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ABSTRACT: 

 

Tunnel inspection, i.e. detection of damages and defects on concrete surfaces, is essential for monitoring structural reliability and 

health conditions of transport facilities, thus providing safe and sustainable urban transportation infrastructures. In this study, an 

innovative visual-based system is developed for damage and object detection tasks in roadway tunnels based on deep learning 

techniques. The main components of the developed Machine Vision System such as industrial cameras, flash-based light sources, 

controller, the synchronization unit and corresponding software programs are designed to collect high-resolution images with 

sufficient quality from dimly lit tunnel environments in normal traffic flows with an operating speed of 30-50 km/h. Unlike recent 

studies, the training data includes multiple types of damage such as cracks, spalling, rust, delamination and other surface changes. 

Furthermore, 10 classes of common tunnel objects including traffic signs, traffic cameras, traffic lights, ventilation ducts, various 

sensors and cables are labeled for object detection. As art-the-of-state  Convolutional Neural Networks, DeepLab and U-Net are 

trained and evaluated using accuracy metrics for image segmentation. The results highlight the most important parameters of the 

discussed Machine Vision System as well as the performance of DeepLab and U-Net for object and damage detection.  
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1. INTRODUCTION 

Underground transportation structures such as highways and 

railway tunnels are needed to alleviate and optimize traffic on 

certain routes. They provide a direct and uninterrupted 

connection between two locations without disrupting traffic on 

the surface (e.g. France and Great Britain tunnel). This can be 

particularly beneficial in densely populated areas and cities with 

high traffic volumes. Aggressive environmental conditions, 

general aging due to material wear and fatigue and the traffic 

volume of heavy vehicles (e.g. buses, trucks and trailers) 

influence the reliability and durability of these civil structures, 

leading to a loss of stability, safety and functionality for users. 

The operation and maintenance of large tunnel structures are 

challenging needs for urban managers and planners. In most 

industrialized countries tunnel inspection and inventory are 

regulated by construction laws and must be carried out at 

regular intervals. Tunnel inspection involves monitoring and 

mapping the tunnel surfaces to detect different types of 

anomalies and damages on the concrete or even steel such as 

cracking, distortion, spalling and exposed reinforcement. In 

addition, tunnel elements such as technical equipment are 

localized to update the inventories for Building Information 

Modeling (BIM) applications. Conventional and routine manual 

inspections of tunnels are conducted by trained engineers at 

regular intervals to visually evaluate damages and defects. 

Apart from the challenging work conditions, this procedure is 

extremely time-consuming and costly and usually requires 

complete or partial tunnel blocking for installing special 

measuring equipment or manual data collection by trained 

inspectors. Moreover, the accuracy of the evaluations depends 

heavily on the person’s experience and qualifications and 

looking for areas, that are difficult to access, such as ventilation 

ducts, axial fans and ceiling areas, needs special equipment.  

On the other hand, significant advances in high-speed imaging 

technologies offer new solutions for automating the inspection 

and mapping process, particularly for highway tunnels with low 

illumination conditions and high-speed traffic flows. To 

overcome the shortcomings of visual inspections and to 

improve the speed and automation level of tunnel inspection, 

techniques of Artificial Intelligence (AI) and Machine Learning 

(ML), and more recently Deep Learning (DL), can be used to 

automatically detect damages or objects. Deep Convolutional 

Neural Networks (DCNNs) have shown promising results in 

image segmentation and pattern recognition. A Convolutional 

Neural Network (CNN) is based on hierarchical learning 

representations of data using a deep structure composed of 

different hidden layers. The learning strategy requires a 

sufficient amount of training data as well as a large amount of 

memory, and the network optimization procedure takes a long 

time to achieve acceptable accuracy. So far, several CNN-based 

methods have been developed for damage detection on road 

asphalts (Liu et al. 2019), bridges (Qiao et al. 2021), and 

concrete (Kumar et al. 2021; Rajadurai and Kang, 2021); 

however, they mostly focus on cracks. Therefore, their training 

data have been prepared for binary classification to detect 

cracks and non-cracked structures. However, damages and 

defects in real-world environments like tunnels or bridges are 

not only made of cracks but also of spalling, rust, delamination 

and efflorescence on surfaces, making a multi-class damage 

segmentation desirable for practical applications. Furthermore, 

the preparation of proper training data including sufficient 

annotations (e.g. labels) for different classes of interest is highly 

challenging and needs way too much manual labeling effort. By 

selecting the right CNN and customizing it to be able to learn 

with fewer data, as well as employing efficient data 

augmentation techniques, it is possible to obtain adequate 

accuracy for tunnel inspection tasks.  
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In this study, we present a cost-effective system for capturing 

images suitable for detailed visual inspection of tunnels. The 

main differences between the proposed system and comparable 

technologies are high-quality images in color mode without 

motion blur and extraneous light which allows the detection of 

defects on the tunnel surface. Additionally, more than 10 km/h 

operation speed allows data acquisition in normal traffic 

situations in tunnels, at least outside rush hours. The main 

advantage of the proposed system is the accurate 

synchronization between machine vision cameras and flash light 

which provides sufficiently-illuminated images in the dark 

tunnels. Two state-of-the-art CNNs (DeepLab and U-Net) are 

explored for image segmentation under challenging tunnel 

conditions such as low illumination, motion and blur effects and 

noises. The main contribution of this work is to provide multi-

damage and multi-object recognition CNNs that are best suited 

to detect various types of damages and objects from images, 

captured in different tunnel environments. The proposed 

configurations for selected architectures improve the 

performance and accuracy of the CNNs in detecting several 

forms of damages due to intra-class variability (e.g. different 

shapes of traffic signs) and inter-class similarity (e.g. spalling 

and delamination classes). Moreover, the empirical experiments 

and challenges for data preparation and training of models using 

different hyperparameters are described. 

 

2. RELATED WORK 

To date, various techniques and methods have been developed 

for monitoring damages in different types of tunnels (e.g. metro, 

railway, road, etc.) using various data collection technologies 

such as total stations, cameras, and laser scanners. The latter can 

be categorized into conventional, laser, photogrammetric, and 

hybrid techniques.  

 

2.1 Conventional Techniques 

Conventional methods of data collection, such as visual surveys 

in tunnels are still operated manually by experts using total 

stations (Luo et al. 2016). To improve the automation of data 

collection and measurements, different systems have been 

developed including multi-cameras systems and laser scanners. 

 

2.2 Laser Scanners 

Sun et al. (2020) developed a scanning system on a robot 

vehicle to monitor deformations in railway tunnels. The 

maximum operating speed of the system is 4.5 km/h and the 

dislocation measurement accuracy is about 3 mm. Guo et al. 

(2020) utilized terrestrial laser scanners to monitor deformations 

in tunnels with a 1-2 mm accuracy. Zhou et al. (2017) 

developed a mobile laser scanner to monitor rail-based tunnels. 

However, the GNSS-denied environments of tunnels limit the 

use of laser scanners for deep tunnels and the accuracy and 

robustness are degraded for tunnels longer than 100 m. On the 

other hand, damages with no positional deformations or 

displacements such as small cracks and spalling might not be 

visible in laser-based point clouds.  

 

2.3 Photogrammetric Techniques 

In photogrammetric inspection techniques, more than one 

camera is usually employed to capture the tunnel surface. There 

are a few studies that developed camera-based systems for 

roadway or railway tunnels. Jiang et al. (2019) developed a 

system with 7 line-scan cameras and 60 LEDs on a car for crack 

detection in tunnels. The maximum speed of the vehicle is 100 

km/h. Chapman et al. (2016) developed a mobile mapping 

system equipped with 16 cameras and 34 light sources to 

capture images from GNSS-denied environments. The average 

positioning error of this system is about 0.34 m. Zhan et al. 

(2015) developed a multi-camera system including 7 line-scan 

cameras and structured-light projectors to measure railway 

tunnels. Panella et al. (2020) compared the usability of the Go-

Pro cameras and terrestrial laser scanning for tunnel inspection. 

Their assessments show that photogrammetry is a valid 

alternative to laser scanning for the visual inspection of tunnels. 

However, the final accuracy of photogrammetric inspection 

techniques extremely depends on the camera resolution, the 

vehicle speed and the illumination conditions. 

 

2.4 Hybrid Techniques 

To increase the performance of automatic inspection techniques, 

multiple sensors (such as cameras and lasers) are synchronized 

to capture data from tunnel surfaces. The company Dibit (Mett 

et al. 2019) developed a hybrid system including multi-cameras 

and laser scanners for monitoring roadway tunnels. The 

maximum measurement speed of Dibit’s systems is about 80 

km/h. Menendez et al. (2018) developed an autonomous robotic 

arm to carry several sensors including a laser scanner and two 

cameras. The maximum error of the system is 110 mm. 

In hybrid inspection techniques, the platform can be a train or a 

rail-based automatic robot for railway tunnels that can move on 

the rail to collect the data. In this case, the system needs to be 

continuously and carefully monitored by an operator and the 

speed of the movement is less than 10 km/h. Despite being 

time-consuming and cumbersome, these approaches require 

quite expensive equipment for robot movements on the railway.  

 

2.5 AI-Image Segmentation for Tunnels 

There is extensive literature on pattern recognition based on DL 

in the field of computer vision and/or photogrammetry. Various 

applications such as building extraction, traffic signs detection 

and land cover classification are addressed. Recently, several 

image-based inspection methods using CNNs have been 

developed for damage detection on concrete surfaces such as 

roads, bridges and tunnels. For instance, Qiao et al. (2021) 

developed a CNN with an Expected Maximum Attention 

(EMA) module for the bridge damage extraction. Rajadurai et 

al. (2021) trained Alex-Net to classify images into two classes 

of cracks and no-cracks with a prediction accuracy of 99.9%. 

Kumar et al. (2021) utilized a Mask R-CNN to detect multi-

classes of cracks in different orientations on the concrete. A 

similar method has been developed by Kim et al. (2020) to 

optimize Mask R-CNN for detecting cracks, efflorescence, 

rebar exposure, and spalling with a precision of 87.24%. Shin et 

al. (2020) developed a CNN involving multi-attention-based 

modules to detect different types of concrete damages such as 

cracks, rebar exposure and delamination with an accuracy of 

98.9%. Li et al. (2020) developed a new version of U-Net (U-

CliqueNet) for binary crack classification from tunnel images 

with an average IoU of 86.96%.  

CNN models require several modifications and improvements 

to achieve acceptable accuracies in damage detection. 

Compared to a multitude of computer vision objects, damages 

are structured in totally random shapes and various patterns 

which demands a robust CNN architecture to detect them 

efficiently. Furthermore, the focus of the past studies is on crack 

detection on concrete surfaces and not on multi-class damages 

or objects in tunnels with different materials (e.g. concrete, 

asphalt, and metal). This is due to various challenges and 

difficulties in collecting proper datasets to train the CNN.  
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3. PROPOSED METHOD 

The main purpose of this study is to provide an automatic 

solution to monitor and detect damages and objects based on 

RGB images, captured by a Machine Vision System (MVS). As 

shown in Figure 1, our MVS utilizes high-speed 5 MP machine 

vision cameras, high-performance flash lights (flash LEDs), and 

a synchronization unit installed on a car. The MVS is able to 

capture images with a very short exposure time, so that the 

problematic effects such as motion blur, extraneous light and 

stray light are minimized. The captured images are then 

employed to train the CNN and evaluate the capability of the 

trained network for automatic damage detection in road tunnels. 

The following subsections provide a summary of the individual 

steps and main components. 

 

3.1 Imaging Sensor  

The performance of the cameras is vital for collecting high-

quality data from the tunnel surfaces. According to our 

investigation of the digital sensor markets (Alidoost et al. 2022), 

machine vision cameras are much more suitable for this type of 

application, than consumer DSLR cameras. Therefore, we 

selected the Grasshopper camera, offered by FLIR Company. 

The sensor is a 5 MP area-based camera with CMOS 

technology and a global shutter. Compared to the line-based 

sensors, the advantage of area-based sensors is no linear effects 

and no distortions when combining lines into area images, less 

power illuminator, and the interface and setup are standardized. 

To reduce the motion blur in images that occur in the tunnel at 

high speed, the global shutter is a better choice than a rolling 

shutter. With a global shutter camera, the scene will be frozen at 

a certain point in time and there is no motion blur. 

The Field of View (FOV) of the camera follows simple 

geometric considerations according to Equations 1 and 2. 

  

 
(1) 

 
(2) 

 

The image size is given by w and h in mm and the parameter f 

is the camera’s focal length. The FOV must be taken into 

account when arranging the cameras on the vehicle so that the 

tunnel surface is imaged seamlessly. 

To transfer the data from the sensor buffer memory to the 

storage unit in real-time during operation, USB 3.0 is used for 

the camera's interface. Among the different interfaces, USB 3.0 

is the fastest interface (e.g. with a maximum bandwidth of about 

400 MB/s for USB3.0, compared to 100 MB/s for the GigE 

interface) and also with the easiest setup. The required 

bandwidth (BW) is calculated based on the required frame rate 

(FPS), the number of cameras (N) and the pixel format (8-bit 

for the mono mode and 24-bit for the color mode), given by 

Equation 3. 

 

 
(3) 

 

where W and H are the image size in pixels, and the BPP is 

Bytes per pixel which is 1 for an 8-bit image (in the mono 

mode) and 3 for a 24-bit image (in the color mode). The 

bandwidth (BW) must also be taken into account for the 

read/write speed of the hard drive. 

 

3.2 Illumination 

In tunnels, it is often dark and there is not enough light to 

capture bright images. Therefore, lighting plays a major role in 

industrial machine vision applications. The most widely used 

lighting source is LED light which offers high performance, 

stability, high intensity, as well as cost-efficiency. Flashing (or 

pulsing) a LED light is a powerful technique that can be 

beneficial for machine vision systems as it increases the light 

power for larger distances, extends the lifespan of the LED, as 

well as solves the problem of ambient light. In this study, a 

meta-bright area-based LED offered by Metaphase Company is 

used. This spotlight is extremely bright and emits white light at 

600,000 Lux. The advantage of white/visible light (e.g. 380-780 

nm), compared to the IR wavelengths (e.g. 850-940 nm), is to 

capture color images which are important for applications such 

as automatic object recognition and scene understanding. Since 

cameras and LEDs are directed toward the tunnel walls and 

ceilings, therefore there is no danger to the human eye, and the 

visible spectrum is not confusing or dangerous for road users or 

operators, unlike opinions on the light market.  

The working distance of the employed LEDs is 3-8 m, which is 

suitable for large-area illumination applications like tunnels. 

With the LED controller, the light power can be controlled by 

changing the current, the pulse width and the light mode such as 

flashing or constant light. The LED can provide more than 50 

kHz flash strobe with a small pulse width in the range of 20 to 

60,000 μs. The optimum pulse width corresponds to the 

required camera’s exposure time (ET) to avoid motion blur (B) 

in driving with a speed of V, given by Equation 4.  

 
a 

 
d 

 
b 

 
c 

Figure 1. Main components of the MVS. a: machine vision camera, b: flash LEDs, c: self-made synchronization unit, and d: setup 

on our van. 
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(4) 

 

where D is the working distance and PS is the CCD’s size. The 

parameter f is the camera’s focal length.  

Depending on the focusing distance and illuminated area, lenses 

of different sizes can be used to efficiently project light and 

to perfectly illuminate rectangular areas. The larger lens 

generates less light and power. The relation between the 

working distance (R) and LED irradiance (E) is given in 

Equation 5. In this study, we employed lenses with 30° and 50° 

for larger and smaller ranges, respectively. 

  

 
(5) 

 

where Eo is the irradiance of the LED at the distance of Ro, 

provided by the manufacturer.    

 

3.3 Synchronization Unit 

To avoid motion blur as well as other illumination artefacts in 

the images, the flash should be triggered exactly when the 

camera’s aperture is opened to capture the scene. Therefore, the 

flash time and the exposure time need to be synchronized 

precisely. Otherwise, the images are either dark because of the 

lack of light or too bright with motion blur and ambient light, as 

shown in Figure 2, a. In this study, we used a synchronization 

method based on the General Purpose Input/Output (GPIO) 

connector in the camera. In this method, one camera is 

considered as a “primary” camera which is used to trigger one 

or more "secondary" cameras, using the primary camera's 

strobe. This ensures that the frame rates of the secondary 

cameras are the same as the primary camera’s frame rate. 

Additionally, the strobe of the primary camera is also connected 

to the LED controller to trigger the LEDs simultaneously.  

In this study, we developed a hand-made synchronization unit to 

connect the output pin of the "primary" camera to the input pins 

of "secondary" cameras as well as the input pins of the LEDs. 

The result of the successful synchronization is clearly visible in 

Figure 2, b. The synchronization parameters (the frame rate and 

exposure time of the "primary" camera) have been calculated by 

Equations 3 and 4. 

 

 
a 

 
b 

Figure 2. Differences between non-synchronized (a) and 

synchronized (b) cameras and flashing lights. 

 

3.4 Data Capturing Strategy 

Figure 3 shows a schematic diagram that illustrates the modular 

design of the proposed system. The cameras, LEDs, 

synchronization unit, power source, workstation and storage 

unit are all integrated into a single lightweight capture unit 

which is installed on a portable platform. There is a simple 

interface between the main MVS components that allows for 

easy upgrades or independent modifications. The modular 

design allows for the addition or removal of LEDs and cameras 

to the MVS. 

In this study, we employed three cameras and three LEDs to 

build a low-cost mobile system for mapping roadway tunnels 

with different shapes like circular or rectangular tunnels. The 

cameras are connected to a consumer-grade laptop via USB 3.0 

cables and to the synchronization unit via GPIO cables. The 

LEDs are connected to the LED controller using the supported 

cable. The LED controller can be controlled by the operator 

using a keypad or an Ethernet connection. The whole system is 

supported by DC power supplies. 

 

 

Figure 3. A schematic diagram of the proposed MVS. 

 

According to the viewing directions and working distances for 

the tunnel sections as well as sufficient overlap in the vertical 

direction for a second capture in the reverse direction of travel, 

three cameras are installed with a Relative Angle (R.A.) of 45° 

to cover the ceiling, the corner and the wall in a one-way trip, as 

illustrated in Figure 4. In an outbound and return scenario, the 

tunnel surface is fully captured. The overlap between two 

consecutive images along the moving direction (we call it the 

horizontal overlap) and the overlap between two adjacent 

cameras (we call it the vertical overlap) are determined by 

Equations 6 and 7. 

  

 
(6) 

 

(7) 

 

where V is the speed of the vehicle and D is the working 

distance. 

The capturing scenario is controlled by an open-source API, 

developed by Teledyne FLIR (formerly FLIR Company) for 

machine vision cameras. By proper settings for the start and end 

times of the capturing, the frame rate, image format, and 

illumination gain for the primary and secondary cameras in the 

API, data automation can be achieved on every drive. 
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Therefore, only one driver and one operator are necessary to go 

to the field for data acquisition which reduces the overall cost. 

 

 

Figure 4. The field of view of cameras in the MVS. 

  

4. IMPLEMENTATION  

In order to evaluate the performance of the proposed system, the 

Wagenburg tunnel in Stuttgart, Germany is selected which is an 

824 m long single-tube two-way traffic tunnel with a maximum 

driving speed of 40 km/h. This paper investigates two widely-

used CNNs in image segmentation for multi-object/damage 

detection tasks from tunnel images. The U-Net (Ronneberger et 

al. 2015) is a fully convolutional neural network consisting of a 

contracting path to capture context and a symmetrically 

expanding path that enables precise localization. The 

contracting path reduces the spatial resolution of the input 

images and combines the high-resolution features with the 

highly localized patterns to enable rapid and precise 

segmentation of images. The expanding path restores the spatial 

resolution of the output segmentation map, while also 

preserving spatial context. U-Net can train effectively on small 

datasets and has outperformed many other image segmentation 

methods. The second CNN is DeepLab-v3 (Chen et al. 2017) 

developed by the Google AI team. DeepLab consists of up-

sampling layers (e.g. atrous), instead of max-pooling layers, as 

well as densely connected conditional random fields (CRF). 

These features help the CNN to increase the spatial resolution of 

extracted features and improve the fine details in outputs.  

The object detection task is less challenging than the damage 

detection task as object attributes such as geometric shape, 

color, and texture are more stable due to changes in the image 

capturing conditions in tunnels.  

 

4.1 Proposed MVS Configurations   

Figure 1, d shows the MVS system, which is portable and 

adaptable to various types of vehicles and can be mounted 

manually on the roof of a car without special equipment. The 

system components are installed on an aluminium carrier 

system, which is modular and allows adding or removing 

components as well as changing the directional views 

depending on the project requirements. Unlike steel platforms, 

the aluminium construction is lightweight and also possesses 

the necessary stability to driving vibrations. The main settings 

of the proposed system are summarized in Table 1. 

During the test, the driving speed is set to 36 km/h and the 

average working distance is about 5 m. A 6 mm lens is used for 

the cameras, and the exposure time of approximately 250 μs 

limits the motion blur to less than 1 pixel. The required 

bandwidth to capture 5 Hz for color images or 15 Hz for 

grayscale images is about 250 MB/s which fits the USB 3.0 

interface. However, apart from the camera interface, the final 

data rate depends on the USB host controller card and the image 

storing data rate of the hard drive (here an SSD drive). Ideally, 

each camera should have a USB 3.0 bus to have a full frame 

rate (e.g. 75 Hz for the mono mode and 25 Hz for the color 

mode). In this study, we used an ordinary laptop with a 500 GB 

SSD drive and one USB 3.0 port, and therefore sharing the bus 

with other cameras reduces the actual frame rate significantly to 

2 Hz for color images and 4 Hz for grayscale images.  

 

Settings Parameters Values 

Camera  

Sensor CMOS, Area Scan 

Resolution 5 MP 

Pixel size  3.45 µm 

Sensor size 2448 x 2048 pixels 

Focal length (lens) 6 mm  

Shutter Global 

Required frame rate  5 Hz and 15 Hz 

Interface USB 3.0 (400 MB/s) 

Pixel Bit Depth 8 bits 

Chroma color and mono 

 Exposure Time 250 µs 

Price range $1500 

LED  LED shape Area based 

Operation mode Flash 

Wavelength White 

Flash Pulse width  250 µs 

Flash rate 5 Hz and 10 Hz 

Irradiance at 2m 878 W/m2 

Price range $1000 

Car The driving speed 36 km/h 

Working distance 5 m 

Installation angle 45 

Operations  Irradiance at 5m 140 W/m2 

FOVw x FOVh 70 x 60 

Vertical overlap ~ 35 % of FOVw 

Horizontal overlap @ 

2Hz 
~ 23 % of FOVh 

Actual frame rate 2 Hz and 4 Hz 

Exposure Time ~ 250 µs 

Table 1. The setup used for the project. 

 

4.2 Training Data Preparation 

Two training datasets are prepared separately for damage and 

object detection tasks. Both datasets contain RGB images 

captured by the MVS  in the Wagenburg and Heslacher tunnels 

in Stuttgart, Germany. As shown in Figure 5, the lighting 

conditions in the tunnel differ significantly. The distances of the 

cameras to the wall, corner, and ceiling vary between 1 and 5 m, 

and LEDs with beam angles of 50° and 30° were used for 

illumination. The size of damages varies from 1 cm to 1-2 m. 

Table 2 summarizes how many images are used for training and 

testing the CNNs for damage detection and object detection. A 

total of 220 images are manually labelled for damages, of which 

200 images are used for training and the rest for testing. A total 

of 522 images with depicted objects were selected, of which 

473 images are used for training and the rest for testing. 

 

Dataset All Training Testing Augmented data 

Damages 220 200 20 23751 

Objects 522 473 49 33583 

Table 2. Prepared data for training the networks. 
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To prepare the training dataset including RGB images and 

corresponding annotations, a labeling team manually digitized 

images for different classes of damages and objects. As a 

standard, it has been established that there are 8 classes of 

different damage types (crack, spalling, rust, rust flag, 

delamination, reinforcing steel, efflorescence and moss) and 10 

classes of different objects (traffic signs, lights, sensors, axial 

fans, traffic lights, cables, alarm speakers, air vents, electronic 

box, and cable boxes), as illustrated in Figure 6.  

Before training a CNN, additional processing steps should be 

applied to the images such as resizing and data augmentation. 

The input size or receptive field is an important aspect of the 

CNN architecture. In this study, all images are resized to 

256×256 pixels preserving the global information of the object 

shapes and avoiding that cropping could affect the random 

patterns of damages. In addition, various data augmentation 

techniques such as scaling, rotating, flipping, and color-

changing are applied to images to increase the number of 

training samples.  

 

 

 
a 

 

 

 
b 

 

Figure 6. Sample images and corresponding labels for a: 

damages and b: objects in different datasets. 

5. RESULTS AND DISCUSSIONS  

The capturing of images in the tunnel with the MVS was 

designed in such a way that point clouds could also be 

generated from them. In the chosen setup, the images overlap by 

approximately 23% in the direction of travel (horizontal 

overlap) and slightly more at around 35% in the transverse 

direction (vertical overlap), so that point clouds cannot be 

generated with this setup. The point cloud shown in Figure 7 

demonstrates the potential of a stereo recording, but it was 

captured during a different survey and will not be further 

discussed in the following. 

The fact that the cameras and LEDs available in the project are 

not adequately matched in terms of their fields of view (the 

image size of 8.4 mm x 7.1 mm results in horizontal and vertical 

FOVs of approximately 70° and 60°, while the LEDs have 

lenses of only 50° and 30°) leads to significant differences in 

illumination in the overlap regions. For the investigations with 

the CNNs, we, therefore, focus on the central areas of the 

images, where the tunnel objects and damages are adequately 

illuminated. 

 

 

Figure 7. The point cloud of one section. 

 

For object and damage detection, U-Net and DeepLab networks 

are trained on an NVIDIA GeForce RTX 2080 Ti with 8 GB 

GPU memory using an augmented training dataset for 10 object 

and 8 damage classes. The number of iterations to update the 

weights is fixed at 200, the batch size is 10 images. The low 

learning rate of about 0.0001 aims to improve the accuracy of 

the CNN by reducing the risk of overfitting. ADAM is used as 

the optimizer, and the sparse categorical cross entropy is chosen 

as the loss function. We used ResNet50 as the backbone model 

and ImageNet for initializing the weights. Table 3 shows the 

Intersection over Union (IoU) metrics for U-Net and DeepLab 

networks. The best results for object detection are achieved 

using U-Net with an IoU of about 78.6%. The predicted labels 

are shown in Table 4. The average detection rates for all types 

 
             a           b c 

Figure 5. a: Camera 1 towards the roof, illuminated by a 50 LED; b: Camera 2 towards the corner, illuminated by a 30 LED; 

c: Camera 3 towards the wall, illuminated by a 50 LED. 
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of damages are about 49.3% and 48.5% for U-Net and DeepLab 

networks, respectively. The predicted labels are shown in Table 

5. The accuracy of U-Net and DeepLab networks on the damage 

detection task is significantly less than the object detection task 

since the geometry and definitions of damaged areas are more 

complicated. Therefore, more labeled data are needed to 

improve the performance of the networks for segmenting 

damages. However, since damage detection tasks often require 

the detection of more subtle changes in image features that often 

not have a clear and well-defined boundary, the performance 

difference in comparison to object detection tasks, even with 

more extensive training, will be difficult to overcome. 

 

Model IoU on object 

detection (%) 

IoU on damage 

detection  (%) 

U-Net 78.6 49.3 

DeepLab 75.9 48.5 

Table 3. The performance of CNNs for object and damage 

detection in tunnel images. 

 

Image Label Predictions 

of U-Net 

Predictions of 

DeepLab 

   
iou: 86 % 

 
iou: 83 % 

   
iou: 81 % 

 
iou: 80 % 

   
iou: 81 % 

 
iou: 62 % 

   
iou: 83 % 

 
iou: 83 % 

   
iou: 95 % 

 
iou: 95 % 

   
iou: 70 % 

 
iou: 70 % 

   
iou: 95 % 

 
iou: 96 % 

   
iou: 61 % 

 
iou: 47 % 

Table 5. The results of CNNs for the object detection task. 

 

Image Label Predictions of 

U-Net 

Predictions of 

DeepLab 

   
iou: 50 % 

 
iou: 49 % 

   
iou: 63 % 

 
iou: 65 % 

   
iou: 78 % 

 
iou: 76 % 

   
iou: 24 % 

 
iou: 28 % 

   
iou: 50 % 

 
iou: 56 % 

   
iou: 63 % 

 
iou: 54 % 

   
iou: 90 % 

 
iou: 90 % 

   
iou: 38 % 

 
iou: 47 % 

Table 6. The results of CNNs for the damage detection task. 

 

6. CONCLUSION  

This study proposes  a data automation approach for 

object/damage detection in tunnels using a combination of 

machine vision and machine learning techniques. The key 

parameters of a machine vision system are the synchronization 

unit for cameras and active lighting and the geometric design of 

the system so that well-illuminated images with sufficient 

coverage of the tunnel surfaces are captured. With the 

investigations limited to images without the inclusion of 

generated point clouds, the collected data is used to train two 

CNNs to extract objects and damages from RGB images. The 

results show that U-Net outperformed the DeepLab model with 

IoUs of 78.6% and 49.3% for object and damage detection 

tasks, respectively.  
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