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ABSTRACT: 

 

The concept of "place" is crucial for understanding geographical environments from a human perspective. Place representation learning 

involves converting places into numerical low-dimensional dense vectors and is a fundamental procedure for artificial intelligence in 

geography (GeoAI). However, most studies ignore multi-level distance constraints and spatial proximity interactions that enable 

behavioral interactions between places. Furthermore, representing the temporal characteristics of these interactions in trajectory 

sequences poses a challenge for natural language processing and other field techniques. In addition, most existing methods rely on all 

modalities from inputs as they use joint training to integrate multiple modalities. To address these issues, we propose a Multi-Modal 

Contrastive Pre-training model for Place representation (MMCPP). Our model consists of three encoders that capture 

corresponding place attributes across different modalities, including point of interests (POIs), images, and trajectories. The trajectory 

encoder, named RodtFormer, takes fine-grained spatio-temporal trajectories as input and leverages self-attention with rotary temporal 

interval position embedding to simulate dynamic spatial and behavioral proximity interactions between places. By using a coordinated 

pre-training framework, MMCPP independently encodes place representations across different modalities and improves model 

reusability. We verify the effectiveness of our model on a taxi trajectory dataset using the location prediction task at next n seconds, 

including 30 seconds(s), 180(s), 300(s). Our results demonstrate that compared to existing embedding methods, our model is capable 

of learning higher-quality position representations during pre-training, leading to improved performance on downstream tasks. 

 

 

1. INTRODUCTION 

Places offer meaningful insight into the geographical 

environment from a human perspective, as they contain attributes 

related to spatial features and human behavior (Liu, Yao, et al. 

2020). Place representation learning has emerged as a key 

component in urban studies and applications, aiming to represent 

places as numerical low-dimensional vectors. These vectors can 

be used to reveal the inherent laws of places (Huang et al. 2021) 

and improve the performance of downstream tasks, such as 

location prediction (Li et al. 2022), urban function identification 

(Jenkins et al. 2019; Paul et al. 2021), house price forecasts (Das 

et al. 2021), etc. Place representation learning drives the 

development of artificial intelligence in geography (GeoAI) (Mai, 

Janowicz, et al. 2022; Janowicz et al. 2020). 

 

Representing a place requires describing attributes of the place.  

These attributes include two aspects: first-order attributes 

intrinsic to the place itself, and second-order attributes shaped by 

spatial and behavioral proximity interactions among places. 

Different modalities of data capture distinct facets of these 

attributes. For instance, point-of-interests (POIs) (Jenkins et al. 

2019) and images (Wang, Wang, et al. 2020) can reveal first-

order attributes such as place functions and surface information. 

Trajectories, can simulate dynamic interactions between places 

and provide insight into second-order attributes such as spatial 

autocorrelations and spatial complementarity (Liu et al. 2022).  

 

Several recent studies have demonstrated that combining multi-

modal data can yield higher quality place representations 
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compared to using unimodal data (Huang et al. 2021; Zhang et al. 

2020). Multi-modal integration technology provides the basis for 

simultaneous representation of first-order and second-order 

attributes of a place (Wang, Li, et al. 2020; Zhang et al. 2020). 

 

However, existing research exhibits some deficiencies. Firstly, 

previous studies have typically focused on the interaction 

between stay points of trajectories (e.g., pick-up and drop-off 

points of taxi trajectories) while ignoring the fine-grained 

trajectory sequences that include multi-level spatial distance 

constraints and spatial proximity interactions. Secondly, existing 

representation learning methods in computer science have 

difficulty capturing the complex geographical features of a place, 

such as spatial and temporal characteristics. Thirdly, most current 

research has employed joint representation structures that require 

all modalities as input, limiting their reusability when only one 

modality is available or parts of the modalities are missing. 

 

To address these issues, we aim to develop a pre-training model 

that can simultaneously capture first-order and second-order 

attributes using multi-modal data, considering not only the 

attributes of the place itself, but also the interaction of dynamic 

spatial proximity and behavioral proximity. The model can be 

used in the tasks involving missing partial modalities while 

utilizing multi-modal information, ensuring higher reusability. 

 

The main contributions of this paper are summarized as follows: 

 

⚫ We propose MMCPP - a model that uses three types of 

geographic data: POIs, images, and trajectories. MMCPP 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-303-2023 | © Author(s) 2023. CC BY 4.0 License.

 
303



 

features three encoders that correspond to the three 

modalities and can represent places independently, making 

the model more reusable. 

 

⚫ We propose a trajectory encoder named RodtFormer. This 

encoder contains a self-attention mechanism with a rotary 

temporal interval position embedding based on Roformer 

structure (a variant of Transformer). It allows for 

simulating dynamic spatial proximity interactions and 

behavioral proximity interactions among places in fine-

grained trajectory sequences. 

 

⚫ A contrastive sample construction method is designed for 

integrating multi-modal information. By using contrastive 

learning method, the encoders in MMCPP integrates the 

information of other modalities, and can represent the place 

independently when the respective modality data is given, 

which improves the reusability of the pre-train model. 

 

⚫ We employ MMCPP in the location prediction task at next 

n seconds, including 30 seconds, 180 seconds, and 300 

seconds, and conduct experiments on a taxi trajectory 

dataset. Our experimental results show significant 

improvement in prediction performance, demonstrating the 

superiority of our proposed model. 

 

2. RELATED WORK 

Aligning heterogeneous and multi-source geographic data to 

corresponding places and integrating information of different 

modalities have become challenges in multimodal place 

representation modeling. 

 

Some studies extract features of different modalities and 

concatenate them together as the place representation vector for 

each geographical unit (Xuan et al. 2016; Li 2018). It can be 

expressed as [𝑉1; 𝑉2; … ; 𝑉𝑛] . The place representation vector 

obtained by these methods have strong interpretability. However, 

this method has a heavy workload and only considers first-order 

attributes of the place, ignoring second-order attributes generated 

by interaction among places.  

 

Alternatively, some studies integrate information of different 

modalities when constructing the input and learn the place 

representation containing multi-modal information, which can be 

expressed as: Enc([𝑉1; 𝑉2; … ; 𝑉𝑛]). For example, scholars use the 

structure of heterogeneous graphs to integrate different 

modalities' information (Liu et al. 2022; Paul et al. 2021) or 

compare trajectories to sentences using natural language 

processing methods to jointly integrate multi-modal information 

(Wan et al. 2022; Zhao et al. 2017; Zhu et al. 2019). 

 

Moreover, integrating information of different modalities can be 

achieved by adding a fusion structure in the model, expressed as: 

Fusion(Enc1(𝑉1), Enc2(𝑉2), … , Enc𝑛(𝑉𝑛)) . For example, 

statistical operators such as mean value aggregation (Wang et al. 

2021); deep learning modules such as fully connected layers 

(Jenkins et al. 2019; Zhang et al. 2020; Luo et al. 2022; Wang et 

al. 2022), attention mechanism variants (Zhang et al. 2020; Luo 

et al. 2022; Sun et al. 2022) can be utilized. Encoder-decoder and 

other special training structures also can be used for modality 

integration (Du et al. 2019; Zhang et al. 2019; Fu et al. 2019).  

 

Some studies design training tasks, i.e., loss functions, to enable 

the representation model to integrate multi-modal information 

during the training process. These tasks can be categorized into 

mask data recovery tasks (Zhang et al. 2017; Lin et al. 2021) and 

contrastive learning tasks (Huang et al. 2021; Radford et al. 2021). 

 

Most studies using the first three methods above belong to joint 

representation structures that rely on all modal inputs 

(Baltrušaitis et al. 2019). The model will not be able to represent 

when the downstream task lacks any modality, and the model's 

reusability is low. In contrast, most models using contrastive 

learning training strategy are coordinated representation 

structures (Baltrušaitis et al. 2019) applicable to only one 

modality. However, few studies combine place representation 

with this method (Huang et al. 2021). 

 

Furthermore, most studies only consider the interaction between 

stay points in trajectory data, such as pick-up and drop-off points 

of taxi trajectories. They overlook multi-level distance 

constraints and spatial proximity interactions in fine-grained 

trajectory sequences (Yao et al. 2018; Du et al. 2019; Liu, 

Miranda, et al. 2020).  

 

And it is usually difficult to represente the geographical 

characteristics of places (e.g. spatio-temporal characteristics) by 

directly transferred the representation methods from specific 

fields such as natural language processing. For example, For 

example, the self-attention mechanism in the Transformer 

encoder can encode semantics of the sequence context and use 

absolute sequence position (0, 1, 2, …) to supplement the 

position information lost in the self-attention mechanism. 

However, capturing trajectory sequences and temporal 

characteristics of place interactions is crucial for building place 

representations. Even though some studies introduce temporal 

positions (Lin et al. 2021), the representation ability remains 

insufficient. 

 

3. METHODOLOGY 

Figure 1 illustrates the structure of MMCPP, which includes three 

encoders and two pre-training phases. In phase 1, place attributes 

described by each modality of data are encoded by three encoders 

using self-supervised pre-training tasks individually. In phase 2, 

the encoded place attributes from each modality representation 

are integrated coordinately using the contrastive learning method. 

This section explains the structure of MMCPP in greater detail. 

 

 

Figure 1. The structure of multi-modal contrastive pre-training 

model for place representation (MMCPP) 

 

3.1 POIs Encoder 

The POIs encoder extracts functional attributes from categories 

and geographical location distributions of POI data to encode the 
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first-order attributes of a place. Its structure, shown in Figure 2, 

includes an input layer and an attention pooling layer for 

capturing dominant functional properties in the place. 

 

The Input Layer comprises a coding layer of POI categories that 

converts discrete POI categories into continuous numerical 

variables. Additionally, a coding layer of POI location uses the 

sinusoidal multi-scale position encoder (Mai, Xuan, et al. 2022) 

to encode the two-dimensional coordinates (including latitude 

and longitude) of POIs within the place. For places without POIs, 

a special "pseudo-POI" with category name "[NAN]" and 

coordinates at the geometric center of the place is added to avoid 

the same representation of places without POIs. After category 

embedding and coordinate coding, additive operators are used to 

integrate the POI category and geographical location distribution. 

Then, the attention pooling layer performs weighted aggregation 

of different categories of POIs at different locations within the 

place to capture the main functional attributes of the place. 

Finally, a feature vector integrated POIs information is output as 

a representation of the place in this modality. 

 

 

Figure 2. the structure of POI encoder in MMCPP 

 

3.2 Image Encoder 

The image encoder of MMCPP adopts VisionTransformer (ViT) 

(Dosovitskiy et al. 2021), which is used to extract surface 

information from images within a place, such as the size, shape, 

and spatial position distribution of ground objects. 

 

The input to ViT is the images within the place, each containing 

200×200 pixels. The size of each image patch is set to 10×10 

pixels, resulting in 400 image patchs per image. ViT adds a 

learning "[CLS]" item before image patch embeddings, which 

serves as a representation of the entire image corresponding to 

the place. Therefore, the feature vector of "[CLS]" is used as the 

representation of the place in the image modality. 

 

3.3 Trajectory Encoder 

Fine-grained trajectory sequences describe the dynamic 

interactions of spatial proximity and behavior proximity among 

places simultaneously. The representation of a place will spread 

to the representations of other places along the trajectory 

sequence containing the movement behavior of the crowd. And 

the autocorrelation and complementary effects from different 

places will also spread to the representations of the target places. 

 

This paper proposes a trajectory encoder, named RodtFormer, as 

shown in Figure 3. It based on the RoFormer (a variant of 

Transformer) structure, takes fine-grained spatio-temporal 

trajectories as inputs and uses the self-attention mechanism with 

rotary temporal interval position embedding to simulate the 

dynamic interactions among places. It captures spatial proximity 

interactions, behavioral proximity interactions, and temporal 

characteristics including absolute chronological order and 

relative time intervals among places. As a result, the encoder 

represents second-order properties of places. 

 

RodtFormer begins by converting the coordinate sequence of 

trajectories into the corresponding place ID sequence. This is 

followed by the place ID coding layer, which maps each place ID 

to the corresponding continuous feature vectors. 

 

These vectors are then input into a multi-head self-attention 

mechanism. However, the self-attention mechanism loses the 

sequence position information (Vaswani et al. 2017). 

Transformer and RoFormer use simple sequential orders (0, 1, 2, 

3, ...), respectively combined with sinusoidal position encoding 

and rotary position encoding to complement posotion 

information. However, for trajectories, the time interval of 

visiting each place is not uniform and contains important 

in ormation, such as locations’  isite   requencies or sta e  

durations (Lin et al. 2021). 

 

This paper introduces rotary temporal interval position encoding 

to capture two aspects of time characteristics in trajectory data: 

absolute chronological order and relative time intervals. The new 

encoding method replaces "simple sequential orders" with "first 

time interval" to introduce time position information. This 

information is calculated by subtracting the timestamp 𝑡𝑚  of 

each position in the sequence from the timestamp 𝑡1  of the 

starting point. For instance, given an input trajectory 

sequence 𝑇𝑟𝑎𝑗𝑔𝑟𝑖𝑑 = [𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑀] and its corresponding 

timestamp sequence 𝑇𝑟𝑎𝑗𝑡 = [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑀] , the resulting 

place ID and time interval sequences are expressed as:  

𝑇𝑟𝑎𝑗′
𝑔𝑟𝑖𝑑

= [[𝐵𝐸𝐺𝐼𝑁], 𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑀 , [𝐸𝑁𝐷], [𝑃𝐴𝐷], … , ] , 

and 𝑇𝑟𝑎𝑗′
∆𝑡

= [0,  , ∆𝑡2,1, ∆𝑡3,1, … , ∆𝑡𝑀,1, ∆𝑡𝑀,1 +  , 0,… , ] . In 

addition, the factor μ controlled the relative time interval 

attenuation and the scaling factor s of time interval are introduced 

to further enhance the ability to express time information. Both 

of them are 1-dimensional, learnable variables. Moreover, the 

rotational time interval position encoding matrix 𝐑 =
[𝐑1, … , 𝐑𝑚, … , 𝐑𝑀] is constructed, which is used to transform 

the matrices 𝐐 = [𝐐1, … , 𝐐𝑚, … , 𝐐𝑀]  and 𝐊 =
[𝐊1, … , 𝐊𝑛, … , 𝐊𝑀]  of the self-attention mechanism. Overall, 

this enables the modeling of absolute chronological order and 

relative time intervals of dynamic interactions simultaneously.  

The calculation equations of the process can be written as follows: 

 

𝐐𝑚′⊤𝐊𝑛′ = (𝑹𝑚𝐐𝑚)⊤(𝑹𝑛𝐊𝑛)     (1)

 𝑹𝑚 =

(
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∆𝑡𝑚,1 = 𝑠 ∗ (𝑡𝑚 − 𝑡1), 𝑠 ∈ ℝ  (3) 

𝜃𝑖 = 𝜇−
2𝑖

𝑑 , 𝜇 ∈ ℝ  (4) 

 

where  𝑡𝑚 = timestamp of the m-th position 

 i = dimension index of the feature vector 

 

 

Figure 3. the structure of trajectory encoder in MMCPP 

 

3.4 Model Pre-Training 

3.4.1 Phase 1: Single-modal independent pre-training: 

Three encoders corresponding modalities are pre-trained by 

using self-supervised learning tasks to capture the place attributes 

represented in that modality. 

 

The POI encoder is pre-trained using the POI category set 

(a  itionall  contains “N N”)  or multi-label classification. 

 

The image encoder adopts the Masked Autoencoder (MAE) and 

uses the mask image restoration task for pre-training (He et al. 

2021). Firstly, a scene image is divided into multiple image 

patches. These patches are then randomly masked and input into 

a decoder to restore pixel values within the mask regions. A mask 

rate of 0.85 is used in this study. 

 

The trajectory encoder adopts the pre-training target of Masked 

Trajectory (MT), which is inspired by the Masked Language 

Model (MLM) pre-training objective used in BERT(Devlin et al. 

2019). MT randomly masks place IDs in trajectories and predicts 

their original visited place IDs. The mask rate is set to 0.15. 

 

3.4.2 Phase2 Multi-modal coordinated pre-training: 

Building upon the results of phase 1, we propose a contrastive 

sample construction method that uses contrastive learning to train 

MMCPP coordinatedly, allowing the model to integrate first-

order and second-order attributes of the place in multi-modal data 

while maintaining each encoder's independent encoding ability. 

Figure 4 shows the training process of phase 2. 

 

To begin, a batch of places is randomly selected from the research 

area, and corresponding POIs and images are collected. 

Trajectories are then sampled from existing collections of 

trajectories that include these places as stop points. After the data 

for each modality is input into its respective encoder, 

representations of each place in each modality are output. 

 

Figure 4. Phase 2: multi-modal coordinated pre-training 

Using the alignment relationship of "information from different 

modalities describe the same place," representations of the same 

place in each modality are paired together as positive samples 

(colored squares on the diagonal in Figure 4(d)). Representations 

of different places in each modality are paired as negative 

samples (white squares in Figure 4(d)). The three encoders learn 

a multi-modal embedding space coordinatedly using contrastive 

learning by maximizing the cosine similarity of the POIs and 

image representations, POIs and trajectory representations, as 

well as the trajectory and image representations of the 3*N 

positive pairs in the batch while minimizing the cosine similarity 

of the embeddings of the 3*(N2 – N) negative pairings. We 

optimize the sum of the three symmetric cross entropy losses L 

(Radford et al. 2021) over these similarity scores, which are 

computed as follows: 

 

𝐿 = 𝑆𝐶𝐸𝑃𝑂𝐼−𝑖𝑚𝑎𝑔𝑒 + 𝑆𝐶𝐸𝐼𝑚𝑎𝑔𝑒−𝑇𝑟𝑎𝑗 + 𝑆𝐶𝐸𝑇𝑟𝑎𝑗−𝑃𝑂𝐼  (5) 

𝑆𝐶𝐸 =
𝐻(𝒒,𝒑)+𝐻(𝒒,𝒑𝑇)

2
  (6) 

𝐻(𝑞, 𝑝) = −sum(𝒒 ⊙ log(softmax(𝒑)))  (7) 

 

where  𝑆𝐶𝐸𝐴−𝐵  = symmetric cross entropy losses for A and B 

modalities 

 q = a unit matrix 

 p = a similarity matrix of representations between 

modalities 

 

For places without POIs or trajectories, we use encoded 

representations of "pseudo-POIs" and "pseudo-trajectories," 

respectively. The "pseudo-trajectory" consists of only a 

corresponding single place ID in the sequence, and its timestamp 

can be initialized randomly since the "first time interval" of the 

first point of the trajectory is transferred to 1. This approach 

enables unification of inputs across all modalities, including 

cases with partial missing modalities, in multi-modal contrastive 

learning tasks. 

 

Upon completion of phase 1 and phase 2 pre-training, we obtain 

three encoder components that integrate different modal 

information and can still be independently encoded: POI encoder 

ℱ𝑃𝑂𝐼, image encoder ℱ𝐼𝑚𝑎𝑔𝑒 , and trajectory encoder ℱ𝑇𝑟𝑎𝑗. 
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4. EXPERIMENTS 

To assess the quality of the place representations generated by 

MMCPP, they were incorporated into a location prediction model 

and compared with other location embedding methods. 

 

4.1 Study area 

The rectangular envelope of the Third Ring Road in Wuhan, 

China, is taken as the research area. And considering the 

sampling interval and average speed of most taxi trajectories, the 

research unit is set as a longitude-latitude geographic grid with a 

side length of 0.0018° (each grid is about 160 meters×200 meters 

in the WGS84 coordinate system). The research area is composed 

of a total of 22,950 geographic grids (170 × 135). 

 

4.2 Datasets 

The proposed model uses POIs, maptiles, and taxi trajectories as 

data sources for the corresponding three modalities. 

 

4.2.1 Point of Interests (POIs) 

 

POIs describe the typical functions and activities of an area and 

can be used to mine the functional semantics of cities, as shown 

in previous studies (Jenkins et al. 2019). In this study, POI data 

was obtained from the Amap platform (https://lbs.amap.com) in 

2018, which included 17 categories. 

 

4.2.2 Images 

 

Maptiles offer geospatial information such as the shape, color, 

and size of ground objects (Wang, Wang, et al. 2020). The 

maptiles used in this study were obtained from the TencentMap 

platform, with a zoom level of 17, a resolution of around 1 meter, 

and three channels. As a data enhancement measure, maptiles of 

cities that are of the same size as Wuhan were also collected and 

mixed with Wuhan data for model pre-training. These included 

parts of four Chinese cities: Hangzhou, Chengdu, Nanjing, and 

Changsha. All maptiles were resampled to 0.00009°, so that each 

geographic grid contained 200x200 pixels. 

 

4.2.3 Trajectories 

 

The passenger trajectories are extracted from a taxi trajectory 

dataset to simulate dynamic interactions between the grids. 

 

"Meshing" is a process that converts trajectory points into 

corresponding grids based on their latitudes and longitudes, 

resulting in grid ID sequences. For taxi trajectory data, it aims to 

model the interactions between grids, therefor trajectory points 

inside each grid are merged, and only the first trajectory point 

entering the grid is retained. Specially, in cases where multiple 

trajectory points fall within the final grid of a sequence, the last 

trajectory point in the grid is kept to preserve the complete time 

interval of the trajectory. This transformation process is 

illustrated in Figure 5. Finally, any transformed trajectories with 

a length shorter than three are filtered out. 

 
Figure 5.  The process of meshing and merging trajectories 

 

Finally, the trajectory dataset 2,533,754 passenger trajectories of 

4,121 taxis in the first 4 weeks (May 27, 2019-June 23, 2019) and 

663,574 passenger trajectories of 4,129 taxis in the last week 

(June 24, 2019-June 30, 2019). The data cover more than 90% of 

the grids in the study area. 

 

4.3 Baseline Place Representation Methods 

To prove the superiority of MMCPP, we include two classic 

representation methods, and also two state-of-the-art place 

embedding methods for comparison. 

 

CBOW(Mikolov et al. 2013): An implementation of Word2Vec, 

which captures the semantic of sequence points through the 

correlation between the target place and its context. 

 

Skip-Gram(Mikolov et al. 2013): Another implementation of 

Word2Vec. It takes target places as input and predicts context 

places within a certain window range as output, thus capturing 

the semantic of sequence points. 

 

CTLE(Lin et al. 2021): Context and Time aware Location 

Embeddingn model uses the Transformer as the backbone with 

the sinusoidal timestamp position embedding and uses masked 

trajectory, masked hour, and masked weekday as the pre-training 

objectives. 

 

RegionEncoder(Jenkins et al. 2019): A deep learning model for 

learning low-dimensional distributed representations of discrete 

spatial regions, which utilizes POIs, satellite images and taxi 

trajectories as data sources. We experimented with satellite data 

replaced by maptiles in this paper. 

 

4.4 Settings 

During the single-modal pre-training in phase 1, we used POI 

data from Wuhan, maptiles from Wuhan and 4 other cities, as 

well as trajectory data from the first 4 weeks of Wuhan as the pre-

training datasets for each modality. For the POI encoder of 

MMCPP, we implemented an input layer with a hidden size of 

128 and an attention pooling layer with a hidden size of 128. The 

optimization process for the POI encoder involved using a batch 

size of 512, a maximum of 150 training epochs, and AdamW with 

a learning rate of 0.0002. Regarding the MAE structure, the 

image encoder adopted a 4-layer ViT where the input layer had a 

hidden size of 128, 8-head self-attention mechanism, and an 

embedding dimension of the feedforward layer at size 512. The 

decoder had 2 layers of Transformer with an 8-head self-attention 

mechanism and a feed-forward layer with a hidden size of 512. 

The MAE optimization process included using a batch size of 32, 

a maximum of 50 training epochs, and AdamW with a learning 

rate of 0.0002. The trajectory encoder used 3 layers of 

RodtFormer based on an input layer with a hidden size of 128, 8-

head self-attention mechanism, and a hidden embedding of feed-

forward layer with a hidden size of 512. The optimization for the 

trajectory encoder entailed utilizing a batch size of 128, a 

maximum of 20 training epochs, and AdamW with a learning rate 

of 0.0008. During phase 2 of our multi-modal coordinated pre-

training, we utilized the single-modal component that performed 

the best in phase 1 and the number of sampling trajectories is set 

to 20. For phase 2 optimization, we used a batch size of 128, a 

maximum of 20 training epochs, and AdamW with a learning rate 

of 0.00001. In the two pre-training phases, 95% of these datasets 
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were allocated as the training set, while the remaining 5% of the 

data was used for validation purposes. And the losses on the 

validation sets are used to judge whether to stop training early.  

 

To verify performances of models, we used the trajectory dataset 

from the last week as the downstream task data. Of the total 

dataset, 94% was allocated to training the models, with 1% set 

aside for the validation set to select the best downstream task 

model. The remaining 5% was utilized to evaluate the 

performance of the downstream models.  The location prediction 

models with different initial grid representation are trained with 

Cross Entropy loss, and evaluated with weighted-F1 score. All 

embe  in  mo els’  imensions o  the vectors of place 

representaton are set to 128. We implement CTLE based on 3-

layer networks with a hidden size of 512. The CTLE was pre-

trained on the training sets for 100 epochs and AdamW with 

learning rate of 0.00008. The same as Lin et al. 2021, for our 

MMCPP model and CTLE model, we used the placeID encoding 

layer of the trajectory encoder in MMCPP(marked as Traj-

GE(MMCPP)) and in CTLE to obtain the grid representations 

respectively. The location representations modeled by different 

baselines and the method in this paper are fixed as non-learnable 

parameters, and the downstream task models all use a single-

layer LSTM with a hidden vector dimension of 128. And all 

models are trained with the early-stopping mechanism to obtain 

the best-performing epochs on the evaluation sets. AdamW was 

finally chosen as optimizer and an initial learning rate of 0.001 

for LSTM in the downstream task.  We implement all baseline 

models and our model in PyTorch. All experiments have run on 

Intel(R) Xeon(R) CPUs, and NVIDIA Tesla T4 GPUs. 

 

4.5 Experimental Results 

Figure 6 shows the performance comparison of different models 

for location prediction at next n seconds including 30 seconds(s), 

180(s), 300(s). In the chart, a redder color indicates better 

performance in the downstream task metric, while a bluer color 

indicates worse performance. Values in bold indicate that the 

highest number in the row is the top performer. 

 

In the experiment, the model trained with the place representation 

encoded by MMCPP outperformed the baseline method on the 

test set, with an average of 1.96% higher in F1 score. 

 

 

Figure 6.  Experimental results of the downstream task using 

different grid representations encoded by corresponding place 

representation methods 

 

Both CBOW and Skip-Gram disregard the spatial and temporal 

information in the trajectory data, which reflect unique attributes 

of places. As a result, the grid location representations generated 

by these methods perform slightly worse than MMCPP when 

applied to downstream models. Given that most taxi trajectory 

records occur on the same working day or even the same hour, 

the masked hour and weekday pre-training tasks introduced by 

the CTLE model may not add value to the actual representation 

training process. Furthermore, Yan et al. 2019 has found that 

using the dot product operation in Transformer encoding does not 

appropriately model time-interval characteristics so that it is less 

effective than MMCPP in this task. The embedding represented 

by RegionEncoder performs the worst on the task, possibly due 

to its weaker convolutional neural network structure than ViT in 

encoding images. Additionally, the method only considers the 

interaction between pick-up and drop-off points, ignoring finer 

details such as visit order and access time intervals contained in 

the fine-grained trajectories. Lastly, due to the sparseness of taxi 

flow matrix and POI data, it may be challenging to build 

sufficient place representations. 

 

MMCPP integrates the information of multiple modalities; and 

uses the rotary temporal interval position embedding to introduce 

the time information in the trajectory sequence, and considers the 

absolute chronological order and relative time intervals among 

places. These designs enable MMCPP to build higher-quality 

place representations during pre-training, which can help 

downstream location prediction models achieve better 

performance. 

 

4.6 Ablation Study 

Ablation experiments are used to verify the effectiveness of the 

rotary temporal interval position embedding and the 

effectiveness of integrating various multi-modal components. 

 

4.6.1 Verification of the effectiveness of the rotary 

temporal interval position embedding 

 

This paper compares the position embedding masked as deltaT(s-

μ)+RoPE with three variants shown in Table 1. The results are 

presented in Figure 7.  

 

 Model  s μ 

Variants 

deltaT(s)+RoPE learnable 10000(fixed) 

deltaT(μ)+RoPE 1(fixed) learnable 

deltaT+RoPE 1(fixed) 10000(fixed) 

Ours deltaT(s-μ)+RoPE learnable learnable 

Table 1. List of models for the ablation experiment with 

different position embedding methods 

 

Figure 7.  Experimental results of the downstream task using 

models with different position embedding methods 

 

The rotation time difference position encoding proposed in this 

paper can be improved by approximately 0.17% on average when 

introducing the scaling factor s of the time interval. And taking 

the factor μ controlled the relative time interval attenuation as a 

learnable parameter can increase by about 0.16% on average. 

Combining the two factors can further enhance the performance, 

resulting in an average increase of approximately 0.64%. 
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4.6.2 Verification of the effectiveness of the multimodal 

components 

 

This experiment includes the MMCPP model and 5 variants that 

employ different modality combinations, involving place 

representations encoded by 10 encoders. These encoders consist 

of three different single-modal pre-trained encoders, a POI 

encoder and a trajectory encoder that integrate POIs and 

trajectories, an image encoder and a trajectory encoder that 

integrate images and trajectories, and the integration of all three 

encoders for the 3-modal data, as shown in Table 2. In particular, 

"POI-GE" signifies that each grid POI set is encoded by the POI 

encoder for grid representation. Similarly, "Image-GE" indicates 

that the mask rate of the image encoder is set to 0, and it encodes 

the output of each maptile "[CLS]" marked grid representation. 

 
Models Modality 

 POIs Image Trajectory 

POI-GE(POI) √   

POI-GE(Traj&POI) √  √ 

POI-GE(MMCPP) √ √ √ 

Image-GE(Image)  √  

Image-GE(Traj&Image)  √ √ 

Image-GE(MMCPP)    

Traj-GE(Traj)   √ 

Traj-GE(Traj&POI) √  √ 

Traj-GE(Traj&Image)  √ √ 

Traj-GE(MMCPP) √ √ √ 

Table 2. List of models for the multi-modal component ablation 

experiment 

 

Figure 8.  Experimental results of the downstream task using 

models with different combinations of modalities 

 

The experimental results indicate that integrating multi-modal 

information representation can improve the performance of the 

downstream task to a certain extent. Integrating POI information 

enhances the performance of short-term prediction tasks, while 

integrating maptiles and trajectories improves the performance of 

long-term prediction tasks. However, in order to simultaneously 

express the information of all three modalities, MMCPP slightly 

sacrifices its performance on this task, leading to slightly weaker 

results on some indicators. 

 

5. CONCLUSION 

This paper proposes a novel pre-training model, MMCPP, for 

representing places with multi-modal data. The model comprises 

three encoders that capture the attributes and semantics of a place 

in their corresponding modes, then integrates multi-modal 

information by using a coordinated pre-training framework. 

Finally, the three pre-trained encoders in MMCPP can 

independently encode place representations, which improves the 

reusability of the model. 

 

We use the taxi trajectory data to verify the effectiveness of the 

model in the location prediction task at next n seconds, including 

30 seconds, 180 seconds, and 300 seconds. The results show that 

in comparison to existing embedding methods, our model is 

capable of learning higher-quality position representations 

during pre-training and improves the performance of downstream 

tasks, benefiting from the integration of multi-modal information 

and the modeling of dynamic interactions. 
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