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ABSTRACT:    
Real-time localization is a crucial task in various applications, such as automatic vehicles (AV), robotics, and smart city. This study 
proposes a framework for map-aided LiDAR-inertial localization, with the objective of accurately estimating the trajectory in a point 
clouds map. The proposed framework addresses the localization problem through a factor graph optimization (FGO), enabling the 
fusion of homogenous measurements for sensor fusion and designed absolute and relative constraints. Specifically, the framework 
estimates the light detection and ranging (LiDAR) odometry by leveraging inertial measurement unit (IMU) and registering 
corresponding featured points. To eliminate the accumulative error, this paper employs a ground plane distance and a map matching 
error to constraint the positioning error along the trajectory. Finally, local odometry and constraints are integrated using a FGO, 
including LiDAR odometry, IMU pre-integration, and ground constraints, map matching constraints, and loop closure. Experimental 
results were evaluated on an open-source dataset, UrbanNav, with an overall localization accuracy of 2.29 m (root mean square error, 
RMSE).  
 

1. INTRODUCTION 

Localization is a fundamental task for AVs as it provides real-
time position to higher-level functions and automatics, such as 
vehicle control, path planning, and environment perceiving. The 
solution of LiDAR-based navigation coupled with inertial 
sensors, has become a widely used observation multi-sensors 
system for navigation tasks, as the observed point clouds are 
invariant to changing illumination and viewpoints (Ai et al., 
2022). Although map-less LiDAR-based simultaneous 
localization and mapping (SLAM), such as Cartographer and 
LOAM-variants (Nüchter et al., n.d.; Ji Zhang and Singh, 2014), 
can generate accurate global mapping with real-time estimated 
trajectory, they are prone to misalignments and accumulated 
errors when there are limited stable points with associated 
features (Dube et al., 2017; Rozenberszki and Majdik, 2020; 
Schaefer et al., 2019). Therefore, involving a prior map which 
encodes the environmental features has become a popular 
solution to enhance the performance of long-term localization in 
urban canyon environments.  
 
Researchers have successfully implemented map-aided 
navigation in urban environments; however, the performance is 
still limited in complicated scenarios. The challenging issues of 
map-aided LiDAR-based navigation can be discussed in two 
aspects. First, the accuracy of the odometry estimation is reduced 
when moving objects exist in the observed environments, as 
misalignments cannot be corrected by global constraints, such as 
loop closure, especially in cases where there are no loops along 
the trajectory. Although deep-learning-based semantic features 
have been widely used to enhance the alignment by involving 
object-level semantic patches, the positioning is still drifting 
overtime as the error continues to accumulate when the error 
source is not related to semantics. Secondly, the localization 
performance highly depends on the fusion scheme and designed 
constraints. The estimated trajectory is prone to falling into local 
minima resulting in unexpected errors. These challenging issues, 
if not addressed appropriately, can decrease the accuracy of 
LiDAR-based navigation, particularly in dense urban 
environments.  

 
To address the aforementioned challenges, we propose a map-
aided tightly coupled LiDAR-Inertial localization framework 
that incorporates ground constraints and map matching 
constraints to obtain a global trajectory. Specifically, relative 
odometry is estimated using LiDAR odometry, IMU pre-
integration. Along the trajectory, this paper proposes to detect 
and apply the local absolute constraints including map matching 
constraint and ground constraint, as well as loop closure 
constraint to enhance the positioning. Finally, a FGO is designed 
to fuse all the constraints and estimated relative odometry and 
output the real-time high accuracy trajectory. The main 
contributions of this work are summarized as follows:  
 
• We propose a map-aided navigation solution that integrates 

a LiDAR and an IMU for global localization and formulates 
the localization problem as FGO framework.  

• To enhance the performance of localization, we introduce 
absolute constraints based on the segmented ground planes 
and the map matching, which are jointly optimized in the 
FGO.  

• We present experimental evaluations that demonstrate the 
stable localization performance of our proposed framework 
in various urban environments.  

 
2. RELATED WORK 

In this section, we provide a brief review of map-aided LiDAR-
based localization. We categorize related works into two aspects: 
the mathematical formulation of navigation and the algorithms of 
constraints.   
 
Some researches propose place recognition algorithms that match 
online point clouds with the prior map for real-time positioning. 
For example, the Autoware implements NDT matching for 
LiDAR-based navigation and introduces a scan matching 
framework, that the performance highly depends on the map 
resolution (Kato et al., 2018). In (H. Liu et al., 2019), a multi-
group-LM (Levenberg–Marquardt) optimization algorithm is 
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proposed to calculate the Jacobian matrix and avoid local minima. 
Other researchers propose error models such as Monte Carlo 
(MC) algorithm to fuse homogenous variables and establish state 
function. For example, in the case of (Dong et al., 2021), the 
localization framework is implemented based on MC localization, 
and online trajectory is estimated by matching extracted pole-like 
objects with the prior pole map and fusing the variables into 
particle filters. Similarly, in (Liu et al., 2022), an Extended 
Kalman Filter (EKF) and an adaptive MC algorithm are designed 
to fuse multi-source data to estimate relative motion. Inspired by 
FGO-based SLAM algorithms, we involve the FGO framework 
to estimate the trajectory, which is one of the most stable 
frameworks to fuse heterogenous measurements and variables.  
 
To address misalignment issues resulting in large drift along the 
trajectory, some researchers focus on feature encoding and 
extraction of the prior map to provide geometric description for 
the registration with onboarding sensors. For example, feature-
based points, such as scale-invariant feature transform (SIFT) 
and infrared remittance, are extracted to represent the geometric 
distribution of surrounding environments (Imanullah et al., 2019; 
Levinson and Thrun, 2010). In (Bârsan et al., 2020), the work 
introduces the intensity-based map and involves the joint 
embedded features for association. High-definition (HD) maps, 
such as OpenstreetMap, provide the distribution and positions of 
traffic signs, which are considered as geo-referenced objects and 
matched with perceived results from LiDAR (Cho et al., 2022). 
Other researchers involve training-based semantics such as 
DeepICP and Segmatch for the semantics-based alignment (Dube 
et al., 2017; Lu et al., 2019). However, the training models need 
to be updated with extra manual works when new environments 
are expected to be used as test datasets. In this work, we introduce 
a feature map that employs stable geometric points, including 
corner points, planar points and segmented ground points (Ji 
Zhang and Singh, 2014).  
 
To enhance the robustness of long-term navigation, some 
researchers focus on designing constraints and optimization 
conditions for fault detection engines and boundary minimization. 
For example, overlapNet is proposed to estimate the yaw angle 
and recognize the loop closure for global mapping by aligning 
the semantics between LiDAR and the semantics map (Chen et 
al., 2022). Similarly, (Dube et al., 2017) introduces a semantics-
aided matching algorithm for the loop closure, while (Zhu et al., 
2020) introduces a graph-of-semantics network that involves 
semantic segments and generates graph descriptor for loop 
detection. In (X. Liu et al., 2019), ground points are segmented 
to provide consistent normal vector to eliminate the error from 
non-stationary objects. These works can address the problem by 
designing global constraints for accurate loop closure, however, 
the instability of point-level alignment is ignored during the local 
odometry estimation. Different from the previous works that 
focus on loop closure, this work proposes the local constraints 

including the map matching and consistent ground plane to 
eliminate the drift during the movements.  
 

3. METHODOLOGY 

In this section, the detail of the proposed map-aided localization 
framework is introduced as follows.  
3.1 System overview  

Considering a multi-sensor system comprising an onboard 
LiDAR and IMU, the system receives synchronized raw data 
from these sensors, and the measurement of Global Navigation 
Satellite System (GNSS) is optional. A prior feature map is geo-
referenced and is composed of geometric feature points. In 
addition, it is assumed that all the sensors are pre-calibrated, and 
the IMU frame coincides with the body frame. To estimate the 
trajectory, the motion state 𝑥 of the system can be formulated as 
follows:  

x = [R!, p!, v!, b!]!,                             (1) 
where  R = rotation matrix, 𝑅 ∈ 𝑆𝑂(3) 
 p = position vector, 𝑝 ∈ 𝑅" 
 v = speed 
 b = IMU bias 
The objective is to estimate the transformation matrix T from 
body coordinate B to world coordinate W, which is represented 
as T#$ = [R | p].  
 
Figure 1 provides an overview of the proposed localization 
framework, which aims to estimate the state node of the 
navigation in each timestamp. The state estimation is formulated 
as a maximum a posteriori (MAP) problem. In this study, a factor 
graph is used to model the MAP problem, which is one of the 
stable solution to fuse heterogenous measurements with different 
frequency (Shan et al., 2020). By defining a Gaussian noise 
model, the framework is to find the minimized value by solving 
the nonlinear least-squares problem, as Equation 2.  
 

T#%
∗ = argmin	 ∑  &'(,.+ =∥∥e&,-./0∥∥1"LDAR 

2 + ∥∥e-,3
loop 

∥∥1#,%loop 

2
+

∥∥e&
ground 

∥∥1"ground
2

+ ∥∥e4567∥∥1&IMU 
2 + ∥∥e8

9:8;<-4=
∥∥1'matching 
2

A  (2) 

 
where e&,-./0 , e-,3

loop , e&
ground ,	e4567 ,	 and	  e8

9:8;<-4=  denote the 
LiDAR odometry, loop closure, ground constraints, IMU pre-
integration, and map matching constraint, respectively. 𝐾 
denotes the number of nodes in the factor graph. Each factor 
contributes to the pose estimation when a new state node is added 
to the graph. Then the factor graph is subsequently optimized 
based on the Bayes tree (iSAM2) using incremental smoothing 
and mapping framework (Kaess et al., 2011). The process for 
generating the aforementioned factors and constraints is 
described in the following sections. 

 

 
Figure 1. The pipeline of the proposed framework.
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3.2 Tightly coupling LiDAR-IMU odometry  

The tight coupling of LiDAR and IMU enables the estimation of 
the relative motion between each relative state node 
incorporating IMU pre-integration and LiDAR odometry. Details 
are described in the following sections.  
 
3.2.1 IMU pre-integration  
Following the algorithm and solution from (Forster et al., 2017), 
the IMU pre-integration based on raw angular velocity and 
acceleration is defined, as shown in Equation 3 and Equation 4. 
The IMU pre-integration provides the relative transformation 
between two received IMU raw data and provides a state factor 
while mitigating the motion drift of point clouds.  
 

𝜔E8 = 𝜔8 + b8> + n8>

aF8 = R8?$(a8 − g) + b8@ + n8@
                        (3) 

 
where  𝜔E8 = raw angular velocity  
 aF8 = raw acceleration  
 R8?$ = transformation matrix from 𝑊 to 𝐵 
 

Δv-3 = R-AKv3 − v- − gΔ𝑡-3M

Δp-3 = R-A Np3 − p- − v-Δ𝑡-3 −
B
2 gΔ𝑡-3

2 O

ΔR-3 = R-AR3

           (4) 

 
where Δv-3 , Δp-3 , ΔR-3  represent the velocity, position, and 
rotation of the relative motion in the body frame.  
 
The IMU mechanization provides highly frequent relative pose 
information through its measurements. Meanwhile, the IMU bias 
is jointly optimized using FGO during motion to mitigate the 
drift.  
 
3.2.2 LiDAR odometry estimation 
When a new frame of point clouds is available, several steps are 
implemented to estimate the local LiDAR odometry, including 
motion drift calibration, feature extraction, scan matching and 
relative transformation estimation (J Zhang and Singh, 2014). 
Here, we provide a brief overview of the LiDAR odometry 
estimation process.  
 
By integrating IMU data, the first step is to perform motion drift 
calibration to synchronize the timestamp of each frame. Next, 
edge and planar points are then extracted as featured point 
{𝐹&

C, 𝐹&D} by calculating and sorting the roughness of points. The 
distance between relative frames is minimized and the relative 
transformation is calculated. The process can be formulated as 
Equation 5,  
 

m&EB,#
&,# = 𝜌KF&UF&

C, F&DV, F&EBUF&EB
C , F&EBD VM.        (5) 

 
where 𝜌  denotes the distance minimization operation.	m&EB,#

&,# 	
demonstrates the coarse relative pose information between the 
feature point set F&UF&

C, F&DV  and feature point set 
F&EBUF&EB

C , F&EBD V. 
 
Two steps are involved in estimating the relative transformation 
matrix. First, the corresponding edge and planar points are 
registered by comparing the feature patches. Second, with an 
initial value is estimated from the IMU pre-integration, a Gauss-
Newton method is used to solve the non-linear function for 

minimizing the distance. The relative transformation matrix can 
be represented using Equation 6,  

ΔT&EB,& = T&EBA T&                                (6) 
where ΔT&EB,&  is the relative LiDAR odometry between two 
states 𝑇& and 𝑇&EB.  
3.3 Map matching  

In this section, we provide a comprehensive explanation of 
incorporating map matching between LiDAR perception and the 
prior feature map for the localization task.  
 
Prior to online localization, a prior feature map is generated to 
represent the geometric features of the surrounding structures. In 
general, we utilize the ground truth poses to align featured points 
extracted from LiDAR to construct the feature map along the 
trajectory. Firstly, pre-processing is performed, which includes 
coordinate transformation and time synchronization, between 
GNSS and LiDAR. This ensures that both data sources are 
properly aligned for further analysis. Secondly, a feature 
extraction module is designed to extract stable points from 
LiDAR. Specifically, ground points are segmented to provide 
consistent ground planes, while corner points and planar points 
are extracted to encode the geometric information of the 
environment. Additionally, a denoising algorithm is 
implemented to eliminate the effect of noise points and non-
stationary objects. Finally, the offline map is generated by 
aligning continuous feature points using the ground truth 
trajectory. An example of the feature map is shown in Figure 2.  
 

 
Figure 2. One example of prior feature map, where (a) 

represents the global map and (b) shows the zoomed-in version 
of the global map. The zoomed-in map clearly illustrates the 

boundary and consistent ground points. 
 

The aim of the proposed map matching process is to establish 
relative transformation relationship between the onboard LiDAR 
and the prior feature map. In general, the distance error of the 
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map matching is expected to be zero, which can be an absolute 
constraint for the relative transformation estimation. To generate 
the map matching factor, the Iterative Closet Point (ICP) is 
implemented to align the corresponding points between 
onboarding LiDAR and the feature map. Here, to reduce the 
computation cost, sparse keyframes are selected with predefined 
distance and angle thresholds and are utilized to generate the 
constraint. An example of map matching is shown in Figure 3.  
 

 
Figure 3. An example of map matching between received 

featured point clouds (coloured points) and the down sampled 
feature maps (white points) in the Linux system.  

 
3.4 Ground constraint  

This section outlines the approach employed to detect ground 
points and constraints from point clouds captured by the onboard 
LiDAR.  
 
Various techniques have been proposed for extracting the ground 
plane from point clouds, and one widely used and efficient 
algorithm is Random Sample Consensus (RANSAC) (Ni et al., 
2016). Prior to ground detection, points clustering is 
implemented via a pre-defined Euclidean distance and ground 
points segmentation is achieved by exploiting the angle of the 
received laser signals, which enables estimation of the relative 
height of the vehicles in relation to the ground. In this work, the 
ground plane model is defined using the normal vector of the 
detected surface and the Euclidean distance between the points to 
the detected ground surface, as follows,  

G& = Z𝑛&F, 	𝑛&
G, 	𝑛&H 	𝑑&]

I                           (7) 
where (𝑛&F, 𝑛&

G, 𝑛&H) represents the normal vector and 𝑑&  is the 
Euclidean distance. Therefore, the process of ground detection 
via RANSAC can be defined as Equation 8, 

𝑛&∗ = 𝑎𝑟𝑔𝑚𝑖𝑛c𝑛&F𝑃F,= + 𝑛&
G𝑃G,= + 𝑛&H𝑃H,= − 𝑑&c        (8) 

where 𝑛&∗  denotes the optimal parameters of the ground plane. 
The 𝑃= = {𝑃F,=, 𝑃G,=, 𝑃H,=} denotes several points contributed to 
ground surface.  
 
Figure 4 illustrates an example of ground detection using 
RANSAC in urban environments. The red points indicate the 
ground points, while the white points represent the non-ground 
points. It is worth noting that the algorithm is capable of 
accurately detecting and labelling the ground points, even in the 
presence of dynamic objects such as vehicles on the road. By 
assuming the ground model is consistent as plane primitive along 
with the trajectory, the difference of detected ground planes can 
be considered as ground constraints and optimized in the FGO.  
 

 
Figure 4. Examples of ground points segmentation (raw data: 
white points, segmented ground: red points) in the Urbannav 

dataset. 
 

3.5 Loop detection  

To perform global constraints, loop closure detection is a useful 
technique to eliminate the accumulative errors. It involves 
comparing the current frame with historical frames and applying 
the global constraint. To efficiently identify potential loop 
closures, this paper employs the scan context (SC) algorithm for 
loop candidate selection. When the difference of SC is less than 
a threshold 𝜏, the loop closure is accepted when the distance is 
less than distance threshold 𝑑K; . A brief description of the SC 
descriptor and loop closure is introduced as follows:  
 
The (SC) algorithm serves as a global descriptor for place 
recognition and facilitates the descriptor of loop closures (Kim 
and Kim, 2018). The SC descriptor divides a frame point clouds 
into azimuthal bins and radial bins, with the number of sectors 
𝑁L  and rings 𝑁M . The unorganized point clouds can be 
transformed using Equation 9.  
 

𝑃 =	⋃ 𝑃-,3-∈[P(],3∈[P)]                                  (9) 
where  𝑃 = point clouds 
 [i , j] = ith ring and jth sector  
 
Then the value of each bin of matrix is defined as the maximum 
value of the height value, as the following Equation 10,  
 

𝐼 = ∅K𝑃-,3M                                      (10) 
where ∅K𝑃-,3M = 	 maxC∈R#,%

𝑧(𝑝)  demonstrates the operation that 

return the matrix value of 𝑧 direction.  
 
Given SC pairs, the similarity between two SC descriptor is 
calculated as Equation 11,  
 

𝑐∗ = argmin
;"∈𝒞

𝐷(𝐼T , 𝐼;"), s.t 𝐷 < 𝜏                 (11) 

 
where  𝐷(𝐼T , 𝐼;") = Euclidean distance between the two SC 
pairs. 
 𝜏 = predefined threshold 
 𝑐∗= index of loop closure 
 
After comparing the SC distances, the loop closure is selected by 
searching the closest distance of feature points in Euclidean 
space. The relative transformation matrix between the accepted 
loop is considered as loop closure factor, following Equation 12, 
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𝑇-,3
KUUC = (𝑝-,3

KUUC, 𝑞-,3
KUUC)                          (12) 

where 𝑇-,3
KUUC  denotes the transformation matrix between the 

detected frames. 𝑝-,3
KUUC  and 𝑞-,3

KUUC  represent the translation and 
quaternion form, respectively.  
 
3.6 GNSS localization (optional) 

Despite the ability of map matching can provide reliable geo-
reference and constraints, accumulative errors may affect the 
performance of localization. To address this issue, a GNSS 
system is considered as an optional solution to provide absolute 
measurements.  
 
When GPS signal is received, it is transformed into the Cartesian 
coordinate using the Monarto projection. Subsequently, an 
initialization process is carried out to evaluate the accuracy of the 
current GPS signal by comparing the position between the state 
of the last node and the current GPS position. A new GPS factor 
is then added as a new node into the factor graph. In addition, to 
synchronize with other factors, linear interpolation is employed 
among the GPS measurements based on timestamps.  
 
3.7 Factor graph optimization 

This section provides an overview of the construction and 
optimization process of the factor graph optimization, 
incorporating the designed constraints and the motion state. The 
factor graph efficiently integrates the constraints, including map 
matching constraints and ground constraints, with the global 
constraints of loop closure, as well as the LiDAR odometry and 
IMU pre-integration. The structure of the factor graph is shown 
in Figure 5, which includes four types of constraints and the state 
node of the localization in the 𝑊. The state node is represented 
using 𝑇 which is defined in Equation 1, which encodes the pose 
information along the trajectory.  
 
The LiDAR odometry factor 𝐞&EB→	&,-./0  and IMU pre-integration 
factor 𝐞&EB→&567  can be represented as Equation 13 and Equation 
14, respectively, which are calculated based on odometry 
estimation,  
 

𝐞&EB→	&,-./0 = ∥∥N𝐓#,&EB
% EB𝑻#,&% O , N𝐓#,&EB, EB𝑻#,&, O∥∥𝚺"*+,-

2
(13) 

 

𝐞&EB→&567 = r𝐓#,&EB% EB𝑻#,&% r
2
                         (14) 

 
where 𝚺&,-./0 and 𝚺&567 denote the information matrix of LiDAR 
and IMU odometry, respectively.  
 
The loop closure constraint is defined by the Euclidean distance 
between the detected loop as following,   
 

𝐞-,3
KUUC = ∥∥N𝐓,,&EB

% EB𝑻,,&% O , N𝐓,,-,3, EB𝑻-,3, O∥∥𝚺".//0
2

         (15) 

 
Given that the ground constrain is based on the detected ground 
plane, the 𝐞&

=MUY4Z can be represented using the normal vector, as 
demonstrated in Equation 16 (Wen and Hsu, 2022).  
 

𝐞&→&[B
=MUY4Z = c𝑛&% − 𝑛(%c

2                          (16) 
where the 𝑛(% = [0	0	0	1] is expected as the assumption of flat 
ground.  
 

As for the map matching constraint, the error function can be 
formulated as,  

𝐞&→&[B
9:C	9:8;<-4= = r𝐓#,&EB% EB𝑻#,&% r

2
                         (17) 

 

 
Figure 5. The structure of factor graph optimization. 

 
4. EXPERIMENTS 

To evaluate the proposed framework, we conducted experiments 
using a opensource dataset from UrbanNav (Hongkong) with 
medium density is selected (Hsu et al., 2021). The detailed 
description of the dataset is shown in Table 1. Meanwhile, some 
key parameters used in experiments are listed in Table 2. During 
the evaluation, we compared to the state-of-art Lego-LOAM and 
NDT-based solution algorithms (Kato et al., 2018; Shan and 
Englot, 2018). The accuracy evaluation for translation and 
rotation is defined as following. Meanwhile, we implement the 
evaluating toolkit to calculate the relative error (RPE) for the 
translation and rotation in movement direction, including x axis 
and y-axis (Grupp, 2017).  

• RMSE: standard deviation of the trajectory  
• MEAN: Mean error of the trajectory  
 

Table 1. Dataset description. 
Description UrbanNav (Medium Density) 
IMU sensor Xsens Mti 10, 400 Hz, AHRS 

LiDAR scanner 32 (beams) 
Trajectory length 3.64 (km) 
Number of Scans  7848 (frames) 

Dynamics With various moving objects 
 

Table 2. Parameters in the experimental evaluation 
Parameters Value Description 

𝛿\ 1 m Keyframe selection 
𝛿8 15° Keyframe selection 
𝜎 0.2 Down sample rate 
𝜏 0.5 Scan Context 

 
Table 3. Accuracy evaluation in translation. 

Accuracy Algorithms (m) 
 Lego-

LOAM 
NDT-based 

method 
Our 

algorithm 
MEAN 19.46 5.72 1.07 
RMSE 50.00 16.10 2.29 

 
As shown in Figure 6, the proposed solution successfully 
estimates a highly accurate trajectory compared to the ground-
truth pose information. Specifically, the trajectory obtained by 
Lego-LOAM is highly drifted as the performance of LiDAR 
odometry is easily affected in dynamic environments with many 
moving objects. Additionally, the global optimization of Lego-
LOAM is only based on loop closure in the graph optimization 
algorithm, and large drift has been accumulated before the loop 
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is obtained along the trajectory. As for the NDT-based algorithm, 
the performance of the trajectory depends only on the accuracy 
of NDT matching, which is easily affected by moving objects. 
Compared to these two algorithms, our proposed algorithm 
achieves more stable results in urban canyon environments. 
 

Table 4. Accuracy evaluation in rotation. 
Accuracy Algorithms (degree) 

 Lego-
LOAM 

NDT-based 
method 

Our 
algorithm 

MEAN 12.87 8.13 3.18 
RMSE 29.36 15.36 5.39 

 

 
Figure 6. Estimated trajectory using our proposed method and 

ground-truth trajectory. 
 

Figure 7 shows the detailed and zoomed-in results of the 
estimated trajectories using different algorithms. We selected 
turning (location A), after-turning (location B), and long-term 
navigation (location C) for accuracy comparison. When the 
vehicle enters the turning, the result of Lego-LOAM is highly 
affected as the overlapping between relative frames decreases (as 
shown in Figure 7(a)). Additionally, the performance of the 

NDT-based algorithm continuously decreases as errors 
accumulate via point cloud registration. Therefore, our proposed 
algorithm achieves stable performance by enhancing error 
elimination and local constraints. 

 
The error evaluation of rotation and translation along the 
trajectory are shown in Table 3 and Table 4. In general, our 
proposed algorithm achieves more stable results than Lego-
LOAM and NDT-based algorithm. Regarding the mean rotation 
error, the proposed algorithm achieves around meters error in the 
long-term navigation task. With the help of IMU preintegration, 
the trajectory is stable even where there is a turning (as shown in 
Figure 7).  

 
5. CONCLUSION AND FUTURE WORK 

This paper presents a localization framework based on LiDAR 
and inertial measurements, aiming to enhance robustness in 
urban canyon environments. The proposed approach formulates 
localization within a FGO framework, utilizing state nodes and 
constraints. Specifically, LiDAR odometry and IMU pre-
integration estimate the relative transformation to link the relative 
state node, while three separate constraints in the form of factors 
are introduced through segmented ground constraint, map 
matching, and loop closure. The proposed algorithm offers two 
key advantages: Firstly, by employing the FGO framework, 
heterogenous measurements can be fused, effectively mitigating 
cumulative errors. Secondly, the framework can efficiently 
enhance positioning performance at two stages of odometry 
estimation and global optimization by fusing different constraints.  
Experimental results demonstrate that the navigation solution can 
achieve stable and high accuracy positioning in urban canyon 
environments.  
 
Future work will concentrate on the feature representation and 
association to improve the accuracy of registration and place 
recognition. The limitation of our work is that we utilize all the 
point clouds obtained from LiDAR. For the process of point 
registration, moving objects (e.g., moving cars) will bring in 
large error feature association and the non-rigid transformation 
matrix between relative state nodes. Feature work will focus on 
removing moving objects based on semantics and enhancing the 
positioning in dense environments.  
 
 
 
 

 

 
Figure 7. Evaluation results compared to ground truth trajectory. 
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