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ABSTRACT

Automatic medical image segmentation is one of the main tasks for many organs and pathology structures
delineation. It is also a crucial technique in the posterior clinical examination of brain tumors, like
applying radiotherapy or tumor restrictions. Various image segmentation techniques have been proposed and
applied to different image types. Recently, it has been shown that the deep learning approach accurately
segments images, and its implementation is usually straightforward. In this paper, we proposed a novel
approach, called PU-NET, for automatic brain tumor segmentation in multi-modal magnetic resonance images
(MRI). We introduced an input processing block to a customized fully convolutional network derived from
the U-Net network to handle the multi-modal inputs. We performed experiments over the Brain Tumor
Segmentation(BRATS) dataset collected in 2018 and achieved Dice scores of 90.5%,82.7%, and 80.3% for
the whole tumor, tumor core, and enhancing tumor classes, respectively. This study provides promising results
compared to the deep learning methods used in this context.
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INTRODUCTION

Gliomas are among the most life-threatening forms
of cancer affecting the human brain or spinal cord.
They are a common type of primary brain tumors,
mainly growing in the glial cells, which adjoin
neurons and provide nourishment and protection,
unlike metastasis cancers, which grow anywhere in the
body and spread to the brain.

Gliomas are typically classified into two
categories: low-grade gliomas and high-grade gliomas.
Low-grade gliomas are benign tumors characterized by
a slow growth rate and regular morphological shapes in
the outward appearance. This category can be treated
surgically in the case of early diagnosis, and the
survival rate may reach up to 10 years. However, it can
be recurrent and grow again if regular examinations
and safety precautions are not applied. They may
spread and become life-threatening. Whereas high-
grade gliomas are more aggressive and still considered
untreatable because of their fast-growing, complete
restriction is impossible because of their irregular
contours in the morphology shape, which means
tumor cells quickly affect random nearby healthy
cells. Some treatment options are often available
after surgeries, such as radiotherapy, chemotherapy,
or combined approaches. These tumors have a high
recurrent probability and a poor survival rate of 2 to

5 years (Bush and Chang, 2016; Menze et al., 2015;
Moini and Piran, 2020; Recht and Bernstein, 1995).

Early detection and accurate delineations are
crucial for any cancer type, mainly brain tumors, to
apply treatments correctly, reduce mortality rates, and
ensure good patient quality of life. For this, different
imaging modalities are used. These include Magnetic
Resonance Imaging (MRI) or Computed tomography
(CT) to detect these abnormal masses. MRI is currently
the best non-invasive diagnostic tool for gliomas
due to its potential in soft tissue imaging based
on hydrogen atoms magnetization and its diversity
in imaging modalities, which exhibit complementary
information about tumor segments. It also provides
safe, three-dimensional(3D), high-resolution, detailed
anatomical structures without any radiation-related
concerns (Brandal G, 2018; Sharma et al., 2010).

In the past, specialists and radiologists performed
glioma segmentation manually, which is tedious, time-
consuming and greatly depends on human experiences
and skills. These are reasons that motivate automatic
segmentation. However, automatic segmentation is
challenging. Because the anatomy of patients have
many variations, the noise due to artefacts that may
occur during the acquisition phase may affect image
resolution and the low contrast between tissues, which
leads to the absence of well-precise bounds between
healthy brain tissues and abnormalities (Işin et al.,
2016; Withey and Koles, 2007).
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Over the years, several automatic medical image
segmentation techniques have been proposed and used.
However, they are not accurate enough compared
to manual segmentation. Therefore, developing
more robust approaches to segment images is
still a hot topic. Recently, deep learning with
convolutional neural networks gained significant
popularity as a segmentation technique for general
image segmentation applications (Minaee et al., 2021)
and is highly used for brain glioma segmentation. The
fully convolutional networks enable the localization
of pathological structures with high accuracy. They
outperform the traditional segmentation techniques.

In the last few years, brain tumor segmentation
has received great interest (Ghaffari et al., 2020), and
various challenges have been documented under the
BRATS title acronym for Brain Tumor Segmentation.
The majority of contributions involved the utilization
of deep learning techniques and achieved the top ranks.
For example, in BRATS 2017 release,(Kamnitsas
et al., 2018) proposed an approach that explores
multiple deep network architectures trained separately
and Ensemble prediction maps to construct the final
segmentation results; this achieved the first place
on the challenge. Cascaded neural networks with
anisotropic and dilated convolutions in the second
place introduced by (Wang et al., 2017), where the
cascaded design is used to segment the whole tumor
bounding box first, which was used to feed the
next model to segment the tumor core, and finally,
Enhancing the tumor is segmented with the same
process.

In BRATS 2018,(Myronenko, 2019) was the
first winner with its proposed 3D encoder-decoder
architecture, accompanied by a variational auto-
encoder part starting from the encoder endpoint.
It aims to reconstruct the original input image to
regularize the shared encoder. The second winner
was (Isensee et al., 2019), who proposed using 3D
baseline U-Net with minor modification and focused
on region-based prediction and a co-training process
that uses additional data. (McKinley et al., 2019)
was the third winner with its preposition, which
is a shallow network similar to the famous U-Net
architecture that uses a densely connected block
of dilated convolutions and introduces a new loss
function based on binary cross-entropy loss function
to calculate the label’s uncertainty. (Wang et al., 2019)
propounded a work to segment brain glioma structures.
It aims to use test time augmentation by augmenting
images with 3D rotation, flipping, scaling, and adding
noise to training and test images using different
underpinning 3D network structures to perform multi-
class segmentation and cascaded networks. (A.Albiol

et al., 2019)preferred to get inspired by the well-
known two-dimensional (2D) deep learning models
like VGG, inception2, inception3, and dense-like
models and extend them to 3D versions. All these
models were used to segment brain gliomas separately
in addition to a final ensemble result. (Rui Hua et al.,
2019) developed a cascaded 3D V-Nets framework to
handle the problem. The segmentation was performed
in a cascaded way where the whole tumor was
segmented first by three ensembled V-Nets. The
detected tumor is segmented to the other tumor parts
necrosis, edema, and enhancing tumor using two
ensembled V-Nets. (Kermi et al., 2019) proposed
four channels of 2D U-Net architecture to segment
gliomas and used residual blocks instead of plain
blocks in the original U-Net. To address the class
imbalance problem, Weighted Cross-Entropy (WCE)
and generalized Dice loss were used. (Marcinkiewicz
et al., 2019) suggested segmenting brain gliomas in 2D
two cascaded stages based on a convolutional neural
network inspired by U-Net, the first stage applied
to detect regions of interest and the second stage
used to perform multi-class classification. In the next
BRATS challenges 2019, the top-ranked approaches
(Jiang et al., 2020; McKinley et al., 2020; Zhao et al.,
2020) were also based on deep learning architectures.
Many additional proposed methods exist in (Crimi
et al., 2018; 2019)of different proposed 2D and
3D-based networks. Outside the BRATS challenge,
a multitude of research studies has explored deep
learning-based approaches (Akbar et al., 2022; Noori
et al., 2019; Zhang et al., 2020; Yogananda et al.,
2020), which have exhibited favourable achievements
too. These works often employ a 2D and 3D U-
Net architecture as a foundation and incorporate
customized enhancements.

The significant limitations of these existing works
are the increased computational complexity, high
memory requirements, and long-running time due
to using the 3D format and complex operations in
deep learning architectures like dilated convolutions
and residual blocks, which entail processing many
parameters.

This paper presents a study of applying a simple
and efficient deep learning approach to multi-modal
MRI images, called PU-NET, to segment images of
brain tumors. It is based on a two-dimensional (2D)
convolutional neural network using an updated U-
Net version and multi-view analysis and fusion. The
results are promising compared with the baseline and
existing technique. The rest of the paper is organized
as follows. Section 2 describes the proposed PU-
NET method. Experimental results, along with an
evaluation study, are reported in Section 3 and Section
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4, respectively. Finally, we conclude and provide
future directions in Section 6.

METHODOLOGY

In this work, we propose a deep-learning
architecture for brain tumor segmentation based on the
encoder-decoder aspect and inspired by the reputed
network used to segment biomedical images called
U-Net (Ronneberger et al., 2015)with significant
changes. This architecture is called PU-NET, which
refers to its two main parts: an input processing
part and a customized U-Net network part. They are
based on a central block known as a plain block. It
encompasses two consecutive convolution layers of
(3 × 3) kernel size with stride(1,1), each followed
by a Batch normalization layer added to ensure the
network data normalization and improve the training
convergence and speed, followed by a LeakyRelu layer
as an activation function with a slope α set to 0.01
Eq.1.

LeakyRelu(x) =

{
αx, if x < 0
x, if x ≥ 0

(1)

In contrast with the original proposition, all used
convolutions are padded to preserve and mitigate the
loss of information at the image borders. This loss is
significant as the pooling operation applied later will
induce information loss.

We also proposed using the LeakyRelu activation
instead of the Relu function in the original proposition
to prevent the dying Relu (Lu et al., 2019;
Mastromichalakis, 2020) problem that may happen
where most of the Relu Eq. 2 neurons only output zero
because of negative inputs during the learning process,
which may cause the inactivity of a significant part of
the network neurons and negatively affect the results.

Relu(x) =

{
0, if x < 0
x, if x ≥ 0

(2)

The input processing part handles the multi-modal
MRI scans quickly and efficiently. It consists of four
input layers, each for a specific modality 2D slice
(T1ce, T1, T2, Flair), each followed by a plain block to
extract relevant features from each modality separately
as a first step. Then, a concatenation layer is used to
merge the four outputs and transfer the output to the
U-Net part as the primary input.

The U-Net network part keeps the same divisions
as the original proposal (Ronneberger et al., 2015).

It comprises three parts: An encoder path(contracting
path), a decoder path(an expansive path), and a simple
bridge between them. The encoder path is similar to
the convolution neural network (CNN) feed-forward
pass. It contains three levels against four in the original
U-Net to alleviate the network’s training parameters
and reduce memory consumption, complexity, and
running time. Each level includes a plain convolution
block, except for the first one, where the concatenation
output replaces it, followed by a max-pooling layer
with stride two and a dropout layer that regularizes
the network to avoid over-fitting. This path is used for
extracting relevant features and capturing the context
of the input images to enable the segmentation task.

The expansive path is symmetric to the contracting
path in the number of levels, each comprising a stack
of layers. It starts with a padded convolution transpose
of (3× 3) kernel size with stride(2,2) used to recover
some loosed information in previous convolution
layers from the feature map. It is also followed by
a concatenation layer that merges the output of the
convolution plain block in the contracting side with
the corresponding output of the convolution transpose
to get more information about the spatial resolution
after a convolution plain block is applied, followed by
a dropout layer. The two paths are related by a bridge,
which is a plain block.

Finally, a (1 × 1) convolution with sigmoid
activation is applied to generate the output
probabilities for the segmentation map. Figure 1
exposes the detailed PU-NET architecture layers.

EXPERIMENTAL RESULTS

DATASET PRE-PROCESSING

In this study, we propose to use the brain tumor
segmentation (BRATS) dataset 2018 version (Bakas
et al., 2017; 2018; Menze et al., 2015), which includes
two main files named Training and Validation data.
The training data contains MRI images of patients
diagnosed with high-grade and low-grade gliomas
(Glioblastoma). Each patient file encompasses four co-
registered MRI modalities: native pre-contrast (T1),
post-contrast T1-weighted (T1ce), T2-weighted (T2),
and T2 Fluid Attenuated Inversion Recovery (FLAIR)
in addition to the manual segmentation file where
all pixels were segmented into four classes with four
rates (0, 1, 2, 4) summarized in Table 1. The data
was acquired with different clinical protocols and
scanners at 19 institutions. All BRATS multi-modal
scans are available as Nifty files (.nii.gz), and they are
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Fig. 1: The PU-NET model architecture used to segment brain tumor structures

pre-processed: co-registered to the same anatomical
template interpolated to the exact resolution (1mm3)
and skull-stripped. Table 1 below summarizes the
dataset information:

Table 1: The MICCAI BRATS 2018 Data Training
information

MICCAI BRATS 2018 Data Training
Gliomas grade (HGG) (LGG)
Number of patients 210 75
Modalities T1, T1CE, T2, FLAIR
Dimension (240,240,155)
Format Nifty (Nii.gz)
Ground truth Available

Labels

0 =background and
healthy tissue
1= Necrotic /non-enhancing
(NCR/NET).
2= Peritumoral edema (ED)
4 =Enhancing tumor (ET).

Normalizing the data is an essential step in all
machine learning tasks to avoid dominating some
features by others and gain the correct information
from all relevant features. In our case, we propose
to use z-score normalization (Pal and Sudeep, 2016;
Reinhold et al., 2019) to get a normal distribution of all
voxels in each image modality by computing the mean

and standard deviation only for the brain region (non-
zero part). (Weninger et al., 2019) and update each
voxel value by a new value computed by Equation 3.

Z =
v−µ

σ
(3)

Where v is the voxel value and µ,σ are the voxels’
mean and standard deviation, respectively.

IMPLEMENTATION DETAILS
Our deep learning proposed approach was

implemented using python3 over the Tensorflow
Keras library and executed on the UB2-HPC
(University of BATNA 2) GPU node, which contains
4 GPUs configured with CUDA 10.0 and CUDNN
5.6.7. In our case, the official BRATS training
data (MICCAI BRATS 2018 Data Training) was
randomly split into Train set 80% and Valid set
20% with 42 as a random state to build the model,
which is later tested over the official validation set
(MICCAI BRATS 2018 Validation Data), provided
by the organization of 66 patients without Ground
truth, which is used in our case as a test set.

Table 2: The PU-NET Model used datasets
Datasets # of patients Data source
Train set 228 BRATS Training Data (80%)
Valid set 57 BRATS Training Data (20%)
Test set 66 BRATS Validation Data
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To obtain results that are more significant in a
very efficient way, we proposed resolving the problem
as a binary segmentation problem rather than multi-
class segmentation, where we turned the original label
classes to the proposed classes in the challenge, we
trained the model for each class separately, and the
results were fused. The new classes are exhibited in
Table 3.

Table 3: The segmentation Classes

New Class Labels
Whole Tumor (WT) (NCR/NET 1 +edema 2

+Enhancing Tumor 4)
Tumor Core (TC) (NCR/NET 1

+Enhancing Tumor 4)
Enhancing Tumor (ET) Enhancing Tumor 4 label

We also propose to use this training process over
the three MRI views (Axial, Coronal, and Sagittal)
separately and ensemble the results over models to
ensure the collection of the 3D contextual information.
All image modalities and their corresponding ground
truth were cropped from (240,240,155) size to
(128,128,128) with the following indices [56:184,
56:184, 12:140] to reduce memory consumption. Table
4 shows our network parameters:

Table 4: PU-NET network parameters

Parameters Values
Views Axial/Coronal/Sagittal
Training Samples 29184
Validation Samples 7296
Initial filters N° 16
Batch size 32
Epochs 200
Dropout rate 0.4
Early stopping Active (patience epochs=10)
Model checkpoint Active
Optimizer Adam (default)

Where: Initial filters N° represents the number of
convolution kernels, which doubles for each encoder
plain block and halved for each decoder plain block
and transposed layer. Batch size is the number of
training samples used in one iteration. Epochs are the
number of times the algorithm trains over all samples.
The dropout rate is the proportion of randomly selected
nodes set to zero with early stopping used to stop
the learning process if the validation dice score didn’t
improve after ten patience epochs and the Model
checkpoint active to save the best model with the best
validation dice score, all used to prevent over-fitting.
Finally, the Adam optimizer with default parameters
was used to fine-tune the network weights.

EVALUATION METRICS
All evaluation metrics used are those proposed by

the challenge organization (Menze et al., 2015). The
evaluation metrics used are Dice Score, Sensitivity,
Specificity, and Hausdorff 95 distance; those
metrics are highly recommended for medical image
segmentation(Taha and Hanbury, 2015; Huttenlocher
et al., 1993). Most of the time, the healthy tissue pixels
are larger than the tumor’s ones, which means that
the data suffer from the class imbalance distribution
problem, which prevents the right learning and leads
the model to learn only about the frequent class label
where the image segmentation problem focuses on
the infrequent class(Small and Ventura, 2017). All
these metrics are well-adapted to address the class
imbalance problem in such cases. They only consider
the segmentation class and not the background
class(Jadon, 2020),

EXPERIMENTAL RESULTS

Table 5 exhibits the results of our PU-NET
approach on the training, validation, and test data
respectively (Table 2) with the proposed evaluation
metrics in section 3.3. The results are also reported
over the MRI views separately in addition to the
validation and Test ensemble (Ens) results realized
by multi-view label fusion using majority voting,
proving the efficiency of the multi-view exploration
and fusion in improving the result. The ensembled 5-
fold validation result is also reported. it is important to
note that all Test results were collected from the online
submission system CBICA server https://ipp.
cbica.upenn.edu/ which is an Image Processing
Portal available for authorized users to access
the Center for Biomedical Image Computing and
Analytics computing cluster and imaging analytics.

The following Fig. 2 exhibits some examples
from the test set Table 2 segmented by our PU-NET.
Colours in the figure refer to labels in table 1: red: label
2, Green: label 1, blue: label 4.

PU-NET AGAINST BASELINE
TECHNIQUES
In this section, our primary goal is to evaluate the

effectiveness of our 2D PU-NET model by specifically
examining the impact of the input processing block.
We compare baseline techniques that propose different
approaches for processing multi-modal MRI data.

The first baseline technique involves stacking each
corresponding slice from each modality (T1ce, T1,
T2, and Flair) as RGBA color images. These stacked
images are provided directly to the U-Net part of our
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Table 5: PU-NET training, validation, and Test Results.

Metrics Dice HD95(mm) Sensitivity Specificity

Training

Classes WT TC ET WT TC ET WT TC ET WT TC ET
Axial 0.927 0.934 0.877 3.524 2.388 1.913 0.922 0.935 0.885 0.953 0.979 0.991
Coronal 0.924 0.918 0.864 3.579 2.448 1.954 0.933 0.921 0.895 0.951 0.979 0.990
Sagittal 0.937 0.910 0.880 3.636 2.564 1.958 0.933 0.923 0.893 0.952 0.979 0.991

Validation

Axial 0.917 0.806 0.859 3.388 2.323 1.756 0.908 0.792 0.836 0.950 0.981 0.993
Coronal 0.918 0.835 0.861 3.423 2.339 1.792 0.921 0.830 0.861 0.949 0.981 0.992
Sagittal 0.916 0.812 0.857 3.496 2.433 1.800 0.910 0.805 0.837 0.950 0.981 0.992
Ensemble 0.925 0.839 0.868 3.546 2.360 1.771 0.920 0.820 0.849 0.950 0.981 0.992

Test

Axial 0.890 0.791 0.781 15.912 12.288 6.231 0.907 0.807 0.810 0.993 0.997 0.997
Coronal 0.889 0.787 0.782 12.134 18.774 11.002 0.923 0.811 0.821 0.991 0.996 0.997
Sagittal 0.894 0.792 0.776 11.174 13.732 3.486 0.917 0.829 0.803 0.992 0.996 0.997
ensemble 0.904 0.815 0.803 5.054 7.732 3.019 0.924 0.817 0.820 0.993 0.997 0.997
5-fold 0.905 0.827 0.803 4.638 8.679 3.573 0.921 0.817 0.815 0.993 0.997 0.998

proposed model as input without utilizing the input
processing block.

The second baseline technique involves providing
the multi-modal MRI data in the 3D format to the PU-
NET architecture. This means the data is preserved
in its volumetric structure instead of processed as 2D
slices. Additionally, the architecture operations are
modified to accommodate the 3D format.

Fig. 2: Segmentation result of the brain tumor
structures by the Proposed PU-NET on three different
patients.

The results obtained in Table 6 provide
compelling evidence that our PU-NET model performs
exceptionally well when compared to stacking slices
as RGBA color images. These results further validate
the efficiency and effectiveness of our input processing
block.

However, it is worth noting that the 3D version
of our model exhibits some drawbacks. Specifically, it
requires a significantly longer training time, exceeding
20 hours under GPU for each class label. In contrast,
our 2D PU-NET model takes a maximum of 1 hour for
execution. Furthermore, the results obtained from the
3D version diverge significantly from those of our 2D
PU-NET model, particularly in the TC and ET classes.

PU-NET AGAINST EXISTING METHODS
In this section, table 7 summarizes the results

of the state-of-the-art techniques that refer to the
currently existing approach or method that has
achieved high performance in the field to compare
them against our PU-NET results to analyze the
strengths and weaknesses of both methods and
determine if our approach outperforms state-of-the-art
or provides any notable improvements.

DISCUSSION

From Table 7, our proposed method PU-NET
outperforms the 2D approaches in terms of both Dice
and Hausdorff95 metrics. While it is not away from the
top-ranked approaches in the BRATS 2018 challenge
and this is due to the fine parameters tuning; it is
important to consider, too, that (Myronenko, 2019),
(Isensee et al., 2019), and (McKinley et al., 2019)
utilized data augmentation techniques and additional
data in the co-training process. In contrast, our work
did not incorporate any additional or augmented data.
Furthermore, when computing the statistical p-values
between the dice scores, we found values of 0.61,0.72
and 0.66, respectively, suggesting that the results are
not highly significant compared to our findings.

Regarding (Wang et al., 2019), our 2D
approach outperformed all of their proposed 3D
architectures with data augmentation, except for
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Table 6: PU-NET versus baseline technique

Metrics Dice HD95(mm) Sensitivity Specificity
Classes WT TC ET WT TC ET WT TC ET WT TC ET
Axial 0.891 0.786 0.761 8.210 14.113 5.584 0.909 0.800 0.798 0.992 0.996 0.998
Coronal 0.892 0.793 0.761 13.670 18.720 12.491 0.918 0.795 0.816 0.992 0.997 0.997
Sagittal 0.890 0.789 0.724 11.597 18.722 10.457 0.918 0.800 0.815 0.992 0.996 0.997
RGBA(Ens) 0.903 0.801 0.772 5.442 6.996 3.967 0.921 0.766 0.781 0.993 0.998 0.998
3D PU-NET 0.884 0.710 0.734 7.898 28.930 29.695 0.911 0.780 0.750 0.980 0.980 0.982
PU-NET 0.905 0.827 0.803 4.638 8.679 3.573 0.921 0.817 0.815 0.993 0.997 0.998

Table 7: PU-NET and state-of-the-art techniques comparison results

Method type DICE HD95(mm)
WT TC ET WT TC ET

(Myronenko, 2019) 3D 0.910 0.866 0.823 4.51 6.85 3.92
(Isensee et al., 2019) 3D 0.912 0.863 0.808 4.27 6.52 2.41
(McKinley et al., 2019) 3D 0.903 0.847 0.796 3.55 4.17 4.93

(Wang et al., 2019)
3D U-Net+ TTA 0.873 0.783 0.754 5.90 8.03 4.53
3D WNet+TTA 0.895 0.730 0.770 4.92 11.13 4.44
3D Cas+TTA 0.902 0.858 0.797 6.18 6.37 3.13

(A.Albiol et al., 2019)

3D VGG 0.872 0.760 0.751
3D inception2 0.877 0.773 0.753
3D inception3 0.873 0.776 0.781
3D Densely 0.874 0.755 0.729
Ens 0.881 0.777 0.773

(Rui Hua et al., 2019) 3D 0.904 0.836 0.776 5.17 6.27 3.51
(Akbar et al., 2022) 3D 0.895 0.797 0.777 9.13 8.67 3.90
(Yogananda et al., 2020) 3D 0.900 0.820 0.800 6.0 7.5 4.4
(Kermi et al., 2019) 2D 0.868 0.805 0.783 8.12 9.84 3.72
(Marcinkiewicz et al., 2019) 2D 0.898 0.811 0.751
(Noori et al., 2019) 2D 0.895 0.823 0.813 4.05 6.34 2.93
(Zhang et al., 2020) 2D 0.872 0.808 0.772 5.62 8.36 3.57
PU-NET 2D 0.905 0.827 0.803 4.63 8.67 3.57

the cascaded architecture, which exhibited slightly
better performance than our PU-NET in TC class
segmentation, similar to the findings of (Rui Hua
et al., 2019). However, it is important to note that the
p-values of 0.87 and 0.90 suggest these differences
are not statistically significant. Moreover, our PU-
NET approach demonstrated greater efficiency than
the extended architectures proposed by (A.Albiol
et al., 2019), which are among the popular deep
learning architectures used in the context of image
segmentation, both (Akbar et al., 2022; Yogananda
et al., 2020) works which are out of the BRATS
2018 challenge proposed 3D-based architectures with
complex U-Net designs. Still, our results surpass them
and support our the idea that sometimes complex
architectures and using 3D format can increase the
computational complexity without necessarily being
efficient, so it is justifiable to shift the research focus
towards 2D simple architectures.

In our perspective, the strength of our PU-NET

model lies in incorporating the input processing
block as an initial separate feature extractor for
each MRI modality. It serves as a robust mechanism
for integrating the multi-modal complementary
information and improving the tumor segmentation
accuracy. In addition, the simplicity of our U-Net
architecture part and the use of 2D slices address
major limitations in deep learning-based approaches,
specifically regarding time and memory requirements,
which are advantageous when working with large-
size medical datasets. As with any approach, there
are certain limitations associated with our proposed
method; the input processing block in our approach
is specifically designed to handle datasets with multi-
modal images. While this benefits such datasets, it
may not be suitable or optimal for datasets with
single-modality images. Similar to other deep learning
architectures, the interpretability of our approach is
limited. Deep learning models, including our PU-NET,
often function as complex black boxes, challenging
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understanding of the underlying decision-making
process. Interpretability is an ongoing area of research
in deep learning, and further efforts are needed
to enhance the transparency and explainability of
models like ours. Indeed, while our approach may
have limitations, it is important to recognize that its
performance remains competitive. The results obtained
with our 2D PU-NET architecture demonstrate
promise and suggest potential avenues for further
improvement in future research.

CONCLUSION

This study investigated a novel approach inspired
by the reputed U-Net architecture to tackle the brain
tumor segmentation problem from multi-modal MRI
images called PU-NET. We introduced an input
processing block to an updated U-Net that deals with
multi-input 2D images collected from the different
modalities. We suggested exploring this task in the
three MRI views coronal, sagittal, and axial and
aggregating the final predictions to generate the final
segmentation and benefit from the 3D contextual
information. The results were later compared against
the RGBA and the 3D versions and verified against the
existing works where our method achieved interesting
results, and using data augmentation and additional
training data seemed to be the next verified steps with
our method for more results enhancement.
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