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ABSTRACT: 

 

Remote Sensing (RS) images have been used in several applications of interest for society. Despite the precision and robustness 

derived from RS images, several aerial scenes exhibit imperfections and fall short of attaining ideal quality standards, as some of 

them present distortions such as noise, blur, and stripes. An alternative approach to deal with such distortions is by applying 

Inpainting techniques, however, under certain circumstances, this type of approach requires to be evaluated by quantitative metrics to 

assess the final quality of the reconstruction. Therefore, this paper focus on the issue of quantitatively evaluating inpainting results in 

the context of RS by analysing and comparing new evaluation metrics in contrast to the classical ones from the general literature of 

RS. More precisely, two inpainting techniques are applied for object removal and reconstruction of partially detected curvilinear 

cartographic features in RS images. Next, the obtained results are evaluated by taking six evaluation metrics to assess the agreement 

level between the metrics, as well as between qualitative evaluations conducted by human agents. Based on the evaluation of these 

metrics when applied to RS images, it can be concluded that the DISTS and VSI metrics are the most promising candidates for 

adaptation and application within the specific context of RS. 

 

 

1. INTRODUCTION 

Remote sensing (RS) images have been widely used in various 

areas that are critically important to society, such as ecological 

monitoring, agriculture, and urban planning (Rubel et al., 2022). 

However, RS scenes may exhibit imperfections, especially due 

to the process of capturing complex patterns from the scanned 

area, thus generating distortions such as noise, blur, scratches, 

stripes and other corrupted pixels. One way to address these 

distortions is by applying image inpainting techniques, as it can 

be successfully used to reconstruct these types of distortions, as 

well as removing objects such as clouds, shadows, and texts 

(Ieremeiev et al., 2020; Qureshi et al., 2017). 

 

In the field of Cartography, the process of feature extraction has 

been crucial in various real-world applications. This task aims at 

identifying targets present on the earth's surface, such as roads, 

hydrography, airport runways, as well as for updating 

cartographic products. Due to anthropic and natural alterations 

of the earth's surface, it is of utmost importance to identify these 

modifications for tracking and vigilance purposes. In this 

context, among the existing classical digital image processing 

(DIP) techniques, there are several feature extraction methods 

that can detect partial or corrupted features so that the quality 

and of the results can be properly measured (Figueira et al., 

2018).  

 

Inpainting techniques aim to increase the visual quality of the 

image, by creating more detailed structures that, due to the 

flaws or absence of features information, were not captured 

before the inpainting reconstruction process. Despite the good 

results generated by the inpainting techniques, this type of task 

requires to be assessed by means of quantitative metrics to 

ascertain the final quality of the restoration (Azevedo, 2019; 

Basso et al., 2021).  Qureshi et al. (2017) state that the issue of 

assessing the quality of images obtained via inpainting 

techniques remains a complex and challenging problem.  

 

Despite the investigations carried out in this field, only a limited 

number of studies have proposed quantitative metrics to assess 

the quality of inpainting, particularly in the domain of 

Cartography and Remote Sensing. In fact, most of the published 

studies on validation metrics are strictly related to the 

development or use of inpainting techniques in conventional 

photographic digital images. In this sense, it is important to 

emphasize that the application of metrics to quantitatively 

evaluate the quality of partially detected curvilinear features via 

inpainting has been a field that is still little explored in the RS 

context. 

 

The use of inpainting techniques has become increasingly 

frequent, and researchers have developed various inpainting 

methods according to specific needs. However, only by directly 

applying these techniques, it is not possible to quantitatively 

identify the changes of feature pixels in the images. Thus, 

specific metrics have been created or adapted to assess the 

quality of digital images processed after the elimination of the 

objects that interfere with the detection of features of interest. 

The numerical evaluation of high and medium spatial resolution 

RS images allows for the quantitative validation of image 

reconstruction quality, and consequently, the establishment of a 

quantitative criterion for the quality of cartographic feature 

restorations. Thus, the use of inpainting quality metrics in the 

context of SR can lead to more robust and reliable validation 

criteria, eliminating the issue of human subjectivity while also 

promoting automation via computers, providing more well-
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established quantitative evaluation metrics that would take into 

account the specific characteristics of SR images. The main goal 

of this paper is to evaluate the use of different evaluation 

metrics for quantifying and assessing the results from the 

inpainting techniques when they are applied to the process of 

extracting cartographic features, focusing on partially detected 

curvilinear features in SR images. By doing so, one can 

determine which metrics are best suited to evaluate the results 

obtained from the application of inpainting techniques. 

 

2. LITERATURE REVIEW 

 

2.1 Inpainting Techniques 

 

According to Li and Wen (2012), the task of digital inpainting 

has been inspired on ancient art in which people repaired cracks 

in works of arts during the Renaissance period in Europe. With 

the evolution of computers, the first digital image inpainting 

technique was introduced by Bertalmio et al. (2000) in the 

computational context, which consisted of filling in the missing 

or lost information in digital photographs based on the available 

information present in the images. 

 

The technology of RS imagery is a widely discussed topic in the 

field of DIP, as RS images are used to drive several research 

areas such as agriculture, urban and territorial planning, earth 

sciences, meteorology, monitoring of environmental disasters, 

weather conditions, defense areas, and others. The information 

contained in aerial images provides more reliable attributes to 

explore large-scale problems such as change detection, land use 

and cover classification, spectral indices, and identification of 

different types of rocks and minerals (Lakshmanan and 

Gomathi, 2017). However, some elements in the image often 

present damaged or missing pixels (dead pixels) caused by the 

unwanted presence of clouds and shadows. In addition, some of 

these elements may be occluded, noisy, blurred, or stained. 

These types of distortions limit the execution of post-processing 

methods such as target classification and recognition (INCE, 

2019). Therefore, the goal of the inpainting task is to perform 

the full reconstruction or restoration of the target image, 

recovering relevant features or removing unwanted objects from 

the image. Previously, the inpainting technique was widely used 

in conventional photographs or paintings to remove scratches, 

folds, objects, noise, or texts. Nowadays, it has been widely 

used in various digital products in order to obtain images with 

quality equivalent to the original images without any damages 

(Lakshmanan and Gomathi, 2017). 

 

2.2 Evaluation Metrics  

 

According to Sara, Akter, and Uddin (2019), there are objective 

and subjective ways to evaluate image quality. Subjective 

evaluation is usually more challenging and time-consuming 

compared to the objective one. In terms of objective assessment, 

these are image quality metrics that rely on different aspects of 

their development. In the past decade, various evaluation 

metrics have been developed to image quality assessment. 

According to Søgaard et al. (2016), those metrics can be 

classified into two ways: Full-Reference (FR) and No-

Reference (NR). FR aims to evaluate image or video quality by 

comparing the distorted image with a reference image, which is 

usually taken as the original image without distortion and in 

optimal quality, while the NR holds the opposite case. 

 

In recent decades, there has been significant growth in visual 

quality metrics, each with their particularities when applied on 

the general context of conventional digital images (Egiazarian et 

al., 2018). In the RS context, the main validation metrics are the 

following: Mean Squared Error (MSE), the Peak Signal to 

Noise Ratio (PSNR), and the Structural Similarity (SSIM) 

(Basso et al., 2021). Although PSNR and MSE gauge the 

images in terms of their common content and the type of 

distortion, these metrics do not correlate well with subjective 

ratings (Huang and Jing, 2020; Zhang, Shen and Li, 2014). As a 

result, MSE, PSNR, and SSIM may not properly reflect the 

results in relation to the visual reality of RS images, thus 

requiring qualitative inspections together with quantitative 

examinations to propose metrics that better reflect the 

agreement between visual quality and numeric evaluation. 

 

It is worth mentioning that there are several evaluation metrics 

that have been explored not in the context of RS but rather in 

the general application of digital image editing in an effort to 

assess the quality of results obtained by inpainting techniques 

(Qureshi et al., 2017). Table 1 lists three evaluation metrics that 

achieve satisfactory results in the general context of digital 

image: the Deep Image Structure and Texture Similarity 

(DISTS) index (Ding et al., 2020), the Visual Saliency-Induced 

(VSI) Index (Zhang, Shen and Li, 2014), and the Feature 

Similarity (FSIM) Index (Zhang et al., 2011). Classic evaluation 

metrics such as MSE, PSNR, and SSIM were also included. 

 

Full-Reference Metric Description 
 

MSE 
Classic pixel-based mean square 

error. 
 

PSNR 
Peak signal-to-noise ratio based 

on MSE. 
 

 

 

SSIM  

(Wang, 2004) 

Gauges the similarity structures 

between two images. It considers 

low-level features such as 

luminance, contrast, and 

structural information. 

 

FSIM  

(Zhang et al., 2011) 

Gauges the similarity structures 

between two images. It takes both 

low-level and high-level image 

features. 
 

 

VSI  

(Zhang, Shen and Li, 

2014) 

Compares the saliency-induced 

regions of the reference and 

processed images, and then 

computes the similarity between 

them. 
 

 

DISTS  

(Ding et al., 2020) 

Takes a pre-trained convolutional 

neural network (CNN) devoted to 

predicting the perceptual 

similarity between two images. 

 

Table 1. Description of main image quality evaluation metrics. 

In recent studies, the PSNR, SSIM, and FSIM metrics have 

been increasingly employed in the RS context. Jiang et al. 

(2021) proposed an image dehazing method for RS imagery 

based on encoder-decoder architecture, which associates 

wavelet transformation and deep learning technology. 

Meanwhile, Huang and Jing (2020) developed an algorithm 

capable of reconstructing high-resolution images by combining 

wavelet transformation and generative adversarial network 

technology to improve high-frequency details in low-resolution 

images. Both studies used the above-listed metrics to evaluate 

the best results for the inpainting task. 

 

Based on theoretical references, the VSI and DISTS metrics 

have not yet been applied to RS images, particularly, the 

literature has covered applications of these metrics in 
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conventional photographic images (Zhu et al., 2022) and 

biomedical images (Du et al., 2022). In (Zhu et al., 2022), the 

image quality evaluation was used to assess a new perspective 

of grouping in conventional photographic images. Among these 

metrics, the VSI was able to be located among the best results, 

which reflected the reality of the study. In (Du et al., 2022), a 

fusion method was developed to preserve high-intensity texture 

and color information. Thus, it was necessary to use the VSI 

metric for the quantitative evaluation of the images. The VSI 

metric also appears in works related to the creation of other 

metrics for validation, such as in (Huang et al, 2022). Finally, in 

(Lu et al., 2022), the VSI metric was employed to validate the 

creation of a low-light enhancement network with prior gradient 

assistance (GPANet). This network is responsible for extracting 

edge features and removing unwanted noise, by introducing 

Sobel Filter and Laplacian Filter features. 

 

Although the DISTS is a recent metric, it has been successfully 

used in several applications. However, in the RS field, no 

related studies were found. Liu and Yeoh (2021) created an 

automated approach to recognizing concrete crack patterns in 

images, and for validation purposes, DISTIS was used to 

recognize crack patterns through similarity comparisons. The 

DISTS metric is also appeared as a validation tool in scientific 

works related to the generation of new metrics, such as 

Underwater Image Enhancement (UIF) (Zheng et al., 2022a) 

and Mean and Deviation of Deep and Local Similarity (MaD-

DLS) (Sim et al., 2020). Finally, in (Zheng et al., 2022b), the 

DISTS metric was applied together with other evaluation 

metrics, such as FSIM, to evaluate the quality of image 

resolution enhancement artifacts.  

 

2.2.1 MSE (Mean Square Error) 

 

The MSE metric can be understood as the Mean Squared 

Deviation (MSD) of a statistical estimator. The MSE always 

presents positive values and when closer to zero, indicates better 

results. It is also considered a traditional metric that requires a 

reference image to be computed (Figueira et al., 2020; Sara, 

Akter and Uddin, 2019; Wafy and Ebaid, 2016). The MSE 

between two images is defined as follows: 

 

𝑀𝑆𝐸 =  
1

𝑁𝑥𝑀
   𝑧′ 𝑖, 𝑗 − 𝑧′′  𝑖, 𝑗  

2
𝑀

𝑗=1

𝑁

𝑖=1

  

 
 

where  z’(i, j): reference image 

 z’’(i, j): distorted image 

 M: number of rows 

 N: number of columns 
 

Considering the process of synthesizing information in digital 

image, the goal of any inpainting or noise removal technique is 

to improve the fidelity and visual quality of a distorted image. 

Although the MSE quantifies the distortion between the 

reference image and the processed image, it does not consider 

certain relevant features of the target image such as texture and 

inherent patterns (Ndajah et al., 2010). 

 

2.2.2 PSNR (Peak Signal to Noise Ratio) 

 

The PSNR is a well-established metric that calculates the ratio 

between the maximum signal and the distortion noise values 

that affect the quality of the signal representation. In other 

words, it takes the total of gray levels in the image and its 

corresponding pixels from the reference image. The higher the 

PSNR value, the better the result, indicating that the target and 

reference images are similar. In order to compute this metric for 

practical purposes, one may calculate the MSE metric 

(Jagalingam and Hegde, 2015; Tiefenbacher et al., 2015; Sara; 

Akter and Uddin, 2019; Figueira et al., 2020). PSNR is 

calculated by using a logarithmic function, as signals have a 

very wide dynamic range. Additionally, PSNR measures the 

difference between pixel values individually. In general, the 

relationship between two images is calculated in decibels (db) 

(Tiefenbacher et al., 2015; Sara, Akter and Uddin, 2019). SNR 

can be expressed as (Rabbani; Jones; 2010): 

 

                        
𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10  

(𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒)2

𝑀𝑆𝐸 
  
 

 

where  peak value = The maximum among the pixels of the 

two images 

 

The metrics PSNR and MSE have widely been used due to their 

simplicity of use and easy mathematical implementation. 

However, these metrics are not normalized in representation 

(Sara; Akter and Uddin, 2019). 

 

2.2.3 SSIM (Structured Similarity Index Method) 

 

The SSIM metric belongs to the FR group of methods and 

provides the normalized mean value of structural similarity 

between the distorted and the reference images (Sara, Akter, 

and Uddin, 2019). SSIM measures distortions by combining 

three factors: loss of correlation, luminance distortion, and 

contrast distortion (Ndajah et al., 2010). 

 

Mathematically, SSIM can be expressed as (Wang et al., 2004): 

 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝐶1)(𝜎𝑥2 + 𝜎𝑦2 + 𝐶1)
    

 
 

where  µ: mean 

 σ: standard deviation 

 x: original imag  

 y: target image  

 σxy: covariance of x and y 

C1 and C2: constants that prevent numerical instability 

 

SSIM is an evaluation metric that predicts the quality of images 

when there is a need to measure the structural similarity 

between the input and reference images. SSIM is more accurate 

compared to PSNR and MSE (Figueira et al., 2020). 

 

2.2.4 FSIM (Features Similarity Index Matrix) 

 

The FSIM metric consists of two stages. The first one involves 

calculating the similarity map between images, while in the 

second stage, the similarity map is grouped, and then the 

similarity score is computed. FSIM is a very robust metric for 

validation tasks (Zhang et al., 2011). FSIM provides a 

normalized average value of the similarity of features between 

the original and distorted image, and their values range from 0 

to 1, where a result closer to 1 indicates that the target and 

reference images are similar (Sara, Akter and Uddin, 2019). 

FSIM was originally designed for grayscale images, but since 

chrominance information also affects the Human Visual System 

(HVS) in image perception, the metric has been improved to 

incorporate chrominance information for color images, i.e., 

RGB images (Zhang et al., 2011). FSIMC/FSIM equation can be 

expressed as follows (Zhang et al., 2011): 

 

𝐹𝑆𝐼𝑀𝐶 =
 𝑆𝐿𝑋𝜖Ω  𝑋 ·   𝑆𝐶(𝑋) 𝜆 ·  𝑃𝐶𝑚(𝑋)

 𝑃𝐶𝑚(𝑋)𝑋𝜖Ω
 
 

 ,                    (1) 

,                      (2) 

,          (4) 

,                 (3) 
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where  λ: adjust the chromatic components (λ > 0) 

 Ω: represents the whole image spatial domain 

PCm (X): gauges the importance of SL(X) in the 

overall similarity between two images 

 SL (X): similarity computed at the location x 

 SC (X): chrominance similarity measure  

 

2.2.5 VSI (Visual Saliency-Induced Index) 

 

The VSI quality metric gauges the preservation of visual 

saliency after image processing, comparing the similarity 

between the distorted and the original images. VSI assumes that 

HSV is sensitive to prominent features in the image such as 

edges and contrasts, and that preserving these features is 

essential to maintaining the visual quality of the image.  

 

Visual saliency (VS) has been used in various applications over 

the past decades, such as neurobiology and computer science. 

VSI takes VS as a resource to calculate the quality map of the 

processed image. Subsequently, the quality score is gathered, 

and VS is applied as a weighting function to reflect the 

importance of a particular region. Furthermore, VSI is a low-

complexity metric and presents satisfactory results compared to 

other metrics used in the validation process for conventional 

images (Zhang, Shen and Li, 2014). 

 

According to Kumar, Bhandari, and Kumar (2022), the closer 

the VSI value is to 1, the better the output of the VS between 

the reference and distorted images. In other words, the higher 

the VSI value, the better the result, and the lower the distortion 

of visual saliency. VSI equation can be expressed as follows 

(Zhang, Shen and Li, 2014): 

 

𝑉𝑆𝐼 =
 𝑆𝑋𝜖Ω  𝑋 ·  𝑉𝑆𝑚(𝑋)

 𝑉𝑆𝑚(𝑋)𝑋𝜖Ω
 

 
 

where  Ω: represents the whole spatial domain 

 S (X): similarity computed at the location x 

 VSm (X): gauges the importance of S(x) in the overall 

similarity 

 

2.2.6 DISTS (Deep Image Structure and Texture 

Similarity index) 

 

The DISTS metric allows the computation of structural 

distortions (artifacts due to noise or blur) with a tolerance for 

texture resampling, where a texture region is transformed into a 

new sample wherein the pixels are different but, in terms of 

visual perspective, the texture is identical (Liu and Yeoh, 2021). 

 

 DISTS takes a convolutional neural network (CNN) to 

transform the reference and distorted images into new 

representations. Then, a set of measures is created to capture the 

visual appearance of the image textures. Finally, the texture 

parameters and global structural measures are combined to form 

an image quality evaluation (Ding et al., 2020). In more 

technical terms, DISTS relies on a deep neural network that is 

trained to learn image quality. Thus, a pre-trained convolutional 

neural network (CNN) is trained to predict the perceptual 

similarity between the reference and distorted images. 

 

According to Ding et al. (2020), DISTS is a metric that is robust 

to mild geometric distortions, and it performs satisfactorily in 

texture classification and retrieval. It varies from 0 to 1, as 0 

indicates that the distorted image resembles the reference 

image. DISTS equation can be expressed as (Ding et al., 2020): 

 

𝐷 𝑥,𝑦;  𝛼,𝛽 = 1 −     𝛼𝑖𝑗 𝑙(𝑥 𝑗
 𝑖 

 ,𝑦 𝑗
 𝑖 

) +  𝛽𝑖𝑗 𝑠(𝑥 𝑗
 𝑖 

 ,𝑦 𝑗
 𝑖 

) 

𝑛𝑖

𝑗=0

𝑚

𝑖=0

 

 
 

where  {αij, βij}: positive learnable weights 

 l(·): texture similarity function 

 s(·): structure similarity function 

 

3. METHODOLOGY 

 

3.1 Database 

 

To drive our analysis, a cartographic database was used, which 

is composed of images from the IGC's aerophotogrammetric 

and cartographic collection with a spatial resolution of 45 cm, 

as shown in Figure 1. The original images have a frame of 

10,000 x 10,000 pixels. To optimize processing time and take 

regions of interest in the images, the images were previously 

cropped. As a result, thousands of images were created with 

frames of approximately 300 x 300 pixels. 

 

 
 

Figure 1. Images from the IGC aerial photogrammetric and 

cartographic collection.  

Source: IGC (2010). 

 

3.2 Application of Inpainting Techniques 

Among the inpainting techniques, two of them where taken in 

this study: the algorithms proposed by Baixo (2022), and the 

one described by Azevedo (2019). The choice of both 

algorithms is justified because they are recent proposals 

formulated to address RS images. The automatic algorithm 

presented by Azevedo (2019) consists of three steps: in the first 

two steps, the goal is to obtain the shadowed regions of image. 

Pre-processed images are then used as input data, based on two 

properties that characterize shadows. 

 

To enhance the shadows in images, a combination of top-hat 

transformation and closure is applied, along with an area 

parameter calculated using the shadow index NSDVI, which 

detects low spectral responses in these regions. This 

transformation is a morphological image processing tool that 

aims to recover relevant image structures through mathematical 

operations. In the third stage, masks of the detected shadows are 

used to guide the process of reconstructing shadow regions by 

using a variant of the inpainting method described in Casaca et 

al. (2014), which employs a useful mechanism of block-based 

pixel replication, whose the goal is to copy "blocks of pixels" 

that have the same characteristics as the pixels that need to be 

reconstructed. This is done by calculating the distance that 

embeds information about the structure (homogeneous regions 

and edges) of the image. Figure 2(a) shows an illustration of 

how this approach fills the image. Starting from the so-called 

region of dynamic sampling (HL(p)), the pixel priority is 

determined by computing the most suitable block (Hm(qˆ)) to be 

 ,  (6) 

,                     (5) 
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filled in the target region of interest (Ω) within a specific 

neighborhood (p). For this purpose, a similarity measure based 

on NRMSD (Normalized Root Mean-Square Deviation), 

(Equation 7) (Azevedo, 2019) was applied. 

 

𝑑 𝑝, 𝑞 =
 𝑝 − 𝑞 ∆𝑈

  𝑝 ∆𝑈  
2 +  𝑞 ∆𝑈

2
 

 
on what, 

 

 𝑝 − 𝑞 ∆𝑈 =  (𝑝 − 𝑞)2∆𝑈(𝑝 − 𝑞) 
,
 𝑝 ∆𝑈  =   𝑝𝑇∆𝑈𝑝 

,
 𝑞 ∆𝑈  = 𝑞𝑇∆𝑈𝑞 

, 
 

where  ∆U = diagonal matrix determined by the Laplacian 

 p = specific neighborhood 

 

The term ∆U is the diagonal matrix determined by the Laplacian 

of u:𝑢:  ∆𝑈𝑖𝑖 = ∆𝑈𝑝𝑖 ,𝑝𝑖 ∈ 𝐻𝑛(𝑝)⌒ɅΩ𝑝 .  . Within the sampling region 

(ɅΩp) (Figure 2(b)), the NRMSD measure compares the fixed 

block (Hn(p)) with all possible candidate blocks (Hn(q^)). The 

block that minimizes the NRMSD distance between (Hn(p)) and 

(Hn (q^)) will be the best block (Hm(qˆ)), for all Hn(q)⌒ɅΩp. 

From the selected block, a small region (Hm(qˆ)) is taken to 

reconstruct the missing region in the neighborhood H(p) of p 

(Figure 2(c)) (Azevedo, 2019). 

 

 

 
 

Figure 2. Block filling mechanism through dynamic sampling. 

Source: Adapted from Azevedo (2019). 

 

The approach proposed by Baixo (2022) was taken for the 

inpainting application due to the fact that it is an improved 

method regarding the popular Total Variation (TV) model (Shen 

and Chan, 2002), which was enhanced by Schonlieb (2015). 

Baixo (2020) adapted the TV approach formulated by Schonlieb 

(2015) for recovering missing parts in RS images, including 

different RS bands. In short mathematical terms, Equation (9) – 

the TV-RS inpainting model –, summarizes the inpainting 

process as applied on (Baixo, 2022): 

 

                                
𝑢𝑡 =   ∇𝑢  𝑑𝑖𝑣  

∇𝑢

 ∇𝑢 
  

 , 

                                    
𝑢  𝛿Ω =  𝑢0  𝛿Ω 

 
 

where  div(f): represents the divergence operator 

                δΩ: the restoration region 

 

In Equation (9), div(f) represents the divergence operator, and 

the boundary condition requires that the output image, 

u=u(x,y,t), should be equal to the initial image with respect to 

the information contained in the boundary of the restoration 

region in δΩ (Baixo, 2022; Schonlieb, 2015). 

 

From the above-described Partial Differential Equation, the TV-

RS model is derived, by numerically estimating the solution 

from Equation (9). In order to do so, it is necessary to discretize 

the Ω region (inpainting domain). Next, the partial derivatives 

are discretized via the Finite Differences Method (FDM) 

(Baixo, 2022). As a result, the term ut is numerically 

approximated via FDM, by using Equation (10): 

 

  
𝑢𝑡 =  

𝜕𝑢

𝜕𝑡
=  

𝑢 𝑡 + ∆𝑡 − 𝑢(𝑡)

∆𝑡
 

 
   

where      ∆t: temporal step 

 

After simplification of Equation (10), the following expression 

is reached, which introduces a recursive process that converts 

the damaged image (un) into an improved image (u(n+1)): 

 

𝑢𝑛+1 ≅  𝑢𝑛 + ∆𝑡𝑢𝑡
𝑛  

 
 

Finally, for the numerical implementation of TV-RS restoration 

model, one may apply the following discretized expressions: 

 

𝑢𝑡
𝑛 =   ∇𝑢𝑛   𝑑𝑖𝑣  

∇𝑢𝑛

 ∇𝑢𝑛  
  

 
 

𝑢𝑡
𝑛 =  

𝑢𝑥𝑥
𝑛  𝑢𝑦

𝑛 
2

+ 𝑢𝑦𝑦
𝑛   𝑢𝑥

𝑛 2 − 2 𝑢𝑥
𝑛𝑢𝑦

𝑛𝑢𝑥𝑦
𝑛  

 𝑢𝑥
𝑛 2 +  𝑢𝑦

𝑛 ²
, 

 
 

From the discrete model in Equation (12), the inpainting can be 

computed efficiently (Schonlieb, 2015; Baixo, 2022). The input 

data are: the image to be restored, the restoration domain (the 

mask), the temporal step, and the maximum total number of 

iterations. 

 

3.3 Validation Steps and Metrics Assessment 

The restauration via inpainting techniques were assessed by 

taking six evaluation metrics applied to high spatial resolution 

RS images, creating a solid benchmark for metrics validation. 

 

Two correlation coefficients were also used as evaluation 

criteria: the Spearman rank correlation coefficient (SRCC) and 

the Kendall rank correlation coefficient (KRCC). The SRCC 

was computed to verify the correlation between qualitative and 

quantitative analysis, i.e., the visual/subjective analysis of the 

metrics. Qualitative comparisons were performed for each 

evaluation metric: MSE, PSNR, SSIM, FSIM, VSI, and DISTS. 

To gauge the correlation between human agents from a 

qualitative point of view, KRCC was applied as part of our 

analysis. For the KRCC inspection, two users were invited to 

rank the images according to the best restoration from a 

subjective/visual point of view after inpainting was applied. 

Both users are doctoral students in cartographic sciences, but 

one is from the geodesy field and the another is from the remote 

sensing field. Our goal is to investigate whether existing 

quantitative metrics are compatible or not with qualitative visual 

results for basic features present in RS images. 

 

4. RESULTS 

The inpainting techniques from Azevedo (2019), Figures 3 and 

4 (a)-(c), and Baixo (2022), Figures 3 and 4(d), were applied on 

a set of RS images with curvilinear features and different 

textures. In order to eliminate the issue of human subjectivity, 

all the six validation metrics were applied (see Table 2). From 

the the generated results, it was found that the classic metrics 

(MSE, PSNR, and SSIM) were generally unable to translate the 

obtained results in numerical terms for some of the sampled 

images, because they do not consider certain specific 

characteristics in digital images, such as texture. Table 2 

presents the scores of the six evaluation metrics for each 

(a) (b) (c) 

(9) 

,                    (10) 

,                            (11) 

  (13) 

,                      (7) 

                       (8) 

    ,                        (12) 
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reconstructed images, as well as the qualitative examination 

performed by a human agent, who ranked the results according 

to his subjective criteria. From Table 2 and Figure 3(a), best 

quantitative scores for MSE, PSNR, and SSIM were obtained, 

but visually, the inpainting presented a less satisfactory result. 

Therefore, the following question arises naturally: “What is the 

rationale behind the metric indicating that this particular 

outcome is the optimal one?” This can be justified by the fact 

that TV-RS inpainting technique smoothed the image 

significatively, discarding texture patterns. By only inspecting 

the evaluation metrics, these impose that the best results occur 

when the targets are excessively smoothed while for a human 

agent, the result may appear artificial.  
 

     
 

 

              
 

 

 
 

 

Figure 3. (a)-(c) Inpainting from Azevedo (2019), (d) from 

Baixo (2022), and (e) the reference image.  

 

 Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d) 

MSE ↓ 3 4 2 1 

PSNR ↑ 2 1 3 4 

SSIM ↑ 2 1 3 4 

FSIM ↑ 1 2 3 4 

VSI ↑ 1 2 3 4 

DISTS ↓ 1 2 3 4 

Subjective score 1 2 3 4 

MSE ↓ 1056,7 1226,2 1007,8 995,4 

PSNR ↓ 17,9 17,2 18,1 18,2 

SSIM ↑ 0,9690 0,9684 0,9677 0,9766 

FSIM ↑ 0,9826 0,9807 0,9806 0,9785 

VSI ↑ 0,9943 0,9937 0,9935 0,9893 

DISTS ↓ 0,0365 0,0387 0,0457 0,0481 

 
Table 2. Ranking of classified images according to their quality  

computed by each metric. 

 

In fact, one can verify that in visual terms, the image was not 

reconstructed properly, as it reproduced a distortion/blur as part 

of the image. However, the FSIM, VSI, and DISTS metrics 

indicated coherent results compared to the subjective analysis. 

 

Table 3 presents the numerical and qualitative results of a 

cartographic land use feature image. The DISTS and FSIM 

metrics coincide with the visual examination. However, the 

remaining metrics diverge between the first and second Figures 

4(a) and 4(b) regarding the subjective analysis. From these 

results, the following question arise: “What makes a 

quantitative metric capable of indicating a more accurate result 

for one image than another?” Notice that the metrics proposed 

in the general inpainting literature were not designed to evaluate 

patterns and certain peculiarities of remotely sensed images. 
 

        
 

       
 

 
 

 

Figure 4. (a)-(c) Inpainting from Azevedo (2019), (d) from 

Baixo (2022), and (e) the reference image. 

 

 Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d) 

MSE ↓ 1 3 2 4 

PSNR ↑ 4 3 2 1 

SSIM ↑ 1 2 3 4 

FSIM ↑ 2 1 3 4 

VSI ↑ 1 2 3 4 

DISTS ↓ 2 1 3 4 

Subjective score 2 1 3 4 

MSE ↓ 931,0 1132,7 1321,2 4923,3 

PSNR ↑ 18,4 17,6 16,9 11,2 

SSIM ↑ 0,9828 0,9820 0,9812 0,9754 

FSIM ↑ 0,9896 0,9900 0,9891 0,9810 

VSI ↑ 0,9952 0,9950 0,9948 0,9776 

DISTS ↓ 0,0245 0,0242 0,0247 0,3475 

 

Table 3. Ranking of classified images according to their quality 

computed by each metric. 

(a) (b) 

(c) (d) 

(e) 

(a) (b) 

(c) (d) 

(e) 
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Concerning the visual and quantitative analysis, SRCC and 

KRCC were applied by considering the users’ selections. User 1 

had little experience in the area compared with User 2, causing 

their choices divergent from User 2, who has some knowledge 

about RS imagery (Table 4). Regarding Figure 3, when 

comparing the user's choices with the results of each 

quantitative metric, it was observed that almost none of the 

metrics were correlated with their choices, i.e., only SSIM gave 

a satisfactory correlation. On the other hand, almost all metrics 

demonstrated correlation with User 2's qualitative analysis, 

except for SSIM metric. 

 

 

Metrics 
Figure 3 Figure 4 

User 1 User 2 User 1 User 2 

MSE 0 -0.8 -0.4 -1 

PSNR 0 0.8 0.4 1 

SSIM -1 -0.4 0.8 0 

FSIM -0.4 -1.0 -0.2 -0.8 

VSI -0.4 -1.0 -0.2 -0.8 

DISTS 0.4 1.0 0.2 0.8 

 

Table 4. Measures of performance (SRCC). 

 

According to the KRCC, the value between users was 0.33, 

indicating weak correlation between their choices. It should be 

noted that a value closer to one indicates strong correlation. 

Thus, it was found that qualitative analysis is subjective among 

users themselves so that each user can evaluate the image and 

identify features that they believe to be more relevant in the 

reconstruction context, and some quantitative metrics cannot be 

properly correlated with visual analysis. Therefore, there is a 

necessity in adapting or creating new evaluation metrics that is 

capable of taking into account RS image features as evaluation 

criteria. Regarding Figure 4, the behavior was similar to the one 

observed in Figure 3, i.e., weak correlation for User 1 and 

strong correlation for User 2. According to the KRCC, the value 

between users was 0.67, indicating moderate correlation 

between their choices. It should be noted that in both cases, the 

DISTS metric achieved a strong correlation in both scenarios 

for User 2. DISTS reached attractive results, putting it as a 

strong candidate to be adapted to deal with RS images. On the 

other hand, the SSIM metric showed divergent results in 

relation to the other evaluation metrics in both analyses. 

 

The most dependable metrics will hold significant importance, 

particularly in post-processing endeavors like image 

classification. This is due to the fact that while the reconstructed 

image may visually appear satisfactory, it may not align with 

the numerical reality. Additionally, since each user possesses 

varying levels of visual acuity and experience within this 

process, employing metrics that yield more consistent results 

between qualitative and quantitative analyses becomes 

necessary. In the course of reconstruction, the target may 

acquire information from adjacent pixels that do not belong to 

the same class, further emphasizing the need for images to 

exhibit concise and coherent visual as well as 

numerical information. 

 

5. CONCLUSIONS 

The main contribution of this work lies in the identification of 

more robust and appropriate metrics to be applied on the 

evaluation and assessment of inpainting quality for partially 

detected cartographic features. Based on the evaluation of the 

metrics applied to RS images, it was possible to measure and 

elect DISTS and VSI metrics as potential metrics to be applied 

to the specific context of RS, including post-processing 

applications. Since our experimental analysis has been almost 

exclusively carried out in the context of photographic digital 

images, we believe that a more reliable treatment of RS data in 

Cartographic Sciences will have a broad impact on the use of 

inpainting metrics. In addition, we focus on maximizing the 

accuracy obtained during the evaluation task so as to obtain 

more precise results to drive the process of updating 

cartographic products. As future work, we plan to apply the 

analyses to a broader dataset and orbital satellite images. 
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