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Introduction: Non-combat musculoskeletal injuries (MSKIs) during military
training significantly impede the US military’s functionality, with an annual cost
exceeding $3.7 billion. This study aimed to investigate the effectiveness of a
markerless motion capture system and full-body biomechanical movement
pattern assessments to predict MSKI risk among military trainees.

Methods: A total of 156male United States Air Force (USAF) airmen were screened
using a validated markerless biomechanics system. Trainees performed multiple
functional movements, and the resultant data underwent Principal Component
Analysis and Uniform Manifold And Projection to reduce the dimensionality of the
time-dependent data. Two approaches, semi-supervised and supervised, were
then used to identify at-risk trainees.

Results: The semi-supervised analysis highlighted twomajor clusters with trainees
in the high-risk cluster having a nearly five times greater risk of MSKI compared to
those in the low-risk cluster. In the supervised approach, an AUC of 0.74 was
produced when predicting MSKI in a leave-one-out analysis.

Discussion: The application of markerless motion capture systems to measure an
individual’s kinematic profile shows potential in identifying MSKI risk. This
approach offers a novel way to proactively address one of the largest non-
combat burdens on the US military. Further refinement and wider-scale
implementation of these techniques could bring about substantial reductions
in MSKI occurrence and the associated economic costs.
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Introduction

Non-combat musculoskeletal injuries (MSKIs) that occur during basic and specialized
military training continue to be one of the greatest burdens affecting the United States
military and their allied partners (Molloy et al., 2020; Rhon et al., 2022). The economic
consequences and lost duty days are a substantial encumbrance on the functionality of our
armed forces. Recent studies estimate that non-combat injuries are six times more likely than
combat-related injuries, put 68,000 servicemembers in non-deployable status every year, and

OPEN ACCESS

EDITED BY

Zhen (Jeff) Luo, University of Technology
Sydney, Australia

REVIEWED BY

James Yang,
Texas Tech University, United States
Gary B. Wilkerson,
University of Tennessee at Chattanooga,
United States

*CORRESPONDENCE

Lance Frazer,
lance.frazer@swri.org

RECEIVED 13 September 2023
ACCEPTED 21 November 2023
PUBLISHED 06 December 2023

CITATION

Frazer L, Templin T, Eliason TD, Butler C,
Hando B and Nicolella D (2023),
Identifying special operative trainees at-
risk for musculoskeletal injury using full
body kinematics.
Front. Bioeng. Biotechnol. 11:1293923.
doi: 10.3389/fbioe.2023.1293923

COPYRIGHT

© 2023 Frazer, Templin, Eliason, Butler,
Hando and Nicolella. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 06 December 2023
DOI 10.3389/fbioe.2023.1293923

https://www.frontiersin.org/articles/10.3389/fbioe.2023.1293923/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1293923/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1293923/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1293923/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2023.1293923&domain=pdf&date_stamp=2023-12-06
mailto:lance.frazer@swri.org
mailto:lance.frazer@swri.org
https://doi.org/10.3389/fbioe.2023.1293923
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2023.1293923


carry an annual cost that exceeds $3.7 billion (Grimm et al., 2019).
Among MSKI types, lower extremity (LE) injuries are the most
common with some reports attributing more than 70% of non-
combat injuries to lower extremities (Molloy et al., 2020; Butler et al.,
2022). As a result, the US military has promoted the identification of
Service members at risk for LE MSKI and the development of
effective preventative measures as a top research priority (Teyhen
et al., 2020; Rhon et al., 2021).

Over the past decade, a growing interest has developed in the use
of biomechanics to evaluate MSKI risk during military training
(Sammito et al., 2021). Biomechanical assessments typically include
the analysis of an individual’s movement (kinematics) (Hando et al.,
2021; Bird et al., 2022; Cameron et al., 2022; Eckard et al., 2022; Bird
et al., 2023), force transmission through the body (kinetics) (Bird
et al., 2022; Hando et al., 2022; Bird et al., 2023), and/or overall
fitness (Tomes et al., 2020). These analyses have been fruitful in
discovering biomechanical measures associated with injury. For
example, Sharma et al. found that imbalanced foot pressure is
predictive of medial tibia stress syndrome (shin splints) (Sharma
et al., 2011). Step width during gait has been associated with tibial
stress, which may affect stress fracture risk (Meardon and Derrick,
2014). Wan and Shan associated muscle mechanics with repetitive
stress injuries (Wan and Shan, 2016). While these analyses, among
others (Negus and Sih, 2016; Winkelmann et al., 2016; Garnock
et al., 2018), have shown promise in identifying Service members at
risk for MSKI, to date, there are no examples of successful adoption
of biomechanical assessments in military units that have reduced the
injury burden. A well-generalizable set of predictive variables and an
accurate, reliable injury risk algorithm has yet to be demonstrated.
Moreover, the time and effort required to perform biomechanical
assessments limit their application at scale, which is particularly
important for military applications. To address this latter concern,
markerless motion capture technology has emerged as promising to
substantially reduce the burden of high throughput testing.

Markerless motion capture systems are an attractive screening
tool because of their operational simplicity and equivalence to
marker-based systems (Perrott et al., 2017; Martinez et al., 2018;
Mosier et al., 2018; Drazan et al., 2021). However, the few studies to
investigate their use for injury risk assessments have yielded mixed
results, and it is unclear if these systems provide meaningful
information to predict MSKI. For example, Eckard et al. and
Cameron et al. used results from a markerless motion capture
system to compute the Landing Error Scoring System (LESS) and
found a significant association between individual subjects’
jumping/landing characteristics and lower limb bone stress injury
(Cameron et al., 2022; Eckard et al., 2022). While promising, the
association was most meaningful among female trainees and may
not be strong enough to make actionable decisions for both males
and females (Eckard et al., 2022). Moreover, the findings were only
applicable to a small percentage of participants who landed in a very
particular way (Cameron et al., 2022). In contrast, Hando et al., as
well as Bird et al. used markerless motion capture technology
coupled with proprietary “scores” but found poor association
with injury risk (Hando et al., 2021; Bird et al., 2023). While the
ease of implementation offered by markerless systems has alleviated
the concern of high throughput testing, the limited and even
conflicting results have questioned their predictive value. Yet,
even the studies with much more inclusive methods to perform

biomechanical assessments have not yielded satisfactory predictive
power (Sanchez-Santos et al., 2017; Rhon et al., 2018; Sammito et al.,
2021). Thus, it remains challenging to make a convincing case for
biomechanics to assess injury risk.

We believe the application of markerless motion capture and the
subsequent analyses of the kinematics obtained from such systems
have greater potential to identify MSKI risk than these prior studies
suggest. The majority of studies, including those cited earlier, use
univariate measures that are decided upon a priori and researchers
must subjectively choose what may or may not be predictive of
injury (Chorba et al., 2010; Lisman et al., 2013; Sefton et al., 2016;
Markström et al., 2019; Sammito et al., 2021; Bird et al., 2022;
Cameron et al., 2022; Eckard et al., 2022; Hando et al., 2022).
Individuals perform specific movements through unique,
coordinated patterns of time-dependent joint motions that
cannot be adequately described with univariate measures (or
even a collection of univariate measures). These unique patterns,
or biomechanical fingerprints, that include multiple joint motions
across the entire body may reveal subtle differences that are
indicative of injury risk. Yet, to our knowledge, no study has
investigated the detailed, high-fidelity, full-body kinematics to
determine the injury risk of military trainees. With this
approach, full, time-dependent joint motions across the entire
body are analyzed using dimensionality reduction techniques
without choosing beforehand which joints and/or key events are
important. We hypothesize that considering the entirety of an
individual’s kinematic profile is predictive of injury. Therefore, to
test this hypothesis and address a gap in injury risk analysis amongst
military trainees, the purpose of this study is to evaluate whether an
individual’s biomechanical movement pattern is indicative of
injury risk.

Materials and methods

Participants

United States Air Force (USAF) airmen (male) entering a Special
Warfare (SW) 8-week preparatory course designed to ready trainees
for the rigors of SpecialWarfare training served as participants in the
study. Details of this course have been described in prior studies
from our group (Hando et al., 2022). Trainees with active injuries
were excluded from the study. Injury data were obtained from the
Medical Health System Management Analysis and Reporting Tool
(M2), a centralized data repository that captures data input into the
Military Health System’s electronic medical records. A published
MSKI taxonomy used in US military MSKI research was used to
identify International Classification of Diseases (10th Revision,
Clinical Modification) codes corresponding to MSKIs (Hando
et al., 2023). Subsequent encounters for the same injury were not
counted. The trainees were surveilled for the period corresponding
to their 8-week training, and those who suffered any MSKI were
recorded. For this analysis, the classification matrix was used to
further classify participants as sustaining a lower extremity MSKI
(yes/no). Only a small sample of individuals had available data,
which resulted in 156 participants between October 2017 and April
2020. Because very few females were enrolled in Special Warfare
training at the time, there were no females included in our sample.
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Movement assessment

Within 3 days before the start of the course, kinematic
screenings were administered. Eight synced Blackfly/FLIR GigE
cameras (50 frames per second) were positioned circumferentially
above the participant in a rectangular room measuring 6 m ×
6 m and 3 m in height with green screen flooring. Each of the
156 trainees performed the following kinematic movements directed
by certified athletic trainers: 1) squat, 2) countermovement jump,
(3–4) single-leg squat (each leg), (5–6) lunge (each leg), (7–8) side-
lunge (each leg), (9–10) single-leg jump (each leg). Each movement
was processed using a validated markerless biomechanics system
(SwRI ENABLE™ v.1.0) (SWRI, 2023). We measured six degrees of
freedom (DOFs) for the pelvis (3 translation, three rotational), three
DOFs for the torso (3 rotational), three DOFs for the shoulders
(rotational), three DOFs for the hips (3 rotational), three DOFs for
the knees (rotational), two DOFs for the ankles (flexion/extensions,
inversion/eversion), and one DOF for the elbows (flexion/
extension). In total, 33 DOFs were measured for each individual
and for each movement.

Data analysis

The 33-degree-of-freedom full-body kinematic data obtained
from ENABLE™ was analyzed in the aggregate for multiple
movements and is referred to herein as an individual’s kinematic
profile or biomechanical movement pattern. Each joint angle (or
joint displacement in the case of the pelvis) vs. time curve was
normalized to 100 evenly spaced time points by two different
approaches: 1) by time (start to finish of the movement), and 2)
by identifying a starting point of the movement and moving forward
3 s in time, which was found to be sufficient to fully capture each
movement for each participant. The first normalization technique
identifies relative differences in magnitudes at particular
parametrically corresponding points of a movement but is
insensitive to time, whereas the second normalization technique

is sensitive to the time of a movement but can introduce artificial
extrapolations at the end of the data trace if a participant finishes the
movement much faster than 3 s. Used in tandem, the two
approaches may be complementary (Raffalt et al., 2019). The two
normalization techniques across 10 movements created
20 individual kinematic traces for each trainee. Therefore, each
trainee’s kinematic profile for a particular movement (referred to
here as a kinematic trace) contained 3300 points (33 degrees of
freedom x 100 points).

Principal component analysis was performed separately on each
of the 20 kinematic traces across all 156 trainees (Figure 1). For each
trace, only the first 50 PCs were kept as anything beyond these
explained less than 0.5% of the variance and was deemed too prone
to noise error from the markerless motion capture system. Two-
tailed t-tests were performed on each of the principal components to
test for significant differences between injury and non-injury
trainees (p < 0.05). The significant PCs from each movement
were aggregated and served as input to a semi-supervised and
supervised analysis pipeline to test the validity of using full-body
kinematic data to assess injury risk (Figure 2).

In the semi-supervised approach (the ‘semi’ is attributed to
only using significant PCs), the significant PCs were embedded
into 2-dimensional Cartesian space via unsupervised Uniform
Manifold and Projection (UMAP) (McInnes et al., 2018). UMAP
is a non-linear dimensionality reduction technique and is used in
conjunction with the linear PCA to 1) introduce non-linearity to
the method, which may detect trends not observable with linear
analysis, and 2) further reduce the dimensionality of the PCs,
which helps with both supervised learning and visualization
(clustering) analysis. The embedded data were then clustered
via Gaussian Mixture Models (Reynolds et al., 2009), which is
similar to K-Means clustering but does not require that the
clusters are circular. The number of clusters was decided via
calculating a K-Means silhouette coefficient for 2–10 clusters and
selecting the highest score (Shahapure and Nicholas, 2020). The
silhouette coefficient is a measure of how close each point in one
cluster is to points in the neighboring clusters. A higher score

FIGURE 1
Data organization when performing principal component analysis. Rows represent each of the 156 trainees, and each column represents 1 of
3300 points in the kinematic trace. This was performed for each of the 20 kinematic traces (10 movements x 2 normalizations).
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means the clusters are more closely packed, and thus the highest
silhouette coefficient calculated denotes the optimal number of
clusters to use.

In the supervised approach, supervised UMAP (performed on
the significant PCs) was combined with logistic regression (LR)
to classify injurious from non-injurious participants. The
performance of the model was evaluated via leave-one-out
analyses where 155 of the participants were used to train the
supervised UMAP embedding and subsequent LR algorithm. The
left-out trainee was then passed through the trained UMAP
embedding and then classified via the trained LR. The process
was repeated for each of the 156 participants. A receiver
operating characteristic curve (ROC) was generated and an
associated area under the curve (AUC, which is a measure of
separability between two classes, or how well the prediction
algorithm can distinguish injury from non-injury, in the
present study) was calculated. Values above 0.7 are deemed
useful for prediction (Mandrekar, 2010). An optimization
procedure was performed to identify the best combination of
UMAP components, UMAP neighbors, and the LR regularization
parameter (C in the sci-kit learn implementation (Pedregosa
et al., 2011; Virtanen et al., 2020)). For each participant, prior
injury data (any MSKI), which has been shown to be a strong
predictor of MSKI during military training (Rhon et al., 2018),
was available. As such, the supervised analysis was repeated two
more times to 1) only include prior injury data (logistic
regression only), and 2) kinematic data + prior injury data. It
should be noted that UMAP is a stochastic algorithm. As opposed
to fixing the random seed, each analysis was performed 15 times
to test if the results were sensitive to random number generation
for both the supervised and semi-supervised methods.

Results

Of the 156 trainees, 48 suffered a lower-body injury. Of these
48 lower body injuries, all were considered overuse injuries that
included two stress fractures and two sprains/tears (Table 1).

Of the 1000 principal components tested in this study (50 PCs in
each of the 20 movements), 53 were found to be significant (Table 1).
All movements yielded significantly different PCs. The lunge
movements yielded significant PCs that contained the most variance
explained, whereas the countermovement jump had the least.

In the semi-supervised analyses, 2 clusters were selected via the
highest silhouette coefficient (0.48). However, in lieu of previous work
using clustering (Bird et al., 2022), we also implemented 3 clusters
(silhouette coefficient = 0.43). In the two-group cluster semi-supervised
analysis (Figure 3, left), 51% of the trainees in one of the clusters suffered
an MSKI (which we have named the “High Risk” cluster), whereas only
17% of the trainees in the other cluster suffered anMSKI (which we have
named the “Low Risk” cluster). The odds ratio was 4.97 (p < 0.0001)
between these two clusters. In the three-group cluster semi-supervised
analysis (Figure 3, right), 49% of the trainees in the “high-risk” cluster
suffered an MSKI, 26% of the trainees in the “medium-risk” cluster
suffered an MSKI, and only 14% of the trainees in the “low-risk” cluster
suffered an MSKI. The repeated analyses had little effect on the clusters.

In the supervised analysis that only included kinematic data, seven
UMAP components with the number of neighbors set to 6, and a C
value of one was found to be the most optimal combination of
hyperparameters in classifying injurious and non-injurious trainees.
Using these optimized parameters, an AUC score of 0.74 ± 0.02 (range:
0.70–0.79) was produced (Figure 4 with the best confusion matrix
shown in Figure 5). Using the same optimized parameters and the
inclusion of prior injury data, an AUC score of 0.75 ± 0.02 (range:

FIGURE 2
Analysis pipeline for both the unsupervised (dark green) and semi-supervised (light green) approaches. The portions of the workflow outlined in blue
are common between both the semi-supervised and supervised analyses.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Frazer et al. 10.3389/fbioe.2023.1293923

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1293923


0.71–0.80) was produced. Prior injury data as the sole predictor variable
with logistic regression produced an AUC score of 0.62 ± 0.03 (range:
0.57–0.67). The stochastic nature of UMAP had a minor effect on the
results (illustrated by the range of AUCs).

Discussion

The purpose of this study was to investigate whether an
individual’s biomechanical movement pattern is indicative of
injury risk. The novelty in our study was the approach taken to
assess biomechanical movement. Instead of assessing univariate
variables at key events (e.g. maximum knee flexion), the entire
waveforms for 33 degrees of freedom in the body were analyzed in
aggregate using dimensionality reduction techniques. Moreover,
several functional movements were analyzed and considered in
tandem in the development of both an unsupervised and
supervised approach. Considering the time-dependent movement
of multiple joints across the body during particular movements, it
was found that a semi-supervised analysis naturally clustered
individuals based on movement patterns that were indicative of
injury-risk. In a supervised approach, we observed that a binary
injury classification algorithm may be possible from kinematics
alone. An AUC of 0.74 is a promising result and may have

implications for identifying MSKI risk in vulnerable populations,
such as high-school and collegiate athletes, military Service
members, first responders, and others. If the results herein can
be repeated and improved upon in a much larger, controlled study, a
simple kinematic screening test could be implemented as a means to
identify at-risk individuals.

Although other studies that have used biomechanics to assess
injury risk primarily focused on univariate measures, they
demonstrate a perceived strength in result interpretably. For
example, Bird et al. were able to show that a short breaking phase
and propulsive phase during the countermovement jump was
associated with a lower risk of injury in marine officer candidates
(Bird et al., 2022).McHugh et al. report high peak propulsive power in
the “above average” group for NCAA athletes (McHugh et al., 2021)
during the countermovement jump. In another similar study, Rauch
et al. demonstrate that NBA basketball players can be clustered and
significantly differentiated based on hip flexion during the downward
phase of the countermovement jump (CMJ) (Rauch et al., 2020).
Indeed, the CMJ is a popular movement for screening, although we
found this movement to be the least indicative of injury risk (lowest
variance explained in the significant PCs). These studies, among
others, demonstrate the benefits of using distinctly chosen
predictor variables because these variables are understandable, and
they can be interpreted as to what they might be revealing in military
trainees (or athletes). Therefore, a criticism against full-body data
analyses that use variable, or dimension, reduction methods such as
principal components analysis of raw kinematic data could be that the
results are difficult to interpret as each PC contains movement
information across multiple degrees of freedom (in this study, 33).
However, this approach coupled with rigid body dynamics and
visualization software makes interpretability possible. To this end,
we provide the following explanation on how this can be
accomplished.

Using OpenSim (which is the native output of ENABLE™), the
principal components that are significant between injury and non-
injury participants can be isolated and visualized by perturbing an
“average” model with the plus and minus 1 standard deviation of that
particular principal component. This type of analysis has substantial
implications for training and intervention strategies, as it allows
significantly different movement patterns between groups to be
visually scrutinized. As a demonstration of this capability and
motivation for future work, we visually compared the plus and
minus 1 standard deviation of a randomly selected principal
component that was significantly different between groups (right
side lunge PC#7 that explained 5% of the variance). We found that
on average, those that went on to suffer a lower-extremity MSKI
performed the side lunge faster than their non-injured counterparts
(Figure 6). Moreover, the injured group tended to take a smaller
backward step during the initial eccentric phase of the movement.
While these observations are not predictive of injury risk in isolation,
they provide additional information to researchers and trainers that
may help guide actionable interventions. Considering all of the
significant PCs, a trainer/practitioner may find insightful differences
between each group, such as balance or strength issues and use this
information to design intervention strategies aimed at risk mitigation.

The machine learning algorithms implemented in this study
were PCA, UMAP, and logistic regression. While the results are
positive, we do not believe the results are specific to the choice of

TABLE 1 Injury region and type using Hando et al.’s classification matrix
(Hando et al., 2023). 48 total lower extremity injuries occurred in the
156 trainees tracked in this study.

Body region 1 (all categories)

Lower Extremity 48

Spine and Back 8

Upper Extremity 7

Head and Neck 3

Torso 0

Other 0

Body Region 2 (Top Eight Categories)

Knee 19

Leg Other 15

Lower Leg 13

Lumbar Spine 7

Foot/Toe 6

Shoulder 6

Hip 5

Ankle 3

Injury Types (Top Six Categories)

Overuse/Non-Specific 58

Stress Fracture 2

Sprain/Joint Damage 1

Strain/Tear 1
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algorithms. PCA is a statistical, easy-to-implement algorithm that
reduces the dimensionality of the data. However, it is not the only
choice. KPCA, autoencoders, diffusion maps, and other techniques
can reduce the burden of high-dimensional data. The benefit of
using PCA is that the 1-to-1 linear inverse mapping presents an
opportunity to readily visualize the movements associated with each
PC, as discussed above. UMAP was selected to further reduce the
dimensionality of the data and provide non-linearity that PCA and
logistic regression do not provide. Again, other algorithms are

available, but we have found that UMAP is a robust algorithm
for dimensionality reduction and is advantageous in that both
supervised and unsupervised embeddings are allowable.
Moreover, UMAP preserves global data structure such that the
relative location of a particular point (and cluster) is meaningful
in relation to others. This is evident in the two-cluster analysis in
Figure 3. Individuals in the high-risk cluster that were spatially

FIGURE 3
Left: two-group gaussian mixture model clustering. X’s represent injury and O’s represent no injury. Right: three-group clustering. “High-risk” (red),
“medium-risk” (yellow), and “low-risk” (green) clusters were defined based on the relative portion of the trainees suffering an MSKI. Based on the
stochastic nature of UMAP, each implementation may yield slightly different results even with the same hyperparameters. As such, there is discrepancy
between the UMAP embeddings between the two and three group cluster analyses. The X and Y axes represent the twoUMAP variables that the PCA
variables were compressed to. The value of each UMAP component is unimportant, whereas the spatial relationship between the points is important.

FIGURE 4
Receiver operating characteristic curve for the supervised
classifier (kinematics only). Shaded regions denote ± 1 standard
deviation.

FIGURE 5
Confusionmatrix for the kinematic-only supervised classification
task assessed via leave-one-out analysis with the best run
(AUC = 0.79).
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closer to the low-risk cluster tended to be non-injurious, which
suggests a “medium-risk”. Unsurprisingly then, the semi-supervised
three-cluster analysis naturally yielded an intermediate “medium-
risk” zone. It should be noted that we observed a minor effect on the
random number generation within UMAP, which yielded AUC
values between 0.70–0.80. This is likely due to the small sample size
as a single change (1 out of 156) in the predicted class changed the
AUC by 0.01. Logistic regression is a common binary classifier, but
many other options exist to perform binary classification. We find it
encouraging that our first choice of algorithms performed well, and
perhaps improvement can be made with a more thorough
investigation of alternative algorithms.

There were several limitations of this study. The sample size of
156 was low, and it is unknown if the same predictive power would
be obtained from a larger military population. Moreover, due to the
small sample size, the ability to predict specific lower extremity
injuries (Table 2, Body Region 2) was not investigated. The
participants were spread over several cohorts, and therefore not
every participant performed the exact same training regimen
(although, this may be considered a strength, since this could

indicate algorithm generalizability). Age and BMI, and fitness
measures were not available for this analysis, but they’ve also
been shown to be predictive of injury risk (Rappole et al., 2017;
Rhon et al., 2018; Hollander et al., 2020; Butler et al., 2022; Hando
et al., 2022). Also, while not necessarily a limitation of this study,
force plate data were not available, and the inclusion of kinetic data
would provide a more complete biomechanical assessment of an
individual and may improve the predictive power of the algorithms
used in this study (Guess et al., 2020; Thomas et al., 2022).

In conclusion, we found that full-body kinematics may be
predictive of lower extremity MSKI in male trainees that undergo
an 8-week Air Force Special Warfare preparatory course. The analysis
was performed with data collected from markerless motion capture
(ENABLE™). The findings from this preliminary study warrant further
investigation and may lead to advanced methods to identify individuals
at-risk for injury in military, sport, and healthcare. If at-risk individuals
can be readily identified with quick, non-invasive functional movement
screens, then tailored interventions, such as specific exercise programs,
may be investigated in a controlled study to test its efficacy in reducing
the incidence of injury.

FIGURE 6
Time series of a side lunge (right leg) for both the plus andminus 1 standard deviation of a randomly selected principal component. Thesemodels are
constructed in OpenSim (native output of ENABLE™) by taking the average kinematics across all participants and perturbing the average motion by a
weight factor multiplied by a principal component. The weight factors shown here are plus 1 (green) standard deviation (in this particular PC, plus onewas
associated with non-injury) and a minus 1 (red) standard deviation, which was associated with injury.

TABLE 2 The number of significant principal components identified for each movement and their respective cumulative variance explained.

Number of significant PCs (p < 0.05) Total variance (%) explained

Left Lunge 4 17

Right Lunge 3 14

Squat 8 13

Right Side Lunge 9 10

Left Single Leg Squat 7 10

Left Single Leg Jump 6 10

Right Single Leg Squat 5 10

Right Single Leg Squat 5 7

Left Side Lunge 4 5

Countermovement Jump 2 2
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