
 

83 

 

J.Thi-Qar Sci           Vol.1 (4)                          May/2009          
 

 ISSN  1991- 8690                                                                             1661  - 0968 الترقيم الدولي  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enhancing the LR Parsing Strategy 

 Using Incremental GPLR Parsing Method 

 

Mouiad Abid Hani    Methaq Ibraheem Hashim
 

 

Department of Computer Science - College of Education 

Thi-Qar University 

 

Abstract 

Parsers in modern integrated development environments (IDEs) for general-

purpose languages are virtually all of ad hoc, recursive descent variety. While such 

parsers have many disadvantages when compared with machine-generated LALR(1) 

parsers but they have two major good qualities: they are not restricted to any finite of 

lookahead, and in IDE, they can re-parse parts of a file as they change rather than re-

parsing the entire file. Theoretically, both of these two capabilities can be achieved 

through variations of the traditional LR parsing techniques, but the traditional LR 

parsing methods still suffer two irresolvable problems; which are shift-reduce and 

reduce-reduce conflicts. In this research, we are trying to solve these two drawbacks 

with preserving the capabilities of the traditional LR parsing techniques. This has 

been achieved by employing the generalized piecewise LR parsing (GPLR) technique 

instead of the traditional LR techniques. 
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1.Introduction 
 Knuth’s discovery of the LR in 1964 became one of the most significant 

contributions of the formal language theory to software engineering. Being applicable to 

every context free grammar (CFG) and working in linear time, this algorithm possessed 

exactly the qualities in demand by the compiler industry, which ensured quick 

recognition and continued work in this direction [1]. Parsing is the linear structuring 

process achieved on sentences to know their belonging to a specific grammar. There are 

several reasons to perform this structuring process called parsing: 

1. The first reason derives from the fact that the obtained structure helps us to process 

the object further. When we know that a certain segment of a sentence in German is 

the subject, that information helps in translating the sentence. Once the structure of a 

document has been brought to the surface, it can be converted more easily [2]. 

2. A second is related to the fact that the grammar in a sense represents our 

understanding of the observed sentences: the better a grammar we can give for the 

movements of bees, the deeper our understanding of them is [2].  

3. A third lies in the completion of missing information that parsers, and especially 

error-repairing parsers, can provide. Given a reasonable grammar of the language, 

an error-repairing parser can suggest possible word classes for missing or unknown 

words on clay tablets [3]. 
 

There are number of ways by which this linear structuring process achieved. First an 

attempt to construct the parse tree can be initiated by starting at the root and proceeding 

downward toward the leaves. This method is called top-down parse. Alternatively, the 

completion of the parse tree can be attempted by starting at the leaves and moving 

upward toward the root. This method is called bottom-up parse [4]. 

 

Example: Let the grammar is as shown below, and the string to be parsed, w=aabbbcc, 

see figure (1) in the appendix to get more information about the difference between top-

down parsing and bottom-up parsing methods concerning the string w [5]. 

 

T → R 

T → aTc          grammar (1)           

R →  

R → RbR 
 

2.Related Works 

 Jane C. Hill and Andrew Wayne [8] outlined two different approaches for 

adapting the CYK algorithm to message-passing based parallel environment. Their first 

approach was to first distribute the grammar and string to be parsed among the 

processors, using a separate processor for each of the columns in the CYK table. Adrian 

Johnstone. Elizabeth Scott [9] has presented a new bottom-up nondeterministic parsing 

algorithm Generalized Reduction Modified LR Parsing (GRMLR) that combines a 

modified notion of reduction with a Tomita-style breadth-first search of parallel parsing 

stack. In his thesis, Jeffery L. Overbey [10] has proved that Celenato’s technique can be 

applied to GPLR parsers, despite their use of unbounded lookahead; furthermore, this 
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does not require a change to either algorithm, this result is prefaced by intuitive 

development of LR and GLPR parsing algorithm and Celenato’s construction.  
 

3.Foundations of Generalized piecewise LR(1) Parsing:GPLR(1)Parsing 

3.1 Shift-Reduce Parsing  

 The shift-reduce parser for a grammar is conceptually simple, but it is not used in 

practice because it is nondeterministic. The LR is more sophisticated variation of the 

shift-reduce parsing technique which eliminates this nondeterminism. Conceptually, the 

parser still shifts the symbols onto its stack and reduces them, but it is augmented with a 

state machine which controls its action. This state machine, coupled with the ability to 

look ahead at a finite prefix of the remaining input, guarantees that, at any point, the 

decision to shift or reduce by a particular production uniquely determined [5, 10].  

 

Example: Suppose we have the balanced parentheses grammar: 

 

S → (S) 

S → ( )          grammar (2)                 

S → SS 
And the input string is (( )) ( ). The shift-reduce parser behaves as follows: symbols that 

are about to be popped because they match the right-hand side of a production are 

underlined; the nonterminal replacing them is displayed in boldface in table (1) [2]. The 

shift-reduce parser for a grammar is conceptually simple, but it is not used in practice 

because it is nondeterministic. The LR is more sophisticated variation of the shift-

reduce parsing technique which eliminates this nondeterminism. Conceptually, the parser 

still shifts the symbols onto its stack and reduces them, but it is augmented with a state 

machine which controls its action. This state machine, coupled with the ability to look 

ahead at a finite prefix of the remaining input, guarantees that, at any point, the decision 

to shift or reduce by a particular production uniquely determined, see table (1) [5, 6 ].  

 

3.2 LR(0) Parsing 

 Although few useful grammar are LR(0), the construction of the LR(0) parsers 

can be the basis and the cornerstone of the construction for the more complicated parsers 

such as LALR(1), LR(1), and GPLR(1). LR(0) parser require no lookahead from the 

unexpected input string in order to make decision [4, 10]. The technique is called LR(0) 

parsing; the “L” is for left-to-right scanning of the input string, the “R” is for constructing 

the right-most derivation in reverse, and ‘0’ is for no lookahead needed [7]. The most 

fundamental difference between the shift-reduce parser and the LR(0) parser is addition 

of Deterministic Finite State Machine(DFSA). While the basic shift-reduce parser 

decides what action to take (shift or reduce by a particular production) based solely on the 

contents of the parser’s stack in the LR(0) paring algorithm, this action is determined by 

the state of this machine. The state changes: 

 As the inputs are read. 

 When reduction is performed. 

Now, let's show how to construct this DFSA, and we will do that by an example as 

follows: 
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Example: 

 

A → aA 

A →B  grammar (3) 

B → bb 
 

Which accepts the language a
*
 bb. When a parser starts, then, it expects to see a 

derivation of the input from the start symbol (in this case A) [6]. Since the two A-

production in the grammar are A → aA and A →B, this means the first thing it should 

expect to see is either an aA or B. Let us use  

 

A → .aA 

A →.B 

   B →. bb 
 

to indicate this, If we next need to shift the symbol a, we would use [A → a, A] to 

indicate this new situation, by the same way, the dot indicates where the parser is in 

matching the right-hand side of the production. When the symbol after the dot is terminal, 

like a, the meaning is obvious: The next symbol in the input should be exactly that 

symbol. But what does it mean for a parser to expect a nonterminal like B, since there are 

only terminals in the input string? Effectively, it means the parser should expect anything 

derivable from B this means the parser may also see bb at this point since B → bb, so B 

→ bb should also be included in the state, i.e., the set of items describing the state of the 

parser. Now we add a new production not already within our grammar to remedy the 

returning back to our initial state, so the new CFG will be [11]: 

  

   S
/
 → A#. 

A → .aA                   

A →.B 

   B →. bb 
 

Continuing by this manner according to algorithm, we will get the DFSA shown in 

figure (2) and the parse of the input string after padded it with # at the end, so it will be 

w=aaabb#, knowing that the bottom of the stack also contains the symbol #, and this is 

to know when to stop parsing. See table (2) for full parsing of this string according to 

LR(0) algorithm [7]. The only drawback of LR(0) is its inability to insight the source 

input string which makes its work-limited [10]. In addition to storing shifted symbols on 

the stack, it is also needed to store what state the parser was in after the symbol was 

shifted. We will write these symbol-state pairs as 









q

X
, where X is the symbol and q is 

the state. At the beginning of the parse, we will place 









0

#

q
on the stack so that we have a 

record of the initial state [7, 10] 
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3.3 LR(1) Parsing 

In LR(1) parsing method, the need to insight one symbol of the input stream 

make us calculate the  FOLLOW sets for each nonterminal and since the FOLLOW 

computation needs us to know the FIRST set for each of them, we will give the full 

details about computing these sets [7, 10].   

 

Follow sets computation algorithm 
There is a Follow set for each variable symbol. Follow(A) contains the set of 

terminals (not including λ) that could appear immediately after the variable A in some 

derivation. 

 

 begin  

   put # in follow(S), where S is the start variable (start symbol) 

   repeat until no changes to any follow sets 

   Iterate over each rule R of the grammar 

   If R = A → α B β then 

       add first (β) to follow(B), excluding λ, if it is in First (β) 

   If (R = A → α B) or (R = A → α B β) and First (β) contains (λ) then 

       add Follow(A) to Follow(B) 

end 

 

Computing the FIRST sets algorithm 

There is a first set associated with each variable symbol (some versions associate 

a First set with every symbol, variable or terminal, in the grammar). First(A) contains the 

set of terminal symbols, plus λ, that may start strings produced by A. 

              begin 

       repeat until no changes to any First sets 

        If A is nullable, add λ to First (A)  

  If A → a γ, where a is a terminal, add a to First(A) 

        If A → X1X2 … Xn, then 

      Compute the value i such that 0 ≤ i ≤ n and X1X2 … Xi are all nullable  

         add First(X1)   First(X2) … First (Xi) to First (A) 

         If  i < n then add First(Xi+1) to First(A) 

        end  

 

Constructing of the set of items of LR(0) items algorithm  
The procedures closure, goto and the main routine items construct the set of  tems:   

 

Function closure (I) 

 begin 

    J=I 
    repeat 

      for each item A → α ∙ B β in J and each production  

             B → γ of G such that B → ∙ γ is not in J do 
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                  add B → ∙ γ to J  

    until no more items can be added to J 
  end 

 

Function goto(I, X) 

begin 

   C:= {closure {[S
/
 → .S, #]}}; 

   repeat 

      for each set of items I in C and each grammar symbol     

     X such that goto (I, X) is not empty and not in C   do 

     add goto (I, X) to C 

  until no more sets of items can be added to C. 
end 

 

Procedure Items (G
 /
) {G

/
 is the augmented grammar of G} 

begin 

    C ={closure ({[ S → ∙S]})} 

    repeat 

        for each set of items I in C and each grammar symbol X  

        such that goto (I, X) is not empty and not in C do 

        add goto (I, X) to C  

    until no more sets of items can be added to C 

end 

 

The LR(1) DFSA is constructed as follows:  

1- The initial state is closure({[S
/
→ ∙S, #]}), where: 

2- Given a set I of LR(k) items, the closure(I) is defined recursively as the smallest 

set satisfying:  

 

ClosureLR(I)= I   {[B →∙ γ, first(βw)] | [A → α ∙ Bβ,w]  closureLR(I) and B 

→ γ  P}. 
 

3- In a given state q, there is an item [A → α ∙X β, w], then there is also a state q
/
 = 

gotoLR(q,X) and there is a transition from q to q
/
 on symbol X. 

4- The function gotoLR is defined to be the smallest set satisfying:  

gotoLR(q, X) = closureLR( { [A → α X∙ β, w] | [A → α ∙X β, w]  q }). 
 

5- The accepting state is the (unique) state containing [S
/
 → S∙ ,# ]. 

 

Therefore, the parser is driven by two functions actionLR and gotoLR. The gotoLR has been 

described above; actionLR is defined as follows, given a DFSA’s state q and a lookahead 

string au  VT, then: 
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  Shift and go to gotoLR (q, a) =   if  [A → α ∙ a β, w]  q 

 

  Reduce by A → α                       if  [A → α ·, au]  q 

ActionLR (q, au) =  

  Accept                                        if [S
/
 → S∙, #]  q 

 

   

  Error    otherwise.  
 

 

General LR(1) parsing algorithm 
 begin 

  set ip to the first symbol in w# 

     repeat 

     let q be the state on top of the stack and a is the current input symbol pointed to by ip 

     if action (q, a)=  shift s/
 then  

           begin 

               push a then q/
 on top of the stack; 

               advance ip to the next input symbol 

           end 

      else 

      if  (q, a)= reduce A → β then 

          begin 

              pop 2* β  symbol off the stack; 

              let q/
 be the state now on the top of stack; 

              push A then Goto[q/
, A] on top of the stack; 

              output the production A → β 

         end 

    else 

       if action (q, a)= accept then 

           return (success) 

       else 

          error (Error-Message); 

end.     

 

Construction LR(1) parsing table algorithm 
 begin 

1. Construct C = (I1, I2, …, In), the collection set of items of LR(1) items for the 

augmented grammar G
/
. 

2. State i  of the parser is constructed from Ii. The parsing actions for state i are 

determined as follows: 

 

a. If [A → ..a , b] is in Ii and goto[Ii, a] = Ij, then set action[Ii, a] to “shift j”. Here 

a required to be a terminal. 
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b. If [A → ..,a] is in Ii, A  S

/
, then set action[Ii, a] to “reduce A → ”. 

c. If [S
/
 → S., #] is in Ii, then set action to “accept”. 

 

If a conflict results form the above rules, the grammar is said not to be LR(1) grammar, 

and the algorithm is said to fail. 

3. The goto transition for state i are determined as follows: If [Ai, a] = Ij then the 

goto[I, A] = j. 

4. All entries not defined by rules (2) and (3) are made “error”. 

5. The initial state of the parser is the one constructed from the set containing the item 

[S
/
 → .S, #]. 

 end 

 

The table formed from parsing action and the goto function produced by algorithm is 

called canonical (because the parser in this kind of parsing is one that only reduces 

handles, while noncanonical parser can also reduce phrase which are not handles, as it the 

case with GPLR parser).
 

 

Example: consider the following LR(1) grammar which generates the regular set b
*
db

*
d 

 

S

 → ∙S  

S → KK            grammar (4)   

K → bK / d 
The LR(1) parsing table is shown in table (2) and the DFSA machine equivalent to the 

parser is shown in figure (3). 
 

3.4 LR(1) irresolvable problems 

As we have mentioned in the abstract, the traditional LR parsing methods still 

suffer two irresolvable problems; which are shift-reduce and reduce-reduce conflicts, 

these two problems made us present this study in the hope that the suggestion introduced 

in this research may eliminate or reduce the effect of these two conflicts. At first we will 

give two examples regarding these conflicts and then resent our method to manipulate 

them.   

 

Example: (shift-reduce conflict) Consider the following grammar: 

 

S → .R                        

L → .*R     grammar (5)         

L → .id                            

R → .L                            
 

The set of items are as follows: 

 

I0: S

 → .S  I5: L → id. 

     S →.L=R       

     S → .R                      I6:  S→.=.R  
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     L → .*R                         R → .L 

    L → .id                           L → .*R 

    R → .L                           L → .id 
 

I1: S

 → S.                     I7: L → *R. 

            

I2: S →L.=R      I8:  R → L. 

    R → .L 

 

I3: S → R.     I9:  S →L=R. 

 

I4: L →*.R 

    R → .L 

    L → .*R  

    L → .id 
         

Consider the set of items I2, the first item in this set makes action (q, =) to be shift since 

FOLLOW(R) contains =(to see why; consider S L.=R  * R=R), the second item 

set action (q, =) to “reduce R → L.” thus the entry [2, =] is multiply defined. Since 

there is both shift and reduce entries in the same action field [2, =], so state 2 has a shift-

reduce conflict [7, 11]. 

 

Example: (reduce-reduce conflict) Consider the following grammar:  

S → aA 

S → bB 

A → Ca 

A → Db          grammar (6) 

B → Cb 

B → Db 

C → E 

D →E 

E →  

The problem arises here from the permutation of C, d, a, and b in rules A and B that 

makes FOLLOW(C) and FOLLOW(D) the same; therefore, the lookahead can not be 

used to guide the parser when reducing C and D. This fact combined with the FOLLOW 
overlap, renders the grammar non-LR(1). Because a reduce-reduce conflict between rules 

C and D is unavoidable [5]. 
 

4.The proposed method 
 

 GPLR parser is a two-stack parsing mechanism. The first stack servers the same 

function as the stack in ordinary LR parsing technique; we will simply refer to it as ‘the 

stack”, which we will it the “input stack” initially contains the input string with the first 



 

92 

 

J.Thi-Qar Sci           Vol.1 (4)                          May/2009          
 

 
symbol on the top of the stack  and the end marker “#” at the bottom of the stack. 

Symbols will be popped off the input stack, just as an ordinary LR parser reads its inputs 

from left to right. However, GPLR parser will also pushes symbols back to the next input 

symbols. While an ordinary LR parser has four actions: Shift, Reduce, Accept, and 

Error, GPLR parser can also cancel and continue. Continuation is the action which 

allows the parser to temporarily ignore the error resulted from the conflict; cancellation is 

used in returning back to the site in which the conflict happened.     

4.1 The cancel action 

 Suppose the stack of a GPLR parser contains the following symbols (from bottom 

to top) 

a  b c 

And it has just readied a state with a single reduce item allowing it to reduce abc to some 

nonterminal, say F. In other words, after it shifted a, it was not sure whether to reduce a 

to something or shift the b, so it continued. But now that it has seen the b and c 

following it, it knows for sure that shifting b was correct. Unfortunately, since it is not 

allowed to look at symbols below, the parser cannot reduce abc, as it can only see be. 

The solution is something called an insufficient, stack depth reduction. The parser will 

pop as many symbols as possible (b and c), remove the  marker, and place a 

cancellation symbol at the front of the input stream, followed by the nonterminal it 

attempted to reduce to (F). Cancellation symbols indicate (1) which production the parser 

wants to reduce by, and (2) what suffix of that production's right-hand side was actually 

visible on the stack. In this case, we wanted to reduce by F —> abc, but only bc was 

visible on the stack, so the cancellation symbol will be F —> a . bc. Now that the  

marker and the stack contents above it are gone, the parser will return to the state it was 

in before it continued (the state on top of the stack), but it will use this cancellation 

symbol as the lookahead token. It will recognize that there is, in fact, an a on top of its 

stack, so it will cancel a, i.e., pop a (and the corresponding state) off the stack and 

remove the cancellation symbol from the input stream. It is also possible to cancel with 

insufficient stack depth. In this case, if the parser needs to cancel A —>  . , but only 

 is visible on the stack, the cancellation symbol is popped from the input stack, the 

symbols of  and the   symbol below them are  popped from  the parser stack, and a 

new cancellation symbol A —>  .  is pushed into the input stack. As with an 

insufficient stack depth reduction, the parser’s current state is set to the new state on top 

of the stack, and this new cancellation symbol serves as the next input symbol. 

 

4.2 The continuation action 
 A GPLR parser continues when there are at least two different (shift and/or 

reduce) actions it could have taken. To continue, it places a special marker on the stack 

(denoted ) and changes the current state to a continuation state. Like goto states, 

continuation states are constructed to follow from an existing state on a particular input 

symbol, so we can speak of, say, the continuation state from q0 on B. After entering a 

continuation state, the parser proceeds to make reductions on the remaining input, but it 
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only makes reductions that would have been made no matter which of the possible prior 

actions was taken. This is ensured by two means. First, the stack marker () is treated as 

the bottom of the stack; the parser is not allowed to look at any of the symbols below  

until the  symbol is explicitly removed from the stack by a cancel action. This will be 

described further in the discussion of cancellation, but for now, suffice it to say that this 

will prevent the continuation site from accidentally being "absorbed" into a large 

reduction. Second, the continuation state is constructed to guarantee that only 

conservative reductions are made. Suppose one shift and two reduce actions were 

possible in the original state on a particular lookahead symbol. Then there are several 

shift items that should be carried over to the continuation state; if it 

made either reduction, there are several states it could have moved to, and the items from 

these states are carried over as well. In other words, the continuation state is constructed 

to include all of the items that would be valid no matter which of the original actions was 

taken. As symbols are shifted, the goto states from this continuation state will be 

followed, and if a state is ever reached where 

only one reduce action is possible—i.e., there is only a single reduce item, then we can be 

assured that, no matter which of the original actions was taken, the parser would have 

ended up in a state with only this single reduce item. 
 

 

 

General GPLR(1) parsing algorithm 
 Begin 

  set ip to the first symbol in w# 
   repeat 

     let q be the state on top of the stack and a is the current input symbol pointed to by ip 

     if action (q, a)=  shift s/
 then  

          begin 

              push a then q/
 on top of the stack; 

              advance ip to the next input symbol 

          end 

     else 

          if  (q, a)= reduce A → β then 

              begin 

                 pop 2* β  symbol off the stack; 

                 let q/
 be the state now on the top of stack; 

                 push A then goto[q/
, A] on top of the stack; 

                 output the production A → β 

             end 

         else 

            if action (q, a)= cancel then 

                begin 

                    if | RI,χ | =0 and |Core(CI,χ)| =1 

                   where [A → α ∙ β]  Core(CI,χ) then 

                   cancel   < A → α ∙ β > 
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     end 

  else 

     if action (q, a)= continue then 

          begin 

             if any of the following hold: 

             | SI, χ | ≥ 1 and | RI, χ | ≥ 1 

             | RI, χ | ≥ 1 and |Core (CI, χ)| ≥ 1 

             | RI, χ | ≥ 2 

             |Core (CI, χ)| ≥ 2 then 

             continue in Cont GPLR (I, χ) 

         end 

   else 

      if action (q, a)= accept then 

         return (success) 

      else 

         error (Error-Message); 

 End.     
 

Construction of the sets of GPLR Items 

In the following formalism, β, γ, α, ζ, δ, η and Ø denotes strings in V
*
; A, B, C, 

and D denote nonterminals; X and Y denote symbols in V =VN   VT. We will use IGPLR 
to refer to the set of all GPLR items for a grammar, which is the set consisting of the 

every item appearing in every state of the GPLR DFSA. 

 

Definition Given an augmented grammar G = (VT, VN, V
*
, P, S), the set of VC of 

cancellation symbols for G is:  

 

VC = {  A → α ∙ β  | A → α β  P, |α| > 0, and | β | > 0} 

  

 

 

Subset Selectors 

 We begin by defining some notations: SI, χ, RI, χ, and CI, χ which will be used to 

refer to the shift, reduce and cancellation items, respectively, in a state I on lookahead χ. 

 

Definition Given a set I   IGPLR of GPLR items and the symbol χ  VC  V
*
, the 

GPLR shift items in I for lookahead χ are precisely the elements of the set: 

 

      {[A → α ∙χ β, B → γ ∙ δ]  I}       if χ  VN   VT 
SI, χ = 

                  Ø                        if χ  VC.  
 

Definition Given a set I   IGPLR of GPLR items and the symbol χ  VC  V*
, the 

GPLR reduce items in I for lookahead χ are precisely the elements of the set: 
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 {[A → α ∙, B → γ ∙ δ]  I | δ 

*
 χw,    w V

*
T}   if χ  V

*
   VT 

RI, χ = 

 {[A → α ∙, B → γ ∙ δ]  I} if χ =  B → γ ∙ δ    

 

Definition Given a set I   IGPLR of GPLR items and the symbol χ  VC  V
*
, the 

GPLR cancellation items in I for lookahead χ are precisely the elements of the set: 

 

 

      Ø                 if χ  VN   VT 

CI, χ = 

      {[A → α ∙ β, B → γ ∙ δ]  I}       if χ =  A → α ∙ β   

                                 

Definition Given a GPLR item, the core of the item is the LR(0) item 

 

Core ([A → α ∙ β, B → γ ∙ δ]) = [A → α ∙ β] 

We can extend this definition to operate on a set I   IGPLR  

 

Definition: given a GPLR item, the core of the item is the LR(0) item 

Core([A → .. , B →  .] is the item [A → ..]) 

 

Definition: Given a set of  IGPLR of GPLR items for the grammar G= (VT, VN, P, S), 

the GPLR closure of I is defined as the smallest set satisfying:  

ClosureGPLR(I) = {[C →. , A → C . ]   [A → ..C , B →  . ]  

ClosureGPLR(I) and {C →.  P, where  
 w for some w  V

+
T }  {[C →. , B 

→ . ]  [A →  .C. , B →  . ]  ClosureGPLR(I) and C →  P, where  
  }  

 

The GPLR 

 Armed with a general understanding of how a GPLR parser should work, we will 

now focus on the deterministic finite state automaton (DFSA) which derives it. Just as 

the states of an LR(1) DFSA were sets of LR(1) items, the states of a GPLR items will 

be sets of GPLR items. 

 

GPLR items and Cancellation Lookahead 

 A GPLR consists of two components items and is written, e.g.,  

 

   [A → aB∙, C → D.e] 
The second component item can not have a dot at the right or left end. In some cases, 

there will be a second component, e.g, 

[A → aB., ] 

The first component has the exact same meaning of the as in the LR(0) DFSA; it is 

called the core of the GPLR item. We refer to the GPLR item as shift item or reduce 

item if its core is an LR(0) shift item or reduce item, respectively. The second component 

is the cancellation lookahead; it serves a function similar to the lookahead component 
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in LR(1) items. Specifically, the parser reduces item such as [A → aB∙, C → D.e ] 
appears in the state, then if the parser reduces aB to A (and possibly makes a few more 

reduction immediately after that), it may be possible for it to end up in a state where it 

can cancel C → D.e  - i.e., a state containing an item of the form  [C → D.e, 

something ]. As in the LR(0) DFSA, if a state contains an item with the core [C → .De 

] and then recognized a D. So, consequently, a parser can cancel anything that appears as 

a core in its current state. The purpose of GPLR lookahead, then, is to determine whether 

a reduction may lead to a state where a particular cancellation is possible. This will be 

used to determine the parser’s action when cancellation symbol appears in the input 

stream. So, for example if [A → aB∙ , C → D.e] appears in the parser’s current state, 

and the cancellation symbol C → D.e  appears next the input, then it should reduce by 

A → aB, since it is possible (though not guaranteed) that it will end up in a state 

cancellation by C → D.e  which is  feasible.  
    

Constructing the Machine  

 The Construction of GPLR(1) DFSA is very similar to the construction of the 

LR(1) DFSA, adjusted appropriately for cancellation lookahead. The initial state of 

GPLR(1) DFSA is the closure of the {[S

 → ∙S#, ]}; the final state is the (unique) state 

containing [S

 → S. #, ]. Before describing how closures are computed, we will explain 

how goto states are computed. As with LR(1) construction, to compute the goto state 

from a (close) state q on a terminal or nonterminal X, all of the items in q with X after the 

dot in the core component incorporated into the new state with the dot moved forward 

one position, and lookaheads are simply carried over unchanged form the original state. 

To see why, suppose a state contains the item [A → a.bc, D → e.F]. Then the goto state 

on b will contain [A → ab.c, D → e.F]. In the original state, the lookahead, D → e.F 

meant that, after it becomes possible to reduce abc to C, doing so (and possibly making 

further reductions) could put the parser in a state containing the core D → e.F. This 

statement is just as true in the new (goto) state as it was in the original state: It does not 

depend on the position of the dot in core. The closure of a set of GPLR(1) is computed as 

follows: Each item with a nonterminal after the dot has the form: 

 

[A →  .B , C →  . ] 

We find all the productions for B in the grammar; call them B → 1, B → 2,…B → 

n. we have two cases to consider. If  derives at least one string other than , we should 

ensure that the state contains each of the items: 

 

[B → .1, A → .B. ] 

[B → .2, A → .B. ] 

             …, 

[B → .n, A → .B. ] 

Intuitively, the item [A →  .B , C →  . ] indicates that the parser is in a state where 

it needs to recognize a B, but it will get sidetracked doing this (it will have to go through 

several more states and eventually reduce something to B). But after it does so, it will 

return to this state and jump forward to goto state on B. Then, it may be possible to 
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cancel A → .B.   in that state. If  *

  (or =), we should ensure that the state 

contains each of the items: 

 

[B → .1, C →  . ] 

[B → .2, C →  . ] 

             …, 

[B → .n, C →  . ] 

 

As before, the parser will get sidetracked recognized B but will then return to this state 

and jump forward to the goto state on B. the goto state on B will contain the item: 

 

[A → .B. , C →  . ]  
In the event that  is reduced to  and the item  

 

[A → .B., C →  . ] 
 

Becomes valid, the parser should be prepared to cancel C →  . without consuming 

any input. When it is possible to continue in a state q (we will describe how to 

determine this momentarily) on a particular symbol, we will also need to compute a 

continuation state form q on that symbol. The symbol will be either a terminal or 

nonterminal; call it X. the continuation state from q on X should contain the closure of all 

of the following items: 

 

 All the items in q that have an X after the dot in the core should be included; i.e., if 

[A → ..X , B →  . ] is in q, then it is also included in the continuation state from 

q on X. Since there is an X after the dot, it is possible to shift X; by including these 

items and closing the state, we are retaining the ability to shift X after we continue. 

 We should determine all of the reduce items in q that have an X after the dot in the 

lookahead item. Each of these items has the form [A →  Y. ,  →  .X ] for 

some A, , Y, B, , and . For of these items, we should find every production 

whose right-hand side includes a nonterminal which derives a string ending in B; 

that is, we should find every production C → D (for some C, , D, and ) such 

that C 
  B for some  . Then the continuation state should include [B →  .X , 

C → D.]. Effectively, this is including every possible item that could appear if 

we had reduced .X to A in q (and then moved to the goto state on A). Since B → 

 .  was the lookahead in the original item, through some sequence of reductions, 

we could end up in a state with that core. We then need to find every lookahead that 

could be paired with that core, so we form all the lookaheads which have a dot 

immediately after B. All the lookaheads corresponding to a core that could appear 

immediately after B was recognized. The initial state, its goto states, the goto states 

from those goto states, etc. are called unprimed states. All of the other states – 

continuation states and their goto states that were not already in the DFSA – are 

called primed states. 
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GPLR Action Function 
  

Definition Given a set I   IGPLR of GPLR items and the symbol χ  VC  V, the 

GPLR action function is defined such that: 

 

 

         Shift and go to GotoGPLR (I, χ)       if | SI, χ | ≥ 1 and | RI, χ | =0 

            (Note that this requires χ   V
*
) 

 

                                 Reduce by A → α    if | RI, χ | =1, | SI, χ |=0, and | CI, χ |=0 

    Where [A → α, A → γ ∙ β]   RI, χ 

 

 

                                 Cancel   < A → α ∙ β >             if | RI,χ | =0 and |Core(CI,χ)| =1 

    Where [A → α ∙ β]   Core(CI,χ) 

ActionGPLR(I,X) =  

                                  Continue in Cont GPLR (I, χ)  if any of the following hold: 

    | SI, χ | ≥ 1 and | RI, χ | ≥ 1 

    | RI, χ | ≥ 1 and |Core (CI, χ)| ≥ 1 

    | RI, χ | ≥ 2 

    |Core (CI, χ)| ≥ 2 

 

Accept              if [S
/
 → S∙#,]   I 

 

 

Error     Otherwise. 

 

The GPLR Action function is straightforward: Shift and reduce item induce shift and 

reduce actions, as expected. The contexts in which a parser may cancel or continue 
have already been described and should not surprise. 

 Let q be a state in DFSA (i.e., the set of GPLR items) and χ input symbols 

(terminal, nonterminal, or cancellation symbol). 

 

 If is a terminal or nonterminal contains an item of the form [A → ∙ , B → . ], 

then the parser in state q with input χ should shift χ (note that we must have χ  V]. 

 If q contains an item of the form [A →  ∙, B → . ], then a parser in the state q 

input χ should reduce by  A →  if one of the following holds: 

 

1.  *
 χ

_ι
 for some ι  V

*
 (note that this requires χ  V) or  

2. χ =  B→ . . 
 

 If χ =  B→ .  and q contains an item of the form [A → ∙ , B → . ] (So,   

), then a parser in state q with input χ =  A → ∙  should cancel  A → ∙ . 
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 If more than one of the above applies, the parser should continue, with one 

exception. If both a cancel and reduce actions are indicated for an unprimed state, 

the conflict is unavoidable, and the parser construction fails, in this case, the grammar 

is said to be non-GPLR(1) grammar. 

 

 

Example: to illustrate the incremental GPLR parsing, we will use the grammar: 

S → AB 

A → A1x /A2y 

A1 → A1 a /a 

A2 → A2 a /a          grammar (7) 

B → Bb /b 
 

 

Which recognizes the language a
+
(x/y)b

+
. The exact parse of a

+
, which may be 

arbitrarily long, depends on whether x or y follows. Thus, we can not reduce any of as 

until we have seen all of the as; since the number of as is arbitrarily long, this grammar is 

not LR(k) for any k. This grammar is GPLR(1) and the full parse of the string aaaaxbbb 

 a
+
(x/y) b

+
 is shown in table (4). Note the symbol * is used to denote the cancellation 

symbol  A1 → A1 ∙ a . 
  

5 Conclusion 
 GPLR(1) is a two-stack parsing algorithm. The first stack serves the same function as the 

stack in an ordinary LR(1); the second stack, which we called either input stack, initially contains 

the input string, with the first symbol on the top of the stack and the end marker (#) at the bottom. 

Symbols will be popped off the input stack, just as an ordinary LR(1) parser reads its input from 

left to right. However, a GPLR(1) parser will also push symbols back to onto the input stack, at 

which point they will serve as the next input symbol. LR(1) parsing is often touted as one of the 

great successes of computer science. This problem is beautifully mathematical, the solutions are 

provably correct and the results are intensely practical. In this study, we have tried to give an 

example of trying to do something best than other, and this is done through adding two actions 

which were not existent in the traditional LR(1) parsing, and these actions are cancel and 

continue. Continuation is the action which allows the parser to temporarily ignore the error 

resulted from the conflict; cancellation is used in returning back to the site in which the conflict 

happened. Of course, this not the perfect solution for the parsing problems, but at least it is a 

humble attempt to do something useful. Also, we thing that the actions added to traditional LR(1) 

will enhance its efficiency and practical use. 
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Appendix A 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) Illustrates Bottom-up versus Top-Down for grammar (1). 

 

Table (1) Illustrates Shift-Reduce parsing for grammar (2). 
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Figure (2) illustrates the DFSA of grammar (4) 

 

Table (2) Canonical Parsing Table of grammar (4) 
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Figure (3) the goto graph for grammar (4) 

 



 

104 

 

J.Thi-Qar Sci           Vol.1 (4)                          May/2009          
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table (3) illustrates the LR(0) parsing of the string aaabb# of grammar (3) 
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Table (4) The Complete incremental GPLR(1) parse of aaaaxbbb in the example 

grammar (7) 

 



 

106 

 

J.Thi-Qar Sci           Vol.1 (4)                          May/2009          
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 الإعراببأستخدام طريقة  LRستراتيجية الإعراب  تحسين

  GPLRالتزايدية  

 ميثاق إبراهيم هاشم      مؤيد عبد هاني

  جامعة ذي قار - كلية التربية - قسم علوم الحاسبات

 

 

 

 

 الخلاصة

ت البرمجة في اغلبها هي معربات اعتيادية تعمل بالطريقة ابيئات التطوير المتكاملة للغإن المعربات في  

إلا أنها  LALRالتكرارية, وبينما لهذه المعربات العديد من المساوئ إذا ما قورنت بالمعربات التطلعية المولدة بالآلة 

هذه المعربات لا تتقيد بأي عدد محدد من  إن -1تملك الأفضلية عليها لأنها تملك ميزتين مهمتين رئيسيتين هما: 

انه لا تعيد إعراب  الملف بأكمله إنما تعيد إعراب جزء منه إذا تطلب العمل ذلك, من الناحية النظرية  -2رموز التطلع 

 التقليدية تعاني LRالتقليدية وتقنياتها, إلا إن معربات  LRفانه بالإمكان تحقيق هاتين الميزتين باستخدام معربات 

. reduce-reduce conflictمشكلة  -shift-reduce conflict 2مشكلة  -1من مشكلتين رئيسيتين هما 

التقليدية وتقنياتها وقد  LRفي هذا البحث, حاولنا حل هاتين المشكلتين مع الحفاظ على الخصائص الجيدة لمعربات 

 التقليدية. LRبدلا من تقنيات  GPLRتم ذلك باستخدام تقنية 

 


