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ABSTRACT: 
 
The ability of robots to autonomously navigate through 3D environments depends on their comprehension of spatial concepts, ranging 
from low-level geometry to high-level semantics, such as objects, places, and buildings. To enable such comprehension, 3D scene 
graphs have emerged as a robust tool for representing the environment as a layered graph of concepts and their relationships. However, 
building these representations using monocular vision systems in real-time remains a difficult task that has not been explored in depth. 
 
This paper puts forth a real-time spatial perception system Mono-Hydra, combining a monocular camera and an IMU sensor setup, 
focusing on indoor scenarios. However, the proposed approach is adaptable to outdoor applications, offering flexibility in its potential 
uses. The system employs a suite of deep learning algorithms to derive depth and semantics. It uses a robocentric visual-inertial 
odometry (VIO) algorithm based on square-root information, thereby ensuring consistent visual odometry with an IMU and a 
monocular camera. This system achieves sub-20 cm error in real-time processing at 15 fps, enabling real-time 3D scene graph 
construction using a laptop GPU (NVIDIA 3080). This enhances decision-making efficiency and effectiveness in simple camera setups, 
augmenting robotic system agility. We make Mono-Hydra publicly available at: https://github.com/UAV-Centre-ITC/Mono_Hydra. 
 

1. INTRODUCTION 

Real-time high-level representations of environments are crucial 
for robots and autonomous systems, enabling efficient 
comprehension and execution of human instructions, fast 
planning, and comprehensive situational understanding. These 
representations can revolutionise various applications, including 
search and rescue, warehouse monitoring, maintenance, and 
surveillance. By replicating human-level understanding, robots 
equipped with these representations can excel in tasks such as 
identifying survivors and hazards, optimising inventory 
management, conducting efficient maintenance operations, and 
enhancing surveillance capabilities, all of which depend on their 
comprehensive understanding of the situation. In recent years, 3D 
scene graphs have emerged as powerful high-level 
representations of environments (Hughes et al., 2022), yet real-
time construction remains a significant challenge. While some 
works allow real-time operation, they are restricted to RGB-D or 
Lidar-like sensor systems where depth perception is readily 
available (Bavle et al., 2022). 
 
The exploration of monocular camera setups for achieving real-
time 3D scene graph generation remains an understudied area in 
contrast to the existing techniques utilising RGB-D setups or 3D 
LIDARs. This research gap is significant considering that 
monocular cameras offer advantages in compactness and agility 
compared to the aforementioned sensor setups. The utilisation of 
monocular cameras shows immense promise, especially in 
applications like UAV operations where minimising payload is 
crucial for prolonged missions. However, to the best of our 
knowledge, there is limited work on real-time 3D scene graph 
generation from monocular camera input with an IMU.  
 
This paper presents an approach that leverages a set of deep 
neural networks combined with an IMU to enhance visual 
odometry and enable the real-time construction of a 3D scene 
graph, as in Figure 1. To accomplish this, we adopt the Hydra 
framework (Hughes et al., 2022), specifically designed to 

integrate semantic mesh and odometry data towards building 
scene graphs. Our proposed suite of deep learning algorithms is 
designed to generate a real-time 3D semantic mesh, providing the 
essential inputs for constructing the scene graph.  

 
Figure 1. Real-time 3d scene graph generated using the Mono-
Hydra framework on the 2nd floor of the ITC building. (a) RGB 
image (b) Predicted Semantics  (c) Predicted depth (d) 3D 
semantic mesh. Levels in the graph: L1- buildings, L2- Rooms, 
L3-Places, L4-Objects, L5-Metric-semantic mesh. 
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2. RELATED WORKS 

2.1 Spatial Perception Systems and 3D Scene Graphs  

In recent years, 3D scene understanding has become a crucial 
problem in robotics, computer vision, and augmented reality. 
With the advent of deep learning, there have been significant 
advancements in 3D reconstruction and recognition, enabling the 
development of real-time 3D scene graphs. 3D scene graphs are 
a recent development and serve as a powerful way of representing 
3D environments (Armeni et al., 2019). They are created as a 
layered graph where each node represents a spatial concept at 
different levels of abstraction, ranging from low-level geometry 
to high-level semantics such as objects, places, rooms, and 
buildings. The connections between these nodes are represented 
as edges, which convey the relations between different concepts. 
These 3D scene graphs can act as an advanced "mental model" 
for robots, allowing them to understand better and navigate 
complex environments (Ravichandran et al., 2022).  
 
Spatial perception systems use modern machine learning 
techniques to extract semantics from visual feeds and hierarchical 
semantic representations like 3D scene graphs to build an 
environmental model. Kimera (Rosinol et al., 2021) and Hydra 
(Hughes et al., 2022) are relevant approaches to studying real-
time performance and adapting hierarchical representations for 
robot spatial perception systems. Kimera provides a novel 
metric-semantic hierarchical representation of the environment 
and practical algorithms to infer it from data using a 3D Dynamic 
Scene Graph (DSG) (Armeni et al., 2019) representation for 
actionable spatial perception. It is worth noting that the 
generation of the DSG is not real-time in Kimera; although the 
creation of the metric-semantic reconstruction happens in real-
time, the rest of the scene graph is built at the end of the run and 
requires a few minutes to parse the entire scene (Rosinol et al., 
2021). The study demonstrates the potential queries that can be 
implemented on a DSG and shows how a robot can use a DSG to 
understand and execute high-level instructions. Hydra is another 
relevant approach designed to overcome the main drawback of 
the Kimera framework, which is the real-time performance, and 
it has shown promising results in building and maintaining a 
semantic map of the environment that can be used for localisation 
and planning tasks. 
 
Another recent approach, Situational Graphs called S-Graphs+ 
(Bavle et al., 2022), combines a SLAM graph with a 3D scene 
graph to model the environment. S-Graphs+ is a four-layered 
factor graph optimised in real-time to estimate the robot's pose 
and map while leveraging high-level information about the 
environment. The paper introduces new room and floor 
segmentation algorithms utilising mapped wall planes and free-
space clusters. Still, it depends on the 3d lidar input compared to 
the previously mentioned Hydra and Kimera frameworks, which 
use RGB-D camera inputs.  
 
2.2 Monocular Depth Prediction  

Single image depth estimation is challenging due to its ill-posed 
nature, but deep learning has successfully addressed this problem 
(Wu et al., 2021). Two main categories of methods include 
supervised depth estimation, which uses ground-truth depth maps 
for training, and self-supervised depth estimation, which does not 
require annotated data. Self-supervised methods include novel 
view synthesis and monocular video frames, and some 
approaches introduce additional constraints or multi-task 
learning to improve accuracy. Recent work has shown that 
enhancing loss functions can also lead to competitive results in 

monocular depth estimation, as demonstrated in the Monodepth2 
(Godard et al., 2018)  method. 
Recently, there has been a lot of research interest in self-
supervised depth estimation, mainly using left-right consistency. 
However, well-known works such as MonoDepth, MonoDepth2 
(Godard et al., 2018), DepthHints (Godard et al., 2016) , and 
LiteMono (Zhang et al., 2022) mostly concentrate on driving 
scenes and are trained on extensive driving datasets like KITTI 
and Cityscapes. It is not clear how these methods can be utilised 
in indoor environments. Learning depth in indoor environments 
using self-supervision is more challenging due to several factors. 
Firstly, indoor scenes have weaker structure priors than driving 
scenes, as objects can be cluttered and arranged arbitrarily. 
Secondly, indoor depth distribution can be concentrated in either 
near or far ranges, making it challenging to predict accurate 
metric depth. Thirdly, depth-sensing devices can move in 6DoF 
for indoor captures, making it necessary for networks to be more 
robust to arbitrary camera poses and complex scene structures. 
Lastly, large untextured regions, such as walls, make the 
commonly used photometric loss ambiguous. While DistDepth 
(Wu et al., 2021) and ZoeDepth architectures (Farooq et al., 
2023) excel in predicting metric-accurate depth for unseen indoor 
scenes, their reliance on high-quality training data and limitations 
in handling challenging conditions such as low-light 
environments and occlusion may impact their performance and 
generalisability. 
 
2.3 Monocular VIO 

Visual Inertial Odometry (VIO) aims to estimate the poses of a 
sensing platform in unknown environments. Most approaches 
solve this problem from a global perspective by choosing a fixed 
global reference frame aligned with gravity. This approach is 
known as world-centric VIO but suffers from the observability 
mismatch issue between original and linearised systems (Rosinol 
et al., 2021; Z. Wang et al., 2022). Various remedies have been 
proposed, but they often trade off accuracy or efficiency. In 
contrast, a robocentric RVIO2 framework (Huai & Huang, 2022) 
reformulates the problem locally, where the body frame of the 
robot can be used as the instantaneous navigation frame of 
reference. The relative pose between every two locations of the 
robot is estimated, and the current pose with respect to the start 
(body) frame can always be recovered by incrementally merging 
new relative pose estimates. The observability mismatch issue, 
where insufficient sensor measurements to accurately estimate 
the system's state, does not exist for this approach, fundamentally 
improving the VIO estimator's consistency.  
 

3. METHODOLOGY 

This section describes our process for achieving real-time spatial 
perception with a sensor system occupied by a monocular camera 
and an IMU. The process starts by collecting real-time data from 
the monocular camera and the IMU, followed by pre-processing 
the data. Then, deep learning networks are utilised to estimate 
depth, perform semantic segmentation, and calculate visual-
inertial odometry, as illustrated in Figure 2. Predicted depth 
information and semantic segmentation from the monocular 
camera are used to create a semantic mesh in real-time, which, 
along with the visual-inertial odometry data, are fed into Hydra 
(Hughes et al., 2022) to generate a 3D scene graph. In order to 
achieve real-time spatial perception and meet efficiency 
requirements, resources are divided and optimised for 
processing. The CPU (8 threads) is used for Hydra, while the 
GPU is used for deep learning networks. An Alienware m17 
laptop with an Nvidia RTX 3080 GPU is utilised to run mono-
hydra in a real-world setting using monocular RGB data 
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(848x480 – 30 fps) and IMU data (200 Hz) streams from a 
Realsense D435i sensor. This approach effectively achieves real-
time spatial perception by combining the strengths of deep 
learning networks and visual-inertial odometry. 
 

 
Figure 2. Processes in the Mono-Hydra framework. 

3.1 Generating Semantic Mesh 

The methodology involves the robotic operating system-based 
(ROS) package called depth_image_proc, which generates a 3D 
mesh from predicted depth and segmentation data. This process 
involves using a nodelet, which combines a registered depth 
image and an RGB image into an XYZRGB point cloud. In this 
use case, the semantic prediction will be used instead of the RGB 
image to colour the 3D mesh with semantic predictions.  
 
3.1.1 Monocular depth estimation: Two state-of-the-art 
methods for monocular depth prediction were employed to 
evaluate the effectiveness of specialised architectures. The 
evaluation focused on predicting indoor metric-accurate depth 
and an outdoor relative depth predictor where scale had to be 
calculated by finding the average scale shift comparison between 
ground truth and predicted relative depth data (Steenbeek et al., 
2022). These self-supervised networks were fine-tuned on the 
NYUv2 indoor dataset. 
 
DistDepth (Wu et al., 2021) is a novel self-supervised learning 
approach that improves depth accuracy using an off-the-shelf 
relative depth estimator called DPT (Ranftl et al., 2021). DPT 
produces structured but only relative depth values that reflect 
depth-ordering relations but are metric-agnostic. To blend depth-
ordering relations into metric depth estimation, DistDepth uses a 
structure distillation strategy that statistically and spatially 
promotes depth structural similarity. DistDepth only requires 
stereo image inputs without depth annotations and can predict 
structured and metric-accurate depth for unseen indoor scenes. 
Additionally, distillation helps to reduce DPT's large vision 
transformer to a smaller architecture, allowing for real-time 
inference on portable devices. 
 
LiteMono (Zhang et al., 2022) is a lightweight architecture 
designed to extract effective features from input images using a 
lightweight encoder. The proposed architecture includes an 

encoder-decoder DepthNet (Anunay et al., 2021) and a PoseNet 
(Kendall et al., 2015) that estimate multi-scale inverse depth 
maps and camera motion between adjacent frames, respectively. 
The architecture also uses consecutive dilated convolutions 
(CDC) to enhance local features and a Local-Global Features 
Interaction (LGFI) module to model long-range information 
efficiently. By adopting cross-covariance attention instead of 
self-attention, the LGFI module reduces both memory and time 
complexity, making it suitable for lightweight models. 
 
3.1.2 Semantic segmentation: The pre-trained model from 
the MIT Scene Parsing challenge (B. Zhou, 2016) is used for 2D 
semantic segmentation with HRNet (J. Wang et al., 2021). Few 
networks had pre-trained semantic segmentation models for 
ADE20k (Zhou et al., 2017a) data set with 20210 training image 
sets and 2000 validation sets, where 150 classes were annotated. 
It is compatible with the inference toolchain that existed in Hydra 
for semantic class mapping, despite the availability of newer and 
more performant options. Hence HRNetV2 is selected despite 
having low FPS performance but higher pixel percentage 
accuracy for generating the most accurate 3d semantic meshes 
compared to newer models, as demonstrated in Table 1.  
 

 
Architecture 

MIoU Pixel 
Accuracy 
(%) 

Inference 
Speed 
(fps) 

MobileNetV2dilated+ 
C1_deepsup 

34.84 75.75 17.2 

ResNet18dilated+ 
C1_deepsup 

33.82 76.05 13.9 

UperNet50 40.44 79.80 8.4 
HRNetV2 42.03 80.77 5.8 

Table 1. Pretrained network architectures are available for the 
ADE20k data set under CSAILVison public repository without 
Multiscale testing (Zhou et al., 2020). Architectures like 
MobileNetV2dilated + C1_deepsup represent the encoder and 
decoder of the architecture, respectively. Inference speed is 
benchmarked on a single NVIDIA Pascal Titan-Xp GPU. 

Furthermore, the output of the HRNet configured for the 
ADE20K dataset has 150 segmentation classes which need to be 
configured to be 20 classes as per the initial Hydra framework 
configuration, which we kept as it is. So, the output classes were 
truncated to 20 using a simple mapping. This is demonstrated in 
the example configuration below, which shows the mapping of 
the new truncated class number 12, 'chair', from the original 150 
class set (with the corresponding names mentioned in the 
brackets) 

class_info/12/labels:  
- 19 (chair) - 75 (swivel, chair) 
- 30 (armchair) - 110 (stool) 
- 31 (seat)  

 
3.2 Monocular VIO 

Kimera VIO (Rosinol, Abate, et al., 2020) has been proposed 
along with the Hydra framework for performing experiments 
with stereo sequences. Even though Kimera VIO supports 
monocular image sequences, it is not robust and often gets lost 
with fast rotations. Hence monocular image sequences and IMU-
based RVIO2 (Huai & Huang, 2022) framework are modified to 
interface with the Hydra framework. This paper uses a novel 
information-based estimator called R-VIO2 to improve 
efficiency and robustness for resource-constrained applications. 
The estimator's numerical stability and computational efficiency 
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are significantly enhanced by utilising a square-root expression 
and an incremental QR-based update combined with back 
substitution. Additionally, joint online calibration of spatial 
transformation and time offset between visual and inertial sensors 
is employed to increase the estimator's robustness in the presence 
of unknown parameter errors. 
 
3.3 Generating 3D Scene Graph  

Hydra framework is developed in a way that provides 3D 
semantic mesh and odometry data to build and optimise 3D scene 
graphs. Hydra can be deployed in CPU (8 threads), so deep 
learning networks can be easily deployed into GPU. RVIO2 can 
use the rest of the CPU for its optimisations, as illustrated in 
Figure 3.  

 
4. EXPERIMENTS 

This section demonstrates that Mono-Hydra can construct 3D 
scene graphs in real-time with a level of precision comparable to 
other methods. Additionally, a comparison is made between the 
metric accuracy of the resulting semantic mesh and that of 
different approaches. Fine-tuning of the depth and semantic 
networks performed on Nvidia TITAN Xp GPU (12GB) and 
Mono-Hydra was tested on an Alienware m17 laptop with Nvidia 
RTX 3080 GPU (8GB).  
 
4.1 Experimental Setup 

4.1.1 Datasets: To test Mono-Hydra, we conducted 
experiments using a synthetic dataset called uHumans2 (uH2) 
(Rosinol et al., 2021). uHumans2 is an upgraded version of the 
uHumans dataset created by MIT/SPARKLAB (Rosinol, Gupta, 
et al., 2020). The uH2 dataset was generated using Unity and 
comprises three scenes: a small apartment, an office, and a 
subway station. It offers visual-inertial data, accurate depth 
information, and 2D semantic segmentation. Furthermore, the 
dataset comes with precise robot trajectories, which we used to 
evaluate our results. 
 
ADE20k (Zhou et al., 2017b) and NYUv2 (Silberman et al., 
2012) datasets were used for fine-tuning HRNet and monocular 
depth networks where Lite-Mono was initialised with ImageNet 
pre-trained encoder weights. 
 
RGB sequences with IMU data are recorded using the Realsense 
D435i sensor for the real datasets. RGB sequences are recorded 
with 848x480 (FOV 69.38 x 42.84 deg)  and 640x480 (FOV 
55.16 x 42.84 deg) with 30 fps and IMU with 200 Hz. Along with 
the data sequences, calibration data has been recorded for pre-
processing data requirements.  The sensor provides depth 

information, which is not being used and is only recorded in the 
datasets (ROS Bag files) for comparisons. The recorded data in a 
building includes observations from five floors, with each floor 
being individually recorded and the loop between the 2nd  and 3rd  
floors. The data sets are publicly available at 
https://surfdrive.surf.nl/files/index.php/s/sE0rmSSVQ7wa42a. 
 
4.1.2 Mono-hydra implementation: Hydra is implemented 
on the robotic operating system (ROS), and since Mono-Hydra is 
an extension of the Hydra framework, deep learning algorithms 
for 3D mesh generation and VIO is implemented in ROS for easy 
integration. For Hydra to function properly, it requires odometry 
to be transmitted as a transformation from a stationary "world" 
frame to the "sensor_frame" (which is the Realsense camera IMU 
frame). Consequently, the predicted Depth and odometry data are 
registered to the camera's IMU frame.  
 
The real-time functionality of Mono-Hydra hinges mainly on the 
frontend depth (~20-30 fps) and semantic predictions (~10-15 
fps), as well as the configuration used to keep the models loaded 
in CUDA for quicker responses. The semantic segmentation 
network was the bottleneck among these networks, operating at 
approximately 15 fps. To maintain synchronisation within the 
system, the FPS is adjusted accordingly. Ultimately, the Hydra 
algorithm was set up to utilise a hierarchical descriptor based on 
3D scene graphs for loop closure detection.  
 
4.2 Results 

4.2.1 Synthetic data - uHumans2 dataset: Mono-Hydra is 
tested with a synthetic dataset which is a part of the Hydra 
experiments, to compare the accuracy of the monocular depth 
prediction compared to readily available depth in the dataset 
where the results are tabulated in Table 2. Semantic meshes from 
the office_s1_ooh dataset are illustrated in Figure 4.  
 

 
 Scene 

DistDepth LiteMono 

ME (m) SD (m) ME (m) SD (m) 
 office_s1_ooh 0.28 0.26 0.06 0.61 

 apartment_s1_00h 0.05 0.27 0.03 0.31 

 subway_s1_ooh 0.05 0.77 0.23 0.40 

Table 2. Mono-Hydra vs Hydra 3d mesh metric accuracy 
comparison with two depth prediction networks. ME - Mean 
Error, SD - Standard Deviation. 

(a) 

(b) 

Figure 4. Semantic meshes1 generated from (a) Hydra 
framework (b) Mono-Hydra framework. 

1. Semantic colour mappings are not the same in uHumans2 
dataset and Ade20k dataset.  
 

Figure 3. To link Hydra with 3D semantic mesh and VIO, HRNet 
and DistDepth/Lite-Mono networks were implemented on the 
GPU using CUDA, while VIO and Hydra (Hughes et al., 2022) 
were implemented on the CPU. 
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4.2.2 Real data – ITC building: Mono-Hydra is being 
utilised to generate 3D scene graphs with RGB sequences and 
IMU data with two different depth-predicting networks, as in 
Figure 5.  
 

4.2.3 Metric-semantic mesh: The metric accuracy of the 
generated mesh is compared using CloudCompare 
(CloudCompare , 2023) software to the lidar-based backpack-
generated point cloud of the relevant real data (Karam et al., 
2019). Firstly, ground truth data is stored as a point cloud, and 
generated semantic mesh is loaded. The two datasets were then 
registered using rough and fine registration techniques in 
CloudCompare software. The results were calculated using the 
cloud-to-mesh distance option and are presented in Table 3. 
 
   Depth 

prediction  
network 

2nd floor 3rd floor 

ME (m) SD (m) ME (m) SD (m) 
   DistDepth 0.19 0.18 0.21 0.16 
   Lite-Mono 0.39 0.27 0.36 0.25 
Table 3. Comparison of the metric accuracy of the generated 3d 
mesh and the ground truth data produced by the 3d lidar 
backpack. MAE - Mean Error, SD - standard deviation. 

Measurements (m) 
3D semantic mesh Ground truth 

A-1   1.23 B-1    1.56 
A-2 38.53 B-2 38.48 
A-3   1.48 B-3   1.69 
A-4   1.44 B-4   1.71 

Table 4. Selected point comparison in generated 3d mesh and 
ground truth data in a section of the 2nd floor. 

Figure 6 presents the point cloud and semantic mesh for 
demonstration purposes, where the values are tabulated in Table 
4. The distance measurements shown in the figure are examples 
of how the metric accuracy achieved through monocular depth 
prediction can be evaluated.  

5. DISCUSSION 

Our study introduces Mono-Hydra, a significant advancement in 
robotics' 3D scene understanding, which leverages a monocular 
camera, IMU data, and real-time algorithms within a highly 
parallelised architecture. 
 
5.1 Methodological Strengths and Limitations 

5.1.1 Synthetic data - uHumans2 dataset: Mono-Hydra's 
3D semantic metric mesh prediction, compared to Hydra, showed 
variability, as presented in Table 2. While the DistDepth network 
resulted in an ME ranging from 0.05m to 0.28m, the LiteMono 
network improved the ME to a range of 0.03m to 0.23m, 
exhibiting enhanced performance in indoor scenarios. However, 
LiteMono exhibited higher SD, indicating increased 
inconsistency, especially notable around the building's ceiling, as 
illustrated in Figure 7. Lack of sufficient training data, uniformity 
of ceiling structures, unique capture angles, and varied lighting 
conditions may have contributed to LiteMono’s reduced 
accuracy in depth predictions near the ceiling.  
 

Figure 5. Mono-Hydra results built in real-time with 15 fps on 
848 x 480 data sequences (a) Full 2nd floor loop with Lite-Mono 
(b) 2nd to 3rd floor including stairs with DistDepth. 

(a) 

(b) 

+.8 m 

+0.4 m 

-0.4 m 

-0.8 m 

+.4 m 

+0.2 m 

-0.2 m 

-0.4 m 
(a) 

(b) 
Figure 5. Comparison between Hydra vs Mono-Hydra: Metric 
map of the office (a) DistDepth (b) LiteMono 

Figure 6. Metric results comparison part of the 2nd floor (a) 3d 
semantic mesh with DistDepth (b) Ground truth. 
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5.1.2 Real data - ITC building: A comparison of the 
generated mesh accuracy with a lidar-based point cloud reveals 
that the DistDepth network typically delivers superior accuracy, 
with a lower Mean Error (ME) between 0.19m to 0.21m as 
opposed to LiteMono's range of 0.36m to 0.39m. This 
discrepancy could arise from the suboptimal use of a scaling 
factor in LiteMono for converting relative depth to metric 
measurements, compared to DistDepth's direct metric 
predictions. Differences in network architectures and initial 
training methodologies also play a part, leading to a two-fold 
error difference, as illustrated in Table 3. These findings 
underscore DistDepth's precision in generating a 3D mesh from 
real-world data. 
 
One notable limitation of our study is the unassessed quality of 
semantic segmentation in our generated 3D semantic mesh, 
leaving us without an accuracy measure. Future work should 
address this, as quantifying the segmentation quality could 
provide insights into the effectiveness of our approach and 
indicate areas for further optimisation. This evaluation could 
enhance Mono-Hydra's overall performance and provide a basis 
for comparing similar systems, thus contributing to 
advancements in 3D spatial perception systems. 
 

6. CONCLUSIONS 

To summarise, this paper introduces Mono-Hydra, a real-time 
Spatial Perception System that utilises a monocular camera and 
IMU data to generate a 3D scene graph, achieved by combining 
real-time algorithms and a highly parallelised perception 
architecture on a laptop GPU. While the framework shows 
potential for deployment on embedded systems, further 
optimisation of deep learning networks is necessary. Moreover, 
Mono-Hydra provides a persistent representation of the 
environment with Hydra optimisations and metric-accurate 
DistDepth monocular depth predictions. The study's results using 
the DistDepth network, achieving less than 20 cm error in real-
time processing, are highly promising. This success is 
noteworthy considering the monocular camera and real-time 
setting used. The study demonstrates significant progress in 
monocular depth prediction and hierarchical metric-semantic 
mesh generation, showcasing the technology's potential for 
precise and efficient spatial perception in real-world applications.  
 
Although this approach represents a significant advancement in 
3D scene understanding for robotics, there are opportunities for 
improvement in areas such as hierarchical loop closure 
optimisation, accurate room detection, and temporal consistency 
of the generated 3D semantic mesh. Further research should aim 
to evaluate the multi-task network with temporal consistency, 
leveraging mutual features in both depth and semantic 
segmentation and exploring concepts like structure from motion 
with monocular cameras and deep learning. Furthermore, we 
have not yet assessed the quality of the semantic segmentation in 
our generated 3d semantic mesh and thus do not have an accuracy 
measure for it. This is an important aspect to consider in future 
work, as it will provide insight into the effectiveness of semantic 
segmentation and allow for further optimisation of the overall 
system. In conclusion, the prospective deployment of 3D scene 
graphs in prediction, planning, and decision-making tasks 
emerges as a research area that has received comparatively less 
attention, thereby highlighting a compelling direction for future 
investigation and progress in this field. 
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