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ABSTRACT: 

As part of its objective to achieve Zero Hunger under SDG2 the United Nations World Food Programme, in partnership with 

Governments, NGOs and other UN agencies, supports food insecure communities to increase natural resource availability and improve 

their management. This is done mostly through the building and rehabilitation of soil and water conservation assets (e.g., small dams, 

weirs, landscape restoration) and structures that increase productivity (e.g., vegetable gardens, irrigation canals). To adequately monitor 

these activities around the globe simultaneously, remote sensing was found to be an adequate tool. This study introduces the use of 

high-resolution satellite imagery, and more specifically NDVI derived from the Landsat series to verify and quantify the impact of 

such development projects. In total 121 projects in 10 countries and six different climate zones were analyzed using a pre- and post-

implementation comparison and a Before-After Control Impact (BACI) study considering randomly selected control sites. Both 

approaches were found to show robust results throughout the different countries, project types and climate zones. 67% of all projects 

showed significant improvements in vegetation conditions during the wet seasons only three years after the implementation. Using the 

proposed workflow based on Python scripting and cloud computing of satellite data, fast and robust analyses can be achieved, while 

assuring constant data quality. 

1. INTRODUCTION

The United Nations World Food Programme (WFP)1 is the 

world’s largest humanitarian organization focusing on SDG 2: 

Zero Hunger. As part of its portfolio to improve vulnerable 

communities’ food security and resilience to shocks, WFP, in 

close collaboration with Governments, UN Agencies and NGOs, 

builds and rehabilitates assets that improve natural resource 

availability and management in the most fragile contexts 

globally. In 2021 alone, WFP has reached more than 8.7 million 

people across 49 countries with its Food Assistance for Assets 

(FFA) programmes, whereby communities receive food 

assistance while participating in the planning, design, and 

management of such structures. Through these efforts, WFP has 

rehabilitated over 190.000 ha of farmland, built 3,740 water 

ponds, planted more than 3,200 hectares of forests, and 

constructed or repaired 3,400 kilometres of roads (PRO-R WFP, 

2022). 

Adequate monitoring of FFA activities is a crucial step for the 

organization to determine on the successful creation and 

maintenance. Further, this information can support future project 

decisions and enhance the overall quality of the implementations. 

The Asset Impact Monitoring from Space (AIMS)2 is a WFP 

internal service that provides satellite-imagery based evidence of 

FFA interventions and their positive impact on the environment. 

Robust analysis on environmental conditions is required to 

monitor a wide range of FFA assets constructed under diverse 

climatic conditions. The quantification of impacts is a crucial part 

of this analysis since success of projects should be quantifiable. 

The overall question of this paper is: Which approach is suitable  

⃰

1 https://www.wfp.org/who-we-are 
2 https://aims-unwfp.hub.arcgis.com/ 

to monitor globally the environmental impacts of FFA projects 

on the landscape and quantify the success of the programmes? 

Which approach can be a fit to diverse climates and difficult 

contexts in countries experiencing conflict or war? 

2. THEORY

2.1 Remote Sensing for monitoring 

The use of satellite imagery for applications in environmental 

studies is well-established and there is an increasing trend in the 

monitoring of crop health (Zhang et al., 2019), drainage, soil 

moisture and the development of blended datasets (Khanal et al., 

2020). Remote sensing is recognized for the vast possibilities of 

large-scale and dynamic observations (Li et al., 2020) and is 

indispensable for the creation of land-cover and land-use change 

data (Rogan and Chen, 2004; Brown et al., 2022) with 

increasingly better resolution. Furthermore, the use of remote 

sensing for drought monitoring and the assessment of possible 

impacts is very common and the use of satellite-based drought 

indicators established in research (West et al., 2019; Bachmair et 

al. 2016). The increasing number of datasets3, the introduction of 

new platforms like Google Earth Engine (Gorelick et al. 2017) or 

the Microsoft Planetary Computer4, and the usage of machine-

learning based algorithms (Maxwell et al., 2018) that can be used 

for image classification or data processing (Camps-Valls, 2009) 

present important developments. 

3 https://developers.google.com/earth-engine/datasets 
4 https://planetarycomputer.microsoft.com/ 
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The 2030 Agenda5 for Sustainable Development declared 17 

goals with 169 targets for a better future. Several indicators have 

been described to reliably monitor their progress at a global scale. 

According to Estoque (2020), 30 of these indicators can 

successfully be monitored using remote sensing. In fact, further 

exploration of how Earth Observation can support the monitoring 

of development projects is realized through several stakeholders. 

To monitor the successful implementation of FFA assets 

certainly, the widespread availability and variety of satellite 

imagery should be considered. Considering the right data sources 

is an important element in making correct decisions and 

implementing improved projects (Vorovencii, 2011). For 

example, time-series analyses (Saroglu et al 2011; Vorovencii, 

2011) is suggested as the biggest advantage of remote-sensing 

based approaches since historical data is available over large 

areas of the planet, that can describe accurately the conditions at 

specific time points. Since the implementations of FFA assets 

focuses on enhanced crop productivity, improved vegetation 

cover or regrowth of forested areas, the analysis should focus on 

capturing the vegetation productivity differences during different 

stages of the crop cycle.  

Figure 1. a. simple pre-post comparison, b. Comparison between 

Impact and Control Site, c. Multiple comparison between pre- 

and post-conditions between Impact and Control Site (Smith, 

2013). 

For this study the Normalized Difference Vegetation Index 

(NDVI) (Rouse et al., 1973) was chosen as a suitable indicator. 

Using the NDVI in environmental studies is well established and 

numerous studies show that the indicator is resilient against 

changing sun angles, topography and shadows and atmospheric 

conditions (Bunkei, 2007). In past Before-After Control Impact 

(BACI) studies, indicators based on near-infrared (NIR) and red 

bands like the NDVI, or the Enhanced Vegetation Index (EVI) 

have shown reliable results (del Rio-Mena et al., 2021). 

2.2 Statistical models for impact assessment 

In analysing the impact on the landscape of environmental 

projects, various analysis models have been dominant, including 

a simple before-after analysis (Green, 1979) that compares the 

performance along time within the project area (see Figure 1a). 

This approach has been criticized thoroughly due to the lack of 

control measures (e.g., comparing to a site not undergoing any 

5 https://sdgs.un.org/2030agenda 

intervention) or the fact that environmental studies did not 

account for climatic variabilities despite crop production being 

highly dependent on the weather conditions in specific years. 

Results can highlight an improvement in the target metrics, but 

this improvement cannot be causally attributed to the 

intervention. Results can therefore be influenced by other trends 

within the ecosystem e.g., general increase in rainfall causing an 

overall increase of vegetation.  

Commonly, the solution to this criticism was the introduction of 

a control site that would ideally have a similar land cover, be 

close in space to experience the same weather variability and not 

subject to anthropogenic changes in the whole research period 

plus being randomly selected (Meroni et al., 2017). 

The Before-After-Control-Impact (BACI) Design includes the 

selection of one control site for comparison of an indicator before 

and after the intervention (see Figure 1). This approach was 

suggested by Eberhardt in 1976 assuming that the start of the 

impact is known to the analyst. The general idea is to estimate 

the potential change in the magnitude of variations, in addition to 

measuring any potential or actual change in the mean of a target 

variable (Underwood, 1994). By applying this sampling, both 

annual fluctuations, e.g., crop cycles, as well as inter-annual 

climate variability are considered (Meroni et al., 2017).  

One measure of the BACI analysis is the BACI contrast (del Rio-

Mena et al., 2021): 

𝐵𝐴𝐶𝐼 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = (𝜇𝐶𝐴 − 𝜇𝐶𝐵) − (𝜇𝐼𝐴 − 𝜇𝐼𝐵)  (1) 

with μ being the mean value of an indicator during a specific 

period, B and A standing for Before and After and C and I for 

Control and Impact site, FFA asset site in this study 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 100 ∗ (𝐵𝐴𝐶𝐼 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡/𝜇𝐼𝐵 )  (2) 

The relative contrast expresses in percent the changes relative to 

previous conditions, where negative values are associated with 

an improvement of conditions (Meroni et al., 2017).  

The BACI design itself is a robust tool to understand 

improvements or deteriorations in a fluctuating surrounding. 

Nevertheless, there is enough room for critique, including the 

lack of random selected control sites and a rather manual 

selection of control areas instead. Further, the fact that usually 

only one control site is selected for each impact site was strongly 

criticised by Underwood in 1991.  

(c) 

(b) 

Figure 2. Workflow of applied methodology.
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A more asymmetrical model was suggested and the work on 

several control sites proposed to overcome the issue that the 

statistical outcomes heavily depend on the few control sites 

considered. On the other hand, even very well drafted studies fail 

to have more than a dozen impact sites, which results in reduced 

statistical power (Wood, 2021). Bootstrapping suggested by 

Mishra et al. 2023 to generate an increase of sample pairs is a 

possible solution. In this paper, this challenge was addressed by 

selecting a control site on matching pre-intervention values at a 

pixel level, as detailed below.  

Figure 3. Half-moon assessed by a technical expert in Dosso, 

Niger, WFP/Richard Mbouet 2023. 

Figure 4. Stone bunds to control the water run-off from the hill 

in Phalombe, Malawi, WFP/Badre Bahaji 2023. 

3. METHODOLOGY

Since a homogeneous response to the intervention within the 

project areas was expected, the basis for all analysis was polygon 

based, not pixel based (e.g., del Rio- Mena et al., 2017) in this 

study.  

3.1 Project data 

A broad dataset of the AIMS service was used as basis of this 

research. In total, 121 FFA assets in 10 different countries under 

different climatic conditions were analysed. The projects were 

implemented between 2011 and 2021 ranging in size between 

two and 200 ha. The geographical positions include areas with 

6 https://www.usgs.gov/landsat-missions/landsat-satellite-

missions 

Mediterranean climates, semi-arid, deserted and even tropical 

monsoon climates (consult Koppen Geiger classification in 

Kottek et al., 2006 for reference).  

Figure 5. Overview of countries included in this study. 

Since the aim is to detect a robust methodology that supports 

analysis on a global scale, the research area is distributed over 

several continents. The interventions include irrigation projects, 

reforestations, soil and water conservation activities to newly 

created gardens. Under soil and water conservation assets several 

interventions can be included e.g., half-moons, soil bunds, check 

dams or terracing. For each project the different interventions 

undertaken were known, including the exact start and end date. 

3.2 NDVI data 

The satellite imagery used for this study was taken from the 

USGS (United States Geological Survey) Landsat Collection 2 

Level-2 atmospherically corrected surface reflectance series6 and 

accessed through the Planetary Computer STAC API. Several 

pre-processing steps were applied to the Landsat time series to 

ensure data quality using Python. Clouds and cloud shadows 

were masked using the Landsat Quality Assessment bitmask 

band as well as surface reflectance outliers. The last pre-

processing step is a Whittaker smoother applied on the NDVI  

computed from the red and NIR bands. The smoother applied is 

based on a V-Curve optimization and expectile smoothing, as 

presented by Eilers et al. in 2017. The optimization is carried out 

pixel by pixel. This is to correct a variety of signal interferences 

that are mostly due to atmospheric cloudiness and haze, knowing 

that cloud cover distorts measurements with stronger negative 

deviations, but it also allows to interpolate data gaps due to cloud 

coverage. 
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Niger - - - 7 - - 

Sierra 

Leone 

- - 10 - - - 

Sudan 9 - - - - - 

Syria - - 2 - - - 

Zimbab

we 

1 10 7 - - - 

Table 1. Countries, where projects were analysed for their 

environmental impact, WFP 2023 

3.3  K-means clustering & control site selection 

As previously discussed, the selection of control sites underlies 

strict criteria. For this study we only consider areas within a 5km 

buffer of the asset site that are showing similar NDVI patterns 

(hence vegetation productivity) in the years preceding the 

implementation of the asset. The selection is done by applying a 

K-Means clustering (Celik, 2009) over the buffered area. Only

important clusters, the most present in the asset area, were kept

ensuring that only pixels with similar NDVI characteristics to the

asset (i.e., removing constructed and forested areas or bare land

if the monitored asset is mainly composed of crops) were

Figure 6. k-means clustering method to identify groups within 

dataset according to their characteristics, Maxar 2023. 

selected for the control site. This control site selection  

techniques improves the similarity of asset and control areas in 

terms of confounding variables, thereby reducing selection bias, 

and allowing better isolation of the effect of the intervention. 

Further, bigger areas are included in the sample and not only ones 

similar in size to the impact site. Very similar weather conditions 

will apply due to the short distances to the impact site, while 

similar NDVI patterns reflect a similar landscape type. This can 

be supported using very-high resolution imagery to compare the 

land cover at several time slots before the intervention was 

started. The only constraint is the risk of including areas being 

under human intervention, yet the size of the control site should 

make this influence neglectable. Furthermore, it is likely to 

experience human activity in any form also in areas that were 

labelled as not being under any project. Overall, this control site 

selection procedure gives reliable outputs in different climatic 

and landscape contexts due to its data-based approach, in contrast 

with more traditional human-based selection methods that are 

more time-intensive and utilize less data in the process. 

3.4 Impact assessments 

After retrieving reliable data for both impact and control sites, 

long-term NDVI values were calculated on the basis of 10 years 

before the intervention started for the wet and dry season in each 

specific asset area and control site. Further the values during wet 

and dry season for impact and control site were calculated for the 

last three years before and three years after the implementation. 

Anomalies relative to the long-term average values were 

calculated for all sites (both impact and control) for six years. A 

10% increase of mean NDVI value during dry and wet season in 

comparison to long-term pre-intervention conditions is used as a 

standard reference in the corporate results framework in WFP, 

hence it is useful to understand how this approach compares to 

the previously presented BACI calculations. The BACI contrast 

and relative contrast were calculated for both wet and dry season. 

A two-way ANOVA with interaction model was also applied in  

Figure 7. NDVI over an asset and its control site in Syria a. 

Whole area b. Analysis ready area after a K-mean clustering 

selection to keep only pixels with land cover similar to the asset. 

a

.

b

.
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the BACI design with intervention (asset / control sites) and  

period (before / after intervention) as independent factors. The 

statistical model is as follows: 

𝑋𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜀𝑖𝑗𝑘 ,                   (3)  

where μ is the overall mean, α_i is the effect of period (i = before 

or after), β_j is the effect of location (j = control or asset), (αβ)_ij 

is the interaction between period and location and ε_ijk 

represents the error. 

This test allows to obtain the statistical significance of changes 

occurring after the intervention in the asset looking at the test for 

an interaction effect. Indeed, an interaction effect occurs when an 

impact will be observed at the after period depending on the value 

of the location. Hence, this interaction effect informs us if a 

change is occurring after the intervention but only at one location, 

ie. the asset site. Therefore, here and after, “p-value” refers to the 

statistical p-value of the ANOVA interaction test. 

Finally, a Pearson’s r was calculated for the NDVI values 

between impact and control site for pre- and post-implementation 

timeframes. 

4. RESULTS

After running the above-mentioned script, all outputs were 

compiled. Out of 121 projects analysed, the BACI relative 

contrast showed improvements for 81 during the wet season of 

them, representing 67%. Regarding the 10% criteria being 

currently used in the standard impact assessments, 78% of all 

projects were showing a substantial increase of vegetation 

activity in the first 3 years after the implementation. 

Improvements during the dry season were found in 41 projects 

considering the BACI criteria and 35 regarding long-term NDVI 

values.  

Figure 8. Example of an improved woodlot project in 

Afghanistan, in an arid climate context. The NDVI of the impact 

site (green) and NDVI of the control site (grey) in comparison 

throughout the years. The relative BACI contrast is -156 for the 

dry season (p-value = 0.015) which shows a clear improvement. 

The NDVI is up to 400% higher after the implementation than 

long-term average values.  

Regarding the different intervention types, four out of five 

woodlots showed significant improvement in dry and wet season, 

meanwhile all other intervention types have a lower number of 

projects showing vegetation increase during the dry season than 

the wet season. Soil and water conservation projects show great 

success during the wet seasons and also great improvements in 

NDVI of over 40%. Meanwhile Gardens show a mean increase 

of 25% in wet seasons and even slight reductions during dry 

seasons. Forestry projects show good results during the dry 

season, since woody biomass is less dependent on seasonal cycles 

than crop plants. The only water pond showing an increase in 

vegetation productivity during the dry season reached 

improvements of +30% in comparison to long-term average 

Figure 9. Before (2014) in black-white and after (2021) RGB 

imagery over the woodlot project site in Afghanistan. 

conditions. Since different climatic conditions have influence on 
vegetation growth and the increase or decrease of NDVI values, 

the results were grouped into six different types of climate 

zones. Projects located in arid climates increased in 60% of the 

cases the vegetation conditions during the dry season and in 64% 
during the wet season. Increases generally reach up to 70%, re-
lated to generally lower NDVI values in the area. Out of 8 projects

Table 2. Results per asset type.

Intervention 

type 

% of 

projects 

improved 

in dry 

season 

Average 

increase in 

NDVI (in 

comparison 

to lta) 

% of 

projects 

improved 

in wet 

season 

Average 

increase in 

NDVI (in 

comparison 

to lta) 

Forestry (30 

total) 

60% +7.1% 80% +35.4% 

Garden (15 

total) 

53% -1.1% 60% +25.6% 

Irrigation 

Canal (32 
total) 

43% +7.7% 53% +19.6% 

Soil & Water 

conservation 
(35 total) 

48% +0.6% 86% +41.6% 

Water Ponds 

(4 total) 

25% +30% 75% +38.3% 

Woodlot (5 
total) 

80% +235% 80% +163% 

Image Source: © 2021 Maxar 

Image Source: © 2014 Maxar 

e Peak in wet 

season Feb and 

dry season June 
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located in a zone with Mediterranean hot summer only three 

showed significant vegetation increases in the summer, 

meanwhile in winter 7 out of 8 showed vegetation increases of 

27%. In Semi-arid Steppe climates 52% of the analysed projects 

showed improvements during the dry season, 59% in the wet 

season. Improvements were generally 10% higher during the 

rainy season. Tropical Savana climates of generally higher  

NDVI values also showed significant improvements. 

Nevertheless, 78% of 41 projects showed improvements within 

three years after implementation in the wet season. 

Figure 10. Example of an improved garden creation project in 

Zimbabwe in semi-arid hot steppe climate. NDVI of the impact 

site (green) and NDVI of the control site (grey) in comparison 

throughout the years. The BACI contrast is -36 for the dry season 

(p-value = 0.005). The NDVI is up to 20% higher post-

implementation than long-term average values. Two crop peaks 

are visible after implementation, meaning an increase in food 

production, a declared goal of the project.  

Table 3. Results per climate zone (based on Koppen Geiger). 

Figure 11.: Before and after implementation, grassland was 

transformed into a garden. VHR imagery supports the positive 

findings of the NDVI curves. 

Projects implemented in Tropical Monsoon climates showed 
increase in vegetation productivity in 20% of all projects in 
dry and 47% in wet seasons. NDVI values registered for 
certain projects decreased slightly due to clearing activities 
done beforehand, or the fact that the analysis year was 
particularly dry affecting the growth of young vegetation. 
Overall, the improvements registered in dry seasons showed 
NDVI increases of approx. 10%, meanwhile the significant 
improvements in wet seasons on average are 40% higher 
than the long-term average conditions.
Comparing the impact methodologies applied, it is visible 
that the BACI and a 10% NDVI vs. long-term average 
threshold show similar results in the analysed selection of 
FFA projects. Meanwhile the BACI methodology found 
substantial increase in NDVI for more projects in the dry 
season than the simple pre-/post comparison, the pre-/post 
comparison found more projects to have a positive impact 
during the wet season. Results of the two methods differ 
therefore depending on the season. There are many possible 
reasons for this behaviour, e.g., the type of intervention 
analysed or the climatic context of the outliers. Generally, 
though, none of the groups showed any particularities in 
comparison to the other projects. Since the investment going 
into the calculation of both methods has become minor 
thanks to the data infrastructure provided, a suggestion is to 
apply both methods simultaneously. In case of major 
differences in the findings, a more detailed look into the 
intervention activities and current climatic contexts is needed.

Climate 

type 

Number of 

improved 

projects/to

tal number 

of 

projects, 

dry 

season 

Increas

e of 

NDVI 

at 

improv

ed 

projects 

Number of 

improved 

projects/to

tal number 

of 

projects, 

wet 

season 

Increas

e of 

NDVI 

at 

improv

ed 

projects 

Arid 

Climate 

hot, BWh 

17/28 ~ 

60% 

+71% 18/28 ~ 

64% 

+72%

Mediterran

ean hot 

summer 

climate, 

Csa 

3/8 ~ 

37.5% 

+27% 7/8 ~ 

87.5% 

+27%

Semi-arid 

Steppe 

Climate 

hot, Bsh 

15/29 ~ 

52% 

+15.5% 17/29 

~59% 

+24.8%

Tropical 

Savanna 

Climate, 

Aw/As 

24/41 ~ 

59% 

-8% 32/41 ~ 

78% 

+35%

Tropical 

Monsoon, 

Am 

3/15 ~ 

20% 

-0.3% 7/15 ~ 

47% 

+7.9%

Total 62/121 ~ 

51% 

+9.9% 81/121 ~ 

67% 

+39.3%

Image Source: © 2021 Maxar 

Image Source: © 2016 Maxar 
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>10% increase yes >10% increase no

BACI 

yes 

Dry  

31 

Wet  

73 

Dry 

31 

Wet 

8 

BACI 

no 

Dry 

4 

Wet 

21 

Dry 

55 

Wet 

19 

Table 4. Discrepancies between two proposed methods. 

As a last step the correlation between the impact and control side 

was calculated to understand if any major changes can be 

detected. Since the selection of the control site is based on the 

past NDVI profiles, the correlations should generally be lower 

after the implementation. In particular, irrigation canals should 

show a lower correlation between the impact and control site, 

since it in this case indicates lower seasonality e.g., start of 

second or third crop cycles in contrast to the surrounding rain-fed 

plots. In the case of the woodlot project in Afghanistan (see 

Figure 9) a reduction of the correlation of 0.7 was calculated, 

which means that the project area stopped following the general 

landscape trends. The correlation can be a great addition to any 

findings, yet only the change in correlation is not sufficient to 

make plausible statements on projects, since other human 

activities can be the reason for trend changes and not necessarily 

those are positive as given in the woodlot example. 

5. DISCUSSION

Overall, the study succeeded in comparing different impact 

assessment methods and proposing a control site selection 

procedure in theoretical and practical approaches. Nevertheless, 

it is crucial to highlight the eventual shortcomings or 

opportunities for improvement. Considering the selection of 

control sites, the suggested unsupervised approach showed fast 

results at low computation cost, fulfilling all the criteria 

mentioned in literature. For quality control purposes it could be 

of great improvement to consider a high-resolution land cover 

layer as additional criteria. By filtering both project and impact 

site to be in the same land cover category and showing similar 

NDVI curves, a very strict additional criteria is applied, hence the 

quality of the control sites would be higher. Nevertheless, this 

additional processing step needs to be checked for computation 

efforts and data availability of reliable land cover data for past 

years. 

From a data infrastructure perspective, the suggested approach in 

this study was computationally efficient, considering that mostly 

cloud-computing accelerated the output creation. For this reason, 

an increase of analysis of post-intervention years is possible and 

advised for further studies. 

While interpreting the results of the two applied impact 

assessment methods, both showed compelling results. 

Meanwhile a simple threshold seems to be generous during wet 

seasons, the BACI approach found more positive impact during 
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6. CONCLUSION

This study presented a landscape impact assessment of 121 
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compelling results and overall good achievement of the selected 

projects. A robust control site selection methodology was applied 
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calculation and robust findings confirm their applicability for 
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