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ABSTRACT: 

 

Trees are fundamental parts of urban areas and green urbanism. Although much effort is being put into the digitisation of urban areas, 

trees present great complexity and are usually replaced by predefined models. On the one hand, trees are elements composed of trunk, 

branches, and leaves, each with a completely different structure and geometry. On the other hand, the tree parts are closely related to 

each species. Therefore, in order to obtain a realistic digital urban environment, in 3D models such as CityGML or Metaverse, it is 

necessary that the trees correspond faithfully to reality. The aim of this work is to propose a method to digitise trees from Mobile Laser 

Scanning and Terrestrial Laser Scanning data. The process takes advantage of the differentiation between trunks and leaves for their 

segmentation by point cloud geometric features. Unreal Engine is then used to digitise each part. Trunk and branches are geometrically 

preserved. For dense canopy trees, predefined leaves according to the species are imported and the alpha shape of the crown is filled. 

For non-dense canopy trees, the canopy is imported and modified to fit the branches. The method was tested on four real case studies. 

The results show realistic trees, with correct trunk and foliage segmentation, but highly dependent on the life/canopy repositories. 

Unreal Engine was a very complete and useful tool for the digitisation of trees generating realistic textures and lighting options. 

 

 

1. INTRODUCTION 

Virtual Reality (VR) was born during the 60s of the 20th centuries 

(Delaney, 2016) and is a set of computer techniques that make it 

possible to create simulated images and spaces. These spaces 

enable users to come in and out of the boundary between reality 

and imagination. To develop interactive content with 3D virtual 

space, a virtual environment should be studied to recreate reality. 

Currently, much of the progress in the field of virtual reality is 

focused on representing reality as accurately as possible and 

serving as a model for different activities.  

 

LiDAR technology allows a 3D representation of reality more 

efficiently and quickly than other methods (Guan et al., 2016). In 

addition, LiDAR forestry data have great potential for analysis 

using VR because of their inherently 3D nature (Gardner et al., 

2003). Nevertheless, for full integration of LIDAR analysis with 

VR, the range of analytical tools needs to be greatly increased. 

Since, LiDAR system can lead errors in the data collection 

specially of trees and dense vegetation (Simpson et al., 2017). 

Some of these errors occur due to the point cloud densification in 

the areas of branches and leaves or for the difference in the shape 

of trees that prevents the establishment of similarities for the 

image classification. As consequence, the noise filtering 

generated by LiDAR acquisition in the tree environment is not an 

easy task to perform. Therefore, the development of algorithms 

to improve trees treatment would lead to considerable reduce 

times in trees recreation. Additionally, these algorithms allow the 

development of improvements in both LiDAR and VR, applying 

systems such as Oculus and Google Leans. 

 

The aim of this work is to develop a method to digitise trees from 

point clouds while preserving their geometry. The method is 

implemented in two well-known and widespread software: Cloud 

Compare (Girardeau-Montaut, 2016) for manual point cloud 
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processing, and Unreal Engine for visualisation of virtual 

environments, which is a Game Engine used in VR and 

architectural visualization, so high-quality 3D contents are easily 

accessible (Sanders, 2016).  

 

 

2. RELATED WORK 

A comprehensive review of tree inventory using remote sensing 

techniques can be found in (White et al., 2016). Regarding the 

methods for tree modelling from point clouds, there are four main 

research lines that laid the base for tree modelling. 

 

The first of which set the fixed standards, such as the Space 

colonization algorithm (Runions et al., 2007) which generate 

trees and shrubs by simulating the competition for space between 

growing branches. This method starts with a surface revolution 

obtained around the tree axis which determines the space 

available for growth and is subsequently eliminated by the 

segment creation corresponding with the different branches. 

Then, the tree geometry is modelled using cylinders centred on 

the tree skeleton axes that are generated through the diameter 

calculation of each branch, the distance to the central node and 

the altitude above the ground. Finally, the necessary leaves or 

flowers are added. The method applied to Terrestrial Laser 

Scanning (TLS) data is presented in (Raumonen et al., 2013). 

 

The second research line uses procedural modelling by 

generating parametric context-free (Št’ava et al., 2010) which 

compares a tree with models generated by defined algorithms 

with specific measurement parameters. These parameters can be 

grouped into three types: geometric, seed nature and 

environmental. Geometric parameters define the tree shape, for 

example by determining the internodal distance between two 

branches. The seed nature parameters define the structure and 
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density of the branch. And the environmental parameters define 

the growth direction due to light incidence and gravity. Finally, 

once defined the parameters then are compared cyclically with 

the initial tree model to the optimal model reached.  

 

The third research line is based on the deep photo technique 

(Kopf et al., 2008) which are designed to obtain 3D models in a 

more intuitive way. These methods depend on a tree database 

which is compared with the 2D tree projections to be modelled 

then, for the matches obtained, branches and trunk are 

reconstructed. Also, the user provides some tracings of branches, 

or the shape of the crown and the most similar parameters are 

selected building the 3D model. Then, the branches are 

positioned according to the position of adjacent branches by the 

self-similarity: random selection of replication blocks, scaling, 

reorienting, and joining the branches. The user can limit the 

preparation of the branches or propagated up to a fixed number. 

Finally, the user can select the leaves from the dataset or use the 

default one associated with the modelled tree template.  

 

Lastly, the fourth method stablish the use of images (Reche-

Martinez et al., 2004; Tan et al., 2007) which is divided in three 

steps, first the image is captured, second the 3D point 

reconstruction is performed and finally, branch and leaf recovery 

is carried out. The method is designed to minimize user 

involvement as much as possible by using image data and 

implementing the use of photogrammetry as an alternative to 

differentiate parts of the tree. However, the reconstruction of 

branches is one of the most complex processes. For the visible 

branches, first a graph is constructed with the 3D points and the 

2D projection information, then by means of functions based on 

mathematical models (Pielou, 1966), the graphs are joined and 

the branches are created. Another option is to refine the tree 

skeleton by adding or deleting nodes by the user. For non-visible 

branches, the visible branches by are recovered by reconstructing 

the visible branches by using replication blocks which uses 

growth patterns for occluded branches. Finally, the 

corresponding leaves are added, using simple parameters (such 

as leaves pointing away from the branches) or the original image 

can be traversed by segmentation and grouping the leaves to 

create 3D model considering the different textures to be 

transferred and implemented in the previously processed tree.  

 

In short, the methods described above have laid the foundation 

for 3D tree modelling. However these methodologies have been 

optimized by generating tree branch structures from laser 

scanned terrestrial clouds (Cheng et al., 2007), generating 

methodologies capable of extracting tree structures (Xu et al., 

2007),  reconstructing multiple pre-segmented trees (Livny et al., 

2010), or generating real-time models suitable for interactive 

rendering, furthermore to classify different tree species re-

samples using different processing parameters (Livny et al., 

2011). This work starts from the part modelling (trunk/leaves) 

proposed by other authors and then focuses on the evaluation of 

Unreal Engine to achieve a more realistic model that can be 

directly imported into VR software. 

 

 

3. METHODOLOGY 

The proposed method is based on a tree digitization by parts: 

trunk and foliage. Therefore, it is necessary in a first step to 

identify in the point cloud the trunk-branches and separate them 

from the leaves. Subsequently, depending on the density of the 

foliage  (Johnson et al., 2021), the 3D volume of the canopy is 

filled with (dense crown trees), or a predefined crown is imported 

and adjusted to the branches (non-dense crown trees). The tree 

digital model is visualized in Unreal Engine 4 (UE4).  Figure 1 

shows the workflow of the proposed method. 

  

 
Figure 1. Workflow of the proposed method 

 

3.1 Foliage/trunk segmentation 

The foliage/trunk segmentation is performed from the calculation 

of local geometric features (Weinmann et al., 2015). For this, the 

eigenvalues (𝑒1, 𝑒2, 𝑒3) represent the extent of a 3D ellipsoid of 

each point of the input cloud 𝑃(𝑃𝑋, 𝑃𝑌, 𝑃𝑍) according to a 

neighbourhood of k = 25 neighbours.  These features have been 

shown to be very useful in object segmentation and classification 

(Balado et al., 2023). The calculated features are linearity (Eq.1), 

planarity (Eq.2), sphericity (Eq.3), first and second principal 

components (Eq.4-5), curvature (Eq.6), eigentropy (Eq.7), 

omnivariance (Eq.8) and verticality (Eq.9). These geometric 

features are then analysed to identify those most useful for 

trunk/foliage segmentation. In addition, a Statistical Outlier 

Removal filter was applied to the trunk point cloud to remove 

isolated points. 

 

𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 =  
𝑒1 − 𝑒2

𝑒1
 (1) 

𝑝𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦 =  
𝑒2 − 𝑒3

𝑒1
 (2) 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =  
𝑒3

𝑒1
 (3) 

𝑓𝑖𝑟𝑠𝑡_𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =  
𝑒1

(𝑒1 + 𝑒2 + 𝑒3)
 (4) 

𝑠𝑒𝑐𝑜𝑛𝑑_𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =  
𝑒2

(𝑒1 + 𝑒2 + 𝑒3)
 (5) 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =  
𝑒3

(𝑒1 + 𝑒2 + 𝑒3)
 (6) 

𝑒𝑖𝑔𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑒𝑖ln (𝑒𝑖)

3

𝑖=1

 (7) 

𝑜𝑚𝑛𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  √𝑒1𝑒2𝑒3
3  (8) 

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 =  1 − |𝑁𝑍| (9) 
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3.2 Trunk digitization 

The meshing of the trunk is performed by means of the Ball 

Pivoting Algorithm (BPA) (Bernardini et al., 1999), being 

previously necessary the calculation of surface normals 

𝑁(𝑁𝑋, 𝑁𝑌, 𝑁𝑍). The BPA is based on rolling a ball around the 

cloud points while generating triangles. BPA assumes that the 

points are all in object surfaces. The algorithm starts from three 

random points on which the ball is placed. By always maintaining 

contact with two of these points, the ball pivots until it touches 

another nearby point. These three points form a triangle and so 

on. A radius r for the ball is needed, assuming the ball cannot 

cross the surface without touching the points since the radius of 

the ball is greater than the minimum distance between 

neighbourhoods. Because of this, r is taken to be twice the 

average distance between neighbouring points. The trunk 

generated mesh is loaded into Unreal Engine and assigned the 

most suitable wood texture from Quixel Bridge (Quixel Bridge, 

n.d.).  

 

3.3 Dense canopy digitization 

3.3.1 Canopy delimitation: For the digitization of dense 

canopy trees, the 3D volume that encloses the canopy is 

calculated by means of a triangulation and an alpha shape. The 

aim of using alpha shape is to preserve the shape of the tree, not 

to segment the canopy from the rest of the environment. The 

convex hull is created by means of the Delaunay triangulation. 

The main advantage of this triangulation is the adaptation to 

complex surfaces and volumes. An alpha shape is formed from 

the limit of an alpha complex, which is a subcomplex of the 

Delaunay triangulation. For this set, a family of alpha shapes can 

be defined, with the parameter α, that specifies the level of 

refinement and is adjusted experimentally (Section 4.3). 

 

3.3.2 Leaf selection and import: The leaf is one of the most 

distinctive parts of the tree. In (Shutterstock, n.d.), there is an 

open repository of leaves (Figure 2). The model that most closely 

matches the tree species is selected and imported into Unreal 

Engine using the foliage editor as a static mesh. The foliage 

density (number of leaves per unit area) is adjusted depending on 

the tree species. Also, random rotation/tilt angles are defined, 

while preserving the predefined imported leaf size and texture. 

 

 

Figure 2. Examples of available free leaf models. 

 

3.4 Non-dense canopy digitization 

For the digitization of non-dense tree canopies, external canopy 

models available from (Shutterstock, n.d.) are used, not single 

leaves as in dense canopy digitization. The tree canopy that best 

fits the species is selected. Then, the canopy is imported into 

Unreal Engine and using the mesh editor (Figure 3), the foliage 

is manually adjusted to the branches, moving, or removing 

distant leaves. 

 
Figure 3. Unreal Engine Mesh Editor. 

 

3.5 Merge trunk/foliage 

In this last phase, the previously digitized trunk and leaves are 

aligned and merged into a 3D object. The "merge actors" option 

is used to preserve the textures of both the trunk and the leaves 

despite converting them into a single mesh. 

 

 

4. RESULTS 

4.1 Case study 

The proposed method was tested on four real case studies. The 

trees located in Palencia (Spain) were acquired with LYNX 

Mobile Mapper of Optech and the tree located in Monçao 

(Portugal) was acquired with a Terrestrial Laser Scanner (TLS) 

Faro Focus X330. Trees were segmented manually form MLS 

and TLS point clouds. 

 

Common 

name 
Scientific name 

No. 

points 
LiDAR 

Pine Pinus Cembra 66k MLS 

Cypress 
Cupressus 

Sempervirens 
20k MLS 

Plane tree Platanus occidentalis 15M TLS 

Poplar Populus Nigra 305k MLS 

Table 1. Case studies. 

4.2 Geometric segmentation  

For dense canopy trees, the most relevant geometric features and 

thresholds identified for trunk segmentation were (Figure 4): 

 

• Verticality: range 0.82 to 1 

• Sphericity: range 0 to 0.30 

• Planarity: range 0.35 to 0.92 

• Eigentropy: range 0.22 to 0.51 

 

For non-dense canopy trees, the most relevant geometric features 

and thresholds identified for trunk segmentation were (Figure 5): 

 

• Linearity: range 0 to 0.57 

• Second principal component: range 0.29 to 0.5 

• Verticality: range 0.04 to 1 

 

This trunk/leaf segmentation approach showed a correct 

behaviour, although due to the limited number of case studies, it 

is assumed that the performance is not as high as other state-of-

the-art methods. 
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Figure 4. Geometric features for dense tree canopy 

segmentation: a) verticality, b) scattering, and c) eigentropy. 

 
Figure 5. Geometric features for non-dense tree canopy 

segmentation: a) linearity, b) second principal component, and 

c) verticality. 

 

 
Figure 6. Influences of α on alpha shape generation: a) α = 0.1, 

b) α = 0.3, c) α = 0.9, d) α = 3.5. 

 

4.3 Alpha shape generation 

The selection of α is fundamental to obtain a 3D volume that 

faithfully fits the dense tree canopy. The parameter α was 

selected experimentally according to realism of 3D canopies 

envelopes. Figure 6 shows the envelopes generated according to 

different α for case study 1. As can be seen, for very low alpha 

values, a complete envelope was not generated, while higher 

values fit the shape of the tree. Alpha was set to 3.5 for the two 

dense canopy trees. 

 

4.4 Tree digitization  

The tree digitization results for the four case studies and their 

comparison with Google Street view images and acquired point 

clouds are shown below. The pine tree (Figure 7) is the first 

example of dense canopy tree. The alpha shape allowed the 

reconstruction with an accurate shape. However, as no digital 

models of specific pine leaves were available, the filling 

(geometric terms and colour) of the crown does not match reality. 

 

As the cypress tree (Figure 8) had no visible trunk, the 

foliage/trunk segmentation was not performed. The digital model 

responds to the shape of the tree accurately. In this case the alpha 

shape algorithm was very robust, as the back of the tree was not 

represented in the input data due to the high density of leaves and 

MLS trajectory. The colours of the tree did not correspond 

faithfully to reality, although they could not be obtained from the 

point cloud either. On the other hand, the model does not contain 

the seeds of the tree either. 

 

 

Figure 7. Pine visualized as a Google Street View image (a), 

point cloud in Cloud Compare (b) and 3D object model in 

Unreal Engine (c). 

 

Figure 8. Cypress visualized as a Google Street View image 

(a), point cloud in Cloud Compare (b) and 3D object model in 

Unreal Engine (c). 

 

Figure 9. Plane tree visualized as a Google Street View image 

(a), point cloud in Cloud Compare (b) and 3D object model in 

Unreal Engine (c). 

 

Figure 10. Poplar visualized as a Google Street View image (a), 

point cloud in Cloud Compare (b) and 3D object model in 

Unreal Engine (c). 
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The platanus branches (Figure 9) provided the most complex 

environment of all case studies. This point cloud acquired with a 

TLS had a much higher point density than the others. Although 

the BPA algorithm managed to preserve the geometry of the 

trunk and branches accurately, the textures were lost and replaced 

in the process. The result of the digitization was very close to 

reality. In addition, the leaf pattern used was very similar to the 

leaves of the platanus. 

 

The poplar tree (Figure 10) shows a very realistic result, better 

than the point cloud which had colouring errors and few leaves. 

In addition, the lighting generated by the graphics engine, 

together with the colour of the leaf model, enhances the realism 

of the tree. 

 

5. DISCUSSION 

The proposed method showed realistic results considering the 

complexity and variety of trees and LiDAR systems. Trunks and 

branches were modelled with detailed geometry, although colour 

and texture were replaced. This means that no colouring errors 

are transmitted from point clouds to digital models in Unreal 

Engine, but also a dealignment with reality. The same is true for 

leaves. Unreal's foliage and mesh editors made it possible to 

generalize digital leaf models and adjust them faithfully to the 

tree according to the distribution of the real leaves. Such models 

are largely dependent on the availability of leaf models according 

to the tree species, as (Kopf et al., 2008). Although in future work 

it will be possible to generate a library of specific leaf models.   

 

The proposed method provides a valid alternative to other 

currently used methods (Runions et al., 2007). The difference and 

novelty of this procedure in comparison with methods developed 

in similar research is that, with an optimal LiDAR scan, branches 

and trunk of the digital tree are identical to the original tree 

without the application of mathematical algorithms to calculate 

the probability of growth of the branches. This method obtains 

the trunk and canopy directly from the point cloud, preserving 

original shape, size and orientation.   
  
The processing of the trees was almost entirely manual in the 

proposed method, except for automated algorithms such as BPA, 

Delaunay triangulation or alpha shape generation. This work 

presented a conceptualization of the proposed method, and 

several of the steps will be automated in future work. The 

identification of the tree species is a state-of-the-art process using 

Artificial Intelligence (Hartling et al., 2021; Uryasheva et al., 

2022; Weiss et al., 2010), as well as trunk/leaf segmentation 

(Giménez-Gallego et al., 2019; Majeed et al., 2018; Uryasheva et 

al., 2022).  Once the tree specie is known, customized leaf 

models and segmentation parameters can be automatized and 

optimized.   
 

The proposed method was independent of whether the input data 

came from TLS or MLS sensors, as long as the tree point cloud 

was as complete as possible. The main influence of the input data 

was on the processing times (Table 2), since the TLS point cloud 

contained more points, so more triangles were generated in the 

trunk mesh. The method was implemented in Unreal Engine 

427.15, with CPU intel i5-7300HQ 2.5GHz, 8GB RAM, Nvidia 

GTX 680.  
 

 

 

  

Common 

name  
No. 

points  LiDAR  Processing 

time  
No. 

triangles  
Pine  66k  MLS  3 s  1386  

Cypress  20k  MLS      

Plane tree  15M  TLS  248 s  625168  

Poplar  305k  MLS  76 s  38324  

Table 2. BPA processing time.  
 

 

6. CONCLUSSION 

In this work, a new method developed for tree digitalisation is 

presented based on Cloud Compare for the segmentation of the 

tree parts, Python for the meshing of the surfaces and Unreal 

Engine to create leaves and texture the tree. The system was 

tested with four different trees scanned with TLS and MLS 

systems. Very realistic and detailed results were obtained 

considering the computational limitations of the equipment, 

which did not allow obtaining higher quality textures or the 

implementation of the method in Unreal Engine 5.  

  
This method achieved the successful segmentation of trunk and 

leaves using the geometric features of the point cloud. This work 

also proposes for the first time the use of Unreal Engine's "foliage 

editor" to digitalise trees from point clouds. Starting from a static 

mesh of a leaf, leaves can be propagated around cylindrical 

objects, in this case the trunk, being able to control orientation 

and the range of alignment of these leaves regarding trunk 

surfaces.   

  
Unreal Engine was a very complex tool for digitising trees from 

point clouds. Using the mesh and foliage editors it is possible to 

import and modify pre-generated models of tree parts. Also, 

illumination and texture options of Unreal Engine give a great 

realism to the created models.  

  
The results obtained are highly dependent on pre-existing 

libraries of leaves and canopies. This was visible in the 

digitisation of dense tree canopies, where the available leaf 

models did not match the tree species. For non-dense crown trees, 

the result through the foliage editor was very positive. It can be 

expected that by generating species-specific leaf and canopy 

models, results will be significantly improved.    

  
For future work will focus on experiment with more tree samples 

and species scanned with other LiDAR systems. In addition, full 

automation of the process will be achieved in the adjustment of 

leaves to the trunk or the detection of thresholds for trunk/leaf 

segmentation. 
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