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Abstract: A membrane protein’s functions are significantly associated with its type, so it is crucial
to identify the types of membrane proteins. Conventional computational methods for identifying the
species of membrane proteins tend to ignore two issues: High-order correlation among membrane
proteins and the scenarios of multi-modal representations of membrane proteins, which leads to
information loss. To tackle those two issues, we proposed a deep residual hypergraph neural network
(DRHGNN), which enhances the hypergraph neural network (HGNN) with initial residual and
identity mapping in this paper. We carried out extensive experiments on four benchmark datasets
of membrane proteins. In the meantime, we compared the DRHGNN with recently developed advanced
methods. Experimental results showed the better performance of DRHGNN on the membrane protein
classification task on four datasets. Experiments also showed that DRHGNN can handle the over-
smoothing issue with the increase of the number of model layers compared with HGNN. The code is
available at https://github.com/yunfighting/Identification-of-Membrane-Protein-Types-via-deep-residual-
hypergraph-neural-network.

Keywords: hypergraph neural network; initial residual; identity mapping; identification; membrane
protein

1. Introduction

The proteins contained in the biological membrane are called membrane proteins, which play
a lead role in maintaining many life activities, including but not limited to cell proliferation and
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differentiation, energy transformation, signal transduction and material transportation. As we know, a
membrane protein’s functions are significantly associated with its type, so it is important to identify
the types of membrane proteins [1]. Membrane proteins can be grouped into eight types [2]: Single-
span type 1, single-span type 2, single-span type 3, single-span type 4, multi-span, lipid-anchor,
glycosylphosphatidylinositol (GPI)-anchor and peripheral.

There exists many different computational methods that can be used for identifying the types of
proteins. Chou and Elrod [3] used the covariant discriminant algorithm (CDA) according to amino
acid composition (AAC) to predict membrane protein types. To address the challenge posed by the
large number of possible patterns in protein sequences, Chou [4] introduced a pseudo-amino acid
composition (PAAC). This composition combines a set of discrete sequence correlation factors with
the 20 components of the traditional amino acid composition. Wang et al. [5] utilized the pseudo
amino acid composition to incorporate sequence-order effects and introduced spectral analysis for
representing the statistical sample of a protein. The weighted support vector machine (SVM) algorithm
was applied. Liu et al. [6] introduced the low-frequency Fourier spectrum analysis based on the concept
of PAAC, which effectively incorporates sequence patterns into discrete components and enables existing
prediction algorithms to be applied directly to protein samples. Chou and Shen [7] developed a two-layer
predictor for classifying proteins as membrane or non-membrane. If a protein is classified as membrane,
the process continues with a second-layer prediction engine to determine its specific type from eight
categories. The predictor stands out for its incorporation of evolutionary information through pseudo
position-specific score matrix (Pse-PSSM) vectors and its ensemble classifier consisting of multiple
optimized evidence-theoretic K-nearest neighbor (OET-KNN) classifiers. Rezaei et al. [8] classified
membrane proteins by applying wavelet analysis to their sequences and extracting informative features.
These features were normalized and used as input for a cascaded model, which aimed to mitigate
bias caused by differences in membrane protein class sizes in the dataset. Wang et al. [9] utilized the
dipeptide composition (DC) method to represent proteins as high-dimensional feature vectors. They
introduced the neighborhood preserving embedding (NPE) algorithm for linear dimensionality reduction
and to extract essential features from the high-dimensional DC space. The reduced low-dimensional
features were then employed with the K-nearest neighbor (K-NN) classifier to accurately classify
membrane protein types. Hayat and Khan [10] integrated composite protein sequence features (CPSR)
with the PAAC to classify membrane protein. They further proposed using split amino acid composition
(SAAC) and ensemble classification [11] and still further fused position specific scoring matrix (PSSM)
and SAAC [12] to classify membrane protein. Chen and Li [13] introduced a novel computational
classifier designed for the prediction of membrane protein types using protein sequences. The classifier
was constructed based on a collection of one-versus-one SVMs and incorporated various sequence
attributes. Han et al. [14] integrated amino acid classifications and physicochemical properties in
PAAC and used a two-stage multiclass SVM to classify membrane protein. Wan et al. [15] retrieved
the associated gene ontology (GO) information of a query membrane protein by searching a compact
GO-term database with its homologous accession number. Subsequently, they employed a multi-label
elastic net (EN) classifier to classify the membrane protein based on this information. Lu et al. [16]
used a dynamic deep network architecture that was based on lifelong learning for the classification of
membrane protein. Wang et al. [17] introduced a new support bio-sequence machine, which used SVM
for protein classification.

In conclusion, most of the above models used different computational methods to represent membrane

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20188–20212.



20190

proteins and then used classification algorithms to identify membrane protein types. Most of the models
mentioned above have varied types of feature input formats, which are shown in Table 1.

Table 1. Varied types of feature input formats of different methods.

Methods Input form
MemType-2L [7] Pseudo-PSSM (PsePSSM)
predMPT [13] Pseudo amino acid composition
CDA [3] Amino acid composition
CDA and PseAA [4] Pseudo amino acid composition
Fourier spectrum [6] Pseudo amino acid composition
Weighted SVM [5] Pseudo amino acid composition
Wavelet and cascade neural network [8] Hydropathy signal
NPE [9] Dimension-reduced vector(50-D) by NPE
CPSR [10] Pseudo amino acid composition
Two-stage SVM [14] Pseudo amino acid composition

However, it is noted that more than two proteins are linked by non-covalent interactions [18, 19] in
real practice, and the representation of proteins is multi-modal. Traditional computational methods for
identifying membrane protein types tend to ignore those two issues, which leads to information loss since
the high-order correlation among membrane proteins and the scenarios of multi-modal representations
of membrane proteins are ignored.

To tackle those problems, in this paper we use a deep residual hypergraph neural network
(DRHGNN) [20] to further learn about the representations of membrane proteins and to eventually
achieve accurate identification of membrane proteins’ types.

First, each membrane protein is represented by the extracted features. Here, five feature extraction
methods are employed based on the PSSM of membrane protein sequence [2], including average
blocks (AvBlock), discrete cosine transform (DCT), discrete wavelet transform (DWT), histogram
of oriented gradient (HOG) and PsePSSM. Five types of features are extracted accordingly. Second,
each feature type generates a hypergraph G represented by an incidence matrix H modeling complex
high-order correlation. Five types of features and corresponding incidence matrix H are concatenated,
respectively, which overcomes the scenarios of multi-modal representations of membrane proteins.
Lastly, concatenated features and fused incidence matrix are input into a DRHGNN to classify the
various types of membrane proteins. To assess the performance of DRHGNN, we perform tests on
membrane proteins’ four distinct datasets. In the task of membrane proteins classification, the model
achieves better performance.

2. Materials and methods

In order to extract features of membrane proteins, we employ AvBlock, DCT, DWT, HOG and
PsePSSM [2] to achieve feature extraction based on membrane protein sequence’s PSSM. Each type of
PSSM-based feature is used to generate a hypergraph that can be represented by an incidence matrix H,
then five types of features and their corresponding H are concatenated, respectively, and both are fed into
a DRHGNN [20–22] to identify the types of membrane proteins. Figure 1 depicts the schematic diagram.
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Figure 1. The schematic diagram of our proposed method.

2.1. Data set

We judge the performance of DRHGNN on the classification of membrane proteins based on four
datasets, namely, Dataset 1, Dataset 2, Dataset 3 and Dataset 4.

Dataset 1 is directly sourced from Chou’s work [7], where protein sequences are sourced from the
Swiss-Prot [23] database. Chou and Shen [7] employed a percentage distribution method to randomly
assign the protein sequences into both the training set and the testing set. This was done to ensure a
balanced number of sequences between the two sets. Dataset 1 consists of 7582 membrane proteins
from eight types and the same training/testing split as [7], where 3,249 membrane proteins are employed
for training, with the remaining 4,333 employed for testing.

Dataset 2 was created by removing redundant and highly similar sequences from Dataset 1. This
resulted in a curated dataset with reduced homology, specifically ensuring that no pair of proteins
shared a sequence identity greater than 40%. The training set of Dataset 2 was obtained by removing
redundant sequences from Dataset 1’s training set. Similarly, the testing set of Dataset 2 was prepared
by eliminating redundant sequences and those with high sequence identity to the training set. Dataset 2
consists of 4594 membrane proteins from eight types and the same training/testing split as [13],
where 2288 membrane proteins are employed for training, with the remaining 2306 membrane proteins
employed for testing.

To update and expand the datasets, Chen and Li [13] created Dataset 3 through the following steps.
Initially, membrane protein sequences were obtained from the Swiss-Prot [23] database using the
“protein subcellular localization” annotation. Stringent exclusion criteria was applied to ensure dataset
quality: 1) Exclusion of fragmented proteins or those shorter than 50 amino acid residues; 2) removal
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of proteins with non-experimental qualifiers or multiple topologies in their annotations; 3) elimination
of homologous sequences with a sequence identity greater than 40% using clustering database at high
identity with tolerance (CD-hit) [24]. Subsequently, the sequences were categorized into their respective
membrane protein types based on topology annotations. To generate the training and testing sets, a
random assignment was performed employing the above-mentioned percentage distribution method.
Consequently, Dataset 3 was created, providing an updated and expanded dataset of membrane protein
sequences characterized by enhanced quality and classification. Dataset 3 consists of 6677 membrane
proteins from eight types and the same training/testing split as [13], where 3,073 membrane proteins are
employed for training and 3604 for testing.

Dataset 4 is directly sourced from Chou’s work [3], where protein sequences are sourced from the
Swiss-Prot [23] database. The training and testing sets were obtained after protein sequences were
screened with three procedures. Dataset 4 consists of 4684 membrane proteins from five types and
the same training/testing split as [3], where 2059 membrane proteins are used for training and 2625
membrane proteins are employed for testing. Table 2 outlines the details of the datasets.

Table 2. The scale of training and testing samples in four different membrane
proteins’ datasets.

Specific types
Dataset 1 Dataset 2 Dataset 3 Dataset 4

Train Test Train Test Train Test Train Test
Single-span type 1 610 444 388 223 561 245 435 478
Single-span type 2 312 78 218 39 316 7 152 180
Single-span type 3 24 6 19 6 32 9 – –
Single-span type 4 44 12 35 10 65 17 – –
Multi-span type 5 1316 3265 936 1673 1119 2478 1311 1867
Lipid-anchor type 6 151 38 98 26 142 36 51 14
GPI-anchor type 7 182 46 122 24 164 41 110 86
Peripheral type 8 610 444 472 305 674 699 – –
Overall 3249 4333 2288 2306 3073 3604 2059 2625

We use the same membrane protein features as [2], which are extracted with five methods based on
the PSSM of membrane proteins.

2.2. PSSM

The PSSM is a widely used tool in the field of bioinformatics for capturing evolutionary information
encoded within membrane protein sequences. It is generated through multiple sequence alignment and
database searching methods, such as position-specific iterated BLAST (PSIBLAST) program [25], to
identify conserved residues and their positional probabilities.
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The evolutionary information obtained from the PSSM is preserved within a matrix of size R × 20
(R rows and 20 columns), presented as follows:

PS S M =



p1,1 · · · p1, j · · · p1,20
...
. . .

...
. . .

...

pi,1 · · · pi, j · · · pi,20
...
. . .

...
. . .

...

pR,1 · · · pR, j · · · pR,20


. (2.1)

The numbers 1–20 denote one of the 20 different amino acids. R denotes the length of the membrane
protein sequence.The element pi, j is calculated as follows:

pi, j =

20∑
k=1

ω(i, k) × D(k, j); i = 1, . . . , L, j = 1, . . . , 20. (2.2)

ω(i, k) represents the frequency of the k-th amino acid type at position i, and D(k, j) denotes the value
derived from Dayhoff’s mutation matrix (substitution matrix) for the k-th and j-th amino acid types. The
utilization of these variables in the equation aims to incorporate amino acid frequency information and
substitution probabilities.

2.3. AvBlock

AvBlock refers to a statistical measure employed in professional scientific research to analyze data
sequences. Nowadays, AvBlock is a widely adopted approach for constructing matrix descriptors to
represent protein sequences [26]. AvBlock is calculated by dividing the total length of a sequence by the
average length of its individual consecutive blocks. Here, the PSSM matrix is partitioned into 20 blocks
along the rows. Subsequently, each block is transformed into a feature vector of dimensionality 20 for
the PSSM matrix.

2.4. DCT

The DCT [27] is a mathematical transform widely used in signal and image processing. Here, we
employ a two-dimensional DCT (2D-DCT) for compressing the PSSM of proteins. The mathematical
definition for the 2D-DCT is

FPS S M−DCT = αiα j
∑M−1

m=0
∑N−1

n=0 PS S M(m, n) cos π(2m+1)i
2M cos π(2n+1) j

2N (2.3)

αi =

{ √
1/M, i = 0
√

2/M, 1 ≤ i ≤ M − 1
(2.4)

α j =

{ √
1/N, j = 0
√

2/N, 1 ≤ j ≤ N − 1,
(2.5)

where 0 < i < M and 0 < j < N.
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2.5. DWT

The DWT has been utilized to extract informative features from protein amino acid sequences, as
initially introduced by Nanni et al. [28]. Here, we applied a 4-level DWT to preprocess the PSSM matrix.
At each level we compute both the approximate and detailed coefficients for each column. We extract
essential statistical features such as maximum, minimum, mean and standard deviation from both the
approximate and detailed coefficients. Additionally, we capture the first five discrete cosine coefficients
exclusively from the approximate coefficients. Therefore, for each of the 20 column dimensions, a total
of 4 + 4 + 5 features are obtained at each level.

2.6. HOG

The HOG is a feature descriptor used in computer vision and image processing for object detection
and recognition. Here, we propose a method to reduce redundancy in protein data using the HOG
algorithm. We consider the PSSM as an image-like matrix representation. First, we compute the
horizontal and vertical gradients of the PSSM to obtain the gradient magnitude and direction matrices.
These matrices are then partitioned into 25 sub-matrices that incorporate both the gradient magnitude
and direction information. Subsequently, we generate 10 distinct histogram channels for each sub-matrix
based on its gradient direction. This approach effectively reduces redundancy by providing a compact
representation of the protein data while preserving important spatial information.

2.7. PsePSSM

The PsePSSM is a commonly utilized matrix descriptor in protein research [7]. It is specifically
designed to preserve the essential information contained in the PSSM by considering the incorporation
of PAAC. The PsePSSM descriptor is formulated as follows:

FPsePS S M =

 1
N

∑N
i=1 p′i, j; j = 1, . . . , 20

1
N−lag

∑N−lag
i=1

(
p′i, j − p′i+lag, j

)2
; j = 1, . . . , 20, lag = 1, . . . , 30,

(2.6)

where lag refers to the distance between a residue and its neighboring residues. The formula of p′i, j is

p′i, j =
pi, j −

1
20

∑20
m=1 pi,m√

1
20

∑20
n=1

(
pi,n −

1
20

∑20
m=1 pi,m

)2
,

(2.7)

where p′i, j refers to the normalized version of pi, j.

2.8. DRHGNN

2.8.1. Hypergraph learning statement

In a basic graph, the samples are depicted as vertexes, and two connected vertexes are joined by an
edge [29, 30]. However, the data structure in practical applications may go beyond pair connections
and may even be multi-modal. Accordingly, the hypergraph was proposed. Unlike the simple graph, a
hypergraph comprises a vertex set and one or more hyperedge set(s) composed of two or more vertexes,
as shown in Figure 2. A hypergraph is represented by G = (V, E, W), where V represents a vertex
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set, and E represents a hyperedge set. W, a diagonal matrix of edge weights, assigns weights to each
hyperedge. The incidence matrix H, where H is the |V | × |E| incidence matrix with entries defined as

h(v, e) =
{

1, if v ∈ e
0, if v < e,

(2.8)

is used to denote the hypergraph.

Figure 2. The comparison between graph and hypergraph.

Here, we could take the membrane protein classification task on the hypergraph because more
than two proteins are linked by non-covalent interactions [18, 19]. X = [x1, . . . , xN]T can represent the
features of N membrane proteins data. The hyperedge is constructed using the Euclidean distance, which
calculates the distance expressed with d

(
xi, xj

)
between two features. In the hyperedge construction,

each vertex represents a membrane protein, and then one central vertex and its K neighbors represent
each hyperedge. As a result, N hyperedges containing K+1 vertexes are generated. Here, more
specifically, each time we select one vertex in the dataset as the centroid, we use K nearest neighbors in
the selected feature space to generate one hyperedge, which includes the centroid itself, as illustrated
in Figure 3. Thus, a hypergraph with N hyperedges is constructed with a single-modal representation
of membrane proteins. The hypergraph is denoted by an incidence matrix H ∈ RNxN, with Nx(K+1)
nonzero entries denoting v ∈ e while the others equal zero.

In the case of multi-modal representations of membrane proteins, each incidence matrix Hi is
constructed according to each modality membrane representation. After all the incidence matrix Hi have
been generated, these Hi can be concatenated to generate the incidence matrix H of a multi-modality
hypergraph. Thus, a hypergraph is constructed with multi-modal representations of membrane proteins
shown in Figure 3, so it is noted that the flexibility of hypergraph generation has great expansibility
toward multi-modal features.
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Figure 3. The schematic diagram of hyperedge generation and hypergraph generation.

2.8.2. Hypergraph convolution

Feng et al. [31] first proposed the HGNN. They built a hyperedge convolution layer whose
formulation is

X(1+1) = σ
(
D−1/2

v HWD−1
e HTD−1/2

v X(1)Θ(1)
)
, (2.9)

where X(l) ∈ RNxC represents the hypergraph’s signal at the lth layer with N nodes and C dimensional
features, W is regarded as the weight of all hyperedges and W = diag (w1, . . . ,wN) .Θ(l) ∈ RC1 xC2

represents the parameter that is learned during the training process at the lth layer. σ represents the
nonlinear activation function. Dv is the vertex degrees’ diagonal matrix, while De is the edge degrees’
diagonal matrix [30].

We define hypergraph Laplacian H̃ = D−1/2
v HWD−1

e HT D−1/2
v , then a hyperedge convolution layer is

formulated as X(l+1) = σ
(
H̃X(l)Θ(l)

)
.

A hyperedge convolution layer achieves node-edge-node transform, which can refine a better
representation of nodes and extract the high-order correlation from a hypergraph more efficiently.

2.8.3. Residual hypergraph convolution

Feng et al. [31] used two hyperedge convolution layers and then used the softmax function to obtain
predicted labels. However, the performance of HGNN drops as the number of layers increases because
of the over-smoothing issue.

To resolve the issue of over-smoothing, Huang et al. [20] and Chen et al. [22] used two simple and
effective techniques, Initial residual and identity mapping, based on their shallow model. Inspired by
their method, we upgrade the HGNN by introducing initial residual and identity mapping to prevent
over-smoothing and enjoy accuracy increase from increased depth.

• Initial residual
Chen et al. [22] constructed a connection to the initial representation X(0) to relieve the over-

smoothing problem. The initial residual connection guarantees that each node’s final representation
retains at least a proportion of the input feature regardless of how many layers we stack.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20188–20212.



20197

Gasteiger et al. [32] proposed approximate personalized propagation of neural predictions
(APPNP), which employed a linear combination between different layers to the initial residual
connection and gathered information from multi-hop neighbors instead of expanding the number
of neural network layers by separating feature transformation and propagation. Formally, APPNP’s
model is defined as

X(l+1) = σ
((

(1 − αl) H̃X(l) + αlX(0)
)
Θ(l)
)
. (2.10)

In practice, we can set αl = 0.1 or 0.2 .
• Identity mapping

However, APPNP remains a shallow model; thus, the initial residual alone cannot extend
HGNN to a deep model. To resolve this issue, Chen et al. [22] added an identity matrix IN to
the weight matrix Θ(l) according to the idea in ResNet of identity mapping, which ensures the
DRHGNN model performs at least as well as its shallow version does.

Finally, a residual enhanced hyperedge convolution layer is formulated as

X(l+1) = σ
((

(1 − αl) H̃X(l) + αlX(0)
)
·
(
(1 − βl) In + βlΘ

(l)
))
. (2.11)

In practice, we set βl =
λ
l , where λ is a hyperparameter.

2.8.4. DRHGNN analysis

Figure 4 illustrates the detail of the DRHGNN. Those multi-types of node features and corresponding
incidence matrix H modeling complex high-order correlation are concatenated, respectively, which
overcomes the scenarios of multi-modal representations of membrane proteins. Then, concatenated
features and incidence matrix are fed into DRHGNN to get nodes output labels and eventually achieve
classification task. As detailed in the section mentioned above, we can build a residual enhanced
hypergraph convolution layer, then we naively stack multiple residual hypergraph convolution blocks
to tackle the problem of over-smoothing in HGNN and enjoy an accuracy increase. Additional linear
transforms are incorporated into the model’s first and last layer, and the residual hypergraph convolutions
are utilized for information propagation. The deep embeddings are finally used for classification tasks.

Figure 4. The DRHGNN framework. FC represents a fully connected layer.
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3. Results

3.1. Hyperparameter settings based on experience

The DRHGNN has numerous hyperparameters. Instead of comparing all the possible
hyperparameters, which usually takes several days, we used empirically based hyperparameters, which
are shown in Table 3.

We implemented our model with Pytorch [33].
The baseline results were replicated by their release codes, with hyperparameters adhering to the

respective papers.

Table 3. Hyperparameters used in this study.

Hyperparameters Setting
Epoch 2000
Learning rate 0.001
Hidden layer 128
Dropout rate 0.5
Activation function ReLU+Softmax
Optimizer Adam
Loss function Cross-entropy loss function
α 0.1
λ 2.5

3.2. Metrics

We conducted accuracy calculations for predicting every type of membrane protein. We used
accuracy (ACC), which measures the ratio of correctly predicted proteins to the total number of proteins
in a specified dataset, to assess the performance of our model. The specific formula is

ACC =
n
N
, (3.1)

where n stands for the number of proteins that are correctly predicted in a specified dataset, and N stands
for the total number of proteins present in the dataset.

In order to further evaluate the performance of models, we also incorporated F1-score and Mathew’s
correlation coefficient (MCC) as evaluation metrics.

The F1-score is a useful metric for addressing the issue of imbalanced datasets, which is composed
of precision and recall. Precision refers to the ratio of the number of correctly predicted samples to the
total number of samples predicted as positive, while recall refers to the ratio of the number of correctly
predicted samples to the total number of actual positive samples. The best value of F1-score is 1, while
the worst value is 0. Their specific formulas are

F1-score = 2 ×
Precision × Recall

( Precision + Recall )
(3.2)
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Precision =
T P

T P + FP
(3.3)

Recall =
T P

T P + FN
, (3.4)

where TP, TN, FP and FN are true positive, true negative, false positive and false negative, respectively.
In order to comprehensively evaluate the F1-scores of multiple classes, we employed the macro

average of F1-score, which aggregates the F1-score for different classes by taking their average with
equal weights assigned to all classes.

MCC is widely acknowledged as a superior performance metric for the classification of imbalanced
data. It is defined within the range of [−1, 1], where a value of 1 indicates that the classifier accurately
predicts all positive instances and negative instances, while a value of −1 signifies that the classifier
incorrectly predicts all instances. The specific formula is

MCC(i) =
T P × T N − FP × FN

√
[T P + FP][T P + FN][T N + FP][T N + FN]

. (3.5)

The overall MCC for all categories is computed by averaging the MCC values of individual categories.

3.3. The selection of K value when constructing the hypergraph

The selection of K neighbors plays a vital role in the construction process of the hyperedge, as it has
a significant impact on the model’s performance. The selection of K value is performed by training the
model with different K values and evaluating its performance. The optimal K value is determined based
on the performance metric obtained from the validation set. We performed K value experiments on four
datasets using DRHGNN. The performance metric is macro average of the F1-score. As observed from
Table 4, each dataset achieves the best experimental result at different K values, specifically K = 8, 10,
12 and 2 respectively. Therefore, when conducting experiments on the four datasets, we selected K
values in sequence as 8, 10, 12 and 2.

Table 4. The performance of DRHGNN with different K values on four datasets. The best
result for each dataset is bolded.

K
Datasets Metric

2 4 6 8 10 12 14

Dataset 1 F1-score 0.68282 0.74181 0.73623 0.75769 0.75697 0.75656 0.74846
Dataset 2 F1-score 0.65046 0.65052 0.64668 0.67813 0.68646 0.68438 0.67955
Dataset 3 F1-score 0.57224 0.56307 0.59114 0.59234 0.58799 0.59317 0.59105
Dataset 4 F1-score 0.95651 0.94911 0.94645 0.95541 0.94468 0.94590 0.94242

3.4. Performance comparison of DRHGNN and HGNN with different layers

The performance of DRHGNN against HGNN with different layers on four datasets is reported
in Table 5. Columns 4–9 show the ACC, macro average of the F1-score between DRHGNN and
HGNN with different layers on four datasets. For better comparison, we presented the results in
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Figure 5. By analyzing Table 5 and Figure 5, we can observe two points: 1) DRHGNN achieves much
better performance than HGNN on four datasets with accuracy gains of 3.738, 3.903, 4.106, 1.028%,
respectively, and with a macro average of F1-score gains of 15.306, 11.843, 13.887, 3.591%, respectively,
with their optimal layer. 2) The residual enhanced model (DRHGNN) has stable performance, while
the performance of HGNN deteriorates as the number of layers increases. The potential reason for
HGNN’s performance degradation with increasing layer depth is that the model may suffer from an
over-smoothing issue. The performance of DRHGNN persistently improves and achieves the best
accuracy on four datasets at layer 4, 8, 4 and 8, respectively, and the best macro average of the F1-score
on four datasets at layer 4, 8, 4 and 16, respectively.

Table 5. Comparison of the ACC, macro average of F1-score between DRHGNN and HGNN
with different depths on four datasets. The best result of methods for each dataset is bolded.

Layers
Datasets Methods Metrics

2 4 8 16 32 64

ACC 0.90492 0.90122 0.88114 0.70688 0.75352 0.75352
HGNN

F1-score 0.60463 0.46066 0.32800 0.27766 0.12858 0.11633

ACC 0.92799 0.94230 0.93492 0.93561 0.93330 0.93215
Dataset 1

DRHGNN
F1-score 0.68801 0.75769 0.73092 0.72435 0.75289 0.70492

ACC 0.86904 0.84996 0.80833 0.81049 0.72550 0.72550
HGNN

F1-score 0.55921 0.42989 0.28404 0.28703 0.12723 0.11472

ACC 0.89072 0.89809 0.90807 0.89592 0.89245 0.89549
Dataset 2

DRHGNN
F1-score 0.66307 0.67684 0.67764 0.66848 0.65073 0.64934

ACC 0.85322 0.85294 0.81104 0.80549 0.68757 0.68785
HGNN

F1-score 0.45430 0.37403 0.27717 0.26733 0.12236 0.11141

ACC 0.88957 0.89428 0.89179 0.88929 0.88873 0.88652
Dataset 3

DRHGNN
F1-score 0.59160 0.59317 0.57857 0.57942 0.57635 0.56952

ACC 0.96343 0.97562 0.96762 0.93486 0.71124 0.71124
HGNN

F1-score 0.89026 0.93080 0.90231 0.75977 0.16625 0.16625

ACC 0.98590 0.98400 0.98590 0.98514 0.98133 0.98019
Dataset 4

DRHGNN
F1-score 0.95951 0.95651 0.96116 0.96671 0.95890 0.95858
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(a) (b)

(c) (d)

Figure 5. The performance comparison of DRHGNN and HGNN with different layers on
membrane protein classification task. (a) The performance comparison of DRHGNN and
HGNN on Dataset 1; (b) The performance comparison of DRHGNN and HGNN on Dataset 2;
(c) The performance comparison of DRHGNN and HGNN on Dataset 3; (d) The performance
comparison of DRHGNN and HGNN on Dataset 4.

3.5. Performance comparison with multiple recently developed advanced methods

The summaries of classification accuracy results of DRHGNN with multiple recently developed
advanced methods are shown in Tables 6–9. Tables 6–Table 8 present a comparison of the accuracy of
each type of membrane protein and the overall accuracy across all membrane proteins for Dataset 1,
Dataset 2, and Dataset 3 using different methods. As Tables 6–8 show, the accuracy of each type of
membrane protein obtained using our method is generally higher than those achieved by other methods,
and the overall accuracy is also superior to that of other methods. More specifically, compared with
the MemType-2L [7] and hypergraph neural network [34] on Dataset 1, DRHGNN achieves overall
accuracy gains of 2.63 and 3.738%, respectively. Compared with the MemType-2L [7] and hypergraph
neural network [34] on Dataset 2, DRHGNN achieves overall accuracy gains of 5.507 and 3.903%,
respectively. Compared with the MemType-2L [7] and hypergraph neural network [34] on Dataset 3,
DRHGNN achieves overall accuracy gains of 11.128 and 4.106%, respectively. Furthermore, within
these three datasets, the fifth type of membrane protein exhibits the highest accuracy compared to other
types. This can potentially be attributed to the significantly larger number of samples available for the
fifth type of membrane protein in these datasets. Table 9 presents a comparison of the overall accuracy
between our proposed method and other methods on Dataset 4. As Table 9 shows, our method achieved
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the best performance among all the compared methods. More specifically, compared with CPSR [10]
and two-stage SVM [14] on Dataset 4, DRHGNN achieves overall accuracy gains of 3.314 and 1.814%,
respectively. Those results demonstrate the superior performance of DRHGNN on the membrane protein
classification task. The detailed performance of DRHGNN on four datasets is shown in Table 10.

Table 6. Comparison of the ACC between DRHGNN and multiple recent state of the art
methods on Dataset 1. The best result among methods is bolded.

Membrane protein types Metric MemType-2L [7] Hypergraph neural network [34] DRHGNN

Single-span type 1 ACC 0.86900 0.90090 0.93468
Single-span type 2 ACC 0.70500 0.34615 0.80769
Single-span type 3 ACC 0.33333 0.16667 0.33333
Single-span type 4 ACC 0.66667 0.33333 0.66667
Multi-span ACC 0.95000 0.93813 0.96478
Lipid-anchor ACC 0.42100 0.26316 0.55263
GPI-anchor ACC 0.76100 0.63043 0.84783
Peripheral ACC 0.82200 0.87162 0.86712

Overall ACC 0.91600 0.90492 0.94230

Table 7. Comparison of the ACC between DRHGNN and multiple recent state of the art
methods on Dataset 2. The best result among methods is bolded.

Membrane protein types Metric MemType-2L [7] Hypergraph neural network [34] DRHGNN

Single-span type 1 ACC 0.76700 0.77130 0.85650
Single-span type 2 ACC 0.66700 0.23077 0.64103

Single-span type 3 ACC 0.33333 0.16667, 0.16667

Single-span type 4 ACC 0.70000 0.40000 0.60000

Multi-span ACC 0.91400 0.93843 0.94979
Lipid-anchor ACC 0.23100 0.23077 0.26923
GPI-anchor ACC 0.70800 0.58333 0.75000
Peripheral ACC 0.68200 0.74754 0.84262
Overall ACC 0.85300 0.86904 0.90807
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Table 8. Comparison of the ACC between DRHGNN and multiple recent state of the art
methods on Dataset 3. The best result among methods is bolded.

Membrane protein types Metric MemType-2L [7] Hypergraph neural network [34] DRHGNN

Single-span type 1 ACC 0.69000 0.60816 0.77959

Single-span type 2 ACC 0.58200 0.16456 0.40506

Single-span type 3 ACC 0.55600 0.11111 0.11111

Single-span type 4 ACC 0.52900 0.17647 0.29412

Multi-span ACC 0.90700 0.93826 0.95642

Lipid-anchor ACC 0.33333 0.08333 0.36111

GPI-anchor ACC 0.65900 0.29268 0.73171

Peripheral ACC 0.43900 0.81402 0.83119

Overall ACC 0.78300 0.85322 0.89428

Table 9. Comparison of the ACC between DRHGNN and multiple recently developed
advanced methods on Dataset 4. The best result among methods is bolded.

Methods Input form ACC

CDA [3] Amino acid composition 0.79400

CDA and PseAA [4] Pseudo amino acid composition 0.87500

Fourier spectrum [6] Pseudo amino acid composition 0.87000

Weighted SVM [5] Pseudo amino acid composition 0.90300

Wavelet and cascade neural network [8] Hydropathy signal 0.91400

NPE [9] Dimension-reduced vector(50-D) by NPE 0.90100

CPSR [10] Pseudo amino acid composition 0.95200

Two-stage SVM [14] Pseudo amino acid composition 0.96700

DRHGNN

PSSM-DCT+

PSSM-AvBlock+

PSSM-DWT+

PSSM-HOG+

PsePSSM

0.98514
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Table 10. The detailed performance of DRHGNN on four datasets.

Membrane protein types Metrics Dataset 1 Dataset 2 Dataset 3 Dataset 4

ACC 0.93468 0.85650 0.77959 0.98536

F1-score 0.92325 0.82773 0.80160 0.98312Single-span type 1

MCC 0.91445 0.84770 0.78271 0.98590

ACC 0.80769 0.64103 0.40506 0.98889

F1-score 0.74556 0.63636 0.44330 0.93931Single-span type 2

MCC 0.74282 0.63485 0.42195 0.93091

ACC 0.33333 0.16667 0.11111 –

F1-score 0.44444 0.36364 0.15385 –Single-span type 3

MCC 0.47091 0.23432 0.16530 –

ACC 0.66667 0.60000 0.29412 –

F1-score 0.76190 0.75000 0.41667 –Single-span type 4

MCC 0.76927 0.77392 0.36325 –

ACC 0.96478 0.94979 0.95642 0.98500

F1-score 0.97448 0.95333 0.95528 0.98952Multi-span

MCC 0.90025 0.84768 0.86025 0.96609

ACC 0.55263 0.26923 0.36111 1.00000

F1-score 0.58333 0.41860 0.34783 0.93333Lipid-anchor

MCC 0.58077 0.34900 0.30896 0.93506

ACC 0.84783 0.75000 0.73171 0.97674

F1-score 0.80412 0.69565 0.81579 0.98824GPI-anchor

MCC 0.80300 0.71752 0.80484 0.98188

ACC 0.86712 0.84262 0.83119 –

F1-score 0.82441 0.77578 0.81104 –Peripheral

MCC 0.80448 0.75171 0.77898 –

ACC 0.94230 0.90807 0.89428 0.98514

F1-score 0.75769 0.67764 0.59317 0.96671Overall

MCC 0.86341 0.79716 0.78434 0.96788
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3.6. Stability analysis

To further analyze the stability of DRHGNN compared to HGNN, we conducted an analysis by
adjusting the training rate. All experiments were carried out with five different training rates followed
by five distinct seeds. We then recorded the best results using the optimal number of layers in each
experiment. Table 11 and Figure 6 show that DRHGNN consistently performs better than HGNN across
all training rates, with around 1.5 to 5% overall accuracy enhancements and around 3.591 to 15.306%
macro average of F1-score enhancements. This demonstrates the stability of DRHGNN performing
better than HGNN with different ratios. In the meanwhile, DRHGNN shows stability, especially in
small training rates and shows its better performance around original training rate.

Table 11. Summaries of the ACC, macro average of F1-score of DRHGNN and HGNN with
different training ratios.

Training ratios
Datasets

Methods

(optimal layer)
Metrics

1/2 Original ratio 1/3 1/4 1/5

ACC 0.87658 0.90492 0.86373 0.86518 0.84660
HGNN (2)

F1-score 0.64517 0.60463 0.62267 0.61952 0.60766

ACC 0.90981 0.94230 0.90032 0.89102 0.87626
Dataset 1

DRHGNN (4)
F1-score 0.74753 0.75769 0.73867 0.71947 0.63653

ACC 0.81261 0.86904 0.80463 0.80336 0.80479
HGNN (2)

F1-score 0.54794 0.55921 0.54456 0.54314 0.54980

ACC 0.85522 0.90807 0.84018 0.82599 0.82110
Dataset 2

DRHGNN (8)
F1-score 0.66241 0.67764 0.63211 0.58003 0.57609

ACC 0.83029 0.85322 0.81324 0.78986 0.79566
HGNN (2)

F1-score 0.60610 0.45430 0.55233 0.54659 0.54499

ACC 0.84705 0.89428 0.84332 0.83137 0.81961
Dataset 3

DRHGNN (4)
F1-score 0.62085 0.59317 0.61548 0.60365 0.56172

ACC 0.96073 0.97562 0.94912 0.93739 0.93091
HGNN (4)

F1-score 0.86638 0.93080 0.85814 0.81250 0.82102

ACC 0.96628 0.98514 0.95200 0.95304 0.93305
Dataset 4

DRHGNN (16)
F1-score 0.90371 0.96671 0.87237 0.87466 0.84134
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(a) (b)

(c) (d)

Figure 6. Stability analysis. The performance of DRHGNN and HGNN with different
training ratios on membrane protein classification task. (a) The performance on Dataset 1; (b)
The performance on Dataset 2; (c) The performance on Dataset 3; (d) The performance on
Dataset 4.

3.7. Ablation study

We conducted an ablation study on initial residual and identity mapping. In Table 12, columns 4-9
show the accuracy and the macro average of the F1-score of four methods with different depths of the
network layers on the four datasets. As Table 12 and Figure 7 show, HGNN using identify mapping
can mitigate the problem of over-smoothing a little, and HGNN using initial residual can reduce the
over-smoothing problem greatly. Meanwhile, adopting initial residual and identity mapping together can
significantly improve performance while effectively reducing the over-smoothing problem. Furthermore,
we found that the experimental results of HGNN adopting initial residual and identity mapping together
and HGNN using initial residual are very close. However, HGNN adopting both outperforms in terms
of accuracy and the macro average of the F1-score and reaches the best result faster than just adopting
the initial residual.

4. Conclusions

This study proposed a DRHGNN enhanced with initial residual and identity mapping based on HGNN
to further learn the representations of membrane proteins for identifying the types of membrane proteins.

First, the extracted features generated with five methods represented each membrane protein. Second,
each incidence matrix Hi was constructed according to each modality membrane protein representation.
Lastly, those multi-modals of membrane protein features and corresponding Hi were concatenated,
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respectively, and both were fed into the DRHGNN for the membrane protein classification task.

Table 12. Ablation study on initial residual and identity mapping. The best result of methods
for each dataset is bolded.

LayersDatasets Methods Metrics
2 4 8 16 32 64

ACC 0.90492 0.90122 0.88114 0.70688 0.75352 0.75352
HGNN

F1-score 0.60463 0.46066 0.32800 0.27766 0.12858 0.11633
ACC 0.93284 0.93353 0.93607 0.93515 0.94023 0.93515HGNN with

initial residual F1-score 0.73563 0.70930 0.73086 0.74404 0.75760 0.74492
ACC 0.92361 0.90238 0.87399 0.83383 0.82206 0.78791HGNN with

identity mapping F1-score 0.66054 0.53962 0.36386 0.28012 0.26553 0.23277
ACC 0.92799 0.94230 0.93492 0.93561 0.93330 0.93215

Dataset 1

DRHGNN
F1-score 0.68801 0.75769 0.73092 0.72435 0.75289 0.70492
ACC 0.86904 0.84996 0.80833 0.81049 0.72550 0.72550

HGNN
F1-score 0.55921 0.42989 0.28404 0.28703 0.12723 0.11472
ACC 0.88942 0.89462 0.89029 0.89289 0.89592 0.89636HGNN with

initial residual F1-score 0.65802 0.66908 0.63511 0.65379 0.67675 0.64619
ACC 0.88682 0.84389 0.80703 0.79618 0.77450 0.75412HGNN with

identity mapping F1-score 0.62149 0.39402 0.29337 0.26617 0.23825 0.22974
ACC 0.89072 0.89809 0.90807 0.89592 0.89245 0.89549

Dataset 2

DRHGNN
F1-score 0.66307 0.67684 0.67764 0.66848 0.65073 0.64934
ACC 0.85322 0.85294 0.81104 0.80549 0.68757 0.68785

HGNN
F1-score 0.45430 0.37403 0.27717 0.26733 0.12236 0.11141
ACC 0.88707 0.89095 0.88957 0.88485 0.88235 0.88430HGNN with

initial residual F1-score 0.57256 0.59146 0.57517 0.58479 0.56690 0.58825
ACC 0.86820 0.84212 0.80327 0.80105 0.77913 0.77691HGNN with

identity mapping F1-score 0.50946 0.37121 0.26852 0.25792 0.19333 0.19148
ACC 0.88957 0.89428 0.89179 0.88929 0.88873 0.88652

Dataset 3

DRHGNN
F1-score 0.59160 0.59317 0.57857 0.57942 0.57635 0.56952
ACC 0.96343 0.97562 0.96762 0.93486 0.71124 0.71124

HGNN
F1-score 0.89026 0.93080 0.90231 0.75977 0.16625 0.16625
ACC 0.98514 0.98590 0.98286 0.98590 0.98438 0.98438HGNN with

initial residual F1-score 0.95924 0.96382 0.96120 0.96776 0.95881 0.95886
ACC 0.98590 0.97943 0.96800 0.95276 0.94057 0.90400HGNN with

identity mapping F1-score 0.96033 0.95568 0.93180 0.85132 0.75033 0.68475
ACC 0.98590 0.98400 0.98590 0.98514 0.98133 0.98019

Dataset 4

DRHGNN
F1-score 0.95951 0.95651 0.96116 0.96671 0.95890 0.95858

In those extensive experiments on membrane protein classification task, our method achieved a much
better performance on four datasets.

DRHGNN resolves the following issues: The high-order correlation among membrane proteins and
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the scenarios of multi-modal representations of membrane proteins. In the meantime, DRHGNN can
handle the over-smoothing issue as the number of model layers increases compared with HGNN.

(a) (b)

(c) (d)

Figure 7. Ablation study on initial residual and identity mapping. The performance
comparison of DRHGNN, HGNN, HGNN with initial residual, HGNN with identity mapping
with different layers on membrane protein classification task. (a) The performance comparison
on Dataset 1; (b) The performance comparison on Dataset 2; (c) The performance comparison
on Dataset 3; (d) The performance comparison on Dataset 4.

However, we found three areas for improvement while doing experiments. One is that DRHGNN
is quite sensitive to different datasets. Specifically, the performance of Dataset 4 is better than the
performance of other datasets. The overall quantity of Dataset 4, the partitioning of training and testing
sets on Dataset 4 and the distribution of a certain membrane protein class on Dataset 4 differ from the
other datasets, which may significantly influence the training process and generalization capabilities of
the model. Another is that we ignored the modification of hyperedge following with adjusted feature
embedding in different layers. The model is still worth enhancing. The third one is that the hyperedges
were constructed based on feature similarity, which may not directly represent physical interactions
between the membrane proteins. Our approach should be considered as an approximation rather than a
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direct representation of interactions.
The main challenge for future research is to resolve three issues: DRHGNN’s sensitivity to different

datasets, modification of hyperedge following with adjusted feature embedding in different layers and
capturing physical interactions among membrane proteins accurately.

In the meantime, the progress in interaction prediction research across diverse fields of
computational biology holds great promise for gaining valuable insights into genetic markers and
ncRNAs associated with membrane protein types, such as the prediction of miRNA-IncRNA
interactions using a method based on the graph convolutional neural (GCN) network and the
conditional random field (CRF) [35], gene function and protein association (GFPA) that extracts
reliable associations between gene function and cell surface proteins from single-cell multimodal
data [36], prediction of lncRNA-miRNA association using a network distance analysis model [37],
prediction of the potential associations of disease-related metabolites using GCN with graph attention
network [38], predicting Human ether-a-go-go-related gene (hERG) blockers using molecular
fingerprints and graph attention mechanism [39] and predicting the potential associations between
metabolites and diseases based on autoencoder and nonnegative matrix factorization [40]. These will
also be our future research direction.
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