

83

J.Thi-Qar Sci Vol.1 (4) May/2009

 ISSN 1991- 8690 1661 - 0968 الترقيم الدولي

Enhancing the LR Parsing Strategy

 Using Incremental GPLR Parsing Method

Mouiad Abid Hani Methaq Ibraheem Hashim

Department of Computer Science - College of Education

Thi-Qar University

Abstract

Parsers in modern integrated development environments (IDEs) for general-

purpose languages are virtually all of ad hoc, recursive descent variety. While such

parsers have many disadvantages when compared with machine-generated LALR(1)

parsers but they have two major good qualities: they are not restricted to any finite of

lookahead, and in IDE, they can re-parse parts of a file as they change rather than re-

parsing the entire file. Theoretically, both of these two capabilities can be achieved

through variations of the traditional LR parsing techniques, but the traditional LR

parsing methods still suffer two irresolvable problems; which are shift-reduce and

reduce-reduce conflicts. In this research, we are trying to solve these two drawbacks

with preserving the capabilities of the traditional LR parsing techniques. This has

been achieved by employing the generalized piecewise LR parsing (GPLR) technique

instead of the traditional LR techniques.

Keywords

Generalized Piecewise LR(1) GPLR (1), Chomsky Normal Form (CNF),

Context-Free Grammar (CFG) Integrated Development Environment (IDE),

Look-ahead LR(1) (LALR(1)), Deterministic Finite State Automata (DFSA),

Cocke-Younger-Kasami (CYK).

J.S.T
Typewritten text
Website: http://jsci.utq.edu.iq Email:utjsci@utq.edu.iq

84

J.Thi-Qar Sci Vol.1 (4) May/2009

1.Introduction
 Knuth’s discovery of the LR in 1964 became one of the most significant

contributions of the formal language theory to software engineering. Being applicable to

every context free grammar (CFG) and working in linear time, this algorithm possessed

exactly the qualities in demand by the compiler industry, which ensured quick

recognition and continued work in this direction [1]. Parsing is the linear structuring

process achieved on sentences to know their belonging to a specific grammar. There are

several reasons to perform this structuring process called parsing:

1. The first reason derives from the fact that the obtained structure helps us to process

the object further. When we know that a certain segment of a sentence in German is

the subject, that information helps in translating the sentence. Once the structure of a

document has been brought to the surface, it can be converted more easily [2].

2. A second is related to the fact that the grammar in a sense represents our

understanding of the observed sentences: the better a grammar we can give for the

movements of bees, the deeper our understanding of them is [2].

3. A third lies in the completion of missing information that parsers, and especially

error-repairing parsers, can provide. Given a reasonable grammar of the language,

an error-repairing parser can suggest possible word classes for missing or unknown

words on clay tablets [3].

There are number of ways by which this linear structuring process achieved. First an

attempt to construct the parse tree can be initiated by starting at the root and proceeding

downward toward the leaves. This method is called top-down parse. Alternatively, the

completion of the parse tree can be attempted by starting at the leaves and moving

upward toward the root. This method is called bottom-up parse [4].

Example: Let the grammar is as shown below, and the string to be parsed, w=aabbbcc,

see figure (1) in the appendix to get more information about the difference between top-

down parsing and bottom-up parsing methods concerning the string w [5].

T → R

T → aTc grammar (1)

R →

R → RbR

2.Related Works

 Jane C. Hill and Andrew Wayne [8] outlined two different approaches for

adapting the CYK algorithm to message-passing based parallel environment. Their first

approach was to first distribute the grammar and string to be parsed among the

processors, using a separate processor for each of the columns in the CYK table. Adrian

Johnstone. Elizabeth Scott [9] has presented a new bottom-up nondeterministic parsing

algorithm Generalized Reduction Modified LR Parsing (GRMLR) that combines a

modified notion of reduction with a Tomita-style breadth-first search of parallel parsing

stack. In his thesis, Jeffery L. Overbey [10] has proved that Celenato’s technique can be

applied to GPLR parsers, despite their use of unbounded lookahead; furthermore, this

85

J.Thi-Qar Sci Vol.1 (4) May/2009

does not require a change to either algorithm, this result is prefaced by intuitive

development of LR and GLPR parsing algorithm and Celenato’s construction.

3.Foundations of Generalized piecewise LR(1) Parsing:GPLR(1)Parsing

3.1 Shift-Reduce Parsing

 The shift-reduce parser for a grammar is conceptually simple, but it is not used in

practice because it is nondeterministic. The LR is more sophisticated variation of the

shift-reduce parsing technique which eliminates this nondeterminism. Conceptually, the

parser still shifts the symbols onto its stack and reduces them, but it is augmented with a

state machine which controls its action. This state machine, coupled with the ability to

look ahead at a finite prefix of the remaining input, guarantees that, at any point, the

decision to shift or reduce by a particular production uniquely determined [5, 10].

Example: Suppose we have the balanced parentheses grammar:

S → (S)

S → () grammar (2)

S → SS
And the input string is (()) (). The shift-reduce parser behaves as follows: symbols that

are about to be popped because they match the right-hand side of a production are

underlined; the nonterminal replacing them is displayed in boldface in table (1) [2]. The

shift-reduce parser for a grammar is conceptually simple, but it is not used in practice

because it is nondeterministic. The LR is more sophisticated variation of the shift-

reduce parsing technique which eliminates this nondeterminism. Conceptually, the parser

still shifts the symbols onto its stack and reduces them, but it is augmented with a state

machine which controls its action. This state machine, coupled with the ability to look

ahead at a finite prefix of the remaining input, guarantees that, at any point, the decision

to shift or reduce by a particular production uniquely determined, see table (1) [5, 6].

3.2 LR(0) Parsing

 Although few useful grammar are LR(0), the construction of the LR(0) parsers

can be the basis and the cornerstone of the construction for the more complicated parsers

such as LALR(1), LR(1), and GPLR(1). LR(0) parser require no lookahead from the

unexpected input string in order to make decision [4, 10]. The technique is called LR(0)

parsing; the “L” is for left-to-right scanning of the input string, the “R” is for constructing

the right-most derivation in reverse, and ‘0’ is for no lookahead needed [7]. The most

fundamental difference between the shift-reduce parser and the LR(0) parser is addition

of Deterministic Finite State Machine(DFSA). While the basic shift-reduce parser

decides what action to take (shift or reduce by a particular production) based solely on the

contents of the parser’s stack in the LR(0) paring algorithm, this action is determined by

the state of this machine. The state changes:

 As the inputs are read.

 When reduction is performed.

Now, let's show how to construct this DFSA, and we will do that by an example as

follows:

86

J.Thi-Qar Sci Vol.1 (4) May/2009

Example:

A → aA

A →B grammar (3)

B → bb

Which accepts the language a
*
 bb. When a parser starts, then, it expects to see a

derivation of the input from the start symbol (in this case A) [6]. Since the two A-

production in the grammar are A → aA and A →B, this means the first thing it should

expect to see is either an aA or B. Let us use

A → .aA

A →.B

 B →. bb

to indicate this, If we next need to shift the symbol a, we would use [A → a, A] to

indicate this new situation, by the same way, the dot indicates where the parser is in

matching the right-hand side of the production. When the symbol after the dot is terminal,

like a, the meaning is obvious: The next symbol in the input should be exactly that

symbol. But what does it mean for a parser to expect a nonterminal like B, since there are

only terminals in the input string? Effectively, it means the parser should expect anything

derivable from B this means the parser may also see bb at this point since B → bb, so B

→ bb should also be included in the state, i.e., the set of items describing the state of the

parser. Now we add a new production not already within our grammar to remedy the

returning back to our initial state, so the new CFG will be [11]:

 S
/
 → A#.

A → .aA

A →.B

 B →. bb

Continuing by this manner according to algorithm, we will get the DFSA shown in

figure (2) and the parse of the input string after padded it with # at the end, so it will be

w=aaabb#, knowing that the bottom of the stack also contains the symbol #, and this is

to know when to stop parsing. See table (2) for full parsing of this string according to

LR(0) algorithm [7]. The only drawback of LR(0) is its inability to insight the source

input string which makes its work-limited [10]. In addition to storing shifted symbols on

the stack, it is also needed to store what state the parser was in after the symbol was

shifted. We will write these symbol-state pairs as

q

X
, where X is the symbol and q is

the state. At the beginning of the parse, we will place

0

#

q
on the stack so that we have a

record of the initial state [7, 10]

87

J.Thi-Qar Sci Vol.1 (4) May/2009

3.3 LR(1) Parsing

In LR(1) parsing method, the need to insight one symbol of the input stream

make us calculate the FOLLOW sets for each nonterminal and since the FOLLOW

computation needs us to know the FIRST set for each of them, we will give the full

details about computing these sets [7, 10].

Follow sets computation algorithm
There is a Follow set for each variable symbol. Follow(A) contains the set of

terminals (not including λ) that could appear immediately after the variable A in some

derivation.

 begin

 put # in follow(S), where S is the start variable (start symbol)

 repeat until no changes to any follow sets

 Iterate over each rule R of the grammar

 If R = A → α B β then

 add first (β) to follow(B), excluding λ, if it is in First (β)

 If (R = A → α B) or (R = A → α B β) and First (β) contains (λ) then

 add Follow(A) to Follow(B)

end

Computing the FIRST sets algorithm

There is a first set associated with each variable symbol (some versions associate

a First set with every symbol, variable or terminal, in the grammar). First(A) contains the

set of terminal symbols, plus λ, that may start strings produced by A.

 begin

 repeat until no changes to any First sets

 If A is nullable, add λ to First (A)

 If A → a γ, where a is a terminal, add a to First(A)

 If A → X1X2 … Xn, then

 Compute the value i such that 0 ≤ i ≤ n and X1X2 … Xi are all nullable

 add First(X1) First(X2) … First (Xi) to First (A)

 If i < n then add First(Xi+1) to First(A)

 end

Constructing of the set of items of LR(0) items algorithm
The procedures closure, goto and the main routine items construct the set of tems:

Function closure (I)

 begin

 J=I
 repeat

 for each item A → α ∙ B β in J and each production

 B → γ of G such that B → ∙ γ is not in J do

88

J.Thi-Qar Sci Vol.1 (4) May/2009

 add B → ∙ γ to J

 until no more items can be added to J
 end

Function goto(I, X)

begin

 C:= {closure {[S
/
 → .S, #]}};

 repeat

 for each set of items I in C and each grammar symbol

 X such that goto (I, X) is not empty and not in C do

 add goto (I, X) to C

 until no more sets of items can be added to C.
end

Procedure Items (G
 /
) {G

/
 is the augmented grammar of G}

begin

 C ={closure ({[S → ∙S]})}

 repeat

 for each set of items I in C and each grammar symbol X

 such that goto (I, X) is not empty and not in C do

 add goto (I, X) to C

 until no more sets of items can be added to C

end

The LR(1) DFSA is constructed as follows:

1- The initial state is closure({[S
/
→ ∙S, #]}), where:

2- Given a set I of LR(k) items, the closure(I) is defined recursively as the smallest

set satisfying:

ClosureLR(I)= I {[B →∙ γ, first(βw)] | [A → α ∙ Bβ,w] closureLR(I) and B

→ γ P}.

3- In a given state q, there is an item [A → α ∙X β, w], then there is also a state q
/
 =

gotoLR(q,X) and there is a transition from q to q
/
 on symbol X.

4- The function gotoLR is defined to be the smallest set satisfying:

gotoLR(q, X) = closureLR({ [A → α X∙ β, w] | [A → α ∙X β, w] q }).

5- The accepting state is the (unique) state containing [S
/
 → S∙ ,#].

Therefore, the parser is driven by two functions actionLR and gotoLR. The gotoLR has been

described above; actionLR is defined as follows, given a DFSA’s state q and a lookahead

string au VT, then:

89

J.Thi-Qar Sci Vol.1 (4) May/2009

 Shift and go to gotoLR (q, a) = if [A → α ∙ a β, w] q

 Reduce by A → α if [A → α ·, au] q

ActionLR (q, au) =

 Accept if [S
/
 → S∙, #] q

 Error otherwise.

General LR(1) parsing algorithm
 begin

 set ip to the first symbol in w#

 repeat

 let q be the state on top of the stack and a is the current input symbol pointed to by ip

 if action (q, a)= shift s/
 then

 begin

 push a then q/
 on top of the stack;

 advance ip to the next input symbol

 end

 else

 if (q, a)= reduce A → β then

 begin

 pop 2* β symbol off the stack;

 let q/
 be the state now on the top of stack;

 push A then Goto[q/
, A] on top of the stack;

 output the production A → β

 end

 else

 if action (q, a)= accept then

 return (success)

 else

 error (Error-Message);

end.

Construction LR(1) parsing table algorithm
 begin

1. Construct C = (I1, I2, …, In), the collection set of items of LR(1) items for the

augmented grammar G
/
.

2. State i of the parser is constructed from Ii. The parsing actions for state i are

determined as follows:

a. If [A → ..a , b] is in Ii and goto[Ii, a] = Ij, then set action[Ii, a] to “shift j”. Here

a required to be a terminal.

90

J.Thi-Qar Sci Vol.1 (4) May/2009

b. If [A → ..,a] is in Ii, A S

/
, then set action[Ii, a] to “reduce A → ”.

c. If [S
/
 → S., #] is in Ii, then set action to “accept”.

If a conflict results form the above rules, the grammar is said not to be LR(1) grammar,

and the algorithm is said to fail.

3. The goto transition for state i are determined as follows: If [Ai, a] = Ij then the

goto[I, A] = j.

4. All entries not defined by rules (2) and (3) are made “error”.

5. The initial state of the parser is the one constructed from the set containing the item

[S
/
 → .S, #].

 end

The table formed from parsing action and the goto function produced by algorithm is

called canonical (because the parser in this kind of parsing is one that only reduces

handles, while noncanonical parser can also reduce phrase which are not handles, as it the

case with GPLR parser).

Example: consider the following LR(1) grammar which generates the regular set b
*
db

*
d

S

 → ∙S

S → KK grammar (4)

K → bK / d
The LR(1) parsing table is shown in table (2) and the DFSA machine equivalent to the

parser is shown in figure (3).

3.4 LR(1) irresolvable problems

As we have mentioned in the abstract, the traditional LR parsing methods still

suffer two irresolvable problems; which are shift-reduce and reduce-reduce conflicts,

these two problems made us present this study in the hope that the suggestion introduced

in this research may eliminate or reduce the effect of these two conflicts. At first we will

give two examples regarding these conflicts and then resent our method to manipulate

them.

Example: (shift-reduce conflict) Consider the following grammar:

S → .R

L → .*R grammar (5)

L → .id

R → .L

The set of items are as follows:

I0: S

 → .S I5: L → id.

 S →.L=R

 S → .R I6: S→.=.R

91

J.Thi-Qar Sci Vol.1 (4) May/2009

 L → .*R R → .L

 L → .id L → .*R

 R → .L L → .id

I1: S

 → S. I7: L → *R.

I2: S →L.=R I8: R → L.

 R → .L

I3: S → R. I9: S →L=R.

I4: L →*.R

 R → .L

 L → .*R

 L → .id

Consider the set of items I2, the first item in this set makes action (q, =) to be shift since

FOLLOW(R) contains =(to see why; consider S L.=R * R=R), the second item

set action (q, =) to “reduce R → L.” thus the entry [2, =] is multiply defined. Since

there is both shift and reduce entries in the same action field [2, =], so state 2 has a shift-

reduce conflict [7, 11].

Example: (reduce-reduce conflict) Consider the following grammar:

S → aA

S → bB

A → Ca

A → Db grammar (6)

B → Cb

B → Db

C → E

D →E

E →

The problem arises here from the permutation of C, d, a, and b in rules A and B that

makes FOLLOW(C) and FOLLOW(D) the same; therefore, the lookahead can not be

used to guide the parser when reducing C and D. This fact combined with the FOLLOW
overlap, renders the grammar non-LR(1). Because a reduce-reduce conflict between rules

C and D is unavoidable [5].

4.The proposed method

 GPLR parser is a two-stack parsing mechanism. The first stack servers the same

function as the stack in ordinary LR parsing technique; we will simply refer to it as ‘the

stack”, which we will it the “input stack” initially contains the input string with the first

92

J.Thi-Qar Sci Vol.1 (4) May/2009

symbol on the top of the stack and the end marker “#” at the bottom of the stack.

Symbols will be popped off the input stack, just as an ordinary LR parser reads its inputs

from left to right. However, GPLR parser will also pushes symbols back to the next input

symbols. While an ordinary LR parser has four actions: Shift, Reduce, Accept, and

Error, GPLR parser can also cancel and continue. Continuation is the action which

allows the parser to temporarily ignore the error resulted from the conflict; cancellation is

used in returning back to the site in which the conflict happened.

4.1 The cancel action

 Suppose the stack of a GPLR parser contains the following symbols (from bottom

to top)

a b c

And it has just readied a state with a single reduce item allowing it to reduce abc to some

nonterminal, say F. In other words, after it shifted a, it was not sure whether to reduce a

to something or shift the b, so it continued. But now that it has seen the b and c

following it, it knows for sure that shifting b was correct. Unfortunately, since it is not

allowed to look at symbols below, the parser cannot reduce abc, as it can only see be.

The solution is something called an insufficient, stack depth reduction. The parser will

pop as many symbols as possible (b and c), remove the marker, and place a

cancellation symbol at the front of the input stream, followed by the nonterminal it

attempted to reduce to (F). Cancellation symbols indicate (1) which production the parser

wants to reduce by, and (2) what suffix of that production's right-hand side was actually

visible on the stack. In this case, we wanted to reduce by F —> abc, but only bc was

visible on the stack, so the cancellation symbol will be F —> a . bc. Now that the

marker and the stack contents above it are gone, the parser will return to the state it was

in before it continued (the state on top of the stack), but it will use this cancellation

symbol as the lookahead token. It will recognize that there is, in fact, an a on top of its

stack, so it will cancel a, i.e., pop a (and the corresponding state) off the stack and

remove the cancellation symbol from the input stream. It is also possible to cancel with

insufficient stack depth. In this case, if the parser needs to cancel A —> . , but only

 is visible on the stack, the cancellation symbol is popped from the input stack, the

symbols of and the symbol below them are popped from the parser stack, and a

new cancellation symbol A —> . is pushed into the input stack. As with an

insufficient stack depth reduction, the parser’s current state is set to the new state on top

of the stack, and this new cancellation symbol serves as the next input symbol.

4.2 The continuation action
 A GPLR parser continues when there are at least two different (shift and/or

reduce) actions it could have taken. To continue, it places a special marker on the stack

(denoted) and changes the current state to a continuation state. Like goto states,

continuation states are constructed to follow from an existing state on a particular input

symbol, so we can speak of, say, the continuation state from q0 on B. After entering a

continuation state, the parser proceeds to make reductions on the remaining input, but it

93

J.Thi-Qar Sci Vol.1 (4) May/2009

only makes reductions that would have been made no matter which of the possible prior

actions was taken. This is ensured by two means. First, the stack marker () is treated as

the bottom of the stack; the parser is not allowed to look at any of the symbols below

until the symbol is explicitly removed from the stack by a cancel action. This will be

described further in the discussion of cancellation, but for now, suffice it to say that this

will prevent the continuation site from accidentally being "absorbed" into a large

reduction. Second, the continuation state is constructed to guarantee that only

conservative reductions are made. Suppose one shift and two reduce actions were

possible in the original state on a particular lookahead symbol. Then there are several

shift items that should be carried over to the continuation state; if it

made either reduction, there are several states it could have moved to, and the items from

these states are carried over as well. In other words, the continuation state is constructed

to include all of the items that would be valid no matter which of the original actions was

taken. As symbols are shifted, the goto states from this continuation state will be

followed, and if a state is ever reached where

only one reduce action is possible—i.e., there is only a single reduce item, then we can be

assured that, no matter which of the original actions was taken, the parser would have

ended up in a state with only this single reduce item.

General GPLR(1) parsing algorithm
 Begin

 set ip to the first symbol in w#
 repeat

 let q be the state on top of the stack and a is the current input symbol pointed to by ip

 if action (q, a)= shift s/
 then

 begin

 push a then q/
 on top of the stack;

 advance ip to the next input symbol

 end

 else

 if (q, a)= reduce A → β then

 begin

 pop 2* β symbol off the stack;

 let q/
 be the state now on the top of stack;

 push A then goto[q/
, A] on top of the stack;

 output the production A → β

 end

 else

 if action (q, a)= cancel then

 begin

 if | RI,χ | =0 and |Core(CI,χ)| =1

 where [A → α ∙ β] Core(CI,χ) then

 cancel < A → α ∙ β >

94

J.Thi-Qar Sci Vol.1 (4) May/2009

 end

 else

 if action (q, a)= continue then

 begin

 if any of the following hold:

 | SI, χ | ≥ 1 and | RI, χ | ≥ 1

 | RI, χ | ≥ 1 and |Core (CI, χ)| ≥ 1

 | RI, χ | ≥ 2

 |Core (CI, χ)| ≥ 2 then

 continue in Cont GPLR (I, χ)

 end

 else

 if action (q, a)= accept then

 return (success)

 else

 error (Error-Message);

 End.

Construction of the sets of GPLR Items

In the following formalism, β, γ, α, ζ, δ, η and Ø denotes strings in V
*
; A, B, C,

and D denote nonterminals; X and Y denote symbols in V =VN VT. We will use IGPLR
to refer to the set of all GPLR items for a grammar, which is the set consisting of the

every item appearing in every state of the GPLR DFSA.

Definition Given an augmented grammar G = (VT, VN, V
*
, P, S), the set of VC of

cancellation symbols for G is:

VC = { A → α ∙ β | A → α β P, |α| > 0, and | β | > 0}

Subset Selectors

 We begin by defining some notations: SI, χ, RI, χ, and CI, χ which will be used to

refer to the shift, reduce and cancellation items, respectively, in a state I on lookahead χ.

Definition Given a set I IGPLR of GPLR items and the symbol χ VC V
*
, the

GPLR shift items in I for lookahead χ are precisely the elements of the set:

 {[A → α ∙χ β, B → γ ∙ δ] I} if χ VN VT
SI, χ =

 Ø if χ VC.

Definition Given a set I IGPLR of GPLR items and the symbol χ VC V*
, the

GPLR reduce items in I for lookahead χ are precisely the elements of the set:

95

J.Thi-Qar Sci Vol.1 (4) May/2009

 {[A → α ∙, B → γ ∙ δ] I | δ

*
 χw, w V

*
T} if χ V

*
 VT

RI, χ =

 {[A → α ∙, B → γ ∙ δ] I} if χ = B → γ ∙ δ

Definition Given a set I IGPLR of GPLR items and the symbol χ VC V
*
, the

GPLR cancellation items in I for lookahead χ are precisely the elements of the set:

 Ø if χ VN VT

CI, χ =

 {[A → α ∙ β, B → γ ∙ δ] I} if χ = A → α ∙ β

Definition Given a GPLR item, the core of the item is the LR(0) item

Core ([A → α ∙ β, B → γ ∙ δ]) = [A → α ∙ β]

We can extend this definition to operate on a set I IGPLR

Definition: given a GPLR item, the core of the item is the LR(0) item

Core([A → .. , B → .] is the item [A → ..])

Definition: Given a set of IGPLR of GPLR items for the grammar G= (VT, VN, P, S),

the GPLR closure of I is defined as the smallest set satisfying:

ClosureGPLR(I) = {[C →. , A → C .] [A → ..C , B → .]

ClosureGPLR(I) and {C →. P, where
 w for some w V

+
T } {[C →. , B

→ .] [A → .C. , B → .] ClosureGPLR(I) and C → P, where
 }

The GPLR

 Armed with a general understanding of how a GPLR parser should work, we will

now focus on the deterministic finite state automaton (DFSA) which derives it. Just as

the states of an LR(1) DFSA were sets of LR(1) items, the states of a GPLR items will

be sets of GPLR items.

GPLR items and Cancellation Lookahead

 A GPLR consists of two components items and is written, e.g.,

 [A → aB∙, C → D.e]
The second component item can not have a dot at the right or left end. In some cases,

there will be a second component, e.g,

[A → aB.,]

The first component has the exact same meaning of the as in the LR(0) DFSA; it is

called the core of the GPLR item. We refer to the GPLR item as shift item or reduce

item if its core is an LR(0) shift item or reduce item, respectively. The second component

is the cancellation lookahead; it serves a function similar to the lookahead component

96

J.Thi-Qar Sci Vol.1 (4) May/2009

in LR(1) items. Specifically, the parser reduces item such as [A → aB∙, C → D.e]
appears in the state, then if the parser reduces aB to A (and possibly makes a few more

reduction immediately after that), it may be possible for it to end up in a state where it

can cancel C → D.e - i.e., a state containing an item of the form [C → D.e,

something]. As in the LR(0) DFSA, if a state contains an item with the core [C → .De

] and then recognized a D. So, consequently, a parser can cancel anything that appears as

a core in its current state. The purpose of GPLR lookahead, then, is to determine whether

a reduction may lead to a state where a particular cancellation is possible. This will be

used to determine the parser’s action when cancellation symbol appears in the input

stream. So, for example if [A → aB∙ , C → D.e] appears in the parser’s current state,

and the cancellation symbol C → D.e appears next the input, then it should reduce by

A → aB, since it is possible (though not guaranteed) that it will end up in a state

cancellation by C → D.e which is feasible.

Constructing the Machine

 The Construction of GPLR(1) DFSA is very similar to the construction of the

LR(1) DFSA, adjusted appropriately for cancellation lookahead. The initial state of

GPLR(1) DFSA is the closure of the {[S

 → ∙S#,]}; the final state is the (unique) state

containing [S

 → S. #,]. Before describing how closures are computed, we will explain

how goto states are computed. As with LR(1) construction, to compute the goto state

from a (close) state q on a terminal or nonterminal X, all of the items in q with X after the

dot in the core component incorporated into the new state with the dot moved forward

one position, and lookaheads are simply carried over unchanged form the original state.

To see why, suppose a state contains the item [A → a.bc, D → e.F]. Then the goto state

on b will contain [A → ab.c, D → e.F]. In the original state, the lookahead, D → e.F

meant that, after it becomes possible to reduce abc to C, doing so (and possibly making

further reductions) could put the parser in a state containing the core D → e.F. This

statement is just as true in the new (goto) state as it was in the original state: It does not

depend on the position of the dot in core. The closure of a set of GPLR(1) is computed as

follows: Each item with a nonterminal after the dot has the form:

[A → .B , C → .]

We find all the productions for B in the grammar; call them B → 1, B → 2,…B →

n. we have two cases to consider. If derives at least one string other than , we should

ensure that the state contains each of the items:

[B → .1, A → .B.]

[B → .2, A → .B.]

 …,

[B → .n, A → .B.]

Intuitively, the item [A → .B , C → .] indicates that the parser is in a state where

it needs to recognize a B, but it will get sidetracked doing this (it will have to go through

several more states and eventually reduce something to B). But after it does so, it will

return to this state and jump forward to goto state on B. Then, it may be possible to

97

J.Thi-Qar Sci Vol.1 (4) May/2009

cancel A → .B. in that state. If *

 (or =), we should ensure that the state

contains each of the items:

[B → .1, C → .]

[B → .2, C → .]

 …,

[B → .n, C → .]

As before, the parser will get sidetracked recognized B but will then return to this state

and jump forward to the goto state on B. the goto state on B will contain the item:

[A → .B. , C → .]
In the event that is reduced to and the item

[A → .B., C → .]

Becomes valid, the parser should be prepared to cancel C → . without consuming

any input. When it is possible to continue in a state q (we will describe how to

determine this momentarily) on a particular symbol, we will also need to compute a

continuation state form q on that symbol. The symbol will be either a terminal or

nonterminal; call it X. the continuation state from q on X should contain the closure of all

of the following items:

 All the items in q that have an X after the dot in the core should be included; i.e., if

[A → ..X , B → .] is in q, then it is also included in the continuation state from

q on X. Since there is an X after the dot, it is possible to shift X; by including these

items and closing the state, we are retaining the ability to shift X after we continue.

 We should determine all of the reduce items in q that have an X after the dot in the

lookahead item. Each of these items has the form [A → Y. , → .X] for

some A, , Y, B, , and . For of these items, we should find every production

whose right-hand side includes a nonterminal which derives a string ending in B;

that is, we should find every production C → D (for some C, , D, and) such

that C
 B for some . Then the continuation state should include [B → .X ,

C → D.]. Effectively, this is including every possible item that could appear if

we had reduced .X to A in q (and then moved to the goto state on A). Since B →

 . was the lookahead in the original item, through some sequence of reductions,

we could end up in a state with that core. We then need to find every lookahead that

could be paired with that core, so we form all the lookaheads which have a dot

immediately after B. All the lookaheads corresponding to a core that could appear

immediately after B was recognized. The initial state, its goto states, the goto states

from those goto states, etc. are called unprimed states. All of the other states –

continuation states and their goto states that were not already in the DFSA – are

called primed states.

98

J.Thi-Qar Sci Vol.1 (4) May/2009

GPLR Action Function

Definition Given a set I IGPLR of GPLR items and the symbol χ VC V, the

GPLR action function is defined such that:

 Shift and go to GotoGPLR (I, χ) if | SI, χ | ≥ 1 and | RI, χ | =0

 (Note that this requires χ V
*
)

 Reduce by A → α if | RI, χ | =1, | SI, χ |=0, and | CI, χ |=0

 Where [A → α, A → γ ∙ β] RI, χ

 Cancel < A → α ∙ β > if | RI,χ | =0 and |Core(CI,χ)| =1

 Where [A → α ∙ β] Core(CI,χ)

ActionGPLR(I,X) =

 Continue in Cont GPLR (I, χ) if any of the following hold:

 | SI, χ | ≥ 1 and | RI, χ | ≥ 1

 | RI, χ | ≥ 1 and |Core (CI, χ)| ≥ 1

 | RI, χ | ≥ 2

 |Core (CI, χ)| ≥ 2

Accept if [S
/
 → S∙#,] I

Error Otherwise.

The GPLR Action function is straightforward: Shift and reduce item induce shift and

reduce actions, as expected. The contexts in which a parser may cancel or continue
have already been described and should not surprise.

 Let q be a state in DFSA (i.e., the set of GPLR items) and χ input symbols

(terminal, nonterminal, or cancellation symbol).

 If is a terminal or nonterminal contains an item of the form [A → ∙ , B → .],

then the parser in state q with input χ should shift χ (note that we must have χ V].

 If q contains an item of the form [A → ∙, B → .], then a parser in the state q

input χ should reduce by A → if one of the following holds:

1. *
 χ

_ι
 for some ι V

*
 (note that this requires χ V) or

2. χ = B→ . .

 If χ = B→ . and q contains an item of the form [A → ∙ , B → .] (So,

), then a parser in state q with input χ = A → ∙ should cancel A → ∙ .

99

J.Thi-Qar Sci Vol.1 (4) May/2009

 If more than one of the above applies, the parser should continue, with one

exception. If both a cancel and reduce actions are indicated for an unprimed state,

the conflict is unavoidable, and the parser construction fails, in this case, the grammar

is said to be non-GPLR(1) grammar.

Example: to illustrate the incremental GPLR parsing, we will use the grammar:

S → AB

A → A1x /A2y

A1 → A1 a /a

A2 → A2 a /a grammar (7)

B → Bb /b

Which recognizes the language a
+
(x/y)b

+
. The exact parse of a

+
, which may be

arbitrarily long, depends on whether x or y follows. Thus, we can not reduce any of as

until we have seen all of the as; since the number of as is arbitrarily long, this grammar is

not LR(k) for any k. This grammar is GPLR(1) and the full parse of the string aaaaxbbb

 a
+
(x/y) b

+
 is shown in table (4). Note the symbol * is used to denote the cancellation

symbol A1 → A1 ∙ a .

5 Conclusion
 GPLR(1) is a two-stack parsing algorithm. The first stack serves the same function as the

stack in an ordinary LR(1); the second stack, which we called either input stack, initially contains

the input string, with the first symbol on the top of the stack and the end marker (#) at the bottom.

Symbols will be popped off the input stack, just as an ordinary LR(1) parser reads its input from

left to right. However, a GPLR(1) parser will also push symbols back to onto the input stack, at

which point they will serve as the next input symbol. LR(1) parsing is often touted as one of the

great successes of computer science. This problem is beautifully mathematical, the solutions are

provably correct and the results are intensely practical. In this study, we have tried to give an

example of trying to do something best than other, and this is done through adding two actions

which were not existent in the traditional LR(1) parsing, and these actions are cancel and

continue. Continuation is the action which allows the parser to temporarily ignore the error

resulted from the conflict; cancellation is used in returning back to the site in which the conflict

happened. Of course, this not the perfect solution for the parsing problems, but at least it is a

humble attempt to do something useful. Also, we thing that the actions added to traditional LR(1)

will enhance its efficiency and practical use.

100

J.Thi-Qar Sci Vol.1 (4) May/2009

References
1. Alexander, Okhotin. “A PRELIMINARY REPORT ON GENERALIZED LR PARSING

for BOOLEAN GRAMMARS”, Technical report, Queen’s University, School of

Computing, Ontario, Canada, July, 2004.

2. D, G. C, J. Jacobs. “PARSING”. Amsterdam University press, the Netherlands. 1998.

3. J, E. Hopcroft. J, D Ullman. “INRODUCTION TO AUTOMATA THEORY,

LANGUAGES and COMPUTATION”. Reading Mass. Addison-Wesley, 1979.

4. Jean-Paul Tremblay, Paul, G. Sorenson. “THE THEORY AND PRACTICE OF

COMPILER WRITING”. McGraw-Hill Inc. 1989.

5. T, John Parr. “OBTAINING PRACTICAL VARIANTS OF LL(K) AND LR(K) FOR

K>1 BY SPLITTING the ATOMIC K-TUPLE”. Doctor of Philosophy Thesis, faculty of

Purdue University, 1993.

6. Torben, Egidius Mogensen. “Basics OF Compiler Design”, April 10, 2007.

http://www.diku.dk/˜torbenm/Basics

7. A, V. Aho. R, Sethi, J. Ullman. “COMPILERS: PRINCIPLES, TECHNIQUES AND

TTOOLS”, Addison-Wesley, 1986.

8. Jane C. Hill and Andrew Wayne: “A CYK APPROACH TO PARSING IN PARALLEL:

A CASE STUDY”. In proceedings of twenty-Second SIGCSE Technical Symposium on

computer science Education: pp 240-245, ACM Press, 1991.

9. Adrian, Johnstone. Elizabeth Scott. “GENERALIZED REDUCTION MODIFIED LR

PARSING for DOMAIN SPECIFIC LANGUAGE PROTOTYPING”, Proceedings of the

35
th
 Hawaii International Conference on Computer Sciences, 2002.

10. Jeffery, L. Overbey, “PRACTICAL, INCREMENTAL, AND NONCANONICAL

PARSING: CELENTANO’S ALGORITHM AND THE GENERALIZED PIECEWISE

LR ALGORITHM”. Computer Science Master Thesis, Illinois University, 2006.

11. P, Venable. “MODELING SYNTAX FOR PARSING AND TRANSLATION”. Doctor

of Philosophy Thesis, School of computer science, Carnegie Mellon University, 2003.

101

J.Thi-Qar Sci Vol.1 (4) May/2009

Appendix A

Figure (1) Illustrates Bottom-up versus Top-Down for grammar (1).

Table (1) Illustrates Shift-Reduce parsing for grammar (2).

102

J.Thi-Qar Sci Vol.1 (4) May/2009

Figure (2) illustrates the DFSA of grammar (4)

Table (2) Canonical Parsing Table of grammar (4)

103

J.Thi-Qar Sci Vol.1 (4) May/2009

Figure (3) the goto graph for grammar (4)

104

J.Thi-Qar Sci Vol.1 (4) May/2009

Table (3) illustrates the LR(0) parsing of the string aaabb# of grammar (3)

105

J.Thi-Qar Sci Vol.1 (4) May/2009

Table (4) The Complete incremental GPLR(1) parse of aaaaxbbb in the example

grammar (7)

106

J.Thi-Qar Sci Vol.1 (4) May/2009

 الإعراببأستخدام طريقة LRستراتيجية الإعراب تحسين

 GPLRالتزايدية

 ميثاق إبراهيم هاشم مؤيد عبد هاني

 جامعة ذي قار - كلية التربية - قسم علوم الحاسبات

 الخلاصة

ت البرمجة في اغلبها هي معربات اعتيادية تعمل بالطريقة ابيئات التطوير المتكاملة للغإن المعربات في

إلا أنها LALRالتكرارية, وبينما لهذه المعربات العديد من المساوئ إذا ما قورنت بالمعربات التطلعية المولدة بالآلة

هذه المعربات لا تتقيد بأي عدد محدد من إن -1تملك الأفضلية عليها لأنها تملك ميزتين مهمتين رئيسيتين هما:

انه لا تعيد إعراب الملف بأكمله إنما تعيد إعراب جزء منه إذا تطلب العمل ذلك, من الناحية النظرية -2رموز التطلع

 التقليدية تعاني LRالتقليدية وتقنياتها, إلا إن معربات LRفانه بالإمكان تحقيق هاتين الميزتين باستخدام معربات

. reduce-reduce conflictمشكلة -shift-reduce conflict 2مشكلة -1من مشكلتين رئيسيتين هما

التقليدية وتقنياتها وقد LRفي هذا البحث, حاولنا حل هاتين المشكلتين مع الحفاظ على الخصائص الجيدة لمعربات

 التقليدية. LRبدلا من تقنيات GPLRتم ذلك باستخدام تقنية

