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A combination network of CNN 
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Communication interference identification is critical in electronic countermeasures. 
However, existed methods based on deep learning, such as convolutional neural 
networks (CNNs) and transformer, seldom take both local characteristics and 
global feature information of the signal into account. Motivated by the local 
convolution property of CNNs and the attention mechanism of transformer, 
we  designed a novel network that combines both architectures, which make 
better use of both local and global characteristics of the signals. Additionally, 
recognizing the challenge of distinguishing contextual semantics within the one-
dimensional signal data used in this study, we advocate the use of CNNs in place 
of word embedding, aligning more closely with the intrinsic features of the signal 
data. Furthermore, to capture the time-frequency characteristics of the signals, 
we integrate the proposed network with a cross-attention mechanism, facilitating 
the fusion of temporal and spectral domain feature information through multiple 
cross-attention computational layers. This innovation obviates the need for 
specialized time-frequency analysis. Experimental results demonstrate that our 
approach significantly improves recognition accuracy compared to existing 
methods, highlighting its efficacy in addressing the challenge of communication 
interference identification in electronic warfare.
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1 Introduction

Interference identification has received increasing attention in military and civilian 
applications (Zhang et al., 2013). Interference identification aims at recognizing the category of 
interference without any prior information, which is of great importance for anti-
interference communications.

Interference identification methods are commonly classified into two categories: feature-
based and learning-based methods. Feature-based techniques utilize parameters such as 
amplitude, phase, and wavelet transform as extracted features for classifiers (Ibrahim et al., 2019; 
Nishio et al., 2019). In their work, Zhang and Cao (2018) introduced a waveform classification 
approach based on Support Vector Machines (SVM) tailored for automotive radar interference.

Subsequently, the integration of machine learning and swarm intelligence techniques has 
shown significant promise in yielding exemplary outcomes across diverse fields (Malakar et al., 
2020; Bacanin et al., 2021, 2022; Ramanan et al., 2022; Tuba et al., 2022).

Recently, the widespread adoption of deep learning has garnered significant attention in 
various fields, including the analysis of clustered weather patterns (Chattopadhyay et al., 2020), 
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as well as image detection (Qian et al., 2021; Lin et al., 2022; Zhou 
et al., 2022; Lin et al., 2023) and processing (Gawande et al., 2022; 
Zivkovic et al., 2022; Zhang et al., 2023). Benefitting from the powerful 
feature extraction capability of deep learning, learning-based methods 
also have achieved good performance in identification of 
communication signals (Kattenborn et al., 2021; Sun et al., 2021). 
O’Shea et al. (2016) used convolutional neural networks (CNNs) to 
classify wireless modulated signals, and the effectiveness of the 
method was experimentally demonstrated. After that, Schmidt et al. 
(2021) used CNNs to study the automatic recognition of interference 
signals. Due to the simple structure of the network, the recognition 
accuracy could also be improved.

In Li et al. (2019), carried out radio signal recognition method 
based on gated recurrent unit (GRU). Compared to CNNs, GRU has 
more advantages in feature extraction of one-dimensional signals. 
However, it is difficult to make GRU into a multi-layer structure and 
that limits its feature extraction capability for long sequences. Residual 
network (ResNet) was employed for modulation mode identification 
in West and O’Shea (2017). The method alleviates the problem of 
gradient decay in deeper networks. However, excessive use of the 
residual structure can also lead to a larger amount of model parameters 
and waste of computational resources. In Zhang et  al. (2018), a 
combination of CNNs and long short-term memory (LSTM) was 
proposed and experimental results showed that it has better 
recognition performance than either CNNs or LSTM. It was shown 
that the effective combination of composite networks can improve 
recognition results. Zhang et  al. (2019) constructed four classical 
neural network models to identify three types of wireless interference 
signals, which demonstrate the generality of the effectiveness of deep 
learning at the considered task. Wang et  al. (2020) achieved 
satisfactory results in modulation mode classification by using two 
CNNs for weight sharing and designing a new loss function. 
Influenced by the development of transformer (Vaswani et al., 2017; 
Dosovitskiy et al., 2021; Liu et al., 2021), the utilizations of transformer 
in signal recognition field (Huang et al., 2022; Wang et al., 2022a) have 
achieved better performance than CNNs. In Wang et  al. (2022b), 
short-time Fourier transform (STFT) was used for time-frequency 
analysis, and this method exploits the multi-domain information of 
the signal. However, signals in different domains need to be processed 
with different branched networks, while the dedicated time-frequency 
analysis step adds to the process of interference identification.

Inspired by the above study, we  explore the application of 
transformer in interference identification. Moreover, considering that 
the disadvantage of transformer in local feature capture capability, this 
paper designs a novel network architecture, which combines CNNs 
and transformer (CNNTF). This fusion is not only unique, but also 
enables more comprehensive signal analysis. In summary, this paper 
makes the following contributions:

 • Firstly, we  introduce a CNNTF network. In contrast to the 
conventional practice of employing simple network 
combinations, this paper introduces a novel approach by utilizing 
CNNs in lieu of word embedding. This decision stems from the 
recognition of the inherent complexity associated with contextual 
semantics in signal data, which poses challenges for 
comprehension using word embedding techniques. This 
modification significantly enhances the network’s applicability in 
extracting features from signal data, which equip it with both 
local and global extraction capabilities.

 • In addition, we  integrated CNNTF with a cross-attention 
mechanism (CNNTF-CA) to exploit the correlations between 
different features. This integration allows the network to extract 
multiple domain features simultaneously, without requiring any 
special time-frequency analysis. As a result, the network can 
associate time-domain and frequency-domain features effectively. 
Our approach represents an innovative way to enhance the 
capabilities of neural networks for feature extraction.

 • The experimental results validate the effectiveness of the 
proposed method.

2 Signal model

In this section, five types of single interference signals, which 
consists of single-tone (ST), multi-tone (MT), linear sweep (LS), 
partial band noise (PBN) and noise frequency modulation (NFM), are 
used. The signal model can be denoted as

 R t S t e J t e W tj f t t j f t ts s J J( ) = ( ) + ( ) + ( )+ ( )( ) + ( )( )2 2π ϕ π ϕ
 (1)

where R t( ) represents the received signal. S t( ) is communication 
signal, fs and ϕs t( ) are separately carrier frequency and initial phase 
of S t( ). J t( ) is jamming signal, f tJ ( ) and ϕJ t( ) are carrier frequency 
and initial phase of J t( ), respectively. W t( ) is additive white Gaussian 
noise (AWGN).

Additionally, the interference signals can be expressed in both 
time-domain and frequency-domain. Frequency domain data can 
be obtained from time domain data by fast Fourier transform (FFT), 
which can be written as
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where e j N− 2π /  denotes the rotation factor. n  and k  denote the 
discrete points in the time and frequency domains, respectively. j  is 
the imaginary part.

After that, take the amplitude and phase of the FFT data to obtain 
the amplitude spectrum and phase spectrum data.

3 Methods

In this paper, we propose a CNNTF method which combines 
CNNs and transformer. Based on CNNTF, we  introduce a cross-
attention mechanism to design the CNNTF-CA model, which can 
effectively fuse features from different domains to achieve the purpose 
of time-frequency analysis.

3.1 CNNTF

The CNNTF is designed to combine CNN and the encoding of 
transformer, discarding the word embedding layer of transformer. The 
utilization of this module has two main advantages. Firstly, for 
communication interference signals, the local correlation between 
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adjacent sampling points affects the training effect of the model and 
should not be ignored. CNNs has the advantage of local connectivity 
in learning features specifically for features between adjacent samples 
of the signal sequence. Secondly, considering the complexity in 
extracting contextual semantics from 1D signal data, CNNs are 
deemed more appropriate than word coding for effectively addressing 
the practical challenges in this task.

The structure of the CNNs module is as follows. The dimensional 
convolution kernel scans the interfering data sequence first. In order 
to avoid gradient dissipation, batch normalization (BN) and rectified 
linear unit (ReLU) activation function processing are performed after 
the convolutional operation.

The mathematical expressions below can model the operations of 
the local 1-D convolution module:

 

O F I
O F WO
c c

BN

= ( )
= ( )( )
,

ReLUReLU c

θ

 
(3)

where Fc ⋅( ) means the convolution function, I  is the input signal 
and θ  is the parameter in CNNs. FBN  denotes the BN processing, and 
W  stands for the weight of convolutional layer. In addition, Oc and 
OReLU are the output of CNNs layer and the ReLU activation layer, 
respectively.

The transformer module consists of an attention layer (AL) and a 
feedforward network (FFN). The attention function can 
be described as

 
Attention Q K V QK

d
V

T
, , softmax( ) =











 
(4)

where Q K,  and V  are the query, key and value matrices separately.
The FFN is used after AL, which is composed of two linear 

translation layers. After the first linear layer, a ReLU activation 
function is employed, and the whole process can be described as

 FFN x W W x b b( ) = +( )( ) +ReLU 2 1 1 2 (5)

where W RC C
1∈

×  and W RC C
2 ∈

×  can be used to describe the 
weights of different layers, separately; b1 and b2 denote the offset 
quantity of different layers, respectively.

There is an interlayer between the attention and FFN layers, which 
consists of residual connection (RC) and layer normalization (LN). 
The reason for using the residual connection is to prevent gradient 
dissipation with the network depth increasing, which can 
be formulated as follows:

 x H x F x Wl l l l+ = ( ) + ( )1 ,  (6)

where xl  and xl+1 are the input and output vectors of the lth 
layer, respectively. H xl( ) means the direct mapping; F x Wl l,( ) 
represents the residual mapping. All the layers use residual 
connections to each other. LN follows RC in the interlayer, which 
provides better performance for the processing of batches with 
small size.

To ensure that the dimension of the output is consistent with that 
of the previous layer, a one-dimensional deconvolution layer is needed 
to reduce the dimension before the output. Then, after the linear layer 
and normalization, realized by SoftMax function, the output result 
is obtained.

3.2 Cross-attention mechanism

The time domain and frequency domain are the basic properties 
of the communication signals. In the field of signal processing, there 
are usually special time-frequency analysis steps to combine the time-
frequency domain data, which will also make the interference 
identification process more complex. Therefore, this paper introduces 
the cross-attention mechanism to combine the characteristics of time 
domain and frequency domain to play the role of time-frequency 
analysis. In this paper, in order to reduce the time-frequency analysis 
process, a cross-attention mechanism is used to correlate the data 
from two different domains. The overall structure of CNNTF-CA is 
shown in Figure 1.

The detailed cross-attention calculation of layer1 process is shown 
in Figure 2.

The cross-attention operation of layer1 can be formulated by

 

O Q K
d

V

O
Q K
d

V

t a
T

k
a

t p
T

k
p

1

2

=








 ⋅

=











⋅

softmax

softmax

 

(7)

where Q qt qt qtt
n= …{ }1 2

, , ,  is the query vector composed of 
time-domain feature sequences. K ka ka kaa

n= …{ }1 2
, , ,  and 

K kp kp kpp
n= …{ }1 2

, , ,  represent the key vectors composed of feature 
sequence in the frequency domain after linear mapping. Besides, 
V va va vaa

n= …{ }1 2
, , ,  and V vp vp vpp

n= …{ }1 2
, , ,  are value vectors. ⋅ 

means the dot product of the matrix. O1 and O2 represent the output 
of the first layer of two cross-attention modules.

The cross-attention operation of next layer can be  described 
as follows:
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(8)

where the query vector QO1
 is constructed by linear transformation 

of O1. O2 is linearly transformed to obtain the key vector KO2
 and the 

value vector VO2
. After that, QO1

, KO2
 and VO2

 are fed into the next 
layer of the cross-attention module for deep feature fusion.

The result obtained after the cross-attention mechanism is the 
input of the FFN, which can be described as

 O FFN OFFN r= ( ) (9)

where Or is the result of a two-level cross-attention module.
The output of the previous layer is subjected to an inverse 

convolution operation, which can be formulated as
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 O ConvTranspose D Ofinal = ( )softmax FFN( 1  (10)

where OFFN is the output of FFN, and Ofinal  is the identification 
result of CNNTF-CA. ConvTranspose D1 ⋅( )  represents the 
deconvolution operation, which performs up sampling on data to 
ensure that the output dimensions match the input dimensions.

4 Experiments and results analysis

4.1 Datasets

We select two signals, Binary phase Shift Keying (BPSK) and 
Quadrature Phase Shift Keying (QPSK), as the communication signal 
S t( ). The carrier frequency is set to 2 MHz for signal S t( ). In addition, 
the signal-noise-ratio (SNR) is set to [−20 dB, 18 dB] with an interval 
of 2 dB for the experiments in this paper.

For the interference data set, this paper firstly simulates five single 
interference signals, generates 1,000 samples under each SNR, each 
sample is sampled 1,024 times in the time domain. The parameters 
such as the center frequency, period and bandwidth of each type of 
interference signal are randomly distributed to simulate the real 
environment. Then the time domain data is changed by FFT to obtain 
the amplitude spectrum and phase spectrum data.

Under each SNR, the time domain, amplitude spectrum and 
phase spectrum are used as the three characteristics of the signal to 
splice and construct the data sets. The main simulation parameters for 
each type of interference signal are shown in Table 1. The interference 
signals are generated in MATLAB and model training and testing 
using python.

4.2 Performance of the proposed CNNTF

To evaluate the performance of our proposed method, the 
CNNTF are compared with the state-of-the-art methods including 
CNN (O’Shea et al., 2016), LSTM (Rajendrans et al., 2018), ResNet 

(West and O’Shea, 2017), CLDNN (Zhang et al., 2018), and GRU 
(Hong et al., 2017) in this paper.

Table 2 shows the overall recognition accuracy of each model on 
different sources. The overall accuracy represents the average 
recognition accuracy of each model for various types of interference 
under each SNR.

It can be  observed that the method we  proposed is higher in 
recognition accuracy than current mainstream methods. The average 
recognition accuracy of the six models for various types of recognition 
accuracy with SNR for six models is shown in Figure 3.

4.3 Performance of the proposed 
CNNTF-CA

Our proposed CNNTF demonstrates certain advantages over 
similar methods, owing to its capacity in extracting both global 
and local features, which brings in a high degree of information 
concentration. CNN, LSTM and GRU could not extract both 
global and local features. Compared with ResNet and CLDNN, 
which consider both global and local feature information, the 
advantages of the proposed CNNTF is slightly better. To further 
improve the performance, we  introduced a cross-
attention mechanism.

Figure  4 shows comparison chart of overall recognition 
accuracy between CNNTF and CNNTF-CA. From the figure, it can 
be observed that the recognition performance of CNNTF-CA has 
significantly improved under low SNR. The results are due to the 
use of the cross-attention mechanism, the time-frequency features 
are deeply correlated and the features are more differentiated 
between each type of modulated signal. CNNTF only performs 
simple feature splicing, so its performance is slightly worse than 
CNNTF-CA.

Table 3 presents the recognition performances of CNNTF-CA for 
each type of interference.

It can be seen from Table 3 that ST has the highest probability of 
being accurately identified among the five types of interference signals. 

FIGURE 1

The structure diagram of CNNTF-CA. The CNNTF-CA contains structure of CNNTF, and PE is the positional encoding. A, T, and P represent amplitude 
spectrum, time domain and phase spectrum data.
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In addition, the recognition effect of interference on QPSK is better 
than that on BPSK, which also shows that QPSK contains more 
information than BPSK. Simultaneously, PBN and NFM are the two 
types of interference that are most difficult to identify, whether under 
BPSK or QPSK. We display the recognition accuracy of CNNTF-CA 
for each interference in Figure 5.

The recognition accuracy of the CNNTF-CA approach for various 
interferences under BPSK and QPSK is depicted in Figure 5, as shown 
in this scientific figure.

It can be seen from the figure that the recognition accuracy curve 
of CNNTF-CA for different interferences has a similar trend, which 
also reflects the versatility and mobility of CNNTF-CA. We find that 

TABLE 1 Interference signal simulation parameters.

Interference type Parameter

ST Center frequency point random

MT The number of tones is 3 ~ 8

LS The initial frequency is randomly distributed between 20 MHz and 200 MHz, and the sweep slope is 20 ~ 100THz/s

PBN The occupied bandwidth is random between 10 and 100 MHz

NFM The mean value of modulated noise is 0, the variances is 1, and the frequency modulation coefficient K fm=0.4 ~ 2

FIGURE 2

Cross-attention calculation detail diagram.  represents the dot product.

TABLE 2 Overall accuracy (%) of different models.

Modulation mode Model Accuracy

BPSK

CNN 73.54%

LSTM 71.37%

ResNet 75.41%

CLDNN 74.88%

GRU 74.42%

CNNTF 77.31%

QPSK

CNN 76.54%

LSTM 75.97%

ResNet 77.66%

CLDNN 80.22%

GRU 78.54%

CNNTF 81.39%

The bold values are our own proposed methods.
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FIGURE 4

Overall recognition accuracy CNNTF and CNNTF-CA.

the recognition accuracy of different interference signals varies greatly, 
especially when the SNR is low.

In order to present the results more intuitively, we  use 
histograms in Figure 6 to depict the two signals with the best and 
worst effects in BPSK and QPSK at -20 dB, respectively. This 

approach aims to provide a more intuitive description of 
the results.

It is apparent that the model favors the identification of ST signals; 
however, its performance in recognizing NFM interference signals 
remains inadequate.

TABLE 3 Average accuracy (%) of CNNTF-CA.

Interference type CNNTF-CA

BPSK QPSK

ST 86.3% 90.1%

MT 81.0% 85.5%

LS 83.1% 85.3%

PBN 76.0% 81.8%

NFM 75.2% 82.5%

FIGURE 3

Accuracy diagram of interference recognition.
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5 Conclusion

The performance of the proposed CNNTF-CA model is evaluated 
through the confusion matrices presented in Figures 7A,B for BPSK 
and QPSK, respectively, at a signal-to-noise ratio of -10 dB.

According to the confusion matrix illustrated in Figure 7, which 
represents the accuracy of identifying various interference signals 
under an SNR of -10 dB, it is apparent that the NFM and PBN signals 
exhibit relatively higher rates of misidentification when compared to 
the other signals present in the single interference data set. Specifically, 
the network demonstrates significant recognition errors in identifying 
NFM and PBN signals, highlighting a limitation that requires further 
attention in future research endeavors.

In addition, more precise assessment metrics can be derived based 
on Table 4. It can be seen that ST and LS are more likely to be correctly 
identified whether under BPSK or QPSK.

Furthermore, it is evident that regardless of the type of interference 
signal, the accurate recognition rate for QPSK is higher than that for 
BPSK, indicating the richer signal information contained within 
QPSK. These findings help the proposed model identify different 
interference signals faster and more accurately, playing a more 
important role in actual confrontation scenarios.

In this paper, we propose a novel method that combines these 
CNN and transformer (CNNTF), to address the problem of 
identifying five single interferences. Given the challenge of 
extracting contextual semantics from one-dimensional signals 
using word encoding, this paper introduces a pioneering approach 
that exploits CNN instead. This novel combination, tailored to the 
unique data characteristics of one-dimensional signals, represents 
a significant contribution to the field. To further enhance the 
performance of the CNNTF model, we also incorporate a cross-
attention mechanism that facilitates the correlation of the time 
and frequency domains of the input signals. This mechanism 
replaces the traditional approach of separate time-frequency 
analysis, leading to improved accuracy and efficiency in the 
identification and classification of different interference types. 
The effectiveness of the proposed approach is evaluated through 
extensive experiments and comparisons with other state-of-
the-art methods. The experimental results demonstrate that the 
proposed CNNTF model with cross-attention mechanism 
achieves better performance in identifying and classifying 
different types of interferences.

Despite the promising results, it is important to acknowledge 
certain limitations and directions for future research. Current research 
is mainly limited to the evaluation of the CNNTF-CA model in simple 
scenarios. Further research on its performance under complex 
interference scenarios would be beneficial. To bridge the gap between 
theory and practical implementation, future research efforts will focus 
on optimizing the model’s robustness to changes in real-world signal 
conditions and extending its applicability to different signal 
interference environments.

FIGURE 5

Identification accuracy of CNNTF-CA for each interference under BPSK and QPSK. Among them, ST is single-tone interference, MT is multi-tone 
interference, LS is linear scan interference, PBN and NFM represent partial band noise interference and noise frequency modulation interference 
respectively.

FIGURE 6

Identification accuracy of CNNTF-CA for each interference under 
BPSK and QPSK.
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TABLE 4 Performance evaluation of CNNTF-CA under –10  dB.

Types BPSK QPSK

Precision Recall F1-score Precision Recall F1-score

ST 0.741 0.865 0.798 0.896 0.935 0.915

MT 0.787 0.704 0.743 0.839 0.875 0.857

LS 0.763 0.790 0.776 0.961 0.878 0.918

PBN 0.475 0.495 0.485 0.794 0.732 0.762

NFM 0.513 0.482 0.497 0.720 0.719 0.719

BPSK QPSK

A B

FIGURE 7

Confusion matrix of CNNTF-CA at -10  dB.
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