future research directions emerge from the topics covered in

this Research Topic. Novel approaches, such as long-term

monitoring using sensors installed on autonomous platforms,

which is the goal of programs such as Biogeochemical Argo

(BGC-ARGO) or Ocean Observatories Initiative (OOI), will allow
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increasing spatial and temporal resolution and extent of

observations (e.g., Margolskee et al., 2019; Kwiecinski and Babbin,

2021). In this context, 1 manuscript in the Research Topic (McNeil

et al.) presents a gas tension device to study denitrification in the

anoxic core of the Eastern Tropical North Pacific OMZ. This device

measures total dissolved gas pressure, which allowed obtaining the

first autonomous biogenic N2 profiles in the open ocean. This high-

resolution data is necessary to validate numerical models and better

understand the evolution of OMZs in the past and future in relation

to climate change and global warming. Further, in-situ microbial

ecology approaches (e.g., Edgcomb et al., 2016) could help better

understand biogeochemical cycling and pathways in OMZs and

resolve current unknowns, such as the paradigm regarding N2

fixation in low-oxygen environments.
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