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Department of Hematology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University
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Cell death is a complex process required to maintain homeostasis and occurs

when cells are damage or reach end of life. As research progresses, it is apparent

that necrosis and apoptosis do not fully explain the whole phenomenon of cell

death. Therefore, new death modalities such as autophagic cell death, and

ferroptosis have been proposed. In recent years, ferroptosis, a new type of

non-apoptotic cell death characterized by iron-dependent lipid peroxidation

and reactive oxygen species (ROS) accumulation, has been receiving increasing

attention. Ferroptosis can be involved in the pathological processes of many

disorders, such as ischemia-reperfusion injury, nervous system diseases, and

blood diseases. However, the specific mechanisms by which ferroptosis

participates in the occurrence and development of leukemia still need to be

more fully and deeply studied. In this review, we present the research progress

on the mechanism of ferroptosis and its role in leukemia, to provide new

theoretical basis and strategies for the diagnosis and treatment of clinical

hematological diseases.

KEYWORDS
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1 Introduction

The term “ferroptosis” was coined in 2012, when screens for small-molecule

compounds capable of inhibiting the growth of RAS-mutant cancer cells were

performed. In the 1950s, Harry Eagle et al. found that cysteine-deficient cells had a

different pattern of cell death than those caused by other amino acid deficiencies. In the

1970s, a cysteine-dependent liver cell death involving glutathione (GSH) depletion was

reported. At the same time, Shiro et al. found that alpha-tocopherol, an inhibitor of lipid

peroxidation, saved cell death from GSH and cysteine deficiency. Ursini et al. isolated an

enzyme named glutathione peroxidase 4 (GPX4) in 1982, which can inhibit iron-catalyzed

lipid peroxidation. GPX4 protects cell death related to lipid peroxidation and oxidative

stress. Dolma et al. discovered in 2003 that a small molecule compound named erastin
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could target the inhibition of RAS expressing tumor cells. Erastin

induced death cell showed no apoptotic features and could not be

inhibited by apoptosis inhibitors, suggesting new non-apoptotic cell

death form. In 2012, Dixon et al. coined the term “ferroptosis” as

erastin induced cell death. Ferroptosis refers to an iron-dependent

form of regulatory cell death caused by lipid peroxide overload on

the cell membrane. This is a new kind of cell death, which is

different from the traditional forms of autophagy, apoptosis,

necrosis, and other cell death. Morphologically, mitochondrial

volume decreases, density increases, mitochondrial crest

disappears, and lipid reactive oxygen species (ROS) increases in

the cytoplasm (1). The fatal accumulation of lipid peroxides is a

fundamental feature of ferroptosis and involves the confrontation

between ferroptosis production and ferroptosis defense systems in

cells. Ferroptosis occurs when its promotion of cellular activity

significantly exceeds the antioxidant buffer provided by the

ferroptosis defense system (2–4).

Ferroptosis is affected by a range of different genes including

multiple cancer-related signaling pathways which have been shown

to participate in ferroptosis. For example, p53 and BRCA1-related

protein 1 (BAP1) induce ferroptosis in tumor cells through multiple

signaling pathways, which act as a natural barrier to cancer

development (5, 6). Oncogene-mediated or oncogene-signal-

mediated ferroptosis avoidance contributes to tumor occurrence,

progression, metastasis, and treatment resistance regulation (7, 8).

Conversely, the unique metabolism of cancer cells, their high load of
Frontiers in Oncology 02
ROS, and their specific mutations make some of these cells

inherently susceptible to ferroptosis, thus exposing therapeutic

targets for certain cancer types (9–11). With the continuous

development of research, ferroptosis has been confirmed to be

closely related to the occurrence of tumors, respiratory system,

cardiovascular system, nervous system, ischemia reperfusion injury,

and other diseases. Recent studies have shown that ferroptosis also

plays an important role in the development and progression of

hematological diseases, especially leukemia. The present study

mainly describes the role of ferroptosis in leukemia, research

progress and provides new targets and new ideas for the

diagnosis and treatment of leukemia.
2 Mechanism of ferroptosis

Ferroptosis is caused by the accumulation of lipid peroxidation,

leading to the destruction of membrane structures. The prerequisite

for ferroptosis is polyunsaturated fatty acids -containing

phospholipids (PUFA-PLs) synthesis with peroxidation.

Sensitivity to ferroptosis is regulated by several factors, including

GSH and REDOX regulatory systems, such as System Xc-, GPX4

regulation, CoQ10-NAD (P) pathway, glutamine metabolic

pathway, and NRF2 regulation (Figure 1). In this section, there

are mainly describes Ferroptosis prerequisites, Ferroptosis defense

mechanisms, and Upregulation of ferroptosis defenses.
FIGURE 1

Molecular mechanisms of ferroptosis.
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2.1 Ferroptosis prerequisites

The crux of ferroptosis execution is PUFA-PLs synthesis with

peroxidation. As outlined in this section, PUFA-PL synthesis and

peroxidation, Iron metabolism, and Mitochondrial metabolism

constitute the main prerequisites driving ferroptosis.

PUFA-PL synthesis and peroxidation: The key to triggering

ferroptosis is the catalytic oxidation of phospholipids containing

PUFA into polyunsaturated fatty acids, which leads to the fatal

accumulation of lipid peroxides on the cell membrane and

subsequent membrane rupture, resulting in ferroptosis. It is the

main prerequisite of ferroptosis. Acyl-coenzyme A (CoA)

synthetase long chain family member 4 (ACSL4) and

lysophosphatidylcholine acyltransferase 3 (LPCAT3) are critical

mediators of PUFA-PL synthesis (12, 13). ACSL4 and LPCAT3

play an important role in the biosynthesis and remodeling of

phosphatidylethanolamine (PE), which can activate PUFAs and

affect transmembrane properties (14). ACSL4 catalyzes the linking

of free PUFAs, which include arachidonic and adrenal acid to CoA

forming PUFA-CoAs such as arachidonic acid-CoA or adrenal acid

-CoA. These products are then subsequently re-esterified by

LPCAT3 and incorporated into PLs to form PUFA-PLs which

include arachidonic acid-phosphatidylethanolamine or adrenic

acid-phosphatidylethanolamine (Figure 1).

Acetyl-coa carboxylase (ACC) catalyzes the carboxylation of

acetyl-CoA to produce malonyl CoA, which is required for

synthesis of some PUFAs (15, 16). Human cytochrome P450

redox reductase (POR) mediated or arachidonic lipoxygenase

(ALOXs) mediated enzymatic reactions have also been shown to

promote lipid peroxidation (17, 18) (Figure 1). POR’s ability to

promote lipid peroxidation appears to be indirect, through the

production of H2O2 (18). The ALOX gene plays an important role

in driving ferroptosis. The mammalian ALOX family, consisting of

six members (ALOXE3, ALOX5, ALOX12, ALOX12B, ALOX15,

and ALOX15B), which play a context-dependent role in driving

ferroptosis . For example , spermidine/spermidine n1-

acetyltransferase 1 (SAT1), a target gene for tumor protein p53

(TP53), mediates the expression of ALOX15 (but not ALOX5 and

ALOX12) and is involved in TP53-mediated ferroptosis (3).

Interestingly, other studies have cast doubt on the role of ALOX

genes in ferroptosis (19). ALOX12 does not depend on GPX4 and

ALOX15 binds to phosphatidylethanolamine binding protein 1

(PEBP1), mediating RSL3-induced ferroptosis in bronchial

epithelial cells, renal epithelial cells, and neuronal cells (20).

Iron metabolism: Iron is a key nutrient involved in ATP

production via the mitochondrial chain complex, DNA synthesis

in the process of ribonucleic acid reductase, oxygen transport,

antioxidant defense (peroxidase and catalase), oxygen sensitive

factors such as hypoxia-inducer factor-HiIF - and proline

hydroxylase, and many other enzymes. Nutrient iron exists

mainly as iron ions, which can be reduced by iron reductase.

Systemic iron homeostasis is maintained by a balance of iron

uptake, recycling, and loss. Iron mainly comes from food intake

and the elimination of aging red blood cells, existing as Fe2+ and

Fe3+. Ferrous ions are internalized into intestinal cells by active

transport mechanisms in the gastrointestinal tract. Iron can also be
Frontiers in Oncology 03
internalized into the blood through the basolateral membrane

through ferroportin 1 (FPN1; the only known iron exporter), iron

through the binding of ferriferous carriers to lipidin-2 (LCN2), and

subsequent endocytosis returned into the cell (21, 22). However,

Fe3+ combines with transferrin (TF) on the cell membrane to form

TF-Fe3+, which is finally combined with transferrin receptor 1

(TFR1) and is swallowed in vivo. Excess iron is stored in the liver

primarily through ferritin (FTH and FTL). High iron levels cause

the liver system to secrete hepcidin, the most relevant regulator of

iron metabolism in the system. Hepcidin is a protein of iron

transport from cells which binds to ferritin transporters on iron-

storage cells such as intestinal epithelial cells and macrophages. This

leads to internalization and degradation of the hepcidin-transporter

complex, which effectively shuts down nutrient iron uptake and

iron release from internal iron stores. Expression of hepcidin is

controlled by a regulatory feedback mechanism of active

erythropoiesis: erythropoiet-derived erythroferone (ERFE), growth

differentiation factor 11 (GDF11), growth differentiation factor 15

(GDF15), and twisted gastrin protein homology 1 (TWSG1) have

been shown to affect liver hepcidin secretion. Interestingly,

leukemia cells require more iron than normal cells. In particular,

cancer patients require a large number of red blood cell transfusions

due to normal dyserythrogenesis and anemia caused by

chemotherapy, and excess iron is common in leukemia patients.

Excess iron and reactive oxygen species (ROS) catalyze

production and promote malignant transformation of

hematopoietic stem cells through niacinamide adenine dinucleotide

phosphate oxidase (NOX) and subsequent glutathione (GSH)

consumption (23).

Iron’s ability to gain and lose electrons between its oxidized Fe3+

and Fe2+ forms allow it to participate in radical generation reactions.

Among these processes is the Fenton reaction, where ferrous iron

contributes an electron to hydrogen peroxide to produce hydroxyl

radicals that induce ROS production. Abnormal iron accumulation

and subsequent excess ROS levels produce oxidative stress, induce

DNA, protein, or lipid damage, and even lead to cell death. It is

important to note that these oxidation actions of iron can promote

the development of tumors and are thought to be necessary for the

development of cancer (24). Nuclear receptor coactivator 4 (NCOA4)

is the target of the ferritin transporter, which mediates ferritinophagy,

a selective autophagy that degrades ferritin by lysosomes. Selective

autophagy degrades ferritin. Ferritinophagy increases free iron in

cells. Iron pools can be coated by lysosomes via NCOA4, and then

degrade and release a large amount of Fe2+, which increases the

sensitivity of cells to ferroptosis (25). Inhibition of ferritin

macrophages mediated by NCOA4 increases iron storage and

limits iron cell apoptosis in ferroptosis (25, 26)(Figure 1).

Mitochondrial metabolism: Overexpression of ferritin

mitochondria (FTMT), an iron-storage protein in mitochondria

whose primary function is to provide energy for cells through

oxidative phosphorylation, is a major site of iron metabolism and

ROS production which inhibits erastin-induced ferroptosis in

neuroblastoma cells (27). This suggests that FTMT has a

widespread anti-iron declining effect. Iron chaperone PCBP1

delivers Fe2+ to ferritin, thereby limiting ferroptosis in

hepatocytes (28). The role of mitochondria in the biosynthetic
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pathway of cell metabolism also contributes to ferroptosis.

Ferroptosis requires tricarboxylic acid (TCA) cycling (29) and

various non-fusion reactions in mitochondria. These reactions

may drive ferroptosis by promoting ROS, ATP, and/or PUFA-PL

production (30, 31).
2.2 Ferroptosis defense mechanisms

The imbalance between injury and defense signals eventually

leads to cell death. Ferroptosis defence mechanisms involve cellular

antioxidant systems that directly neutralize lipid peroxides. As

discussed below, there are mainly introduction the following

two systems.

The GPX4–GSH system: GPX4 belongs to the GPX protein

family (32, 33) and is the only GPX member capable of converting

PL hydroperoxides into PL alcohols (34, 35). GPX4 is a key

regulator of ferroptosis, and inhibition of its activity leads to the

accumulation of lipid peroxides in cells, which signal ferroptosis in

cells. Down-regulation of GPX4 increased susceptibility to

ferroptosis, while up-regulation inhibited ferroptosis (36). GPX4

consists of three subtypes with different subcellular localization,

namely cytoplasmic GPX4, mitochondrial GPX4, and nuclear

GPX4. These isomers are encoded by the same GPX4 gene and

have different transcription start sites, resulting in the n-terminal

GPX4 protein of the mitochondrial or nuclear localization

sequence. Only cytoplasmic GPX4 has a protective effect against

ferroptosis (37). Cytoplasmic GPX4 re-expression significantly

inhibited GPX4-deletion induced cell death in mouse embryonic

fibroblasts. The expression or activity of GPX4 is controlled by

selenium and glutathione (38, 39). Reducing glutathione (GSH), for

GPX4 is a thiol-containing tripeptide derived from glycine,

glutamic acid, and cysteine, of which cysteine is the rate-limiting

precursor. GSH is the most abundant reducing agent in mammalian

cells and is a cofactor of many enzymes. For glutathione synthesis, it

is mainly formed by the redox of cysteine through the xc-/cystine/

glutamate transporter (Figure 1).

Cystine glutamate transporter (system Xc-) is an amino acid

reverse transporter widely distributed in the phospholipid bilayer

and is an important part of the cellular antioxidant system. System

Xc- is composed of solute carrier family 7 member 11 (SLC7A11)

solute carrier family 3 member 2 (SLC3A2), an amino acid reverse

transporter that can transfer cystine into cells and glutamate 1:1.

Most cancer cells acquire intracellular cysteine-mediated cystine

uptake (the oxydimer form of cysteine) primarily through the Xc-

system, followed by reduction of cystine to cysteine in the

cytoplasm (40, 41). Through the exchange of system Xc- (40),

cysteine and glutamic acid are transported inside and outside the

cell, and then participate in the synthesis of GSH. Inhibition of

cysteine absorption can inhibit the activity of system Xc-, which can

affect the synthesis of GSH and ultimately inhibit the activity of

GPX, leading to the decline of cellular antioxidant capacity, lipid

ROS accumulation, and inducing ferroptosis. Overexpression of

apoptosis-inducing factor associated 2 (AIFM2) may eliminate

GPX4 to inhibit ferroptosis (42) (Figure 1).
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Seven members of solute vector family 11 (SLC7A11; Also

called xCT) (43) is a transporter subunit in the system Xc-. The

expression or activity of SLC7A11 is regulated by many factors,

such as TP53 (6), NRF2 (44), BRCA1-related protein 1 (BAP1) (5),

and BECN1 (45). Inhibition of SLC7A11 by small molecule

compounds (such as erastin) can cause glutathione depletion to

trigger ferroptosis (46). After GPX4 inactivation (10), some cancer

cell lines remain resistant to ferroptosis, suggesting the presence of

additional ferroptosis defense mechanisms (Figure 1).

CoQH2 system: Some recent studies suggest that ferroptosis

defense systems can be divided into two main parts, GPX4 system

and CoQH2 system. CoQH2 is an endogenous ferroptosis inhibitor,

which has antioxidant effect in cell membrane and can reduce the

oxidative damage of cell membrane. In addition to GPX4 system,

DHODH/FSP1/CoQ pathway is another key inhibitory mechanism for

lipid peroxidation and ferroptosis. DHODH is an enzyme involved in

pyrimidine synthesis, which can reduce ubiquinone (CoQ) to

ubiquinol (CoQH2) in the mitochondrial inner membrane. When

GPX4 is dramatically inactivated, the flux through DHODH (3)

increases significantly, leading to enhanced CoQH2 production,

neutralizing lipid peroxidation, and defense against ferroptosis in

mitochondria. The inactivation of mitochondrial GPX4 and

DHODH releases powerful mitochondrial lipid peroxidation and

triggers intense ferroptosis. Cytoplasmic GPX4 was also found to be

significantly localized in the mitochondrial membrane gap

(37) (Figure 1).

As a major suppressor of ferroptosis, FSP1 was originally described

as a p53 response gene and therefore was originally called p53 response

gene 3 (PRG3). FSP1, also known as AIFM2, is localized in the plasma

membrane (as well as other subcellular compartments), and its plasma

membrane localization appears to be necessary and sufficient to

function FSP1’s role in inhibiting ferroptosis (47, 48). Doll et al. and

Bersuker et al. found that FSP1 inhibits lipid peroxidation and

ferroptosis by reducing CoQ (or its partially oxidized product

hemihydroquinone) to CoQ2. This may directly reduce lipid radicals

to terminate lipid autoxidation, or indirectly via regenerating oxidized

a-tocopheryl radical (Vitamin E), a powerful natural antioxidant (47,

48). FSP1 acts as a NADPH-dependent CoQ redox enzyme, and can

catalyze CoQ10 regeneration depending on NADPH, thereby

improving the ability of free radical capture to protect cells, and also

has a protective effect against ferroptosis caused by GPX4 deletion. This

protective effect of CoQ reveals why some cells and tissues, such as

highly metabolically active liver cells, contain large amounts of

extracellular CoQ, which is inconsistent with its typical role in the

mitochondrial electron transport chain. CoQ is synthesized mainly in

the mitochondria (49), but detected in non-mitochondrial membranes,

including the plasma membrane (50). Unanswered questions remain

about the potential role of other CoQH2 producing mitochondrial

enzymes in the regulation of ferroptosis.
2.3 Upregulation of ferroptosis defenses

Despite the prevailing importance of GPX4 and CoQH2 for

limiting ferroptosis, both the signal pathways and the tumor
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microenvironment influence the function of ferroptosis in

tumorigenesis and tumor therapy.This section focuses on the role

of these two pathways that inhibit ferroptosis.

Hippo–YAP signaling in ferroptosis: The Hippo -Yap

pathway is involved in a variety of biological functions, including

cell proliferation and organ size control (51). Wu et al.

demonstrated the role of intercellular interactions and

intracellular NF2-YAP signaling in dictating ferroptosis, which

can promote the survival of GPX4 knockout cells (9). Because

YAP targets include several regulators of ferroptosis, including

transferrin receptors ACSL4, TFR1, and possibly other genes,

susceptibility to ferroptosis depends on Hippo pathway activity,

with increased susceptibility in response to Hippo inhibition and

YAP activation (9). Yang et al. found that in renal cell carcinoma

(RCC), Transcription Regulator 1 (TAZ) is abundantly expressed

and regulates ferroptosis through Epithelial Membrane Protein 1

(EMP1)-NOX4 (52).

Nuclear factor E2 erythroid 2-like-2 (NRF2): The NRF2

transcription pathway can up-regulate the expression of

antioxidant genes or cell protective genes in various oxidative

stress processes. As a major regulator of antioxidant defense,

transcription factor NRF2 (53, 54) controls the transcription of

many genes involved in GPX4-GSH-mediated ferroptosis defense.

Sun et al. report that NRF2 plays a central role in protecting

hepatocellular carcinoma (HCC) cells against ferroptosis, and

NRF2 signaling is up-regulated in many human cancer types

(55) (Figure 1).

Ferroptosis in the tumor microenvironment: Recent studies

have also shown that the tumor microenvironment (TME), which is

a multicellular environment, includes the extracellular matrix,

immune cells, blood vessels, tumor cells, and other cells. In

particular, immune cells determine whether ferroptosis in tumor

cells will occur. CD8+ cytotoxic T cells are the main agents of anti-

tumor immunity in the TME (56), secreting interferon-g (IFN-g)
and subsequently inhibiting cystine uptake by cancer cells via

down-regulation of SLC7A11 expression, thereby increasing lipid

peroxidation and ferroptosis in tumors. Ferroptotic cancer cells can

release several immunostimulatory signals, such as high mobility

group box 1 (HMGB1) (57), calreticulin (58), ATP (59), and

phosphatidylethanolamine (60). These factors can promote

dendritic cell maturation, increasing the efficiency of

macrophages in the phagocytosis of ferroptotic cancer cells, and

further enhance the infiltration of CD8+ T cells into tumors.

Immunotherapy, combined with induction of ferroptosis, is a

promising therapeutic approach. Drijvers et al. (61) found that

Acyl-CoA synthetase ACSL4 mediates GPX4 inhibitor-induced

sensitivity changes and ferroptosis in activated CD8+ T cells.

CD8+ T cells can inhibit tumor cells by inducing iron decay and

pyrosis (62, 63).
3 The role of ferroptosis in leukemia

Leukemia comprises a group of heterogeneous hematopoietic

stem/progenitor cell malignancies characterized by abnormal

proliferation of primitive cells in the bone marrow that interfere
Frontiers in Oncology 05
with normal blood cell production. Its occurrence involves multiple

gene changes including the transferrin receptor 1 gene, the

hemochromatosis (HFE) gene, and several genes related to

iron metabolism.

At present, chemotherapy, immunotherapy, and hematopoietic

stem cell transplantation (HSCT) are still the main treatments for

leukemia. Despite advances in treatment, the results remain

disheartening. Relapse or refractory disease and resistance to

chemotherapy are the main reasons for treatment failure.

Overcoming drug resistance is a major challenge in cancer

treatment. Combination therapy prevents drug resistance by

combining drugs with different targets, modes of action, and

distribution of side effects in the body to reduce toxicity (64).

As a newly discovered programmed cell death mode, ferroptosis

is regulated by multiple pathways such as lipid metabolism,

mitochondrial metabolism and iron metabolism. Through this

new death mode, it provides a new idea for improving the

prognosis of leukemia patients. However, leukemia cells seem to

be able to escape oxidative stress and reduce ferroptosis through

some mechanisms.
3.1 Acute myeloid leukemia

Acute myeloid leukemia (AML) is a clonal hematopoietic

disease caused by a variety of genetic and epigenetic impairments,

characterized by impaired differentiation and uncontrolled

proliferation, with varying prognoses (65). The incidence of AML

increases with age, with a mortality rate of over 90% (66) at

diagnosis after age 65. Ferroptosis provides a new idea for the

treatment of AML, and a variety of drugs have been shown to

induce ferroptosis.

Sorafenib has been approved as a tyrosine kinase inhibitor for

the treatment of liver, kidney, and thyroid cancers for more than 15

years, and has recently been shown to be effective in AML patients

with FLT3-ITD mutations (67). Concurrently, it also inhibits

system Xc- and thus induces ferroptosis (46). Imatinib Mesylate

(IMA) (68)down-regulates the expression of NRF2 and up-

regulates the expression of p53 and TFR. These results provided

compelling evidence that ferroptosis participates in IMA-induced

cardiotoxicity. Ferroptosis could be regarded as a target to protect

against cardiotoxicity in IMA-exposed patients.

APR-246 (69) is a novel drug for the treatment of TP53-mutant

AML. Its main mechanism of action is to promote the binding of

p53 mutants to DNA targets to reactivate the transcriptional

activity of p53 and exert tumor inhibitory effects. APR-246 (70)

increases oxidative stress by depleting GSH and inhibiting

thioredoxin reductase, leading to the accumulation of ROS and

further promoting tumor cell death. Birsen et al. (71) found that the

observed early p53-independent cell death induced by APR-246

is ferroptosis.

NEAT1 (72) is bound to cytoplasmic disheveled 2 (DVL2) and

tripartite motif containing 56 (TRIM56), which promotes the

degradation of DVL2 and inhibits Wnt signaling, inhibiting the

self-renewal of AML stem cells. Zhang et al. (73) found that

ferroptosis inducers erastin and RSL3 increased NEAT1
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expression by promoting the binding of p53 to the NEAT1

promoter. Induced NEAT1 promoted the expression of MIOX by

competitively binding to miR-362-3p. MIOX increased ROS

production and decreased the intracellular levels of NADPH and

GSH, resulting in enhanced erastin- and RSL3-induced ferroptosis.

Aldo-keto reductase family 1 member C2 (AKR1C2),

suppressor of cytokine signaling1 (SOCS1) (74), dipetidyl

peptidase-4 (DPP4) (75), and human immunodeficiency virus

type I enhancer-binding protein zinc finger 3(HIVEP3) (76) can

be used as predictive adverse prognosis. Long non-coding RNAs

(lncrnas) (77) associated with ferroptosis have also been shown to

accurately predict the prognosis of AML and optimize treatment

strategies for AML.

Acetaldehyde dehydrogenase 3a2 (Aldh3a2) (78) is l-gmp

dependent and not seen in n-gmp. It protects AML cells from

oxidative cell death, and Aldh3a2 inhibition improves leukemia

outcomes in vivo without compromising normal hematopoiesis.

Aldh3a2 inhibition combined with ferroptosis inducer or standard

AML induction chemotherapy deserves further consideration as a

cancer treatment.

High mobility base Box 1 (HMGB1) (79) is a transcription

factor involved in the process of chromatin remodeling, DNA

recombination, and repair. HMGB1 is found in the cytoplasm

and, via translocation, is expressed on the cell surface membrane

or diffuse in the extracellular space. This can be caused by various

cellular stressors, causing HMGB1 to migrate from the nucleus to

the cytoplasm in response to erastin in HL-60/NRASQ61L cell lines

and acts as a positive regulator of ferroptosis, possibly enhancing

resistance to anticancer therapy.

At present, a variety of drugs have been confirmed to promote

or inhibit ferroptosis in AML cells, but there is still a lack of large-

scale studies, and further research is still needed to support the

development. There are still many challenges in the clinical

application of ferroptosis in the treatment of leukemia.
3.2 Acute lymphoblastic leukemia

Acute lymphoblastic leukemia (ALL) is a common malignant

disease of the blood system, which manifests as abnormal clonal

proliferation of naive or immature T and B lymphocytes. These cells

will infiltrate bone marrow, blood, or other tissues and organs,

causing abnormal hematopoietic function of bone marrow and

immune dysfunction. Vincristine (VCR) is often used as a

treatment for ALL (80). Studies have found that VCR promotes

ferroptosis by enhancing the expression of lncRNA LINC00618 and

inhibiting the transcription of SLC7A11, suggesting that ferroptosis

is involved in the mechanism of action of VCR.

RSL3 is an inducer of ferroptosis that binds and inactivates

GPX4, mediating ferroptosis regulated by GPX4 (81). Probst et al.

treated ALL cell lines with RSL3 causing lipid peroxidation, ROS

production, and cell death (82). Hydnocarpin D (HD) can trigger

ferroptosis through the accumulation of lipid ROS and the

reduction of GSH and GPX4, while the inhibition of autophagy

prevents the ferroptosis (83). PAQR3 (progestin and adipoQ

receptor family member 3) is involved in the occurrence of many
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tumors as a tumor suppressor and can inhibit the proliferation of

human leukemia cells and induce cell apoptosis (84). Jin et al. found

that PAQR3 inhibits cell proliferation and aggravates ferroptosis in

ALL by regulating the stability of NRF2. Hong et al. (85, 86)

demonstrated the critical role of ferroptosis in Philadelphia

chromosome negative (Ph-neg) B-ALL patients, with sorafenib

potentially improving survival in high-risk Ph-neg B-ALL patients.

Artesunate (ART), a semi-synthetic water-soluble derivative of

Artemisia annua L., is a natural product extracted from artemisia

annua L. Apoptosis induced by ART corresponded to the activation

of caspase-8/9/3. The expression of Bcl-xL, Bcl-2, myeloid

leukemia-1, survivin, X-linked apoptosis inhibitor protein, and

apoptosis inhibitor 1/2 were decreased, with increased expression

of Bak. ART increased the activation of intracellular ROS and DNA

damage marker gamma-H2Ax. In the ATLL mouse model,

intraperitoneal injection of ART reduced tumor burden (87).

Poricoic acid A (PAA) (88) strongly reduced the cell viability of

T-ALL cell lines. Mitochondrial dysfunction was also elevated by

PAA, along with enhanced cellular reactive oxygen species (ROS)

production. PAA treatments provoked ferroptosis in T-ALL cells

with reduced glutathione (GSH) levels and elevated malonaldehyde

(MDA) contents. As a new mode of regulatory cell death,

amplification of ferroptosis effect may be a new idea for drug

development and disease treatment.
3.3 Chronic lymphocytic leukemia

Chronic lymphocytic leukemia (CLL) is a disease with different

genetic characteristics and treatment responses. CLL is

characterized by the cloning and proliferation of mature CD5-

positive B cells in the blood, bone marrow, lymph nodes, and

spleen, resulting in immune system decline, organ dysfunction, and

slow progressive systemic failure and depletion.

Ferroptosis is less well studied in the CLL field. SLC7A11 is the

main functional subunit of system Xc- to transport cystine into cells

to synthesize GSH. Inhibition of SLC7A11 expression can induce

ferroptosis. The expression of SLC7A11 is low in CLL compared to

the high expression level of SLC7A11 in other systemic solid

tumors. This will lead to an increase in intracellular ROS, and as

CLL cells are more prone to oxidative stress, they may be sensitive

to ferroptosis inducers.

Ferroptosis is an autophagy-dependent form of cell death.

BECN1 affects the occurrence and progression of autophagy, and

its repeated allelic deletion and expression variation have been

reported in tumors (89). Gong et al. (90) proposed a novel FPS

model for prognostic prediction of CLL and established nine

ferroptosis genes associated with CLL prognosis.
3.4 Chronic myelogenous leukemia

Chronic myelogenous leukemia (CML) is a hematopoietic

malignancy caused by reciprocal translocation of Philadelphia

chromosomes 9 and 22. Ferroptosis has been less studied in the

field of CML. Cysteine metabolism plays a key role in cancer cell
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survival in the study of CML related fields. Cysteine deficiency has

been reported to inhibit tumor growth and induce ferroptosis in

pancreatic cancer cells. It has also been reported that cysteine

depletion can induce ferroptosis in CML cells in vitro, and

thioredoxin reductase 1 (TXNRD1) (91), which is related to cell

redox metabolism, is a key factor regulating ferroptosis.
4 Conclusion and outlook

Ferroptosis, as a newly discovered form of programmed cell

death, has a broad prospect in tumor therapy. We have

systematically and comprehensively illustrated the relationship

between ferroptosis and leukemia, and found that ferroptosis

plays an important role in disease progression. PUFA-PL

synthesis and peroxidation, intracellular ROS levels, and

homeostasis of various metabolic pathways can affect cell

sensitivity to ferroptosis, thus inducing ferroptosis in blood cells.

Iron accumulation and lipid peroxidation may be considered as

intermediate events, but they are not the final executors of

ferroptosis. Leukemia cells seem to escape oxidative stress

through certain mechanisms, such as the upregulation of

ferroptosis defenses and ferroptosis defense mechanisms, which

reduce the occurrence of ferroptosis. However, the study of

ferroptosis in hematological diseases is still in the early stage, and

its specific mechanism needs to be further studied. At present, most

studies affect the activity of antioxidants such as GPX4 through

exogenous ferroptosis inducers, causing the accumulation of ROS

and thus promoting ferroptosis. There are few large studies on

ferroptosis inducers in the treatment of leukemia. The pathogenesis

of leukemia is complex, and often involves multiple pathways and

targets. The previous multi-drug combination chemotherapy with

cytotoxic drugs could easily cause serious adverse consequences

such as bone marrow suppression and immune destruction. Novel

target inhibitors related to ferroptosis, or their combination with

existing cytotoxic agents, may further enhance the efficacy of

existing single agents, delay drug resistance and improve

prognosis. Although the treatment of leukemia with ferroptosis

inducers is not mature at present, but it still has high research value.

In summary, we are currently in the middle of an important

phase in the development of ferroptosis research. The occurrence
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and development of ferroptosis, its transcriptional regulation

mechanism, and the development of effective regulatory targeted

drugs are of utmost importance, providing a new direction for

clinical diagnosis and treatment of blood diseases. New treatments

based on ferroptosis will be developed and put into clinical use

soon, guided by specific biomarkers and a precise assessment of a

patient’s background.
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