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Abstract: Bacterial resistance caused by prolonged administration of the same antibiotics exacerbates
the threat of bacterial infection to human health. It is essential to optimize antibiotic treatment
measures. In this paper, we formulate a simplified model of conversion between sensitive and resistant
bacteria. Subsequently, impulsive state feedback control is introduced to reduce bacterial resistance to
a low level. The global asymptotic stability of the positive equilibrium and the orbital stability of the
order-1 periodic solution are proved by the Poincaré-Bendixson Theorem and the theory of the semi-
continuous dynamical system, respectively. Finally, numerical simulations are performed to validate
the accuracy of the theoretical findings.
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1. Introduction

Antibiotics are the secondary metabolites of certain microorganisms that can selectively inhibit or
kill other microorganisms at low concentrations without bringing serious toxicity to the host. Under
the action of antibiotics, a large number of sensitive bacteria are inhibited or killed, but a few sensitive
bacteria change their metabolic pathways and become resistant bacteria. Repeated application of the
same antibiotics results in a screening of resistant bacteria and antibiotics are ineffective once
resistant bacteria become dominant, which aggravates the hazard of bacterial infection to human
health [1]. Therefore, many scholars have invested their energy in studying bacterial
resistance [2–10]. In Reference [2], Austin and Anderson formulated a model to describe the
transmission dynamics of resistant bacteria between the host and the medical staff. Their study aimed
to reveal the necessity of strengthening clinical management of patients infected with bacteria. In
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Reference [3], Blair and Webber expounded the molecular mechanisms of bacterial resistance
including intrinsic resistance and acquired resistance. In Reference [6], authors assumed that bacterial
resistance is acquired by genetic mutation and plasmid transfer and formulated a population dynamic
model of sensitive and resistant bacteria to antibiotics. The stability of the coexistence equilibrium
and the existence of the limit cycle is discussed. In Reference [10], the author formulated the
following model to investigate the dynamic changes of bacterial resistance in a single bacterial
population that is exposed to a single antibiotic:

dx
dt
= (α − β(x + y))x − γηx + δy,

dy
dt
= (α − β(x + y))y − δy,

(1.1)

where x(t) and y(t) are two distinct populations of the same species of disease-causing bacteria. x(t)
denotes the density of sensitive bacteria in the bacterial population and y(t) denotes the density of
resistant bacteria in the bacterial population. α is the growth rate of the two kinds of bacteria. In view
of limited nutrients in the host, struggle for survival between the two kinds of bacteria will cause them
to be sifted out at a rate of β. γ is the antimicrobial ability, which is larger for bactericidal antibiotics
compared to bacteriostatic antibiotics. η is the antibiotic concentration. δ is the conversion rate of
resistant bacteria losing resistance and converting into sensitive bacteria. All the above parameters are
positive constants. By qualitative analysis, Garber gave the conditions under which resistant bacteria
will go to extinction.

How to optimize the antibiotic treatment measures is a topic that mathematicians have been
interested in for a long time [11–18]. In Reference [11], authors introduced the impulsive state
feedback control into the system (1.1) and then got the following system:

dx
dt
= (α − β(x + y))x − γηx + δy

dy
dt
= (α − β(x + y))y − δy

 y < h,

∆x = x(t+) − x(t−) = θh
∆y = y(t+) − y(t−) = −θh

}
y = h.

(1.2)

The orbital stability of the order-1 periodic solution is presented. It can be seen that the density of
resistant bacteria is limited to a lower level in the system with impulsive state feedback control. In
Reference [14], the authors formulated a model to simulate the contribution of antibiotics and
immune system to combat bacterial infection and then propounded an optimal control problem. The
optimal control is found by applying Pontryagins Maximum Principle. In reference [17], the authors
mainly focused on the two subpopulations of the same species. One subpopulation has an intrinsic
resistance to drugs and the other one is sensitive to drugs. The authors formulated a nonlinear
objective function to achieve the following two goals: (i) minimize the size of the bacterial
population, (ii) prevent resistant bacteria from becoming dominant. The results indicate that the
optimal control contains a singular interval.

Currently, impulsive state feedback control has been widely applied in various fields such as
biology, medicine, etc. [19–22]. Meanwhile, the study of the periodic solution has made many new
advances [23–30]. In Reference [19], authors established a crop pest management model with
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impulsive state feedback control. It can be known that observations and records of the pest quantity at
different stages of crops can help to control the size of the pest population. In Reference [25], authors
reviewed the research results of the periodic solution since 2010 and presented the recent
research results.

This paper is organized as follows: In Section 2, we formulate a model of conversion between
sensitive and resistant bacteria and then introduce impulsive state feedback control to optimize
antibiotic treatment measures. In Section 3, the global asymptotic stability of the positive equilibrium
is discussed. In Section 4, the orbital stability of the order-1 periodic solution is proved. In Section 5,
the numerical simulation is used to confirm our results.

2. Model description and preliminaries

Motivated by [10], the conversion rate of resistant bacteria losing resistance and converting into

sensitive bacteria is represented by
δy

k + y
. We can obtain lim

y→+∞

δy
k + y

= δ, which shows that as the

density of resistant bacteria increases, the conversion rate of resistant bacteria losing resistance and
converting into sensitive bacteria increases and gradually tends towards δ. We give the
following system: 

dx
dt
= (α − β(x + y))x − γηx +

δy
k + y

,

dy
dt
= (α − β(x + y))y −

δy
k + y

,
(2.1)

where x(t) and y(t) are two distinct populations of the same species of disease-causing bacteria. x(t)
denotes the density of sensitive bacteria in the bacterial population and y(t) denotes the density of
resistant bacteria in the bacterial population. α is the growth rate of the two kinds of bacteria. In view
of limited nutrients in the host, struggle for survival between the two kinds of bacteria will cause them
to be sifted out at a rate of β. γ is the antimicrobial ability, which is larger for bactericidal antibiotics
compared to bacteriostatic antibiotics. η is the antibiotic concentration. All the above parameters are
positive constants.

Severe bacterial infection can endanger life. Clinically, antibiotics are commonly used to inhibit or
kill disease-causing bacteria. However, prolonged administration of the same antibiotics can cause
bacterial resistance, which, in turn, makes the antibiotic effect worse and even disappear. We can use
other antibiotics when one antibiotic loses its effectiveness, but bacteria still become resistant to new
antibiotics after long-term use. Thus, replacing antibiotics doesn’t fundamentally reduce bacterial
resistance. We need to optimize the antibiotic treatment measures to extend or restore the antibiotic
effectiveness. Inspired by [11, 12], we introduce the impulsive state feedback control into the
system (2.1) and then get the following system:

dx
dt
= (α − β(x + y))x − γηx +

δy
k + y

dy
dt
= (α − β(x + y))y −

δy
k + y

 y < h,

∆x = x(t+) − x(t−) = θh
∆y = y(t+) − y(t−) = −θh

}
y = h.

(2.2)
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where h is the critical threshold value of resistant bacteria at which antibiotics lose best treatment for
patients. When the density of resistant bacteria reaches the critical threshold value h, θ multiples of
resistant bacteria become sensitive bacteria under the impulsive effect (0 < θ < 1).

For convenience, we give the following definitions and theorems.

Definition 2.1 [25] Consider a two dimensional state dependent impulsive differential equation



dx
dt
= P(x, y)

dy
dt
= Q(x, y)

 (x, y) , M(x, y),

∆x = µ(x, y)
∆y = ν(x, y)

}
(x, y) = M(x, y).

(2.3)

Suppose the impulsive set M and phase set N of system (2.3) fall between two parallel lines, the
intersection of y-axis with the phase set N line is F. Due to the pulse effect, any trajectory starting
from N reaches the impulsive set M and then is mapped to I ∈ N. Then the point I is called the
successor point of the point G and g(G) = |FI| − |FG| is called the successor function of the point G,
where |FI|, |FG| are the distance between the point F and the point I and between the point F and the
point G, respectively.

Theorem 2.1 [25] The successor function g is continuous.

Theorem 2.2 [25] Assume n̂1n2
⋃

n1n2 is an order-1 cycle and the point m is the successor point of
e. According to the position between the points n1, e and m, the order-1 periodic solution is classified
into three types:

1) Type 1: the order-1 cycle n̂1n2
⋃

n1n2 is convex, and the points e and m are at the same side of
n1 as shown in Figure 1(a).

2) Type 2: the order-1 cycle n̂1n2
⋃

n1n2 is not convex, yet the points e and m are at the same side
of n1 as shown in Figure 1(b).

3) Type 3: the points e and m are at different sides of n1 as shown in Figure 1(c).

Theorem 2.3 [25] If Γ is a type 1 order-1 periodic solution with period T and the integral along Γ
satisfies ∫ T

0
(
∂P
∂x
+
∂Q
∂y

)dt < 0,

Γ is orbital stable.

Theorem 2.4 [25] If Γ is a type 1 order-1 periodic solution and the region that contains Γ satisfies

∂P
∂x
+
∂Q
∂y
< 0,

Γ is orbital stable.
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Figure 1. Three types of the order-1 periodic solution.

3. Qualitative analysis of the system (2.2) without the impulsive effect

Without the impulsive effect, the system (2.2) is reduced to
dx
dt
= (α − β(x + y))x − γηx +

δy
k + y

≜ P(x, y),

dy
dt
= (α − β(x + y))y −

δy
k + y

≜ Q(x, y).
(3.1)

3.1. Boundedness

Theorem 3.1. The system (3.1) is uniformly bounded in the first quadrant.

Proof. The positive x-axis is either a single trajectory or a combination of an equilibrium point and
two trajectories. However, both cases imply that no trajectory intersects with the positive x-axis.

Obviously,
dx
dt

∣∣∣∣∣
x=0
=
δy

k + y
> 0 holds for y > 0, which shows that when meeting the positive y-axis,

the trajectory will pass through it from left to right (see Figure 2).
By investigating the straight line l ≜ x + y −

α

β
= 0, we can obtain

dl
dt

∣∣∣∣∣
l=0
= [(α − β(x + y))(x + y) − γηx]|l=0 = −γηx < 0

for x > 0, which indicates that when meeting the straight line l = 0 in the first quadrant, the trajectory
will pass through it from upper right to lower left (see Figure 2).
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Figure 2. Boundedness.

From the above, we can see that the system (3.1) is uniformly bounded in the first quadrant.
The proof is completed. □

3.2. Existence of equilibria

The equilibria of the system (3.1) are given by
(α − β(x + y))x − γηx +

δy
k + y

= 0,

(α − β(x + y))y −
δy

k + y
= 0.

(3.2)

From the second equation of (3.2), we can obtain y = 0 or x =
α

β
−

δ

β(k + y)
− y. By substituting y = 0

in the first equation of (3.2), we can obtain x = 0 or x =
α − γη

β
, so the equilibrium E0(0, 0) always

exists and the equilibrium E1(
α − γη

β
, 0) exists if α > γη holds.

By substituting x =
α

β
−

δ

β(k + y)
− y in the first equation of (3.2), we can obtain

Φ(y) = ay3 + by2 + cy + d = 0, (3.3)

where
a = βγη,

b = 2βγηk − αγη,
c = αδ + γηδ + βγηk2 − 2αγηk,
d = (αk − δ)(δ − γηk).

Theorem 3.2. If βk2 > αk > δ and γηk > δ hold, the system (3.1) has a unique positive equilibrium.

Proof. Suppose y1, y2, y3 are three roots of Φ(y) = 0 defined in (3.3) in the complex number field.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 20422–20436.



20428

According to the Vieta theorem, we can obtain
y1y2y3 = −

d
a
=

(αk − δ)(γηk − δ)
βγη

,

y1 + y2 + y3 = −
b
a
=
α − 2βk
β
.

If βk2 > αk > δ and γηk > δ hold, we can obtain{
y1y2y3 > 0,
y1 + y2 + y3 < 0.

Thus, Φ(y) = 0 defined in (3.3) has one positive real root and two complex roots with negative real
parts. Hence, Φ(y) = 0 defined in (3.3) has a unique positive real root. Consequently, the system (3.1)
has a unique positive equilibrium.

The proof is completed. □

3.3. Stability of equilibria

The Jacobian matrix of the system (3.1) is

J(E(x, y)) =


α − β(x + y) − βx − γη −βx +

δk
(k + y)2

−βy α − β(x + y) − βy −
δk

(k + y)2

 .
Theorem 3.3. If min{γη,

δ

k
} > α holds, the equilibrium E0(0, 0) is a stable node. If max{γη,

δ

k
} >

α > min{γη,
δ

k
} holds, the equilibrium E0(0, 0) is a saddle point. If α > max{γη,

δ

k
} holds, then the

equilibrium E0(0, 0) is an unstable node.

Proof. The Jacobian matrix at the equilibrium E0(0, 0) is

J(E0(0, 0)) =

 α − γη
δ

k
0 α −

δ

k

 .
The eigenvalues of J(E0(0, 0)) are

λ1 = α − γη,

λ2 = α −
δ

k
.

If min{γη,
δ

k
} > α holds, we can obtain λ1 < 0, λ2 < 0. Thus, the equilibrium E0(0, 0) is a stable node.

If max{γη,
δ

k
} > α > min{γη,

δ

k
} holds, we can obtain λ1 > 0, λ2 < 0 or λ1 < 0, λ2 > 0. Hence,

the equilibrium E0(0, 0) is a saddle point. If α > max{γη,
δ

k
} holds, we can obtain λ1 > 0, λ2 > 0.

Therefore, the equilibrium E0(0, 0) is an unstable node.
The proof is completed. □
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Theorem 3.4. If min{α,
δ

k
} > γη holds, the equilibrium E1(

α − γη

β
, 0) is a stable node. If α > γη >

δ

k
holds, the equilibrium E1(

α − γη

β
, 0) is a saddle point.

Proof. The Jacobian matrix at the equilibrium E1(
α − γη

β
, 0) is

J(E1(
α − γη

β
, 0)) =

 γη − α γη − α +
δ

k
0 γη −

δ

k

 .
The eigenvalues of J(E1(

α − γη

β
, 0)) are

λ1 = γη − α,

λ2 = γη −
δ

k
.

If min{α,
δ

k
} > γη holds, we can obtain λ1 < 0, λ2 < 0. Hence, the equilibrium E1(

α − γη

β
, 0) is a stable

node. If α > γη >
δ

k
holds, we can obtain λ1 < 0, λ2 > 0. Therefore, the equilibrium E1(

α − γη

β
, 0) is

a saddle point.
The proof is completed. □

Theorem 3.5. If βk2 > αk > δ and γηk > δ hold, the unique positive equilibrium E∗(x∗, y∗) is globally
asymptotically stable.

Proof. The Jacobian matrix at the positive equilibrium E∗(x∗, y∗) is

J(E∗(x∗, y∗)) =


α − β(x∗ + y∗) − βx∗ − γη −βx∗ +

δk
(k + y∗)2

−βy∗ α − β(x∗ + y∗) − βy∗ −
δk

(k + y∗)2

 .
Combined with x∗ =

α

β
−

δ

β(k + y∗)
− y∗, we can obtain

J(E∗(x∗, y∗)) =


2δ

k + y∗
+ βy∗ − α − γη

δ

k + y∗
+ βy∗ − α +

δk
(k + y∗)2

−βy∗
δ

k + y∗
− βy∗ −

δk
(k + y∗)2

 .
If βk2 > αk > δ and γηk > δ hold, we can obtain

tr(J(E∗(x∗, y∗))) = (
2δ

k + y∗
+ βy∗ − α − γη) + (

δ

k + y∗
− βy∗ −

δk
(k + y∗)2 )

=
3δ

k + y∗
−

δk
(k + y∗)2 − α − γη

= −
(α + γη)(y∗)2 + (2αk + 2γηk − 3δ)y∗ + k(αk + γηk − 2δ)

(k + y∗)2

< 0,
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and

det(J(E∗(x∗, y∗))) =

∣∣∣∣∣∣∣∣∣∣
2δ

k + y∗
+ βy∗ − α − γη

δ

k + y∗
+ βy∗ − α +

δk
(k + y∗)2

−βy∗
δ

k + y∗
− βy∗ −

δk
(k + y∗)2

∣∣∣∣∣∣∣∣∣∣
=
αδk + γηδk + 2δ2

(k + y∗)2 + βγηy∗ −
αδ + γηδ

k + y∗
−

2δ2k
(k + y∗)3

=
βγη(y∗)4 + 3βγηk(y∗)3 + (3βγηk2 − αδ − γηδ)(y∗)2 + (βγηk3 − αδk − γηδk + 2δ2)y∗

(k + y∗)3

>
βγη(y∗)4 + 3βγηk(y∗)3 + (3αγηk − αδ − γηδ)(y∗)2 + (αγηk2 − αδk − γηδk + 2δ2)y∗

(k + y∗)3

=
βγη(y∗)4 + 3βγηk(y∗)3 + (αγηk + α(γηk − δ) + γη(αk − δ))(y∗)2

(k + y∗)3

+
((αk − δ)(γηk − δ) + δ2)y∗

(k + y∗)3

> 0.

Therefore, the unique positive equilibrium E∗(x∗, y∗) is locally asymptotically stable.

Define a Dulac function D(x, y) =
1
xy

and we can obtain

∂(D(x, y)P(x, y))
∂x

+
∂(D(x, y)Q(x, y))

∂y
= −

β

y
−

δ

(k + y)x2 −
β

x
+

δ

(k + y)2x

= −
β

y
−

δ

(k + y)x2 −
βy2 + 2βky + βk2 − δ

(k + y)2x
< 0,

which implies that there is no limit cycle in the first quadrant. Consequently, the unique positive
equilibrium E∗(x∗, y∗) is globally asymptotically stable.

The proof is completed. □

4. The order-1 periodic solution of the system (2.2)

4.1. Existence and uniqueness of the order-1 periodic solution

Theorem 4.1. When h < y∗, the system (2.2) has a unique order-1 periodic solution.

Proof. From the system (2.2), we can obtain the impulsive set M = {(x, y) ∈ R2
+|x ≥ 0, y = h} and the

phase set N = {(x, y) ∈ R2
+|x ≥ θh, y = (1 − θ)h}. When h < y∗, both the impulsive set M and the phase

set N are below the positive equilibrium E∗(x∗, y∗).
Now, we will prove the existence of the order-1 periodic solution. Suppose the straight line y =

(1 − θ)h intersects with isoclines
dx
dt
= 0 and

dy
dt
= 0 at points R and S , respectively (see Figure 3(a)).

The trajectory initiating from the point R(xR, (1 − θ)h) intersects with the impulsive set M at the point
RM and then the point RM is mapped to RN(xRN , (1 − θ)h) due to the impulsive effect. The point RN is
the successor point of the point R. The point RN must be on the right of the point R according to the
property of the vector field, and therefore the successor function satisfies

g(R) = xRN − xR > 0.
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Similarly, the trajectory initiating from the point S (xS , (1 − θ)h) reaches the impulsive set M at the
point S M and then the point S M jumps to S N(xS N , (1 − θ)h) due to the impulsive effect. The point S N

is the successor point of the point S . The point S N must be on the left of the point S according to the
property of the vector field, and hence the successor function satisfies

g(S ) = xS N − xS < 0.

Following the continuity of the successor function, there must be a point W between R and S that
makes g(W) = 0 hold. The trajectory initiating from the point W hits the impulsive set M at the point
WM and then the point WM is mapped back to W itself due to the impulsive effect. In consequence, the
system (2.2) has an order-1 periodic solution.

Next, we will prove the uniqueness of the order-1 periodic solution. We arbitrarily choose two
points T and U in the phase set N where xT < xU (see Figure 3(b)). The trajectory initiating from
the point T reaches the impulsive set M at the point TM and then the point TM jumps to TN due to
the impulsive effect. The point TN is the successor point of the point T . Similarly, the trajectory
initiating from the point U intersects with the impulsive set M at the point UM and then the point UM

is mapped to UN due to the impulsive effect. The point UN is the successor point of the point U. Since
xU − xT > xUM − xTM and xUM − xTM = xUN − xTN hold, we can obtain xU − xT > xUN − xTN . Hence the
successor function satisfies

g(U) − g(T ) = (xUN − xU) − (xTN − xT ) = (xUN − xTN ) − (xU − xT ) < 0.

Hence,the successor function g is monotonically decreasing in the phase set N. Therefore, there must
be only one point W that makes g(W) = 0 hold. In consequence, the system (2.2) has a unique order-1
periodic solution.

The proof is completed.
□

x

y

O

0
dy

dt
= 0

dx

dt
=

(a)

M

N
R SW SN

SMWMRM

RN

x

y

O

0
dy

dt
= 0

dx

dt
=

(b)

M

N
T UUN

UMTM

TN

Figure 3. (a) Existence of the order-1 periodic solution. (b) Uniqueness of the order-1
periodic solution.
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4.2. Stability of the order-1 periodic solution

Theorem 4.2. When h < y∗, the unique order-1 periodic solution of the system (2.2) is orbital stable.

Proof. From Figure 3(a) and Theorem 2.2, we can conclude that the order-1 periodic solution of the

system (2.2) is a type 1 order-1 periodic solution. Define a Dulac function D(x, y) =
1
xy

and the

stability of the order-1 periodic solution of the system (2.2) can be decided by the system:
dx
dt
= D(x, y)

dx
dt
=
α − β(x + y)

y
−
γη

y
+

δ

x(k + y)
= D(x, y)P(x, y),

dy
dt
= D(x, y)

dy
dt
=
α − β(x + y)

x
−

δ

x(k + y)
= D(x, y)Q(x, y).

We can obtain

∂(D(x, y)P(x, y))
∂x

+
∂(D(x, y)Q(x, y))

∂y
= −

β

y
−

δ

(k + y)x2 −
β

x
+

δ

(k + y)2x

= −
β

y
−

δ

(k + y)x2 −
βy2 + 2βky + βk2 − δ

(k + y)2x
< 0.

According to Theorem 2.4, we can know that the unique order-1 periodic solution of the system (2.2)
is orbital stable.

The proof is completed. □

4.3. Numerical simulation and discussion

Let parameters α = 2, β = 0.8, γ = 0.3, η = 0.9, δ = 1, k = 4 and parameters α = 2, β = 0.8,
γ = 0.3, η = 3, δ = 1, k = 4. Both cases satisfy the conditions of Theorem 3.5, and therefore the
unique positive equilibrium E∗(x∗, y∗) is globally asymptotically stable in both cases. The numerical
simulation is used to confirm the result (see Figures 4 and 5). We get the positive equilibrium
E∗(x∗, y∗) = (1.898, 0.312) for η = 0.9, which is simulated in Figure 4. With the increase in the
antibiotic concentration, we get the positive equilibrium E∗(x∗, y∗) = (0.434, 1.852) for η = 3, which is
simulated in Figure 5. It can be seen that the density of resistant bacteria increases as the antibiotic
concentration increases. This means that prolonged administration of the same antibiotics can cause
bacterial resistance, which, in turn, makes the antibiotic effect worse and even disappear.

Antibiotics play a vital role in the fight between humans and disease-causing bacteria, so we need
to optimize the antibiotic treatment measures to extend or restore the antibiotic effectiveness. In this
paper, we formulate a simplified model of conversion between sensitive and resistant bacteria with the
impulsive state feedback control. Let parameters α = 2, β = 0.8, γ = 0.3, η = 3, δ = 1, k = 4,
h = 0.4, θ = 0.9. This case satisfies the conditions of Theorem 3.5 and Theorem 4.1, and therefore
the unique order-1 periodic solution of the system (2.2) is orbital stable in this case. The numerical
simulation is used to confirm the result (see Figure 6). It can be seen that there is an oscillation of the
density of resistant bacteria in an interval below the critical threshold value when the impulsive state
feedback control is adopted. This strongly shows that the impulsive state feedback control can reduce
bacterial resistance.
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Figure 4. Time series and phase portrait of system (3.1) with parameters α = 2, β = 0.8,
γ = 0.3, η = 0.9, δ = 1, k = 4, E∗(x∗, y∗) = (1.898, 0.312).

Figure 5. Time series and phase portrait of system (3.1) with parameters α = 2, β = 0.8,
γ = 0.3, η = 3, δ = 1, k = 4, E∗(x∗, y∗) = (0.434, 1.852).
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Figure 6. Time series and phase portrait of system (2.2) with parameters α = 2, β = 0.8,
γ = 0.3, η = 3, δ = 1, k = 4, h = 0.4, θ = 0.9.
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