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Topography and structural 
diversity regulate ecosystem 
multifunctionality in a subtropical 
evergreen broad-leaved forest
Jiaming Wang , Heming Liu , Qingsong Yang , Guochun Shen , 
Xuyang Zhu , Yue Xu  and Xihua Wang *

Tiantong National Station for Forest Ecosystem Research, School of Ecological and Environmental 
Sciences, East China Normal University, Shanghai, China

Forest functionality is generally considered a byproduct of forest diversity. 
Perhaps unsurprisingly, many researchers associate increasing multi-functionality 
with increasing diversity. Diversity, however, is an often-overused word that 
may describe a host of features, including the diversity of species, functional 
trait and structure. Furthermore, variable environmental features (such as 
topography) influence the interaction between forest plants and their function. 
Incorporating complex topography (like that associated with tropical and 
subtropical forests) into estimates of forest functionality is challenging and highly 
uncertain. In this paper, we  applied structural equation models to disentangle 
the relative importance of topography and different components of what might 
be considered “plant diversity” to forest multifunctionality using repeated census 
of a 20-ha subtropical forest plot. We found that multifunctionality was principally 
influenced by structural diversity more so than either species composition or 
functional trait diversity. In our SEM model approach, we  observed variations 
in topography could account for about 30% of variation in multifunctionality. 
Furthermore, variations in topography could indirectly influence forest 
multifunctionality by changing species composition, functional trait diversity, and 
structural diversity. Our work highlights the importance of topography and forest 
structure in regulating subtropical forest multifunctionality on the local scale. This 
suggests future subtropical forest management should focus on regulating forest 
structure. Namely, our results suggest land managers must take topography (and 
the complex interaction between topography and plant diversity) into account in 
order to build robust and multifunctional forests.
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1 Introduction

Every ecosystem provides multiple functions (Byrnes et al., 2014; Yuan et al., 2020). Many 
syntheses have emphasized the significance of plant diversity for maintaining ecosystem 
functioning, though a number of these syntheses limit their analysis to biomass or productivity 
as the sole functional response variable. This limited approach seriously hinders the 
understanding of the comprehensive characteristics of ecosystem functions (Ratcliffe et al., 2017; 
Garland et al., 2021; Chen et al., 2022). As we change our understanding of forests and become 
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increasingly capable of quantitatively evaluating the multiple services 
each forest may provide, the concept of connection ecosystem 
“multifunctionality” to diversity has emerged (Hector and Bagchi, 
2007; Felipe-Lucia et al., 2018; Jing and He, 2021).

Diversity itself, however, is a complex topic, which includes 
species diversity and composition, functional trait diversity and 
composition, and structural diversity (Gadow, 1999; Pommerening, 
2002; Ali, 2019; Ali et al., 2019; Pommerening and Grabarnik, 2019; 
Schuldt et al., 2019; Yuan et al., 2020). Researchers have studied the 
connection between plant species diversity and ecosystem 
multifunctionality (Zavaleta et al., 2010; Jing et al., 2015) and the role 
functional diversity plays in supporting multifunctionality (Bagousse-
Pinguet et al., 2019; Huang et al., 2019; van der Plas, 2019). In general, 
we suggest that net effect of species diversity on functionality relies on 
how specific species compositions or species trait combinations 
strongly influence ecosystem functions (selection effect; Loreau and 
Hector, 2001; Ali, 2017). As a result, some suggest that functional trait 
diversity may better predict ecosystem functions because communities 
with contrasting functional trait species increase the overall resource 
utilization through greater complementarity and weaken competition-
complementary effects (van der Plas, 2019).

In addition, the structure of plant community can play an 
important role in maintaining forest multifunctionality (Yuan et al., 
2020; Sanaei et al., 2021). In forests with high structural diversity, 
functionality might be  improved through niche complementarity 
(such as the support of several different tree species which each 
occupy a unique range of light niches), on the other hand, however, 
functionality might also be reduced through competitive exclusion 
and a lack of niche complementarity – such as would be evidenced by 
increased light competition (Ali, 2019). Structural diversity of plant 
communities has been found to play both weaker and stronger roles 
in regulating multifunctionality than either the effect of species 
diversity or functional trait diversity—suggesting that each forest 
likely deals with its own unique constraints on functionality (Li et al., 
2020; Yuan et  al., 2020; Sanaei et  al., 2021). Researches have 
disentangled the various influences of each form of diversity (species 
diversity, functional diversity, and structural diversity) on individual 
functions such as productivity (Forrester and Bauhus, 2016; Ren, 
2021; Ren et al., 2021), though it remains unclear which plant diversity 
component is the major driver of ecosystem multifunctionality 
in forests.

To further complicate issues, diversity is powerfully influenced by 
topography in natural ecosystems (Ratcliffe et al., 2017; Yuan et al., 
2020). Topography strongly influences microclimate and soil 
hydrology (Girardin et al., 2014; Jucker et al., 2018), and thus shapes 
environmental conditions on the local scale, which in turn influence 
plant growth, plant diversity, and, consequently, ecosystem function 
(Lin et al., 2012; Prado-Junior et al., 2016). For example, in valleys, 
forests tend to develop more complex structures due to strong 
competition in light, which leads to higher biomass and productivity, 
but lower regeneration (Ediriweera et al., 2008; Coomes et al., 2009; 
Prado-Junior et al., 2016; Ali, 2019). Similarly, however, a valley is also 
more predisposed to flooding or river formation, reducing the living 
space of plants, thus resulting in lower biomass, productivity and 
regeneration (Punchi-Manage et al., 2013; Xu et al., 2015; Guo et al., 
2016). Even more specialized work has suggested that, more canopy 
gap is favorable for deciduous tree species in valleys, which may lead 
to higher nutrient stocks for trees which likely influence their 

individual and community level function (Xie et al., 2012; Tuo et al., 
2019). Thus, identifying how topography affects forest 
multifunctionality is critical to understand the underlying mechanisms 
of forest multifunctionality. These studies indicate topography often 
has a positive effect on some functions, but has a negative on other 
functions. However, the effect of topography on forest 
multifunctionality remains far from clear.

Though subtropical forests have a global importance for providing 
key ecosystem services, most studies on multifunctionality have based 
on grassland ecosystems and temperate forests (Schuldt et al., 2018). 
While, previous studies showed subtropical forests are often with 
complex topography and have high plant diversity (Song et al., 2005; 
Ouyang et al., 2021). Therefore, we aim to explore how topography 
and different plant diversity components affect forest 
multifunctionality in a subtropical forest system, and link topography 
and different plant diversity components with forest multifunctionality 
(FM) using structural equation models (SEMs). We  test two 
hypotheses: (1) structural diversity is more important for FM than 
species diversity/ composition or functional trait diversity; (2) 
topography has a nonnegligible effect on FM. Our study will provide 
useful guidance to subtropical forest restoration and management.

2 Materials and methods

2.1 Study area and 20-ha permanent forest 
plot

The study was performed in Tiantong National Forest Park 
(29°48′N, 121°47′E), which is typical of the subtropical evergreen 
broadleaved forests found in eastern China (Yang et  al., 2011). 
We  conducted our sampling work on a 20 ha (500 m × 400 m) 
permanent forest plot (hereafter called Tiantong plot) that was 
established in 2010. The region has a mean annual precipitation of 
1374.7 mm, and a mean annual temperature is 16.2°C (Yang et al., 
2016). Soils are varied in texture from sandy to a silty clay loam, and 
soil pH ranges from 4.4 to 5.1 (Song and Wang, 1995). The Tiantong 
plot is one component of broader the Forest Global Earth Observatory 
(ForestGEO) network.1

In 2010, the inaugural census of the plot identified 94,603 
individuals with a stem diameter at breast height (DBH) ≥ 1 cm which 
belonged to 152 species, 94 genera and 51 families. The three 
dominant plant families represented at the site are Theaceae, 
Lauraceae, and Fagaceae (Yang et al., 2011). In 2015, a re-census of the 
plot was conducted. During the two censuses, scientists recorded 
27,837 trees present in both censes with DBH ≥ 5 cm, 85,704 trees 
present in both censes with DBH between 1 and 5 cm, and 58,547 
newly recruited trees (DBH did not reach 1 cm in the first census, but 
reached 1 cm in the re-census) were found. Following a standard field 
protocol (Condit, 1998), the 20-ha plot was divided into 500 subplots 
(20 × 20 m), in which the four corner elevations of each subplot were 
measured using a total station instrument. Then elevation of each 
subplot (ranging from 304.3 to 602.9 m; Figure 1) was the average of 
four corner elevations (Harms et al., 2001). The other two topographic 

1 https://forestgeo.si.edu/
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variables, slope (ranging from 13.8° to 50.3°) and terrain convexity 
(ranging from −5.8 to 6.9 m), were estimated using the elevation data.

2.2 Quantification of FM

We used eight forest functions related to production, regeneration, 
nutrient cycling and carbon stock (Ratcliffe et al., 2017; Li et al., 2020) 
to represent forest multifunctionality (FM): aboveground biomass 
(AGB), woody productivity (Pro), litter production (Lit), sapling 
growth (Gro), sapling recruitment (Rec), soil organic carbon stock 
(SOCstock), soil nitrogen stock (SNstock), and soil phosphorus stock 
(SPstock). We  quantified the aboveground biomass (AGB) as the 
biomass of all trees with DBH ≥ 5 cm. The AGB of individual trees was 
calculated using a general allometric equation (Chave et al., 2014) 
which incorporates an on site-specific environment stress factor, tree 
DBH (cm), and species’ wood density (ρ, g·cm−3). Several studies 
using data from this site have proved the equation can reliably be used 
to predict biomass in this setting (Ali, 2017; Ali et al., 2019). We use 
mean annual AGB increments from 2010 to 2015 (Ren, 2021; Ren 
et al., 2021) to determine woody biomass production. To estimate the 
litter production, we placed 187 traps in the 20-ha plot at a spacing of 
>28.8 m, in a relatively regular pattern, in August 2008 (Wang, 2013), 
and collected litter twice every month. The continuous litter 
monitoring data from January 2011 to December 2018 was used to 
calculate mean annual litter production. Sapling “growth” was 
expressed as the growth of trees with 1 cm ≤ DBH < 5 cm (Ratcliffe 
et al., 2017; van der Plas et al., 2018). Similarly, sapling recruitment 
was expressed as the number of saplings with DBH less than 1 cm in 
2010 but who grew to be greater than 1 cm DBH by the second sample 
in 2015 (Condit et al., 1999; Bin et al., 2016). We assumed that the 
stock of organic carbon in soil was equivalent to that in the 0–10 cm 

soil layer (Guo and Gifford, 2002; Li et al., 2015; Bleam, 2016) and 
calculated it by soil bulk density, soil organic carbon and soil sampling 
depth (Mann, 1986). Similarly, we assumed ecosystem soil nitrogen 
and phosphorus stock were equivalent to nitrogen and phosphorus 
stock in the 0–10 cm soil layer (Guo and Gifford, 2002; Tuo et al., 
2019). After removing samples which were missing data or obvious 
outliers, we were left with 163 subplots (with traps in their center) as 
the research object.

To calculate FM, we used two methods: an averaging approach, and 
a threshold approach (Byrnes et al., 2014; Jing et al., 2015; Schuldt et al., 
2018). These two approaches are the most widely used (Hölting et al., 
2019). The averaging approach provides an intuitive and simple way to 
evaluate changes in many ecosystem functions simultaneously. Its 
results are easy to interpret, while it has some weaknesses such as the 
assumption in the calculation that a decrease in one function can 
be  compensated by an increase in another function (Byrnes et  al., 
2014). The threshold approach provides a powerful and flexible 
method, which captures the number of ecosystem functions performing 
well even if there are trade-offs and interactions between functions, 
while it has some disadvantages such as it cannot reflect the degree to 
which functions exceed or are below the threshold (Byrnes et al., 2014; 
Xu et al., 2016). Because each of these two approaches has strengths and 
weaknesses (Xu et  al., 2016; Schuldt et  al., 2018), they can better 
understand FM when used together (Jing et al., 2015; Xu et al., 2016). 
In the averaging approach, each single ecosystem function is first 
standardized with a Z-score and then averaged as described by Maestre 
et al. (2012). In the threshold-based approach, multifunctionality is 
viewed as an index, and “functionality” was estimated in the sense that 
values of a certain function must exceed a threshold in order to 
be  considered functional (Byrnes et  al., 2014). In the absence of a 
general criterion for when a function is considered functional, the 50% 
threshold analogous to EC50 (concentration giving 50% maximum 

FIGURE 1

Topography of the Tiantong 20-ha permanent forest plot.
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effect in ecotoxicology) was suggested to be  sufficient for the 
community to sustain a single function (Gamfeldt et  al., 2008). 
Therefore, to establish these thresholds, eight forest functions were 
scaled to range from 0 to 1 [f(x) = (x – min(x))/(max(x) –  
min(x))], (Gamfeldt and Roger, 2017), then we used the threshold value 
of 50% in order to represent FM (Zirbel et al., 2019; Yuan et al., 2020).

2.3 Soil physicochemical properties

In March 2011, soil samples were collected by following the 
standard method of John et al. (2007). In each of the 500 subplots 
(20 × 20 m), we took soil sample starting from the southwest corner. Two 
additional samples at 2 m, 5 m, or 8 m in a random compass direction 
were also taken. Thus, 1,292 soil samples covering the entire Tiantong 
plot were collected to capture fine-scale variation in soil properties 
(Supplementary Figure S1). From the soil samples, we estimated soil 
bulk density (SBD), soil organic carbon (SOC), soil total nitrogen (TN), 
total phosphorus (TP), and pH (Bao, 2000; Lu, 2000). SOC was 
determined by potassium dichromate oxidation (K2Cr2O7-H2SO4). 
TN, TP and pH were determined using an Elemental Analyzer (vario 
MICRO cube, Elmentar), a flow-injection autoanalyzer (Skalar, 
Netherlands), and a Metterler Toledo pH meter, respectively (Yang et al., 
2016). For the above-mentioned 163 subplots, the actual soil condition 
of each subplot was estimated using a standard block kriging approach 
based on the initial soil samples. Then, SOC, TN and TP were used to 
calculate SOCstock, SNstock, and SPstock, respectively.

2.4 Quantification of plant diversity

We calculated species diversity, species composition, functional trait 
diversity, trait composition (community-weighted means of functional 
trait), and structural diversity to represent multiple plant diversity using 
only trees with DBH ≥ 5 cm in 2000s. Species richness (S) and PieLou’s 
evenness index (J) were used to represent species diversity within each 
of the 163 subplots. Species composition was expressed as the first three 
axes of principal component analysis on species’ relative basal area data 
(Ali, 2017; Schuldt et al., 2018), and the first axe (PC1) and the third axe 
(PC3) were found to be associated with increased forest multifunctionality.

In order to calculate functional trait diversity, seven functional 
traits were selected, including mean leaf area (MLA), specific leaf area 
(SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), 
leaf phosphorus content (LPC), twig wood density (TWD), and 
potential maximum DBH (a unique constant for each species; 
maxDBH). These functional traits were closely related to life history 
strategies, species competition, niche partitioning strategies, species 
coexistence and forest dynamics (Perez-Harguindeguy et al., 2013; Li 
et al., 2015; Kunstler et al., 2016). To quantify multi-trait functional trait 
diversity, we used functional dispersion (FDis). FDis can be considered 
a measure of the mean distance in multidimensional trait space of 
individual trees to the centroid of all trees, so that a high FDis score 
suggests high degree of dissimilarity among trees within a forest 
community (Laliberté and Legendre, 2010; Chiang et al., 2016). The 
community-weighted means (CWM) of each trait was calculated as the 
mean trait value within each subplot, weighted by species’ relative basal 
area (Garnier et  al., 2004), so that we  would ultimately have 
community-weighted means of MLA, SLA, LDMC, LNC, LPC, TWD, 

and maxDBH, represented by CWMMLA, CWMSLA, CWMLDMC, 
CWMLNC, CWMLPC, CWMTWD, and CWMmaxDBH, respectively.

In this study, stand density-the number of trees in a subplot 
(Density), the coefficient of variation for tree DBH (DBHCV), and the 
number of DBH classes (DBHclass) of each subplot were used to 
represent structural diversity (Ali, 2017). Stand density can represent 
the intensity of tree-tree interactions (Forrester and Bauhus, 2016). 
Trees were classified a DBH class based on every 5 cm interval of DBH 
(5, 1,015) … … [85, ∞) so that DBH class was of high resolution and 
could be used to better predict structural diversity. DBHCV might 
be considered a measure of tree size “inequality,” computed as the ratio 
of the standard deviation of all diameters to the mean diameter in each 
quadrat (Brassard et al., 2008).

2.5 Statistical analyses

To avoid multicollinearity among different components of plant 
diversity, highly correlated components of plant diversity were 
excluded (namely, anything with an R > 0.7; Yuan et al., 2020). For 
instance, FDis and CWMMLA were highly correlated (R = 0.72), FDis 
was selected in the following analyses, because of its better predictive 
power for FM compared with CWMMLA. According to this rule, S, 
J, species composition (PC1 and PC3), FDis, Density, DBHCV, 
DBHclass, CWMLPC, CWMTWD and CWMmaxDBH were the 
predictors we ultimately selected to model FM.

Then, to examine the effects of above components of plant 
diversity on FM, two series of multiple linear regressions were 
performed, i.e., one using an averaging approach and another which 
used a 50% threshold level to determine if a given plot met the 
necessary threshold to be considered “multifunctional” (FMA and 
FMt50, respectively). For FMA and FMt50, we regression analysis with 
every possible combination of model parameters, and selected models 
based on AIC score (though we adjusted scores to better capture the 
small sample size (ΔAICc ≤ 2). For the selected models, to address 
model uncertainty a model averaging approach was used (Anderson 
and Burnham, 2004), which was conducted with R package “MuMIn.”

Finally, we used structural equation models to evaluate both direct 
and indirect effects of topographic factors and the components of 
plant diversity on FM, which were selected from the above optimal 
regression model. To compare the relative contribution of different 
factors on FM, the standardization coefficient of each path in the 
model was used to express the relative importance of different factors 
on FM (Fox, 2006). In addition, due to the experimental design of the 
study (20 ha forest plot), we used Moran’s I test to test the influence of 
spatial autocorrelation on FM (Bivand et al., 2011; Yuan et al., 2020) 
and did not found strong spatial autocorrelation (clumping) among 
subplot (Supplementary Figure S2).

3 Results

3.1 Relationships between plant diversity 
and topographic factors

Elevation was positively correlated with S (R2 = 0.05, p < 0.01; 
Figure 2), J (R2 = 0.03, p < 0.05), species composition PC1 (R2 = 0.12, 
p <  0.001) and species composition PC3 (R2  = 0.18, p  < 0.001), 
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Density (R2 = 0.12, p < 0.001), and CWMTWD (R2 = 0.24, p < 0.001), 
though interestingly elevation was negatively correlated with both 
DBHCV (R2 = 0.25, p < 0.001) and DBHclass (R2 = 0.14, p < 0.001)– 
suggesting that higher plots tended to be overall less structurally 
complex. Convexity was positively related to species composition 
PC1 (R2  = 0.45, p  < 0.001; Figure  2), species composition PC3 
(R2  = 0.05, p  < 0.01), Density (R2  =  0.28, p  < 0.001), CWMTWD 
(R2 = 0.1, p < 0.001), and CWMmaxDBH (R2 = 0.08, p < 0.001), but 
was negatively related to CWMLPC (R2 = 0.02, p < 0.05), DBHCV 
(R2  = 0.07, p  < 0.001), and FDis (R2  = 0.19, p  < 0.001). Slope was 
positive with S (R2 = 0.04, p < 0.05; Figure 2) and Density (R2 = 0.07, 
p < 0.001), but negative with CWMLPC (R2 = 0.04, p < 0.01). Elevation 
and convexity could explain 20% of PC3 variation, convexity can 
explain 18% of variation in FDis, and the combined influence of 
elevation and convexity can explain 29% of DBHCV (Figures 3, 4).

3.2 Relationships between topographic 
factors, plant diversity and forest 
multifunctionality

If we  considered the averaging approach (FMA), increasing 
multifunctionality was associated with increased elevation (R2 = 0.05, 
p < 0.01; Figure 5), convexity (R2 = 0.08, p < 0.001), PC1 (R2 = 0.07, 
p  < 0.001), PC3 (R2  = 0.11, p  < 0.001), CWMmaxDBH (R2  = 0.12, 
p < 0.001), and DBHclass (R2 = 0.04, p < 0.01). FMA was negatively 
associated with increasing FDis (R2 = 0.12, p < 0.001) and CWMLPC 
(R2 = 0.04, p < 0.05). Interestingly, the threshold approach (FMt50) 
showed some similarities (Figure  5), namely that FM tended to 
increase with increasing convexity (R2 = 0.05, p < 0.01), PC1 (R2 = 0.03, 
p  < 0.05), PC3 (R2  = 0.04, p  < 0.01), CWMmaxDBH (R2  = 0.08, 
p < 0.001), DBHCV (R2 = 0.05, p < 0.01), and DBHclass (R2 = 0.06, 

FIGURE 2

Relationships between topographic factors and different components of plant diversity based on simple linear regression models. Only significant 
relationships are shown. Shaded lines indicate 95% confidence intervals. ELE is elevation, CON is convexity, and SLO is slope. PC1 is species 
composition PC1, PC3 is species composition PC3, FDis is functional dispersion, CWMLPC is community-weighted means of leaf phosphorus content, 
CWMmaxDBH is community-weighted means of maximum potential DBH, Density is stand density, DBHCV the is coefficient of variation in DBH of 
trees, and DBHclass is the number of DBH classes.
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p < 0.01), though it also found multifunctionality was lower when J 
(R2 = 0.04, p < 0.05) and FDis (R2 = 0.06, p < 0.01) increased.

3.3 Relative importance of topographic 
factors and plant diversity to forest 
multifunctionality

Topography and plant diversity explained 28% of FMA variation 
and 18.4% of FMt50 variation (Figures 3, 4). In both settings, DBHCV 
and PC3 had significant positive effects on forest multifunctionality, 
whereas FDis had a negative effect on forest multifunctionality. In both 
scenarios, we observed that increasingly convexity indirectly drove up 
forest multifunctionality by affecting species composition, functional 
trait diversity and structural diversity. In addition, elevation had a 
significant positive effect on FMA. In general, the effect of structural 
diversity on FMA and FMt50 was higher than that of species composition 

or functional trait diversity (Figure 6). The effect of topography on FMA 
and FMt50 accounted for 31.3% and 24.6% of the total effect, respectively 
(Figure 6), and roughly ¼ of the relative influence of topography was 
contained in the indirect relationships between topography and species 
composition, functional trait diversity, and structural diversity 
(occupying about ¼ of topography’s effect; Figures 3, 4).

4 Discussion

4.1 Effects of species diversity, species 
composition and functional trait diversity 
on forest multifunctionality

In both temperate forests and subtropical coniferous forests, studies 
have shown that increasing species richness is associated with higher 
overall ecosystem multifunctionality (Van der Plas et al., 2018; Yuan et al., 

FIGURE 3

The top panel of this figure shows our best-fit structural equation 
model linking topographic factors and different components of plant 
diversity with FMA. Black and red solid arrows represent significant 
positive and significant negative effects, respectively. Values near 
arrows represent standardized coefficients (*p  <  0.05; **p  <  0.01; 
***p  <  0.001). Model fitting: CFI  =  1, RMSEA  =  0, SEMR  =  0.013, 
p  =  0.769. The lower panel shows the standardized effect of each 
factor. The darkest bars are used to describe direct effects, and the 
lightest bars indirect effects. The intermediate gray bar represents 
the net effect.

FIGURE 4

The top panel of this figure shows best-fit structural equation model 
linking topographic factors and different components of plant 
diversity with FMt50. Black and red solid arrows represent significant 
positive and significant negative effects, respectively. Values near 
arrows represent standardized coefficients (*p  <  0.05; **p  <  0.01; 
***p  <  0.001). Model fitting: CFI  =  1, RMSEA  =  0, SEMR  =  0.018, 
p  =  0.668. The lower panel shows the standardized effect of each 
factor. The darkest bars are used to describe direct effects, and the 
lightest bars indirect effects. The intermediate gray bar represents 
the net effect.
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2020; Li et al., 2021; Sanaei et al., 2021). Conversely, in our study, species 
richness had no significant effect on forest multifunctionality. This may 
be due to the overall higher species richness in subtropical evergreen 
broad-leaved forests than either temperate forests or subtropical coniferous 
forests, so that increasing species richness at our site may lead to functional 
redundancy (Gamfeldt et al., 2008), which may explain the non-significant 
relationship between species richness and forest multifunctionality. The 
idea that increasing richness has diminishing returns on ecosystem 
function in highly diverse forests is corroborated other research connecting 
richness to productivity (Chen et al., 2020). Furthermore, the effects of 
species richness on ecosystem multifunctionality may also depend on 
species composition and spatial distribution patterns (Maestre et al., 2012). 
For example, in a human-modified tropical landscape, Lohbeck et al. 
(2016) found that species richness played a limited role for forest 
multifunctionality, but species dominance mattered.

Selection effect suggest that the characteristics of dominant species 
drive ecosystem function (Tilman et al., 1997, 2001; Díaz et al., 2007; 
Urgoiti et al., 2022), measured by species composition or community 
weight mean of functional traits. In this study, species composition 
(PC3) had a significant positive effect on forest multifunctionality, and 

functional dispersion had a significant negative effect on forest 
multifunctionality, indicating that the characteristics of dominant 
species, namely, the selection effect, drove the multifunctionality of the 
Tiantong subtropical forest. This is consistent with the findings of 
Schuldt et  al. (2018) in adjacent areas and may be  related to the 
environmental background of Tiantong plot. Given the connection 
between the dominant species and the overall function, we are drawn 
to think on the several environmental filtering steps that would have 
resulted in such a functional-similar demography. Several reasons 
(p-limitation, an intense typhoon season, and remarkably complex 
elevation) abound. In Tiantong plot, the PC3 axis of species composition 
were strongly correlated with the dominant species such as 
Cinnamomum subavenium, Lithocarpus harlandii and Choerospondias 
axillaris (Supplementary Figure S3), and PC3 was also significantly 
positively correlated with the community-weighted means of maximum 
potential DBH and negatively correlated with the community-weighted 
means of leaf P content (Supplementary Figure S4). Therefore, PC3 
represented the combination of large DBH dominant species with lower 
leaf P content. These species have a higher intrinsic growth rate, which 
will beneficial for productivity and litter (Poorter and Bongers, 2006; 

FIGURE 5

Relationships between topographic factors, different components of plant diversity and forest multifunctionality based on linear regression models. 
Only significant relationships are shown. Shaded lines indicate 95% confidence intervals. ELE is elevation, and CON is convexity. PC1 is species 
composition PC1, PC3 is species composition PC3, FDis is functional dispersion, CWMLPC is community-weighted means of leaf phosphorus content, 
CWMmaxDBH is community-weighted means of maximum potential DBH, Density is stand density, DBHCV is the coefficient of variation in DBH of 
trees, and DBHclass is the number of DBH classes.
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Poorter et  al., 2008; Ali, 2017). In addition, the low phosphorus 
requirement of these species may drive positive feedback in recruitment 
and reduce the influence of competition on understory saplings 
(Haussmann et al., 2010; Díaz et al., 2016), thus driving the improvement 
of forest multifunctionality. Similar to our results, in arid ecosystems, 
strong environmental filtering enabled species with smaller leaf area and 
specific leaf area to be filtered into ecological niches; therefore, such 
species drove changes in ecosystem functions (Yang et al., 2023).

4.2 Effects of structural diversity on forest 
multifunctionality

Structure variation may be  interpreted as a measure of niche 
complementarity in space and resource utilization (Ali, 2017; Tan et al., 
2017). Some studies have found that the structural diversity represented 
by the coefficient of DBH variation is associated with increased overall 
heterogeneity of trees both vertically and laterally as was found to 
covary with niche complementarity among trees (Ali, 2017; Yuan et al., 
2020), suggesting increases in DBHCV increase ecosystem functionality. 
Our results showed that the structural diversity represented by the 
coefficient of DBH variation had the strongest promoting effect on 
forest multifunctionality among all the factors, indicating that the 
increase of tree size heterogeneity is not only beneficial to aboveground 
biomass accumulation (Ali, 2017) but also very important for the 
improvement of the whole function of subtropical forest. On the one 

hand, in communities with higher structural diversity, trees of different 
sizes enhance the utilization of canopy space and capture of light 
resources, and ecosystem functionality is generally thought to be the 
inverse of utilization—where multifunctionality increases as resources 
are utilized (Fahey et al., 2015; Yuan et al., 2020; Zheng, 2022). On the 
other hand, in communities with high structural diversity, trees may 
enhance underground niche differentiation, expand tree root 
distribution in both horizontal and vertical directions, improve the 
efficiency of tree utilization of soil water and nutrients, and thus 
improve ecosystem functions (Ma and Chen, 2017; Brum et al., 2019). 
While other studies also found that too complex structure led to the 
lack of light within the forest, the competition between the upper layer 
trees and the regeneration layer trees was fierce, and the structural 
diversity had no significant relationship or significantly negative 
correlation with ecosystem functions (Ali, 2019).

The various interactions between structural diversity and 
functionality suppose there is another element which further 
complicates our understanding. Accordingly, the missing piece may 
be derived from species diversity (Zhang and Chen, 2015; Ali, 2017). In 
communities with high species diversity, the canopies of different 
species occupy different positions in the canopy space, thus forming a 
dense canopy with obvious vertical stratification and improving the 
structural diversity of trees (Williams et al., 2017; Ren, 2021). Through 
the structural equation models, our study found that structural diversity 
was significantly positive with PC3. It suggests that the influence of 
structural diversity on ecosystem multifunctionality due to presence or 

FIGURE 6

Relative contributions of topography (gray bars) and different components of plant diversity (green bars) on forest multifunctionality at averaged and 
50% threshold levels (Based on total effects). ELE is elevation, CON is convexity, PC3 is species composition PC3, FDis is functional dispersion, and 
DBHCV is the coefficient of variation in DBH of trees.
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absence of large trees associated with lower leaf phosphorus content. At 
the same time, the results emphasized that the combination of large 
DBH dominant species with lower leaf phosphorus content not only 
drove the change of forest ecosystem multifunctionality but also was an 
important driving force for forest structure change (Ouyang et al., 2016; 
Zhu et al., 2021). Li et al. (2021) found in the study of Yunnan Pine that 
trees with high structural diversity made more effective use of canopy 
space and drove the improvement of ecosystem multifunctionality by 
promoting coexistence.

4.3 Effects of topography on forest 
multifunctionality

Our findings indicated that topography played an important role 
in subtropical forest ecosystem multifunctionality. In natural 
communities, especially in climax communities, species interact with 
the environment for a long time and adapt to local topographic 
conditions, thus forming specific community composition and 
structure and further influencing forest functions (Zhu et al., 2021). 
The results of this study indicated that topography could indirectly 
influence species composition, functional trait diversity, and forest 
structure, further influencing overall functionality. Topography 
determines the redistribution of solar radiation, water, soil, and the 
extent and intensity of natural disturbances (Abrams et  al., 1986; 
Takyu et al., 2003), which are closely related to plant growth, and thus 
ultimately regulate multifunctionality (Kubota et al., 2004; Ediriweera 
et al., 2008; Liu et al., 2012; Hou et al., 2014; Zhu et al., 2021). The 
principal difference between a high and low elevation site within our 
setting may be mainly due to wind. Typhoons occurred frequently in 
this study area, the intensity of a typhoon’s influence on a tree is much 
higher at higher elevations than in naturally protected valleys and 
lowlands (Zhang et  al., 2013). Structural diversity (DBHCV and 
DBHclass) also decreased significantly with increasing elevation, 
though both sapling trees and stand density increased significantly. At 
higher elevations, species composition changed, and though both 
aboveground biomass and productivity decreased, sapling growth and 
sapling recruitment was better (Supplementary Figures S5–S12).

The effects of convexity on plant diversity and forest 
multifunctionality may be  related to runoff erosion, landslide, 
stability, and topsoil thickness (Zhang et al., 2013; Girardin et al., 
2014; Fei, 2016). Thicker and more stable soil layers in the ridge 
(compared with gullies and steep slopes) are favorable for large-
diameter dominant species combination with lower leaf phosphorus 
content (PC3), thus providing higher forest multifunctionality, 
implying that constructing forests through plant diversity for high 
multifunctionality should pay attention to topography.

5 Conclusion

Our study shows topography and structural diversity play 
important roles in natural ecosystem multifunctionality in a 
subtropical evergreen broad-leaved forest. Topography can drive 
forest multifunctionality through species composition, functional trait 
diversity and structural diversity. Among plant diversity components, 
the effect of structural diversity on forest multifunctionality was 
higher than that of species composition or functional traits. Our 
results suggest that regulating structural diversity is an effective 

measure to promote subtropical forest multifunctionality in forest 
management, and constructing forests with different plant diversity 
according to topography is also helpful for forest multifunctionality.
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