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Abstract: A common assumption is that pathogens more readily destabilize their host populations,
leading to an elevated risk of driving both the host and pathogen to extinction. This logic under-
lies many strategies in conservation biology and pest and disease management. Yet, the interplay
between pathogens and population stability likely varies across contexts, depending on the environ-
ment and traits of both the hosts and pathogens. This context-dependence may be particularly impor-
tant in natural consumer-host populations where size- and stage-structured competition for resources
strongly modulates population stability. Few studies, however, have examined how the interplay be-
tween size and stage structure and infectious disease shapes the stability of host populations. Here,
we extend previously developed size-dependent theory for consumer-resource interactions to examine
how pathogens influence the stability of host populations across a range of contexts. Specifically, we
integrate a size- and stage-structured consumer-resource model and a standard epidemiological model
of a directly transmitted pathogen. The model reveals surprisingly rich dynamics, including sustained
oscillations, multiple steady states, biomass overcompensation, and hydra effects. Moreover, these
results highlight how the stage structure and density of host populations interact to either enhance or
constrain disease outbreaks. Our results suggest that accounting for these cross-scale and bidirectional
feedbacks can provide key insight into the structuring role of pathogens in natural ecosystems while
also improving our ability to understand how interventions targeting one may impact the other.
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1. Introduction

Should pathogens stabilize or destabilize their host populations? A widespread tenet is that
pathogens destabilize their host populations, increasing temporal variation in density and generating
larger amplitude oscillations. As populations with pronounced fluctuations are often more prone to ex-
tinction, infectious disease is generally presented as a threat to population viability and a contributing
factor to species extinction [1, 2]. This prominent hypothesis is often taken at face value — notori-
ous epidemics demonstrate the devastating effect infectious diseases can have on vulnerable species
like amphibians [3, 4], Tasmanian devils [5], and American chestnuts [6]. In conservation biology,
infectious disease is typically presented as a threat to population viability and a contributing factor to
species extinction [1, 2].

Yet, severe and destabilizing outbreaks typically occur infrequently and in a relatively small subset
of habitats [7]. For example, the virulent amphibian chytrid, Batrachochytrium dendrobatidis pro-
vides a recent and infamous example of how disease outbreaks can erupt catastrophically, destabilizing
host populations in some contexts (e.g. permanent ponds, fragmented forests) though not others (e.g.
ephemeral ponds, non-fragmented forests) [8,9]. Why, then, does the severity and destabilizing effects
of pathogens differ dramatically across habitats? If pathogens typically destabilize their host popu-
lations — increasing the risk of driving both the host and pathogen extinct — how have pathogens
remained ubiquitous and widespread in ecosystems? Unfortunately, classical theory cannot answer
these questions or accurately predict the impact of pathogens on population stability. This suggests
that current approaches miss important biology necessary to understand how changes in pathogens
will alter the functioning of natural host populations.

Part of the challenge may arise from the coarse resolution of host populations in classical epidemi-
ological models. For complex systems like natural host-pathogen populations, a key complication lies
in determining the level of detail required to improve the accuracy of predictions. Mounting evidence
indicates that intraspecific variation that stems from differences in body size and developmental stage
(i.e., stage structure) strongly modulates population dynamics, including the density, demographic
structure, and stability of consumer-resource systems. For instance, accounting for differences in how
individuals transition through various life stages and compete for resources helps explain puzzling pat-
terns seen in empirical studies including oscillatory dynamics, bistability, biomass overcompensation,
and hydra effects [10, 11]. ”Biomass overcompensation” occurs when the biomass density, often of a
particular size or stage class, increases in response to elevated mortality [12]. Similarly, ”hydra effects”
can occur when higher mortality reduces the amplitude of population cycles, when mortality precedes
overcompensatory density dependence, or decreases consumption rates leading to increased resource
productivity and thus, population density [13].

Given such pronounced effects on the demography and density of host populations, stage-structured
interactions among hosts should strongly impact disease dynamics, and vice versa. Despite the poten-
tially far-reaching consequences of stage structure on both food webs and epidemiological dynamics,
these interactions have traditionally been overlooked in classical theory [14–16]). Epidemiological
theory in particular has traditionally made a number of simplifying assumptions that omit important
components of stage structure in host populations.

First, models typically assume that host populations are homogeneous. That is, all hosts are equally
affected by infection and carry the same value for the pathogen. Juvenile and adult hosts, however,
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differ in quality because of natural variation in host resistance, medical treatments, or sex-based dif-
ferences in immunity. Age, in particular, is well-known to influence the manifestation and pathophys-
iology of disease in plants [17, 18], wildlife [15, 19], and humans [20, 21]. Such differences carry
important epidemiological (and evolutionary) consequences. In other words, the pathogen now faces
the challenge of exploiting a heterogeneous host population, and the structure (frequency and density)
of each host type governs the fitness of the pathogen [22–24].

Second, virulence (infection-mediated harm caused to hosts) is most often defined as an increase
in mortality [25, 26]. Although the focus on mortality has enabled easy comparisons among models
and certainly helped to advance the field, this simplification overlooks other critical aspects of infec-
tion. For example, virulence often involves sublethal effects (morbidity) that divert energy away from
essential physiological needs and costly immune functions towards pathogen growth. Such increases
in basic maintenance costs can reduce the energy available to support development and reproduction.
Fecundity, in particular, can be reduced to the point of sterilization, as seen in numerous vertebrate and
invertebrate hosts. Changes in these life history traits will differ across juvenile and adult hosts and
carry pronounced consequences for both the stability and structure of host populations in ways that can
feedback to influence epidemiological dynamics [27–29].

Moreover, variation in virulence and the stage structure of host populations are ubiquitous in natural
host-pathogen systems [15, 19] and are often mechanistically linked via resources through numerous
pathways [18, 30, 31]. For example, juveniles and adults often compete for resources, and different
environmental conditions can cause a change in which stage is competitively superior and controls
the resource [12]. Resources also govern the energy available to hosts to support immune responses
(and other traits of life history) and, therefore, may influence various forms of lethal and sublethal
virulence [26,27,29]. Our understanding of the interplay between these ecological and epidemiological
factors remains fragmentary.

The physiologically-structured framework [12] developed here is well suited to examine both lethal
and sublethal (energetic) forms of virulence in size/stage-structured host populations for at least three
key reasons. First, this approach mechanistically links individual and population-level processes be-
cause it adheres to a strict mass-conservation principle. This important detail accounts for processes by
which energy is acquired (feeding) and through which energy is spent (maintenance, growth, reproduc-
tion, and immunity). More specifically, the consumer-host has a simplified asexual life history in which
a) food intake and metabolic demands scale linearly with body size; b) the rate at which individuals
grow and develop depends on food density; and c) juvenile individuals allocate all of their energy into
somatic growth, whereas adult individuals allocate all of their energy to reproduction. Second, unlike
previous models for stage-structured disease, this framework captures the resource-dependent dynam-
ics of juvenile hosts across a continuous size distribution. Finally, the initial demographic structure of
the susceptible host population is determined by changes in the stage-specific competitive ability of
juvenile and adult hosts.

2. Materials and methods

2.1. Model formulation

We base our model on a size-structured consumer-resource model presented in de Roos, Metz and
Persson [10] (Eqs. (39) therein; see also Box 9.1 in [12]), but adapt our notation to account for suscep-
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Figure 1. Schematic overview of the size-structured consumer-resource model with SI infec-
tion dynamics. Susceptible and infected juveniles are represented by their size-distribution,
whereas susceptible and infected adults are represented by their numerical densities. Black
arrows represent life history processes. Dark-gray arrows represent consumer-resource in-
teractions (feeding, food-dependent growth, mortality and reproduction). Light-gray arrows
represent infection dynamics. Infected juveniles and adults contribute equally to the force of
infection.

tible and infected individuals (See Figure 1 for a schematic overview of the model and its components).
In the model individuals are characterized by their body size (i.e. mass) θ, having a size at birth equal
to θb and maturing on reaching a maturation size threshold θ = θm. All individuals feed on a shared re-
source R following a type II functional response, R/(H + R), in which H is the half-saturation resource
density. In the absence of consumers the resource follows semi-chemostat dynamics (see Persson et
al. [32] for explanation and justification). Food intake, maintenance costs, growth in body size, and re-
production are all assumed to be proportional to individual body size θ. To phenomenologically capture
differences in the food limitation of juveniles and adults, we assume that their maximum mass-specific
feeding rate is equal to (2 − q)M and qM, respectively, where the parameter M represents a scaling
constant for the maximum ingestion rate. The parameter q represents stage-specific competitive ability,
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which mechanistically, translates to asymmetries in feeding rates. With q > 1, juvenile development
(growth in body size) is more food-limited than adult reproduction and q < 1 implies the opposite [10].
Food ingestion by juvenile and adult individuals hence equals

ωJ(R)θ = (2 − q) M
R

H + R
θ (2.1)

and
ωA(R)θm = qM

R
H + R

θm (2.2)

respectively. We assume that ingested food is assimilated with a constant efficiency σ that includes
all overhead costs associated with growth in body size or production of offspring. We assume a net
production model for individual energetics [33], so that the assimilated food is first used to cover
maintenance costs. Assuming that the mass-specific maintenance requirements, indicated by T , are the
same for juveniles and adults, the net-energy production that remains after covering maintenance costs
equals

νS J (R)θ = (σωJ(R) − T ) θ (2.3)

for juveniles and
νS A(R)θm = (σωA(R) − T ) θm (2.4)

for adults. Juvenile consumer-hosts invest their net energy into somatic growth, while adults invest it all
in reproduction, and hence do not grow. Growth and reproduction stop, however, whenever resource
densities are so low that either νS J (R) or νS A(R) are negative. We introduce the shorthand notation
f +(R) and f −(R) to indicate the value of the function f (R) restricted to non-negative and non-positive
values, respectively, i.e. f +(R) = max ( f (R), 0) and f −(R) = min ( f (R), 0). If net-energy production is
negative, juvenile and adult individuals are assumed to experience an increased mortality rate equal to

dS J (R) = µS − ν
−
S J

(R) (2.5)

and
dS A(R) = µS − ν

−
S A

(R) (2.6)

respectively [34], where µS indicates the background mortality rate of susceptible individuals.
In the absence of disease, the size-structured consumer-resource model can now be expressed in

terms of a partial differential equation (PDE) for the juvenile size-distribution sJ(t, θ) and ordinary
differential equations (ODEs) for the number of adult individuals S A(t) and the resource density R:

dR
dt

= ρ (Rmax − R) − ωJ(R)
∫ θm

θb

θsJ(t, θ)dθ − ωA(R)θmS A (2.7)

∂sJ(t, θ)
∂t

+
∂(ν+

S J
(R)θsJ(t, θ))

∂θ
= −dS J (R)sJ(t, θ) (2.8)

ν+
S J

(R)θbsJ(t, θb) =
ν+

S A
(R)θmS A

θb
(2.9)

dS A

dt
= ν+

S J
(R)θmsJ(t, θm) − dS A(R)S A (2.10)
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To account for the spread of a pathogen in this size-structured model of susceptible consumer-hosts
feeding on a shared resource, we extend the model with a size-distribution iJ(t, θ) of infected juvenile
consumer-hosts and a density IA(t) of infected adult consumer-hosts. We assume the force of infection
λ(t) to be proportional to the total number of infected individuals with proportionality constant β:

λ(t) = β

(∫ θm

θb

iJ(t, θ) dθ + IA(t)
)

(2.11)

We then examine the epidemiological and population dynamic consequences of pathogens that either
increase basic maintenance costs or increase mortality rates. More specifically, virulence can either
increase mass-specific maintenance requirements from T to (1 + cT )T or increase in the mortality rate
from µS to

µI = (1 + cµ)µS (2.12)

in which cT and cµ represent, in a relative sense the negative consequences of being infected (virulence).
If infected individuals experience increased maintenance requirements, their growth rate in body size
as a juvenile and reproduction rate as adults will be reduced and given by:

νIJ (R)θ = (σωJ(R) − (1 + cT ) T ) θ (2.13)

for juveniles and
νIA(R)θm = (σωA(R) − (1 + cT ) T ) θm (2.14)

for adults. Note, however, that for simplicity, we assume that infected individuals do not reduce their
feeding rates, which is part of the innate immune response and common in many host-pathogen systems
[35]. We will consider only horizontal transmission of the disease without any recovery. The size-
structured consumer-resource model with SI infection dynamics can then be summarized with the
following system of PDEs and ODEs:

dR
dt

= ρ (Rmax − R) − ωJ(R)
∫ θm

θb

θ (sJ(t, θ) + iJ(t, θ)) dθ − ωA(R)θm (S A + IA) (2.15)

∂sJ(t, θ)
∂t

+
∂(ν+

S J
(R)θsJ(t, θ))

∂θ
= −

(
dS J (R) + λ(t)

)
sJ(t, θ) (2.16)

ν+
S J

(R)θbsJ(t, θb) =
ν+

S A
(R)θmS A + ν+

IA
(R)θmIA

θb
(2.17)

dS A

dt
= ν+

S J
(R)θmsJ(t, θm) −

(
dS A(R) + λ(t)

)
S A (2.18)

∂iJ(t, θ)
∂t

+
∂(ν+

IJ
(R)θiJ(t, θ))

∂θ
= −dIJ (R)iJ(t, θ) + λ(t)sJ(t, θ) (2.19)

ν+
IJ

(R)θbiJ(t, θb) = 0 (2.20)

dIA

dt
= ν+

IJ
(R)θmiJ(t, θm) − dIA(R)IA + λ(t)S A (2.21)
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Table 1. Parameters and default values for the size-structured consumer-resource model with
SI infection dynamics [10].

Parameter Description Default value

ρ Resource turnover rate 0.1

Rmax Resource maximum biomass density 100

θb Size at birth 0.1

θm Size at maturation 1.0

M Mass-specific maximum ingestion rate scalar 1.0

q Juvenile-adult ingestion rate asymmetry 0.75 or 1.25

H Half saturation resource density 3.0

T Mass-specific maintenance rate 0.1

σ Conversion efficiency 0.5

µS Background mortality rate 0.015

β Force of infection scaling constant 1.0 · 10−3

cT Relative increase in maintenance costs due to infection 1.0

cµ Relative increase in background mortality due to infection 5.0

λ(t) = β

(∫ θm

θb

iJ(t, θ)dθ + IA(t)
)

(2.22)

in which the functions dIJ (R) and dIA(R) indicate the death rate of infected juvenile and adult individu-
als, respectively, defined as:

dIJ (R) = µI − ν
−
IJ

(R) (2.23)

and
dIA(R) = µI − ν

−
IA

(R) (2.24)

Parameters of the model and their default values are presented in Table 1.

2.2. Disease free equilibrium

The equilibrium state of the uninfected consumer-host population is determined by the equilibrium
density of the resource R̃ and the equilibrium birth rate b̃ of the consumer-host, which can be calculated
following the procedures in Diekmann, Metz and Gyllenberg [36]. (Here and below we use tildes to
indicate the equilibrium value of a particular variable). Notice that in an equilibrium situation starvation
mortality does not occur, hence ν−S J

(R) = ν−S A
(R) = 0, ν+

S J
(R) = νS J (R) > 0 and ν+

S A
(R) = νS A(R) > 0.

Furthermore, to simplify the notation we drop the function argument R of νS J and νS A and we introduce
the parameter z to indicate the ratio of the size at birth and maturation, z = θb/θm.

In the pathogen-free equilibrium, juveniles grow at a mass-specific rate equal to νS J with mortality

Mathematical Biosciences and Engineering Volume 20, Issue 12, 20378–20404.



20385

rates equal to µS . Growth in body size hence follows:

θ(a) = θb exp(νS J a) (2.25)

which implies that individuals mature at an age

am = −
ln z
νS J

(2.26)

Given that individual survival is given by F(a) = exp(−µS a) the probability to survive up to maturation
equals

FmS = z
µS
νS J

After maturation, an individual has an expected lifetime equal to 1/µS and reproduces at a rate νS A/z.
The expected lifetime reproductive output at a constant resource density R̃ therefore equals:

L =
νS A

µS
z

µS
νS J
−1

(2.27)

Substituting parameter values and solving L = 1 yields the value of the equilibrium resource density
(R̃ = 0.8961 for default parameter values).

In equilibrium, the integral term in the right-hand side of ODE (2.7), which represents resource inges-
tion by juveniles, can be evaluated by reformulating it as an integral over the age interval from 0 till am

and using the population age distribution, which is given by b̃ exp(−µS a):

ωJ(R̃)
∫ θm

θb

θ s̃J(θ)dθ = ωJ(R̃)
∫ am

0
θbeνS J a b̃e−µS ada = ωJ(R̃) b̃

θm z
µS
νS J − θb

νS J − µS

The value of the adult consumer-host density in equilibrium can be calculated by equating the right-
hand side of the ODE (2.10) to 0 and by using the fact that in equilibrium the rate of maturation
νS Jθm s̃J(θm) equals the product of the total population birth rate and the survival probability till matu-
ration b̃FmS :

S̃ A =
νS Jθm s̃J(θm)

µS
= b̃

z
µS
νS J

µS

The last term in the right-hand side of ODE (2.7), which represents resource ingestion by adults, can
hence be expressed as:

ωA(R̃) θm S̃ A = ωA(R̃) θm b̃
z

µS
νS J

µS

The equilibrium birth rate b̃ can then be computed by substituting these expressions into the right-hand
side of the ODE (2.7) and equating it to 0:

b̃ =
ρ
(
Rmax − R̃

)
ωJ(R̃)

θm z
µS
νS J − θb

νS J − µS
+ ωA(R̃)

θm z
µS
νS J

µS

(2.28)

Notice that this is an explicit expression for b̃, provided that R̃ is known.
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2.3. Calculation of R0

The basic reproductive number R0 is defined as the number of secondary infections caused by a
single infected individual [37]. For a pathogen to successfully invade the host population R0 > 1,
whereas when R0 < 1 the epidemic dies out. Because in the structured model individuals can be
infected at different body sizes (or equivalently, different ages), we calculate R0 following Heesterbeek
and Dietz [38], who show that under scenarios where all uninfected individuals are equally susceptible
to the disease, independent of their age or body size, the value of R0 can be calculated as:

R0 =

∫ ∞

0
k(η) G(η) dη

in which the function k(η) represents the lifetime contribution of an individual that is infected at age η
towards the force of infection and G(η) is the stable age distribution in the pathogen-free equilibrium
population.

Since juvenile and adult individuals are modeled separately, the expression for R0 in our model for
a pathogen invading a fully susceptible consumer-host population in equilibrium with its resource can
be written as:

R0 =

∫ am

0
k(η) b̃ exp(−µSη) dη + k(am)S̃ A

=

∫ am

0
k(η) b̃ exp(−µSη) dη + k(am) b̃

z
µS
νS J

µS

(2.29)

in which we have also substituted the expression for the stable age distribution, G(a) = b̃ exp(−µS a).
The contribution k(am) to the force of infection by an individual that is infected in the adult stage equals
the product of β and the expected lifetime of an individual:

k(am) =
β

dIA

(2.30)

Notice that in this and the following sections, we will consistently omit the function argument R of
functions like dIA(R). If a juvenile individual becomes infected at age η it has a body mass θb exp(νS Jη).
After infection the individual will grow at a mass-specific rate ν+

IJ
and therefore follow a growth curve

given by:

θIJ (a, η) = θb eνS Jη eν
+
IJ

(a − η)
= θb e(νS J − ν

+
IJ

)η eν
+
IJ

a

reaching maturation at age

amI (η) =
− ln z − (νS J − ν

+
IJ

)η

ν+
IJ

Since the survival function following infection is given by exp
(
−dIJ (a − η)

)
(a > η), the probability of

a juvenile surviving to maturation following infection at age η equals:

FmI (η) = exp
−dIJ

− ln z − (νS J − ν
+
IJ

)η

ν+
IJ

− η

 = z
dIJ
ν+IJ e

νS J

dIJ
ν+IJ

η

(2.31)
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The contribution of this individual to the force of infection during the juvenile stage is then given by:

β

∫ amI (η)

η

exp
(
−dIJ (a − η)

)
da =

β

dIJ

−
βFmI (η)

dIJ

while the contribution to the force of infection as an adult is the same as the expected contribution of
an individual that is infected as an adult. For individuals that become infected as a juvenile (a < am)
the function k(η) is hence given by:

k(η) =
β

dIJ

+

(
β

dIA

−
β

dIJ

)
FmI (η)

=
β

dIJ

+

(
β

dIA

−
β

dIJ

)
z

dIJ
ν+IJ e

νS J

dIJ
ν+IJ

η
(2.32)

It should be noted, however, that the second term in this expression equals 0 in cases where infected
juvenile individuals are starving (νIJ < 0) because in that case ν+

IJ
= 0 and hence FmI (η) = 0.

Substitution of the expressions for k(η) (eq. (2.32)) and k(am) (eq. (2.30)) into equation (2.29) for
R0 then yields:

R0 = β b̃

1 − z
µS
νS J

µS dIJ

+
z

µS
νS J

µS dIA

+ ν+
IJ

(
1

dIA

−
1

dIJ

)
z

µS
νS J − z

dIJ
ν+IJ

νS J dIJ − µS ν
+
IJ

 (2.33)

2.4. Equilibrium state with the pathogen

The equilibrium state of the model with infected individuals is uniquely determined by three un-
known quantities: the resource density in equilibrium, R̃, the population birth rate in equilibrium, b̃,
and the force of infection in equilibrium, λ̃. All other population-level quantities can be expressed
in terms of these three variables. In the following, we derive conditions that determine the value of
these three variables in an equilibrium state. Notice that in an equilibrium situation, starvation mor-
tality does not occur for susceptible individuals, hence ν−S J

(R) = ν−S A
(R) = 0, ν+

S J
(R) = νS J (R) > 0 and

ν+
S A

(R) = νS A(R) > 0. In contrast, infected juveniles and adults could still starve, so νIJ and νIA could
in principle be negative. As before, we simplify notation by dropping the function argument R to all
resource-dependent functions, such as νS J , νS A , νIJ and νIA , and use the parameter z to indicate the ratio
of the size at birth and maturation, z = θb/θm.
The density of susceptible, newborn individuals in equilibrium can be written as:

s̃J(θb) =
b̃

νS J θb

where b̃ represents the population birth rate in equilibrium. The equilibrium density of susceptible
juveniles changes with size following the ODE:

d
dθ

(
νS Jθ s̃J(θ)

)
= −

(
µS + λ̃

)
s̃J(θ)
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which can be solved to

s̃J(θ) =
b̃

νS J θb

(
θb

θ

)1+x

in which x is introduced to denote

x =
µS + λ̃

νS J

(2.34)

The total number of susceptible juvenile individuals in equilibrium, which we denote by S̃ J, then
equals:

S̃ J =

∫ θm

θb

b̃
νS J θb

(
θb

θ

)1+x

dθ =
b̃
νS J

(1 − zx)
x

(2.35)

Let B̃S J denote the total biomass of susceptible juvenile individuals in equilibrium, which equals the
integral of θ s̃J(θ) from θb to θm:

B̃S J =

∫ θm

θb

θ
b̃

νS J θb

(
θb

θ

)1+x

dθ =
b̃ θb

νS J

(
1 − zx−1

)
x − 1

(2.36)

The maturation rate of susceptible juveniles equals

νS Jθm s̃J(θm) = b̃ zx

such that the numerical density of susceptible adult individuals in equilibrium is given by:

S̃ A =
b̃

µS + λ̃
zx (2.37)

while the total biomass of susceptible adult individuals in equilibrium, indicated with B̃S A , is given by:

B̃S A =
b̃ θm

µS + λ̃
zx (2.38)

The equilibrium density of infected juveniles changes with size following the ODE:

d
dθ

(
ν+

IJ
θ ĩJ(θ)

)
= −dIJ ĩJ(θ) + λ̃s̃J(θ)

Using the explicit expression for s̃J(θ), together with its boundary condition ĩJ(θb) = 0, can be solved
to yield:

ĩJ(θ) =
b̃
νS Jθ

λ̃

dIJ − ν
+
IJ

x

(θb

θ

)x

−

(
θb

θ

) dIJ
ν+IJ


which can be rewritten as:

ĩJ(θ) =
λ̃

dIJ − ν
+
IJ

x

1 − (
θb

θ

) dIJ
ν+IJ
−x

 s̃J(θ)
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The total number of infected juvenile individuals in equilibrium, ĨJ, which equals the integral of ĩJ(θ)
from θb = zθm to θm, can be evaluated to:

ĨJ =
b̃
νS J

λ̃

dIJ x

1 +
ν+

IJ
x z

dIJ
ν+IJ

dIJ − ν
+
IJ

x
−

dIJ zx

dIJ − ν
+
IJ

x


This expression can be rewritten in a more compact form as:

ĨJ =
λ̃

dIJ

S̃ J + ν+
IJ

b̃
νS J

z
dIJ
ν+IJ − zx

dIJ − ν
+
IJ

x

 (2.39)

Let B̃IJ denote the total biomass of infected juvenile individuals in equilibrium, which equals the inte-
gral of θĩJ(θ) from θb to θm:

B̃IJ =

∫ θm

θb

θ
λ̃

dIJ − ν
+
IJ

x

1 − (
θb

θ

) dIJ
ν+IJ
−x

 s̃J(θ) dθ

This integral can be evaluated and expressed in terms of B̃S J , yielding:

B̃IJ =
λ̃

dIJ − ν
+
IJ

x

B̃S J − ν
+
IJ

b̃ θb

νS J

1 − z
dIJ
ν+IJ
−1

dIJ − ν
+
IJ

 (2.40)

Notice that in cases where infection causes juvenile individuals to have such high maintenance costs
that they are starving, implying that ν+

IJ
= 0, the second term within parentheses in expression (2.39)

and in (2.40) vanishes.
The maturation rate of infected juveniles equals:

ν+
IJ
θm ĩJ(θm) = ν+

IJ

λ̃

dIJ − ν
+
IJ

x

1 − z
dIJ
ν+IJ
−x

 θm s̃J(θm) = ν+
IJ

λ̃

dIJ − ν
+
IJ

x

1 − z
dIJ
ν+IJ
−x

 µS + λ̃

νS J

S̃ A

Equating the right-hand side of the ODE (2.21) to 0 and substituting this expression for the maturation
rate of infected juveniles allows for deriving the following relationship between the total density of
infected adults, indicated with ĨA, and the total density of susceptible adults S̃ A:

ĨA =
λ̃

dIA

1 +
ν+

IJ

dIJ − ν
+
IJ

x

1 − z
dIJ
ν+IJ
−x

 µS + λ̃

νS J

 S̃ A (2.41)

Correspondingly, the total biomass of infected adults, B̃IA , is given by:

B̃IA =
λ̃

dIA

1 +
ν+

IJ

dIJ − ν
+
IJ

x

1 − z
dIJ
ν+IJ
−x

 µS + λ̃

νS J

 B̃S A (2.42)
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Using the expressions derived above for the density and biomass of susceptible juveniles and adults,
we can now write down the three conditions that determine the equilibrium state of the model with
infections. The first condition ensures that the population birth rate b̃ equals the total reproduction
rate of the population. Per-capita fecundity of susceptible and infected adults is equal to νS A θm/θb and
ν+

IA
θm/θb, respectively. The total population birth rate is hence equal to

b̃ =
νS A B̃S A + ν+

IA
B̃IA

θb

which can be rewritten as:

zx−1

µS + λ̃

νS A + ν+
IA

λ̃

dIA

1 +
ν+

IJ

dIJ − ν
+
IJ

x

1 − z
dII
ν+IJ
−x

 µS + λ̃

νS J

 = 1 (2.43)

This condition contains as unknowns the force of infection λ̃ in equilibrium and the equilibrium
resource density R̃, which influences νS J , ν

+
IJ

, νS A , ν+
IA

, dIJ and dIA .

Next, in equilibrium the turnover rate of resource ρ
(
Rmax − R̃

)
has to equal the total foraging rate of

the population. This equilibrium condition is hence given by:

ρ
(
Rmax − R̃

)
= ωJ(R̃)

(
B̃S J + B̃IJ

)
+ ωA(R̃)

(
B̃S A + B̃IA

)
(2.44)

with the quantities B̃S J , B̃IJ , B̃S A and B̃IA given by equations (2.36), (2.40), (2.38) and (2.42), respec-
tively. This condition contains all equilibrium variables R̃, b̃ and λ as unknowns. The last identity
relates the force of infection in equilibrium λ̃ to the total numerical density of infected juvenile and
adult individuals:

λ̃ = β
(
ĨJ + ĨA

)
(2.45)

Equilibrium states of the model can now be computed by numerically solving the equations (2.43),
(2.44) and (2.45) for the unknowns R̃, b̃ and λ̃.

2.5. Computations of population dynamics

In addition to computations of the equilibrium states of the model as a function of asymmetries
in stage-specific competitive ability (juvenile-adult ingestion rate, q) and as a function of the force of
infection (scaling constant, β), we used numerical integration to analyze the model. Numerical integra-
tion was performed using the Escalator Boxcar Train method that is specifically developed to study the
dynamics of physiologically structured populations [39, 40]. The results of the numerical integration
confirmed the results from the equilibrium computations under stable steady-state conditions. In ad-
dition, numerical integration revealed the occurrence of limit cycles in population densities whenever
the steady state was destabilized through a Hopf bifurcation.

3. Results

3.1. Effect of host population structure on pathogen invasion

Figure 2 shows the equilibrium densities of the susceptible population in the absence of pathogens
as a function of stage-specific competitive ability (the asymmetry in juvenile-adult ingestion rate pa-
rameter, q). For low values of q, juveniles are competitively superior, adults have lower mass-specific
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Figure 2. Top: Equilibrium densities of resources (green), juvenile (blue), and adult (orange)
consumer-hosts in the pathogen-free steady state as a function of stage-specific competitive
ability (the asymmetry in juvenile-adult ingestion rate parameter, q). Middle: Pathogen fit-
ness, R0 (black), infected juvenile (blue), and adult (orange) mortality rates as a function
of stage-specific competitive ability (q) when virulence increases mortality rates (infected
individuals experience an increase in mortality rate that is six times the mortality rate of
susceptible individuals, cµ = 5.0). Bottom: Pathogen fitness R0 (black), infected juvenile
(blue), and adult (orange) mortality rates as a function of stage-specific competitive ability
(q) increases maintenance costs (infected individuals have double the maintenance costs of
susceptible individuals, cT = 1.0). See Table 1 for parameter values.

ingestion rates relative to juveniles and hence reproduction is more food-limited than maturation. This
leads to rapid juvenile development and a bottleneck in the adult stage. As a consequence, the density
of juveniles is low and the population is dominated by adults. With increasing values of q, adults gain
more of a competitive advantage (adults have higher mass-specific ingestion rates relative to juveniles),
and maturation becomes more food-limited. These changes lead to delayed juvenile development and
the density of susceptible juveniles increases, while adult density decreases [12]. The equilibrium re-
source density remains high for both low and high values of q, reaching a minimum at a value of q just
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Figure 3. The force of infection scaling constant (β), that allows for pathogen invasion across
a gradient in host demographics where populations transition from adult-dominated (q < 1) to
juvenile dominated (q > 1), where q is the ingestion rate parameter that governs stage-specific
competitive ability. This minimum value of β allowing for pathogen invasion depends on host
population structure and whether virulence increases mortality rates (six times that of suscep-
tible individuals, cµ = 5.0; black solid curve) or when virulence increases maintenance costs
(double the maintenance costs of susceptible individuals, cT = 1.0; red solid curve). When
virulence increases maintenance costs, bistability occurs between a pathogen-free equilib-
rium and an endemic steady state (grey parameter region). The dashed red curve represents
the minimum value of the force of infection scaling constant β where epidemics persist. See
Table 1 for parameter values.

below 1.
When virulence increases mortality rates (Figure 2, middle panel), pathogen fitness, R0, closely

follows the increase in total population density, which is mechanistically governed by stage-specific
competitive ability (the juvenile-adult ingestion asymmetry parameter, q). Epidemics are, therefore,
more likely to occur in higher density, juvenile-dominated populations (high values of q, adults are
competitively superior, development is resource-limited) relative to their adult-dominated counterparts
(low values of q, juveniles are competitively superior, reproduction is resource-limited).

In contrast, when virulence increases maintenance costs (Figure 2, bottom panel), R0 increases
non-monotonically with changes in host population dynamics (and thus underlying changes in q).
However, while the focus here is on infection-mediated increases in maintenance rates, this pattern is
ultimately driven by differences in stage-specific mortality rates. When adults become strongly food-
limited (q . 0.676, juveniles are competitively superior and reproduction is strongly resource-limited),
infected adults starve and hence experience increased mortality. Infected juveniles, however, have
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a positive net-energy production rate νJ(R̃), and mortality does not increase beyond the background
rate. On the other hand, in environments where juveniles are strongly food-limited (q & 1.3, adults
are competitively superior and development is delayed), infected juveniles starve and mortality rates
increase. Infected adults have a positive net-energy production rate νA(R̃) and hence only experience
background mortality. For cases where stage-specific competition is symmetric (intermediate values
of q), infected juveniles and adults both starve and experience increased mortality. Pathogen fitness,
R0, reaches a maximum value at the transition from a regime with juveniles not starving to juveniles
starving before increasing again for q > 1.

The relationships between the force of infection scaling constant, β, required for an outbreak to
occur (R0 > 1) and changes in host population demographics (governed by the juvenile-adult ingestion
rate parameter, q) are largely similar to those for R0 (Figure 3). When virulence increases mortality
rates, the minimum value of β required for disease monotonically decreases with increasing values of q.
That is, as populations shift from adult-dominated to juvenile-dominated. Mechanistically, this pattern
emerges because the host population becomes increasingly dominated by juveniles, reproduction is no
longer resource-limited, and total population density increases. In contrast, when virulence increases
maintenance costs, the force of infection scaling constant, β, required for an outbreak to occur (R0

> 1) reaches a local minimum q ≈ 0.676. This point represents the transition between regimes with
and without increased infection-mediated mortality for infected juveniles. For values of q above 1, the
minimum value of the infection scaling parameter β that allows for pathogen invasion decreases again
(Figure 3).

3.2. Equilibrium states with disease

The model shows pronounced variation in the effect of pathogens on host stability (Figures 4-6); de-
pending on the initial stage structure of the susceptible host population that the pathogen invades and
the specific form of virulence, pathogens can either destabilize or stabilize host populations. We will
contrast model predictions for two different values of q: q = 0.75, in which case juvenile consumer-
hosts are competitively superior and the population is consequently dominated by adult consumer-
hosts, and q = 1.25, in which case adult consumer-hosts are competitively superior and the population
is hence dominated by juvenile consumer-hosts.

Juvenile-dominated populations: adults competitively superior

When adults are competitively superior (q = 1.25), populations are dominated by juveniles, juve-
nile development is resource-limited, and total density is high (Figure 2). In this case the changes in
the equilibrium state as a function of the force of infection (scaling parameter, β) resemble predictions
from unstructured SI-models, irrespective of whether virulence increases mortality rates or mainte-
nance costs (Figure 4). For values of β below the invasion threshold (R0 < 1) the pathogen can not
spread, while above this threshold increasing values of β shifts the population from susceptible to in-
fected individuals. Since host demographics tend to be juvenile-dominated, the shift in density is more
pronounced in juveniles relative to adults. When virulence increases maintenance costs, however, the
change in the density of infected juveniles and adults is non-monotonic with the force of infection
(scaling parameter, β). Surprisingly, the density of hosts decreases when infected individuals no longer
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Figure 4. Equilibrium densities of susceptible (top) and infected (middle) juvenile (blue)
and adult (orange) consumers-hosts in the endemic steady state with disease as a function of
the force of infection (scaling constant, β). Left column: Virulence increases mortality rate
(six times the mortality rate of susceptible individuals, cµ = 5.0). Right Column: Virulence
increases (doubles) maintenance costs (cT = 1.0). Bottom panels show the mortality rates of
infected juvenile (blue) and adult (orange) hosts in the equilibrium state. Solid and dashed
lines represent stable and unstable equilibrium states, respectively. Parameter values: q =

1.25 (juveniles are more food-limited), other parameters as in Table 1.

experience an increase in mortality (Figure 4, β & 0.0016). Numerical integration studies of the dy-
namics also reveal that the equilibrium states are stable for q = 1.25, irrespective of the value of β and
irrespective of whether or not the pathogen is present.

Adult-dominated populations, juveniles competitively superior

When juveniles are competitively superior (q = 0.75), populations are dominated by adults, repro-
duction is resource-limited, and total density is low (Figure 2). These changes in population structure
lead to notably different patterns from those predicted by unstructured SI-models (Figure 5). When
virulence increases mortality, the density of susceptible adults monotonically decreases with the force
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Figure 5. Equilibrium densities or maximum and minimum densities in case of oscilla-
tory dynamics of susceptible (top) and infected (middle) juvenile (blue) and adult (orange)
consumer-hosts in the endemic steady state with pathogens as a function of the force of in-
fection (scaling constant, β). Left column: Virulence increases mortality rate (to six times
the mortality rate of susceptible individuals, cµ = 5.0). Right column: Virulence increases
(doubles) maintenance costs (cT = 1.0). Bottom panels show the mortality rates for infected
juvenile (blue) and adult (orange) hosts in the equilibrium state. Solid and dashed lines rep-
resent stable and unstable equilibrium states, respectively. Limit cycles occur at low values
of β without pathogens and with pathogens for β = 0.00152 (threshold for pathogen inva-
sion) to β = 0.00182 when virulence increases mortality rate (left) and for β = 0.00178 to
β = 0.00288 when virulence increases maintenance costs (right). Maximum and minimum
values occurring during the limit cycles are indicated with thick solid lines. Parameter val-
ues: q = 0.75 (juveniles are competitively superior, populations are dominated by adults,
reproduction is more food-limited), other parameters as in Table 1.

of infection (scaling parameter, β) when pathogen establishment becomes possible, but the density of
susceptible juveniles first increases with β before decreasing to values close to the density of juveniles
in a fully susceptible population. In other words, pathogens mainly reduce the density of susceptible
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Figure 6. Same results as in Figure 5, but now showing total host density (top) and resource
density (bottom) in the equilibrium state with and without pathogens as a function of the force
of infection (scaling constant, β). Left column: Virulence increases mortality rate (to six times
the mortality rate of susceptible individuals, cµ = 5.0). Right column: Virulence increases
(doubles) maintenance costs (cT = 1.0). Solid lines represent stable equilibrium states and
maximum and minimum values occurring during limit cycles. Dashed lines represent un-
stable equilibrium states. The thin solid lines at low values of β in the top panels indicate
the average total host density during the limit cycle of the susceptible-only population. The
orange long-dashed horizontal lines in the bottom panel indicate the resource density, below
which susceptible adults experience starvation mortality. The blue long-dashed horizontal
lines in the right-bottom panel indicate the resource density, below which infected juveniles
experience starvation mortality.

adults, not juveniles. The densities of infected juveniles and adults are always monotonically increas-
ing with β.

Numerical integration studies of the dynamics reveal that for values of the force of infection (scaling
parameter, β), that prevent pathogen invasion, the fully susceptible population exhibits stable limit
cycles with much larger oscillations in juvenile densities. Once the pathogen can establish itself in the
population, the amplitude of these population cycles first increases with β (Figure 5). However, further
increases in β stabilize the dynamics, leading to a stable equilibrium state and juvenile-dominated
populations. The pathogen therefore not only stabilizes the population cycles but does so by changing
the population structure from adult-dominated to juvenile-dominated.

When virulence increases maintenance costs, the changes in equilibrium state as a function of the
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Figure 7. Dynamics of susceptible (top) and infected (bottom) densities of juveniles (blue)
and adults (orange) when virulence increases (doubles) maintenance costs (cT = 1.0), fol-
lowing the introduction of 14 (left column) or 15 (right column) infected newborn individuals
into a fully susceptible population at time t = 200. Parameter values: q = 0.75 (adults are
more food-limited), β = 0.001, other parameters as in Table 1.

force of infection (scaling parameter, β) are characterized by four prominent features: (i) as previously
discussed, for low values of β that prevent pathogen invasion, the fully susceptible population exhibits
stable limit cycles with much larger oscillations in juvenile densities; (ii) at the invasion threshold,
where pathogen invasion becomes possible (R0 = 1), a region of bistability occurs. In this region, stable
limit cycles of the fully susceptible population emerge and co-occur alongside a stable equilibrium
state with epidemics; (iii) pathogen establishment immediately stabilizes the limit cycle dynamics of
the fully susceptible population, and (iv) for intermediate to large values of β (0.00178 . β . 0.00288)
the equilibrium state with the pathogen becomes unstable and limit cycles occur with limited amplitude
in all densities.

Figure 6 reveals that pathogens can increase the total population density of the host, irrespective
of whether virulence increases mortality rate or maintenance costs. This hydra effect [41] occurs
over a large range of β values when virulence increases host mortality. When virulence increases
maintenance costs, the hydra effect only occurs in the bistable region, where stable limit cycles of the
fully susceptible population co-occur alongside a stable equilibrium state with pathogens. Figure 6
also shows that, without pathogens, susceptible adults may starve and hence experience increased
mortality during the limit cycle dynamics. Furthermore, when virulence increases maintenance costs,
the endemic host-pathogen equilibrium state is feasible as long as infected juveniles do not experience
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increased mortality due to starvation.
The bistable nature of the dynamics for values of β below the invasion threshold (R0 < 1) is further

illustrated in Figure 7. Before pathogen invasion (at time t = 200), the susceptible population exhibits
oscillations with a period of approximately 50 time units. Introducing 14 or 15 infected newborn
individuals into the population makes the difference between the pathogen going extinct or becoming
established. Clearly, pathogens can not cause an epidemic from low host densities. Surprisingly,
after pathogen establishment, the total density of juvenile individuals in the population is significantly
higher than in the absence of pathogens. Even the total population density, including both susceptible
and infected juveniles and adults is, on average, higher when the pathogen is endemic relative to the
pathogen-free state.

4. Discussion and conclusions

We extended previously developed size-dependent theory [12] to test the hypothesis that pathogens
should destabilize their host populations [42–45]. By explicitly linking infectious disease and the life
history traits of juvenile and adult hosts that compete for shared resources, we developed the most
mechanistic and comprehensive analysis of this hypothesis to date. Far from always destabilizing
host populations, our results suggest that pathogens can have variable effects on the stability of host
populations (Figures 4-6). Whether pathogens destabilized or stabilized host populations, depended on
the initial stage structure of the host population and the specific form of virulence.

Pathogens stabilized host population cycles by shifting the population structure from adult-
dominated to juvenile-dominated states. These results mirror empirical patterns observed in, for ex-
ample, fungal-infected Daphnia [31] and trematode-infected snails [11]. Additionally, virulence that
increased maintenance costs tended to stabilize host populations. These results, however, emerged
because higher maintenance costs increased starvation mortality and therefore, host density, while si-
multaneously introducing a bottleneck in juvenile development and body size and/or adult fecundity.
Mechanistically, these changes delayed when these individual-level effects were ‘felt’ at the population
level.

Reductions in the density of consumer-hosts is a well-established stabilizing mechanism in both
consumer-resource and epidemiological models [27,46,47]. Higher mortality for individual consumer-
hosts increases stability because it reduces the maximum density of the hosts and thus, the intensity
of grazing pressure on the resource. The resource, then, is less severely depressed and more limited
(and stabilized) by density dependence. Thus, increased virulence prevents severe over-exploitation
of the host’s resource. This intriguing possibility suggests that pathogens may confer significantly
underappreciated stability not only to their host populations but also to other species with which they
interact. If pathogens stabilize their host populations, then removing pathogens from food webs could
have unexpected and far-reaching consequences.

Our results also underscore that altering the stage structure of host populations could feedback
to impact infectious diseases. In the model developed here, epidemics were larger when virulence
increased maintenance costs, despite the reduction in host density, which should have reduced density-
dependent transmission. Notably, these reductions in host density were small relative to those observed
when virulence increased host mortality and therefore, an increase in the force of infection (faster
transmission rates) was able to sustain pathogen outbreaks (Figure 5). Overall, juvenile-dominated
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populations were subject to larger epidemics (Figure 1) and required a lower force of infection for
pathogen invasion (Figure 2). Thus, our results also provide key insight into how the structure of host
populations influences both the severity and trajectory of disease outbreaks (Figure 1).

The crucial links between the structure of host populations and infectious disease have long been
recognized in epidemiology (unlike ecology, which has largely overlooked such interactions [14, 16]).
For human pathogens, numerous data-guided mathematical models illustrate that accounting for host
size, age, or stage often proves essential to understanding and managing outbreaks as seen, for example,
with measles [20], pertussis [48], and rubella [49]. Biologically, accounting for differences in juvenile
and adult hosts means that pathogens now face the additional challenge of exploiting a heterogeneous
host population. This added complexity carries both epidemiological and evolutionary implications
because a pathogen’s fitness and ability to infect and spread through the population are determined by
the frequency or density of each host type [22–24]. Yet, for the most part, existing studies on links
between pathogens and stability have focused on homogeneous host populations. That is, all hosts are
equally affected by infection and hold equal value for the pathogen.

This omission arises, in part, because layering in the impact of stage-specific effects on epidemio-
logical dynamics into empirical or theoretical models is far from trivial. For example, stage-specific
virulence (here, broadly defined as pathogen-induced harm) can arise through various mechanisms.
As hosts grow and develop, the acquisition and allocation of energetic resources, encounter rates with
parasites and pathogens, susceptibility to infection, and immune responses vary with age and body
size [11, 31]. Additionally, for most species, body size is plastic, dependent on environmental condi-
tions namely, resources that are required for maintenance, growth, and reproduction [12]. For infected
hosts, resources also matter because responding to and coping with infection is energetically costly.
The plastic and food-dependent nature of these traits govern host population structure, and may conse-
quently influence epidemiological dynamics (Figure 1).

The surprising richness of dynamical outcomes generated by linking pathogens to the life history
traits of juvenile and adult hosts is similar to those found in recent theoretical work, despite a number
of notable differences between these two modeling frameworks [16]. To our knowledge, no existing
models account for the resource dependence of these life history traits across multiple host stages in
a continuous-time model. Other models for stage-specific epidemics include discrete-time models by
Klepac and Caswell [50] who assume that population dynamics (demography) and infection happen
sequentially instead of simultaneously. Additionally, Klepac and Caswell consider a host population
that grows exponentially in the absence of pathogens. Whereas our model begins with a host population
that is regulated by a resource and thus, density dependence even in the pathogen-free stage. More
recent theoretical work by Simon et al. [16] examined cases where pathogens affect one stage or the
other and infected juveniles mature into susceptible adults. Additionally, in their model, juvenile
maturation depends on juveniles alone and does not include resource competition with adults. Such
conditions primarily capture systems where stages do not overlap in location or have different diets.
Under these conditions, virulence that delayed juvenile development or increased mortality tended
to stabilize population dynamics. Similar to our model, Simon et al., also found that an increase in
mortality led to a counter-intuitive increase in population density, or hydra effect [13]. Together, each
of these models helps identify various contexts where pathogens either stabilize or destabilize host
populations.

The emergent properties uncovered with our model highlight that understanding the structuring
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role of pathogens depends on resource availability, competitive interactions within and across host life
stages, and different forms of virulence. For example, in juvenile-dominated populations, pathogen-
and environmental-mediated feedbacks gave rise to complex dynamics including both biomass over-
compensation [11, 12] and hydra effects [13, 41]. Identifying the essential mechanisms in our model
that govern these emergent properties warrants deeper investigation and is the subject of ongoing work
(Hite and de Roos in progress). Additionally, testing these predictions in empirical studies is an impor-
tant future endeavor and an important step in improving our ability to predict and mitigate the effects
of infectious diseases. In the meantime, these results underscore that considering these interactions can
help propel studies working to understand how interventions targeting pathogens, specific host stages,
forms of virulence may impact the other.
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