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Abstract: Smoking has gradually become a very common behavior, and the related situation in
different groups also presents different forms. Due to the differences of individual smoking cessation
time and the interference of environmental factors in the spread of smoking behavior, we establish
a stochastic giving up smoking model with quit-smoking duration. We also consider the saturated
incidence rate. The total population is composed of potential smokers, smokers, quitters and removed.
By using Itô’s formula and constructing appropriate Lyapunov functions, we first ensure the existence
of a unique global positive solution of the stochastic model. In addition, a threshold condition for
extinction and permanence of smoking behavior is deduced. If the intensity of white noise is small,
and R̃0 < 1, smokers will eventually become extinct. If R̃0 > 1, smoking will last. Then, the sufficient
condition for the existence of a unique stationary distribution of the smoking phenomenon is studied
as Rs

0 > 1. Finally, conclusions are explained by numerical simulations.

Keywords: stochastic giving-up-smoking model; saturated incidence rate; extinction; persistence;
stationary distribution

1. Introduction

The harm of tobacco is one of the most serious public health problems. The World Health
Organization has considered the tobacco epidemic in the key control areas of global public health.
According to statistics, one person dies of cigarette related diseases every six seconds in the world.
With the current trend, the World Health Organization estimates that the number of people will rise to
10 million by 2030, which means one person will die of smoking every three seconds [1]. Not only
that, smoking behavior may also bring bad guidance to teenagers. In 2018, the prevalence of smoking
among people over 15 years old in China was 26.6%, with the prevalence of smoking among men at
50.5% [2], and the prevalence of underage smoking in China has been increasing in recent years. The
harm of smoking to the human body is inevitable. Basically, smoking can prevent the absorption of
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vitamin C. Long term smoking can lead to cancer and other diseases. In addition, second-hand smoke
can also cause cancer and have adverse effects on the heart. Long term intake of second-hand smoke
by pregnant women can also lead to fetal growth retardation, congenital malformations and even
abortion. Therefore, tobacco control is particularly necessary.

Tobacco control is the most important measure to prevent disease and death at present. Eliminating
the harm of smoking has become a worldwide trend. WHO stressed the importance of legislation in
tobacco control measures, strongly advocated health education on tobacco control, advocated a
healthy lifestyle and recommended that member states increase tobacco taxes and reduce tobacco
consumption [3]. Many countries are also strengthening tobacco control through different means,
including increasing packaging warnings, increasing the size of warnings, etc. Quitting smoking is a
key link to alleviate the harm of smoking. Three days after quitting smoking, nicotine will be
basically removed from the body. After quitting smoking for 2 to 3 weeks, lung function will be
enhanced. After quitting smoking for 3 to 9 months, the damaged cilia in the lungs will almost be
completely repaired. One year after quitting smoking, the probability of coronary heart disease will
be 50% lower than that of smokers. Five years after quitting smoking, the probability of stroke will
reach the level of non-smokers, and the probability of suffering from other cancers will also be greatly
reduced. Therefore, it is particularly necessary to quit smoking. Based on this background, we study a
new giving up smoking model.

The development of the research on smoking models is significant. In consideration of the research
objects, Castillo-Garsow et al. [4] proposed a system including the potential smokers (P), the chain
smokers (S ) and the permanently quit smokers (R) in 1997. Later, the mathematical model was
promoted by Sharomi and Gumel [5] in 2008. They introduced a new group of smokers who
temporarily quit smoking (Qt). In the study of Sharomi and Gumel, they proved the local stability of
the equilibrium E∗ by using the Routh-Hurwitz criterion, while the global stability was only
speculated by a large number of simulations. Then Lahrouz et al. [6] proved that conclusion by
constructing a suitable Lyapunov function in 2011. In addition, random noise was included in the
deterministic model, and then the deterministic and stochastic stabilities of a class of random smoking
models were considered by them. In the same year, Zaman [7] proposed a smoking cessation model
including the occasional smokers (L) and studied its relevant dynamic behavior such as equilibria in
the model, one of which was the smoking-free equilibrium, and the other three were about smoking
being present under the assumption that the birth rate was different from the mortality rate. Guerrero
et al. [8] assumed the population consisted of four types of individuals, non-smokers, normal smokers,
excessive smokers and ex-smokers, when they used homotopy analysis method (HAM) to obtain an
analytical solution to the model for the spread of the smoking habit in Spain in 2013. In 2015, Sharma
et al. [9] considered the impact of media factors on the spread of smoking. A mathematical model was
proposed to evaluate the impact of media publicity on the prevalence of social smoking. In 2016, the
qualitative behavior of a smoking model was studied by Din et al. [10] through dividing people into
non-smokers, smokers, temporarily quit smokers, permanently quit smokers and people who were
associated with illness due to smoking. In 2018, Rahman et al. [11] studied an age-structured cigarette
smoking model which considered the age of light smokers. They found that smoking had a strong
correlation with age. Also, in order to study the optimal control of the problem, Khyar et al. [12] and
Din et al. [13] considered adding two control strategies to the model for analysis, respectively,
in 2021. Zhang et al. [14] considered a delayed smoking cessation model of relapse in 2022. More
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relevant analysis about smoking and smoking cessation models can be found in [15–19].
As with most epidemic models [20–22] that describe the form of contact, lots of classical giving-

up-smoking models also employ the bilinear incidence rate βPS [23, 24], nonlinear incidence rate
f (P)g(S ) [25, 26] between potential smokers P(t) and smokers S (t), square-root incidence functions√

PL [27, 28] or β 2PL
P+L [12] between potential smokers P(t) and light smokers L(t). As we all know, the

bilinear incidence rate is assumed to be proportional to the total population in the environment, which is
not practical when the population is large. In the real world, the number of potential smokers in contact
with smokers is limited in unit time. Thus, the saturated contact rate is more realistic. Hence, in this
paper, we choose the saturated incidence rate βP(t)S (t)

1+kS (t) between potential smokers P(t) and smokers S (t).
Besides, as described in the second paragraph, there is a strong correlation between the quit smoking
duration and the level of personal health recovery. Therefore, we consider the quit smoking duration
at the first time, and we also notice that some people might not quit smoking completely in the process
of formulating the model. In addition, the conclusion of this paper has great practical significance for
smoking cessation guidance and treatment of tobacco-related diseases.

We will introduce the arrangement of this article from the following sections. Based on the above
descriptions, we formulate a stochastic giving-up-smoking model with age structure in Section 2. In
Section 3, we derive the existence and uniqueness of the solution to the model. Section 4 establishes
some conditions to prove the extinction of smoking behavior. Section 5 guarantees the sufficient
conditions for the persistence of smoking. We prove the sufficient condition for the existence of a
unique stationary distribution of the smoking phenomenon in Section 6. We carry out numerical
simulations to prove the results in Section 7. A brief discussion is offered in the end.

2. Model formulation

Drawing on the transmission of virus from infected vectors to susceptible populations in
epidemiological models [29, 30], we also define 1

1+kS (t) ≤
1
2 to describe the saturation caused by the

psychological effects of changes in potential smokers when the number of smokers becomes large.
We formulate a giving-up-smoking model with quit-smoking duration as

dP(t)
dt = λ − (µ + d)P(t) − βP(t)S (t)

1+kS (t) + (1 − h)
∫ ∞

0
b(τ)Q(t, τ)dτ,

dS (t)
dt = β

P(t)S (t)
1+kS (t) − (µ + d)S (t) − αS (t),

∂Q(t,τ)
∂t +

∂Q(t,τ)
∂τ
= −(µ + d)Q(t, τ) − b(τ)Q(t, τ),

dR(t)
dt = −(µ + d)R(t) + h

∫ ∞
0

b(τ)Q(t, τ)dτ,

(2.1)

where the total population is divided into four classes: the potential smokers P(t), the smokers S (t),
the quitters Q(t) and the removed R(t). λ, µ, d, β, h and α, respectively, denote the recruitment rate of
the population, the natural death rate, the mortality rate due to direct or indirect smoking, the effective
contact rate between the potential smokers and the smokers, the success rate of quitters and the
proportion of quitting smoking. Here, with different smoking cessation deadline, those who
successfully quit smoking will enter the removed, while those who show signs of relapse within the
smoking cessation deadline will get into the group of potential smokers. Futher, the quitted become
the potential smokers with rate 1 − h due to environmental effect, weak willpower or other factors and
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turn to the removed with rate h due to strong willpower. Q(t, τ) denotes the density of quit smokers at
time t with quit-smoking duration τ, and

∫ ∞
0

Q(t, τ)dτ denotes the number of quit smokers at time t.
b(τ) denotes the emigration rate from quitters, which is a bounded function. Here we assume that
0 ≤ b(τ) ≤ 1 and

∫ ∞
0

b(τ)dτ = ∞, which guarantees that nobody quits smoking when quit-smoking
duration τ approaches infinity. In other words, the number of quitters tends to zero when
quit-smoking duration τ approaches infinity limτ→∞ Q(t, τ) = 0.

The initial conditions are

P(0) = P0 > 0, S (0) = S 0 > 0, Q(0, τ) = Q0(τ), R(0) = R0 > 0,

and the boundary condition is

Q(t, 0) = αS (t),

where

P0 + S 0 + R0 +

∫ ∞

0
Q0(τ)dτ = N0.

Integrating the third equation in model (2.1) along the characteristic line t− τ = constant, we obtain
that

Q(t, τ) =


αS (t − τ)Γ0(τ), t > τ ≥ 0,

Q0(τ − t) Γ0(τ)
Γ0(τ−t) , τ ≥ t > 0,

(2.2)

where

Γ0(τ) = exp
{
−

∫ τ

0
ε(ν)dν

}
= exp

{
−

∫ τ

0
(b(ν) + µ + d)dν

}
.

Similar to papers [20, 22], for t ≥ 0, we have that∫ ∞

0
b(τ)Q(t, τ)dτ =

∫ t

0
b(τ)αS (t − τ)Γ0(τ)dτ +

∫ ∞

t
b(τ)Q0(τ − t)

Γ0(τ)
Γ0(τ − t)

dτ. (2.3)

Noticing that

Γ0(τ)
Γ0(τ − t)

= exp
{
−

∫ τ

τ−t
ε(ν)dν

}
≤ exp

{
−

∫ τ

τ−t
(µ + d)dν

}
= e−(µ+d)t,

then by setting τ̂ = τ − t, we get∫ ∞

t
b(τ)Q0(τ − t)dτ ≤

∫ ∞

t
Q0(τ − t)dτ =

∫ ∞

0
Q0(τ̂)dτ̂,

which yields

e−(µ+d)t
∫ ∞

t
b(τ)Q0(τ − t)dτ ≤ e−(µ+d)t

∫ ∞

0
Q0(τ)dτ < e−(µ+d)tN0 → 0 as t → ∞.
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Thus, (2.3) turns to be∫ ∞

0
b(τ)Q(t, τ)dτ =

∫ ∞

0
b(τ)αS (t − τ)Γ0(τ)dτ =

∫ ∞

0
Γ(τ)S (t − τ)dτ, (2.4)

where
Γ(τ) = αb(τ)Γ0(τ). (2.5)

Due to the complexity of the social environment, the contact rate between potential smokers and
smokers will be affected by environmental factors. We assume that fluctuations in the environment will
manifest themselves mainly as fluctuations in the parameter β, so that β → β + σḂ(t), where B(t) is a
standard Brownian motion with intensity σ2 > 0. Reference model (2.1) for other parameters, and we
finally establish a stochastic giving-up-smoking model with quit-smoking duration as follows:

dP(t) =
(
λ − (µ + d)P(t) − βP(t)S (t)

1+kS (t) + (1 − h)
∫ ∞

0
Γ(τ)S (t − τ)dτ

)
dt − σP(t)S (t)

1+kS (t)dB(t),

dS (t) =
(
βP(t)S (t)

1+kS (t) − (µ + d)S (t) − αS (t)
)

dt + σP(t)S (t)
1+kS (t)dB(t).

(2.6)

The initial condition for system (2.6) takes the form P(θ) = ξ1(θ), S (θ) = ξ2(θ) and (ξ1, ξ2) ∈
(C(−∞, 0],R2

+). Without loss of generality, we may assume that ϕ1(θ) ≤ ϕ1(0) and ϕ2(θ) ≤ ϕ2(0) for all
θ ≤ 0.

3. Existence and uniqueness of the global solution

We will study the existence and uniqueness of the solution to model (2.6) in this section.

Theorem 3.1. For any initial value (ξ1, ξ2) ∈ (C(−∞, 0],R2
+), there exists a unique solution (P(t), S (t))

on R, which will remain in R2
+ with probability one.

Proof. Because of the locally Lipschitz continuous of coefficients of model (2.6) for any initial solution,
there exists a unique positive local solution on [−∞, τe], where τe is the explosion time. Let n0 > 1, be
a large integer such that P(0) and S (0) are in the interval [ 1

n , n]. For each integer n > n0, to show the
solution is global, the stopping time is defined as follows:

τn = inf
{

t ∈ [0, τe) : P(t) < (
1
n
, n) or S (t) < (

1
n
, n)

}
.

Then, τn is a nondecreasing function. We define limn→∞ τn = τ∞, and τ∞ ≤ τe.
Now, we need to prove τ∞ = ∞ a.s. If this conclusion is not true, then there exist T > 0 and

ϵ ∈ (0, 1) such that P {τ∞ ≤ T } ≥ ϵ. Then, there is an integer n1 > n0 such that

P {τn ≤ T } ≥ ϵ, n ≥ n1. (3.1)

Let

N(t) = P(t) + S (t) + R(t) +
∫ ∞

0
Q(t, τ)dτ, (3.2)
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and we calculate that

dN(t)
dt
=λ − (µ + d)P(t) − (µ + d)S (t) − (µ + d)R(t) − αS (t)

+

∫ ∞

0
b(τ)Q(t, τ)dτ +

d
dt

∫ ∞

0
Q(t, τ)dτ

=λ − (µ + d)
(
P(t) + S (t) + R(t) +

∫ ∞

0
Q(t, τ)da

)
− αS (t)

+

∫ ∞

0
b(τ)Q(t, τ)dτ +

d
dt

∫ ∞

0
Q(t, τ)dτ + (µ + d)

∫ ∞

0
Q(t, τ)dτ

=λ − (µ + d)N(t) − Q(t, 0) −
(
Q(t,∞) − Q(t, 0)

)
=λ − (µ + d)N(t).

(3.3)

Thus

N(t) =
λ

µ + d
+

(
N(0) −

λ

µ + d

)
e−(µ+d)t, (3.4)

which implies that

lim
t→∞

N(t) ≤
λ

µ + d
. (3.5)

Without loss of generality, we can assume that N(0) ≤ λ
µ+d . Thus, for all t ≥ 0, it will be studied in the

invariant sets Ω∗ = {N(t) : 0 ≤ N(t) ≤ λ
µ+d }.

We define the following function V:

V
(
(P(t), S (t)

)
= P(t) − 1 − ln P(t) + S (t) − 1 − ln S (t). (3.6)

Note that V
(
(P(t), S (t)

)
is non-negative when

(
(P(t), S (t)

)
∈ R2

+, and calculating by Itô’s formula on
system (2.6) leads to

dV
(
P(t), S (t)

)
=

(
1 −

1
P(t)

)
dP(t) +

1
2P2(t)

(dP(t))2 +

(
1 −

1
S (t)

)
dS (t) +

1
2S 2(t)

(dS (t))2

=

(
1 −

1
P(t)

) ((
λ − (µ + d)P(t) − β

P(t)S (t)
1 + kS (t)

+ (1 − h)
∫ ∞

0
Γ(τ)S (t − τ)dτ

)
dt

−σ
P(t)S (t)
1 + kS (t)

dB(t)
)
+

(
1 −

1
S (t)

) ((
β

P(t)S (t)
1 + kS (t)

− (µ + d)S (t) − αS (t)
)

dt

+σ
P(t)S (t)
1 + kS (t)

dB(t)
)
+

(
1

2P2(t)
+

1
2S 2(t)

)
(σP(t)S (t))2

(1 + kS (t))2 dt

=

((
(1 −

1
P(t)

) (
λ − (µ + d)P(t) − β

P(t)S (t)
1 + kS (t)

+ (1 − h)
∫ ∞

0
Γ(τ)S (t − τ)dτ

)
+

(
1 −

1
S (t)

) (
β

P(t)S (t)
1 + kS (t)

− (µ + d)S (t) − αS (t)
)
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+
σ2

2(1 + kS (t))2

(
S 2(t) + P2(t)

))
dt −

(
1 −

1
P(t)

)
σ

P(t)S (t)
1 + kS (t)

dB(t)

+

(
1 −

1
S (t)

)
σ

P(t)S (t)
1 + kS (t)

dB(t)

=LV(P(t), S (t))dt +
(

1
P(t)
−

1
S (t)

)
σ

P(t)S (t)
1 + kS (t)

dB(t),

(3.7)

where
LV

(
P(t), S (t)

)
=λ − (µ + d)P(t) − β

P(t)S (t)
1 + kS (t)

+ (1 − h)
∫ ∞

0
Γ(τ)S (t − τ)dτ −

λ

P(t)
+ µ + d

+ β
S (t)

1 + kS (t)
−

1 − h
P(t)

∫ ∞

0
Γ(τ)S (t − τ)dτ

+ β
P(t)S (t)
1 + kS (t)

− (µ + d)S (t) − αS (t) − β
P(t)

1 + kS (t)
+ (µ + d) + α

+
σ2

2(1 + kS (t))2

(
P2(t) + S 2(t)

)
≤λ + (1 − h)Γ

λ

µ + d
+ 2(µ + d) +

β

k
+ α + σ2

(
λ

µ + d

)2

:= K.

(3.8)

Now that

Γ =

∫ ∞

0
Γ(τ)dτ =

∫ ∞

0
αb(τ)Γ0(τ)dτ ≤

α

µ + d
,

thus (3.7) turns to

dV (P(t), S (t)) ≤ Kdt +
(

1
P(t)
−

1
S (t)

)
σ

P(t)S (t)
1 + kS (t)

dB(t). (3.9)

Integrating the inequality (3.9) from 0 to τn ∧ T yields that∫ τn∧T

0
dV (P(t), S (t)) ≤

∫ τn∧T

0
Kdt +

∫ τn∧T

0

(
1

P(t)
−

1
S (t)

)
σ

P(t)S (t)
1 + kS (t)

dB(t).

This implies that

E [V ((P(τn ∧ T ), S (τn ∧ T ))] ≤ V (P(0), S (0)) + KE(τn ∧ T ) ≤ V (P(0), S (0)) + KT. (3.10)

Let Ωn = P {τn ≤ T }, and then from (3.1), we get that P {Ωn ≤ T } ≥ ϵ, for n ≥ n1. For all ω ∈ Ωn, each
component of (P(τn ∧ T ), S (τn ∧ T )) equals either n or 1

n . Consequently, we have that

∞ > V(P(0), S (0)) + KT ≥ ϵmin
{

n − 1 − ln n,
1
n
− 1 + ln n

}
. (3.11)

This will lead to
∞ > V (P(0), S (0)) + KT ≥ ∞ (3.12)

as n→ ∞. Thus, the assertion τe = ∞ holds almost surely. The proof is complete.
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4. The extinction of smoking

We will talk about the extinction of the smoking behavior in this section.

Theorem 4.1. Let (P(t), S (t)) be the solution of model (2.6).
(i) If σ2 ≤

β(µ+d)
λ

, and

R̃0 =
βλ

(µ + d)(µ + d + α)
−

σ2λ2

2(µ + d)2(µ + d + α)
< 1,

then

lim sup
t→∞

ln S (t)
t
≤ (µ + d + α)(R̃0 − 1) < 0. (4.1)

(ii) If σ2 ≥
β2

2(µ+d+α) , then

lim sup
t→∞

ln S (t)
t
≤
β2

2σ2 − (µ + d + α) < 0. (4.2)

Proof. Consider Theorem 3.1 and Eq (3.5). For any η > 0, there is a constant T0 such that

P(t) + S (t) ≤
λ

µ + d
+ η, t ≥ T0.

By making use of Itô’s formula on the second equation of model (2.6), we obtain that

d ln S (t)

=

(
βP(t)S (t)

1+kS (t) − (µ + d)S (t) − αS (t)
)

dt + σP(t)S (t)
1+kS (t)dB(t)

S (t)
−

σ2P2(t)S 2(t)
(1+kS (t))2

2S 2(t)
dt

=

(
β

P(t)
1 + kS (t)

− (µ + d) − α −
σ2P2(t)

2(1 + kS (t))2

)
dt +

σP(t)
1 + kS (t)

dB(t).

(4.3)

Integrating from 0 to t on both sides of (4.3), for any ϵ > 0, we have

ln S (t)
t
≤

ln S (0)
t
+
β + ϵ

t

∫ t

0

P(r)
1 + kS (r)

dr − (µ + d + α) −
σ2

2t

∫ t

0

(
P(r)

1 + kS (r)

)2

dr

+
σ

t

∫ t

0

P(r)
1 + kS (r)

dB(r).
(4.4)

Define a function

G(x) =
−σ2

2
x2 + (β + ϵ) x − (µ + d + α), (4.5)

where G(x) is monotonically increasing for x ∈
[
0, β+ϵ
σ2

]
and monotonically decreasing for x ∈

[
β+ϵ

σ2 ,∞
)
.

It is easy to obtain that λ
µ+d ≤

β

σ2 from condition (i)σ2 ≤
β(µ+d)
λ

. Now, we choose a positive η ≤ ϵ such
that

P(t)
1 + kS (t)

≤
λ

µ + d
+ η ≤

β + ϵ

σ2 ,
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and thus we have

G
(

P(t)
1 + kS (t)

)
≤ G

(
λ

µ + d
+ η

)
for all t ≥ T0, where T0 is a positive constant number.
Then, for t ≥ T0, we get that

ln S (t)
t
⩽

ln S (0)
t
+

1
t

∫ t

0
G

(
P(r)

1 + kS (r)

)
dr +

σ

t

∫ t

0

P(r)
1 + kS (r)

dB(r)

⩽
ln S (0)

t
+

1
t

∫ T0

0
G

(
P(r)

1 + kS (r))

)
dr +G

(
λ

µ + d

)
t − T0

t
+
σ

t

∫ t

0

P(r)
1 + kS (r)

dB(r).
(4.6)

We define

Y1(t) =
∫ t

0

P(r)
1 + kS (r)

dB(r), (4.7)

which is a local continuous martingale, and Y1(0) = 0. Then for t ≥ T0,

⟨Y1(t),Y1(t)⟩ =
∫ t

0

(
P(r)

1 + kS (r)

)2

dr ≤
∫ T0

0

(
P(r)

1 + kS (r)

)2

dr +
(
λ

µ + d

)2

(t − T0) .

According to the large number theorem for martingales [31], we obtain that

lim sup
t→∞

⟨Y1(t),Y1(t)⟩
t

≤

(
λ

µ + d

)2

< ∞ a.s. lim sup
t→∞

Y1(t)
t
= 0,

and thus

lim sup
t→∞

ln S (t)
t
≤ G

(
λ

µ + d

)
. (4.8)

Then, it is implied that, for any ϵ and η, there is

lim sup
t→∞

ln S (t)
t
≤ −
σ2

2

(
λ

µ + d

)2

+ β
λ

µ + d
− (µ + d + α) := (µ + d + α) (R̃0 − 1). (4.9)

Thus, when R̃0 < 1, we have

lim sup
t→∞

ln S (t)
t
≤ (µ + d + α)(R̃0 − 1) < 0. (4.10)

Then, (4.1) is proved completely with condition (i).
Now, we prove (4.2), and note that function G(x) gets its maximum value

G(x)max =
(β + ϵ)2

2σ2 − (µ + d + α) (4.11)

at x = β+ϵ
σ2 . Since

G
(

P(t)
1 + kS (t)

)
≤

(β + ϵ)2

2σ2 − (µ + d + α),
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we can get that

ln S (t)
t
≤

ln S (0)
t
+

(β + ϵ)2

2σ2 − (µ + d + α) +
σ

t

∫ t

0

P(r)
1 + kS (r)

dB(r). (4.12)

By a similar discussion, we can obtain that

lim sup
t→∞

ln S (t)
t
≤

(β + ϵ)2

2σ2 − (µ + d + α). (4.13)

When ϵ → 0 under the condition (ii)σ2 ≥
β2

2(µ+d+α) , we have that

lim sup
t→∞

ln S (t)
t
< 0. (4.14)

This completes the proof of (4.2).

5. The permanence of smoking

We will focus on the permanence of the smoking behavior in this section.

Theorem 5.1. Let (P(t), S (t)) be the solution of model (2.6), and if R̃0 > 1, then

lim inf
t→∞

⟨S (t)⟩ ≥

(
R̃0 − 1

)
(µ + d + α)

β
(
µ+d+α
µ+d

)
+ k (µ + d + α)

. (5.1)

Proof. From model (2.6), we obtain that

Ṗ(t) + Ṡ (t) = λ − (µ + d)P(t) + (1 − h)
∫ ∞

0
Γ(τ)S (t − τ)dτ − (µ + d)S (t) − αS (t)

⩾ λ − (µ + d)P(t) − (µ + d)S (t) − αS (t),
(5.2)

and integrating from 0 to t on both sides of (5.2) yields that

1
t

(P(t) + S (t)) −
1
t

(P(0) + S (0)) ≥ λ − (µ + d)⟨P(t)⟩ − (µ + d)⟨S (t)⟩ − α⟨S (t)⟩.

Thus,

⟨P(t)⟩ ≥
λ − (µ + d)⟨S (t)⟩ − α⟨S (t)⟩

µ + d
− φ(t), (5.3)

where

φ(t) =
P(t) + S (t) − P(0) − S (0)

(µ + d)t
.
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By using Itô’s formula, we get that

d(ln S (t) + kS (t))

=

(
1 + kS (t)

S (t)

) ((
β

P(t)S (t)
1 + kS (t)

− (µ + d)S (t) − αS (t)
)

dt + σ
P(t)S (t)
1 + kS (t)

dB(t)
)

−
1

2S 2(t)
σ2P2(t)S 2(t)
(1 + kS (t))2 dt

=

(
βP(t) − (1 + kS (t))(µ + d + α) −

σ2P2(t)
2(1 + kS )2

)
dt + σP(t)dB(t)

⩾

(
βP(t) − (1 + kS (t)) (µ + d + α) −

σ2λ2

2(u + d)2

)
dt + σP(t)dB(t)

=

(
βP(t) − (µ + d + α) − k(µ + d + α)S (t) −

σ2λ2

2(µ + d)2

)
dt + σP(t)dB(t).

(5.4)

By integrating (5.4) from 0 to t, we have
ln S (t) − ln S (0)

t
+ k

S (t) − S (0)
t

⩾β⟨P(t)⟩ − (µ + d + α) −
σ2λ2

2(µ + d)2 − k (µ + d + α) ⟨S (t)⟩ +
σ

t

∫ t

0
P(r)dB(r)

⩾β

[
λ − (µ + d)⟨S (t)⟩ − α⟨S (t)⟩

µ + d
− φ(t)

]
− (µ + d + α) −

σ2λ2

2(µ + d)2

− k (µ + d + α) ⟨S (t)⟩ +
σ

t

∫ t

0
P(r)dB(r)

=β
λ

µ + d
− (µ + d + α) −

σ2λ2

2(µ + d)2 −

[
β

(
µ + d + α
µ + d

)
+ k (µ + d + α)

]
⟨S (t)⟩

− βφ(t) +
σ

t

∫ t

0
P(r)dB(r)

=
(
R̃0 − 1

)
(µ + d + α) −

[
β

(
µ + d + α
µ + d

)
+ k (µ + d + α)

]
⟨S (t)⟩

− βφ(t) +
Y2(t)

t
.

(5.5)

This inequality can be rewritten as

⟨S (t)⟩ ≥
1
l

[
(R̃0 − 1)(µ + d + α) − βφ(t) +

Y2(t)
t
−

ln S (t) − ln S (0)
t

− k
S (t) − S (0)

t

]
, (5.6)

where

l = β
µ + d + α
µ + d

+ k (µ + d + α) , Y2(t) = σ
∫ t

0
P(r)dB(r),

in which Y2(t) is a local continuous martingale with Y2(0) = 0. Applying the large number theorem for
martingales [31], we obtain that

lim sup
t→∞

⟨Y2(t),Y2(t)⟩
t

≤

(
σλ

µ + d

)2

< ∞ a.s. lim sup
t→∞

Y2(t)
t
= 0. (5.7)
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According to (3.5), we have that

−∞ < ln S (t) < ln
λ

µ + d
, lim

t→∞
φ(t) = 0. (5.8)

Thus, (5.1) is proved completely with condition R̃0 > 1.

6. Stationary distribution

This section will study the stationary distribution of model (2.6).
Let X(t) be a homogeneous Markov process in Rd (Rd denotes a d-dimensional Euclidean space)

and be given by following the stochastic differential equation

dX(t) = b(X)dt +
k∑

r=1

gi
r(X)g j

r(X) (6.1)

with its diffusion matrix

Ã(X) =
(
ai j(X)

)
, ai j(X) =

k∑
r=1

gi
r(X)g j

r(X). (6.2)

Lemma 1. [32] The Markov process X(t) has a unique ergodic stationary distribution µ(·) if there is
a bounded domain D ⊂ Rd with regular boundary Γ, and

(i) there exists a positive constant M̃ such that
∑d

i, j=1 ai jξiξ j ≥ M̃|ξ|2, x ∈ D, ξ ∈ Rd;
(ii) there exists a nonnegative C2-function V such that LV is negative for any Rd\D.

Then,

Px

{
lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Rd

f (x)µ(dx)
}
= 1

for all x ∈ Rd, where f (·) is a function integrable with respect to the measure µ.

Theorem 6.1. If

Rs
0 =

√√
2λβ

k
(
β

k + µ + d + 1
2
σ2

k2

)2 > 1,

then model (2.6) admits a unique stationary distribution. Moreover, the stationary distribution is
ergodic.

Proof. The diffusion matrix of the stochastic model (2.6) is

Ã(x) =

 σ2P2S 2

(1+kS )2 0
0 σ2P2S 2

(1+kS )2

 .
Then, there exists a positive constant M̃ = σ

2P2S 2

(1+kS )2 , and we know for any (P, S ) ∈ Dm, ξ = (ξi, ξ j) ∈ R2
+,

d∑
i, j=1

ai j(P, S )ξiξ j =
σ2P2S 2

(1 + kS )2 ξ
2
1 +
σ2P2S 2

(1 + kS )2 ξ
2
2 ≥ M̃∥ξ∥2, (6.3)
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where Dm =
[

1
m ,m

]
×

[
1
m ,m

]
, and m > 1 is a sufficiently large integer. Then, the condition (i) in

Lemma 1 holds.
Next, in order to prove the condition (ii), we construct a C2-function Ṽ:

Ṽ(P, S ) = ÑV1 + V2 + V3,

where

V1 = − ln P − S , V2 = − ln P, V3 =
1
θ + 1

(P + S )θ+1.

Ñ > 0 is a sufficiently large constant and satisfies

−ÑΛ + F2 ≤ −2,

where

Λ = (
β

k
+ µ + d +

1
2
σ2

k2 )(Rs
0 − 1) > 0, (6.4)

F2 = sup
(P,S )∈R2

+

{
−

1
2

[
(µ + d) − θ

σ2

k2

]
×

(
Pθ+1 + S θ+1

)
+ µ + d +

β

k
+
σ2

2k2 + B
}
, (6.5)

B = sup
(P,S )∈R2

+

{
(P + S )θ

[
λ − (1 − h)

λα

(µ + d)2

]
−

1
2

[
(µ + d) − θ

σ2

k2

]
(P + S )θ+1

}
< ∞ (6.6)

and θ > 0 is a constant satisfying

(µ + d) > θ
σ2

k2 .

It is noted that

lim
m→∞

inf
(P,S )∈R2

+\Dm

Ṽ(P, S ) = +∞,

and Ṽ(P, S ) is a continuous function. Then, it has a minimum point (P, S ) ∈ R2
+.

Define a nonnegative C2-function on V as

V(P, S ) = ÑV1 + V2 + V3 − Ṽ(P, S ).

Applying Itô’s formula to V1, we get that

LV1 = −
1
P

[
λ − (µ + d)P −

βPS
1 + kS

+ (1 − h)
∫ ∞

0
Γ(τ)S (t − τ)dτ

]
+

1
2
σ2P2S 2

P2(1 + kS )2 −

(
βPS

1 + kS
− (µ + d)S − αS

)
⩽ −
λ

P
+ µ + d +

βS
1 + kS

+
1
2
σ2S 2

(1 + kS )2 −
βPS

1 + kS
+ (µ + d)S + αS

⩽ −
λ

P
+ µ + d +

β

k
+
σ2

2k2 −
βPS

1 + kS
+ (µ + d + α) S
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⩽ − 2

√
λβ

2k
+ µ + d +

β

k
+
σ2

2k2 + (µ + d + α) S

= −

(
β

k
+ µ + d +

σ2

2k2

) (
Rs

0 − 1
)
+ (µ + d + α) S

= − Λ + (µ + d + α) S ,

(6.7)

where Λ is given by (6.4). In addition,

LV2 = −
1
P

[
λ − (µ + d)P −

βPS
1 + kS

+ (1 − h)
∫ ∞

0
Γ(τ)S (t − τ)dτ

]
+

1
2
σ2P2S 2

P2(1 + kS )2

⩽ −
λ

P
+ µ + d +

β

k
+

1
2
σ2

k2 .

(6.8)

LV3 =(P + S )θ
[
λ − (µ + d)P + (1 − h)

∫ ∞

0
Γ(τ)S (t − τ)dτ − (µ + d)S − αS

]
+
θ

2
(P + S )θ−1

[
σ2P2S 2

(1 + kS )2 +
σ2P2S 2

(1 + kS )2

]
≤(P + S )θ

[
λ + (1 − h)

λα

(µ + d)2

]
− (P + S )θ+1(µ + d) +

θ

2
(P + S )θ−1 × 2

σ2

k2 (P + S )2

=(P + S )θ
(
λ + (1 − h)

λα

(µ + d)2

)
−

[
(µ + d) − θ

σ2

k2

]
(P + S )θ+1

≤B −
1
2

[
(µ + d) − θ

σ2

k2

]
(Pθ+1 + S θ+1),

(6.9)

where B is given by (6.6). From the above discussion, we can derive that

LV ≤ −ÑΛ + Ñ (µ + d + α) S −
λ

P
−

1
2

[
(µ + d) − θ

σ2

k2

]
(Pθ+1 + S θ+1) + µ + d +

β

k
+

1
2
σ2

k2 + B.

(6.10)
Define ϵ to be a sufficiently small positive constant. Then, we divide R2

+\Dϵ into four domains as
follows:

D1 =
{
(P, S ) ∈ R2

+ : 0 ⩽ P < ϵ
}
, D2 =

{
(P, S ) ∈ R2

+ : 0 ⩽ S < ϵ
}
,

D3 =
{
(P, S ) ∈ R2

+ : P > 1/ϵ
}
, D4 =

{
(P, S ) ∈ R2

+ : S > 1/ϵ
}
.

We will show that LV(P, S ) ≤ −1 on R2
+\Dϵ in the above domains.

Case 1. If (P, S ) ∈ D1, it follows that

LV ≤ −
λ

P
+ F1,

where
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F1 = sup
(P,S )∈R2

+

{
Ñ (µ + d + α) S −

1
2

[
(µ + d) − θ

σ2

k2

] (
Pθ+1 + S θ+1

)
+ µ + d +

β

k
+
σ2

2k2 + B
}
.

We take a constant ϵ > 0 small enough such that −λ/ϵ + F1 ≤ −1, and then

LV ≤ −1, (P, S ) ∈ D1. (6.11)

Case 2. If (P, S ) ∈ D2, it yields that

LV ≤ −Ñλ + Ñ (µ + d + α) S + F2,

where F2 is given by (6.5). We choose a constant ϵ > 0 small enough such that Ñ (µ + d + α) ϵ ≤ 1,
and therefore

LV ≤ −1, (P, S ) ∈ D2. (6.12)

Case 3. If (P, S ) ∈ D3, we find that

LV ≤ −
1
4

[
(µ + d) − θ

σ2

k2

]
(Pθ+1 + S θ+1) + F3 ≤ −

1
4

[
(µ + d) − θ

σ2

k2

]
1
ϵθ+1 + F3,

where

F3 = sup
(P,S )∈R2

+

{
Ñ (µ + d + α) S −

1
4

[
(µ + d) − θ

σ2

k2

] (
Pθ+1 + S θ+1

)
+ µ + d +

β

k
+
σ2

2k2 + B
}
.

We can choose a constant ϵ > 0 small enough such that

−
1
4

[
(µ + d) − θ

σ2

k2

]
ϵ−θ−1 + F3 ≤ −1.

Then, it follows that
LV ≤ −1, (P, S ) ∈ D3. (6.13)

Case 4. If (P, S ) ∈ D4, we get that

LV ≤ −
1
4

[
(µ + d) − θ

σ2

k2

]
S θ+1 + F3 ≤ −

1
4

[
(µ + d) − θ

σ2

k2

]
1
ϵθ+1 + F3 ≤ −1. (6.14)

Hence, from (6.11) to (6.14), we obtain that

LV ≤ −1, (P, S ) ∈ R2
+\Dϵ . (6.15)

Then, the condition (ii) in Lemma 1 holds, and the proof is complete.
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7. Numerical simulations

In this section, some numerical simulations are introduced to verify the main theoretical results of
model (2.6).

With the passage of time, people who quit smoking gradually move out. Some people can quit
smoking completely and enter the removal group with good results, while others become potential
smokers due to poor willpower and other reasons. Obviously, the emigration rate b(τ) is an increasing
function. Here, we let b(τ) = τ

1+τ .
By using the discretization method of the differential equation and stochastic differential equation

proposed in [33, 34], the corresponding discretization equations are expressed as follows:

Pt+1 = Pt +
(
λ − (µ + d)Pt − β

PtS t
1+kS t

+ (1 − h)E
)
∆t − PtS t

1+kS t

(
σζt
√
∆t + σ

2

2 (ζ2
t − 1)∆t

)
,

S t+1 = S t +
(
β PtS t

1+kS t
− (µ + d)S t − αS t

)
∆t + PtS t

1+kS t

(
σζt
√
∆t + σ

2

2 (ζ2
t − 1)∆t

)
,

where E =
∫ ∞

0
Γ(τ)S (t − τ)dτ,Γ(τ) = αb(τ) exp

{
−

∫ τ
0

(b(ν) + µ + d)dν
}
, ζt(t = 1, 2, ...) are the Gaussian

random variables N(0, 1).
In our application, we fix µ = 0.0736 and d = 0.0951 [11]. By changing the values of relevant

variables, we obtain the dynamic analysis of smoking under different conditions.
First, we let λ = 0.1, β = 0.46 [9], k = 0.9, h = 0.36, α = 0.9 and σ = 0.025 with (P(θ ≤ 0), S (θ ≤

0)) = (P(0), S (0)) = (10, 10). It is easy to calculate that

R̃0 =
βλ

(µ + d)(µ + d + α)
−

σ2λ2

2(µ + d)2(µ + d + α)
= 0.25 < 1, σ2 −

β(µ + d)
λ

= −0.78 < 0.

All conditions of (i) of Theorem 4.1 hold. The corresponding densities of the smokers are shown:

lim sup
t→∞

ln S (t)
t
≤ −0.80 < 0,

which implies the smoking class will disappear. Figure 1(a) shows this result. Further, if we choose
σ = 0.89 and other variables remain unchanged, then σ2 −

β2

2(µ+d+α) = 0.69 > 0, and σ2 −
β(µ+d)
λ
=

0.016 > 0, which means the condition (ii) of Theorem 4.1 holds but opposite to condition (i). Also

lim sup
t→∞

ln S (t)
t
≤ −0.94 < 0,

which implies that the smoking behavior is extinct. Figure 1(b) shows it. Therefore, theoretical results
and numerical simulations show that the number of smokers will eventually tend to zero as t → ∞.
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Figure 1. The plot shows the extinction of smoking when R̃0 < 1.

Learning from Figure 1(b), we get that the number of smokers in the early stage may be larger than
that of potential smokers, but eventually tends to being extinct. It can improve the speed of smokers
tending to be extinct when the value of σ increases.

To illustrate the permanence of smoking behavior, we take λ = 100 and σ = 0.025 with (P(θ ≤
0), S (θ ≤ 0)) = (P(0), S (0)) = (140, 140). The other parameters are the same as those in Theorem 4.1.
In this case, R̃0 = 152.47 > 1, which satisfies the condition of Theorem 5.1. The smoking behavior is
persistent. See Figure 2.
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Figure 2. The plot shows the permanence of smoking when R̃0 > 1.

Comparing Figure 1(a) and Figure 2, we find that changing the value of the recruitment rate of the
population λ will change the dynamic behavior of smoking from an extinct state to a persistent state.

Further, we let λ = 0.8, σ = 0.1, and other data are the same as Theorem 5.1. We can easily
calculate Rs

0 = 1.32 > 1 and µ + d − σ
2

k2 = 0.16 > 0. Then, from Theorem 6.1, there exists an ergodic
stationary distribution of model (2.6). Figure 3(a),(b) present the ergodic stationary distributions of
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P(t) and S (t), respectively.
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Figure 3. The histogram and the probability of potential smokers and smokers for the
stochastic model (2.6).

In the following, we study the changes of P(t) and S (t) by respectively changing the values of β,
α, h and σ. Figures 4(a), 5(a), 6(a), 7(a) represent the changes of P(t) and S (t) under the state of
extinction as variables change, while Figures 4(b), 5(b), 6(b), 7(b) show the changes under the state of
permanence.

Considering that the effective contact rate β will be affected by environmental disturbance, we
analyze the impact of its change on the populations of potential smokers and smokers. In Figure 4(a),
P1(t) and S 1(t) represent the population when β = 0.88, while P2(t) and S 2(t) show the quantity when
β = 0.46. Learned from it, we know that by reducing the effective contact rate β, the number of
smokers will significantly reduce while the quantity of potential smokers is increasing. Figure 4(b)
plots the permanence of smoking under the same conditions as Figure 4(a). It follows from Figure 4(b)
that smokers will decrease and potential smokers will raise along with the decrease of β. Also, we find
that the quantity gap between P(t) and S (t) becomes larger when β decreases in Figure 4(b).
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Figure 4. The plot shows the dynamic behavior when β = 0.88 and β = 0.46.

Due to the multifaceted impact of the proportion of quitting smoking α, we analyze the changes in
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the populations under different smoking cessation rates in Figure 5. P1(t) and S 1(t) denote the
populations when α = 0.36, while P2(t) and S 2(t) represent the populations when α = 0.9 in
Figure 5(a). From it, we can obtain that the smokers are less, while potential smokers become more,
when α increases. In Figure 5(b), P1(t) and S 1(t) denote the population when α = 0.1, while P2(t) and
S 2(t) represent the population when α = 0.9. As α goes larger, more smokers become potential
smokers or removed. It is interesting that the proportions of potential smokers and smokers are
different with the change of α. The number of smokers is larger than that of potential smokers when
the rate of quitting smoking is low. As the rate of quitting smoking increases, the number of smokers
will decrease and eventually be lower than that of potential smokers.
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Figure 5. The plot shows the dynamical behavior when α changes.

In the following, we discuss the effects on P(t) and S (t) when the success rate of quitters h changes.
In Figure 6(a),(b), P1(t) and S 1(t) show the population when h = 0.1, while P2(t), S 2(t) represents the
population when h = 0.9. From Figure 6(a), we get that the number of smokers naturally decreases
with the success rate of quitters increasing. So, there are fewer smokers turning into potential smokers,
and then potential smokers also show a downward trend. Similarly, as h increases, the number of
smokers and potential smokers in Figure 6(b) will reduce, too.

0 10 20 30 40 50
0

2

4

6

8

10

12
P

1
(t)

S
1
(t)

P
2
(t)

S
2
(t)

h=0.1

h=0.9

h=0.9

h=0.1

(a)

0 20 40 60 80 100
50

100

150

200

250

300
P

1
(t)

S
1
(t)

P
2
(t)

S
2
(t)

h=0.1

h=0.9
h=0.1

h=0.9

(b)
Figure 6. The plot shows the dynamical behavior when h = 0.1 and h = 0.9.
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We choose three sets of white noise data: (i) σ1 = 0.025, (ii) σ2 = 0.36 and (iii) σ3 = 0 in
Figure 7(a). Note that the extinction time would be different for a distinct noise intensity, but smokers
will eventually disappear under the condition R̃0 < 1. Besides, we take three sets of white noise data:
(i) σ1 = 0.025, (ii) σ2 = 0.01 and (iii) σ3 = 0 in Figure 7(b). We find that no matter how σ changes,
it always surrounds σ = 0, and the fluctuation of population becomes small with the decrease of white
noise σ.
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Figure 7. The plot shows the dynamical behavior when σ changes.

8. Conclusions

We studied a stochastic giving-up-smoking model considering the quit-smoking duration and
saturated incidence rate in this paper, where the quit smoking duration varies with different
individuals, and the quit smokers can eventually become the potential smokers or be removed.
Further, the effective contact rate β between potential smokers and smokers is described by β + σḂ(t).
We first discussed the existence and uniqueness of the solution of model (2.6) (Theorem 3.1). By
adding the analysis of environmental interference, we obtained the threshold R̃0 of extinction
(Theorem 4.1) and permanence (Theorem 5.1) of smoking behavior. We conclude that when the white
noise is small and satisfies R̃0 < 1, the smoking behavior goes extinct in the long run. Figure 1(a)
shows this result. The smokers also disappear when the perturbation becomes large enough, which is
illustrated in Figure 1(b). The threshold R̃0 < 1 is sufficient for the persistence of smoking and
Figure 2 expresses it. We also derived sufficient conditions Rs

0 > 1 for the existence and uniqueness of
an ergodic stationary distribution (Theorem 6.1) for the positive solution. Figure 3 presents that
conclusion by showing the histogram and the probability of potential smokers and smokers for the
stochastic model (2.6). Finally, we demonstrated these conclusions by conducting numerical
simulations.

There are four key parameters, the effective contact rate β between potential smokers and smokers,
the proportion of quitting smoking α, the success rate of quitters h and the intensity of white noise σ,
that have been emphasized about the extinction and permanence of smoking behavior in our numerical
work. Through the analysis of the influence of these variables in Figures 4–7, we can get that the change
trends of extinction and persistence affected by variables are the same. In addition, we know by that
reducing the effective contact rate β between potential smokers and smokers (see Figure 4), increasing
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the proportion of quitting smoking α (see Figure 5) and strengthening the willpower of quitters to
increase the success rate of quitters h (see Figure 6), we can reduce the number of smokers. Therefore,
we can take the above measures to reduce the number of smokers in society and create a healthier
living environment. Finally, we analyzed the comparison between deterministic and stochastic models
in Figure 7 and get that the fluctuation of the population will become large with the increase of white
noise σ.

Because the quit-smoking duration is raised for the first time, the research content is somewhat
limited in the text. Still there is much interesting research to do. In our future work, we will continue to
discuss a related project, such as adding different control factors to the model to show the application
of control factors in tobacco control work, considering the impact of environmental interference on
other factors in the model and so on. Therefore there is still a lot of work to be done in the future.
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