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Abstract: How to reduce a boiler’s NOx emission concentration is an urgent problem for thermal
power plants. Therefore, in this paper, we combine an evolution teaching-learning-based optimization
algorithm with extreme learning machine to optimize a boiler’s combustion parameters for reducing
NOx emission concentration. Evolution teaching-learning-based optimization algorithm (ETLBO) is a
variant of conventional teaching-learning-based optimization algorithm, which uses a chaotic mapping
function to initialize individuals’ positions and employs the idea of genetic evolution into the learner
phase. To verify the effectiveness of ETLBO, 20 IEEE congress on Evolutionary Computation
benchmark test functions are applied to test its convergence speed and convergence accuracy.
Experimental results reveal that ETLBO shows the best convergence accuracy on most functions
compared to other state-of-the-art optimization algorithms. In addition, the ETLBO is used to
reduce boilers’ NOx emissions by optimizing combustion parameters, such as coal supply amount
and the air valve. Result shows that ETLBO is well-suited to solve the boiler combustion
optimization problem.

Keywords: optimization; model; extreme learning machine; teaching-learning-based optimization
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1. Introduction
1.1. Background and present situation

With the rapid development of science and technology, more and more engineering problems can
be regarded as strict optimization problems. For these optimization problems, the preliminary work
mainly focuses on various mathematical techniques, but these methods probably cannot find the global
optimal solution effectively. On the contrary, many intelligent optimization algorithms inspired by
natural phenomena have been developed and widely used in various scientific and technological fields
instead of traditional optimization algorithms. These intelligent optimization techniques show ideal
results in solving complex engineering problems, such as structural design problems, multi-channel
steering operation problems and grinding operation problems, so intelligent optimization techniques
have attracted the attention of many scholars [1]. Until now, outstanding heuristic intelligence
optimization algorithms [2—4] have been proposed to solve complex problems, which are shown in
Table 1. All these artificial intelligence optimization algorithms have been successfully applied to
various optimization problems, and the effectiveness of these intelligent algorithms has been proved.

Table 1. Outstanding heuristic intelligence optimization algorithms.

Abbreviation Full name

PSO Particle Swarm Optimization [5]

ACO Ant Colony Optimization [6]

SFLA Shuffled Frog Leaping Algorithm [7]

ABC Artificial Bee Colony [8]

AFSO Artificial Fish Swarm Optimization [9]
GWO Grey Wolf Optimization [10]

BFO Bacteria Foraging Optimization [11]

WOA Whale Optimization Algorithm [12]

SO Snake Optimizer [13]

GSA Gravitational Search Algorithm [14]

GA Genetic Algorithm [15]

ALO Ant Lion Optimizer [16]

DA Dragonfly Algorithm [17]

MFO Moth-Flame Optimization [18]

SCA Sine Cosine Algorithm [19]

TLBO Teaching-Learning-Based Optimization [20]
ETLBO Evolution teaching-learning-based optimization [our method]

In 2010, Indian scholar Rao et al. [20] proposed a swarm intelligence algorithm—the teaching-
learning-based optimization (TLBO) algorithm, which is proposed and inspired by the teaching-
learning phenomenon of a class. Because of its own advantages, it has inspired a wide range of studies and
applications. The TLBO algorithm has been successfully applied to function optimization problems,
engineering optimization problems and some other practical applications [21-23].
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1.2. The research state of TLBO algorithm

The TLBO algorithm will be studied in this paper. The optimization idea of this algorithm regards
the population as a class, in which the individual with the best fitness is the teacher. The teacher can
improve the average score of the whole class through teaching activities, so as to realize the
optimization evolution of the whole population. Students communicate with each other through a
certain mechanism to maintain the diversity of the population and avoid premature convergence of the
algorithm. The principle of TLBO is simple and easy to understand, and requires few parameters to be
set. TLBO has attracted the attention of many researchers at home and abroad since it was proposed.
It has been successfully applied to the optimization of large-scale continuous nonlinear problems [24],
identifying photovoltaic cell model parameters [25], optimizing distribution of local automatic voltage
adjustment in distributed systems [26], data clustering [27], optimization of assembly sequence
planning for industrial robots [28], the set alliance knapsack problem [29] and other problems.

However, the TLBO algorithm still has several shortcomings. For instance, the TLBO algorithm
is accomplished in solving low-dimensional or high-dimensional uni-modal functions, but for multi-
modal functions, it is easy to get trapped in a local optimum, which is caused by the update mechanism
during the teaching phase. With the progress of iteration, the population individuals approach the
optimal solution, causing the loss of population diversity. The convergence accuracy, convergence
speed and arithmetic speed of the TLBO algorithm still needs to be further improved.

In recent years, domestic and foreign researchers have conducted extensive and in-depth studies
on the issues of the TLBO algorithm mentioned above. Ghasemi et al. [30] introduced mutation
operator to the learning phase of the TLBO algorithm to enhance the population diversity. Li et al. [31]
introduced inertia weight and acceleration weight to the teaching phase and learning phase to improve
its convergence speed and the quality of the solution. Wang et al. [32] designed a sub-population-
based teaching phase to enhance particle diversity and improve the convergence speed of the
algorithm. Yu et al. [33] introduced feedback, mutation and crossover operators from differential
evolution and chaotic wave algorithms to the TLBO algorithm, respectively improving its development
capability, the diversity of the population and its ability to escape local optima. Tsai [34] constructed
a mutation strategy by randomly selecting the difference vector of two individuals as the third
individual’s mutation source. Rao and Patel [35] introduced the elite mechanism to the TLBO
algorithm, improving its convergence accuracy. Zou et al. [36] introduced the dynamic grouping
mechanism to the TLBO algorithm to enhance its global search capability. Chen et al. [37] introduced
the local learning and self-learning mechanisms to the TLBO algorithm to enhance its search capability.
Sultana and Roy [38] introduced the reverse learning and quasi-reverse learning mechanisms to
improve its convergence speed and the quality of the solution. Zou et al. [39] solved global
optimization problems by adding dynamic group strategy to the TLBO algorithm, thus improving its
global search capability. Tuo et al. [40] combined the harmony search and TLBO algorithms to
effectively solve complex high-dimensional optimization problems.

In order to further improve the performance of the TLBO algorithm, three improvement
mechanisms are introduced: 1) the chaotic mapping function is used to initialize the population
individuals to increase population diversity and enhance the global search capability. 2) In the
“teaching phase”, three parameters, namely inertia weight, acceleration coefficient and self-adaptive
teaching factor, are introduced to improve the algorithm’s arithmetic speed and the quality of the
solution. 3) In the “learning phase”, the idea of heredity is used to update the population. The latest
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individuals are taken as the next iteration’s population to maintain population diversity in the later
stage of optimization and improve the global search capability. 20 IEEE congress on Evolutionary
Computation (CEC) benchmark test functions are used to verify the performance of the proposed
algorithm. Compared to several state-of-the-art algorithms, namely GA, ALO, DA, MFO, SCA and
TLBO, the experimental results show that the proposed algorithm has excellent performance in terms
of convergence accuracy and the global search capability.

1.3. Boiler combustion optimization by heuristic optimization algorithm

During the combustion process of a station boiler, large amounts of polluting gases are produced,
such as NOx, SOz and CO2, which cause great harm to the human living environment. Simultaneously,
a large amount of coal is consumed. Therefore, the realization of dynamic multi-objective optimal
control of the boiler combustion process under variable load is an effective method to reduce
environmental pollution and save coal resources, which is called the boiler combustion optimization
problem. Therefore, the boiler combustion optimization problem can be classified into a class of
variable load, multi-variable, constrained dynamic multi-objective optimization problems. In recent
years, with the rapid development of artificial intelligence technology, many researchers tried to use
machine learning and heuristic optimization algorithms to optimize the adjustable operating
parameters of the boiler combustion process, to achieve the goal of improving the boiler thermal
efficiency or reducing the emission concentration of polluting gases [41-45].

The power station boiler has the characteristics of nonlinearity, strong coupling and large lag,
which make it difficult for the traditional optimization method to achieve the goal of energy saving
and emission reduction of the boiler. However, the heuristic intelligent optimization algorithm can
realize the optimization and adapt to the uncertainty in the optimization process in the absence of
systematic accurate analytical expressions or mathematical models. Therefore, domestic and foreign
scholars are keen to apply the heuristic intelligent optimization algorithm to solve the boiler
combustion optimization problem [46—48]. Rahat et al. used the novel multi-target evolutionary
algorithm and data-driven model to find the equilibrium relationship between the emission
concentration of nitrogen oxides and the carbon content of fly ash, effectively solving the contradiction
between boiler thermal efficiency and NOx [49]. Reference [50] proposed a boiler combustion
optimization algorithm based on big data driven case matching, using data mining technology to
analyze the data in Supervisory Information System (SIS) and establish the combustion case database.
Online optimization can match the real-time operation data of a distributed control system (DCS) and
case database, finding the best operating parameters suitable for current working conditions, and
realizing the online optimization of boiler combustion. Reference [51] used a deep neural network and
multi-objective optimization algorithm to achieve multi-objective optimization of the boiler
combustion process, effectively balancing the thermal efficiency and nitrogen oxide emission
concentration. In this paper, the proposed ETLBO is combined with extreme learning machine to solve
the boiler combustion problem for reducing NOx emissions.

The contributions of this paper are summarized as follows:

1) A kind of evolutionary teaching-learning-based optimization algorithm (ETLBO) is proposed.

2) The proposed ETLBO is used to solve 20 benchmark testing functions.

3) The proposed ETLBO-ELM method is applied to optimize the adjustment operation
parameters of a 330 MW circulation fluidized bed boiler for reducing NOx emissions.
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The structure of this paper is as follows: The basic TLBO algorithm is given in Section 2. The
proposed ETLBO is given in Section 3. Section 4 shows the performance evaluation of the ETLBO.
Section 5 shows the boiler combustion model and optimization. The conclusion of this paper is in
Section 6.

2. Basic TLBO algorithm

The TLBO algorithm is inspired by the teaching-learning phenomenon. Students are regarded as
population individuals, their grades in each subject are regarded as the solutions to be optimized, the
number of subjects is the solution dimension and the best individual becomes the teacher. The core
idea of the TLBO algorithm is to simulate the teaching-learning process of a class. First, the best
individual in the population is selected as the teacher, who improves the students’ grades through
teaching, thus achieving the goal of improving the average grade of the class. Students can learn from each
other by comparing their grades, complementing each other’s strengths and making progress together.
Therefore, the TLBO algorithm is divided into two phases: “teaching phase” and “learning phase”.

2.1. Teaching phase
In an ideal situation, students can learn from the teacher’s guidance and reach the same level as

the teacher. However, due to the interaction of many other factors, the teacher can only help the
students reach a certain level. This phenomenon can be expressed mathematically as follows:

difference_mean; = r;(Mieacher — TeMi), (D
Tr = round[1 + rand(0,1)], (2)
Xnewi = Xo1q, T+ difference_mean;. 3)

Formula (1) represents the difference between the best grade and average grade; r; is a random
number between 0 and 1; Mieacher 1S the best individual, regarded as teacher; Tg is a teaching factor,
which is shown in formula (2); M; is the average score at the i-th iteration. In formula (3), Xq14; 18
the old solution at the i-th iteration and Xe,; 1s the new solution after updating.

2.2. Learning phase

Students learn from each other through mutual communication and learning to acquire knowledge.
Students with lower grades learn from those with higher grades, complementing each other’s strengths
and making progress together. Two students, X; and X, are randomly selected. For the minimum

optimization problem, if X; is better than X, then X; learns from X;; otherwise, if X; is better than
X;, then X; learns from X;. This phenomenon can be expressed mathematically as follows:

Xnewi = Xolai + 1i(Xi — X;)» iff(X;) < f(X;), 4)
Xnewi = Xowai + Ii(Xj — Xi), if f(X;) = f(X;). (%)

As shown in formulas (4) and (5), if the updated X,,e; 1s better than the old X4, then Xjow;
is accepted; otherwise, X,1q; remains unchanged.
The pseudo-code of the original TLBO is given in Algorithm 1.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20317-20344.
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Algorithm 1
: Objective function f(x), x;(i =1,2,...,n)

: Initialize algorithm parameters.

: Generate the initial population of individuals.

: Evaluate the fitness of the population.

: While the stopping criteria is not adequate do

: Teaching phase

: Select the best individual X}, in the current population.

: Calculate the mean value X,,cqn-

O 0 I O W B W N =

: For each student in population do

—_
=]

: X; learn from the Xj.5 and produce new solution X, ; by using Eq (3).

—
[S—

: Evaluate new solutions.

—
[\

: Update better solutions.
: End For

e
A W

: Learning phase

—
9,

: For each student in population do

—_
N

: Randomly select a learner X;.

—_
~

:If X; is superior than X; then

—
o0

: Produce new solution X,.,,; by using Eq (4).

: Else

: Produce new solution X, ; by using Eq (5).

: End If

N NN~
N = O O

: Evaluate new solutions.

[\
(O8]

: Update better solutions.
: End For

NN
A

:gen=gen+ 1.
: End While

NS I\
N O

: Output the best solution found.

3. The proposed ETLBO algorithm

In order to improve the convergence accuracy and convergence speed of the original TLBO
algorithm, a kind of ETLBO algorithm is proposed. The ETLBO algorithm adopts three adjustment
mechanisms: First, the initialization of the population individuals is improved by applying chaotic
mapping sequences, which can enhance the population diversity. Second, in the teaching phase,
three coefficients are introduced to improve the convergence speed and the solution quality. Finally, in
the learning phase, the idea of heredity is used to update the population, and all the latest individuals
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are taken as the population for the next iteration, which helps to maintain the diversity of the population
in the later stage of optimization and further improve the global search capability. The specific
implementation process of the ETLBO algorithm is described in the following subsections.

3.1. Using chaos mapping to initialize individuals

In the original TLBO algorithm, the population individuals were initialized using pseudo-
random sequences, which resulted in a high degree of uncertainty in the diversity of the population
and could not guarantee that the solutions were uniformly distributed in the search space,
ultimately leading to premature convergence of the algorithm. Since chaos mapping has the
properties of traverseability, randomness and overall stability, using the chaotic sequence
generated by the chaos mapping function as the initial position of the population individuals can
enhance the uniformity of traversing the initial solution, thereby improving the diversity of the
population and the global search capability. Therefore, this paper adopts logistic chaos mapping to
initialize the population, and the standard logistic chaos mapping is:

Ziyr = HWZ(1 = Zy), (6)
7, & {0,0.25,0.5,0.75,1.0}, p € [0,4].

In formula (6), p is a random number between 0 and 4; Zjy is the k-th chaotic variable with the
value range of [0,1].
After considering various factors, this paper sets p = 4. The specific formula is as follows:

Ziyr = 4L (1 = Zy), (7
7, & {0,0.25,0.5,0.75,1.0}, p € [0,4].

Finally, the formula for converting chaotic solutions into solutions in the solution space of
practical problems is as follows:

range
2

POPnew = (1 + popeia) + lower. (3)

In formula (8), popgq is the population matrix before transformation; range is a matrix
consisting of 60 x 1 copies of (ub —Ib); lower is a matrix consisting of 60 x 1 copies of lb; ub
is the upper constraint; lb is the lower constraint; poppew 1S the population matrix after
transformation.

3.2. Teaching phase

In the original TLBO algorithm, the teaching coefficient Tp affects the search speed and search
ability of the algorithm, and determines the change of the average value. Among them, a larger T
value speeds up the search speed, but it also makes the algorithm easily get trapped into local optima.
A smaller Tr value slows down the search speed, but it also makes the algorithm escape local optima.
In addition, the teaching coefficient Ty is a random number with a value of 1 or 2, and students can only
fully accept or fully reject the teacher’s teaching, which is inconsistent with the actual situation. After
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considering various situations, this paper proposes a composite individual update mechanism in the stage
where the teacher teaches students, and three parameters are set, including inertia weight w;, acceleration
coefficient ¢; and self-adaptive teaching coefficient Tg. The introduced inertia weight and acceleration
coefficient can improve the search speed and the quality of the solution of the algorithm. The self-adaptive
teaching coefficient is a monotonically decreasing function, which is related to the current number of
iterations and the maximum number of iterations. The self-adaptive teaching coefficient can speed up the
convergence speed of the algorithm in the early stage and slow down the convergence speed in the later
stage to avoid getting trapped in local optimization, and the combination of the two can avoid premature
convergence of the algorithm. The specific formula is as follows:

@, =1/(1+exp(—f(i)/a) x v), )

i = 1/(1 + exp(—f(i) /) , (10)

Tr = 1 + cos(mt/2T), (11)

Xnew,i = “)ixold,i + (I)i(Mteacher - TFMi)- (12)

In formula (9), w; is the inertia weight, which affects X;q;. In formula (10), ¢; is the
acceleration coefficient, which improves the search speed of the “teaching phase”. In formula (11),
Tr is the self-adaptive teaching factor, which determines the degree of early maturity of the algorithm.
f(i) is the fitness value of the i-th student, which is shown in formulas (9) and (10). a is the maximum
fitness value in the iteration, which is shown in formulas (9) and (10). t is the current number of
iterations, which is shown in formulas (9)—(11). T is the maximum number of iterations, which is
shown in formula (11). In formula (12), M;eacher 1S the best individual in the population, that is,
the teacher. M; is the average score at the i-th iteration. As shown in formula (12), if the updated
Xnewi 1s better than the old Xgjq;, then X0 ; 18 accepted; otherwise, X,14; remains unchanged.

3.3. Learning phase

During the learning process of the original TLBO algorithm, the population of the next iteration
is generated through mutual communication and learning among students. The main idea is to
randomly select two students and let the one with poor performance learn from the one with good
performance. However, this method reduces the diversity of the population in the later optimization
stages, which can easily lead to getting trapped in local optimization. As the idea of heredity is a type
of search technique based on self-adaptive probability, it increases the flexibility of the search process.
Although this probability feature may produce some low-fitness individuals, more excellent
individuals will be generated as the evolution process continues, gradually making the population
evolve to a state containing an approximate optimal solution. Moreover, the idea of heredity is scalable
and easy to combine with other algorithms to generate hybrid algorithms that integrate the advantages
of both. Based on the learning process of the original TLBO algorithm, this paper proposes adopting
the idea of heredity to update the population, where all the latest individuals generated through
crossover and mutation operations are used as the population of the next iteration. This method helps
to maintain the diversity of the population in the later optimization stages and further improve the
global search capability. The specific computation steps of ETLBO are described below and the
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flowchart of the ETLBO algorithm is presented in Figure 1.

Step-1: The mutual learning among students is conducted according to the “learning phase” of
the original TLBO algorithm, where the students with poor performance learn from those with good
performance. This method satisfies the following conditions: if the updated X;e,; 1s better than the
old Xy1q4, then Xpew; 1s accepted; otherwise, X,1q; remains unchanged.

Step-2: Sort all individuals in ascending order based on their fitness values and divide them into
two groups, A and B, according to certain rules.

Group A: Individuals ranked 1st, 3rd, 5th, 7th, ..., etc.

Group B: Individuals ranked 2nd, 4th, 6th, 8th, ..., etc.

Step-3: Crossover operation: The first half of individuals in groups A and B are crossed over
according to certain rules, and the resulting offspring individuals replace the second half of individuals
with lower rankings. The specific formula is as follows:

. N
REWS 05 X [(1—B) x Ay + (1 +B) xBy]’ j=5+15+2 =
” ' s
1
(r+2)t, r<0.5
B = Ly . (14)
(L)H", r> 0.5
2-2r

In formula (13), A; is the i-th student in Group A, B; is the i-th student in Group B and N
is the population size. In formula (14),  is a balancing parameter, r is a random number
between 0 and 1 and n is a custom parameter value where the larger the value, the closer the
offspring individuals are to their parents.

Step-4: Mutation operation: All students are mutated one by one according to the mutation probability
P,,. For a property value of an individual, if the random number r € [0,1] < P,,, a mutation operation is
performed, that is, the property value is inverted. The specific formula is as follows:

X! = ub +1b — X;. {; - 1’2: '_'_'_"lc\ll. (15)

In formula (15), X;; is the j-th property value of the i-th individual, ub is the upper constraint,
b is the lower constraint, N is the population size and d is the population dimension.

Step-5: Take all the latest individuals generated by crossover and mutation operations as the
population for the next iteration.

After calculation, the computational complexity of ETLBO is O(Max_iter X pop_num X dim).
Max_iter is the maximum number of iterations, pop_num is the population size and dim is the
population dimension.

The pseudo-code of the proposed ETLBO is given in Algorithm 2.
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Algorithm 2

: Objective function f(x), x;(i = 1,2,...,n)

: Initialize algorithm parameters.

: Use logistic chaos mapping to generate the initial population of individuals.
: Evaluate the fitness of the population.

: While the stopping criteria is not adequate do

: Teaching phase

: Select the best individual Xj,s in the current population.

: Calculation the mean value X,,0qn-

: For each student in population do

10: X; learn from the X, and produce new solution X, ; by using Eq (12).

0 31 N D AW

Ne)

11: Evaluate new solutions.

12: Update better solutions.

13: End For

14: Learning phase

15: For each student in population do
16: Randomly select a learner X;.
17:1f X; is superior to X; then

18: Produce new solution X, ; by using X,y ; = Xp1a; + r(Xl- — Xj).
19: Else
20: Produce new solution Xy, ; by using X,y = Xp1a; + r(Xj — Xl-).

21: End If

22: Evaluate new solutions.

23: Update better solutions.

24: End For

25: Crossover and Mutation

26: Sort by fitness value.

27: Divide the students into two groups according to the Step-2.

28: For each student in the first half of each group do

29: Perform crossover operation.

30: Produce new solution X, ; by using Eq (13).

31: End For

32: Replace the lower-ranked students with the offspring students obtained.
33: For each student in population do

34: Perform mutation operation according to the mutation probability.
35: Produce new solution X, ; by using Eq (15).

36: End For

37: Take all the latest students as the population for the next iteration.
38: gen=gen+1.

39: End While

40: Output the best solution found.
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Figure 1. The flowchart of the ETLBO algorithm.
4. Performance testing of the ETLBO algorithm

In this section, 20 benchmark mathematical functions in Table 2 are used to verify the
performance of the ETLBO algorithm. Seen from Table 2, Fi1—F7 are uni-modal test functions used to
test the convergence accuracy and solution capability of the ETLBO algorithm, Fs—F12 are multi-modal
test functions and F13—F20 are fixed-dimension multi-modal test functions. Fs—F20 are used together to
test the global search capability of the ETLBO algorithm. Several state-of-the-art optimization
algorithms are regarded as comparison algorithms, which are recorded in Table 3. This section
compares the ETLBO algorithm with GA, ALO, DA, MFO, SCA and the original TLBO algorithms.
The relevant parameters set for the seven algorithms when testing the 20 CEC benchmark test functions
are shown in Table 3.

Due to the stochastic nature of meta-heuristics, the results of one single run may be unreliable.
Therefore, each algorithm runs 30 times independently to reduce the statistical error. The performance
of different optimization algorithms in terms of the mean and standard deviation of solutions is
obtained from the 30 independent runs for 10, 30 and 50 dimensional functions. The maximal iteration
1000 is used as the stopping criterion. All experimental results are recorded in Tables 4—10. It should
be noted that the closer the mean value is to the theoretical optimal value of the test function and the
smaller the mean square deviation is, the better the convergence accuracy, the quality of the solution
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and stability of the algorithm. In addition, the optimal performance parameters of the seven algorithms
are highlighted in bold font in Tables 4-10.

Table 2. 20 benchmark test functions.

Optimization function Value range Optimum Type

F1(x) = XL (x;)? [-100,100]" 0 Unimodal
Fo,(x) = XL, Ixi] + TTi Ix4] [-10,10] 0 Unimodal
F3(x) = XL, ()1 x)? [~100,100] 0 Unimodal
F,(x) = max|x;[,1 <i<n [-100,100]" 0 Unimodal
Fs(x) = X100(xi01 — %32)2 + (%3 — 1)?] [-30,30]" 0 Unimodal
Fe(x) = XL, (Ix; + 0.5])? [~100,100]" 0 Unimodal
F,(x) = Y1, ix;* — random[0,1) [-1.28,1.28]" 0 Unimodal
Fg(x) = XL, [x;2 — 10 cos(2mx;) + 10] [-5.12,5.12]» 0 Multimodal

Fo(x) = —20exp (—0.2 /% {lei2> — exp (0L, cos(2mx;) ) + 20 + e [-32,32]" 0 Multimodal

Fio(x) = o= 2L, %% — [T, cos (%) +1 [~600,6001]" 0 Multimodal

F11 () = ~{10sin?(rtyy) + 5 (i — D? [1 + 10sin?(1tyi41)] + (Y —
1)} + X1, u(x;, 10,100,4)

k(x; — a)™,x; > a [-50,50]" 0 Multimodal
yi=1+X‘:1,u(xi,a,k,m)= 0,—a<x;<a
k(—x; —a)™, x; < —a
Fi, (%) = 0.1{sin?(3mx;) + IP1(x; — 1)?[1 + sin? (3mx;;1)] +(x, —
12 _ 2{ o i " [50,50]" 0 Multimodal
1)?[1 + sin?(2mx,)]} + L, u(x;, 5,100,4)
Fi3(%) [ L4 y2s L ]_1 [-65.536,65.536] 1 Fixed
X)=|—+3¥B ——— —65.536,65.
3 500 =152, (x-ay)” dimension
Fixed
_ yi1 _ xq(b}+bix,) 2 _
F1.(0) = Yo, [ai D74y +xs (5,51 00003073 dimension
1 Fixed
Fis(x) = 4x? — 2.1xT + =x% + x;x, — 4x% + 4x3 [-5,5] -1.0316285
¥ dimension
2 Fixed
Fi6(x) = — Xi, ciexp [— 2 ay(x — py) ] [0,1] —3.86 . .
dimension
2 Fixed
Fi,(x) = — X, ciexp [— i ay(x — py) ] [0,1] —3.32 . .
dimension
Fixed
Fig(x) ==Y [x—apx—a)T +¢]™* [0,10] -10.1532 . )
dimension
Fixed
Fio(x) = =Y [x—a)(x—a)T+¢]™?* [0,10] —10.4028 ) )
dimension
Fixed
Foo(x) = =30 [(x—a)x—a)T +¢] ™t [0,10] -10.5363 . )
dimension

Figure 2 shows the comparison of the convergence process curves of the seven algorithms on
the 20 CEC benchmark test functions, where the horizontal and vertical axes represent the number of
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iterations and the fitness value, respectively.

Table 3. Algorithm parameter settings.

Algorithm Population size Number of iterations Others

GA 60 1000 pc =0.8, pm =0.05
ALO 60 1000 -

DA 60 1000 B=3/2

MFO 60 1000 b=1

SCA 60 1000 a=2

TLBO 60 1000 -

ETLBO 60 1000 pu=4,m1=40,pm=0.01

Table 4. Experiment comparison results on 7 uni-modal testing functions with 10 dimensions.

Function Item GA ALO DA MFO SCA TLBO ETLBO
Mean  1.01 x 107"  131x10% 524x10° 1.74x1073" 691 x 1073 3.73 x 1070 0.00 x 10+
" Std 9.05x 1072  547x1071% 1.08 x 107 533 =103  3.09x 10730 1.72 x 1070 0.00 x 10+
Mean  4.32x 1079  3.00x 1079 1.04 x 1070  2.07x107" 7.16x 1072 451 x 107 0.00 x 10+
" Std 2.86x 1072 998 x 1070  226x10 290x107" 1.39x 102"  1.40 x 1070 0.00 x 10+
Mean  1.92x 102  146x 1077 864 x 107 721 %1070 4.64x1075 1.37 x 10! 0.00 x 10+
" Std 1.09 x 10" 2.02x 1077 1.17x 10" 1.70x 107 149 x 107  1.15 x 10! 0.00 x 10+
Mean  3.75x 10"  3.90x 1079 7.67x10° 7.03x10% 2.67x 107" 9.06 x 107 0.00 x 10+
8 Std 1.45x 1070 426 x107% 859 %100  3.14x 107 384 x 107" 3.56x 107 0.00 x 10+
Mean  2.39x 1072 276 x 107" 290 x 1072 3.30 x 101 6.98 x 107  2.54 x 10*0? 8.72 x 1070
" Std 5.67 x 1072 8.00 x 10" 437 x 10"2 846 x 10" 3.07 x 107°"  1.29 x 10" 5.27 x 107
Mean  1.23x107%  1.10x 107 929 x 10 140 x 103"  3.06 x 10°°"  5.66 x 1070 6.08 x 107!
a Std 147 x107°0 426 x 10710 143 x 1070 224 x1073  1.23x107°"  2.80 x 10700 7.27 x 1079
Mean  3.07x 107  474x 109  774x10% 220x10% 120x10% 1.73x 107 2.16 x 10793
" Std 1.99x 1078 296x 1079  6.92x10%  1.26x10 248x 105 1.36x 107 1.40 x 10793

The choice of 10, 30 and 50 as dimensions for benchmark functions is generally because they are
representative. Lower dimensions, such as 10, can be used to evaluate the performance of algorithms
on relatively smaller problem sizes. Higher dimensions, such as 50, can be used to evaluate the
performance of algorithms on larger and more complex problem sizes. Additionally, selecting these
specific dimensions facilitates the comparison of different algorithm performances. These dimensions
have been widely used and have become standard settings for benchmark test functions. By conducting
tests on these dimensions, the results become more comparable and help researchers better understand

algorithm performance across different problem sizes.

All experiments were run on a 64-bit XiaoXin Air 15IKBR laptop, with an Intel(R) Core(TM) i5-
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8250U CPU @ 1.60 GHz processor and 8.00 GB of RAM. The simulation software is MATLAB 2021a.

Table 5. Experiment comparison results on 7 uni-modal testing functions with 30 dimensions.

Function Item GA ALO DA MFO SCA TLBO ETLBO
Mean  230x 10" 1.97x 107 2.74x10"2 3,00 x 10 232x 10  230x 10"  1.37x107!
" Std 1.59 % 107 853 x 1079 291 x 10%2 470 x 10°% 498 x 1073 6.74 x 10"0  4.97x1072!
Mean  3.08 x 100" 3.01 x 10*'  9.88x 10" 3.35x 107" 333 x 10 228x 10"  0.00 x 10+
" Std 8.55x 1070  435x 10" 428x 10"  1.57x 10701 6.82x 10 277 x 10°%  0.00 x 10*0°
Mean 371 x 107 170 x 10"2 565 x 10" 1,91 x 10°%  1.94x 10°3  1.60 x 10*2  0.00 x 10*%°
" Std 1.04 x 10" 1,10 x 102 7.08 x 10'3 122 x 10*™ 223 x 103 7.24 x 10*°"  0.00 x 10*%
Mean 558 x 10700 7.48x 10" 130 x 10" 4.63 x 10" 120 x 10" 1.13x 10" 0.00 x 10*%°
8 Std 9.58x 10" 398 x 10"  8.06x 10"  1.19x 10"  8.92x 10°®  3.05x 10"  0.00 x 10+
Mean  2.94x 10" 1.25x10%2 157 x 10" 143 x10°% 113 x 1072 2,01 x 10*®  2.84 x 10*"!
" Std 490 x 1075 2.82x10%2  3.05x 10" 327x10°% 2.85x 1072 893 x 102  6.16 x 10!
Mean  3.12x 1073 1.90 x 1097 423 x 10%2 1,00 x 10°% 413 x 10°° 3,18 x 10" 3.39 x 10"
: Std 240 x 10°% 146 x 1077 351 x10"2 3,08 x 10" 333 x10°"  637x 10" 6,10 x 107!
Mean 561 x 100" 419x1092  855x 1092  1.66x 10" 1.52x 10 173 x 10"  2.13 x 107
" Std 730 %1000 1.32x 1092 630x 10792 3.93x10%°  132x10° 981 x10°  8.01x 107
Table 6. Experiment comparison results on 7 uni-modal testing functions with 50 dimensions.
Function Item GA ALO DA MFO SCA TLBO ETLBO
Mean 324 x10°% 624100  119x 10" 650 x 10 1.68 x 10! 3.32x 10*'  2.23 x 102!
" Std 9.99 x 10°%  3.19x 10705  9.88x 102 933 x [0°3  2.18 x 10*'  9.84 x 10'®  7.03 x 107!
Mean 844 x 10%01 840 x 100 1.67x 10" 6.51 x 10" 2.55x 103 3.78 x 10" 0.00 x 10+
" Std 1.83 x 10701 838 x 10700 836 x 10" 2,66 x 101 290 x 1073 4.17 x 10" 0.00 x 10+
Mean 102 x 10°05 330 x 10°3 176 x 10" 4.05x 10°%  2.67 x 10" 3.97 x 10*2  0.00 x 10+
" Std 229 % 10" 1.05x 10" 1.08 x 10 1.40 x 10°% 120 x 10"  1.68 x 102 0.00 x 10*%°
Mean  7.63x 10°01  1.57x 10°0 2,00 x 10*"  7.76 x 10°%" 492 x 10" 1.03 x 10"  6.40 x 10712
8 Std 8.07x 1070 230 x 10°  1.11 x 100 6.55x 10"  1.08 x 10*" 271 x 107" 2.86 x 107"
Mean  2.63x 1077 275 x 1072 1.65x 10"  4.02 x 107 282 x 107 3.29 x 103 4.83 x 10*"!
" Std 149 x 1077 438 x 1072 221 x 10" 1.79 x 10°7  4.85x 1075 1.51 x 10" 4.89 x 107!
Mean 333 x10°% 656 x 107%  1.45x 10" 6,50 x 10" 2.82 x 100 6.00 x 10" 7.46 x 10"
: Std 8.68x 1073 514x107% 981 x 1072 874 x 103 321 x 10" 124 x 10" 518 x 107!
. Mean — 2.60 x 1001 122x 100" 529x 100  236x 100 248 x 100" 6.61 x 10"  2.21 x 1079
7

Std 1.25x 10" 461 x 1072 7.07x10°" 376 x 10" 1.89 x 107°"  3.48 x 10"  1.08 x 107
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4.1. Experiments on 7 uni-modal test functions

In this subsection, 7 uni-modal test functions are used to evaluate the performance of ETLBO.
The experimental results of 10, 30 and 50 dimensional functions are listed in Tables 4, 5 and 6,
respectively. From Tables 46, it can be seen that compared to the other six algorithms, the ETLBO
algorithm can achieve smaller optimal solutions, mean values and mean square deviations for almost
all uni-modal functions in 10, 30 and 50 dimensions. The results of the tests on five functions, Fi, F2,
F3, F4 and F7, are particularly indicative that the ETLBO algorithm can produce satisfactory results for
uni-modal functions by effectively utilizing the search space, and has good convergence accuracy and
stability. Additionally, Figures 2—4 graphically present the comparison in terms of convergence speed
and solution quality for solving 7 multi-modal functions (Fi, F2, F3, F4, Fs5, Fe¢ and F7) with 10
dimensions, 30 dimensions and 50 dimensions, separately. Seen from the three figures, it is obvious
that the ETLBO has the fastest convergence speed and the highest convergence accuracy on most
functions compared to others.
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Figure 2. Simulation curves of 7 algorithms on 7 uni-modal functions with 10 dimensions.
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Figure 3. Simulation curves of 7 algorithms on 7 uni-modal functions with 30 dimensions.
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4.2. Experiments on 5 multi-modal test functions

In this subsection, 5 multi-modal test functions are used to evaluate the performance of ETLBO.
The experimental results of 10, 30 and 50 dimensional functions are listed in Tables 7, 8 and 9,
respectively. Boldface in the tables indicates the best results. Good performance of an algorithm is
indicated by smaller mean values. Stronger stability of an algorithm is indicated by lower standard
deviation values. According to these tables, the proposed ETLBO algorithm presents superior
performance on most functions. Seen from Table 7, the performance of ETLBO is better than other
algorithms for functions Fs, Fo, Fi0 and F11. The ALO has the smallest mean and standard deviation for
function Fi2. Seen from Tables 8 and 9, the ETLBO still shows the best performance on functions Fs,
Fo, Fi0 and F11 compared to other algorithms. In brief, the proposed ETLBO improves the solution
quality for multi-modal functions. Additionally, Figures 5—7 graphically present the comparison in
terms of convergence speed and solution quality for solving 5 multi-modal functions (Fs, Fo, Fio, F11
and F12) with 10 dimensions, 30 dimensions and 50 dimensions, separately. Seen from the three figures,
it is obvious that ETLBO has the fastest convergence speed and the highest convergence accuracy on
most functions compared to other algorithms.

Table 7. Experiment comparison results on 5 multi-modal testing functions with 10 dimensions.

Function Item GA ALO DA MFO SCA TLBO ETLBO
Mean 3.11 x 1070 1,73 x 1001 1.74 x 107" 1.58 x 107" 1.19 x 10"  3.71 x 10" 0.00 x 10%%
o Std 223 x10%° 942 x 10" 1.30 x 10! 1.03 x 10" 531 x 107 829 x 1070  0.00 x 10*%°
Mean 1.50 x 1070 1.72x 107 1.56 x 10" 4,00 x 1075 3.29x 1075 3.59 x 107  4.44 x 1071
" Std 3.09 x 100 391 x 107%  1.26 x 10"  0.00 x 10" 146 x 107>  6.80 x 107°"  0.00 x 107
Mean 6.13x 1070 2.09x 107%  249x107°  1.66x 10 271 x10  4.19x107°  0.00 x 10%%
e Std 343 %1079 1.27x 1079 243 x107°  1.05x10° 843 %107 1.53x107°  0.00 x 10%%
Mean 934 %107  1.14x 1070  546x107° 779 %107  6.04x10° 932x10% 3.25x1072
o Std 2.82x 1079 2.62x 10"  622x10° 348x 10 256x10% 457x10% 727 %107
Mean 1421072 1.10x 107 317 x 10 439x10%  2.18x10" 297x10% 743 x 107"
e Std 1.85x 1072  338x107% 354x10°0 552x10% 7.16x10 222x10% 3.44x 107"

Table 8. Experiment comparison results on 5 multi-modal testing functions with 30 dimensions.

Function Item GA ALO DA MFO SCA TLBO ETLBO
Mean 1.13x 102 7,08 x 107! 7.87 x 10"°"  1.44 x 102 1.37 x 10" 1.85 x 10'2  0.00 x 10**
s Std 3.81 x 101 2,01 x 10"! 455 x 107" 2.50 x 10" 2.39 x 10"1  2.32 x 10""  0.00 x 10*%
Mean 1.89 x 1091 1,93 x 1070 499 x 1070 1.54 x 10" 1.14 x 10"1 448 x 10"  4.44 x 10716
" Std 6.46 x 101 496 x 107"  1.18 x 100 8,03 x 10" 972 x 10" 332 x 107"  0.00 x 10*°
Mean 271 x 10" 910 x 107 311 x 100 1.81 x 10" 8.34x 107  7.49x 107°"  0.00 x 10*%
Fro Std 240 x 10" 814 x 107 2,07 x 107 371 x 10" 1.39x10°" 1.18 x 107" 0.00 x 10*%
Mean 1.03 x 10" 7.59 x 1070 498 x 1070 420 x 107"  1.96 x 10! 1.50 x 10" 2,54 x 107"
fu Std 455 %1070 345%x 1070 426 %1070 731 x107% 844 x 10"  726x 10  3.10 x 107"
Mean 391 x 10" 7.87x107% 260 x 1072 217x107%  6.64 x 100 128 x 10" 2,16 x 10*%
fe Std 6.87 x 10" 120 x 107 547 x10"2 643 x 109  1.72x 10" 229 =10 494 x 10"
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Table 9. Experiment comparison results on 5 multi-modal testing functions with 50 dimensions.

Function Item GA ALO DA MFO SCA TLBO ETLBO

Fy Mean  3.97 x 102 130 x 10" 125x10"2 286 x 10"  6.09 x 10" 3.44 x 1072 0.00 x 10*%°
Std 5.88 x 101 3.16 x 10" 7.61 x 10" 6.52 x 10" 534 x 10*1  2.81 x 10*"  0.00 x 10*°

F Mean  1.99 x 101 2.89 x 10"  6.81 x 10"  1.85x 10" 1.52 x 10" 4.55 x 10"  4.44 x 10716
Std 520107 1.18 x 10*° 2,08 x 10 3,00 x 10"  8.48 x 10" 3,74 x 107" 0.00 x 10+

Fio Mean  3.15x 10" 123 x107% 223x10" 683 x 10" 129 x 107 739 x 10"  0.00 x 10
Std 8.03 x 10" 579 x 107  239x 10"  1.01 x10%? 7.63x10°  1.22x 107"  0.00 x 10

Fi Mean 624 x 10" 120 x 10" 9.64 x 10" 6.40 x 107 1.94 x 10" 1.48 x 10"  3.77 x 107!
Std 6.29 x 1079 426 x 10" 2.85x 102 141 x 10" 3,57 x 10"  7.12x 10"  5.12 x 107

- Mean  5.00 x 107 427 x 10" 6.54 x 10" 1.60 x 10" 134 x 10" 1.91 x 10" 4,61 x 107
Std 3.22x 1077 351 x 10" 133 x 10" 6.73 x 103 4,10 x 10" 458 x 107! 3.54 x 107!
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Figure 6. Simulation curves of 7 algorithms on 5 multi-modal functions with 30 dimensions.
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4.3. Experiments on 8 fixed dimension test functions

In this subsection, 8 fixed dimension functions are applied to evaluate the performance of the

proposed ETLBO algorithm. The experimental results are listed in Table 10. According to this table,
the ETLBO algorithm presents the best solution on five functions (Fis, Fie, Fis, F19, F20). Therefore,

the ETLBO is the most fit to address multi-modal testing functions with fixed dimensions.

Table 10. Experiment comparison results on 8 multi-modal testing functions with fixed

dimension.
Function Item GA ALO DA MFO SCA TLBO ETLBO
Mean 1.05 x 10" 1.15 x 10" 1.05 x 10" 1.29 x 10" 1.20 x 10" 1.27 x 10*! 4.49 x 10"
s Std 2.22 %107 3.64 x 107" 222 %107 1.11 x 10" 6.11 x 107" 429 %107 5.08 x 10"
Mean 5.10 x 107 1.74 x 107 1.47 x 107 9.39 x 107 8.67 x 107 1.13x 107 3.70 x 107
o Std 6.34 x 107 439 %10 472 %107 3.09 x 107 3.41x10™ 4.64 %107 9.02x 107
Mean -1.00 x 10" -1.03x 10"  -1.03x 10"  -1.03x 10" -1.03x10" -1.03x10"  -1.03 x 10"
s Std 5.11 x 1072 2.00 x 107" 1.22x 107 2.28 % 107" 8.50 x 107 6.19 x 107 5.69 x 107”7
Mean —3.44 x 10" -3.86x 10" -3.86x 10"  -386x10""  -3.86x 10"  -3.81 x 10"  —3.86 x 10"
e Std 241 %107 1.26 x 107 1.56 x 107 9.31x107" 3.06 x 107 723 x 1072 228 %107
Mean —-1.73 x 10" -3.26 x 10" -3.26 x 10" 321 x 10"  -3.04x 10"  -2.76x 10"  -3.24 x 10"
fr Std 4.81 %107 6.03 x 107 7.17 x 107 5.61 x 107 2.18 x 107 3.88 x 107 4.54 x 107"
Mean —1.49 x 10" ~7.88x 10" =939 x 10"  -564x10"  -3.00x 10"  —-8.80x 10"  -1.02 x 10"
e Std 1.06 x 10" 2.94 x 10" 1.85 x 10" 3.20 x 10" 2.00 x 10" 2.41 x 10" 1.37x107™
Mean —-1.59 x 10" —-6.62x 10" —1.04 x 10" -9.42x 10"  —485x10"  -828x 10"  -1.04 x 10"
o Std 6.67 x 107" 3.29 x 10" 529 %107 2.43 x 10" 1.93 x 10" 2.44 x 10" 5.51x107%
Mean —-1.58 x 10" =7.92x 10" —1.02x 10" -977x 10"  -543x 10"  -9.63 x 10"  -1.05 x 10"
F Std 5.22x 107" 3.37 x 10" 1.20 x 10" 2.37 % 10" 1.11 x 10" 2.22 % 10" 5.86 x 107"
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5 Boiler combustion optimization

In this section, the proposed ETLBO algorithm is used to optimize the boiler’s adjustment
parameters for reducing the NOx emission concentration. First, based on the boiler operation
parameters, extreme learning machine (ELM) [52] is applied to build NOx emission models. Secondly,
based on the building model, the ETLBO is used to reduce NOx emission. Note that the extreme
learning machine is an effective modeling method that has been applied in many fields. Therefore,
detailed description of extreme learning machine can be found in Reference [52], whereas this paper
only gives the applicable rules of extreme learning machine.

5.1. Analysis and modeling of NOx emissions

This section focuses on using ELM to establish a prediction model of NOx emissions. For a 330
MW circulating fluidized bed boiler (CFBB), a total of 28,800 sets of operation data were collected,
including 26 input parameters and one output parameter. A detailed description of these data can be
found in reference [53]. Considering the small data sampling interval and low data fluctuation in the
CFBB, this paper sets the data sampling interval as every 80 units, resulting in a total of 360 datasets
to fully ensure the generalization ability of the prediction model, which is divided into three parts:
training data, validation data and testing data. The proportions are 65, 15 and 20%, respectively. The
training data are used to establish the prediction model and determine the model parameters. The
validation data are used to verify the effectiveness of the prediction model. The test data are used
to test the generalization ability of the prediction model. In this paper, the ELM algorithm model
is configured with 26 input nodes, 41 hidden layer neural nodes and 1 output node, and the
“Sigmoid” function is set as the hidden layer activation function. Note that in order to make these
boilers’ operation data dimension unity, they are processed by min-max normalization method.

In order to prove the excellent accuracy and effectiveness of the NOx emission prediction model
established using extreme learning machine, this section conducted 30 independent test experiments
and obtained the corresponding average results, which are recorded in Table 11. Note that experiment
results are obtained after normalization in Table 11. From the testing results, it can be observed that
the mean value reaches the precision of 1072, indicating that the prediction model has a high level of
accuracy. The S.D. value reaches the precision of 1073, indicating that the prediction model exhibits
good stability. The R? value is extremely close to 1, demonstrating the prediction model has strong
generalization and regression capabilities. In addition, the mean absolute percentage error (MAPE)
value reaches the precision of 10 or 10~ and the mean absolute error (MAE) value reaches the
precision of 1072, proving that the prediction model has the ability to approximate the target values
effectively.

In Figures 8 and 9, the solid line with red asterisks represents the actual NOx emission of one
boiler, while the dotted line with black circles represents the predicted NOx emission of the ELM model.
Seen from Figures 8 and 9, the predicted NOx emission can almost match the actual NOx emission.
Therefore, the NOx emission model built by ELM is effective.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20317-20344.



20337

Table 11. Performance index statistics for NOx emission model.

Performance index

Training sample

Validation sample

Testing sample

Mean 0.0813 0.0969 0.0959
S.D. 0.0033 0.0069 0.0065
MAPE 7.01 x 107 9.12x107™ 9.88 x 107
MAE 0.0633 0.0761 0.0756
R? 0.8944 0.8356 0.8241
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Figure 8. NOx emission training model curve.
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Figure 9. NOx emission testing model curve.
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5.2. Optimizing NOx emissions

In this subsection, based on the established NOx emission prediction model by ELM, the ETLBO
algorithm is applied to optimize the adjustment parameters of the CFBB for reducing NOx emissions.

In the process of optimizing NOx emissions, the main focus is on optimizing 11 adjustable
parameters that have a significant impact on NOx emissions, while keeping the remaining parameters
unchanged. The specific details are shown in Table 12. The objective function for optimizing NOx
emissions is as follows:

min £(x) = fyo, (). (16)
X = [Xq, X3, X3, X4, X5, Xg, X7, Xg, X9, X10, X11] (17)
S.t. dj < Xj < bi' (18)

Table 12. The 11 key parameters that affect NOx emissions.

Variable  Variable meaning Variable = Variable meaning
X Parameters to be optimized Xq Coal feed amount A
X5 Coal feed amount B X3 Coal feed amount C
Primary air flow rate at the entrance of the
X4 Coal feed amount D X5 . .
left-side air duct burner
Primary air flow rate at the entrance of the Total flow rate of secondary air on the left
X X
6 right-side air duct burner 7 side
Total flow rate of secondary air on the right Distribution flow rate of internal secondary
X X
8 side ? air on the left side
Distribution flow rate of internal secondary .
X10 . . . X11 Flue gas oxygen concentration
air on the right side
The lower limit value of the i-th parameter b The upper limit value of the i-th parameter
aj . i ..
! to be optimized ! to be optimized

Based on the established NOx emission prediction model, the ETLBO algorithm is applied to tune
the adjustable parameters in order to achieve the goal of reducing NOx emissions. In this section, the
maximum number of iterations for the ETLBO algorithm is set to 50, the population size is set to 40
and the dimension is set to 11. Other parameters remain unchanged. The operating condition data is
then optimized. Figure 10 shows the comparison curve before and after the optimization of NOx
emissions, where the solid line with red asterisks represents the data before optimization, and the dotted
line with blue circles represents the data after optimization. Seen from Figure 10, it can be visually
observed that after optimizing 72 sets of data using the ETLBO algorithm, there is a certain degree of
reduction in NOx emissions. This proves that the NOx emission model based on the ELM algorithm is
effective, and the ETLBO algorithm proposed in this paper is an effective strategy for solving complex
global optimization problems.
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Figure 10. The comparison curve before and after the optimization of NOx emissions

According to Table 13, in this section of the experiment, three sets of data, D, E and F, were randomly
selected from the test data. By comparing the data before and after parameter optimization, it can be
visually observed that the NOx emissions were significantly reduced. The coal feed amount is reduced, the
primary air flow rate increased and the flue gas oxygen concentration decreased after optimization for
samples D, E and F. The secondary air flow rate of sample D decreased, but the secondary air flow rate of
samples E and F both increased. In the end, the NOx emissions for samples D, E and F are reduced by
93.8604 mg/Nm’, 75.5935 mg/Nm® and 27.0340 mg/Nm?®, respectively. Therefore, considering only the
reduction of NOx emissions, the ETLBO-ELM method proposed in this paper is an effective strategy.

Table 13. Comparison of parameters before and after optimization of NOx emissions

) . Test sample data D Test sample data E Test sample data F
Boiler adjustable parameters
Before After Before After Before After
A 56.065 54.646 52.997 44.653 49.900 48.321
B 54.653 53.258 44.670 40.369 49.536 48.345
Coal feed amount
C 55.083 54.080 44.581 40.656 46.110 44.685
D 55.434 54.431 52.812 44.089 43.499 42.101

left 260.452 299.130 223.604 239.854 171.193 228.639

Primary air flow rate .
right  210.330 301.190 251.297 316.067 212.389 299.588

Total flow rate of
) left 451.981 433.481 353.973 553.023 155.050 373.982
secondary air

Total flow rate of
) . left 613.652 598.490 622.234 785.970 292.283 355.985
internal secondary air

Total flow rate of |
) right  1135.310 1007.080 1001.858 896.991 721.062 612.566
secondary air

Total flow rate of |
) . right  718.550 733.712 621.376 629.101 318.889 320.510
internal secondary air

Flue gas oxygen

] 4.799 3.179 5.371 3.689 5.327 5.018
concentration
NOx emission
189.7310 95.8706 182.1030 106.5095 159.8260 132.7920
(mg/Nm’)
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6. Conclusions

To enhance the performance of the original TLBO algorithm, an evolution TLBO algorithm is
proposed. Compared to TLBO, the proposed ETLBO uses the chaotic function to initialize population
individuals, introduces the inertia weight, acceleration coefficient and self-adaptive teaching factors into
the teaching phase, and the idea of heredity is used to update the population in the learning phase. 20
benchmark test functions are used to verify the performance of ETLBO and experimental results show
that the ETLBO outperforms the conventional TLBO on most test functions. Therefore, the ETLBO
has good convergence ability. Additionally, the ETLBO combines with extreme learning machine to
solve the boiler combustion optimization problem. Experimental results reveal that NOx emissions can
be reduced. In conclusion, the ETLBO algorithm is an effective optimization method.

In the future, the performance of the ETLBO algorithm will be further improved and applied to
engineering optimization problems. Additionally, further research is needed to provide rigorous
mathematical proofs for the convergence of the ETLBO algorithm. The multi-objective version of the
ETLBO algorithm and its application in uncertain engineering problems also deserve further study.
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